

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio

Joe Vitale
Scot Schrager

Mark W. Mitchell
Jeff Scanlon

01_574868 ffirs.qxd 12/21/04 5:51 PM Page iii

01_574868 ffirs.qxd 12/21/04 5:51 PM Page ii

Professional Java™, JDK™ 5 Edition

01_574868 ffirs.qxd 12/21/04 5:51 PM Page i

01_574868 ffirs.qxd 12/21/04 5:51 PM Page ii

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio

Joe Vitale
Scot Schrager

Mark W. Mitchell
Jeff Scanlon

01_574868 ffirs.qxd 12/21/04 5:51 PM Page iii

Professional Java™, JDK™ 5 Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256-5774
www.wiley.com

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada
ISBN: 0-7645-7486-8
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
1MA/RR/QR/QV/IN
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT
AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTEN-
TIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUB-
LISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEB
SITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993, or fax
(317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.
Library of Congress Cataloging-in-Publication Data

Professional Java, JDK 5 Edition / W. Clay Richardson . . . [et al.].—
p. cm.

Includes bibliographical references and index.
ISBN 0-7645-7486-8 (paper/web site)
1. Java (Computer program language) I. Richardson, W. Clay, 1976-
QA76.73.J38P7623 2004
005.13'3—dc22

2004022626
Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates. Java is a trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

01_574868 ffirs.qxd 12/21/04 5:51 PM Page iv

www.wiley.com

About the Authors
W. Clay Richardson is a software consultant concentrating on agile Java solutions for highly specialized
business processes. He has fielded many Java solutions, serving in roles including senior architect,
development lead, and program manager. He is a coauthor of More Java Pitfalls and Professional Portal
Development with Open Source Tools (Wiley). As an adjunct professor of computer science for Virginia
Tech, Richardson teaches graduate-level coursework in object-oriented development with Java. He holds
degrees from Virginia Tech and the Virginia Military Institute.

Donald Avondolio is a software consultant with over 19 years of experience developing and deploying
enterprise applications. He began his career in the aerospace industry developing programs for flight
simulators and later became an independent contractor, crafting health-care middleware and low-level
device drivers for an assortment of mechanical devices. Most recently, he has built e-commerce applica-
tions for numerous high-profile companies, including The Home Depot, Federal Computer Week, the
U.S. Postal Service, and General Electric. He is currently a technical architect and developer on several
portal deployments. Don serves as an adjunct professor at Virginia Tech, where he teaches progressive
object-oriented design and development methodologies, with an emphasis on patterns.

Joe Vitale has been working as a developer for the last ten years. He has worked significantly with the
latest Java technologies and also the most-popular open source technologies on the market. Besides
being a developer, Vitale is coauthor of Professional Portal Development with Open Source Tools (Wiley),
which had a strong focus on open source development and the Java Portlet API formally known as JSR
168. Joe currently works for McDonald Bradley as a development manager, where he manages more
than 50 developers.

Scot Schrager has consulted extensively in the domains of pharmaceuticals, supply chain management,
and the national security market. He has led and participated in various project teams using Java and
Object Oriented Analysis & Design techniques. Most recently, Schrager has been focused on distributed
application architecture using J2EE technology.

Mark W. Mitchell has extensive experience in enterprise application integration, particularly Web
Services integration between Java and the Microsoft platform. He has developed and deployed several
mission-critical Web applications. Mitchell holds a degree in computer science from the University of
Virginia.

Jeff Scanlon is a senior software engineer at McDonald Bradley in Herndon, Virginia. Scanlon holds
both the Sun Certified Java Developer and Microsoft Certified Solutions Developer certifications and has
been published in Software Development magazine.

01_574868 ffirs.qxd 12/21/04 5:51 PM Page v

Credits
Executive Editor
Robert Elliott

Development Editor
Eileen Bien Calabro

Technical Editor
Dreamtech

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Kathryn A. Malm

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists
Beth Brooks
Amanda Carter
Sean Decker
Kelly Emkow
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Barry Offringa

Quality Control Technicians
John Greenough
Susan Moritz

Media Development Specialist
Angie Denny

Text Design and Composition
Wiley Composition Services

Proofreading and Indexing
TECHBOOKS Production Services

01_574868 ffirs.qxd 12/21/04 5:51 PM Page vi

This book is dedicated to all those who make the daily sacrifices,
especially those who have made the ultimate sacrifice, to ensure our
freedom and security.

01_574868 ffirs.qxd 12/21/04 5:51 PM Page vii

01_574868 ffirs.qxd 12/21/04 5:51 PM Page viii

Acknowledgments

First, I could not have had any chance of actually getting this book done without the support of my
wonderful wife, Alicia. She and my daughter Jennifer, who has far less sophisticated expectations from
my literary skills, are the joy in my life, and I look forward to spending more time with them. I love both
of you more than words can describe. Stephanie, we love you and will never forget you. My fellow
authors—Donnie, Mark, Scot, Jeff, and Joe—have been terrific with their hard work on a demanding
project. I appreciate each of your contributions to this book. I would like to thank Bob Elliott and Eileen
Bien Calabro for all of their hard work and perseverance working with us on this project. I would like to
acknowledge my leadership, Joe Duffy, Jim Moorhead, Don Heginbotham, Tom Eger, Mark Cramer, Jon
Grasmeder, and Doug Dillingham, for their dedication to the simple concept of doing the right thing for
the right people. It is very refreshing to work at a company that exercises the inverse of the cynical “zero
sum game.” I would like to thank my parents, Bill and Kay, my in-laws, Stephen and Elaine Mellman,
my sister Kari, my brother Morgan, and my stepfather Dave for always being there. I would like to
acknowledge my grandmothers, Vivian and Sophie, for being what grandmothers should be.

I would also like to acknowledge my team members for the great things they do every day to make the
world a better place: Jon Simasek, Rob Brown, Keith Berman, Mauro Marcellino, Terry Trepel, Marshall
Sayen, Joe Sayen, Hanchol Do, Greg Scheyer, Scot Schrager, Don Avondolio, and Mark (Mojo) Mitchell.
To my duty crew at the Gainesville District VFD: Bob Nowlen, Gary Sprifke, Patrick Vaughn, Seth
Bowie, Matt Tyrrell, and Gerry Clemente—we have been through a lot together! To Kevin Smith, I think
you were smart to pass on writing to spend more time with Isabella—I think I will do the same with
Jennifer. Matt Tyrrell, I thought about giving you a hard time again this time around but decided not to
tempt fate too much, so I will just remark the obvious—you are still like a brother to me.—WCR

First, I’d like to thank all of my BV pals: Wendong Wang, Arun Singh, Shawn Sherman, Henry Zhang,
Bin Li, Feng Peng, Henry Chang., Sanath Shetty, Prabahkar Ramakrishnan, Yuanlin Shi, Andy Zhang,
and John Zhang. Additionally, I’d also like to thank these people for inspiring me in the workplace:
Swati Gupta, Chi Louong, Bill Hickey, and Chiming Huang. Thanks to all of the great professors at the
Virginia Tech Computer Science/Information Technology Departments: Shawn Bohner, Tarun Sen,
Stephen Edwards, and John Viega. I am indebted to all of my students who taught me so much with
their dedication, hard work, and insight, which has allowed me to incorporate their development wis-
dom for instruction in this book. Appreciation goes out to the sponsors and organizers of The Great Cow
Harbor Run (Northport, New York) and The Columbia Triathlon (Columbia, Maryland) for organizing
world-class events I like to participate in, but more importantly for inspiring me to be a more disciplined
and focused person.

Finally, I wish to thank all of the coauthors, who are fun guys to work with and be around: Joe, Jeff,
Mark, Scot, and Clay; and my co-workers: Mauro Marcellino, Joe and Marshall Sayen, Jon Simasek,
Terry Trepel, Hanchol Do, Keith Berman, and Rob Brown. To all of my family: Mom, Dad, Michael, John,
Patricia, Kiel, Jim, Sue, Reenie, Donna, Kelly, Stephen, Emily, Jack, and Gillian, Matt and Danielle, you
guys are great. To my wife Van, who I love more than anything for her continual support during the
writing of this book.—DJA

01_574868 ffirs.qxd 12/21/04 5:51 PM Page ix

x

Acknowledgments

First, I’d like to thank my wife Jennifer Vitale and my son Andrew. They have been so supportive
throughout my book-writing adventures, and without their encouragement I would not have found the
time or energy to complete this task. I’d also like to thank my grandfather and grandmother Carlo and
Annette Vitale, as well as my father Joseph Vitale, my stepmother Linda Vitale, and my father- and
mother-in-law James and Marlaine Moore. Many thanks also go to John Carver, Brandon Vient, and
Aron Lee for their great supporting roles as friends. Finally, I’d like to thank all of my co-workers at
McDonald Bradley, including Kyle Rice, Danny Proko, Joe Broussard, Rebecca Smith, Joe Cook, Ken
Pratt, Adam Dean, Joon Lee, Adam Silver, John Johnson, Keith Bohnenberger, Bill Vitucci, Barry
Edmond, Arnold Voketaitis, Steven Brockman, Peter Len, Ken Bartee, Dave Shuping, John Sutton,
William Babilon, and many others who have been very supportive. And a special thanks goes to my
coauthors for all of their hard work and encouragement. Thank you all!—JV

I would like to dedicate my contribution of this book to the memory of my father. My biggest fan—I
know he would have put a copy of this book in the hand of everyone he knew. I appreciate the opportu-
nities I have had as the result of the hard work and sacrifice of both of my parents.

I would like to thank my colleagues for helping me be part of this book. I would especially like to thank
Clay and Donnie for their guidance. You make the very difficult seem easy.

This was my first participation in a technical book. I would like to thank my beautiful wife, Heather, for
helping me stay the course. I could not have done it without you.

I would also like to thank Don Schaefer. It has been a privilege to work with you. You have taught me
several lessons firsthand on leadership, professionalism, and conviction. I learned from you that the
quality of a person’s ideas should be judged independent of their position in a company.

One of my early mentors was my high school computer science teacher, Mr. John Nadig. I remember
specifically having some trouble with an assignment. Instead of just telling me the correct answer,
he handed me a thick reference book and said with confidence, “I’m sure you will find the answer in
here.” Thank you for getting me hooked on solving problems; I have been using that approach ever
since.—SRS

I would like to thank my parents: my mother for teaching me how to write and showing me by her
example how to work diligently and persistently through any problem and my father for introducing
me to computer science and programming very early in my life. I would sit by his side and watch him
program and through his patience learned quite a bit—sparking my interest for what would later
become my career. I would like to thank the people I work with right now, and whom I have worked
with in the past. I have learned a lot simply through watching and listening. There is no greater work
atmosphere than the one where you are the least senior—there is something to be learned from every-
one, each and every day of the week. I would like to thank my friends for understanding why I was
always busy around book deadlines and for continuing to support me even as I became a hermit. Most
of all I would like to thank God, as writing this book has been an exercise in faith and trust. Last, but cer-
tainly not least, I would like to thank my ever-loving and supporting fiancée, without whose support I
certainly would not have been able to complete my chapters. Thank you for planning our wedding and
for being patient with me during my many hours of writing. I promise I will spend more time with the
wedding planning!—MWM

I would like to thank the people who made this book possible: Dave Nelson for introducing me to the
world of software development and for being my long-standing friend; Joe Vitale for his friendship and

01_574868 ffirs.qxd 12/21/04 5:51 PM Page x

xi

Acknowledgments

involving me with this book; and Eileen Bien Calabro for working with us as a developmental editor,
helping to ensure that this book succeeds. I would also like to thank those who offer their support and
belief in me—my parents, my family, Phil Bickel, Eric Anderton, John Tarcza, Joseph Kapp, Mark
Orletsky, Gwynne Sayres, Keith Obenschain, Robert Burtt, Myke Weiskopf, Randy Nguyen, Randy
Shine, James Kwon, David Hu, Sung Kwak, Tim Weber, Bobby Suh, Albert Young, Jacob Kim, and a few
others I am sure I am forgetting who stand by me.—JS

01_574868 ffirs.qxd 12/21/04 5:51 PM Page xi

01_574868 ffirs.qxd 12/21/04 5:51 PM Page xii

Contents

Acknowledgments ix
Introduction xxv

Chapter 1: Key Java Language Features and Libraries 1

New Language Features 1
Generics 2

Generic Types and Defining Generic Classes 3
Using Generics 5

Enhanced for Loop 7
Additions to the Java Class Library 8

Variable Arguments 9
Boxing/Unboxing Conversions 11

Unboxing Conversions 12
Valid Contexts for Boxing/Unboxing Conversions 12

Static Imports 13
Enumerations 15
Meta data 17

AnnotationDesc 20
AnnotationDesc.ElementValuePair 21
AnnotationTypeDoc 21
AnnotationTypeElementDoc 21
AnnotationValue 22

Important Java Utility Libraries 26
Java Logging 26

The Log Manager 28
The Logger Class 30
The LogRecord Class 34
The Level Class 37
The Handler Class 38
The Formatter Class 44
Stock Formatters 45
The Filter Interface 48
The ErrorManager 49
Logging Examples 49
Regular Expressions 53
The Pattern Class 58

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xiii

xiv

Contents

The Matcher Class 59
The MatchResult Interface 61
Regular Expression Example 61

Java Preferences 63
The Preference Class 63
Exporting to XML 68
Using Preferences 69

Summary 71

Chapter 2: Tools and Techniques for Developing Java Solutions 73

Principles of Quality Software Development 74
Habits of Effective Software Development 75

Communicate 75
Model 75
Be Agile 75
Be Disciplined 76
Trace Your Actions to Need 76
Don’t Be Afraid to Write Code 77
Think of Code as a Design, not a Product 77
Read a LOT! 78
Build Your Process from the Ground Up 78
Manage Your Configuration 78
Unit Test Your Code 79
Continuously Integrate 79
Maintaining Short Iterations 79
Measure What You Accomplished — Indirectly 80
Track Your Issues 81

Development Methodology 82
Waterfall Methodology 82
Unified Process 83
eXtreme Programming 85
Observations on Methodology 86

Practical Development Scenarios 87
Ant 87

Scenario 1 88
Scenario 2 90
Scenario 3 94

Maven 95
JUnit 98
XDoclet 101
JMeter 107

Summary 109

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xiv

xv

Contents

Chapter 3: Exploiting Patterns in Java 111

Why Patterns Are Important 112
Keys to Understanding the Java Programming Language 112
Keys to Understanding Tools Used in Java Development 113

ANT 113
JUnit 113
XDoclet 113

Keys to Developing Effective Java Solutions 113
Develop Common Design Vocabulary 114
Understand the Fundamentals of Design 114

Building Patterns with Design Principles 115
Designing a Single Class 115
Creating an Association between Classes 115
Creating an Interface 117
Creating an Inheritance Loop 117

Important Java Patterns 119
Adapter 119

The Adapter Pattern Is a Collaboration of Four Classes 120
Client 120
Adaptee 121
Adapter 121

Model-View-Controller 122
Scenario 1: Changing to the Model 123
Scenario 2: Refreshing When the Model Changes 123
Scenario 3: Initializing the Application 124
Model 124
View 125
Controller 128

Command 130
Command 130
CommandManager 131
Invoker 131

Strategy 134
Strategy 135
Context 137

Composite 138
Component 139
Leaf 139
Composite 140

Summary 142

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xv

xvi

Contents

Chapter 4: Developing Effective User Interfaces with JFC 143

Layout Managers 144
BorderLayout 144
BoxLayout 151
FlowLayout 161
GridLayout 167
GridBagLayout 177
SpringLayout 183
CardLayout 191

JFrame and JDialog Components 197
Managing Navigation Flows in Swing Applications 214
Summary 221

Chapter 5: Persisting Your Application Using Files 223

Application Data 224
Saving Application Data 225

A Configuration Data Model for the Imager Application 225
Java Serialization: Persisting Object Graphs 228

Key Classes 229
Serializing Your Objects 229

Configuration Example: Saving Your App’s Configuration to Disk 230
Giving Your Application a Time-based License Using Serialization 235

Implementing the License 236
Implementing the Timeserver 238

Tying Your Serialization Components into the Application 239
Extending and Customizing Serialization 243

The Transient Keyword 243
Customizing the Serialization Format 243
Versioning 245

When to Use Java Serialization 247
Java Beans Long-Term Serialization: XMLEncoder/Decoder 248

Design Differences 248
XML: The Serialization Format 249

Key Classes 250
Serializing Your Java Beans 251

Robustness Demonstrated: Changing Configuration’s Internal Data 252
Possible Customization 254

Persistence Delegates 255
When to Use XMLEncoder/Decoder 255

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xvi

xvii

Contents

XML Schema-Based Serialization: Java API for XML Binding (JAXB) 256
Sample XML Document for Your Configuration Object 257
Defining Your XML Format with an XML Schema 259

Defining Your Data: Configuration.xsd 260
Generating JAXB Java Classes from Your Schema 263

Generated JAXB Object Graphs 265
JAXB API Key Classes 269
Marshalling and Unmarshalling XML Data 269

Creating New XML Content with JAXB-Generated Classes 270
Using JAXB-Generated Classes in Your Application 271

Implementing Your Save Action 273
Implementing Your Load Action 275

When to Use JAXB 278
Future Direction of JAXB 2.0 279

Summary 279

Chapter 6: Persisting Your Application Using Databases 281

JDBC API Overview 281
Setting Up Your Environment 283
JDBC API Usage in the Real World 283

Understanding the Two-Tier Model 283
Understanding the Three-Tier Model 284

Grasping JDBC API Concepts 285
Managing Connections 286

DriverManager Class 286
DataSource Interface 286

Understanding Statements 287
Investigating the Statement Interface 288
Exploring the PreparedStatement Interface 289
Exploring the CallableStatement Interface 292
Utilizing Batch Updates 294

Utilizing Result Sets 298
Investigating Types of Result Sets 298
Setting Concurrency of Result Sets 298
Setting Holdability of Result Sets 299
Using Result Sets 299

Examining JDBC Advanced Concepts 302
Managing Database Meta Data 302

Discovering Limitations of a Data Source 303
Determining Which Features a Data Source Supports 303
Retrieving General Information about a Data Source 304

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xvii

xviii

Contents

Utilizing RowSets 308
Understanding RowSet Events 308
RowSet Standard Implementations 308
Using the New JdbcRowSetImpl 309

Connection Pooling 310
Managing Transactions 310

What Is a Transaction? 310
Standard Transactions 311
Distributed Transactions 311

Object to Relational Mapping with Hibernate 312
Exploring Hibernate’s Architecture 312

Supported Database Platforms 314
Plugging Hibernate In 314

Developing with Hibernate 315
Understanding Mappings 315
Setting Hibernate Properties 317
Using Hibernate’s APIs for Persistence 317
Putting It All Together: The Forum Example 320

Summary 327

Chapter 7: Developing Web Applications Using the Model 1 Architecture 329

What Is Model 1? Why Use It? 329
JSP 2.0 Overview 331

Servlet 2.4 Support 332
Expression Language Support 332
Code Reuse with *.tag and *.tagx Files 335
JSP Page Extensions (*.jspx) 336
Simple Invocation Protocol 337

Integrated Expression Language (EL) 339
JSTL 1.1 Overview 340

Function Tag Library 341
SQL Actions 342

Developing Your Web Application Visualizations with JSTL 344
Developing Your Web Application Visualizations with JSP 2.0 350

Summary 364

Chapter 8: Developing Web Applications Using the Model 2 Architecture 365

The Problem 365
What Is Model 2? 365
Why Use Model 2? 367

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xviii

xix

Contents

Developing an Application with WebWork 368
What Is Inversion of Control and Why Is It Useful? 369
Architecture 371

Interceptors 372
ValueStack 373
OGNL 373
Components 374

Extending the Framework to Support Hibernate 374
Preventing the Hanging Session 375

Defining Your Domain Model 378
Implementing Your Use Cases with Actions 384
Developing Your Views 387

Adding Contacts to the System 389
Browsing Contacts 391

Configuring Your Application 394
Adapting to Changes 397

Summary 399

Chapter 9: Interacting with C/C++ Using Java Native Interface 401

A First Look at Java Native Interface 401
Creating the Java Code 402
Creating the Native Code and Library 403
Executing the Code 405

Java Native Interface 406
Data Types 406
Strings in JNI 406

String Example 408
Arrays in JNI 410

Array Functions 411
Array Examples 413

Working with Java Objects in C/C++ 416
Accessing Fields in JNI 416
Invoking Java Methods Using JNI 419

Handling Java Exceptions in Native Code 423
Working with Object References in Native Code 425

Local References 425
Global and Weak Global References 427
Comparing References 429

Advanced Programming Using JNI 429
Java Threading 429
Native NIO Support 430

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xix

xx

Contents

Manually Registering Native Methods 430
Reflection 432

Developing an E-Mail Client 434
System Design 434
User Interface 435

Summary 444

Chapter 10: Communicating between Java Components with RMI and EJB 445

Remote Method Invocation 445
Exploring RMI’s Architecture 446
Developing RMI Applications 448

Using Threads in RMI 448
Using Dynamic Class Loading 449
Distributed Garbage Collection 449

Examining Remote Object Activations 449
TestRemoteInterface Interface 450
TestActivationImpl Class 450
TestClient Class 451
Register Class 452
Starting the Activation Tools 453

RMIChat Example 453
RMIChat Interface 454
RMIChatImpl Class 455
ChatUser Class 459
ChatApplet Class 460
Compiling the RMIChat Application 464

Enterprise JavaBeans 465
EJB Basics 465
Types of EJBs 466

Session Beans 466
Entity 466
Message Driven 466

Examining EJB Containers 467
EJB Loan Calculator Example 468

LoanObject Interface 468
LoanHome Interface 468
LoanBean Class 469
LoanClient Class 470
Examining the EJB-JAR.XML File 473

Summary 475

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xx

xxi

Contents

Chapter 11: Communicating between Java Components and
Components of Other Platforms 477

Component Communication Scenarios 478
News Reader: Automated Web Browsing 478
A Bank Application: An EJB/J2EE Client 478
A Portal: Integrating Heterogeneous Data Sources and Services 478

Overview of Interprocess Communication and Basic Network Architecture 479
Sockets 480

The Java Socket API 481
Key Classes 481
Client Programming 481
Server Programming 482
Putting It All Together: An Echo Server 483

Implementing a Protocol 487
Protocol Specification 488
Proprietary Protocols and Reverse Engineering 498
Utilizing Existing Protocols and Implementations 499

Remote Method Invocation 500
Core RPC/RMI Principles 500

Marshalling and Unmarshalling 501
Protocols 503
RMI Registry 503

Distributed Objects 504
Middleware and J2EE 504

Common Object Request Broker Architecture 505
CORBA Basics 506

IDL: Interface Definition Language 507
ORB: Object Request Broker 509
Common Object Service (COS) Naming 509
IIOP: Internet InterORB Protocol 509

RMI-IIOP: Making RMI Compatible with CORBA 510
How to Turn an RMI Object into an RMI-IIOP Object 510

When to Use CORBA 512
Distributed File System Notifications: An Example CORBA System 513

The Implementation 516
Running the Example 521

Web Services 522
Evolution of the World Wide Web 523
Platform Independent RPC 526

Web Services Description Language (WSDL) 528
Simple Object Access Protocol (SOAP) 529

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xxi

xxii

Contents

Weather Web Site Example 531
The Future 540

Summary 541

Chapter 12: Distributed Processing with JMS and JMX 543

Basic Concepts 544
JMS Fundamentals 544

Sending and Receiving a JMS Message 545
JMX Fundamentals 548

Using Standard MBeans 549
Deploying MBean for Management 550
Using Adaptors and Connectors 551

Building a Distributed Application 551
Deciding on the Message Type 552
Understanding the Three-Component Architecture 553
Creating a Component to Process JMS Messages 553

MessageListener 555
MessageProcessorMBean 555
JndiHelper 556
MessageProcessor 558
Processable 562
OrderProcessor 562
JMXAgent 563

Creating a Component that Directs Messages through the Business Process 564
Routeable 565
MessageRouter 565

Creating a Component to Divide Large Tasks for Parallel Processing 566
Splitable 567
MessageSplitter 567
Aggregateable 570
MessageAggregator 570
OrderAggregator 572

Deploying the Application 573
Basic Deployment 573
Advanced Deployment 578

Deploy the M-Let Service 579
Configure the Deployment Descriptor 579
Add the M-Let Configuration File to the M-Let Service 581

Summary 581

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xxii

xxiii

Contents

Chapter 13: Java Security 583

Java Cryptography Architecture and Java Cryptography Extension (JCA/JCE) 583
JCA Design and Architecture 584

Engine Classes 584
Calculating and Verifying Message Digests 586
Digital Signing and Verification of Data 588
Digital Key Creation and Management 592
Storing and Managing Keys 596
Algorithm Management 597
Random Number Generation 599
Certificate Management 600

Java Cryptography Extension 602
The Cipher Engine Class 603
KeyGenerator 608
SecretKeyFactory 608
Protecting Objects through Sealing 609
Computing Message Authentication Codes 611

Program Security Using JAAS 612
User Identification 612
Executing Code with Security Checks 613

Principals 614
Credentials 615
Authenticating a Subject 615
Configuration 615
LoginContext 616

Authorization 617
Summary 618

Chapter 14: Packaging and Deploying Your Java Applications 619

Examining Java CLASSPATHs 619
Investigating the Endorsed Directory 624
Exploring Java Archives 625
Manipulating JAR files 625

Examining the Basic Manifest File 628
Examining Applets and JARs 629
Signing JAR Files 630
Examining the JAR Index Option 634
Creating an Executable JAR 635

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xxiii

xxiv

Contents

Analyzing Applets 636
Basic Anatomy of an Applet 636
Packaging an Applet for Execution 638
Examining Applet Security 639

Exploring Web Applications 639
Examining the WAR Directory Structure 640
Understanding the WAR Deployment Descriptor 640

Packaging Enterprise Java Beans 643
Inspecting Enterprise Archives 644

The EAR Descriptor File 644
Deployment Scenario 645

Jumping into Java Web Start 647
Examining the TicTacToe Example 647

Examing the TicTacToe.JNLP 648
TTTMain.java 650
TTTLogic.java 650
TTTGui.java 653

Summarizing Java Web Start 654
Using ANT with Web Archives 654

Installing ANT 654
Building Projects with ANT 655

Summary 659

References 661

Index 663
End-User License Agreement 701

02_574868 ftoc.qxd 12/21/04 5:53 PM Page xxiv

Introduction

Professional Java, JDK 5 Edition provides a bridge from the “how to” language books that dominate the
Java space (Teach Yourself Hello World in Java in 24 Hours) and the more detailed, but technologically
stovepiped books on topics such as EJB, J2EE, JMX, JMS, and so on. Most development solutions involve
using a mix of technologies, and the books for all of these technologies would stand several feet tall.
Furthermore, the reader needs but a fraction of the overall content in these books to solve any specific
problems. Professional Java, JDK 5 Edition provides background information on the technology, practical
examples of using the technology, and an explanation of where the reader could find more-detailed
information. It strives to be a professional reference for the Java developer.

Who This Book Is For
This book serves three types of readers:

❑ The newly introduced reader who has graduated from Beginning Java, by covering more-
advanced Java solutions and language features.

❑ The Java developer who needs a good all-purpose reference and a first source when tackling
new Java problems that may be outside their technological experience.

❑ The developer who has already had experience with certain solutions, but may not, for exam-
ple, think it worthwhile to read 500 pages on JMS alone to see if JMS could fit into their solution
space. This book can provide reduced barriers to technological entry for these developers.

What This Book Covers
Professional Java, JDK 5 Edition builds upon Ivor Horton’s Beginning Java 2, JDK 5 Edition by Ivor Horton to
provide the reader with an understanding of how professionals use Java to develop software solutions.
It starts with a discussion of the tools and techniques of the Java developer, continues with a discussion
of the more sophisticated and nuanced parts of the Java SDK, and concludes with several examples of
building real Java solutions using Java APIs and open source tools. Professional Java, JDK 5 Edition leaves
the reader with a well-rounded survey of the professional Java development landscape, without losing
focus in exhaustive coverage of individual APIs. This book is the bridge between Java language texts,
methodology books, and specialized Java API books. For example, once you have mastered the basics of
the Java language, you will invariably encounter a problem, like building a database-driven Web site,
which requires you to use a collection of technologies like JSP, and tools like Hibernate; this book pro-
vides a concrete solution that integrates both of them. Figure Intro-1 provides a context to this book’s
coverage in relation to other Java books. As you start with the beginning Java books, you would use this
book as a solution primer to introduce you to more in-depth books on a particular subject, such as pat-
terns, Web services, or JDBC.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxv

xxvi

Introduction

Figure Intro-1

How This Book Is Structured
Working as an effective professional Java developer requires two major skills: thinking like a Java devel-
oper and having a broad understanding of Java APIs, tools, and techniques to solve a wide variety of
Java problems. Reviewing the structure of the book, you can see how the chapters help you realize the
goal of improving these skills.

Thinking Like a Java developer
Experienced Java developers recognize that there is a particular mindset among effective Java develop-
ers. The first three chapters provide you with strong coverage of these topics.

Chapter 1: Key Java Language Features and Libraries
Any introductory Java book will cover the features of the Java programming language. This chapter
picks up where those books leave off by focusing on a number of the key sophisticated Java language
features, such as assertions, regular expression, preferences, and Java logging. Most importantly, this
chapter covers a number of key features introduced in the Java 2 Standard Edition 5.0. These include
generics, meta data, autoboxing, and more.

Chapter 2: Tools and Techniques for Developing Java Solutions
Making the jump from someone who knows the Java language to a Java developer is an interesting tran-
sition. Typically, developers find books that teach the language and books that teach the methodologies.
Furthermore, methodology books are often written defensively, as if they are defending a dissertation or
prescribing a diet. These books often prescribe ritualistic adherence to their methodology, lest you risk

Methodology, Patterns, and API Books

Beginning Java Books

Professional
Java

Development

03_574868 flast.qxd 12/21/04 5:52 PM Page xxvi

xxvii

Introduction

failure. New developers can find this approach quite exhausting, since rarely do you start in a position
where you can dictate a team’s process. In this book, you will find a developer’s focused view on
methodology and tools with practical insights into how to allow tools to make your work easier and
more productive.

Chapter 3: Exploiting Patterns in Java
Patterns provide an invaluable resource to developers in trying to communicate solutions to common
problems. However, as software problems are generally very abstract, understanding common solutions
to them—or even the value of the approach—can be a very overwhelming experience.

However, as you might imagine, there are some key problems that recur throughout the Java solution
space, and therefore, frameworks and APIs are built upon patterns. As such, having a utilitarian under-
standing of patterns is invaluable, and arguably unavoidable in becoming an effective Java developer.
This chapter will explain the critical importance of patterns, provide a practical understanding of pat-
terns, and demonstrate examples of common patterns found in the Java world.

A Broad Understanding of Java APIs, Tools, and Techniques
The Java platform has extended beyond being a simple applet development language at its inception to
three distinct editions targeted at three different platforms. Not only has the platform evolved into a
huge undertaking, but the open source movement and the Java community have also added features
and tools that provide even more options to the Java developer.

Therefore, you can find yourself easily overwhelmed. This part of the book provides a series of common
problems across the Java development space. In each area, you will be introduced to a problem and a
focused solution to that problem. These solutions do not attempt to provide comprehensive coverage of
all of the involved APIs but rather a primer needed to solve that problem. From there, you could bridge
into a book with more-specialized coverage. The primary intent is to not require a three-foot-tall stack of
books to address a simple end-to-end solution to a common development problem.

Chapter 4: Developing Effective User Interfaces with JFC
Commonly referred to simply as Swing, the Java Foundation Classes provide the functionality to build
user interfaces and desktop applications. As these classes frequently make up most of the logical exam-
ples within introductory Java books, it makes logical sense to start with a Swing example. However, this
chapter will cover the intricacies of Swing in more detail, including some advanced topics like Layout
Managers and Java 2D.

Chapter 5: Persisting Your Application Using Files
One of the more important things for any application to be able to do is persist its state—that is, save. In
this chapter, you will discover techniques to implement save and restore functionality, using two differ-
ent methods, Java object serialization and the Java API for XML Binding (JAXB).

Chapter 6: Persisting Your Application Using Databases
Files are traditionally used to share data in a single-threaded mode—one user at a time. When data must
be shared throughout the enterprise, you use a database. In this chapter, you will learn the more
advanced features of the Java Database Connectivity API (JDBC) 3.0, including the new Rowset inter-
face. Furthermore, this chapter will address one of the more popular object persistence frameworks (and
the foundation for the development of the new EJB 3.0 specification)—Hibernate.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxvii

xxviii

Introduction

Chapter 7: Developing Web Applications Using the Model 1 Architecture
Those who have been developing Web applications for a long time recognize that the page-centric
paradigm, also known as the Model 1 Architecture, has been used across many technology platforms
(ASP, Cold Fusion, Perl, and so on) to develop Web applications. Java supports this paradigm through
its Java Server Pages 2.0 and Java Standard Tag Library specifications. In this chapter, you will learn
about these frameworks as well as other best practices in developing Web applications within the Model
1 Architecture.

Chapter 8: Developing Web Applications Using the Model 2 Architecture
As Web applications have evolved, there has been recognition of some weaknesses in the page-centric
approach of the Model 1 Architecture. In this chapter, you will learn about these weaknesses and how
they gave rise to the Model 1 Architecture, which is component-centric. You will see how using a compo-
nent framework like WebWork allows for easy integration of other components like Hibernate.

Chapter 9: Interacting with C/C++ Using Java Native Interface
Frequently, you have application components that are regrettably not written in the Java programming
language. This often does not alleviate the need for those components to be accessible by your applica-
tion. The solution to this problem is the Java Native Interface. This chapter will explain the intricacies of
JNI, as well as a number of the potential pitfalls.

Chapter 10: Communicating between Java Components with RMI and EJB
The heart of distributed development is interprocess communication—that is, you have two applications
that wish to speak with each other. This is frequently also referred to as Client/Server, instilling the con-
cept of one application process initiating a request upon another application process. This chapter will
discuss Java’s mechanism for interprocess communication, Remote Method Invocation, or simply, RMI.
RMI is the foundation of commonly used technologies like JDBC, though the mechanics are hidden from
the developer, by layering a higher-level API (JDBC on top). The chapter builds upon this concept by
introducing the enterprise application component framework known as Enterprise JavaBeans (EJB),
which is Java’s preferred way of building server components.

Chapter 11: Communicating between Java Components and
Components of Other Platforms

While RMI has proven to be a good solution for Java to Java communication, there are still a tremendous
number of needs to access (or provide access) to components of other platforms. This is particularly true
of the Microsoft .NET platform. This chapter will explain the basics of interprocess communication, dis-
cuss several techniques for interprocess communication, and culminate in an example using Web services.

Chapter 12: Distributed Processing with JMS and JMX
When performing enterprise application integration of components distributed across many machines
and platforms, it is often necessary for you to be able to spread the workload out across many different
steps. There are two APIs that are particularly useful in this regard, the Java Message Service (JMS) and
the Java Management Extensions (JMX). In this chapter, you will see the core of these two APIs tied
together to provide a highly useful architecture.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxviii

xxix

Introduction

Chapter 13: Java Security
Information security is tremendously important to Java development. In this chapter, you will see how
your application can be secured using the Java Authorization and Authentication Service (JAAS) and
how your data can be secured using the Java Cryptography Extensions (JCE).

Chapter 14: Packaging and Deploying Your Java Applications
One of the trickiest and most painful things about developing Java applications, whether they are enter-
prise or desktop applications, is packaging and deploying your application. There are a multitude of
deployment descriptors and packaging rules that exist in many of the Java APIs. There are JARs, WARs,
EARs, and more on the way. Often you get cursory understanding of these formats and specifications
within each of the stovepipe books. In this chapter, you will learn about a number of the packaging
mechanisms that exist in Java, as well as descriptions of the deployment descriptors for each of those
mechanisms.

What You Need to Use This Book
This book is based upon Java 2 Standard Edition version 5.0. You might find it helpful to have an
Integrated Development Environment (IDE) of your choice—Eclipse is a very good and popular one
(http://www.eclipse.org). Furthermore, depending on the chapter, you may need to use an applica-
tion server like JBoss (http://www.jboss.org) or Tomcat (http://jakarta.apache.org/tomcat).
The need to download an application server, as well as any other downloads (of APIs and so on), is
addressed in each chapter.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text, the following are standard for the book:

❑ Important words are highlighted when they are introduced.

❑ Keyboard strokes are shown like this: Ctrl+A.

❑ File names, URLs, and code within the text are like so: persistence.properties.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxix

xxx

Introduction

❑ Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7486-8.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at http://www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot the error you are experiencing on the Book Errata page, go to http://www.wrox.com/
contact/techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxx

xxxi

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the registration process.

You can read messages in the forums without joining P2P, but to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_574868 flast.qxd 12/21/04 5:52 PM Page xxxi

03_574868 flast.qxd 12/21/04 5:52 PM Page xxxii

Key Java Language Features
and Libraries

Java’s initial design opted to leave out many features that programmers knew from C++ and other
languages. This made programming and understanding Java a lot simpler since there are fewer
syntactic details. The less built into the language, the cleaner the code is. However, since some fea-
tures are useful and desired by programmers, the new JDK 5 release of Java introduced several
important features that were left out of the initial design of the language. Other changes make cer-
tain code constructs easier to code, removing the need for repeating common blocks of code.
Please note that this book was written while some of these features are in flex, before they enter
into their final form. Therefore, certain information may not be accurate by the time this book is
published.

The first half of this chapter will explore the new language. The features are new to the language
features built into the language, giving you everything you need to know to make full use of these
additions. The second half of this chapter details certain key utility packages in the java.util
branch of the class library.

New Language Features
Sun has added several new features to the Java language itself. All these features are supported by
an updated compiler, and all translate to already defined Java bytecode. This means that virtual
machines can execute these features with no need for an update.

❑ Generics — A way to make classes type-safe that are written to work on any arbitrary
object type, such as narrowing an instance of a collection to hold a specific object type and
eliminating the need to cast objects when taking an object out of the collection.

❑ Enhanced for loop — A cleaner and less error prone version of the for loop for use with
iterators.

04_574868 ch01.qxd 12/21/04 5:50 PM Page 1

❑ Variable arguments — Support for passing an arbitrary number of parameters to a method.

❑ Boxing/Unboxing — Direct language support for automatic conversion between primitive types
and their reference types (such as int and Integer).

❑ Type-safe enumerations — Clean syntax for defining and using enumerations, supported at the
language level.

❑ Static import — Ability to access static members from a class without need to qualify them with
a class name.

❑ Meta data — Coupled with new tools developed by third-party companies, saves developers the
effort of writing boilerplate code by automatically generating the code.

These features update the Java language to include many constructs developers are used to in other lan-
guages. They make writing Java code easier, cleaner, and faster. Even if you choose not to take advan-
tage of these features, familiarity with them is vital to read and maintain code written by other
developers.

Generics
Generics enable compile-time type-safety with classes that work on arbitrary types. Take collections in
Java as an example of a good use of the generics mechanism. Collections hold objects of type Object, so
placing an object into a collection loses that object’s type. This means two things. First, any object can be
placed into the collection, and second, a cast is required when pulling an object out of the collection. This
can be a source of errors since the developer must track what type of object is in each position inside the
collection to ensure the correct cast is performed when accessing the collection.

You can design a generic collection such that at the source code level (and verifiable at compile time) the
collection will only hold a specific type of object. If a collection is told to only hold objects of type
Integer, and a String is placed into the collection, the compiler will display an error. This eliminates
any type ambiguity with the collection and also removes the need to cast the object when retrieving an
object from the collection. The class has to be designed to support genericity, and when an object of the
collection class is declared, the specific type that that instance of the collection will work on must be
specified. There are several syntax changes to the Java language to support generics, but here’s a quick
taste of what they look like before generics are discussed in detail.

To create an ArrayList that holds only Integer objects, the syntax for declaring, instantiating, and
using the ArrayList is the following:

ArrayList<Integer> listOfIntegers; // <TYPE_NAME> is new to the syntax
Integer integerObject;

listOfIntegers = new ArrayList<Integer>(); // <TYPE_NAME> is new to the syntax
listOfIntegers.add(new Integer(10)); // Can only pass in Integer objects
integerObject = listOfIntegers.get(0); // no cast required

If you have a background in C++, the syntax is quite similar. If you don’t, you may have to get used to
the syntax, but it shouldn’t be too difficult. Let’s take a more rigorous look at how generics are sup-
ported in the Java language.

2

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 2

Generic Types and Defining Generic Classes
In the terminology of generics, there are parameterized types (the generic classes) and type variables.
The generic classes are the classes that are parameterized when the programmer declares and instanti-
ates the class. Type variables are these parameters that are used in the definition of a generic class, and
are replaced by specific types when an object of the generic class is created.

Parameterized Types (Classes and Interfaces)
A generic class is also known as a parameterized class. The class is defined with space for one or more
parameters, placed between the angle braces, where the type of the parameters is specified during the
declaration of a specific instance of the class. For the rest of this section, the term generic class will be
used to refer to a parameterized class. Also note that a class or an interface in Java can be made generic.
For the rest of this section, unless otherwise stated, the word class includes classes and interfaces. All
instances of a generic class, regardless of what type each instance has been parameterized with, are con-
sidered to be the same class.

A type variable is an unqualified identifier that is used in the definition of a generic class as a place-
holder. Type variables appear between the angle braces. This identifier will be replaced (automatically)
by whatever specific object type the user of the generic class “plugs into” the generic class. In the exam-
ple at the start of this section, Integer is the specific type that takes the place of the type variable for the
parameterized ArrayList.

The direct super-types of a generic class are the classes in the extends clause, if present (or
java.lang.Object if not present), and any interfaces, if any are present. Therefore, in the following
example, the direct super-type is ArrayList:

class CustomArrayList<ItemType> extends ArrayList {
// fields/methods here

}

The super-types of type variables are those listed in the bounds list for that type variable. If none are
specified, java.lang.Object is the super-type.

In hierarchies of generic classes, one important restriction exists. To support translation by type erasure
(see below for more on type erasure), a class or type variable cannot have two different parameteriza-
tions of the same class/interface at the same time. This is an example of an illegal hierarchy:

interface BaseInterface<A> {
A getInfo();

}

class ParentClass implements BaseInterface<Integer> {
public Integer getInfo()
{

return(null);
}

}

class ChildClass extends ParentClass implements BaseInterface<String> { }

3

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 3

The interface BaseInterface is first parameterized with Integer, and later parameterized with
String. These are in direct conflict, so the compiler will issue the following error:

c:\code\BadParents.java:14: BaseInterface cannot be inherited with different
arguments: <java.lang.String> and <java.lang.Integer>
class ChildClass extends ParentClass implements BaseInterface<String> { }

1 error

Raw Types and Type Erasure
A raw type is a parameterized type stripped of its parameters. The official term given to the stripping of
parameters is type erasure. Raw types are necessary to support legacy code that uses nongeneric versions
of classes such as collections. Because of type erasure, it is possible to assign a generic class reference to a
reference of its nongeneric (legacy) version. Therefore, the following code compiles without error:

Vector oldVector;
Vector<Integer> intVector;

oldVector = intVector; // valid

However, though not an error, assigning a reference to a nongeneric class to a reference to a generic class
will cause an unchecked compiler warning. This happens when an erasure changes the argument types
of a method or a field assignment to a raw type if the erasure changes the method/field type. As an
example, the following program causes the warnings shown after it. You must pass -Xlint:unchecked
on the command line to javac to see the specific warnings:

import java.util.*;

public class UncheckedExample {
public void processIntVector(Vector<Integer> v)
{

// perform some processing on the vector
}

public static void main(String args[])
{

Vector<Integer> intVector = new Vector<Integer>();
Vector oldVector = new Vector();
UncheckedExample ue = new UncheckedExample();

// This is permitted
oldVector = intVector;
// This causes an unchecked warning
intVector = oldVector;
// This is permitted
ue.processIntVector(intVector);
// This causes an unchecked warning
ue.processIntVector(oldVector);

}
}

4

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 4

Attempting to compile the above code causes the following output:

UncheckedExample.java:16: warning: unchecked assignment: java.util.Vector to
java.util.Vector<java.lang.Integer>

intVector = oldVector; // This causes an unchecked warning

UncheckedExample.java:18: warning: unchecked method invocation:
processIntVector(java.util.Vector<java.lang.Integer>) in UncheckedExample is
applied to (java.util.Vector)

ue.processIntVector(oldVector); // This causes an unchecked warning

2 warnings

Defining Generic Classes
As mentioned earlier, both interfaces and classes can be parameterized. Since type variables have no
inherent type, all that matters is the number of type variables that act as parameters in a class. The list of
type variables appears between the angle braces (the less-than sign and greater-than sign). An example of
changing the existing ArrayList class from a nongeneric class to a generic class changes its signature to:

public class ArrayList<ItemType> { ... }

The type variable here is ItemType, and can be used throughout the class as a not-yet-specified type.
When an object of the class is defined, a specific type is specified and is “plugged into” the generic class
by the compiler. The scope of a type variable extends throughout the class, including the bounds of the
type parameter list, but not including static members/methods.

Each type variable can also have bounds that place a restriction on the type variable. The type variable
can be forced to extend from a class other than java.lang.Object (which it does when no extends
clause is specified) or implement any number of specific interfaces. For example, if you define an inter-
face GraphicContext as part of a graphics library, you might write a specialization of a collection to
only hold objects that implement the GraphicContext interface. To place only an interface restriction
on the type variable, the extends clause must be specified, even if it is only java.lang.Object, how-
ever it is possible to only list interfaces after the extends clause. If you only list interfaces, it is implicitly
understood that java.lang.Object is the base class of the type variable. Note that interfaces are sepa-
rated by the ampersand (“&”). Any number of interfaces can be specified.

Using Generics
It is straightforward to create objects of a generic type. Any parameters must match the bounds speci-
fied. Although one might expect to create an array of a generic type, the early access release of generics
forbids it. It is also possible to create a method that works on generic types. This section describes these
usage scenarios.

Class Instances
Creating an object of a generic class consists of specifying types for each parameter and supplying any
necessary arguments to the constructor. The conditions for any bounds on type variables must be met.
Note that only reference types are valid as parameters when creating an instance of a generic class.
Trying to use a primitive data type causes the compiler to issue an unexpected type error.

5

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 5

This is a simple creation of a HashMap that assigns Floats to Strings:

HashMap<String,Float> hm = new HashMap<String,Float>();

Here’s an example from above, involving bounds:

GCArrayList<MemoryDevice> gcal = new GCArrayList<MemoryDevice>();

If MonitorDevice was specified instead of MemoryDevice, the compiler issues the error type parame-
ter MonitorDevice is not within its bound.

Arrays
As of the time of this writing, arrays of generic types and arrays of type variables are not allowed.
Attempting to create an array of parameterized Vectors, for example, causes a compiler error:

import java.util.*;

public class GenericArrayExample {
public static void main(String args[])
{

Vector<Integer> vectorList[] = new Vector<Integer>[10];
}

}

If you try to compile that code, the compiler issues the following two errors. This code is the simplest
approach to creating an array of a generic type and the compiler tells you explicitly that creating a
generic type array is forbidden:

GenericArrayExample.java:6: arrays of generic types are not allowed
Vector<Integer> vectorList[] = new Vector<Integer>[10];

^
GenericArrayExample.java:6: arrays of generic types are not allowed

Vector<Integer> vectorList[] = new Vector<Integer>[10];
^

2 errors

Generic Methods
In addition to the generic mechanism for classes, generic methods are introduced. The angle brackets for
the parameters appear after all method modifiers but before the return type of the method. Following is
an example of a declaration of a generic method:

static <Elem> void swap(Elem[] a, int i, int j)
{

Elem temp = a[i];
a[i] = a[j];
a[j] = temp;

}

The syntax for the parameters in a generic method is the same as that for generic classes. Type variables
can have bounds just like they do in class declarations. Two methods cannot have the same name and

6

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 6

argument types. If two methods have the same name and argument types, and have the same number of
type variables with the same bounds, then these methods are the same and the compiler will generate an
error.

Generics and Exceptions
Type variables are not permitted in catch clauses, but can be used in throws lists of methods. An exam-
ple of using a type variable in the throws clause follows. The Executor interface is designed to execute
a section of code that may throw an exception specified as a parameter. In this example, the code that
fills in the execute method might throw an IOException. The specific exception, IOException, is speci-
fied as a parameter when creating a concrete instance of the Executor interface:

import java.io.*;

interface Executor<E extends Exception> {
void execute() throws E;

}

public class GenericExceptionTest {
public static void main(String args[]) {

try {
Executor<IOException> e =

new Executor<IOException>() {
public void execute() throws IOException
{

// code here that may throw an
// IOException or a subtype of
// IOException

}
};

e.execute();
} catch(IOException ioe) {

System.out.println(“IOException: “ + ioe);
ioe.printStackTrace();

}
}

}

The specific type of exception is specified when an instance of the Executor class is created inside main.
The execute method throws an arbitrary exception that it is unaware of until a concrete instance of the
Executor interface is created.

Enhanced for Loop
The for loop has been modified to provide a cleaner way to process an iterator. Using a for loop with
an iterator is error prone because of the slight mangling of the usual form of the for loop since the
update clause is placed in the body of the loop. Some languages have a foreach keyword that cleans up
the syntax for processing iterators. Java opted not to introduce a new keyword, instead deciding to keep
it simple and introduce a new use of the colon. Traditionally, a developer will write the following code to
use an iterator:

7

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 7

for(Iterator iter = intArray.iterator(); iter.hasNext();) {
Integer intObject = (Integer)iter.next();
// ... more statements to use intObject ...

}

The problem inherent in this code lies in the missing “update” clause of the for loop. The code that
advances the iterator is moved into the body of the for loop out of necessity, since it also returns the
next object. The new and improved syntax that does the same thing as the previous code snippet is:

for(Integer intObject : intArray) {
// ... same statements as above go here ...

}

This code is much cleaner and easier to read. It eliminates all the potential from the previous construct to
introduce errors into the program. If this is coupled with a generic collection, the type of the object is
checked versus the type inside the collection at compile time.

Support for this new for loop requires a change only to the compiler. The code generated is no different
from the same code written in the traditional way. The compiler might translate the above code into the
following, for example:

for(Iterator<Integer> $iter = intArray.iterator(); $iter.hasNext();) {
Integer intObject = $iter.next();
// ... statements ...

}

The use of the dollar sign in the identifier in this example merely means the compiler generates a unique
identifier for the expansion of the new for loop syntax into the more traditional form before compiling.

The same syntax for using an iterator on a collection works for an array. Using the new for loop syntax
on an array is the same as using it on a collection:

for(String strObject : stringArray) {
// ... statements here using strObject ...

}

However, the compiler expands the array version to code slightly longer than the collection version:

String[] $strArray = stringArray;

for(int $i = 0; $i < $strArray.length; $i++) {
String strObject = $strArray[$i];
// ... statements here ...

}

The compiler this time uses two temporary and unique variables during the expansion. The first is an
alias to the array, and the second is the loop counter.

Additions to the Java Class Library
To fully support the new for loop syntax, the object iterated over must be an array or inherit from a new
interface, java.lang.Iterable, directly or indirectly. The existing collection classes will be retrofitted
for the release of JDK 5. The new Iterable interface looks like:

8

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 8

public interface Iterable {
/**
* Returns an iterator over the elements in this collection. There are no
* guarantees concerning the order in which the elements are returned
* (unless this collection is an instance of some class that provides a
* guarantee).
*
* @return an Iterator over the elements in this collection.
*/

SimpleIterator iterator();
}

Additionally, java.util.Iterator will be retrofitted to implement java.lang.ReadOnlyIterator,
as shown here:

public interface ReadOnlyIterator {
/**
* Returns true if the iteration has more elements. (In other
* words, returns true if next would return an element
* rather than throwing an exception.)
*
* @return true if the iterator has more elements.
*/

boolean hasNext();

/**
* Returns the next element in the iteration.
*
* @return the next element in the iteration.
* @exception NoSuchElementException iteration has no more elements.
*/

Object next();
}

The introduction of this interface prevents dependency on the java.util interfaces. The change in the
for loop syntax is at the language level and it makes sense to ensure that any support needed in the
class library is located in the java.lang branch.

Variable Arguments
C and C++ are the most popular languages that support variable length argument lists for functions.
Java decided to introduce this aspect into the language. Only use variable argument parameter lists in
cases that make sense. If you abuse them, it’s easy to create source code that is confusing. The C lan-
guage uses the ellipsis (three periods) in the function declaration to stand for “an arbitrary number of
parameters, zero or more.” Java also uses the ellipsis but combines it with a type and identifier. The type
can be anything — any class, any primitive type, even array types. When using it in an array, however,
the ellipsis must come last in the type description, after the square brackets. Due to the nature of variable
arguments, each method can only have a single type as a variable argument and it must come last in the
parameter list.

9

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 9

Following is an example of a method that takes an arbitrary number of primitive integers and returns
their sum:

public int sum(int... intList)
{

int i, sum;

sum=0;
for(i=0; i<intList.length; i++) {

sum += intList[i];
}

return(sum);
}

All arguments passed in from the position of the argument marked as variable and beyond are com-
bined into an array. This makes it simple to test how many arguments were passed in. All that is needed
is to reference the length property on the array, and the array also provides easy access to each argu-
ment.

Here’s a full sample program that adds up all the values in an arbitrary number of arrays:

public class VarArgsExample {
int sumArrays(int[]... intArrays)
{

int sum, i, j;

sum=0;
for(i=0; i<intArrays.length; i++) {

for(j=0; j<intArrays[i].length; j++) {
sum += intArrays[i][j];

}
}

return(sum);
}

public static void main(String args[])
{

VarArgsExample va = new VarArgsExample();
int sum=0;

sum = va.sumArrays(new int[]{1,2,3},
new int[]{4,5,6},
new int[]{10,16});

System.out.println(“The sum of the numbers is: “ + sum);
}

}

This code follows the established approach to defining and using a variable argument. The ellipsis
comes after the square brackets, that is, after the variable argument’s type. Inside the method the argu-
ment intArrays is simply an array of arrays.

10

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 10

Boxing/Unboxing Conversions
One tedious aspect of the Java language in the past is the manual operation of converting primitive
types (such as int and char) to their corresponding reference type (for example, Integer for int and
Character for char). The solution to getting rid of this constant wrapping and unwrapping are boxing
and unboxing conversions. A boxing conversion is an implicit operation that takes a primitive type, such
as int, and automatically places it inside an instance of its corresponding reference type (in this case,
Integer). Unboxing is the reverse operation, taking a reference type, such as Integer, and converting
it to its primitive type, int. Without boxing, you might add an int primitive to a collection (which
holds Object types) by doing the following:

Integer intObject;
int intPrimitive;
ArrayList arrayList = new ArrayList();

intPrimitive = 11;
intObject = new Integer(intPrimitive);
arrayList.put(intObject); // cannot add intPrimitive directly

Although this code is straightforward, it is more verbose than necessary. With the introduction of boxing
conversions, the above code can be rewritten as follows:

int intPrimitive;
ArrayList arrayList = new ArrayList();

intPrimitive = 11;
// here intPrimitive is automatically wrapped in an Integer
arrayList.put(intPrimitive);

The need to create an Integer object to place an int into the collection is no longer needed. The boxing
conversion happens such that the resulting reference type’s value() method (such as intValue() for
Integer) equals the original primitive type’s value. Consult the following table for all valid boxing con-
versions. If there is any other type, the boxing conversion becomes an identity conversion (converting
the type to its own type). Note that due to the introduction of boxing conversions, several forbidden con-
versions referring to primitive types are no longer forbidden since they now can be converted to certain
reference types.

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

11

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 11

Unboxing Conversions
Java also introduces unboxing conversions, which convert a reference type (such as Integer or Float)
to its primitive type (such as int or float). Consult the following table for a list of all valid unboxing
conversions. The conversion happens such that the value method of the reference type equals the
resulting primitive value.

Reference Type Primitive Type

Boolean boolean

Byte byte

Character char

Short short

Integer int

Long long

Float float

Double double

Valid Contexts for Boxing/Unboxing Conversions
Since the boxing and unboxing operations are conversions, they happen automatically with no specific
instruction by the programmer (unlike casting, which is an explicit operation). There are several contexts
in which boxing and unboxing conversions can happen.

Assignments
An assignment conversion happens when the value of an expression is assigned to a variable. When the
type of the expression does not match the type of the variable, and there is no risk of data loss, the con-
version happens automatically. The precedence of conversions that happen is the identity conversion, a
widening primitive conversion, a widening reference conversion, and then the new boxing (or unbox-
ing) conversion. If none of these conversions are valid, the compiler issues an error.

Method Invocations
When a method call is made, and the argument types don’t match precisely with those passed in, several
conversions are possible. Collectively, these conversions are known as method invocation conversions.
Each parameter that does not match precisely in type to the corresponding parameter in the method sig-
nature might be subject to a conversion. The possible conversions are the identity conversion, a widen-
ing primitive conversion, a widening reference conversion, and then the new boxing (or unboxing)
conversion.

The most specific method must be chosen anytime more than one method matches a particular method
call. The rules to match the most specific method change slightly with the addition of boxing conver-
sions. If all the standard checks for resolving method ambiguity fail, the boxing/unboxing conversion
won’t be used to resolve ambiguity. Therefore, by the time checks are performed for boxing conversions,
the method invocation is deemed ambiguous and fails.

12

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 12

Combining boxing with generics allows you to write the following code:

import java.util.*;

public class BoxingGenericsExample {
public static void main(String args[])
{

HashMap<String,Integer> hm = new HashMap<String,Integer>();

hm.put(“speed”, 20);
}

}

The primitive integer 20 is automatically converted to an Integer and then placed into the HashMap
under the specified key.

Static Imports
Importing static data is introduced into the language to simplify using static attributes and methods.
After importing static information, the methods/attributes can then be used without the need to qualify
the method or attribute with its class name. For example, by importing the static members of the Math
class, you can write abs or sqrt instead of Math.abs and Math.sqrt.

This mechanism also prevents the dangerous coding practice of placing a set of static attributes into an
interface, and then in each class that needs to use the attributes, implementing that interface. The follow-
ing interface should not be implemented in order to use the attributes without qualification:

interface ShapeNumbers {
public static int CIRCLE = 0;
public static int SQUARE = 1;
public static int TRIANGLE = 2;

}

Implementing this interface creates an unnecessary dependence on the ShapeNumbers interface. Even
worse, it becomes awkward to maintain as the class evolves, especially if other classes need access to
these constants also and implement this interface. It is easy for compiled classes to get out of synchro-
nization with each other if the interface containing these attributes changes and only some classes are
recompiled.

To make this cleaner, the static members are placed into a class (instead of an interface) and then
imported via a modified syntax of the import directive. ShapeNumbers is revised to the following:

package MyConstants;

class ShapeNumbers {
public static int CIRCLE = 0;
public static int SQUARE = 1;
public static int TRIANGLE = 2;

}

A client class then imports the static information from the ShapeNumbers class and can then use the
attributes CIRCLE, SQUARE, and TRIANGLE without the need to prefix them with ShapeNumbers and the
member operator.

13

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 13

To import the static members in your class, specify the following in the import section of your Java
source file (at the top):

import static MyConstants.ShapeNumbers.*; // imports all static data

This syntax is only slightly modified from the standard format of the import statement. The keyword
static is added after the import keyword, and instead of importing packages, you now always add on
the class name since the static information is being imported from a specific class. The chief reason the
keyword static is added to the import statement is to make it clear to those reading the source code
that the import is for the static information.

You can also import constants individually by using the following syntax:

import static MyConstants.ShapeNumbers.CIRCLE;
import static MyConstants.ShapeNumbers.SQUARE;

This syntax is also what you would expect. The keyword static is included since this is a static import,
and the pieces of static information to import are each specified explicitly.

You cannot statically import data from a class that is inside the default package. The class must be
located inside a named package. Also, static attributes and methods can conflict. For example, below are
two classes (located in Colors.java and Fruits.java) containing static constants:

package MyConstants;

public class Colors {
public static int white = 0;
public static int black = 1;
public static int red = 2;
public static int blue = 3;
public static int green = 4;
public static int orange = 5;
public static int grey = 6;

}

package MyConstants;

public class Fruits {
public static int apple = 500;
public static int pear = 501;
public static int orange = 502;
public static int banana = 503;
public static int strawberry = 504;

}

If you write a class that tries to statically import data on both these classes, everything is fine until you
try to use a static variable that is defined in both of them:

import static MyConstants.Colors.*;
import static MyConstants.Fruits.*;

public class StaticTest {

14

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 14

public static void main(String args[])
{

System.out.println(“orange = “ + orange);
System.out.println(“color orange = “ + Colors.orange);
System.out.println(“Fruity orange = “ + Fruits.orange);

}
}

The seventh line of the program causes the compiler error listed below. The identifier orange is defined
in both Colors and Fruits, so the compiler cannot resolve this ambiguity:

StaticTest.java:7: reference to orange is ambiguous, both variable orange in
MyConstants.Colors and variable orange in MyConstants.Fruits match

System.out.println(“orange = “ + orange);

In this case, you should explicitly qualify the conflicting name with the class where it is defined. Instead
of writing orange, write Colors.orange or Fruits.orange.

Enumerations
Java introduces enumeration support at the language level in the JDK 5 release. An enumeration is an
ordered list of items wrapped into a single entity. An instance of an enumeration can take on the value of
any single item in the enumeration’s list of items. The simplest possible enumeration is the Colors enum
shown below:

public enum Colors { red, green, blue }

They present the ability to compare one arbitrary item to another, and to iterate over the list of defined
items. An enumeration (abbreviated enum in Java) is a special type of class. All enumerations implicitly
subclass a new class in Java, java.lang.Enum. This class cannot be subclassed manually.

There are many benefits to built-in support for enumerations in Java. Enumerations are type-safe and
the performance is competitive with constants. The constant names inside the enumeration don’t need to
be qualified with the enumeration’s name. Clients aren’t built with knowledge of the constants inside
the enumeration, so changing the enumeration is easy without having to change the client. If constants
are removed from the enumeration, the clients will fail and you’ll receive an error message. The names
of the constants in the enumeration can be printed, so you get more information than simply the ordinal
number of the item in the list. This also means that the constants can be used as names for collections
such as HashMap.

Since an enumeration is a class in Java, it can also have fields and methods, and implement interfaces.
Enumerations can be used inside switch statements in a straightforward manner, and are relatively
simple for programmers to understand/use.

Here’s a basic enum declaration and its usage inside a switch statement. If you want to track what oper-
ating system a certain user is using, you can use an enumeration of operating systems, which are
defined in the OperatingSystems enum. Note that since an enumeration is effectively a class, it cannot
be public if it is in the same file as another class that is public. Also note that in the switch statement,
the constant names cannot be qualified with the name of the enumeration they are in. The details are
automatically handled by the compiler based on the type of the enum used in the switch clause:

15

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 15

import java.util.*;

enum OperatingSystems {
windows, unix, linux, macintosh

}

public class EnumExample1 {
public static void main(String args[])
{

OperatingSystems os;

os = OperatingSystems.windows;
switch(os) {

case windows:
System.out.println(“You chose Windows!”);
break;

case unix:
System.out.println(“You chose Unix!”);
break;

case linux:
System.out.println(“You chose Linux!”);
break;

case macintosh:
System.out.println(“You chose Macintosh!”);
break;

default:
System.out.println(“I don’t know your OS.”);
break;

}
}

}

The java.lang.Enum class implements the Comparable and Serializable interfaces. The details of
comparing enumerations and serializing them to a data source are already handled inside the class. You
cannot mark an enum as abstract unless every constant has a class body, and these class bodies over-
ride the abstract methods in the enum. Also note that enumerations cannot be instantiated using new.
The compiler will let you know that enum types may not be instantiated.

Java introduces two new collections, EnumSet and EnumMap, which are only meant to optimize the per-
formance of sets and maps when using enums. Enumerations can be used with the existing collection
classes, or with the new collections when optimization tailored to enumerations is desired.

Methods can be declared inside an enum. There are restrictions placed on defining constructors, how-
ever. Constructors can’t chain to superclass constructors, unless the superclass is another enum. Each
constant inside the enum can have a class body, but since this is effectively an anonymous class, you can-
not define a constructor.

You can also add attributes to the enumeration and to the individual enum constants. An enum constant
can also be followed by arguments, which are passed to the constructor defined in the enum.

16

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 16

Here’s an example enumeration with fields and methods:

enum ProgramFlags {
showErrors(0x01),
includeFileOutput(0x02),
useAlternateProcessor(0x04);

private int bit;

ProgramFlags(int bitNumber)
{

bit = bitNumber;
}

public int getBitNumber()
{

return(bit);
}

}

public class EnumBitmapExample {
public static void main(String args[])
{

ProgramFlags flag = ProgramFlags.showErrors;

System.out.println(“Flag selected is: “ +
flag.ordinal() +

“ which is “ +
flag.name());

}
}

The ordinal() method returns the position of the constant in the list. The value of showErrors is 0
since it comes first in the list, and the ordinal values are 0-based. The name() method can be used to get
the name of the constant, which provides for getting more information about enumerations.

Meta data
Another feature that Sun has decided to include in the JDK 5 release of Java is a meta data facility. This
enables tagging classes with extra information that tools can analyze, and also applying certain blocks of
code to classes automatically. The meta data facility is introduced in the java.lang.annotation pack-
age. An annotation is the association of a tag to a construct in Java such as a class, known as a target in
annotation terminology. The types of constructs that can be annotated are listed in the java.lang.
annotation.ElementType enumeration, and are listed in the following table. Even annotations can be
annotated. TYPE covers classes, interfaces, and enum declarations.

17

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 17

ElementType Constant

ANNOTATION_TYPE

CONSTRUCTOR

FIELD

LOCAL_VARIABLE

METHOD

PACKAGE

PARAMETER

TYPE

Another concept introduced is the life of an annotation, known as the retention. Certain annotations may
only be useful at the Java source code level, such as an annotation for the javadoc tool. Others might be
needed while the program is executing. The RetentionPolicy enumeration lists three type lifetimes
for an annotation. The SOURCE policy indicates the annotations should be discarded by the compiler, that
is, should only available at the source code level. The CLASS policy indicates that the annotation should
appear in the class file, but is possibly discarded at run time. The RUNTIME policy indicates the annota-
tions should make it through to the executing program, and these can then be viewed using reflection.

There are several types of annotations defined in this package. These are listed in the following table.
Each of these annotations inherits from the Annotation interface, which defines an equals method and
a toString method.

Annotation Class Name Description

Target Specifies to which program elements an annotation type is appli-
cable. Each program element can only appear once.

Documented Specifies annotations should be documented by javadoc or other
documentation tools. This can only be applied to annotations.

Inherited Inherits annotations from super-classes, but not interfaces. The
policy on this annotation is RUNTIME, and it can be applied only to
annotations.

Retention Indicates how long annotations on this program element should
be available. See RetentionPolicy discussed earlier. The policy
on this annotation is RUNTIME, and it can be applied only to
annotations.

Deprecated Marks a program element as deprecated, telling developers they
should no longer use it. Retention policy is SOURCE.

Overrides Indicates that a method is meant to override the method in a par-
ent class. If the override does not actually exist, the compiler will
generate an error message. This can only be applied to methods.

18

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 18

There are two useful source level annotations that come with JDK 5, @deprecated and @overrides.
The @deprecated annotation is used to mark a method as deprecated — that is, it shouldn’t be used by
client programmers. The compiler will issue a warning when encountering this annotation on a class
method that a programmer uses. The other annotation, @overrides, is used to mark a method as over-
riding a method in the parent class. The compiler will ensure that a method marked as @overrides
does indeed override a method in the parent class. If the method in the child class doesn’t override the
one in the parent class, the compiler will issue an error alerting the programmer to the fact that the
method signature does not match the method in the parent class.

Developing a custom annotation isn’t difficult. Let’s create a CodeTag annotation that stores basic author
and modification date information, and also stores any bug fixes applied to that piece of code. The anno-
tation will be limited to classes and methods:

import java.lang.annotation.*;

@Retention(RetentionPolicy.SOURCE)
@Target({ElementType.TYPE, ElementType.METHOD})
public @interface CodeTag {

String authorName();
String lastModificationDate();
String bugFixes() default “”;

}

The Retention is set to SOURCE, which means this annotation is not available during compile time and
run time. The doclet API is used to access source level annotations. The Target is set to TYPE
(classes/interfaces/enums) and METHOD for methods. A compiler error is generated if the CodeTag anno-
tation is applied to any other source code element. The first two annotation elements are authorName
and lastModificationDate, both of which are mandatory. The bugFixes element defaults to the
empty string if not specified. Following is an example class that utilizes the CodeTag annotation:

import java.lang.annotation.*;

@CodeTag(authorName=”Dilbert”,
lastModificationDate=”Mar 23, 2004”)

public class ServerCommandProcessor {
@CodeTag(authorName=”Dilbert”,

lastModificationDate=”Mar 24, 2004”,
bugFixes=”BUG0170”)

public void setParams(String serverName)
{

// ...
}

public void executeCommand(String command, Object... params)
{

// ...
}

}

19

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 19

Note how annotation is used to mark who modified the source and when. The method was last modi-
fied a day after the class because of the bug fix. This custom annotation can be used to track this infor-
mation as part of keeping up with source code modifications. To view or process these source code
annotations, the doclet API must be used.

The doclet API (aka Javadoc API) has been extended to support the processing of annotations in the
source code. You use the doclet API by writing a Java class that extends com.sun.javadoc.Doclet. The
start method must be implemented as this is the method that Javadoc invokes on a doclet to perform
custom processing. A simple doclet to print out all classes and methods in a Java source file follows:

import com.sun.javadoc.*;

public class ListClasses extends Doclet {
public static boolean start(RootDoc root) {

ClassDoc[] classes = root.classes();
for (ClassDoc cd : classes) {

System.out.println(“Class [“ + cd + “] has the following methods”);
for(MemberDoc md : cd.methods()) {

System.out.println(“ “ + md);
}

}
return true;

}
}

The start method takes a RootDoc as a parameter, which is automatically passed in by the javadoc
tool. The RootDoc provides the starting point to obtain access to all elements inside the source code, and
also information on the command line such as additional packages and classes.

The interfaces added to the doclet API for annotations are AnnotationDesc, AnnotationDesc.
ElementValuePair, AnnotationTypeDoc, AnnotationTypeElementDoc, and AnnotationValue.

Any element of Java source that can have annotations has an annotations() method associated with
the doclet API’s counterpart to the source code element. These are AnnotationTypeDoc,
AnnotationTypeElementDoc, ClassDoc, ConstructorDoc, ExecutableMemberDoc, FieldDoc,
MethodDoc, and MemberDoc. The annotations() method returns an array of AnnotationDesc.

AnnotationDesc
This class represents an annotation, which is an annotation type (AnnotationTypeDoc), and an array of
annotation type elements paired with their values. AnnotationDesc defines the following methods.

20

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 20

Method Description

AnnotationTypeDoc annotationType() Returns this annotation’s type.

AnnotationDesc.ElementValuePair[] Returns an array of an annotation’s elements
elementValues() and their values. Only elements explicitly listed

are returned. The elements that aren’t listed
explicitly, which assume their default value, are
not returned since this method processes just
what is listed. If there are no elements, an empty
array is returned.

AnnotationDesc.ElementValuePair
This represents an association between an annotation type’s element and its value. The following meth-
ods are defined.

Method Description

AnnotationTypeElementDoc element() Returns the annotation type element.

AnnotationValue value() Returns the annotation type element’s value.

AnnotationTypeDoc
This interface represents an annotation in the source code, just like ClassDoc represents a Class. Only
one method is defined.

Method Description

AnnotationTypeElementDoc[] elements() Returns an array of the elements of this
annotation type.

AnnotationTypeElementDoc
This interface represents an element of an annotation type.

Method Description

AnnotationValue defaultValue() Returns the default value associated with this
annotation type, or null if there is no default
value.

21

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 21

AnnotationValue
This interface represents the value of an annotation type element.

Method Description

String toString() Returns a string representation of the value.

Object value() Returns the value. The object behind this value
could be any of the following.

* A wrapper class for a primitive type (such as
Integer or Float)

* A String

* A Type (representing a class, a generic class,
a type variable, a wildcard type, or a primitive
data type)

* A FieldDoc (representing an enum constant)

* An AnnotationDesc

* An array of AnnotationValue

Here’s an example using the annotation support provided by the doclet API. This doclet echoes all anno-
tations and their values that it finds in a source file:

import com.sun.javadoc.*;
import java.lang.annotation.*;

public class AnnotationViewer {
public static boolean start(RootDoc root)
{

ClassDoc[] classes = root.classes();

for (ClassDoc cls : classes) {
showAnnotations(cls);

}

return(true);
}

static void showAnnotations(ClassDoc cls)
{

System.out.println(“Annotations for class [“ + cls + “]”);
process(cls.annotations());

System.out.println();
for(MethodDoc m : cls.methods()) {

22

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 22

System.out.println(“Annotations for method [“ + m + “]”);
process(m.annotations());
System.out.println();

}
}

static void process(AnnotationDesc[] anns)
{

for (AnnotationDesc ad : anns) {
AnnotationDesc.ElementValuePair evp[] = ad.elementValues();

for(AnnotationDesc.ElementValuePair e : evp) {
System.out.println(“ NAME: “ + e.element() +

“, VALUE=” + e.value());
}

}
}

}

The start method iterates across all classes (and interfaces) found in the source file. Since all annota-
tions on source code elements are associated with the AnnotationDesc interface, a single method can
be written to process annotations regardless of which source code element the annotation is associated.
The showAnnotations method prints out annotations associated with the current class and then pro-
cesses all methods inside that class. The doclet API makes processing these source code elements easy.
To execute the doclet, pass the name of the doclet and name of the class to process on the command line
as follows:

javadoc -source 1.5 -doclet AnnotationViewer ServerCommandProcessor.java

The doclet echoes the following to the screen:

Loading source file ServerCommandProcessor.java...
Constructing Javadoc information...
Annotations for class [ServerCommandProcessor]

NAME: CodeTag.authorName(), VALUE=”Dilbert”
NAME: CodeTag.lastModificationDate(), VALUE=”Mar 23, 2004”

Annotations for method [ServerCommandProcessor.setParams(java.lang.String)]
NAME: CodeTag.authorName(), VALUE=”Dilbert”
NAME: CodeTag.lastModificationDate(), VALUE=”Mar 24, 2004”

Annotations for method [ServerCommandProcessor.executeCommand(java.lang.String,
java.lang.Object[])]

To access annotations at run time, the reflection API must be used. This support is built in through the
interface AnnotatedElement, which is implemented by the reflection classes AccessibleObject,
Class, Constructor, Field, Method, and Package. All these elements may have annotations. The
AnnotatedElement interface defines the following methods.

23

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 23

Method Description

<T extends Annotation> Returns the annotation associated with the
T getAnnotation(Class<T> annotationType) specified type, or null if none exists.

Annotation[] getAnnotations() Returns an array of all annotations on the
current element, or a zero-length array if no
annotations are present.

Annotation[] getDeclaredAnnotations() Similar to getAnnotations but does not
return inherited annotations — only anno-
tations explicitly declared on this element
are returned. Returns a zero-length array if
no annotations are present.

boolean isAnnotationPresent(Class<? Returns true if the annotationType is
extends Annotation> annotationType) present on the current element, false

otherwise.

Let’s develop an annotation that might be useful in developing a testing framework. The framework
invokes test methods specified in the annotation and expects a boolean return value from these testing
methods. The reflection API is used to both process the annotation and execute the test methods.

The annotation is listed below:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE})
public @interface TestParameters {

String testStage();
String testMethods();
String testOutputType(); // “db” or “file”
String testOutput(); // filename or data source/table name

}

An example application of this annotation is to a class of utility methods for strings. You might develop
your own utility class and develop testing methods to ensure the utility methods work:

@TestParameters(testStage=”Unit”,
testMethods=”testConcat, testSubstring”,
testOutputType=”screen”,
testOutput=””)

public class StringUtility {
public String concat(String s1, String s2)
{

return(s1 + s2);
}

public String substring(String str, int start, int end)
{

return(str.substring(start, end));
}

24

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 24

public boolean testConcat()
{

String s1 = “test”;
String s2 = “ 123”;

return(concat(s1,s2).equals(“test 123”));
}

public boolean testSubstring()
{

String str = “The cat landed on its feet”;

return(substring(str, 4, 3).equals(“cat”));
}

}

Following is an example implementation of the testing framework. It uses reflection to process the anno-
tation and then invoke the testing methods, writing the results to the screen (though other output desti-
nations can be built into the framework). As of the time of this writing, the reflection routines to retrieve
annotations on classes and methods were not implemented. In the interest of illustration, the source
code is provided here without output:

import java.lang.reflect.*;
import java.lang.annotation.*;
import java.util.*;

public class TestFramework {
static void executeTests(String className) {

try {
Object obj = Class.forName(className).newInstance();

TestParameters tp = obj.getClass().getAnnotation(TestParameters.class);
if(tp != null) {

String methodList = tp.testMethods();
StringTokenizer st = new StringTokenizer(methodList, “,”);
while(st.hasMoreTokens()) {

String methodName = st.nextToken();

Method m = obj.getClass().getDeclaredMethod(methodName);
System.out.println(methodName);
System.out.println(“----------------”);
String result = invoke(m, obj);
System.out.println(“Result: “ + result);

}
} else {

System.out.println(“No annotation found for “ + obj.getClass());
}

} catch(Exception ex) {
ex.printStackTrace();

}
}

static String invoke(Method m, Object o) {

25

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 25

String result = “PASSED”;

try {
m.invoke(o);

} catch(Exception ex) {
result = “FAILED”;

}

return(result);
}

public static void main(String [] args) {
executeTests(args[0]);

}
}

The executeTests method obtains a handle to the TestParameters annotation from the class and
then invokes each method from the testMethods() element of the annotation. This is a simple imple-
mentation of the testing framework, and can be extended to support the other elements of the
TestParameters annotation, such as writing results to a database instead of the screen. This is a practi-
cal example of using meta data — adding declarative information to Java source that can then be utilized
by external programs and/or doclets for generating documentation.

Important Java Utility Libraries
This section describes several key utility libraries in Java. These libraries are as follows:

❑ Java logging — A powerful logging system that is vital for providing meaningful error messages
to end users, developers, and people working in the field.

❑ Regular Expressions — A powerful “miniature language” used to process strings in a variety of
ways, such as searching for substrings that match a particular pattern.

❑ Java preferences — A way to store and retrieve both system and user defined configuration
options.

Each library is designed for flexibility of usage. Familiarity with these libraries is vital when developing
solutions in Java. The more tools on your belt as a developer, the better equipped you are.

Java Logging
Java has a well-designed set of classes to control, format, and publish messages through the logging sys-
tem. It is important for a program to log error and status messages. There are many people who can ben-
efit from logging messages, including developers, testers, end users, and people working in the field that
have to troubleshoot programs without source code. It is vital to include a high number of quality log
messages in a program, from status updates to error conditions (such as when certain exceptions are
caught). By using the logging system, it is possible to see what the program is doing without consulting
the source code, and most importantly, track down error conditions to a specific part of the program.
The value of a logging system is obvious, especially in large systems where a casual error with minimal
or no log messages might take days or longer to track down.

26

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 26

The logging system in java.util.logging is sophisticated, including a way to prioritize log messages
such that only messages a particular logger is interested in get logged, and the messages can be output
to any source that a Handler object can handle. Examples of logging destinations are files, databases,
and output streams. Take a close look at Figure 1-1 to see an overview of the entire logging system.

Figure 1-1

The specific Logger objects are actually hierarchical, and though not mandatory, can mirror the class
hierarchy. When a Logger receives a log message, the message is also passed automatically to the
Logger’s parent. The root logger is named “ “ (the empty string) and has no parent. Each other Logger
is usually named something such as java.util or java.util.ArrayList to mirror the package/class
hierarchy. The names of the Logger objects, going down the tree, are dot-separated. Therefore,
java.util is the parent Logger of java.util.ArrayList. You can name the loggers any arbitrary
string, but keeping with the dot-separated convention helps to clarity.

The simplest use of the logging system creates a Logger and uses all system defaults (defined in a prop-
erties file) for the logging system. The following example outputs the log message using a formatting
class called the SimpleFormatter that adds time/date/source information to the log message:

import java.util.logging.*;

public class BasicLoggingExample {
public static void main(String args[])
{

Logger logger = Logger.getLogger(“BasicLoggingExample”);

logger.log(Level.INFO, “Test of logging system”);
}

}

Logger Handler

Formatter

FilterFilter

Filters are used to
determine whether to
process or skip a log

message only the last Handler in the
chain of Handlers can

apply a Formatter to the
message

Handler passes message
to next Handler in a chain

of Handlerspasses log message to
current Logger’s parent

log message

has an associated
log level. Logger
skips messages

below a particular
level

Formatter can
localize/transform

log message

logging destination

each Handler knows how
to write a log message to a

particular destination

client code

27

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 27

The following is output from the BasicLoggingExample:

Feb 22, 2004 4:07:06 PM BasicLoggingExample main
INFO: Test of logging system

The Log Manager
The entire logging system for a particular application is controlled by a single instance of the
LogManager class. This instance is created during the initialization of the LogManager. The LogManager
contains the hierarchical namespace that has all the named Logger objects. The LogManager also con-
tains logging control properties that are used by Handlers and other objects in the logging system for
configuration. These configuration properties are stored in the file lib/logging.properties that is
located in the JRE installation path.

There are two system properties that can be used to initialize the logging system with different proper-
ties. The first way is to override the property java.util.logging.config.file and specify the full
path to your own version of logging.properties. The other property, java.util.logging.config.
class, is used to point to your own LogManager. This custom LogManager is responsible for reading in
its configuration. If neither of these properties is set, Java will default to the logging.properties file
in the JRE directory. Consult the following table for properties that can be set on the LogManager in this
file. You can also specify properties for Loggers and Handlers in this file. These properties are
described later in this section.

Property Key Property Value

Handlers Comma separated list of Handler classes. Each handler must be
located somewhere in the system classpath.

.level Sets the minimum level for a specific Logger.

The level must be prefixed with the full path to a specific Logger.
A period by itself sets the level for the root logger.

The LogManager Class
The LogManager class contains methods to configure the current instance of the logging system through
a number of configuration methods, tracks loggers and provides access to these loggers, and handles
certain logging events. These methods are listed in the following tables.

Configuration

The methods listed in the following table relate to storage and retrieval of configuration information in
the LogManager.

28

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 28

Method Description

String getProperty(String name) Returns the value corresponding to a speci-
fied logging property.

void readConfiguration() Reloads the configuration using the same
process as startup. If the system properties
controlling initialization have not changed,
the same file that was read at startup will be
read here.

void readConfiguration(InputStream ins) Reads configuration information from an
InputStream that is in the java.util.
Properties format.

void reset() Resets the logging system. All Handlers are
closed and removed and all logger levels
except on the root are set to null. The root
logger’s level is set to Level.INFO.

Logger Control

The methods listed in the following table relate to the storage, retrieval, and management of individual
Logger references. These are the most commonly used methods on the LogManager class.

Method Description

static LogManager getLogManager() Returns the one and only instance of the
LogManager object.

boolean addLogger(Logger logger) Returns true if the Logger passed in is not
already registered (its name isn’t already in
the list). The logger is registered.

Returns false if the name of the Logger
object already exists in the list of registered
loggers.

Logger getLogger(String name) Returns a reference to the Logger object that
is named “name,” or null if no logger is
found.

Enumeration getLoggerNames() Returns an Enumeration containing a list of
the names of all currently registered loggers.

Events

The methods listed in the following table provide a way to add and remove references to listeners that
should be notified when properties are changed on the LogManager.

29

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 29

Method Description

void addPropertyChangeListener Adds a property change listener to the list of
(PropertyChangeListener l) listeners that want notification of when a

property has changed. The same listener can
be added multiple times.

void removePropertyChangeListener Removes a single occurrence of a property
(PropertyChangeListener l) change listener in the list of listeners.

The Logger Class
An instance of the Logger class is used by client code to log a message. Both the log message and each
logger have an associated level. If the level of the log message is equal to or greater than the level of the
logger, the message is then processed. Otherwise, the logger drops the log message. It is an inexpensive
operation to test whether to drop the log message or not, and this operation is done at the entry point to
the logging system — the Logger class. These levels are defined inside the Level class. Consult the fol-
lowing table for a full list of levels.

Logger Level Description

SEVERE Highest logging level. This has top priority.

WARNING One level below severe. Intended for warning messages that need atten-
tion, but aren’t serious.

INFO Two levels below severe. Intended for informational messages.

CONFIG Three levels below severe. Intended for configuration-related output.

FINE Four levels below severe. Intended for program tracing information.

FINER Five levels below severe. Intended for program tracing information.

FINEST Lowest logging level. This has lowest priority.

ALL Special level which makes the system log ALL messages.

OFF Special level which makes the system log NO messages (turns logging off
completely).

Logger Methods
The Logger is the main class that is used in code that utilizes the logging system. Methods are provided
to obtain a named or anonymous logger, configure and get information about the logger, and log mes-
sages.

Obtaining a Logger

The following methods allow you to retrieve a handle to a Logger. These are static methods and provide
an easy way to obtain a Logger without going through a LogManager.

30

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 30

Method Description

static Logger getAnonymousLogger()static Creates an anonymous logger that is
Logger getAnonymousLogger(String exempt from standard security checks, for
resourceBundleName) use in applets. The anonymous logger is

not registered in the LogManager name-
space, but has the root logger (“”) as a
parent, inheriting level and handlers from
the root logger. A resource bundle can
also be specified for localization of log
messages.

static Logger getLogger(String name) Returns a named logger from the
static Logger getLogger(String name, LogManager namespace, or if one is not
String resourceBundleName) found, creates and returns a new named

logger. A resource bundle can also be
specified for localization of log messages.

Configuring a Logger Object

The following methods allow you to configure a Logger object. You can add and remove handlers, set
the logging level on this Logger object, set its parent, and choose whether log messages should be
passed up the logger hierarchy or not.

Method Description

void addHandler(Handler handler) Adds a Handler to the logger. Multiple
handlers can be added. Also note that the
root logger is configured with a set of
default Handlers.

void removeHandler(Handler handler) Removes a specified handler from the list
of handlers on this logger. If the handler is
not found, this method returns silently.

void setLevel(Level newLevel) Sets the log level that this logger will use.
Message levels lower than the logger’s
value will be automatically discarded. If
null is passed in, the level will be inher-
ited from this logger’s parent.

void setParent(Logger parent) Sets the parent for this logger. This should
not be called by application code, as it is
intended for use only by the logging
system.

void setUseParentHandlers(boolean Specifies true if log messages should be
useParentHandlers) passed to their parent loggers, or false to

prevent the log messages from passing to
their parent.

Table continued on following page

31

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 31

Method Description

Filter getFilter() Returns the filter for this logger, which
might be null if no filter is associated.

Handler[] getHandlers() Returns an array of all handlers associ-
ated with this logger.

Level getLevel() Returns the log level assigned to this log-
ger. If null is returned, it indicates the log-
ging level of the parent logger that will be
used.

String getName() Returns the name of this logger, or null if
this is an anonymous logger.

Logger getParent() The nearest parent to the current logger is
returned, or null if the current logger is
the root logger.

ResourceBundle getResourceBundle() Returns the ResourceBundle associated
with this logger. Resource bundles are
used for localization of log messages. If
null is returned, the resource bundle from
the logger’s parent will be used.

String getResourceBundleName() Returns the name of the resource bundle
this logger uses for localization, or null if
the resource bundle is inherited from the
logger’s parent.

boolean getUseParentHandlers() Returns true if log messages are passed to
the logger’s parent, or false if log mes-
sages are not passed up the hierarchy.

Logging Messages

The following methods are all used to actually log a message using a Logger. Convenience methods are
provided for logging messages at each logging level, and also for entering and exiting methods and
throwing exceptions. Additional methods are provided to localize log messages using a resource bundle.

32

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 32

Method Description

void config(String msg) The Logger class contains a
void fine(String msg) number of convenience methods
void finer(String msg) for logging messages. For
void finest(String msg) quickly logging a message of a
void info(String msg) specified level, one method for
void severe(String msg) each logging level is defined.
void warning(String msg)

void entering(String sourceClass, Log a message when a method is
String sourceMethod) first entered. The variant forms

take a parameter to the method,
void entering(String sourceClass, or an array of parameters, to
String sourceMethod, Object param1) provide for more detailed

tracking of the method
void entering(String sourceClass, invocation. The message of the
String sourceMethod, Object params[]) log is ENTRY in addition to the

other information about the
method call. The log level is
Level.FINER.

void exiting(String sourceClass, Log a message when a method is
String sourceMethod) about to return. The log message

contains RETURN and the log
void exiting(String sourceClass, level is Level.FINER. The
String sourceMethod, Object result) source class and source method

are also logged.

boolean isLoggable(Level level) Checks if a certain level will be
logged. Returns true if it will be
logged, or false otherwise.

void log(Level level, String msg) Standard general logging
convenience methods. Variants

void log(Level level, String msg, Object param1) include the ability to specify a
parameter or array of parameters

void log(Level level, String msg, to log, or Throwable
Object[] params) information. The information is

placed into a LogRecord object
void log(Level level, String msg, and sent into the logging system.
Throwable thrown) The last variant takes a

LogRecord object.
void log(LogRecord record)

Table continued on following page

33

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 33

Method Description

void logp(Level level, String sourceClass, These logging methods take
String sourceMethod, String msg) source class and source method

names in addition to the other
void logp(Level level, String sourceClass, information. All this is put into a
String sourceMethod, String msg, Object param1) LogRecord object and sent into

the system.
void logp(Level level, String sourceClass,
String sourceMethod, String msg,
Object[] params)

void logp(Level level, String sourceClass,
String sourceMethod, String msg,
Throwable thrown)

void logrb(Level level, String sourceClass, These methods allow you to
String sourceMethod, String bundleName, specify a resource bundle in
String msg) addition to the other

information. The resource
void logrb(Level level, String sourceClass, bundle will be used to localize
String sourceMethod, String bundleName, the log message.
String msg, Object param1)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Object[] params)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Throwable thrown)

void throwing(String sourceClass, String This logs a throwing message.
sourceMethod, Throwable thrown) The log level is Level.FINER.

The log record’s message is set to
THROW and the contents of
thrown are put into the log
record’s thrown property
instead of inside the log record’s
message.

The LogRecord Class
The LogRecord class encapsulates a log message, carrying the message through the logging system.
Handlers and Formatters use LogRecords to have more information about the message (such as the
time it was sent and the logging level) for processing. If a client to the logging system has a reference to a
LogRecord object, the object should no longer be used after it is passed into the logging system.

34

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 34

LogRecord Methods
The LogRecord contains a number of methods to examine and manipulate properties on a log record,
such as message origination, the log record’s level, when it was sent into the system, and any related
resource bundles.

Method Description

Level getLevel() Returns the log record’s level.

String getMessage() Returns the unformatted version of the log message,
before formatting/localization.

long getMillis() Returns the time the log record was created in
milliseconds.

Object[] getParameters() Returns an array of parameters of the log record, or null if
no parameters are set.

long getSequenceNumber() Returns the sequence number of the log record. The
sequence number is assigned in the log record’s construc-
tor to create a unique number for each log record.

Throwable getThrown() Returns the Throwable associated with this log record,
such as the Exception if an exception is being logged.
Returns null if no Throwable is set.

String getLoggerName() Returns the name of the logger, which might be null if it is
the anonymous logger.

String getSourceClassName() Gets the name of the class that might have logged the mes-
sage. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

String getSourceMethodName() Gets the name of the method that might have logged the
message. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

int getThreadID Returns the identifier for the thread that originated the log
message. This is an ID inside the Java VM.

Setting Information about Message Origination

The following methods allow you to set origination information on the log message such as an associ-
ated exception, class and method that logged the message, and the ID of the originating thread.

35

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 35

Method Description

void setSourceClassName Sets the name of the class where the log
(String sourceClassName) message is originating.

void setSourceMethodName Sets the name of the method where the log
(String sourceMethodName) message is originating.

void setThreadID (int threadID) Sets the identifier of the thread where the log
message is originating.

void setThrown (Throwable thrown) Sets a Throwable to associate with the log mes-
sage. Can be null.

Resource Bundle Methods

The following methods allow you to retrieve and configure a resource bundle for use with the log mes-
sage. Resource bundles are used for localizing log messages.

Method Description

ResourceBundle getResourceBundle() Returns the ResourceBundle associated with
the logger that is used to localize log messages.
Might be null if there is no associated
ResourceBundle.

String getResourceBundleName() Returns the name of the resource bundle used
to localize log messages. Returns null if log
messages are not localizable (no resource bun-
dle defined).

void setResourceBundle Sets a resource bundle to use to localize log
(ResourceBundle bundle) messages.

void setResourceBundleName Sets the name of a resource bundle to use to
(String name) localize log messages.

Setting Information about the Message

The following methods configure the log message itself. Some of the information you can configure
related to the log message are its level, the contents of the message, and the time the message was sent.

Method Description

void setLevel(Level level) Sets the level of the logging message.

void setLoggerName(String name) Sets the name of the logger issuing this mes-
sage. Can be null.

void setMessage(String message) Sets the contents of the message before for-
matting/localization.

36

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 36

Method Description

void setMillis(long millis) Sets the time of the log message, in
milliseconds since 1970.

void setParameters(Object[] parameters) Sets parameters for the log message.

void setSequenceNumber(long seq) Sets the sequence number of the log mes-
sage. This method shouldn’t usually be
called, since the constructor assigns a unique
number to each log message.

The Level Class
The Level class defines the entire set of logging levels, and also objects of this class represent a specific
logging level that is then used by loggers, handlers, and so on. If you desire, you can subclass this class
and define your own custom levels, as long as they do not conflict with the existing logging levels.

Logging Levels
The following logging levels are defined in the Level class.

Log Level Description

OFF Special value that is initialized to Integer.MAX_VALUE. This turns logging off.

SEVERE Meant for serious failures. Initialized to 1,000.

WARNING Meant to indicate potential problems. Initialized to 900.

INFO General information. Initialized to 800.

CONFIG Meant for messages useful for debugging. Initialized to 700.

FINE Meant for least verbose tracing information. Initialized to 500.

FINER More detailed tracing information. Initialized to 400.

FINEST Most detailed level of tracing information. Initialized to 300.

ALL Special value. Logs ALL messages. Initialized to Integer.MIN_VALUE.

Level Methods
The Level class defines methods to set and retrieve a specific logging level. Both numeric and textual
versions of levels can be used.

37

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 37

Method Description

static Level parse(String name) Returns a Level object representing the name of
the level that is passed in. The string name can be
one of the logging levels, such as SEVERE or CON-
FIG. An arbitrary number, between
Integer.MIN_VALUE and Integer.MAX_VALUE
can also be passed in (as a string). If the number
represents one of the existing level values, that
level is returned. Otherwise, a new Level is
returned corresponding to the passed in value.
Any invalid name or number causes an Ille-
galArgumentException to get thrown. If the
name is null, a NullPointerException is thrown.

boolean equals(Object ox) Returns true if the object passed in has the same
level as the current class.

String getLocalizedName() Returns the localized version of the current level’s
name, or the nonlocalized version if no localization
is available.

String getName() Returns the nonlocalized version of the current
level’s name.

String getResourceBundleName() Returns the name of the level’s localization
resource bundle, or null if no localization resource
bundle is defined.

int hashCode() Returns a hash code based on the level value.

int intValue() Returns the integer value for the current level.

String toString() Returns the nonlocalized name of the current level.

The Handler Class
The Handler class is used to receive log messages and then publish them to an external destination. This
might be memory, a file, a database, a TCP/IP stream, or any number of places that can store log mes-
sages. Just like loggers, a handler has an associated level. Log messages that are less than the level on the
handler are discarded. Each specific instance of a Handler has its own properties and is usually config-
ured in the logging.properties file. The next section discusses the various handlers that are found in
the java.util.logging package. Creating a custom handler is straightforward, since implementations
of only close(), flush(), and publish(LogRecord record) are needed.

Handler Methods
The Handler class defines three abstract methods that need specific behavior in inheriting classes. The
other methods available on the Handler class are for dealing with message encoding, filters, formatters,
and error handlers.

38

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 38

Key Abstract Methods

When developing a custom handler, there are three abstract methods that must be overridden. These are
listed in the following table.

Method Description

abstract void close() This method should perform a flush()
and then free any resources used by the
handler. After close() is called, the Han-
dler should no longer be used.

abstract void flush() Flushes any buffered output to ensure it is
saved to the associated resource.

abstract void publish(LogRecord record) Takes a log message forwarded by a log-
ger and then writes it to the associated
resource. The message should be format-
ted (using the Formatter) and localized.

Set and Retrieve Information about the Handler

The methods listed in the following table allow you to retrieve information about the handler, such as its
encoding, associated error manager, filter, formatter, and level, and also set this configuration information.

Method Description

String getEncoding() Returns the name of the character encod-
ing. If the name is null, then the default
encoding should be used.

ErrorManager getErrorManager() Returns the ErrorManager associated
with this Handler.

Filter getFilter() Returns the Filter associated with this
Handler, which might be null.

Formatter getFormatter() Returns the Formatter associated with
this Handler, which might be null.

Level getLevel() Returns the level of this handler. Log mes-
sages lower than this level are discarded.

boolean isLoggable(LogRecord record) Returns true if the LogRecord passed in
will be logged by this handler. The checks
include comparing the record’s level to
the handler’s, testing against the filter (if
one is defined), and any other checks
defined in the handler.

void setEncoding(String encoding) Sets the encoding to a specified character
encoding. If null is passed in, the default
platform encoding is used.

Table continued on following page

39

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 39

Method Description

void setErrorManager (ErrorManager em) Sets an ErrorManager for the handler. If
any errors occur while processing, the
Error Manager’s error method is
invoked.

void setFilter (Filter newFilter) Sets a custom filter that decides whether
to discard or keep a log message when the
publish method is invoked.

void setFormatter (Formatter newFormatter) Sets a Formatter that performs custom
formatting on log messages passed to the
handler before the log message is written
to the destination.

void setLevel(Level newLevel) This method sets the level threshold for
the handler. Log messages below this
level are automatically discarded.

Stock Handlers
The java.util.logging package includes a number of predefined handlers to write log messages to
common destinations. These classes include the ConsoleHandler, FileHandler, MemoryHandler,
SocketHandler, and StreamHandler. These classes provide a specific implementation of the abstract
methods in the Handler class. All the property key names in the tables are prefixed with java.util.
logging in the actual properties file.

The StreamHandler serves chiefly as a base class for all handlers that write log messages to some
OutputStream. The subclasses of StreamHandler are ConsoleHandler, FileHandler, and
SocketHandler. A lot of the stream handling code is built into this class. See the following table for a
list of properties for the StreamHandler.

Property Name Description Default Value

StreamHandler.level Log level for the handler Level.INFO

StreamHandler.filter Filter to use Undefined

StreamHandler.formatter Formatter to use java.util.logging.
SimpleFormatter

StreamHandler.encoding Character set encoding to use Default platform encoding

40

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 40

The following methods are defined/implemented on the StreamHandler class.

Method Description

void close() The head string from the Formatter will be
written if it hasn’t been already, and the tail
string is written before the stream is closed.

void flush() Writes any buffered output to the stream
(flushes the stream).

boolean isLoggable(LogRecord record) Performs standard checks against level
and filter, but also returns false if no out-
put stream is open or the record passed
in is null.

void publish(LogRecord record) If the record passed in is loggable, the
Formatter is then invoked to format the log
message and then the message is written to
the output stream.

void setEncoding(String encoding) Sets the character encoding to use for log
messages. Pass in null to use the current plat-
form’s default character encoding.

protected void setOutputStream Sets an OutputStream to use. If an
(OutputStream out) OutputStream is already open, it is flushed

and then closed. The new OutputStream is
then opened.

The ConsoleHandler writes log messages to System.err. It subclasses StreamHandler but overrides
close() to only perform a flush, so the System.err stream does not get closed. The default formatter
used is SimpleFormatter. See below for specific information about formatters. See the following table
for properties that can be defined in the logging.properties file for the ConsoleHandler.

Property Name Description Default Value

ConsoleHandler.level Log level for the handler Level.INFO

ConsoleHandler.filter Filter to use Undefined

ConsoleHandler.formatter Formatter to use java.util.logging.
SimpleFormatter

ConsoleHandler.encoding Character set encoding to use Default platform encoding

The SocketHandler writes log messages to the network over a specified TCP port. The properties listed
in the following table are used by the SocketHandler. The default constructor uses the properties
defined, and a second constructor allows the specification of the host and port SocketHandler(String
host, int port). The close() method flushes and closes the output stream, and the publish()
method flushes the stream after each record is written.

41

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 41

Property Name Description Default Value

SocketHandler.level Log level for the handler Level.INFO

SocketHandler.filter Filter to use undefined

SocketHandler.formatter Formatter to use java.util.logging.
XMLFormatter

SocketHandler.encoding Character set encoding to use Default platform encoding

SocketHandler.host Target host name to connect to undefined

SocketHandler.port Target TCP port to use undefined

The FileHandler is able to write to a single file, or write to a rotating set of files as each file reaches a
specified maximum size. The next number in a sequence is added to the end of the name of each rotating
file, unless a generation (sequence) pattern is specified elsewhere. See below for a discussion of patterns
to form filenames. The properties for the FileHandler are listed in the following table.

Property Name Description Default Value

FileHandler.level Log level for the handler Level.INFO

FileHandler.filter Filter to use undefined

FileHandler.formatter Formatter to use java.util.logging.
XMLFormatter

FileHandler.encoding Character set encoding to use Default platform encoding

FileHandler.limit Specifies approximate 0
maximum number of bytes
to write to a file. 0 means
no limit.

FileHandler.count Specifies how many output 1
iles to cycle through.

FileHandler.pattern Pattern used to generate %h/java%u.log
output filenames. See below
for more information.

FileHandler.append Boolean value specifying false
whether to append to an
existing file or overwrite it.

The FileHandler class supports filename patterns, allowing the substitution of paths such as the user’s
home directory or the system’s temporary directory. The forward slash (/) is used as a directory separa-
tor, and this works for both Unix and Windows machines. Also supported is the ability to specify where
the generation number goes in the filename when log files are rotated. These patterns are each prefixed
with a percent sign (%).To include the percent sign in the filename, specify two percent signs (%%). The
following table contains all the valid percent-sign substitutions.

42

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 42

Pattern Description

%t Full path of the system temporary directory

%h Value of the user.home system property

%g Generation number used to distinguish rotated logs

%u Unique number used to resolve process conflicts

For example, if you’re executing this on Windows 95 and specify the filename pattern %t/app_log.txt,
the FileHandler class expands this to C:\TEMP\app_log.txt. Note that the %t and %h commands do
not include the trailing forward slash.

The %u is used to account for when multiple threads/processes will access the same log file. Only one
process can have the file open for writing, so to prevent the loss of logging information, the %u can be
used to output to a log file that has a similar name to the others. For example, the filename pattern
%t/logfile%u.txt can be specified, and if two processes open this same log file for output, the first
will open C:\TEMP\logfile0.txt and the second will open C:\TEMP\logfile1.txt.

The MemoryHandler is a circular buffer in memory. It is intended for use as a quick way to store messages,
so the messages have to be sent to another handler to write them to an external source. Since the buffer is
circular, older log records eventually are overwritten by newer records. Formatting can be delayed to
another Handler, which makes logging to a MemoryHandler quick. There are conditions that will cause
the MemoryHandler to send data (push data) to another Handler. These conditions are as follows:

❑ A log record passed in has a level greater than a specified pushLevel.

❑ Another class calls the push method on the MemoryHandler.

❑ A subclass implements specialized behavior to push data depending on custom criteria.

The properties on the MemoryHandler are listed in the following table.

Property Name Description Default Value

MemoryHandler.level Log level for the handler Level.INFO

MemoryHandler.filter Filter to use undefined

MemoryHandler.size Size of the circular buffer (in bytes) 1,000

MemoryHandler.push Defines the push level — the minimum Level.SEVERE
level that will cause messages to be
sent to the target handler

MemoryHandler.target Specifies the name of the Undefined
target Handler class

43

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 43

The constructors create a MemoryHandler with a default or specific configuration.

Constructor Description

MemoryHandler() Creates a MemoryHandler based on the configu-
ration properties.

MemoryHandler(Handler target, Creates a MemoryHandler with a specified target
int size, Level pushLevel) handler, size of the buffer, and push level.

The methods provided by the MemoryHandler create and configure the behavior of the memory han-
dler.

Method Description

void publish(LogRecord record) Stores the record in the internal buffer, if it is log-
gable (see isLoggable). If the level of the log
record is greater than or equal to the pushLevel,
all buffered records, including the current one,
are written to the target Handler.

void close() Closes the handler and frees the associated
resources. Also invokes close on the
target handler.

void flush() Causes a flush, which is different from a push.
To actually write the log records to a destination
other than memory, a push must be performed.

Level getPushLevel() Returns the current push level.

boolean isLoggable(LogRecord record) Compares the log level’s versus the handler’s log
level, and then runs the record through the filter
if one is defined. Whether the record will cause a
push or not is ignored by this method.

void push() Sends all records in the current buffer to the tar-
get handler, and clears the buffer.

void setPushLevel(Level newLevel) Sets a new push level.

The Formatter Class
The Formatter class is used to perform some custom processing on a log record. This formatting might
be localization, adding additional program information (such as adding the time and date to log
records), or any other processing needed. The Formatter returns a string that is the processed log
record. The Formatter class also has support for head and tail strings that come before and after all
log records. An example that will be implemented later in this section is a custom Formatter that writes
log records to an HTML table. For this formatter, the head string would be the <table> tag, and the tail
string is the </table> tag. The methods defined in the Formatter class are listed in the following table.

44

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 44

Method Description

abstract String format(LogRecord record) Performs specific formatting of the log
record and returns the formatted string.

String formatMessage(LogRecord record) The message string in the LogRecord is
localized using the record’s Resource-
Bundle, and formatted according to
java.text style formatting (replacing
strings such as {0}).

String getHead(Handler h) Returns the header string for a specified
handler, which can be null.

String getTail(Handler h) Returns the tail string for a specified han-
dler, which can be null.

Stock Formatters
The logging package comes already equipped with a couple of useful formatters. The
SimpleFormatter provides a basic implementation of a formatter. The XMLFormatter outputs log
records in a predefined XML format. These two stock formatters will cover a variety of basic logging sce-
narios, but if you need behavior not supplied by either of these formatters, you can write your own.

SimpleFormatter
The SimpleFormatter does a minimal level of work to format log messages. The format method of the
SimpleFormatter returns a one- or two-line summary of the log record that is passed in. Logging a
simple log message, such as test 1, using the SimpleFormatter will issue the following output:

Apr 18, 2004 12:18:25 PM LoggingTest main
INFO: test 1

The SimpleFormatter formats the message with the date, time, originating class name, originating
method name, and on the second line, the level of the log message and the log message itself.

XMLFormatter
The XMLFormatter formats the log records according to an XML DTD. You can use the XMLFormatter
with any character encoding, but it is suggested that it is only used with “UTF-8”. The getHead() and
getTail() methods are used to output the start and end of the XML file, the parts that aren’t repeated
for each log record but are necessary to create a valid XML file.

Example output from the XMLFormatter follows:

<?xml version=”1.0” encoding=”windows-1252” standalone=”no”?>
<!DOCTYPE log SYSTEM “logger.dtd”>
<log>
<record>

<date>2004-04-18T12:22:36</date>
<millis>1082305356235</millis>
<sequence>0</sequence>
<logger>LoggingTest</logger>

45

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 45

<level>INFO</level>
<class>LoggingTest</class>
<method>main</method>
<thread>10</thread>
<message>test 1</message>

</record>
<record>

<date>2004-04-18T12:22:36</date>
<millis>1082305356265</millis>
<sequence>1</sequence>
<logger>LoggingTest</logger>
<level>INFO</level>
<class>LoggingTest</class>
<method>main</method>
<thread>10</thread>
<message>test 2</message>

</record>
</log>

The XML DTD that the logging system uses is shown here:

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->

<!-- The document type is “log” which consists of a sequence
of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
midnight January 1st, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
names from java.util.logging.Constants (such as “SEVERE”
or “WARNING”) or an integer value such as “20”. -->
<!ELEMENT level (#PCDATA)>

<!-- Fully qualified name of class that issued
logging call, e.g. “javax.marsupial.Wombat”. -->
<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.

46

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 46

It may be either an unqualified method name such as
“fred” or it may include argument type information
in parenthesis, for example “fred(int,String)”. -->
<!ELEMENT method (#PCDATA)>

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>

<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
the logger’s localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
provides the String value (obtained using Object.toString())
of the corresponding LogRecord parameter. -->
<!ELEMENT param (#PCDATA)>

<!-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elements are used
for Java exceptions and other java Throwables. -->
<!ELEMENT exception (message?, frame+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class’s source file. -->
<!ELEMENT line (#PCDATA)>

Creating Your Own Formatter
It isn’t too difficult to develop a custom Formatter. As an example, here’s an implementation of the
HTMLTableFormatter that was mentioned earlier. The HTML code that is output looks like this:

<table border>
<tr><th>Time</th><th>Log Message</th></tr>
<tr><td>...</td><td>...</td></tr>
<tr><td>...</td><td>...</td></tr>

</table>

Each log record starts with <tr> and ends with </tr> since there is only one log record per table row.
The <table> tag and the first row of the table make up the head string. The </table> tag makes up the
tail of the collection of log records. The custom formatter only needs an implementation of the
getHead(), getTail(), and format(LogRecord record) methods:

47

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 47

import java.util.logging.*;

class HTMLTableFormatter extends java.util.logging.Formatter {
public String format(LogRecord record)
{

return(“ <tr><td>” +
record.getMillis() +
“</td><td>” +
record.getMessage() +
“</td></tr>\n”);

}

public String getHead(Handler h)
{

return(“<table border>\n “ +
“<tr><th>Time</th><th>Log Message</th></tr>\n”);

}

public String getTail(Handler h)
{

return(“</table>\n”);
}

}

The Filter Interface
A filter is used to provide additional criteria to decide whether to discard or keep a log record. Each log-
ger and each handler can have a filter defined. The Filter interface defines a single method:

boolean isLoggable(LogRecord record)

The isLoggable method returns true if the log message should be published, and false if it should be
discarded.

Creating Your Own Filter
An example of a custom filter is a filter that discards any log message that does not start with “client”.
This is useful if log messages are coming from a number of sources, and each log message from a partic-
ular client (or clients) is prefixed with the string “client”:

import java.util.logging.*;

public class ClientFilter implements java.util.logging.Filter {
public boolean isLoggable(LogRecord record)
{

if(record.getMessage().startsWith(“client”))
return(true);

else
return(false);

}
}

48

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 48

The ErrorManager
The ErrorManager is associated with a handler and is used to handle any errors that occur, such as
exceptions that are thrown. The client of the logger most likely does not care or cannot handle errors, so
using an ErrorManager is a flexible and straightforward way for a Handler to report error conditions.
The error manager defines a single method:

void error(String msg, Exception ex, int code)

This method takes the error message (a string), the Exception thrown, and a code representing what
error occurred. The codes are defined as static integers in the ErrorManager class and are listed in the
following table.

Error Code Description

CLOSE_FAILURE Used when close() fails.

FLUSH_FAILURE Used when flush() fails.

FORMAT_FAILURE Used when formatting fails for any reason.

GENERIC_FAILURE Used for any other error that other error codes don’t match.

OPEN_FAILURE Used when open of an output source fails.

WRITE_FAILURE Used when writing to the output source fails.

Logging Examples
By default, log messages are passed up the hierarchy to each parent. Following is a small program that
uses a named logger to log a message using the XMLFormatter:

import java.util.logging.*;

public class LoggingExample1 {
public static void main(String args[])
{

try{
LogManager lm = LogManager.getLogManager();
Logger logger;
FileHandler fh = new FileHandler(“log_test.txt”);

logger = Logger.getLogger(“LoggingExample1”);

lm.addLogger(logger);
logger.setLevel(Level.INFO);
fh.setFormatter(new XMLFormatter());

logger.addHandler(fh);
// root logger defaults to SimpleFormatter.
// We don’t want messages logged twice.
//logger.setUseParentHandlers(false);
logger.log(Level.INFO, “test 1”);
logger.log(Level.INFO, “test 2”);
logger.log(Level.INFO, “test 3”);

49

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 49

fh.close();
} catch(Exception e) {

System.out.println(“Exception thrown: “ + e);
e.printStackTrace();

}
}

}

What happens here is the XML output is sent to log_test.txt. This file is listed below:

<?xml version=”1.0” encoding=”windows-1252” standalone=”no”?>
<!DOCTYPE log SYSTEM “logger.dtd”>
<log>
<record>

<date>2004-04-20T2:09:55</date>
<millis>1082472395876</millis>
<sequence>0</sequence>
<logger>LoggingExample1</logger>
<level>INFO</level>
<class>LoggingExample1</class>
<method>main</method>
<thread>10</thread>
<message>test 1</message>

</record>
<record>

<date>2004-04-20T2:09:56</date>
<millis>1082472396096</millis>
<sequence>1</sequence>
<logger>LoggingExample1</logger>
<level>INFO</level>
<class>LoggingExample1</class>
<method>main</method>
<thread>10</thread>
<message>test 2</message>

</record>
</log>

Because the log messages are then sent to the parent logger, the messages are also output to System.err
using the SimpleFormatter. The following is output:

Feb 11, 2004 2:09:55 PM LoggingExample1 main
INFO: test 1
Feb 11, 2004 2:09:56 PM LoggingExample1 main
INFO: test 2

Here’s a more detailed example that uses the already developed HTMLTableFormatter. Two loggers are
defined in a parent-child relationship, ParentLogger and ChildLogger. The parent logger will use the
XMLFormatter to output to a text file, and the child logger will output using the HTMLTableFormatter
to a different file. By default, the root logger will execute and the log messages will go to the console
using the SimpleFormatter. The HTMLTableFormatter is extended to an HTMLFormatter to generate
a full HTML file (instead of just the table tags):

50

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 50

import java.util.logging.*;
import java.util.*;

class HTMLFormatter extends java.util.logging.Formatter {
public String format(LogRecord record)
{

return(“ <tr><td>” +
(new Date(record.getMillis())).toString() +
“</td>” +
“<td>” +
record.getMessage() +
“</td></tr>\n”);

}

public String getHead(Handler h)
{

return(“<html>\n <body>\n” +
“ <table border>\n “ +
“<tr><th>Time</th><th>Log Message</th></tr>\n”);

}

public String getTail(Handler h)
{

return(“ </table>\n </body>\n</html>”);
}

}

public class LoggingExample2 {
public static void main(String args[])
{

try {
LogManager lm = LogManager.getLogManager();
Logger parentLogger, childLogger;
FileHandler xml_handler = new FileHandler(“log_output.xml”);
FileHandler html_handler = new FileHandler(“log_output.html”);
parentLogger = Logger.getLogger(“ParentLogger”);
childLogger = Logger.getLogger(“ParentLogger.ChildLogger”);

lm.addLogger(parentLogger);
lm.addLogger(childLogger);

// log all messages, WARNING and above
parentLogger.setLevel(Level.WARNING);
// log ALL messages
childLogger.setLevel(Level.ALL);
xml_handler.setFormatter(new XMLFormatter());
html_handler.setFormatter(new HTMLFormatter());

parentLogger.addHandler(xml_handler);
childLogger.addHandler(html_handler);

childLogger.log(Level.FINE, “This is a fine log message”);
childLogger.log(Level.SEVERE, “This is a severe log message”);
xml_handler.close();
html_handler.close();

51

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 51

} catch(Exception e) {
System.out.println(“Exception thrown: “ + e);
e.printStackTrace();

}
}

}

Here’s what gets output to the screen:

Apr 20, 2004 12:43:09 PM LoggingExample2 main
SEVERE: This is a severe log message

Here’s what gets output to the log_output.xml file:

<?xml version=”1.0” encoding=”windows-1252” standalone=”no”?>
<!DOCTYPE log SYSTEM “logger.dtd”>
<log>
<record>

<date>2004-04-20T12:43:09</date>
<millis>1082479389122</millis>
<sequence>0</sequence>
<logger>ParentLogger.ChildLogger</logger>
<level>FINE</level>
<class>LoggingExample2</class>
<method>main</method>
<thread>10</thread>
<message>This is a fine log message</message>

</record>
<record>

<date>2004-04-20T12:43:09</date>
<millis>1082479389242</millis>
<sequence>1</sequence>
<logger>ParentLogger.ChildLogger</logger>
<level>SEVERE</level>
<class>LoggingExample2</class>
<method>main</method>
<thread>10</thread>
<message>This is a severe log message</message>

</record>
</log>

The contents of the log_output.html file are as follows:

<html>
<body>

<table border>
<tr><th>Time</th><th>Log Message</th></tr>
<tr><td>Tue Apr 20 12:43:09 EDT 2004</td><td>This is a fine log

message</td></tr>
<tr><td>Tue Apr 20 12:43:09 EDT 2004</td><td>This is a severe log

message</td></tr>
</table>

</body>
</html>

52

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 52

Note that the root logger, by default, logs messages at level INFO and above. However, because the
ParentLogger is only interested in levels at WARNING and above, log messages with lower levels are
immediately discarded. The HTML file contains all log messages since the ChildLogger is set to process
all log messages. The XML file only contains the one SEVERE log message, since log messages below the
WARNING level are discarded.

Regular Expressions
Regular expressions are a powerful facility available to solve problems relating to the searching, isolat-
ing, and/or replacing of chunks of text inside strings. The subject of regular expressions (sometimes
abbreviated regexp or regexps) is large enough that it deserves its own book — and indeed, books have
been devoted to regular expressions. This section will provide an overview of regular expressions and
discuss the support Sun has built in to the java.util.regex package.

Regular expressions alleviate a lot of the tedium of working with a simple parser, providing complex pat-
tern matching capabilities. Regular expressions can be used to process text of any sort. For more sophisti-
cated examples of regular expressions, consult another book that is dedicated to regular expressions.

If you’ve never seen regular expressions before in a language, you’ve most likely seen a small subset of
regular expressions with file masks on Unix/DOS/Windows. For example, you might see the following
files in a directory:

Test.java
Test.class
StringProcessor.java
StringProcessor.class
Token.java
Token.class

You can type dir *.* at the command line (on DOS/Windows) and every file will be matched and
listed. The asterisks are replaced with any string, and the period is taken literally. If the file mask
T*.class is used, only two files will be matched —Test.class and Token.class. The asterisks are
considered meta-characters, and the period and letters are considered normal characters. The meta-char-
acters are part of the regular expression “language,” and Java has a rich set of these that go well beyond
the simple support in file masks. The normal characters match literally against the string being tested.
There is also a facility to interpret meta-characters literally in the regular expression language.

Several examples of using regular expressions are examined throughout this section. As an initial exam-
ple, assume you want to generate a list of all classes inside Java files that have no modifier before the
keyword class. Assuming you only need to examine a single line of source code, all you have to do is
ignore any white space before the string class, and you can generate the list.

A traditional approach would need to find the first occurrence of class in a string and then ensure
there’s nothing but white space before it. Using regular expressions, this task becomes much easier. The
entire Java regular expression language is examined shortly, but the regular expression needed for this
case is \s*class. The backslash is used to specify a meta-character, and in this case, \s matches any
white space. The asterisk is another meta-character, standing for “0 or more occurrences of the previous
term.” The word class is then taken literally, so the pattern stands for matching white space (if any
exists) and then matching class. The Java code to use this pattern is shown next:

53

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 53

Pattern pattern = Pattern.compile(“\\s*class”);
// Need two backslashes to preserve the backslash

Matcher matcher = pattern.matcher(“\t\t class”);
if(matcher.matches()) {

System.out.println(“The pattern matches the string”);
} else {

System.out.println(“The pattern does not match the string”);
}

This example takes a regular expression (stored in a Pattern object) and uses a matcher to see if the reg-
ular expression matches a specific string. This is the simplest use of the regular expression routines in
Java. Consult Figure 1-2 for an overview of how the regular expression classes work with each other.

Figure 1-2

Pattern
OBJECT

Input string

Regular
Expression

(string)

Used by

The Pattern object
contains the compiled
version of the regular

expression and can be
reused

The Matcher object is
responsible for testing a
compiled Pattern against

a string and possibly
performing other tasks

Matcher
OBJECT

Get matched text

Matched text

Is there a match?

Yes/No

54

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 54

The designers of the regular expression library decided to use a Pattern-Matcher model, which separates
the regular expression from the matcher itself. The regular expression is compiled into a more optimized
form by the Pattern class. This compiled pattern can then be used with multiple matchers, or reused by
the same matcher matching on different strings.

In a regular expression, any single character matches literally, except for just a few exceptions. One such
exception is the period (.), which matches any single character in the string that is being analyzed. There
are sets of meta-characters predefined to match specific characters. These are listed in the following table.

Meta-Character Matches

\\ A single backslash

\0n An octal value describing a character, where n is a number such that
0 <= n <= 7

\0nn

\0mnn An octal value describing a character, where m is 0 <= m <= 3 and n is 0
<= n <= 7

\0xhh The character with hexadecimal value hh (where 0 <= h <= F)

\uhhhh The character with hexadecimal value hhhh (where 0 <= h <= F)

\t A tab (character ‘\u0009’)

\n A newline (linefeed) (‘\u000A’)

\r A carriage-return (‘\u000D’)

\f A form-feed (‘\u000C’)

\a A bell/beep character (‘\u0007’)

\e An escape character (‘\u001B’)

\cx The control character corresponding to x, such as \cc is control-c

. Any single character

The regular expression language also has meta-characters to match against certain string boundaries.
Some of these boundaries are the beginning and end of a line, and the beginning and end of words. The
full list of boundary meta-characters can be seen in the following table.

Meta-Character Matches

^ Beginning of the line

$ End of the line

\b A word boundary

\B A nonword boundary

\A The beginning of the input

Table continued on following page

55

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 55

Meta-Character Matches

\G The end of the previous match

\Z The end of the input before any line terminators (such as
carriage-return or linefeed)

\z The end of the input

Regular expression languages also have characters classes, which are a way of specifying a list of possi-
ble characters that can match any single character in the string you want to match. If you want to specify
a character class explicitly, the characters go between square brackets. Therefore, the character class
[0123456789] matches any single digit. It is also possible to specify “any character except one of these”
by using the caret after the first square bracket. Using the expression [^012], any single digit except for
0, 1, and 2 is matched. You can specify character ranges using the dash. The character class [a-z]
matches any single lowercase letter, and [^a-z] matches any character except a lowercase letter. Any
character range can be used, such as [0–9] to match a single digit, or [0–3] to match a 0, 1, 2, or 3.
Multiple ranges can be specified, such as [a-zA-Z] to match any single letter. The regular expression
package contains a set of predefined character classes, and these are listed in the following tables.

Character Class Meta-Character Matches

. Any single character

\d A digit [0–9]

\D A nondigit [^0–9]

\s A whitespace character
[\t\n\x0B\f\r]

\S A nonwhitespace character
[^\s]

\w A word character
[a–zA–Z_0–9]

\W A nonword character
[^\w]

Additionally, there are POSIX character classes and Java character classes. These are listed in the follow-
ing tables, respectively.

Character Class Meta-Character Matches

\p{Lower} Lowercase letter [a-z]

\p{Upper} Uppercase letter [A-Z]

\p{ASCII} All ASCII [\x00-\x7F]

\p{Alpha} Any lowercase or uppercase letter

56

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 56

Character Class Meta-Character Matches

\p{Digit} A digit [0–9]

\p{Alnum} Any letter or digit

\p{Punct} Punctuation
[!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~]

\p{Graph} A visible character: any letter, digit, or punctuation

\p{Print} A printable character; same as \p{Graph}

\p{Blank} A space or tab [\t]

\p{Cntrl} A control character
[\x00-\x1F\x7F]

\p{XDigit} Hexadecimal digit
[0–9a–fA–F]

\p{Space} A whitespace character
[\t\n\x0B\f\r]

Character Class Matches

\p{javaLowerCase} Everything that Character.isLowerCase() matches

\p{javaUpperCase} Everything that Character.isUpperCase() matches

\p{javaWhitespace} Everything that Character.isWhitespace() matches

\p{javaMirrored} Everything that Character.isMirrored() matches

Another feature of the regular expression language is the ability to match a particular character a specified
number of times. In the previous example, the asterisk was used to match zero or more characters of white-
space. There are two general ways the repetition operators work. One class of operators is greedy, that is,
they match as much as they can, until the end. The other class is reluctant (or lazy), and matches only to the
first chance they can terminate. For example, the regular expression .*; matches any number of characters
up to the last semicolon it finds. To only match up to the first semicolon, the reluctant version .*?; must be
used. All greedy operators and the reluctant versions are listed in the following two tables, respectively.

Greedy Operator Description

X? Matches X zero or one time

X* Matches X zero or more times

X+ Matches X one or more times

X{n} Matches X exactly n times, where n is any number

X{n,} Matches X at least n times

X{n,m} Matches X at least n, but no more than m times

57

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 57

Reluctant (Lazy) Operator Description

X?? Matches X zero or one time

X*? Matches X zero or more times

X+? Matches X one or more times

X{n}? Matches X exactly n times, where n is any number

X{n,}? Matches X at least n times

X{n,m}? Matches X at least n, but no more than m times

The language also supports capturing groups of matching characters by using parentheses inside the
regular expression. A back reference can be used to reference one of these matching subgroups. A back-
reference is denoted by a backslash followed by a number corresponding to the number of a subgroup.
In the string (A(B)), the zero group is the entire expression, then subgroups start numbering after each
left parenthesis. Therefore, A(B) is the first subgroup, and B is the second subgroup. The backreferences
then allow a string to be matched. For example, if you want to match the same word appearing twice in
a row, you might use [([a-zA-Z])\b\1]. Remember that the \b stands for a word boundary. Because
the character class for letters is inside parentheses, the text that matched can then be referenced using the
backreference meta-character \1.

The Pattern Class
The Pattern class is responsible for compiling and storing a specified regular expression. There are flags
that control how the regular expression is treated. The regex is compiled to provide for efficiency. The
textual representation of a regular expression is meant for ease of use/understanding by programmers.

Method Description

static Pattern The compile method accepts a regular expression
compile(String regex) in a string and compiles it for internal use. The

variant form allows you to specify flags that
static Pattern compile(String modify how the regular expression is treated.
regex, int flags)

static boolean matches(String Compiles a specified regular expression and
regex, CharSequence input) matches it against the input. Returns true if the

regular expression describes the input data, and
false otherwise. Use this only for quick matches. To
match a regular expression repeatedly against dif-
ferent input, the regular expression should only be
compiled once.

static String quote(String s) Returns a literal regular expression that will match
the string passed in. The returned string starts with
\Q followed by the string passed in, and ends with
\E. These are used to quote a string, so what
would be meta-characters in the regular expression
language are treated literally.

58

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 58

Method Description

int flags() Returns an integer containing the flags set when
the regular expression was compiled.

Matcher matcher Returns a Matcher to use for matching the pattern
(CharSequence input) against the specified input.

String pattern() Returns the regular expression that was used to
create the pattern.

String[] split(CharSequence input) Returns an array of strings after splitting the input
into chunks using the regular expression as a

String[] split(CharSequence separator. The limit can be used to limit how
input, int limit) many times the regular expression is matched. The

matching text does not get placed into the array. If
limit is positive, the pattern will be applied at
least “limit minus 1” times. If limit is 0, the pat-
tern will be applied as many times as it can, and
trailing empty strings are removed. If limit is
negative, the pattern will be applied as many times
as it can, and trailing empty strings will be left in
the array.

The Matcher Class
The Matcher class is used to use a pattern to compare to an input string, and perform a wide variety of
useful tasks. The Matcher class provides the ability to get a variety of information such as where in the
string a pattern matched, replace a matching subset of the string with another string, and other useful
operations.

Method Description

static String Returns a string that is quoted with \Q and \E and
quoteReplacement(String s) can be used to match literally with other input.

Matcher appendReplacement First appends all characters up to a match to the
(StringBuffer sb, String string buffer, then replaces the matching text with
replacement) replacement, then sets the index to one position

after the text matched to prepare for the next call to
this method. Use appendTail to append the rest
of the input after the last match.

StringBuffer appendTail Appends the rest of the input sequence to the
(StringBuffer sb) string buffer that is passed in.

MatchResult asResult() Returns a reference to a MatchResult describing
the matcher’s state.

int end() Returns the index that is one past the ending posi-
tion of the last match.

Table continued on following page

59

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 59

Method Description

int end(int group) Returns the index that is one past the ending posi-
tion of a specified capturing group.

boolean find() Returns true if a match is found starting at one
index immediately after the previous match, or at
the beginning of the line if the matcher has been
reset.

boolean find(int start) Resets the matcher and attempts to match the pat-
tern against the input text starting at position
start. Returns true if a match is found.

boolean hitEnd() Returns true if the end of input was reached by the
last match.

boolean requireEnd() Returns true if more input could turn a positive
match into a negative match.

boolean lookingAt() Returns true if the pattern matches, but does not
require that the pattern has to match the input text
completely.

boolean matches() Returns true if the pattern matches the string. The
pattern must describe the entire string for this
method to return true. For partial matching, use
find() or lookingAt().

Pattern pattern() Returns a reference to the pattern currently being
used on the matcher.

Matcher reset() Resets the matcher’s state completely.

Matcher reset(CharSequence input) Resets the matcher’s state completely and sets new
input to input.

int start() Returns the starting position of the previous
match.

int start(int group) Returns the starting position of a specified captur-
ing group.

Matcher usePattern(Pattern Sets a new pattern to use for matching. The current
newPattern) position in the input is not changed.

String group() Returns a string containing the contents of the
previous match.

String group(int group) Returns a string containing the contents of a spe-
cific matched group. The 0-th group is always the
entire expression.

int groupCount() Returns the number of capturing groups in the
matcher’s pattern.

60

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 60

Method Description

Matcher region(int start, int end) Returns a Matcher that is confined to a substring
of the string to search. The caret and dollar sign
meta-characters will match at the beginning and
end of the defined region.

int regionEnd() Returns the end index (one past the last position
actually checked) of the currently defined region.

int regionStart() Returns the start index of the currently defined
region.

String replaceAll(String Replaces all occurrences of the string that match
replacement) the pattern with the string replacement. The

Matcher should be reset if it will still be used after
this method is called.

String replaceFirst(String Replaces only the first string that matches the
replacement) pattern with the string replacement. The

Matcher should be reset if it will still be used after
this method is called.

The MatchResult Interface
The MatchResult interface contains the group methods, and start and end methods, to provide a
complete set of methods allowing for describing the current state of the Matcher. The Matcher class
implements this interface and defines all these methods. The toMatchResult method returns a handle
to a MatchResult, which provides for saving and handling the current state of the Matcher class.

Regular Expression Example
Let’s use the Pattern/Matcher classes to process a Java source code file. All classes that aren’t public
will be listed (all classes that have no modifiers, actually), and also all doubled words (such as two iden-
tifiers in a row) are listed utilizing backreferences.

The input source code file (which does not compile) is shown as follows:

import java.util.*;

class EmptyClass {
}

class MyArrayList extends extends ArrayList {
}

public class RETestSource {
public static void main(String args[]) {

System.out.println(“Sample RE test test source code code”);
}

}

61

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 61

The program utilizing regular expressions to process this source code follows:

import java.util.*;
import java.util.regex.*;
import java.io.*;

public class RegExpExample {

public static void main(String args[])
{

String fileName = “RETestSource.java”;

String unadornedClassRE = “^\\s*class (\\w+)”;
String doubleIdentifierRE = “\\b(\\w+)\\s+\\1\\b”;

Pattern classPattern = Pattern.compile(unadornedClassRE);
Pattern doublePattern = Pattern.compile(doubleIdentifierRE);
Matcher classMatcher, doubleMatcher;

int lineNumber=0;

try {
BufferedReader br = new BufferedReader(new FileReader(fileName));
String line;

while((line=br.readLine()) != null) {
lineNumber++;

classMatcher = classPattern.matcher(line);
doubleMatcher = doublePattern.matcher(line);

if(classMatcher.find()) {
System.out.println(“The class [“ +

classMatcher.group(1) +
“] is not public”);

}

while(doubleMatcher.find()) {
System.out.println(“The word \”” + doubleMatcher.group(1) +

“\” occurs twice at position “ +
doubleMatcher.start() + “ on line “ +
lineNumber);

}
}

} catch(IOException ioe) {
System.out.println(“IOException: “ + ioe);
ioe.printStackTrace();

}
}

}

The first regular expression, ^\\s*class (\\w+), searches for unadorned class keywords starting at
the beginning of the line, followed by zero or more whitespace characters, then the literal class. The
group operator is used with one or more word characters (A–Z, a–z, 0–9, and the underscore), so the
class name gets matched.

62

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 62

The second regular expression, \\b(\\w+)\\s+\\1\\b, uses the word boundary meta-character (\b) to
ensure that words are isolated. Without this, the string public class would match on the letter c. A
back reference is used to match a string already matched, in this case, one or more word characters. One
or more characters of whitespace must appear between the words. Executing the above program on the
test Java source file listed above gives you the following output:

The class [EmptyClass] is not public
The class [MyArrayList] is not public
The word “extends” occurs twice at position 18 on line 6
The word “test” occurs twice at position 32 on line 11
The word “code” occurs twice at position 49 on line 11

Java Preferences
Programs commonly must store configuration information in some manner that is easy to change and
external to the program itself. Java offers utility classes for storing and retrieving system-defined and
user-defined configuration information. There are separate hierarchies for the user and system informa-
tion. All users share the preference information defined in the system tree; each user has his or her own
tree for configuration data isolated from other users. This allows for custom configuration, including
overriding system values.

The core of the preferences class library is the abstract class java.util.prefs.Preferences. This
class defines a set of methods that provides for all the features of the preferences library.

Each node in a preference hierarchy has a name, which does not have to be unique. The root node of a
preference tree has the empty string (“”) as its name. The forward slash is used as a separator for the
names of preference nodes, much like it is used as a separator for directory names on Unix. The only two
strings that are not valid node names are the empty string (since it is reserved for the root node) and a
forward slash by itself (since it is a node separator). The root node’s path is the forward slash by itself.
Much like with directories, absolute and relative paths are possible. An absolute path always starts with
a forward slash, since the absolute path always starts at the root node and follows the tree down to a
specific node. A relative path never starts with a forward slash. A path is valid as long as there aren’t two
consecutive forward slashes in the pathname, and no path except the path to root ends in the forward
slash.

Since preferences are implemented by a third-party implementer, changes to the preferences aren’t
always immediately written to the backing store.

The maximum length of a single node’s name and any of its keys is 80 characters. The maximum length
of a string value in a node is 8,192 characters.

The Preference Class
The Preference class is the main class used for dealing with preferences. It represents a node in the pref-
erence’s tree and contains a large number of methods to manipulate this tree and also nodes in the tree. It
is basically a one-stop shop for using preferences. The Preference class has the following methods.

Operations on the Preferences Tree
The Preferences class defines a number of methods that allow for the creation/deletion of nodes, and
the retrieval of certain nodes in the tree.

63

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 63

Method Description

Preferences node(String pathName) Returns a specified node. If the node does
not exist, it is created (and any ancestors that
do not exist are created) and returned.

boolean nodeExists(String pathName) Returns true if the path to a node exists in
the current tree. The path can be an absolute
or relative path.

void removeNode() Removes this preference node and all of its
children. The only methods that can be
invoked after a node has been removed are
name(), absolutePath(), isUserNode(),
flush(), and nodeExists(“”), and those
inherited from Object. All other methods
will throw an IllegalStateException.
The removal may not be permanent until
flush() is called to persist the changes to
the tree.

static Preferences This method returns a preference node for
systemNodeForPackage(Class c) the package that the specified class is in. All

periods in the package name are replaced
with forward slashes.

For a class that has no package, the name
of the node that is returned is literally
<unnamed>. This node should not be used
long term, as it is shared by all programs
that use it.

If the node does not already exist, the node
and all ancestors that do not exist will
automatically be created.

static Preferences systemRoot() This method returns the root node for the
system preference tree.

static Preferences This method returns a preference node for
userNodeForPackage(Class c) the package that the specified class is in. All

periods in the package name are replaced
with forward slashes.

For a class that has no package, the name
of the node that is returned is literally
<unnamed>. This node should not be used
long term, as it is shared by all programs that
use it, so configuration settings are
not isolated.

64

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 64

Method Description

If the node does not already exist, the node
and all ancestors that do not exist will auto-
matically get created.

static Preferences userRoot() This method returns the root node for the
user preference tree.

Retrieving Information about the Node
Each node has information associated with it, such as its path, parent and children nodes, and the node’s
name. The methods to manipulate this information are shown here.

Method Description

String absolutePath() This method returns the absolute path to the
current node. The absolute path starts at the
root node, /, and continues to the current
node.

String[] childrenNames() Returns an array of the names of all child
nodes of the current node.

boolean isUserNode() Returns true if this node is part of the user
configuration tree, or false if this node is part
of the system configuration tree.

String name() Returns the name of the current node.

Preferences parent() Returns a Preferences reference to the par-
ent of the current node, or null if trying to
get the parent of the root node.

Retrieving Preference Values from the Node
The following methods act much like those from the Hashtable class. The key difference is that there
are versions of the get for most primitive types. Each type is associated with a specific key, a string
standing for the name of the configuration parameter.

Method Description

String[] keys() Returns an array of strings that contains the
names of all keys in the current preferences
node.

String get(String key, String def) Returns the string associated with a specified
key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Table continued on following page

65

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 65

Method Description

boolean getBoolean(String key, Returns the boolean associated with a
boolean def) specified key. If the key does not exist, it is

created with the default value def and this
default value is then returned.

byte[] getByteArray(String key, Returns the byte array associated with a
byte[] def) specified key. If the key does not exist, it is

created with the default value def and this
default value is then returned.

double getDouble(String key, Returns the double associated with a
double def) specified key. If the key does not exist, it is

created with the default value def and this
default value is then returned.

float getFloat(String key, float def) Returns the float associated with a speci-
fied key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

int getInt(String key, int def) Returns the integer associated with a speci-
fied key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

long getLong(String key, long def) Returns the long associated with a specified
key. If the key does not exist, it is created
with the default value def and this default
value is then returned.

Setting Preference Values on the Node
Along with each get method is a put version intended for setting the information associated with a
given configuration parameter’s key name.

Method Description

void put(String key, String value) These methods set a configuration
parameter (the name of which is

void putBoolean(String key, boolean value) passed in as key) to a specific type.
If key or value is null, an exception

void putByteArray(String key, byte[] value) is thrown. The key can be at most 80
characters long (defined in

void putDouble(String key, double value) MAX_KEY_LENGTH) and the value
can be at most 8,192 characters

void putFloat(String key, float value) (defined in MAX_VALUE_LENGTH).

void putInt(String key, int value)

void putLong(String key, long value)

66

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 66

Events
Two events are defined for the Preference class — one fires when a node is changed in the preference
tree, and the second fires when a preference is changed. The methods for these events are listed in the
next table.

Method Description

void addNodeChangeListener Adds a listener for notification of when a
(NodeChangeListener ncl) child node is added or removed from the

current preference node.

void addPreferenceChangeListener Adds a listener for preference change
events — anytime a preference is added to,

(PreferenceChangeListener pcl) removed from, or the value is changed,
listeners will be notified.

void removeNodeChangeListener Removes a specified node change listener.
(NodeChangeListener ncl)

void removePreferenceChangeListener Removes a specified preference change
(PreferenceChangeListener pcl) listener.

Other Operations
The following table lists the other methods in the Preference class, such as writing any pending
changes to the backing store, resetting the preference hierarchy to empty, saving the hierarchy to disk,
and other operations.

Method Description

void clear() Removes all preferences on this node.

void exportNode(OutputStream os) Writes the entire contents of the node (and
only the current node) to the output stream
as an XML file (following the preferences.
dtd listed below).

void exportSubtree(OutputStream os) Writes the entire contents of this node and all
nodes located below this node in the prefer-
ences tree to the output stream as an XML
file (following the preferences.dtd listed
below).

void flush() Writes any changes to the preference node to
the backing store, including data on all chil-
dren nodes.

void remove(String key) Removes the value associated with the
specified key.

Table continued on following page

67

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 67

Method Description

void sync() Ensures that the current version of the pref-
erence node in memory matches that of the
stored version. If data in the preference node
needs to be written to the backing store, it
will be.

String toString() Returns a string containing User or System,
depending on which hierarchy the node is in,
and the absolute path to the current node.

Exporting to XML
The Preferences system defines a standard operation to export the entire tree of keys/values to an
XML file. This XML file’s DTD is available at http://java.sun.com/dtd/preferences.dtd. This
DTD is also included here:

<?xml version=”1.0” encoding=”UTF-8”?>

<!-- DTD for a Preferences tree. -->

<!-- The preferences element is at the root of an XML document
representing a Preferences tree. -->

<!ELEMENT preferences (root)>

<!-- The preferences element contains an optional version
attribute, which specifies version of DTD. -->

<!ATTLIST preferences EXTERNAL_XML_VERSION CDATA “0.0” >

<!-- The root element has a map representing the root’s preferences
(if any), and one node for each child of the root (if any). -->

<!ELEMENT root (map, node*) >

<!-- Additionally, the root contains a type attribute, which
specifies whether it’s the system or user root. -->

<!ATTLIST root
type (system|user) #REQUIRED >

<!-- Each node has a map representing its preferences (if any),
and one node for each child (if any). -->

<!ELEMENT node (map, node*) >

<!-- Additionally, each node has a name attribute -->
<!ATTLIST node

name CDATA #REQUIRED >

<!-- A map represents the preferences stored at a node (if any). -->
<!ELEMENT map (entry*) >

<!-- An entry represents a single preference, which is simply
a key-value pair. -->

<!ELEMENT entry EMPTY >

68

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 68

<!ATTLIST entry
key CDATA #REQUIRED
value CDATA #REQUIRED >

Using Preferences
The following example sets a few properties in a node in the user tree, prints out information about the
node, and then exports the information to an XML file:

import java.util.*;
import java.util.prefs.*;
import java.io.*;

public class PreferenceExample {
public void printInformation(Preferences p)

throws BackingStoreException
{

System.out.println(“Node’s absolute path: “ + p.absolutePath());

System.out.print(“Node’s children: “);
for(String s : p.childrenNames()) {

System.out.print(s + “ “);
}
System.out.println(“”);

System.out.print(“Node’s keys: “);
for(String s : p.keys()) {

System.out.print(s + “ “);
}
System.out.println(“”);

System.out.println(“Node’s name: “ + p.name());
System.out.println(“Node’s parent: “ + p.parent());
System.out.println(“NODE: “ + p);
System.out.println(“userNodeForPackage: “ +

Preferences.userNodeForPackage(PreferenceExample.class));
System.out.println(“All information in node”);
for(String s : p.keys()) {

System.out.println(“ “ + s + “ = “ + p.get(s, “”));
}

}

public void setSomeProperties(Preferences p)
throws BackingStoreException

{
p.put(“fruit”, “apple”);
p.put(“cost”, “1.01”);
p.put(“store”, “safeway”);

}

public void exportToFile(Preferences p, String fileName)
throws BackingStoreException

{
try {

69

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 69

FileOutputStream fos = new FileOutputStream(fileName);

p.exportSubtree(fos);
fos.close();

} catch(IOException ioe) {
System.out.println(“IOException in exportToFile\n” + ioe);
ioe.printStackTrace();

}
}

public static void main(String args[])
{

PreferenceExample pe = new PreferenceExample();
Preferences prefsRoot = Preferences.userRoot();
Preferences myPrefs = prefsRoot.node(“PreferenceExample”);

try {
pe.setSomeProperties(myPrefs);
pe.printInformation(myPrefs);
pe.exportToFile(myPrefs, “prefs.xml”);

} catch(BackingStoreException bse) {
System.out.println(“Problem with accessing the backing store\n” + bse);
bse.printStackTrace();

}
}

}

The output to the screen is shown here:

Node’s absolute path: /PreferenceExample
Node’s children:
Node’s keys: fruit cost store
Node’s name: PreferenceExample
Node’s parent: User Preference Node: /
NODE: User Preference Node: /PreferenceExample
userNodeForPackage: User Preference Node: /<unnamed>
All information in node

fruit = apple
cost = 1.01
store = safeway

The exported information in the XML file is listed here:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE preferences SYSTEM “http://java.sun.com/dtd/preferences.dtd”>
<preferences EXTERNAL_XML_VERSION=”1.0”>

<root type=”user”>
<map/>
<node name=”PreferenceExample”>

<map>
<entry key=”fruit” value=”apple”/>
<entry key=”cost” value=”1.01”/>
<entry key=”store” value=”safeway”/>

70

Chapter 1

04_574868 ch01.qxd 12/21/04 5:50 PM Page 70

</map>
</node>

</root>
</preferences>

Summary
This chapter introduced the new language features that Sun built into the JDK 5 release of the Java pro-
gramming language. You should have all you need to know to understand and utilize these new fea-
tures. You may find that a number of programming tasks you’ve accomplished in the past are now made
simpler and clearer, and perhaps even some problems that never had a good solution now do.

Also covered in this chapter are several of the most important utility libraries in Java. The preferences
library allows you to store and retrieve configuration information for your application. The logging
library provides a sophisticated package of routines to track what your program is doing and offer out-
put to a variety of people that need it. The regular expression library provides routines for advanced
processing of textual data.

You should now be well-equipped to solve a variety of real-world problems and get the most out of the
JDK 5 release of Java.

Now that you have learned about the advanced language features in Java, the next two chapters will
take you inside a modern Java development shop. In Chapter 2, the habits, tools, and methodologies
that make an effective Java developer will be discussed.

71

Key Java Language Features and Libraries

04_574868 ch01.qxd 12/21/04 5:50 PM Page 71

04_574868 ch01.qxd 12/21/04 5:50 PM Page 72

Tools and Techniques for
Developing Java Solutions

Many beginning Java developers master the concepts of the Java programming language fairly
well and still have a difficult time reaching the next level as a professional Java developer.

This is because most Java books simply focus on teaching just the Java language, a Java tool (like
Ant or JUnit), or a language-neutral software methodology. This leaves you to learn techniques
and practices from other software developers or at the proverbial “school of hard knocks.”

In Chapter 1, I discussed the advanced features of the Java language — a continuation on the
theme of most beginning Java books. But now, you are starting the transition to a new kind of Java
book, one more experience-centric, starting with this chapter. In this chapter, you will get a feel for
the tools and techniques of modern Java development. It will introduce you to “thinking like a
professional Java developer,” which continues in the next chapter — a discussion of Java design
patterns.

By the end of this chapter, you should have acquired the following skills:

❑ Familiarity with the principles of quality software development

❑ Familiarity with the habits of an effective software developer

❑ Awareness of a number of the prominent software development methodologies

❑ Acquaintance with many of the tools commonly found in Java development
environments

05_574868 ch02.qxd 12/21/04 5:51 PM Page 73

Principles of Quality Software Development
So, you have figured out how to build your Java applications, and they work just like the ones from
which you learned. You are getting paid to write these applications, so you are now a professional Java
developer. But how do you know if you are doing a good job?

There are literally thousands upon thousands of articles debating the measures of quality software with
each of them offering you their own solution for how you should answer this question. Realizing that
this discussion is well beyond the scope of this book (thankfully), this body of work can be boiled down
to a few questions:

❑ Does the software do what it is supposed to do?

Of course, this is a loaded question. It is entirely possible to say that a piece of software does
what it is supposed to do (as defined by a requirements specification), but this is absolutely
worthless. In essence, you are talking about a failure of your requirements gathering process,
which leads you to build the wrong thing. Your software is being built to serve a particular
need, and if it does not satisfy that need (for whatever reason), the software is a failure.

❑ Does the software do things it shouldn’t do?

Developers like to refer to this phenomenon as undocumented features, but your users will
refer to them as bugs. Everyone prefers to build bug-free software, but in the real world, this
just doesn’t happen. All men may be created equal, but all bugs are not. Bugs that do not impact
the functioning of the system — or the business process that they support — are obviously far
less important than those that do.

❑ Did you deliver the software in a timely manner?

Timing is everything, and this is true nowhere more than in software in which the pace of
change is incredible. If your software takes so long to deliver that it is no longer appropriate to
the business process it supports, then it is worthless. The great untold secret behind the high
percentage of software projects that end in failure is that many of them simply could not keep
up with the pace of technological innovation — and died trying.

❑ Could you do it again if you had to?

Of course, you will have to! This is the job — writing and delivering software that complies with
the above questions. The key here is that you should not have to learn all of your hard knocks
lessons every time you build software. You will invariably be asked to deliver your software
again with fixes and enhancements, and you hopefully do not have to fix the same bugs over
and over again nor have the same integration challenges repeatedly. “At least we don’t have to
deal with this next time” should be a truth that comforts you in your integration and bug fixing
and not a punch line to a development team joke.

These questions may seem like common sense — because they are! But there is an old saying that “com-
mon sense is neither,” so it is important to not assume that everyone is on the same sheet of music.
Furthermore, the US Army Rangers have a saying, “Never violate any principles, and do not get
wrapped up in technique.” You will find this a helpful maxim in dealing with the maze of processes,
products, and techniques involved in software development. These are the core principles of software
development, and how you get there is technique. Do not lose sight of the distinction between these
two things.

74

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 74

Habits of Effective Software Development
Motivational sayings and common sense questions do not make a strategy for making you into an effec-
tive Java developer. You need to consider the how in delivering on quality software. Along those lines,
there are a set of habits that are shared among effective software developers. They are as follows:

Communicate
The picture of the egg-headed recluse software engineer sitting in the dark part of some basement while
banging away on a keyboard like an eccentric secretary is an outmoded stereotype (well mostly, the dark
is good). As you learned before, software is built to satisfy a need in some particular business process. In
order to be successful, you need to tap in and really appreciate that need. This is very difficult to do by
reading a specification. You want to talk to the users, and, if you cannot talk to the users, you want to
talk to someone who was a user or speaks with users. You want to learn what it is they do, how they are
successful, and how your software will help them be more successful. If the use of your software is sim-
ply by management fiat, then your software purpose is already on critical life support.

You also want to communicate with your fellow developers — explaining to them what you learned,
learning from their mistakes, and coordinating how your software will work together. Make it a point to
try to establish some social interaction amongst your teammates, even if it is an occasional lunch or brief
chat. Software can be a hard and stressful job; it helps if you have a basic familiarity with your teammates.

Model
Before you go running out to buy the latest in fashion apparel, check the cover of this book. It is pretty
clear that this book will not have you doing any posing! Modeling builds upon communication by
allowing a more tangible way to visualize a given concept or idea.

Don’t assume that everyone on your team needs to attend UML training or buy thousands of dollars of
UML modeling software. UML is a great package for expressing a lot of things in a common format that
should be understandable by a wide variety of people — from users to developers. Of course, you know
this is not the case. The key to any notation is that it must be well understood by those who read it. If
your team is UML-savvy or will commit to being that way, then it is a fantastic notation — planned out
by a large committee of very smart people.

Of course, the old joke is, “A camel is a horse designed by a committee.” This means that you should rec-
ognize that UML contains a toolset that extends well beyond what you may need for your project’s mod-
eling needs. The key is to find a notation that everyone (including users) understands and sticks with it.

Also, if your tools provide more of a hindrance than an aid in your modeling, then don’t use them.
Ambler suggests in his book Agile Modeling that you can draw your models on a whiteboard, take a digi-
tal camera snapshot of the whiteboard, and have exactly what you need — without the burden or cost of
a tool. [AMBLER]

Be Agile
Change is an inevitable part of software development. Not only is technology consistently changing, but
so is your customer’s business process, if for no other reason than the fact that you have actually pro-
vided some automation support.

75

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 75

Teaching a course in Object Oriented Software Development, I often point out to my students that,
despite being a sophisticated software engineering professional who has developed many software solu-
tions to improve the way people do business, I could not easily come up with a set of requirements for a
system that would improve my business process. The fact is — like most people in the working world —
I don’t spend a lot of time thinking about how I do what I do. If asked to do so, I would probably relate
my ideal system as an approximation of what I already experience. This would immediately change
when you, the software team, introduced a new system to me because my entire frame of reference is
now relative to what you have placed before me. Things that I once thought were important would no
longer be so — improvements that I assumed would be better turn out not to be, and so on. Ultimately, it
is a very natural and appropriate thing for my requirements to change!

You frequently hear software engineers bemoan the fact that the requirements keep changing. This is
quite puzzling because software engineers presumably chose their profession based on the desire to
develop software, and changing requirements facilitate that goal. The requirements changing is not
really the problem. The problem is that the software team is not in the habit of accommodating change;
that is, they are not very agile.

Lou Holtz once said, “Life is 10 percent what happens to you and 90 percent how you respond to it.”
This saying goes a long way towards distilling the attitude that a software engineer should possess to be
effective in modern Java development.

Be Disciplined
Before you go running out and hacking and slashing your way to programming heaven, ensure that you
maintain your discipline. Discipline is about maintaining your focus in the presence of a tremendous
amount of distraction. This is not about holding your hand over a hot candle or walking across burning
coals. You do what you should do, not what you can do.

Recall the principles of quality software development and ensure that you are not violating any of them.
Often, rushing to do something will actually cause you to take longer. Be mindful of things slipping, like
little bugs that should have been caught before or lapses in judgment for the sake of expediency.

However, in the same regard, do not slow things down simply for the sake of caution. Simply slowing
down to avoid making a mistake will not definitely allow you to avoid the mistake, but it will certainly
reduce the amount of time you have to correct it.

This is a very typical concern when trying to fix a bug or develop an innovative way to handle some-
thing that was unanticipated. By desiring to do something new and cool, you can lose sight of how
important it really is in accomplishing the goal of the system.

Trace Your Actions to Need
Discipline goes hand in hand with tracing your actions to the need that your software is meant to
address. It is very important that you are able to understand why each of you built each of the compo-
nents of your system.

Traceability refers to the ability for you to follow your need all the way through the system. For example,
you may have a need to provide a printed report. You would then see that traced into a set of use cases,
or software requirements, which would then be realized in certain design elements, which would then

76

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 76

be implemented in certain pieces of code, which would then be compiled into certain
executables/libraries, which would then be deployed to a certain machine, and so forth.

So, you are thinking, “Well, that is really neat, but what does all of that really buy me?” The answer is
simple. Say you received a request to change the code to support another type of printer. By being able
to trace your code through, you would understand where your potential adaptations could be made.

Traceability is not meant to be some huge undertaking requiring mountains of paperwork and a large
database, spreadsheet, or document, nor does it require some dumbed-down version of the code in
order to explain it to those who are not able to read or write code. Traceability only requires that some-
one who can do something about it should be able to find his or her way through the code.

Don’t Be Afraid to Write Code
It seems self-evident, but you would be surprised how often coding is relegated to such a minor part of
software development — particularly on complex systems, where it is most needed. Often, there is a
desire to figure it out on paper first, find the right design pattern, or model it just right.

However, certain logical constructs are simply unable to be elegantly expressed anywhere but in the
code. Also, a compiler verifies a number of assumptions in your design, and your runtime environment
will do the same.

It is also easier to estimate how long it will take to do something if you actually do something very simi-
lar. A scaled-back prototype that covers the bounds of your system can go a long way to understanding
exactly how complex or time-consuming a particular task may actually be.

Furthermore, in Java development, you simply do not have the luxury of assuming that you understand
everything about your system. With the high degree of reuse that exists in Java development, your sys-
tem is invariably dependent on code developed outside of your design space. So, it is foolish to assume
that a given API works like you assume it does. There are too many variables involved in the equation.

Part of the fearlessness towards writing code involves changing code. Refactoring — changing the
design of existing code — is an important part of software development. [FOWLER]

Think of Code as a Design, not a Product
Refactoring demonstrates a key habit in effective software development. Code should not be considered
the product that you deliver. After all, you rarely actually deliver the source code to the user. Instead,
you deliver them a compiled byte code that operates in accordance with your source code.

This is because your source code is part of the design. As mentioned previously, there are some logical
constructs that cannot be expressed anywhere but inside code. Furthermore, source code provides a
human-understandable expression of logic that is then compiled into byte codes (and further gets con-
verted into machine instructions).

You may be saying, “Well, of course, source code is not the product, who said it was?” You may never
run into a problem with an organization that fails to realize this premise, but it is unlikely. Simply pay
careful attention to the disproportionate focus paid to the design phase and the relative number of
designers who cannot write code. This will demonstrate that the focus of the project is misplaced.

77

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 77

Read a LOT!
This may seem like a shameless plug by a self-serving author, but the simple fact is that software is
always changing and improving. There are new technologies, implementations, APIs, standards, and so
forth. Software development is a knowledge occupation, and part of the job (as well as developing any
system) is learning. Learning new technologies, learning better approaches, and even learning more
about the tools and APIs currently used in your solutions are critical to success.

A large part of this has to do with the rise of the Internet and open source software. Java has extended
beyond just being a programming language and more towards a software development community.

If you have a software problem, you should first check online to see if someone has already solved that
problem. Furthermore, you could check to see how others in your situation have overcome problems
you have yet to encounter.

Build Your Process from the Ground Up
Your process is the way you, as a team, do business. No matter what your management tries to do in
terms of instituting a process, your team will have to buy into how you will do business. The key to
building an effective process is to start from the ground up. Management will set expectations for the
outcomes they want and how they will measure your performance. If they place a high value on docu-
mentation and paperwork, then you need to ensure those expectations are met.

The key part is that your team will need to work together and that will decide how you meet the expec-
tations of management. If you do not agree as a team to a process, then process can become a political
football. You do not want to get into a situation where process is used to try to differentiate between co-
workers. Once that starts happening, you will find that the techniques become more important than
good software principles, and you start to lose the ability to trace your actions to your software’s need.

An important consideration in building your process from the ground up is recognizing where your pro-
cess really begins and ends. Development team wars have been waged simply on the basis of the ques-
tion of integrated development environment (IDE) standardization, like Eclipse. You should really ask
yourselves whether you really want to standardize on an IDE. Even though you certainly need some-
thing to be able to interoperate among team members with effective configuration management (dis-
cussed subsequently), you still don’t want to make someone have to fight their development tools.
Software is hard enough without having to fight against your tools.

This is the key consideration in building your process. Decide on what your team can agree on to make
everyone the most effective. If you cannot agree, then management may have to get involved, but this
should be avoided.

Manage Your Configuration
Configuration management is important because stuff happens. A hard drive goes bad, your latest
improvement goes very badly, and so forth. These are all examples of things that happen in the normal
course of software development.

You should recognize that there is a distinct difference between configuration management and source
code control. Configuration management is a process in which you control how your system is put
together. The key goal in configuration management is that you can replicate your configuration in

78

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 78

another place. You do not just maintain configuration control of your source code but also your runtime
environment (including dependent libraries, application server configuration, Java Runtime
Environment, or database schema), that is, anything you would need in order to recreate your system.

Source code control using a tool like the Concurrent Versioning System (CVS) is used to allow multiple
developers to work on files and integrate their changes while saving the history of previous revisions.
CVS is the dominant tool in the open source environment and is cleanly integrated into most of the
major IDEs. Of course, source control is useless if you do not commit your changes!

Unit Test Your Code
When you design and write code, you are writing test cases. You are writing test cases to handle the
intended case, that is, how the system should behave as you go through the system. As you do that, you
are making certain assumptions about how your system will react given a certain set of circumstances.
For example, if I check to see that an object is not null here, then I am assuming that it will not be null up
to a certain point.

As you write code, you tend to develop your complex logic to support the intended case, checking for
needed preconditions required for your code to work. However, there is often a set of scenarios for
which your code was designed to work. Unit testing allows you to test those scenarios.

I will discuss how to use an open source tool called JUnit to perform unit testing, but unit testing
becomes an important part of the habit known as continuous integration.

Continuously Integrate
Having a strong set of unit tests that ensure the functionality of the individual components of your sys-
tem, you could now combine these together into one cohesive product and run all of the unit tests on all
the components to see how well the system as a whole functions, as illustrated in Figure 2-1.

You should note that, even if you are not very good about unit testing, continuous integration can still
apply and provide great value to your development team. As you combine the efforts of your entire
development team, you will see how things actually play together and ensure valid assumptions
towards each other’s code.

The more you integrate your system together, the more confident you will become in the success of the
product as a whole. This helps mitigate risk by discovering problems early when they can be fixed.
Continuous integration ties directly into maintaining short development iterations.

Maintaining Short Iterations
As previously noted, the sooner you discover problems, the less likely they are to affect your overall
development success. The trick to doing this is to maintain short development iterations. This means
that you should be able to go through the development life cycle (requirements, code, design, and test)
in a short period of time.

You should try to involve your customer in each iteration if possible because, as mentioned previously,
your software will change their context. This means they will start describing what they want within the
context of what you built, not in some abstract concept.

79

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 79

Figure 2-1

How short depends on your team, but, for the purposes of this discussion, you should measure it in
weeks, not months. You want to put enough in an iteration to be meaningful in the shortest period of
time. Two weeks to a month is a good rough estimate for your first iteration. After that, you can use your
own success or failure to determine your next iteration.

Measure What You Accomplished — Indirectly
There is an old joke in software estimation, “What is the difference between a fairy tale and a software
estimate? One doesn’t start with once upon a time.” This joke takes to task the idea that software estima-
tion is really hard, and most techniques are frequently described as black magic.

However, successful software estimates are based on experience. Experience is based on trying to quan-
tify what you have done before (and how long it took) as a predictor of how long the next thing will
take. Because the typical workplace doesn’t punish overestimation as much as underestimation — early
is good, late is bad — you start to have these highly defensive estimates of software effort. These estimates

Automated
Nightly
Builds

Scot’s
code

Jeff’s
code

Don’s
code

Jon’s
code

80

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 80

start to build on one another and, because you cannot come in too low or your next estimate will not be
as believable, you start to have down time. You start to gold plate (that is, add unnecessary and untrace-
able features) your system and gain a sense of inactivity.

The opposite phenomenon also occurs. Because software developers cannot be trusted to make estimates
(because they are gold plating and sitting around), management steps in and promises software based on
its guesses on how long something should take. Usually, they are setting aggressive schedules simply for
some marketing purpose and frame it as a technical challenge to the developers. Developers are optimists
and fighters, so they accept the ridiculous schedules until they get burned out and leave for a new job.

So, how do you avoid these dysfunctional circumstances? You measure what you have done by using an
indirect measure to keep you honest. eXtreme Programming (XP) has a concept known as velocity. XP
will be discussed subsequently, but the concept can be paraphrased as follows:

1. You have a set of tasks that, each of which, you assign a certain number of points related to how
much effort it will take to accomplish it.

2. You then estimate how many points each of the developers on your team will be able to accom-
plish for a given iteration — taking into account leave and so forth. Your iteration is timeboxed
to a specific amount of time (for example, two weeks is common).

3. You perform the work and keep track of how many points you were actually able to accomplish.

4. You start the process over for new tasks, adjusting them based on the actual results. As you get
better or your system becomes better understood, your velocity will increase.

Of course, nothing scares developers more than metrics. As Mark Twain once said, “There are three types
of lies: lies, damned lies, and statistics.” Developers understand that metrics can be oversimplified or dis-
torted beyond their actual meaning. This is why teamwork and communication is so important. You
should only allow these metrics to be visible to those who actually are involved in using these metrics. You
can make it a secret handshake; that is, if you don’t have a velocity, you don’t get to know the velocity.

Of course, on the subject of sensitive but necessary measures of your development performance, you
should also look into tracking your issues.

Track Your Issues
Another volatile subject on a development team is bug reporting and tracking. As previously mentioned,
it is hard for you to understand what your customers want, and it is hard for them to understand what
they want. Furthermore, your users will use your software in ways that you did not anticipate and they
will discover undocumented features of your system.

However, if you get past the concept of blame and simply focus on the inevitability of bugs and changes,
you can make your issue tracking system a good way of keeping track of things that need to be done.

Whether you use a sophisticated online system or a simple spreadsheet, it is important that you keep
track of the loose ends. You will find that it is a great practice to allow your users to directly input feed-
back on your product. How you choose to triage your responses is up to you, but it is very helpful to
always have an open ear to listen to the user. Of course, if you let them constantly enter things in the sys-
tem, you will need to make it appear that you are actually listening on the other end.

81

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 81

Development Methodology
Now that you have reviewed the principles of quality software development and many of the habits that
help to facilitate achieving those principles, it is time to learn some actual full up methodologies used in
many Java development shops.

There is a joke, “What is the difference between a methodologist and a terrorist? You can negotiate with
a terrorist!” This joke pokes fun at a very real problem. Often, methodologies are evaluated as if they
must account for every possible circumstance in the development life cycle and must be ritualistically
adhered to — or the methodology magic will not work. Of course, all methodologies have to be tailored
to your own development scenario, but you need to know the particulars of a methodology before you
can tailor it.

A full examination and comparison of development methodologies is beyond the scope of this book, but
you will learn some of the most popular ones in use today.

Waterfall Methodology
The grandfather of all software methodologies is the Waterfall methodology. It is known as the Waterfall
methodology because the sequences flow through each other sequentially, as demonstrated in Figure 2-2.

The Waterfall methodology consists of a series of activities separated by control gates. These control
gates determine whether a given activity has been completed and would move across to the next activ-
ity. The requirements phase handles determining all of the software requirements. The design phase, as
the name implies, determines the design of the entire system. Next, the code is written in the code phase.
The code is then tested. Finally, the product is delivered.

The primary criticism of the Waterfall methodology is that it takes too long to gain feedback on how
things are going. As you read previously, some parts of your software are well understood and others
are not. Therefore, trying to do all of the requirements first (which is to say, quantify the need into tangi-
ble specifications) is very hard when your user may not have a good understanding of the problem at
hand. Furthermore, if you make a mistake in the requirements, then it will propagate to the design, the
code, and so on. Also, there is no real capability to go back in the process. So, if you get into testing and
discover that a part of the design simply doesn’t work, you end up making changes to fix that issue, but
you lose all context of your design activity — you are literally band-aiding the system on purpose!

Recognizing this problem, the Waterfall methodology has been adapted in several other forms, like the
spiral methodology, which entails simply having multiple waterfalls. The idea is to shorten the time of
the life cycle down; that is, create an iterative solution to the problem.

Ultimately, you cannot escape the waterfall because it really is the common-sense approach. First, you
decide what it is you are going to build. Then, you decide how it is that you are going to build it. Next,
you actually build it. Finally, you ensure that you actually built what you wanted (and it works). The
major distinction with the next two methodologies that you will read about has to do with how much of
the overall effort you try to build at a time.

82

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 82

Figure 2-2

Unified Process
In Craig Larman’s Applying UML and Patterns, he discusses an agile version of the Unified Process (UP),
a process originally developed from the merger of several object-oriented development methodologies.
The Unified Process entails short iterations of development based on tackling the most important
aspects of your system first, which is illustrated in Figure 2-3. [LARMAN]

Requirements

Requirements Review

Design

Design Review

Control
Gates

Code

Code Review

Test

Test Review

Delivered
Product

83

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 83

Figure 2-3

You develop a survey of use cases (that is, brief descriptions of user interactions with the system) and
start working them off in the order of which they pose a risk to the overall success of the system. You can
add or remove use cases from your survey, as appropriate, through your development. The phases illus-
trated in Figure 2-3 define and measure the relative maturity of the system.

Delivered
Product

Delivered
Product

Test

Test

Code

Code

Design

Design

Requirements

Inception Elaboration Construction Transition

Requirements

Delivered
Product

Delivered
Product

Test

Test

Code

Code

Design

Design

Requirements

Requirements

Delivered
Product

Delivered
Product

Delivered
Product

Delivered
Product

Test

Test

Test

Test

Code

Code

Code

Code

Design

Design

Design

Design

Requirements

Requirements

Requirements

Requirements

Delivered
Product

Delivered
Product

Delivered
Product

Delivered
Product

Test

Test

Test

Test

Code

Code

Code

Code

Design

Design

Design

Design

Requirements

Requirements

Requirements

Requirements

Delivered
Product

Test

Code

Design

Requirements

Maturity

84

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 84

The phases of the Unified Process are as follows:

❑ Inception: The system is still being felt out to determine the scope of the system — what will
the system do and what are its boundaries. This phase can be very short if the system is well
understood.

❑ Elaboration: You are mitigating the architectural risks to the system. This is a fancy way of say-
ing, “Have you solved all of your hard problems?” or “Do you know how to do all the things
you are going to need to do?”

❑ Construction: You are finishing all of the relevant use cases to make the system production
ready, that is, to go into beta.

❑ Transition: You move the system through its final release stages and beta releases. It could
include the operations and maintenance of the software.

This is an agile process that focuses on maintaining momentum, but it still sticks to a lot of the tradi-
tional practices of use case development, modeling, and so forth. The next methodology is also an agile
process, but it has a different focus in terms of how to accomplish it.

eXtreme Programming
Kent Beck’s eXtreme Programming Explained introduced a radically new methodology into the software
development community. Based on his experiences on a project at Chrysler, he proposed making coding
the central part of your development effort. [BECK]

You have your user come up with stories describing how the system should work, and order them based
on their relative importance. You then take on a set of stories for your team to accomplish in a given iter-
ation, about two weeks in length — working 40-hour work weeks. You split your team into pairs to work
on each of the stories, allowing a certain amount of built-in peer review of the code as it is being written.
You and your partner start by writing unit tests to go along with your source code. After you are done
with your particular piece of code, you take it over to the integration machine where you add to the
code baseline and run all of the unit tests accumulated from everyone’s code. After each iteration, you
should have a working system that your user can review to ensure that you are meeting their needs.
This whole process is shown in Figure 2-4.

Note that XP doesn’t place a high emphasis on designing the software; instead, it holds that most upfront
design is not very helpful to the overall effort and ends up being changed with actual development.

XP is rather good at continuously having a working system. It can be tough when you lack an involved
user or have a project of a large size (50 or more developers), when coordination and design activities
actually could provide more value.

XP’s system of velocity, described previously, provides a good sense of understanding the capability of
your team so that you can effectively plan, which thus avoids burning out your engineers or sandbag-
ging your customer.

85

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 85

Figure 2-4

Observations on Methodology
There are several critical points that you can take away from reviewing these three divergent
methodologies:

❑ Ultimately, you are doing the same task in each methodology. It is about how much scope you
attempt to address in each activity that defines the real difference.

❑ The agile methodologies, like UP and XP, seek to be reactive rather than proscriptive. That is,
they attempt to assess the success and adjust direction of the effort continuously rather than
relying on the pass/fail nature of waterfall control gates.

❑ The methodologies vary in how much importance they grant to the design phase and the accou-
trements that surround them (UML modeling tools and so forth). The Waterfall process finds

Integrate

Code

Write Unit Tests

Coding Phase

Iteration

User

Planning
Phase

actual user stories

planned user stories

user stories

w
orking

system

86

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 86

this phase incredibly important, and UP recognizes that for the part of the system you are
addressing in your iteration. XP believes that coding is design, and all of the additional work is
built around considering scenarios that are not actually addressed in the functionality of the
system. After all, you are coding the actual user stories.

❑ All of the methodologies recognize the importance of use cases; though, they address them in
different forms. The Waterfall methodology sees use cases as a tool for generating the explicit
requirements of the system, providing background information. UP finds them important as an
inventory of scope. The survey report contains a simplified explanation of each use case and
then relies upon them to build its design models in each of its iterations. XP is based directly on
developing to satisfy what it calls user stories, which are more informal in format but still essen-
tially the same thing.

There is no one-size-fits-all methodology. As mentioned in Habits of Effective Software Development, it is
important that you and your team determine the process by which you will accomplish addressing the
need for which your software is being built. This section was meant to provide you with a background
on some of the most common methodologies in software today, and the next section will discuss some of
the common tools used in software development in the context of practical development scenarios.

Practical Development Scenarios
Distributing J2EE applications across tiers is a challenging task to tackle because of all of the underlying
implications of mixing and matching components with connectors across a system. The J2EE architecture
consists of four tiers: the client, Web, business, and Enterprise Information System (EIS). The client tier is
comprised of applets, HTML, and Java components. The Web tier is made up of servlets and Java Server
Pages that operate in a Web container. The business tier manages all of the data transactions and persis-
tence mechanisms of a system as well as resource allocations. The EIS tier is accountable for all of the
back-end database systems that application components must integrate with.

With all of these components and connectors, consideration must be given to the construction of pro-
cesses that manage and test these entities to ensure that consistencies are attained during development
and deployment. Many open source tools have been developed to facilitate technological timing issues
so that business challenges can be met. The remaining sections of this chapter will discuss some of
these tools so that you can apply them in your operations to realize those consistencies, which should
facilitate your development activities and help you become more successful with your integrations
and deployments.

This chapter will investigate some scenarios on how to apply scripting tools like Ant, Maven, and
XDoclet to manage your component builds and packaging, along with JUnit and JMeter to test your
applications in an automated fashion to ensure that your development operations can behave in a har-
monious manner.

Ant
All software projects need consistent builds from a common repository to ensure applications are
deployed properly. For many software projects (both commercial and open source), Ant has been used to
compile, test, and package components for distribution (see Figure 2-5).

87

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 87

Figure 2-5

With Ant, a series of targets are implemented to construct processes to build your system components.
This section will take you through three different scenarios that you might encounter in your develop-
ment activities that can be tackled with Ant.

Scenario 1
In general, most Ant scripts start with property settings that are used to establish proper directory struc-
tures for file creation and transfer during your build activities. Similarly, parameters that are needed for
processing can be defined like they are for database operations used in all three target entries in the fol-
lowing Ant script. Users can also send these parameters to the Ant script from the command line using
the -D operation:

<project name=”Database creation” default=”createTables_MySQL” basedir=”.”>
<!-- could use a property file, we opted for property settings in script
<property file=”${basedir}/build.properties”/> -->

<property name=”sql.driver” value=”org.gjt.mm.mysql.Driver”/>
<property name=”sql.url” value=”jdbc:mysql://localhost/sample_project”/>

<property name=”sql.user” value=””/>
<property name=”sql.pass” value=””/>

The createTables_MySQL target executes three SQL scripts for employees, project, and timetable
table creation. The idea here is to be able to generate your tables on the fly just in case you need to
deploy your database tables on a new platform for testing and/or deployment:

ANT

Developer

I’ve got three issues I need to address ASAP. I have to rebuild some
database tables and populate them for testing, and since I bothered the

DBA last week, I’m a little reluctant to do so again so soon. How can I get
this done in a painless fashion? I also want to automate my TIF file

markup operations on a daily basis to ensure I don’t miss any files or
corrupt them by doing it by hand. How can I get this done? Lastly, I need
to create an executable JAR file for my GUI application and I forgot the

command to do so. How can I generate and package this JAR on a
consistent basis?

SQL script - INSERT

Scenario 1

SQL script - CREATE Database

Scenario 2

TIF file
TIF file + Markup

Markup

Scenario 3

*.java *.jpg

Executable
JAR

*.xml

88

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 88

<target name=”createTables_MySQL”>
<sql driver=”${sql.driver}” url=”${sql.url}” userid=”${sql.user}”

password=”${sql.pass}” >
<classpath>
<pathelement location=”mysql-connector-java-3.0.9-stable-bin.jar”/>

</classpath>
use sample_project;
<transaction src=”employees.sql”/>
<transaction src=”project.sql”/>
<transaction src=”timetable.sql”/>

</sql>
</target>

The createDB_MySQL script works in conjunction with the sample_project.sql file to create a
database in MySQL so that tables can be added to it. The following code snippet outlines how this is
done, first by dropping any preexisting tables for employees, project, and timetable. After that has
been performed, then the database will be created for table aggregations:

BEGIN;
DROP TABLE IF EXISTS employees;
DROP TABLE IF EXISTS project;
DROP TABLE IF EXISTS timetable;
DROP DATABASE IF EXISTS sample_project;
COMMIT;

CREATE DATABASE sample_project;
<target name=”createDB_MySQL”>

<sql driver=”${sql.driver}”
url=”${sql.url}”
userid=”${sql.user}”
password=”${sql.pass}”
classpath=”mysql-connector-java-3.0.9-stable-bin.jar”
src=”sample_project.sql”/>

</target>

The last target, dropDB_MySQL, is used to drop the database, sample_project, just in case something
has gone wrong and a user wants to start over from scratch. Prior to performing this operation, a user
should probably provide a query asking the user if this operation is really desired, as shown below:

<target name=”dropDB_MySQL”>
<input message=”Do you really want to delete this table (y/n)?”

validargs=”y,n” addproperty=”do.delete” />
<condition property=”do.abort”>

<equals arg1=”n” arg2=”${do.delete}”/>
</condition>
<fail if=”do.abort”>Build aborted by user.</fail>
<sql driver=”${sql.driver}” url=”${sql.url}” userid=”${sql.user}”

password=”${sql.pass}” >
<classpath>
<pathelement location=”mysql-connector-java-3.0.9-stable-bin.jar”/>

</classpath>
drop database sample_project;

89

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 89

</sql>
</target>

</project>

Sequence Target Action

2 createTables_MySQL Creates tables for operations/testing

1 createDB_MySQL Creates database for table adds

3 dropDB_MySQL Drops database

Scenario 2
Scenario 2 addresses the image file markup that could be part of your workflow processes in your devel-
opment operations. The following Ant script invokes the application necessary to aggregate your TIF
files, depending on the date passed into your process. After all of the files have been collected, they will
be sequentially run through a markup process that will tag the documents with the text provided:

<target name=”run” description=”Run the application.”>
<java classname=”book.WorkFlow” fork=”true” failonerror=”true”>

<classpath>
<pathelement location=”${run.dir}”/>

</classpath>
</java>

</target>

The WorkFlow application employs the Ant library DirectoryScanner to determine which files will be
marked, and all files collected will be marked up using Sun’s Java Image I/O APIs:

package book;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import javax.imageio.ImageIO;
import javax.imageio.stream.ImageOutputStream;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.tools.ant.DirectoryScanner;
import org.apache.tools.ant.types.Parameter;
import org.apache.tools.ant.types.selectors.BaseSelector;

90

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 90

import org.apache.tools.ant.types.selectors.DateSelector;
import com.sun.media.imageio.plugins.tiff.TIFFImageWriteParam;

public class WorkFlow {

private static Log log = LogFactory.getLog(WorkFlow.class);
private String workfilePath = “c://java_1.5_book/ant”;

public synchronized void processDocument(String s) {

// perform timing tests
long start = System.currentTimeMillis();

log.info(“[WorkFlow:processDocument()] “);

if (s.length() <= 0) {
String date = new Date().toString();
log.info(“date = “ + date);
SimpleDateFormat sdfLog = new SimpleDateFormat(“MM/dd/yyyy HH:mm aa”);

log.info(“formatted date = “ + sdfLog.format(new Date()));
s = sdfLog.format(new Date());

}
log.info(“passing date: “ + s);

The string variable that is passed into the processDocument method represents the date that will be
used to collect the image documents. If an empty value is passed, then the current date will be used.
Now pass that date along to the createWorkFiles method, which returns a String array of all of the
files to be processed.

The String array returned from createWorkFiles is propagated to the documentsToProcess
method that might perform checks on the individual files to ensure that bad files are not passed along
for marking:

List list = documentsToProcess(createWorkFiles(s));
Iterator it = list.iterator();

if (!list.isEmpty()) {
while (it.hasNext()) {

log.info(“[WorkFlow:processDocument] processing item:” + it.next());
}

} else {
log.info(“[WorkFlow:processDocument] list is NULL.”);

}

// finalize timing tests
long elapsedTimeMillis = System.currentTimeMillis()-start;
log.info(“Time (ms) :” + elapsedTimeMillis + “ ms”);
log.info(“Time (secs):” + (elapsedTimeMillis/1000F) + “ secs”);

}

91

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 91

The markImage method receives three parameters, which represent an input and output file as well as a
String markup that will be pasted on the top and bottom of the document being processed:

public void markImage(String inFile, String outFile, String marking) {

try {

BufferedImage image = ImageIO.read(new File(inFile));

Graphics graphics = image.getGraphics();
graphics.setColor(Color.black);
graphics.setFont(new Font(“Arial”, Font.BOLD | Font.ITALIC, 60));

graphics.drawString(marking, (image.getWidth()*4/10) , (image.getHeight() –
(image.getHeight()/20)));

graphics.drawString(marking, (image.getWidth()*4/10) , image.getHeight()/20);
// save modified image

String format = “tiff”;

// Create Image
IIOImage iioImage = new javax.imageio.IIOImage(image, null, null);

// Get TIFF Writer
Iterator writers = ImageIO.getImageWritersByFormatName(“tiff”);
ImageWriter writer = (ImageWriter)writers.next();

// Set WriteParam’s
TIFFImageWriteParam writeParam =

(TIFFImageWriteParam)writer.getDefaultWriteParam();
writeParam.setCompressionMode(ImageWriteParam.MODE_EXPLICIT);
writeParam.setCompressionType(“CCITT T.6”);

// Create File to save the image
File f = new File(outFile);
if (!f.exists()) f.createNewFile();
ImageOutputStream ios = createImageOutputStream(f);
writer.setOutput(ios);

// Save the image
writer.write(null, iioImage, writeParam);
ios.close();

} catch (IOException e) {
log.error(“FILE FAILED:” + inFile);

}
}

The createWorkFiles method receives a date value in string form to be used by the DateSelector
object to collect files with *.TIF extensions that were created after the date specified for markup pro-
cessing. Once the workfilePath directory has been scanned for those files adhering to the data con-
straints established and stored in a String array, that object will be passed back to the calling method in
processDocument:

92

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 92

public String[] createWorkFiles(String date) {
log.info(“[WorkFlow:createWorkFiles()] “);
DateSelector selector = new DateSelector();

Parameter param = new Parameter();
param.setName(DateSelector.WHEN_KEY);
param.setValue(“after”);

// test date = “01/01/2004 23:15 PM”;
selector.setParameters(new Parameter[]{param});
selector.setDatetime(date);

DirectoryScanner ds = new DirectoryScanner();
ds.setBasedir(workfilePath);
ds.setIncludes(new String[]{“*.TIF”});
ds.setSelectors(new BaseSelector[]{selector});
ds.scan();
return ds.getIncludedFiles();

}

The documentsToProcess method can be omitted if the checks are not going to be performed on the
artifacts collected. The method itself just parses through the String array of filenames collected using
the Ant library DateSelector:

public List documentsToProcess(String[] s) {
List docList = new ArrayList();

for (int i=0; i < s.length; i++) {
log.info(“s[“ + i + “]= “ + s[i]);
// not shown, but could perform checks to ensure
// that improper files are not propagated forward
docList.add(s[i]);

}
return docList;

}

// test
public static void main(String[] args) {

WorkFlow testWorkFlow = new WorkFlow();
String date = “”;
String[] s = testWorkFlow.createWorkFiles(date);
if (s.length > 0) {

log.info(“s.length = “ + s.length);
} else {

log.info(“Files NOT found.”);
}

testWorkFlow.processDocument(date);

String workfilePath = “c://java_1.5_book/ant”;
testWorkFlow.markImage(workfilePath + File.separatorChar + “test.TIF”,

workfilePath + File.separatorChar + “tests.TIF”,

93

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 93

“Test”);
}

}

Scenario 3
Scenario 3 addresses the creation of executable JAR files for a sample GUI application called
BookAuthorSearch. Notice the following <manifest> tag that specifies the application’s main class
name. This is provided so that the create JAR file can be clicked and the application will be run auto-
matically:

<project name=”test” default=”all” >

<target name=”init” description=”initialize the properties.”>
<tstamp/>
<property name=”build” value=”./build” />

</target>

<target name=”clean” depends=”init” description=”clean up the output
directories.”>

<delete dir=”${build}” />
</target>

<target name=”prepare” depends=”init” description=”prepare the output
directory.”>

<mkdir dir=”${build}” />
</target>

<target name=”compile” depends=”prepare” description=”compile the Java
source.”>

<javac srcdir=”./src/book” destdir=”${build}”>
</javac>

</target>

<target name=”package” depends=”compile” description=”package the Java classes
into a jar.”>

<jar destfile=”${build}/BookAuthorSearch.jar” basedir=”${build}”>
<manifest>

<attribute name=”Main-Class” value=”book.BookAuthorSearch” />
</manifest>

</jar>
</target>

The last target, run, is used to invoke the BookAuthorSearch JAR file for execution. The JAR file is an
important feature that allows Java applications to be easily packaged for deployment:

<target name=”run” description=”Run the application.”>
<classpath>

<pathelement location=” BookAuthorSearch.jar “/>
</classpath>

</java>
</target>

94

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 94

<target name=”all” depends=”clean,package” description=”Compile and package.”/>

</project>

With tightened schedules, smaller development teams, and remote development operations, it is
paramount for projects to employ Ant so that important processes can be captured and implemented in
an easy manner by anyone. Consistent process operations ensure that builds are not corrupted and
development and deployment activities can go forward in a less painful way than those programs that
operate in an ad hoc fashion.

Maven
Maven is a build tool that allows users to build a project using its Project Object Model (POM) and Ant
build files to perform uniform build activities. Maven is integrated with Gump to help projects maintain
backward compatibility, and it utilizes a project descriptor, project.xml, to dictate how your project
will be built.

Some of the elements of a project descriptor can include the following.

Element Description

Extend Specifies the location of the parent project if it exists

PomVersion The current version of the project descriptor

Id The short name of the project

Name The full name of the project

GroupId The short name of the project group

CurrentVersion The current version of the project

Organization The organization that owns the project

InceptionYear The year of the project’s start (specified with four digits)

Package The Java package name of the project

Logo The URL to the project’s logo image

GumpRepositoryId (Optional) The Id of the Gump repository

Description (Optional) A detailed description of the project

ShortDescription A brief description of a project

url The homepage’s URL

IssueTrackingUrl (Optional) URL of issue tracking system

SiteAddress (Optional) Web server directory where project resides

SiteDirectory (Optional) The public site directory

DistributionSite (Optional) The site where public distributions reside

Table continued on following page

95

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 95

Element Description

Repository Source configuration management repository information

Versions (Optional) Contains information on previous version releases

Branches (Optional) Contains information on previous project branches

mailingLists Contains mailing lists for project

Developers Describes the committers to a project

Contributors Describes contributors to a project

Licenses Describes licenses for a project

Dependencies Describes the dependencies of a project

Build Describes the environment of a project

Reports Describes the reports that should be included with distribution

Properties Project properties that will be used

For the sake of brevity, this example will not include many of the project elements described above. As
shown in the Ant example previously, consistency across your builds is a important goal for develop-
ment operations. Maven will allow you to satisfy your build and deployment goals, like Ant, but with a
different technique. This scenario will give you a small taste on how to implement Maven to automate
your build activities (see Figure 2-6).

Figure 2-6

When you run this example, the target sequence will be war:init, war:web-app, followed by war:war
when a user types in maven at the command line:

Developer

I need to automate my build processes for my web
applications so that I can hand it off to an operations person
and concentrate on my current task that is consuming most
of my time. How can I pull everything together to make my

life easier for deployments and ensure that builds are made
in a consistent fashion?

maven.xml

Maven

project.xml

file system:
- java
- web components
- tests

WAR / Tests

96

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 96

<!-- maven.xml ‡
<project default=”war”

xmlns:j=”jelly:core”
xmlns:m=”maven”
xmlns:deploy=”deploy”>

</project>

The project descriptor, project.xml, dictates all of the relevant elements that will be utilized for the
Web application build:

<!-- project.xml ‡
<?xml version=”1.0”?>
<project>

<pomVersion>1</pomVersion>
<id>maven-war-example</id>
<name>Maven Example</name>
<currentVersion>1.0</currentVersion>
<package>org.apache.maven.examples.war</package>

The <dependencies> tag indicates what libraries are needed for the application build to be successful.
The following example specifies dependencies with the log4j and servlet 2.3 libraries:

<dependencies>
<dependency>

<id>log4j</id>
<version>1.2.8</version>
<properties><war.bundle>true</war.bundle></properties>

</dependency>
<dependency>

<id>servletapi</id>
<version>2.3</version>

</dependency>
</dependencies>

The <build> tag indicates where the source and test code directories are on the file system for compila-
tion and testing by JUnit test scripts:

<build>
<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test/java</unitTestSourceDirectory>
<unitTest>

<resources><resource>
<directory>src/test/java</directory>
<includes><include>**/*</include></includes>
<excludes><exclude>**/*.java</exclude></excludes>

</resource></resources>
<includes>

<include>**/*Test.java</include>
</includes>

</unitTest>
</build>

</project>

97

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 97

You can generate a build script with countless operations to manipulate and package your applications
for deployment. The table below specifies a few for consideration in your build coverage.

Target Action

Maven clean Clean up directories

Maven Compile source code and build WAR file

Maven test Compile code and run tests on it

JUnit
Countless books have been written about JUnit and its numerous library extensions. Their usefulness in
testing applications does not need to be recounted, but it is important to remember, when developing
these tests with JUnit tools, to consider the objectives behind your testing coverage.

Ideally, your tests will exercise the constraints of your deployment system. This generally means that
valid/invalid inputs of application components (Textfield, RadioButton, and so forth) will be tested
as well as data points on your system. This testing needs to have a complementary problem-tracking
tool to support your iterative development practices and to ensure that problems have been recorded
and addressed in a timely fashion.

JUnit incorporates the XP philosophy of testing continuously so that problems do not manifest them-
selves in the latter stages of your development activities, which will bog down deployment schedules.

The scenario described here is an all too often occurrence that can be handled with the use of JUnit test
scripts that allow developers to better understand the current state of their code and where it needs to be
(see Figure 2-7).

Figure 2-7

Developer

I keep getting pestered about some code not working I
wrote several months ago and I have forgotten how it was
written because my current activites have consumed all of

my time and thinking. How can I quickly determine what the
code does and see if other developers who work on the

same CVS repository have not introduced those problems
to that code?

code + tests

Dev 1 Dev 12

JUnit

Test results

JUnit test
suite

Good Bad

98

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 98

The build.xml file runs two test scenarios, test1 and test2, after compiling the test code to ensure that
your source code has not been corrupted by modifications to that code. Ideally, you would want to cre-
ate a target in your build file to check out both the test and source code files from a common repository
to ensure that your tests are being performed on working code that is being implemented in your devel-
opment and deployments:

<?xml version=”1.0”?>

<project name=”junitTest” default=”test”>

<target name=”init”>
<property name=”test.dir” value=”.” />

</target>

<target name=”compile” depends=”init”>
<javac srcdir=”.” destdir=”.” classpath=”junit.jar” />

</target>

<target name=”test1” depends=”compile”>
<echo message=”Running JUnit tests (1).” />
<junit printsummary=”true”>
<!-- <formatter type=”plain” usefile=”false” /> -->
<formatter type=”xml” />
<test name=”TestScenarios1” />

<classpath>
<pathelement location=”.” />

</classpath>
</junit>
<junitreport todir=”.”>

<fileset dir=”.”>
<include name=”TEST-*.xml” />

</fileset>
<report format=”frames” todir=”.” />

</junitreport>
</target>

<target name=”test2” depends=”compile”>
<echo message=”Running JUnit tests (2).” />
<junit printsummary=”true”>
<!-- <formatter type=”plain” usefile=”false” /> -->
<formatter type=”xml” />
<test name=”TestScenarios2” />

<classpath>
<pathelement location=”$(testdir}” />

</classpath>
</junit>
<junitreport todir=”.”>

<fileset dir=”.”>
<include name=”TEST-*.xml” />

</fileset>
<report format=”frames” todir=”.” />

</junitreport>
</target>

</project>

99

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 99

The TestScenarios1 test script reads the meta data affiliated with the employees table in the
sample_project database and checks the attribute names of that table to ensure that someone has not
corrupted the table itself. Alternatively, tests can be performed on database connections and the data
that is stored in that table to ensure that bugs have not been introduced into the table:

import java.sql.*;
import java.util.*;
import junit.framework.TestCase;

public class TestScenarios1 extends TestCase {

private static final String DRIVER=”org.gjt.mm.mysql.Driver”;
private static final String URL=”jdbc:mysql://localhost/project-sample”;
private static final String USER=””;
private static final String PASSW=””;
private static final String QUERY=”Select * from employees”;

public DbTestCase(String name) {super(name);}
public void noTestCase() {}
public void testCase() {}
public void testCase(int arg) {}

void testCase1() {

try {

Class.forName(DRIVER);
// connect to the MySQL db
Connection conn = DriverManager.getConnection(URL, USER, PASS);
Statement stmt = conn.createStatement();
ResultSet rslt = stmt.executeQuery(QUERY);

// Get the resultset meta-data
ResultSetMetaData rmeta = rslt.getMetaData();

// Use meta-data to determine column #’s in each row
int numColumns = rmeta.getColumnCount();
String[] s = new String[numColumns];

for (int i=1; i < numColumns; i++) {
s[i] = rmeta.getColumnName(i);

}

// check to see if db columns are correct
assertTrue(s[1].equals(“employee-id”));
assertTrue(s[2].equals(“employee-name”));
assertTrue(s[3].equals(“employee-salary”));
assertTrue(s[4].equals(“position-desc”));
assertTrue(s[5].equals(“start-date”));
assertTrue(s[6].equals(“end-date”));
assertTrue(s[7].equals(“conditions-of-discharge”));

100

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 100

assertTrue(s[8].equals(“salary”));

// close connection
conn.close();

}
catch(Exception e) {}
}

}

When automated JUnit tests discover that code does not do what requirements prescribe, or indicate that
an error has been introduced into your build, developers can use these tests as a point of reference to
discover what is wrong with code and rectify it in a procedural manner. The alternative is to code and
fix on the fly without any process to ensure things have been rectified properly and hope that things
work out in the end, which is not a promising practice.

XDoclet
XDoclet is a wonderful tool that can be downloaded from the SourceForge Web site at http://
xdoclet.sourceforge.net/ to ensure that consistencies are realized with your development opera-
tions. XDoclet can be especially helpful on projects that involve disparate sets of developers who are
working from a common source code repository. Consider all the times you have halted your develop-
ment activities because someone forgot to add entries in the deployment descriptor and included the
code that refers to that entry or when the entry itself was delivered but the code was not checked in.
That can be particularly frustrating during final deployment migrations. XDoclet can alleviate those
occurrences because developers can embed their mapping in their code and build files can parse through
that code to generate the appropriate mappings needed for deployment. Additionally, extraneous map-
pings can be appended to the deployment descriptor (web.xml) by making entries in servlets.xml
and servlet-mappings.xml. This scenario appends JavaServer Page mappings to the deployment
descriptor through the servlets.xml file for browser visualization (see Figure 2-8).

Figure 2-8

Developer

I need to make updates to my database and my web
applications that access data from the tables that need
modifications, but I’m afraid it may mean so much work

that my schedule will slip. What tools can I use to
facilitate these activities?

Create database mapping files from Middlegen(*.hbm.xml)

Step 1

Step 2

XDoclet (Hibernate / Middlegen)

Create domain objects from database mapping files using
Hibernate extensions

Database

101

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 101

You can implement the following script to properly map your servlet and JSP entries in your deploy-
ment descriptor using the XDoclet libraries. Naturally, the first part of your script outlines the proper-
ties needed for file transfer, manipulation, and packaging:

<?xml version=”1.0” encoding=”UTF-8”?>

<project name=”XDoclet servlet/jsp” default=”build-war” basedir=”.”>

<description>XDoclet script generation for Servlets/JSPs</description>

<property name=”app.name” value=”resubmit”/>

<property name=”src.dir” location=”src”/>
<property name=”build.dir” location=”build”/>
<property name=”dist.dir” location=”dist”/>
<property name=”lib.dir” location=”lib”/>
<property name=”merge.dir” location=”mergeDir”/>
<property name=”generated.dir” location=”generated”/>
<property name=”web.deployment.dir” location=”${generated.dir}/webdeployment”/>

<property name=”xdoclet.lib.dir” location=”xdocletlib”/>

<path id=”compile.path”>
<fileset dir=”${lib.dir}” includes=”*.jar”/>

</path>

<path id=”xdoclet.lib.path”>
<fileset dir=”${lib.dir}” includes=”*.jar”/>

<fileset dir=”${xdoclet.lib.dir}” includes=”*.jar”/>
</path>

The clean target is typically used to clean up operations prior to operations so that a clean slate can be
worked on without having to worry about residual files corrupting processing activities. The target
block also creates new directories for file transfer and deployment once the previous directories have
been purged from the file system:

<target name=”clean”>
<delete dir=”${gen.src.dir}/org”/>
<delete dir=”${web.deployment.dir}”/>
<delete dir=”${build.dir}”/>
<delete dir=”${dist.dir}”/>
<delete dir=”${generated.dir}”/>
<mkdir dir=”${build.dir}” />
<mkdir dir=”${build.dir}/WEB-INF” />
<mkdir dir=”${build.dir}/WEB-INF/classes” />
<mkdir dir=”${build.dir}/WEB-INF/lib” />

</target>

The generate-web target implements the WebDocletTask libraries to parse the servlet source file to
strip the servlet’s mapping attributes. Once that has been performed, the Ant script copies the deploy-
ment descriptor to the /WEB-INF directory of the Web application and the JavaServer Pages to the Web
directory:

102

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 102

<target name=”generate-web”>
<taskdef name=”webdoclet” classname=”xdoclet.modules.web.WebDocletTask”

classpathref=”xdoclet.lib.path”/>
<webdoclet destdir=”${build.dir}/WEB-INF/classes” mergeDir=”${merge.dir}”>

<fileset dir=”${src.dir}”>
<include name=”**/*.java” />

</fileset>
<deploymentdescriptor destdir=”${web.deployment.dir}” distributable=”false”

/>
</webdoclet>
// copy files to appropriate directories
<copy todir=”${build.dir}/WEB-INF”>

<fileset dir=”${web.deployment.dir}”>
<include name=”**/*.xml” />

</fileset>
</copy>
<copy todir=”${build.dir}”>

<fileset dir=”${basedir}/web/jsp”>
<include name=”**/*.jsp” />

</fileset>
</copy>

</target>

The compile target is invoked from the build-clean target. This compiles the source code so that it
can be properly packaged for deployment:

<target name=”compile” depends=”generate-web”>
<javac destdir=”${build.dir}/WEB-INF/classes” classpathref=”xdoclet.lib.path”>

<src path=”${src.dir}”/>
</javac>

</target>

The package target creates a Web ARchive file (WAR) for distribution. Ideally, you could build a target
to deploy the WAR file to your application server’s Web container for execution:

<target name=”package” depends=”generate-web”>
<jar destfile=”${build.dir}/${app.name}.war” basedir=”${build.dir}”/>

</target>

<target name=”build-clean” depends=”clean,compile”/>
<target name=”build-war” depends=”build-clean,package”/>

</project>

The next scenario is common for many distributed system applications that use Hibernate as their
Object/Relational (O/R) tool to gain access to back-end data with domain objects (see Figure 2-9).

103

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 103

Figure 2-9

The DOCTYPE script uses XML entity references to include the test.xml fragment where the script
includes an &database reference. As in all of these scripts, property settings precede the targets’ entries
to ensure proper paths are specified prior to file manipulation and migration:

<?xml version=”1.0”?>
<!DOCTYPE project [

<!ENTITY database SYSTEM “file:./config/database/test.xml”>
]>
<project name=”Middlegen Hibernate” default=”all” basedir=”.”>

<property file=”${basedir}/test.properties”/>

<property name=”name” value=”test”/>
<property environment=”env”/>
<property name=”build.dir” value=”${basedir}/build”/>

<property name=”lib.dir” value=”${basedir}/lib”/>
<property name=”src.dir” value=”${basedir}/src”/>
<property name=”build.java.dir” value=”${build.dir}/java”/>
<property name=”build.gen-src.dir” value=”${build.dir}/gen-src”/>
<property name=”build.classes.dir” value=”${build.dir}/classes”/>

@web.servlet name="ControllerServlet:
@web.servlet-init-param name="id" value="id"
@web.servlet-mapping url-pattern="/ControllerServlet"

Servlet

XDoclet

<servlet>
 <servlet-name>ControllerServlet</servlet-name>
 <servlet-class>book.ControllerServlet</servlet-class>

 <init-param>
 <param-name>id</param-name>
 <param-value>id</param-value>
 </init-param>

</servlet>

<servlet-mapping>
 <servlet-name>ControllerServlet</servlet-name>
 <url-pattern>/ControllerServlet</url-pattern>
</servlet-mapping>

web.xml

<servlet>
 <servlet-name>form</servlet-name>
 <jsp-file>/ticketForm.jsp</jsp-file>
</servlet>

servlets.xml

servlet-mappings.xml

Additional mappings

Developer

I know I have to integrate my web applications with
the other team member’s components. How can I
ensure that my modifications to the deployment

descriptor (web.xml) properly migrate for deployment
without stepping on other’s development activities?

104

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 104

&database;

<property name=”datasource.jndi.name” value=”${name}/datasource”/>

The path id element is created so that similar path-like structures can be used for one or more tasks.
The <path> element is placed at the same level as targets in your script, and they are referenced via their
id attribute:

<path id=”lib.class.path”>
<pathelement path=”${database.driver.classpath}”/>
<fileset dir=”${lib.dir}”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${basedir}/middlegen-lib”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${build.gen-src.dir}”>

<include name=”**/*.hbm.xml”/>
</fileset>

</path>

The middlegen target runs the Middlegen application that opens up a user-specified database and cre-
ates mappings of its tables. Table mappings contain *.hbm.xml extensions. Once these are created, then
the hbm2java target can run to generate *.java domain object files to access your database:

<target name=”middlegen” description=”Run Middlegen”>

<mkdir dir=”${build.gen-src.dir}”/>
<taskdef

name=”middlegen”
classname=”middlegen.MiddlegenTask”
classpathref=”lib.class.path”

/>

<middlegen
appname=”${name}”
prefsdir=”${src.dir}”
gui=”${gui}”
databaseurl=”${database.url}”
initialContextFactory=”${java.naming.factory.initial}”
providerURL=”${java.naming.provider.url}”
datasourceJNDIName=”${datasource.jndi.name}”
driver=”${database.driver}”
username=”${database.userid}”
password=”${database.password}”

schema=”${database.schema}”
catalog=”${database.catalog}”

>

<hibernate
destination=”${build.gen-src.dir}”

105

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 105

package=”${name}.hibernate”
genXDocletTags=”false”
genIntergratedCompositeKeys=”false”
javaTypeMapper=”middlegen.plugins.hibernate.HibernateJavaTypeMapper”

/>

</middlegen>

<mkdir dir=”${build.classes.dir}”/>
</target>

The hbm2java target determines where the database table mappings reside using the path id element
and then creates the hibernate mappings to be used to access the items in the tables of the targeted
database:

<path id=”project.class.path”>
<pathelement path=”${build.gen-src.dir}”/>
<pathelement path=”${build.gen-src.dir}/test/hibernate”/>
<fileset dir=”${build.gen-src.dir}/test/hibernate”>

<include name=”**/*.hbm.xml”/>
</fileset>
<fileset dir=”lib”>

<include name=”**/*.jar”/>
</fileset>

</path>

<!-- Hibernate mapping files -->
<fileset id=”hibernate.mapping.files” dir=”${build.gen-src.dir}/test/hibernate”>

<include name=”**/*.hbm.xml” />
</fileset>

<target name=”hbm2java” description=”Generate .java from .hbm files.”>

<pathconvert refid=”hibernate.mapping.files” property=”hibernate.mappings”
pathsep=” “/>

<java classname=”net.sf.hibernate.tool.hbm2java.CodeGenerator” fork=”true”>
<classpath refid=”project.class.path” />
<arg line=”--config=test.xml”/>
<arg line=”${hibernate.mappings}”/>

</java>
</target>

The test.xml file passed as a parameter to the CodeGenerator application specifies the renderer oper-
ations that will be performed during code generation. This code snippet tells you what is needed for a
basic rendering procedure:

<codegen>
<generate renderer=”net.sf.hibernate.tool.hbm2java.BasicRenderer”/>
<generate suffix=”Finder”

renderer=”net.sf.hibernate.tool.hbm2java.FinderRenderer”/>
</codegen>

106

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 106

The next target, compile-hibernate, performs Java compilation of the domain model objects that were
created by the mapping and conversion procedures:

<target name=”compile-hibernate” depends=”middlegen” description=”Compile
hibernate Business Domain Model”>

<javac
srcdir=”${build.gen-src.dir}”
destdir=”${build.classes.dir}”
classpathref=”lib.class.path”

>
<include name=”**/hibernate/**/*”/>

</javac>
</target>

<target name=”all” description=”Build everything” depends=”compile-hibernate”/>

<target name=”clean” description=”Clean all generated stuff”>
<delete dir=”${build.dir}”/>

</target>

</project>

JMeter
Software development typically is performed as a solitary endeavor until it is time to integrate with new
and existing components on your deployment system. Understanding how your applications will per-
form under real-life conditions is a legitimate concern for all software developers.

With the JMeter application available at http://jakarta.apache.org/jmeter/, you can generate
and manage user simulations for your applications using a robust GUI application console to collect per-
formance measurements. This is performed by adding ThreadGroups to your test plans to simulate
users and configuration elements that simulate and stimulate your applications (see Figure 2-10).

With enterprise development efforts, performance discovery cannot be performed early enough in your
development activities to determine what kind of loads your applications can handle alone and when
packaged with other applications targeted for deployment.

Rather than delving into a broad range of scenarios to demonstrate the load testing abilities of JMeter
and the wide range of testing protocols that can be applied, it would probably be more beneficial to
describe from a high-level view all of the different capabilities that the tool possesses that can facilitate
your development operations.

JMeter is comprised of six different components (Listeners, Config Elements, Assertions, Pre- and Post-
Processors, and Timers) to measure your application’s performance in your development space.

107

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 107

Figure 2-10

Listeners are conduits to data that is collected by the JMeter application during testing operations. Data
collections can either be saved off to files or shown in graphical representations like graphs and tables.

Config Elements are used by the JMeter application to perform disparate protocol requests to back-end
components like Web, database, and Lightweight Directory Access Protocol (LDAP) servers. TCP and
FTP requests can also be performed to test your system’s components.

Assertions can be implemented to discover problems with HTML tags and error strings that can be
introduced by testing activities.

Pre- and Post-Processor tests act a lot like servlet filters that can manipulate code prior to being run as
well as after. These components allow Web requests to be modified prior to being passed along for inter-
pretation. An example of this would be to translate an XML response to HTML during Web application
transactions.

By establishing test plans using ThreadGroups, users can manually craft simulations through the GUI
controls as well as generate capture and replay tests automatically by recording navigation flows using
JMeter’s Recording Controller.

The latest JMeter 2.0 release has introduced many new features, as shown in Figure 2-11, to load test the
functional behavior of your system and gather performance metrics so that your applications can be
deployed with some assurance that they can handle difficult user loads.

Developer

I’ve spent all my time developing this component.
I wish I knew how well it will work when it is

integrated with all of the pieces being assembled?
Will my component perform well when deployed?

Component 3

JMeter

Database

Emulate multiple users

Component 2

Component 1

group

group3group2

108

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 108

Figure 2-11

Summary
This chapter carried you from the abstract concepts of what it means to write quality software to the
concrete details of how software tools are used in Java development environments. Along the way, you
were provided information to give you a feel for what it is like to be a Java developer, including the fol-
lowing points:

❑ The principles of software quality by which developers live

❑ The habits that an effective software developer exhibits

Assertion
Results

Graph Full
Results

Graph
Results

Aggregate
Report

View Results
in Table Thread

Group

JMeter

*.xml

View Results
Tree

Mailer
Visualizer

Monitor
Results

User Defined
Variables

Login Config
Element

Single
Config

Element

HTTP Header
Manager

JDBC Database
Login Defaults

HTTP
Authorization

Manager

HTTP
Request
Defaults

HTTP Cookie
Manager

JDBC SQL Query
Defaults

Java Request
Defaults

JDBC Database
Connection Pool

Defaults

TCP
Sampler
ConfigLDAP

Request
Defaults

FTP Request
Defaults

Simple Data
Writer

Spine
Visualizer

Constant
Throughput

Timer

Gaussian
Random Timer

Constant
Timer

Uniform
Random Timer

Regular
Expression
Extractor

Save
Responses to

a File HTML
Parameter

Mask
HTTP User
Parameter
Modifiers

HTTP URL
Re-writing
Modifiers

HTML Link
Parser

User
Parameters

Counter

Result Status
Action Handler

Generate
Summary
Results

Response
Assertion

BeanShell
Assertion

Size
Assertion

XML
Assertion

Duration
Assertion

HTML
Assertion

MD5Hex
Assertion

Listeners

Timer

Post Processors Pre Processors

Assertions

Config
Element

109

Tools and Techniques for Developing Java Solutions

05_574868 ch02.qxd 12/21/04 5:51 PM Page 109

❑ A few of the methodologies that software developers use

❑ How and why to use many of the tools found in Java development environments

Chapter 3 continues the brief aside into thinking like a professional Java developer by discussing design
patterns, which provide an intellectual repository from which you can learn to avoid common problems
that face many Java developers, as well as how the developers of the Java programming language solved
many of their issues.

110

Chapter 2

05_574868 ch02.qxd 12/21/04 5:51 PM Page 110

Exploiting Patterns in Java

In Chapter 2, you learned about half of “thinking like a Java developer” when I discussed software
development methodologies. This chapter handles the other half — the use of patterns to make
you an effective Java developer.

This is not a patterns book. This chapter is included because patterns are critical to understanding
and communicating the designs of application programming interfaces, tools, and other applica-
tions. This is because the vast majority of these technologies are built on top of design patterns.

If I had to pick one aspect of software engineering that I absolutely love, hands down, it would be
software design. Designing software well is challenging and it requires a combination of creativity
and problem-solving skills. The experience of creating a solution in software can be very reward-
ing. If you are just becoming familiar with the Java programming language, software design can
be a little overwhelming. It’s like a blank canvas with a lot of colors from which to choose. Design
decisions are difficult to make because — without experience — it is difficult to understand how
the choices you make will affect the application later.

Learning design patterns is the single best way to increase your abilities as a software engineer.
Technology changes very quickly. To give things a little perspective, learning a new technology is
like reading a good book; learning patterns is like learning to read.

The focus of this chapter is to communicate why design patterns are important and highlight com-
monly occurring patterns. Hopefully, if you haven’t been turned on to patterns already, this chap-
ter will give you some reasons to pursue them.

There are plenty of patterns books. I feel these three represent some of the best work written on the
subject: Refactoring: Improving the design of Existing Code by Martin Fowler; Design Patterns:
Elements of Reusable Objected-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides; and Applying UML and Patterns: An Introduction to Objected-
Oriented Analysis and Design and the Unified Process by Craig Larman.

06_574868 ch03.qxd 12/21/04 5:52 PM Page 111

This chapter will provide you with a strong definition of a pattern, an understanding of why patterns
are important, tricks to understanding a pattern, and an explanation of important Java patterns. This
chapter is divided into three main sections. The first section will discuss the rationale behind learning
patterns and some examples of where they are used in software design. The second section, building
patterns from design principles, will walk you through a series of exercises that show how to form pat-
terns from basic design principles. Finally, the important patterns section will walk you through code
examples of a subset of well-known design patterns.

Why Patterns Are Important
One of my father’s favorite quotes was, “Experience is a good teacher, but a fool will learn from no
other.” In software, experience is a good teacher, but lessons learned from experienced designers can
help accelerate your design skills. A pattern is a documented lesson learned.

A pattern is a proven solution to a software problem enabling reuse of software at the design level. The
purpose of a pattern is to conceptually pair a problem with its design solution and then apply the solution
to similar problems. Code level reuse of software is desirable, but design level reuse is far more flexible.

With each application you work on, none of them will be the same. There will be similarities. Being able
to recognize these similarities, combined with your knowledge of design patterns, will help bring confi-
dence to the design decisions you make.

Patterns are one of the greatest resources you will have in the design of object-oriented software. They
will definitely help you to master the Java programming language, be more productive, and develop
effective Java solutions.

Keys to Understanding the Java Programming Language
Patterns help you understand the Java programming language. Compared to other programming lan-
guages, Java has a steep learning curve. It’s not that Java is harder to learn than other languages. Just the
opposite, it has a very clean syntax and its structure is similar to other OO languages.

The language becomes difficult once you confront the vast number of APIs available to the Java pro-
grammer. The number of APIs available is a very good thing. Each API should be viewed as a tool in the
toolbox for solving problems.

Leveraging existing software is a core practice in thinking like a professional Java developer. This allows
you to save time and be more productive. The collection of APIs provided in the 1.5 JDK, as well as
countless open source projects, represent what you don’t have to build from scratch.

This book examines several APIs such as Collections, Java2D, JMX, XML, EJB, JMS, JDBC, RMI, and Web
Service. The list is pretty long, but it only scratches the surface on the number of APIs available. The
truth is you cannot sit down and learn them all. Thankfully, there is no reason to learn them all. This is
why design patterns are so important to learning Java.

Design patterns allow you to learn a new API quickly. If you understand the patterns used in an API,
then you will be able to quickly understand, evaluate, and potentially integrate that code into your solu-
tion. It is much easier to learn and build on top of existing API’s than it is to reinvent the wheel and start
from nothing.

112

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 112

This is especially true when working with the J2EE framework. If you are working on a project and hear
that a decision has been made to ignore the distributed transaction processing capabilities of a J2EE
application server in favor of a homegrown solution, run and don’t look back. As a Java developer, you
learn as much as you can and only build what you need.

J2EE is a standards-based solution. One misconception about the J2EE framework is that it is considered
a product. J2EE is not a product. It is a specification that Sun published as a set of documents describing
how a Web and EJB containers must behave. Then software vendors implement the specs and sell their
products as part of a standards-based solution. This is important because the folks at Sun are pattern
savvy. The APIs are all based on patterns. This is very good news for you and an excellent reason to gain
a strong understanding of design patterns. If you do, you will be able to understand and leverage any-
thing Sun throws your way.

Keys to Understanding Tools Used in Java Development
In addition to the wealth of APIs available to Java developers, there is also a large number of develop-
ment tools for improving the software development process. A few tools are ANT, JUnit, and XDoclet.
These tools offer extension points for integration as well as good working examples of the power of
design patterns.

ANT
ANT is an XML-based build tool with several uses. One of the uses is to automate the building of a soft-
ware project. It can also do the work of most scripting languages without being OS dependent. It’s built
using a combination of several design patterns.

JUnit
JUnit is a unit-testing framework. Establishing automated unit tests is an excellent way to prove code
changes so as to prevent introducing new bugs into your software. To use JUnit, you must extend the
framework. By understanding the patterns JUnit is built on, you will be able to take advantage of auto-
mated unit testing.

XDoclet
XDoclet is a code-generating framework. It allows you to imbed meta data in the comments of your
code. The meta data is used to generate supporting code as well as XML descriptor files. XDoclet makes
it easy to sync derived software artifacts common when developing EJBs, Servlets, and persistent data
objects such as hibernate and JDO.

There are numerous other tools available to the Java developer. Understanding the patterns these tools
are built on takes some of the magic out of how they work. By understanding design patterns you will
be able to use and extend these tools to build better software.

Keys to Developing Effective Java Solutions
Patterns help you build effective solutions using Java. Patterns help you communicate design concepts
as well as gain an appreciative knowledge of underlying design principles.

113

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 113

Develop Common Design Vocabulary
There is a lot of value in the pattern name. The name provides a common vocabulary for software engi-
neers to use to communicate. The patterns in this book are taken from the widely accepted GoF.

For example, say you need two to parts of a system to communicate even though they expect different
interfaces. Use the Adapter pattern. If you have a situation where several algorithms will solve the same
problem, use the Strategy pattern. This chapter goes into those two patterns, as well as several others, in
detail. The point of mentioning them now is to show the value in understanding patterns.

Understand the Fundamentals of Design
This reason for learning patterns is near and dear to me. Initially, after being introduced to the concepts
of object-oriented programming, I failed to see the relevance of the object-oriented concepts. It seems like
more work with limited benefits. It wasn’t until I was exposed to design patterns that I started to gain a
real appreciation for the power of the OO concepts.

Patterns will help you fully understand fundamental design principles. Understanding the fundamen-
tals of software design is critical to becoming a confident software designer. Patterns provide a concrete
example of how to apply various design principles. Essentially, design is about making decisions.
Knowing which decisions lead to good software design, and which lead to problems in the future,
makes all the difference in building effective solutions.

Design decisions center on identifying the pieces of your software system and how they will work
together to accomplish your objective. Good design is the result of the lessons learned often from living
through a bad design nightmare.

Abstraction, polymorphism, and inheritance are the three principal concepts of object-oriented design,
Abstraction is the practice of modeling the relevant aspects of real-world concepts. Polymorphism is
type substitution allowing one class to take the place of another. Inheritance is the practice of creating
specialization and generalization relationships between classes.

Some design criteria to consider when building a Java solution include:

❑ Protected Variations. This means that you need to isolate volatility in your application. If you
feel an application component could change, then take steps to segregate that component using
interfaces. Interfaces will allow you to change the implementing class without affecting existing
application dependencies.

❑ Low Coupling. The purpose of this design concept is to ensure that changes made in one sec-
tion of code don’t adversely affect another unrelated section. For example, does a user interface
change require a change to the database? If so, the application could be brittle where any small
change propagates throughout the software system.

❑ High Cohesion. The practice of tying closely related things together tightly.

This is important to understanding design patterns because each pattern is the application of one or
more design principles. Once you understand abstraction, polymorphism, and inheritance, it is easier to
understand how patterns can reduce the complexity of software design.

Software design goals are important, but there is a large gap between goals and real implementations.
Patterns bridge this gap and realize these goals; nothing teaches like a good example. The next section
discusses some foundation on how to get started with patterns.

114

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 114

Building Patterns with Design Principles
At the core of any pattern is a collection of design principles. This section looks at a simple and uncon-
ventional approach to building patterns from the ground up. The approach is to start with a simple
design and gradually make changes so that the design is more flexible. Each design change becomes a
step in building more complex design patterns. By following the exercises in this section, it will be clear
how applying design principles makes software more flexible. This allows the reader to understand the
mechanics behind patterns a small piece at a time.

This section starts off with the design of a single class. From this single class design an association is
added, followed by an interface. These two steps add flexibility to the single class design. Understanding
this flexibility has important ramifications for understanding design patterns. The final section shows an
example of merging the concepts of association and inheritance, which is common in a number of design
patterns.

Designing a Single Class
A single class doesn’t constitute a design pattern, but it is a design. And there is nothing wrong with
simplicity. Part of the design process is assigning responsibility to an object, as in Figure 3-1.

Figure 3-1

It is very common for a class to become bloated with several methods not related to the abstraction the
class represents. This can cause dependency problems down the line and does not fit with the high cohe-
sion design principle. In this example, the Teacher class contains several methods related to teacher
responsibilities. The solution is to push to the right or delegate the methods that do not belong with the
abstraction. The phrase “do not belong” is subjective. Any design decision could be wrong. As long as
you justify it with sound OO principles, don’t worry — you can always change it later when the problem
is clearer.

Creating an Association between Classes
All the teacher responsibilities have been delegated to a class called TeacherResponsibilities. Again
visualize the methods being pushed to the right. Figure 3-2 shows how responsibility has been delegated
through an association.

+getName()
+getSSN()
+teachClass()
+takeAttendance()
+proctorTest()
+gradePaper()
+reportGrades()

-name

Teacher

115

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 115

Figure 3-2

For the TeacherResponsibilities class to do work on behalf of the Teacher class, an association has
to be created. The Teacher object holds a reference to the TeacherResponsibilities.

There are basically three ways this can happens:

1. The TeacherResponsibilities object is passed to the Teacher object as a parameter.

Teacher teacher = new Teacher(“Heather”);
TeacherResponsibilities responsibilities= new TeacherResponsibilities ();
teacher.setResponsibilities (responsibilities);

2. The Teacher object creates the TeacherResponsibilities object.

public class Teacher {

private TeacherResponsibilities responsibilities = new TeacherResponsibilites();

}

3. The TeacherResponsibilites object is passed back from a method call.

public class Teacher {
public Teacher() {

Administration admin = new Administration();
responsibilities = admin.getResponsibilites();

}
}

These three methods determine the visibility an object shares with another in making up an association.
The design might be done, but there is another design principle to address: loose-coupling. In specifying
an association, a tight dependency between the Teacher and the TeacherResponsibilites classes
has been created. The relationship is restricted to the Teacher and the TeacherResponsibilites
types. That would be fine, except that it may be felt that the responsibilities will change over time. How
do you loosen the relationship and address this volatility? The answer is to push up an interface.

+getName()
+getSSN()

-name

Teacher
+teachClass()
+takeAttendance()
+proctorTest()
+gradePaper()
+reportGrades()

TeacherResponsibilites

116

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 116

Creating an Interface
An interface is a software contract between classes. By using the interface, the current class is allowed to
provide the implementation. If in the future the implementation changes, you can replace the current
class with a new class. Since the Teacher class only depends on the Responsibilities interface, the
Teacher class will not need to be modified. The UML for this design is shown in Figure 3-3.

Figure 3-3

In the next section, we will combine delegation and inheritance, the concepts of the previous two sec-
tions, to create powerful object structures. An inheritance loop combines the pluggable functionality of
inheritance with the separation of concerns gained with an association.

Creating an Inheritance Loop
By relating two classes with both an association and an inheritance, it is possible to create trees and
graphs. Think of this as reaching up the class hierarchy. The inheritance relationship causes the nodes in
the object structure to be polymorphic. In the example shown in Figure 3-4, a WorkFriends group can
be manipulated using the same interface declared by the Person class. Another common example
would be how files and folders on a file system have similar behavior. They both use common function-
ality such as copy, delete, and more.

Figure 3-4 shows the resulting class and object view of an inheritance loop. This is a common structure
used in many design patterns including composition.

Just a word of warning, each artifact you add to the design is one more thing to man-
age. Interfaces are great when establishing dependencies across components to iso-
late volatility, but they are not needed everywhere.

Teacher

Current

+teachClass()
+takeTest()
+gradePaper()

«interface»
Responsibilites

117

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 117

Figure 3-4

I refer to an inheritance loop as reaching up the hierarchy, as depicted in Figure 3-4. By reaching up the
hierarchy, you create a relationship known as reverse containment. By holding a collection of a superclass
from one of its subclasses it is possible to manipulate different subtypes as well as collections with the
same interface.

Figure 3-5 shows one subtle change to the example in Figure 3-4. By changing the cardinality of the
association between the super- and subtypes to many-to-many, it is possible to represent graphs as
well as trees.

Figure 3-5

Finally, Figure 3-6 adds subtype relationships to the inheritance loop, allowing the representation of a
complex data structure with methods that can be invoked with a polymorphic interface.

We have also created a common interface for each responsibility allowing us to add new responsibilities
with limited impact to the application.

The purpose of this section was to learn tricks to understanding patterns. By creating associations and
using inheritance, you have been able to build some complex designs from these principles. You learned
to apply these principles by remembering simple actions: push to the right, push up, and reach up.
Learning these tricks will help you understand the well-known patterns in the next section.

Person

people : Person

*

*

Claire : Person

people : Person

people : Person

Gary : Person

people : Person

Isabel : Person

people : Person

Fem : Person

Person

Group

people : Person

0..*

1

Friends:Group

Chad

Clay Donnie

Kathy WorkFriends:Group

118

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 118

Figure 3-6

Important Java Patterns
The next section will show examples of very important and well-known patterns. By learning each of
these patterns, you will develop your pattern vocabulary and add to your software design toolbox. Each
pattern discussed below includes a description of the problem the pattern solves, the underlying princi-
ples of design at work in the pattern, and the classes that make up the pattern and how they work
together.

This section will highlight a few well-known patterns. The focus of this section is not to describe pat-
terns in a traditional sense, but instead to provide code and concrete examples to demonstrate the types
of problems that each pattern can solve. All the patterns discussed in this section are well known and
oft-adapted GoF patterns.

The patterns in this section include Adapter, Model-View-Controller, Command, Strategy, and
Composite.

What is important to take away from the discussion of each pattern is how the classes that make up
the pattern work together to solve a specific problem. Each pattern will be discussed with a text descrip-
tion and a diagram showing the pattern as well as the example classes fulfilling their corresponding
pattern role.

Adapter
An Adapter allows components with incompatible interfaces to communicate. The Adapter pattern is a
great example of how to use object-oriented design concepts. For one reason, it’s very straightforward.
At the same time, it’s an excellent example of three important design principles: delegation, inheritance,
and abstraction. Figure 3-7 shows the class structure of the Adapter pattern as well as the example
classes used in this example.

Teacher

GradePaper

+perform()

-name
-responsibilities

1..*

-

-

*

-

1

-

1

+getName()
+getSSN()

«interface»
Responsibility

DailyResponsibilitiesTakeAttendance

119

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 119

Figure 3-7

The Adapter Pattern Is a Collaboration of Four Classes
The four classes that make up the Adapter pattern are the Target, Client, Adaptee, and Adapter. Again, the
problem the Adapter pattern is good at solving is incompatible interfaces. In this example, the adaptee
class does not implement the target interface. The solution will be to implement an intermediary class,
an Adapter, that will implement the target interface on behalf of the Adaptee. Using polymorphism, the
client can use either the Target interface or the Adapter class with little concern over which is which.

Target
Start off with the Target interface. The Target interface describes the behavior that your object needs to
exhibit. It is possible in some cases to just implement the Target interface on the object. In some cases it is
not. For example, the interface could have several methods, but you need custom behavior for only one.
The java.awt package provides a Window adapter for just this purpose. Another example might be
that the object you want to adapt, called the Adaptee, is vendor or legacy code that you cannot modify:

package wrox.pattern.adapter;

public interface Tricks {

public void walk();
public void run();
public void fetch();

}

Client
Next, look at the Client code using this interface. This is a simple exercise of the methods in the interface.
The compete() method is dependent on the Tricks interface. You could modify it to support the
Adaptee interface, but that would increase the complexity of the Client code. You would rather leave the
Client code unmodified and make the Adaptee class work with the Tricks interface:

public class DogShow {

public void compete(Tricks target){
target.run();
target.walk();
target.fetch();

}
}

«interface»
Target

attribute1 : Adaptee

+operation()

Client

Adapter

+compete(in Parameter1 : Tricks)

DogShow

dog : OldDog

Class1 OldDog
Adaptee

«interface»
Tricks

+fetch()
+run()
+walk()

120

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 120

Adaptee
Now the Adaptee is the code that you need to use, but it must exhibit the Tricks interface without
implementing it directly:

package wrox.pattern.adapter;

public class OldDog {
String name;

public OldDog(String name) {
this.name= name;

}
public void walk() {

System.out.println(“walking..”);
}
public void sleep() {

System.out.println(“sleeping..”);
}

}

Adapter
As you can see from the OldDog class, it does not implement any of the methods in the Tricks interface.
The next code passes the OldDog class to the Adapter, which does implement the Tricks interface:

package wrox.pattern.adapter;

public class OldDogTricksAdapter implements Tricks {
private OldDog adaptee;

public OldDogTricksAdapter(OldDog adaptee) {
this.adaptee= adaptee;

}
public void walk() {

System.out.println(“this dog can walk.”);
adaptee.walk();

}
public void run() {

System.out.println(“this dog doesn’t run.”);
adaptee.sleep();

}
public void fetch() {

System.out.println(“this dog doesn’t fetch.”);
adaptee.sleep();

}
}

The Adapter can be used anywhere that the Tricks interface can be used. By passing the
OldDogTricksAdapter to the DogShow class, you are able to take advantage of all the code written for
the Tricks interface as well as use the OldDog class unmodified.

121

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 121

The next section looks at how to establish the associations and run the example:

package wrox.pattern.adapter;

public class DogShow {
//methods omitted.

public static void main(String[] args) {

OldDog adaptee = new OldDog(“cogswell”);
OldDogTricksAdapter adapter = new OldDogTricksAdapter(adaptee);
DogShow client = new DogShow();
client.compete(adapter);

}
}

Model-View-Controller
The purpose of the Model-View-Controller pattern is to separate your User Interface Logic from your
business logic. By doing this it is possible to reuse the business logic and prevent changes in the interface
from affecting the business logic. MVC, also known as Model-2, is used extensively in Web develop-
ment. For that reason, Chapter 8, “Developing Web Applications Using the Model 2 Architecture,” is
focused completely on this subject. You can also learn more about developing Swing clients in Chapter 4,
“Effective User Interfaces with JFC.” Figure 3-8 shows the class structure of the Model-View-Controller
pattern along with the classes implementing the pattern in this example.

Figure 3-8

This pattern example will be a simple swing application. The application functionality will implement
the basic login functionality. More important than the functionality is the separation of design principles
that allow the model (data), controller (action), and the view (swing form) to be loosely coupled
together.

+businessMethod()

ModelController

+login()
+addListener()

-propertyChangeSupport

ModelLoginAction

+performAction()

JWorkPanel

-CommandButton

PropertyChangeListener

JCenterPanel

-loginField
-passwordField

View

122

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 122

Model-View-Controller is actually more than a simple pattern. It is a separation of responsibilities com-
mon in application design. An application that supports the Model-View-Controller design principle
needs to be able to answer three questions. How does the application change the model? How are
changes to the model reflected in the view? How are the associations between the model, view, and con-
troller classes established? The next sections show how these scenarios are implemented in this example
using a swing application.

Scenario 1: Changing to the Model
Changes to the model are pushed from the outside in. The example uses Java swing to represent the
interface. The user presses a button. The button fires an event, which is received by the controlling
action. The action then changes the model (see Figure 3-9).

Figure 3-9

Scenario 2: Refreshing When the Model Changes
The second scenario assumes that the model has been updated by an action. The views might need to
know this information, but having the model call the view direction would break the MVC separation
principle requiring the model to have knowledge of the view. To overcome this, Java provides the
Observer Design pattern, allowing changes from the model to “bubble out” to the view components. All
views that depend on the model must register as a ChangeListener. Once registered, the views are
notified of changes to the model. The notification tells the view to pull the information it needs directly
from the model (see Figure 3-10).

Figure 3-10

Notify Listeners

Register Change

PropertyChangeListener

get relevant changes

Model View

User Button

action performed

press

Update Model

Action Model

123

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 123

Scenario 3: Initializing the Application
The third scenario shows how to initialize the action, model, and view objects and then establish depen-
dencies between the components (see Figure 3-11).

Figure 3-11

The views are registered with the model and the actions are registered with the views. The application
class coordinates this.

Having discussed the collaboration scenarios between the model, view, and controller components, the
next sections will delve into the internals of each component, starting with the model.

Model
The Model can be any Java object or objects that represent the underlying data of the application, often
referred to as the domain model. For this example, we will use a single Java object called Model.

The functionality of the Model in this example is to support a login function. In a real application, the
Model would encapsulate data resources such as a relational database or directory service:

package wrox.pattern.mvc;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;

public class Model {

The first thing of interest in the Model is the PropertyChangeSupport member variable. This is part of
the Event Delegation Model (EDM) available since JDK 1.1. The EDM is an event publisher-subscriber
mechanism. It allows views to register with the Model and receive notification of changes to the
Model’s state:

create

NotificationListener

ModelApplication ViewAction

create

create

register NotificationListeners

Register Actions

124

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 124

private PropertyChangeSupport changeSupport= new PropertyChangeSupport(this);
private boolean loginStatus;
private String login;
private String password;
public Model() {

loginStatus= false;
}
public void setLogin(String login) {

this.login= login;
}
public void getPassword(String password) {

this.password= password;
}
public boolean getLoginStatus() {

return loginStatus;
}

Notice that the setLoginStatus() method fires a property change:

public void setLoginStatus(boolean status) {
boolean old= this.loginStatus;
this.loginStatus= status;
changeSupport.firePropertyChange(“model.loginStatus”, old, status);

}

public void login(String login, String password) {
if (getLoginStatus()) {

setLoginStatus(false);
} else {

setLoginStatus(true);
}

}

This addPropertyChangeListener() is the method that allows each of the views interested in the
model to register and receive events:

public void addPropertyChangeListener(PropertyChangeListener listener) {
changeSupport.addPropertyChangeListener(listener);

}
}

Notice that there are no references to any user interface components from within the Model. This ensures
that the views can be changed without affecting the operations of the model. It’s also possible to build a
second interface. For example, you could create an API using Web services to allow automated remote
login capability.

View
The view component of the application will consist of a swing interface. Figure 3-12 shows what the user
will see when the application is run.

There are two JPanel components that make up the user interface. The first is the CenterPanel class
that contains the login and password text boxes. The second is the WorkPanel that contains the login
and exit command buttons as well as the CenterPanel.

125

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 125

Figure 3-12

The CenterPanel is a typical user data entry form. It’s important to notice that there is no code to pro-
cess the login in this class. Its responsibility is strictly user interface:

package wrox.pattern.mvc;
import java.awt.GridLayout;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class CenterPanel extends JPanel {

private JTextField login= new JTextField(15);
private JTextField password= new JTextField(15);

public CenterPanel() {
setLayout(new GridLayout(2, 2));
add(new JLabel(“Login:”));
add(login);
add(new JLabel(“Password:”));
add(password);

}
public String getLogin() {

return login.getText();
}
public String getPassword() {

return password.getText();
}

}

The next user interface component, WorkPanel, contains CenterPanel. Notice that there are no refer-
ences to the WorkPanel from the CenterPanel. This is an example of composition, allowing the
CenterPanel to be switched out for another form, or viewed in a different frame:

package wrox.pattern.mvc;
import java.awt.BorderLayout;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import javax.swing.Action;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;

126

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 126

As you can see from the class declaration, the WorkPanel is a swing component. In addition, it also
implements the PropertyChangeListener interface. This allows the WorkPanel to register with the
application Model and have change Notifications published to it when the Model changes. The
WorkPanel is registered with the Model as a PropertyChangeListener. This provides low coupling
between the interface and domain logic, allowing the view to be changed with changes to the Model:

public class WorkPanel extends JPanel implements PropertyChangeListener {
private Model model;

private JPanel center;
private JPanel buttonPanel= new JPanel();
private JLabel loginStatusLabel= new JLabel(“ “);

public WorkPanel(JPanel center, Model model) {
this.center= center;
this.model= model;
init();

}
private void init() {

setLayout(new BorderLayout());
add(center, BorderLayout.CENTER);
add(buttonPanel, BorderLayout.SOUTH);
add(loginStatusLabel, BorderLayout.NORTH);

}

When the Model changes. The propertyChange() method is called for all classes that registered with
the Model:

public void propertyChange(PropertyChangeEvent evt) {
if (evt.getPropertyName().equals(“model.loginStatus”)) {

Boolean status= (Boolean)evt.getNewValue();
if (status.booleanValue()) {

loginStatusLabel.setText(“Login was successful”);
} else {

loginStatusLabel.setText(“Login Failed”);
}

}
}

The addButton() method allows you to do two things. First, you can configure any number of buttons.
Second, it provides the action classes. They specify the work each performs when the button is pressed.
The action represents the final part of the MVC pattern: the controller. The controller will be discussed in
the next section.

public void addButton(String name, Action action) {
JButton button= new JButton(name);
button.addActionListener(action);
buttonPanel.add(button);

}

}

127

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 127

Controller
The purpose of the controller is to serve as the gateway for making changes to the model. In this exam-
ple, the controller consists of two java.swing.Action classes. These Action classes are registered with
one or more graphical components via the components’ addActionListener() method. There are two
Action classes in this application. The first attempts to login with the Model. The second exits the
application:

package wrox.pattern.mvc;

import java.awt.event.ActionEvent;
import javax.swing.AbstractAction;

The LoginAction extends the AbstractionAction and overrides the actionPerformed() method.
The actionPerformed() method is called by the component, in this case the command button, when it
is pressed. The action is not limited to registration with a single user interface component. The benefit of
separating out the controller logic to a separate class is so that the action can be registered with menus,
hotkeys, and toolbars. This prevents the action logic from being duplicated for each UI component:

public class LoginAction extends AbstractAction {

private Model model;
private CenterPanel panel;

It is common for the controller to have visibility of both the Model and the relevant views; however, the
model cannot invoke the actions directly. Ensuring the separation of business and interface logic remains
intact:

public LoginAction(Model model, CenterPanel panel) {
this.model= model;
this.panel = panel;

}
public void actionPerformed(ActionEvent e) {
System.out.println(“Login Action: “+ panel.getLogin() +” “+ panel.getPassword()

);
model.login(panel.getLogin(), panel.getPassword());

}
}

The ExitAction strictly controls the behavior of the user interface. It displays a message when the Exit
button is pressed confirming that the application should close:

package wrox.pattern.mvc;
import java.awt.event.ActionEvent;
import javax.swing.AbstractAction;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
public class ExitAction extends AbstractAction {

public void actionPerformed(ActionEvent e) {

JFrame frame= new JFrame();
int response= JOptionPane.showConfirmDialog(frame,

“Exit Application?”,

128

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 128

“Exit”,JOptionPane.OK_CANCEL_OPTION);
if (JOptionPane.YES_OPTION == response) {

System.exit(0);
}

}
}

Finally, you can view the Application class. The Application class is responsible for initialization,
and it creates the associations that establish the MVC separation of logic design principles:

package wrox.pattern.mvc;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;

public class Application extends JFrame {
private Model model;

The Swing Application creates an association to the Model class, shown in the following code in the
application constructor:

public Application(Model model) {
this.model= model;

Then, create the Views to display the swing interface:

CenterPanel center= new CenterPanel();
WorkPanel work= new WorkPanel(center, model);

Create the Action classes that represent the controller and register them with the command buttons:

work.addButton(“login”, new LoginAction(model, center));
work.addButton(“exit”, new ExitAction());
model.addPropertyChangeListener(work);
setTitle(“MVC Pattern Application”);

Use Swing housekeeping to display the application:

getContentPane().add(work);
pack();
show();
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

}
public static void main(String[] args) {

Model model= new Model();
Application application= new Application(model);

}
}

129

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 129

The Model-View-Controller pattern is a combination of best practices in software design. It prompts a
separation of concern between the user interface and business layers of an application. This example
covered a number of design patterns: composition, action, and event publish-subscribe. The next pattern
is the Command pattern. The Command pattern provides a consistent means of handling user requests.

Command
The Command pattern provides a standard interface for handling user requests. Each request is encap-
sulated in an object called a Command. Figure 3-13 shows the classes involved in the Command pattern.

Figure 3-13

The three classes of the command pattern are the Command, CommandManager, and Invoker. The
Command class represents an encapsulation of a single behavior. Each behavior in an application, such as
save or delete, would be modeled as a command. In that way the behavior of an application is a collec-
tion of command objects. To add behavior to an application, all a developer needs to do is implement
additional command objects. The next component in the Command pattern is the CommandManager.
This class is responsible for providing access to the commands available to the application. The final
component is the Invoker. The Invoker is responsible for executing the command classes in a consis-
tent manner. The next section will look at the anatomy of the Command class.

Command
The first part of the Command pattern is the Command interface identified by a single method:

package wrox.pattern.command;

public interface Command {

public void execute();
}

The life cycle is different from calling a typical method. For example, if you need to pass in an object
parameter like the following method:

public void getTotal(Sale) {
//calculate the sale.

}

«interface»
Command

+execute()+add(in command)
+get(in name)

CommandManager

ConcreteCommand

«interface»
Command

Extended Command to
support more robust
request lifecycle

+execute()

«interface»
ManageLifecycle

+start()
+destroy()
+validate()
+getErrors()

DefaultCommand

ManagedCommand

+add()
+get(in name)

Pattern

Pattern example

CommandManager

130

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 130

As a command you would write the following:

public CalculateSale implements Command {
private Sale sale;

public void setSale(Sale sale) {
this.sale = sale;
}
public void execute() {
// calculate the sale.

}

For the purpose of the example, we will use an empty command to demonstrate the interaction between
the classes in this pattern:

package wrox.pattern.command;

public class DefaultCommand implements Command {

public void execute() {
System.out.println(“executing the default command”);

}
}

The next section will look at the class that manages the command for an application.

CommandManager
The CommandManager class will process all requests. Using a HashMap, all of the commands will be ini-
tialized before requests are processed, then retrieved by name. They are stored using the add()method,
and retrieved through the getCommand() method:

package wrox.pattern.command;
import java.util.HashMap;
import java.util.Map;
public class CommandManager {

private Map commands= new HashMap();

public void add(String name, Command command) {
commands.put(name, command);

}
public Command getCommand(String name) {

return (Command)commands.get(name);
}

}

Invoker
A standalone client will demonstrate the execution of the Command pattern. When the Client con-
structor is called it adds the DefaultCommand to the manager:

package wrox.pattern.command;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

131

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 131

public class Client {
private CommandManager manager= new CommandManager();

public Client() {
manager.add(“default”, new DefaultCommand());

}

Here, the command mapping has been hard coded. A more robust implementation would initialize the
command map from a resource file:

<commands>
<command name=”default” class=”wrox.Pattern.command.DefaultCommand” />

</commands>

Then, as requests are received by the invoke(String name) method, the command name is looked up
in the CommandManager and the Command object is returned:

public void invoke(String name) {
Command command= manager.getCommand(name);

command.execute();
}

public static void main(String[] args) {
Client client= new Client();
client.invoke(“default”);

}
}

This is an important part of most Web frameworks like Struts or WebWork. In WebWork there is a spe-
cific Command pattern component called xWork. It is described in detail in Chapter 8, “Developing Web
Applications Using the Model 2 Architecture.”

By handling each request as a Command object, it is possible to apply common services to each command.
Some common services could be things such as security, validation, and auditing. The next section will
extend the current Command pattern and implement a ManagedLifecycle interface. This interface will
define a set of methods that are called during each request:

package wrox.Pattern.command;

import java.util.Collection;
import java.util.Map;

public interface ManagedLifecycle extends Command {

public void initialize();
public void setApplicationContext(Map context);
public boolean isValidate();
public Collection getErrors();
public void destroy();

}

132

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 132

The ManagedLifecycle interface is a contract between the Command object and the client code.

The following is an example command that implements the ManagedLifecycle interface:

package wrox.pattern.command;
import java.util.Collection;
import java.util.Map;
import java.util.HashMap;

public class ManagedCommand implements ManagedLifecycle {
private Map context;
private Map errors= new HashMap();
public void initialize() {

System.out.println(“initializing..”);
}
public void destroy() {

System.out.println(“destroying”);
}
public void execute() {

System.out.println(“executing managed command”);
}
public boolean isValidate() {

System.out.println(“validating”);
return true;

}
public void setApplicationContext(Map context) {

System.out.println(“setting context”);
this.context= context;

}
public Collection getErrors() {

return errors.getValues();
}

}

The following code shows initialization and invocation of two types of commands, the standard and
managed:

package wrox.pattern.command;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

public class Client {
private Map context= new HashMap();
private CommandManager manager= new CommandManager();

public Client() {
manager.add(“default”, new DefaultCommand());

A new ManagedCommand has been added to the CommandManager:

manager.add(“managed”, new ManagedCommand());
}
public void invoke(String name) {

Command command= manager.getCommand(name);

133

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 133

Next, a check is put in place to determine whether the command being executed implements the
ManagedLifecycle interface:

if (command instanceof ManagedLifecycle) {
ManagedLifecycle managed= (ManagedLifecycle)command;
managed.setApplicationContext(context);
managed.initialize();
if (managed.isValidate()) {

managed.execute();
} else {

Collection errors = managed.getErrors();
}
managed.destroy();

} else {
command.execute();

}
}

The calling sequence of the ManagedLifecycle is richer with functionality compared with its single
method version. First it passes required application data, calls the initialize method, performs validation,
and then calls the execute method.

Strategy
The Strategy pattern allows you to replace algorithms on the fly. To implement the solution, you repre-
sent each algorithm as a strategy class. The application then delegates to the current strategy class to exe-
cute the strategy specific algorithm. Figure 3-14 shows the UML for the strategy pattern alongside the
example for this section.

Figure 3-14

ConcreteStrategy ConcreteStrategy

Strategy

+operation()1 *

Context

-strategies : Strategy

+setStrategy()
+getStrategy()

Buyer Seller

Role

+isSatisfied()1 *

Person

-roles : Role

+setRole()
+getRole()

Allowing the client invoker to pass resources to the command is a very powerful
concept referred to as IOC inversion of control. This eliminates the need for the
Command class to look up services and resources that are available to the invoker.

134

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 134

A common mistake in domain modeling is the overuse of subtyping. A subtype should be created only
when a specific “is-a” type relationship can be described between a subtype and its super-type. For
example, when modeling a person within a domain model, it is tempting to create a subtype for each
role for which a person is a participating. There is no wrong way of modeling a problem, but in this case
each person can take on several roles. This doesn’t pass the “is-a” relationship test for subtyping. It is fit-
ting that a person’s behavior varies by his role; this concept can be expressed using the Strategy pattern.

The example application in this section looks at the roles of buyers and sellers, showing how their differ-
ing behavior can be abstracted out into a strategy.

This is a mistake locking each person into one role or the other. The need to be able to switch between
the behaviors of classes in a class hierarchy is the motivation for using the Strategy pattern. Figure 3-15
shows the wrong way to model the “play’s a role” relationship.

Figure 3-15

The Strategy pattern is made up of an interface that defines the pluggable behavior, implementing sub-
classes to define the behavior, and then an object to make use of the strategy.

Strategy
The solution is to model each role as a class and delegate role-specific behavior from the Person class to
the Role current State. First, look at the behavior that will differ by the current state object. The example
uses the interface Role to declare the strategy behavior, and the two concrete classes, Buyer and
Seller, to implement the differing behavior.

To provide a little context to the example, the Buyer and Seller are trying to agree on a product price.
The isSatisified() method is passed a Product and a Price and both parties must determine if the
deal is acceptable:

package wrox.pattern.strategy;

public interface Role {

public boolean isSatisfied(Product product, double price);
}

BuyerPerson SellerPerson

Person

135

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 135

Of course, the Seller and Buyer have differing objectives. The Seller is looking to make a profit, set-
ting a 20 percent profit margin on any products sold. The following code makes that assumption:

package wrox.pattern.strategy;
public class Seller implements Role {

/*
* Seller will be happy if they make 20% profit on whatever they sell.
* (non-Javadoc)
* @see wrox.Pattern.strategy.Role#isSatisfied(wrox.Pattern.strategy.Product,

double)
*/

public boolean isSatisfied(Product product, double price) {
if (price - product.getCost() > product.getCost() * .2) {

return true;
} else {

return false;
}

}
}

The Seller, on the other hand, is looking for a product that is within a spending limit. It is important to
note that the Buyer class is not limited to the methods described by the Role interface, making it possi-
ble to establish the limit member variable in the Buyer class that is not present in the Seller class.

The algorithm for what is acceptable is an arbitrary part of this example, but it is set so that the Buyer
cannot spend above the chosen limit and will not pay more that 200 percent of the initial product cost.
The role of Buyer is expressed in the isSatisfied()method:

package wrox.Pattern.strategy;
public class Buyer implements Role {

private double limit;

public Buyer(double limit) {
this.limit= limit;

}
/*
* The buyer is happy if he can afford the product,
* and the price is less then 200% over cost.
* @see wrox.Pattern.strategy.Role#isSatisfied(wrox.Pattern.strategy.Product,

double)
*/

public boolean isSatisfied(Product product, double price) {
if (price < limit && price < product.getCost() * 2) {

return true;
} else {

return false;
}

}
}

136

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 136

The code example that follows uses a class for the abstraction of a product. It’s a data object that is part
of the scenario. The code is as follows:

package wrox.pattern.strategy;
public class Product {

private String name;
private String description;
private double cost;

public Product(String name, String description, double cost) {
this.name = name;
this.description = description;
this.cost = cost;

}
// Setters and Getter Omitted.

The next section looks at the class that uses the pluggable strategy.

Context
Next, let’s look at the Person class that manages the Role objects. First, the Person class has an associa-
tion with the Role interface. In addition, it is important to note that there is a setter and getter for the
Role. This allows the person’s roles to change as the program executes. It’s also much cleaner code. This
example uses two roles: Buyer and Seller. In the future, other Role implementing objects such as
Wholesaler, Broker, and others can be added because there is no dependency to the specific subclasses:

package wrox.pattern.strategy;

public class Person {
private String name;
private Role role;
public Person(String name) {

this.name= name;
}
public Role getRole() {

return role;
}
public void setRole(Role role) {

this.role= role;
}

Another key point is that the satisfied method of the Person class delegates the Role specific behavior
to its Role interface. Polymorphism allows the correct underlying object to be chosen:

public boolean satisfied(Product product, double offer) {
return role.isSatisfied(product, offer);

}
}

Now, the code of the pattern has been implemented. Next, lets view what behavior an application can
exhibit by implementing this pattern. To start, you can establish Products, People, and Roles:

137

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 137

package wrox.pattern.strategy;

public class Person {
// previous methods omitted.

public static void main(String[] args) {
Product house= new Product(“house”, “4 Bedroom North Arlington”, 200000);
Product condo= new Product(“condo”, “2 Bedroom McLean”, 100000);
Person tim= new Person(“Tim”);
Person allison= new Person(“Allison”);

You are buying and selling houses. The next step is to establish initial roles and assign the roles to the
people. The people will then exhibit the behavior of the role they have been assigned:

tim.setRole(new Buyer(500000));
allison.setRole(new Seller());

if (!allison.satisfied(house, 200000)) {
System.out.println(“offer of 200,000 is no good for the seller”);

}
if (!tim.satisfied(house, 600000)) {

System.out.println(“offer of 600,000 is no good for the buyer”);
}
if (tim.satisfied(house, 390000) && allison.satisfied(house, 390000)) {

System.out.println(“They Both agree with 390,000 “);

To further demonstrate the capabilities of the Strategy pattern, switch the initial Seller to the Buyer by
calling setRole()on the Person object. It is possible to switch to a Buyer without modifying the
Person object:

allison.setRole(new Buyer(190000));
if (allison.satisfied(condo, 110000)) {

System.out.println(“As a buyer she can afford the condo “);
}

}
}

}

By implementing the Strategy pattern, it is possible to change an object’s behavior on the fly with no
affect on its implementation. This is a very powerful tool in software design. In the next section, the
composite patterns will build on the same principle of abstracting behavior to treat a class hierarchy
with a single common interface.

Composite
The Composite design pattern allows you to treat a collection of objects as if they were one thing. In this
way you can reduce the complexity of the code required if you were going to handle collections as spe-
cial cases. Figure 3-16 shows the structure of the composite pattern in conjunction with the classes imple-
menting the pattern in this example.

138

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 138

Figure 3-16

The example used here to demonstrate this behavior is a portfolio management system that consists of
stocks and mutual funds. A mutual fund is a collection of stocks, but you would like to apply a common
interface to both stocks and mutual funds to simplify the handling of both. This allows you to perform
operations such as calculate Fair Market Value, buy, sell, and assess percent contribution with a common
interface. The Composition pattern would clearly reduce the complexity of building these operations.
The pattern consists of the classes, a leaf, and composite. Figure 3-16 should look similar to the example
built in the earlier section of this chapter.

Component
First is the component interface; it declares the common interface that both the single and composite
nodes will implement. The example is using fairMarketValue, an operation that can be calculated
over stocks, mutual funds, and portfolios:

package wrox.pattern.composite;

public interface Asset {

public double fairMarketValue();
}

Leaf
The leaf class represents the singular atomic data type implementing the component interface. In this
example, a Stock class will represent the leaf node of the pattern. The Stock class is a leaf node in that it
does not hold a reference to any other Asset objects:

Component

+operation()

Composite

+add()

Leaf

Portfolio MutualFund

Asset

+fairMarketValue()

1

**

1

CompositeAsset

+add()

Stock

139

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 139

package wrox.pattern.composite;

public class Stock implements Asset {

private String name;
private double price;
private double quantity;

public Stock(String name, double price, double quantity) {
this.name= name;
this.price= price;
this.quantity= quantity;

}

Stock price is calculated by multiplying share price times quantity:

public double fairMarketValue() {

return price * quantity;
}

}

Composite
The following section declares the Composite object called CompositeAsset. Notice that
CompositeAsset is declared abstract. A valid composite asset, such as a mutual fund or portfolio,
extends this abstract class:

package wrox.pattern.composite;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public abstract class CompositeAsset implements Asset {
private List assets= new ArrayList();

public void add(Asset asset) {
assets.add(asset);

}

Iterate through the child investments. If one of the child investments happens to also be a composite
asset, it will be handled recursively without requiring a special case. So, for example, it would be possi-
ble to have a mutual fund comprising mutual funds:

public double fairMarketValue() {
double total = 0;
for (Iterator i= assets.iterator(); i.hasNext();) {

Asset asset= (Asset)i.next();
total = total + asset.fairMarketValue();

}
return total;

}
}

140

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 140

Once that is complete, what follows is to build the concrete composite objects: MutualFund and
Portfolio. Nothing significant is required for the Mutual Fund class; its behavior is inherited from the
CompositeAsset:

package wrox.pattern.composite;

public class MutualFund extends CompositeAsset{

private String name;

public MutualFund(String name) {
this.name = name;

}

}

The Portfolio class extends CompositeAsset as well; the difference is that it calls the super class
directly and modifies the resulting calculation for fair market. It subtracts a 2 percent management fee:

package wrox.pattern.composite;

public class Portfolio extends CompositeAsset {
private String name;
public Portfolio(String name) {

this.name= name;
}
/* Market value - Management Fee
* @see wrox.Pattern.composite.CompositeAsset#fairMarketValue()
*/

public double fairMarketValue() {
return super.fairMarketValue() - super.fairMarketValue() * .02;

}

}

The only thing left to do is exercise the code. The next class is of an Investor. The Investor is the
client code taking advantage of the Composite design pattern:

package wrox.pattern.composite;

public class Investor {
private String name;
private Portfolio porfolio;
public Investor(String name, Portfolio portfolio) {

this.name= name;
this.porfolio= portfolio;

}

By calling the fair market value on the investor’s portfolio, the Composite pattern will be able to traverse
the collection of stocks and mutual funds to determine the value of the whole thing without worrying
about the object structure:

141

Exploiting Patterns in Java

06_574868 ch03.qxd 12/21/04 5:52 PM Page 141

public double calcNetworth(){

return porfolio.fairMarketValue();
}

public static void main(String[] args) {
Portfolio portfolio= new Portfolio(“Frequently Used Money”);
Investor investor= new Investor(“IAS”, portfolio);

portfolio.add(new Stock(“wrox”, 450, 100));

MutualFund fund= new MutualFund(“Don Scheafer’s Intellectual Capital”);
fund.add(new Stock(“ME”, 35, 100));
fund.add(new Stock(“CV”, 22, 100));
fund.add(new Stock(“BA”, 10, 100));
portfolio.add(fund);

double total =investor.calcNetworth();

System.out.println(“total =” + total);
}

}

With the composite pattern, it is very easy to simplify operations over complex data structures.

Summary
This chapter gave you a strong appreciation of the value of patterns in developing Java solutions. They
are critical in learning from the experience of others, but also in understanding APIs used by the Java
platform.

In this chapter, you learned about patterns, why they’re important, tricks to understanding them, and
several important patterns in Java programming.

Now that you have learned how to think like a Java developer, the rest of the book will focus on practi-
cal examples of developing Java solutions. These chapters will not be comprehensive examinations of
the technologies in each chapter, but rather a real-life example of a development problem, which is
solved using various technologies.

The first chapter in this new phase of the book is Chapter 4, “Developing Effective User Interfaces with
JFC.” In this chapter, you will learn how to use Swing to build Java desktop applications.

142

Chapter 3

06_574868 ch03.qxd 12/21/04 5:52 PM Page 142

Developing Effective User
Interfaces with JFC

Java Foundation Classes (JFC) is a package of libraries for developing robust graphical user dis-
plays for client-side applications that can be implemented on enterprise systems. The JFC API
libraries comprise five different components:

❑ AWT. The Abstract Windowing Toolkit (AWT) classes are comprised of legacy graphics
code from Java 1.x that were developed to create simple user interfaces for applications
and applets.

❑ Accessibility. The Accessibility classes accommodate assistive technologies that provide
access to information in user interface components.

❑ Java 2D. The Java 2D classes contain a broad set of advanced graphics APIs that allow
users to create and manipulate image, shape, and text components.

❑ Drag and Drop. The Drag and Drop classes allow users to initiate drag operations so that
components can be dropped on designated target areas. This is accomplished by setting
up a drop target listener to handle drop events and a management object to handle drag
and drop operations.

❑ Swing. The Swing classes are built atop of the AWT classes to provide high-quality GUI
components for enterprise applications.

Large tomes have been written about JFC, specifically Swing libraries and their advanced presen-
tation features, with numerous pages of APIs affiliated with those libraries that could easily be
acquired by your Integrated Development Environment (IDE) or the Internet during your devel-
opment activities. Along with those library presentations were some simple applications that pro-
vided little instructional value other than to demonstrate how things work in a basic fashion.
Rather than getting bogged down with a recital of those voluminous API’s, this chapter will con-
centrate the discussion on many of the Swing features that you will need to incorporate into your
professional development activities to be successful. You’ll learn advanced GUI applications that

07_574868 ch04.qxd 12/21/04 5:59 PM Page 143

combine multiple layout managers to achieve relevant presentation applications that manage data and
navigation flow in an efficient manner. All of the sample applications incorporate listeners and their
interfaces to manage events generated by users in their navigation activities along with Gang of Four
(GoF) design patterns to promote best practices in your modeling and implementation operations.

This chapter starts by demonstrating some foundation knowledge about layout managers so that you
can conceptualize Swing layout designs from a high-level perspective and then implement them using
JFC libraries in an efficient manner. With a solid handle on what these libraries can do for you, you will
be able to approach your development tasks with greater confidence, which will result in more germane
product development. The next two sections of this chapter will cover some practical applications, the
first being an Annotation Editor that links meta data to passages in a text file followed by an illustration
of how an Installation Wizard can easily be crafted with JFC libraries and GoF design patterns to man-
age navigation flows and data persistence.

Layout Managers
Layout managers are used in Java Swing applications to arrange objects when they are added to a
Container object. The setLayout() method is used to override default layout managers appropriated
to JPanel (FlowLayout) and JFrame (BorderLayout) containers.

This section of the chapter will discuss seven important layout managers:

❑ BorderLayout

❑ BoxLayout

❑ CardLayout

❑ FlowLayout

❑ GridbagLayout

❑ GridLayout

❑ SpringLayout

All of these layout managers will be covered at length within interesting Swing applications that imple-
ment listeners to react to user selections on various visualization components. Most importantly, these
applications will demonstrate how the different layout managers can be amalgamated to craft relevant
GUI presentations.

BorderLayout
The BorderLayout manager is the default layout for a frame. A BorderLayout uses five regions in its
display space. Those regions are generally referred to as: NORTH, SOUTH, WEST, EAST, and CENTER.
Those regions generally refer to the same attributes that a map would use. The NORTH and SOUTH
regions extend to the top and bottom areas of the Container, while the EAST and WEST regions extend
from the bottom of the NORTH and top of the SOUTH regions and to the left and right sides of the
Container, respectively. The CENTER region occupies all of the residual space the remains in the center
of the Container.

144

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 144

The BorderLayout manager is typically generated by instantiating a new BorderLayout class with a
constructor that has no parameters, or with a constructor that specifies two integer values that specify
the horizontal and vertical pixels between components in this fashion: new BorderLayout(int hGap,
int vGap).

The constructor methods for the BorderLayout manager are shown in the method summary table that
follows.

Method Description

public BorderLayout() No parameters

public BorderLayout(int hGap, int vGap) The hGap and vGap integer parameters
specify the horizontal and vertical pix-
els between components

The following BorderLayout example emulates a test application that quizzes the user with five fairly
simple arithmetic queries. As a user sequentially steps through the test questions, a progress bar will
track where the test taker is with respect to the end of the test and what the running score is. Figure 4-1
provides a model of the application and shows how the different GUI components will occupy the
BorderLayout panel.

Figure 4-1

The BorderLayoutPanel application will incorporate the Command pattern to handle button requests
for quiz questions and the answers to those questions by the user. Some of the benefits and drawbacks of
the Command pattern are outlined in the table that follows.

JProgressBar

ButtonGroup

InfoButton

JFrame

BorderLayout.EAST

BorderLayout.NORTH

BorderLayout.CENTER

Command pattern: execute()

BorderLayout

145

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 145

Pattern Benefits Consequences

Command Acts as a delivery mechanism that Creation of a lot of little classes
carries behavior rather than data to accommodate component actions
in an application

Delivers encapsulated actions to a
method or object for easier program
control.

The following code segment outlines the BorderLayoutPanel application how the model in Figure 4-1
is realized:

[BorderLayoutPanel.java]
// package name and import statements omitted

public class BorderLayoutPanel extends JPanel implements ActionListener {

The following section performs object declaration and initialization activities necessary for the
Arithmetic Test application. Many of these actions are omitted from this example, as well as many of the
layout manager programs, to provide better reading clarity. Note that the ButtonText variable uses
HTML scripting text to allow for the spanning of text in the JButton Swing component to which it will
be applied. The Command pattern interface is implemented so that the application can polymorphically
derive proper event actions during run time based on the user’s navigation operations:

private static Logger logger = Logger.getLogger(“FlowLayout”);

// some declarations omitted for the sake of brevity [Please check download code]
private final static String[] ButtonText =

{ “<html><center>Basic Arithmetic

(click for
question)</center></html>” };

private static String[] questions =
{ “1, 2, What is 1 + 1 ?, 0, 1, 2, 3”,

“2, 0, What is 1 - 1 ?, 0, 1, 2, 3”,
“3, 2, What is 5 - 3 ?, 0, 1, 2, 3”,
“4, 3, What is 4 - 1 ?, 0, 1, 2, 3” };

private Hashtable hashtableQuestions = new Hashtable();

public interface Command {
public void execute();

}

public BorderLayoutPanel(String FrameTitle) {
initComponents();

}

The initComponents() method is created to separate relevant initialization tasks so that it can be
invoked by the constructor during inception and when the user has finished the test and wants to reset
the application. Here, all of the panels are derived that will be deployed by the BorderLayout manager:

146

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 146

public void initComponents() {
try {

removeAll();

northPanel = new JPanel();
answerPanel = new JPanel();
centerPanel = new JPanel();
eastPanel = new JPanel();
msgText = new JLabel(“Click button to start!”);
InfoScreenButton = new RulesButton(“Rules”);
optGroup = new ButtonGroup();
progressBar = new JProgressBar();

questionCount = 1;
correctAnswerCount = 0;
numberQuestionsAnswered = 0;

String[] strLine;
for (int x = 0; x < questions.length; x++) {

strLine = questions[x].split(“,”);
hashtableQuestions.put(strLine[0], strLine);

}

buttons = new JQuestionButton[numberButtons];
for (int i = 0; i < numberButtons; i++) {

buttons[i] = new JQuestionButton(“Question”);
buttons[i].setText(ButtonText[i]);
centerPanel.add(buttons[i]);
buttons[i].addActionListener(this);

}

InfoScreenButton.addActionListener(this);

At this point in the application, the layout of the Swing components are established and the answers for
the quiz are saved to the ButtonGroup component for visual rendering. It is important to note how lay-
out managers are intermingled to get the desired visual effect. The answerPanel uses the GridLayout
class to enforce 0 rows and 1 column so that the answers available to the user are lined up in a single col-
umn prior to being added to the eastPanel component below the progress bar and above the rules
button:

centerPanel.setLayout(new GridLayout(0, 1));

answerPanel.setLayout(new GridLayout(0, 1));

Answer = new JRadioButtonAnswer[numberAnswers];
for (int i = 0; i < numberAnswers; i++) {

Answer[i] = new JRadioButtonAnswer(A[i]);
answerPanel.add(Answer[i]);
Answer[i].addActionListener(this);
optGroup.add(Answer[i]);

}

BlankRadioButton = new JRadioButton();
optGroup.add(BlankRadioButton);

147

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 147

northPanel.setBackground(new Color(255, 255, 220));
northPanel.add(msgText);

eastPanel.setLayout(new GridLayout(0, 1));
eastPanel.add(progressBar);
eastPanel.add(answerPanel);
eastPanel.add(InfoScreenButton);

setLayout(new BorderLayout());
add(eastPanel, “East”);
add(northPanel, “North”);
add(centerPanel, “Center”);

setSize(600, 600);
questionAnswered = true;
answerPanel.setVisible(false);

progressBar.setMaximum(numberQuestions);
progressBar.setValue(0);
progressBar.setIndeterminate(false);

resetButton = new JResetButton(“Reset Game”);
resetButton.addActionListener(this);

} catch (Exception e) {
logger.info(“Exception: “ + e.toString());

}
}

The JQuestionButton class implements the Command interface so that user invocations on that button
will dynamically determine — through the ActionListener implementation — that the execute()
method associated with this button should be invoked. Once invoked, the application will use a key
based on the question count to search the hashtableQuestions collection class for the proper question
to render on the display:

private class JQuestionButton extends JButton implements Command {

public JQuestionButton(String caption) { super(caption); }
public void execute() {

try {
if (numberQuestionsAnswered < numberQuestions) {

answerPanel.setVisible(true);
northPanel.setBackground(new Color(255, 255, 220));
if (questionAnswered) {

optGroup.setSelected(BlankRadioButton.getModel(), true);
questionAnswered = false;
try {

String key = Integer.toString(questionCount);
if (hashtableQuestions.containsKey(key)) {

Question = (String[]) hashtableQuestions.get(key);
questionCount++;

} else {
logger.info(“key NOT found” + key);

148

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 148

}
} catch (Exception e) { throw e; }

msgText.setText(Question[2]);
for (int i = 0, x = 3; i < numberAnswers; i++) {

Answer[i].setText(Question[x + i]);
}

}
}

} catch (Exception e) {
logger.info(“Exception: “ + e.toString());

}
}

}

The JRadioButtonAnswer class also implements the Command interface to polymorphically determine
behavior needed when a user clicks on the radio button answer to the question posed by the test appli-
cation. If the user response is correct, the background color of the northPanel will be turned green,
indicating a positive response to the question, and if another question is available, the JButton
setText() method will be used to display the user’s score and the progressBar component will
exhibit the percentage of the test that the user has covered:

private class JRadioButtonAnswer extends JRadioButton implements Command {
public JRadioButtonAnswer(String caption) {}
public void execute() {

try {
if (!questionAnswered) {

if (Question[1].trim().equals(getText().trim())) {
msgText.setText(“Correct!!!”);
northPanel.setBackground(Color.green);
correctAnswerCount++;

} else {
msgText.setText(

“Wrong!!! The correct answer is: “ + Question[1]);
northPanel.setBackground(Color.red);

}

questionAnswered = true;
numberQuestionsAnswered++;

buttons[0].setText(
(“<html><center>(click for question)”
+ “

”
+ “ Score= “
+ correctAnswerCount
+ “/”
+ numberQuestionsAnswered).toString()
+ “</center></html>”);

progressBar.setValue(numberQuestionsAnswered);
progressBar.setStringPainted(true);
progressBar.setString(
Double.toString(Math.round(progressBar.getPercentComplete() * 100))+

“%”);
if (numberQuestionsAnswered >= numberQuestions) {

149

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 149

buttons[0].setBackground(new Color(255, 255, 220));
buttons[0].setText(“Finished. Score= “ + String.valueOf(

(float) correctAnswerCount / (float) numberQuestionsAnswered * 100) + “%”);
// setup reset button
answerPanel.removeAll();
answerPanel.add(resetButton);

}
} else {

msgText.setText(
“You have answered this question, please select a new Question”);

}

} catch (Exception e) {
logger.info(“Exception occured: “ + e.toString());

}
}

}

The actionPerformed method is an implementation of the ActionListener interface, which is
invoked when an event is created by user operations. The Command pattern implementation determines
which button was selected by the user and the proper execute() method to invoke based on that event:

public void actionPerformed(ActionEvent e) {
Command obj = (Command) e.getSource();
obj.execute();

}

The RulesButton class also implements the Command interface so that a new frame will be kicked off
when a user selects the Rules button in the test application. The JResetButton button is used to sup-
plant the answers in the answerPanel when all five questions have been answered by the test taker.
This allows the user to retake the test by resetting the answers in the test. Ideally, you would want to
randomize those answers to make the test more difficult, but this application was developed to demon-
strate, in a simple fashion, how the BorderLayout class can be used with other layout managers to
develop relevant GUI applications:

class RulesButton extends JButton implements Command {

public RulesButton(String Title) { super(Title); }
public void execute() {

JLabel InfoLabel = new JLabel(
“<html> How To Play:
 Click on button to generate questions “
+ “on the right side of the user display. A progress bar will “
+ “indicate where the tester is with respect to the entire test.”);

JFrame InfoFrame = new JFrame(“How To Play”);
InfoFrame.getContentPane().add(InfoLabel);
InfoFrame.setSize(400, 150);
InfoFrame.show();

}
}

private class JResetButton extends JButton implements Command {

public JResetButton(String caption) {

150

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 150

super(caption);
}
public void execute() {

initComponents();
}

}
// main method omitted for the sake of brevity

}

Figure 4-2 represents the finished product of the BorderLayoutPanel application. Test questions are
rendered in the NORTH section of the BorderLayout, while test progress statistics, answers, and a
Rules component reside on the EAST. Users navigate through the test by clicking on the questionPanel
in the BoderLayout.CENTER, which will retrieve and display the questions for the user to answer.

Figure 4-2

BoxLayout
The BoxLayout manager arranges components horizontally from left to right, or vertically from top to
bottom, without the wraparound capability in the FlowLayout manager. The implementation of the
BoxLayout manager warrants the instantiation of the BoxLayout class with two parameters, the first
being the Container panel that will be displayed, followed by an integer axis value that indicates the
placement of the components on the panel. An axis value of Boxlayout.X_AXIS indicates left to right
layout management, while a value of BoxLayout.Y_AXIS signifies a top to bottom layout.

151

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 151

The constructor methods for the BoxLayout manager are shown in the following method summary table.

Method Description

public BoxLayout(Container panel, int axis) The panel parameter signifies the con-
tainer that will be mapped out, while
the axis parameter indicates where the
components will be placed. An axis
value of BoxLayout.Y_AXIS indicates
left to right placement and an axis
value of BoxLayout.Y_AXIS indicates
a top to bottom placement.

The following BoxLayout example will apply the Decorator pattern in its implementation so that users
can add behavior dynamically through drag and drop operations. Figure 4-3 provides a model of the
application and how the different image components occupy the BoxLayout panel real estate.

Figure 4-3

BoxLayout

Drag and Drop

Hamburger Image

CondimentPanel
Decorator pattern: Adds behavior

dynamically to the FoodItems
Cheese Image

Hotdog Image

Pizza Image

152

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 152

Dynamic behavior transfer occurs when a user drags the Cheese condiment image onto one of the three
food item images on the left panel. Some of the benefits of the Decorator pattern are defined in the
table below.

Pattern Benefits Consequences

Decorator Can add or remove responsibilities of Generates a lot of similar objects
individual objects dynamically without
affecting other objects during run time

A class can be wrapped in another
object to provide added functionalities

The FoodCourt interface allows the BoxLayout application to dynamically add behaviors to the three
different food items (Hamburger, Hotdog, and Pizza) during run time when the Cheese object is
dragged and dropped on the food items. Additionally, get methods are modeled so that relevant data
can be retrieved from objects. The FoodCourt interface class allows behaviors to be defined across the
class hierarchy of the BorderLayout sample application with private implementations to address indi-
vidual needs:

[FoodCourt.java]
// package name omitted
public interface FoodCourt {

public String getName();
public float getCost();
public FoodGraphic getGraphic();
public void addBehavior(String b);
public String getDescription();
public void setGraphicHandler(FoodCourt h);

public void handleClick();
}

The FoodGraphic class controls the user events associated with the three different food images. The
FoodImage class is implemented to handle image files affiliated with the different food items in the
BoxLayout demonstration. The paintComponent(Graphics g) method ensures that image files are
drawn properly throughout the lifetime of the JPanel component FoodImage:

[FoodGraphic.java]
// package name and import statements omitted

public class FoodGraphic extends JPanel implements DropTargetListener,
MouseListener {

// declarations omitted for the sake of brevity [Please check download code]
private class FoodImage extends JPanel {

private Image image = null;
public FoodImage(String imageFile) {

super();
URL url = FoodImage.class.getResource(imageFile);
image = Toolkit.getDefaultToolkit().getImage(url);

}

153

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 153

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawImage(image, 0, 0, this);

}
}

public FoodGraphic(FoodCourt hand, String imageFile, int w, int h, boolean
tipsFlag) {

this(hand, imageFile, w, h);
updateTips = tipsFlag;

}

The FoodGraphic method receives a handler object from the Food class, which is instantiated in the
FoodItems class when the three different food items are created. A new dropTarget object reference is
created with the DropTarget class to tell the application that the Food object is willing to accept drops
during drag and drop operations.

The DropTargetListener interface performs callback notifications on registered subjects to signal
event changes on the target being dropped on:

public FoodGraphic(FoodCourt hand, String imageFile, int w, int h) {
super();
handler = hand;
imageFileName = imageFile;

imagew = w;
imageh = h;

dropTarget = new DropTarget(this, DnDConstants.ACTION_COPY_OR_MOVE, this);
setBackground(Color.white);
name = handler.getName();

image = new FoodImage(imageFile);
image.setPreferredSize(new Dimension(imagew,imageh));
image.setMaximumSize(new Dimension(imagew,imageh));
image.setMinimumSize(new Dimension(imagew,imageh));
image.setAlignmentX(CENTER_ALIGNMENT);

label = new JLabel(name,SwingConstants.CENTER);
label.setPreferredSize(new Dimension(imagew,25));
label.setMaximumSize(new Dimension(imagew,25));
label.setMinimumSize(new Dimension(imagew,25));
label.setAlignmentX(CENTER_ALIGNMENT);

setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
setBorder(BorderFactory.createLineBorder(Color.blue, 2));

add(image);
add(label);

setToolTipText(name);

addMouseListener(this);
}

154

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 154

A method summary of the DropTargetListener interface class and its methods is illustrated in the fol-
lowing table.

Method Description

void dragEnter(DropTargetDragEvent d) Method called when the mouse
pointer enters the operable part of
the drop site for the target regis-
tered with a listener

void dragExit(DropTargetEvent d) Method called when the mouse
pointer has exited the operable part
of the drop site for the target regis-
tered with a listener

void dragOver(DropTargetDragEvent d) Method called when the mouse
pointer is still over the operable
part of the drop site for the target
registered with a listener

void drop(DropTargetDropEvent d) Method called when the drag oper-
ation has terminated with a drop on
the operable part of the drop site for
the target registered with a listener

void dropActionChanged(DropTargetDragEvent d) Method called if the user has modi-
fied the current drop gesture

The drop(DropTargetDropEvent e) method in the following code implements the DataFlavor class,
which represents a format style that can be conveyed across an application. If the flavor being dragged
and dropped across the GUI display is supported and verified by the isDataFlavorSupported
method, then the drag and drop operation of the cheese condiment onto one of the three food items will
be allowed to occur and the behavior affiliated with that operation will be added to the object handler so
that a description of that action can be obtained through the getDescription() method.

The dragEnter and dragExit methods are used to visually color the borders of the items being
dragged and dropped in the GUI presentation:

public void drop(DropTargetDropEvent e) {
try {

DataFlavor stringFlavor = DataFlavor.stringFlavor;
Transferable tr = e.getTransferable();
if (e.isDataFlavorSupported(stringFlavor)) {

String behavior = (String)tr.getTransferData(stringFlavor);
e.acceptDrop(DnDConstants.ACTION_COPY_OR_MOVE);
e.dropComplete(true);

handler.addBehavior(behavior);

if (handler != null && updateTips) {
setToolTipText(handler.getDescription());

}
} else {

155

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 155

e.rejectDrop();
}

} catch (Exception ex) {}
setBorder(BorderFactory.createLineBorder(Color.blue, 2));

}

public void dragEnter(DropTargetDragEvent e) {
setBorder(BorderFactory.createLineBorder(Color.red, 3));

}
public void dragExit(DropTargetEvent e) {

setBorder(BorderFactory.createLineBorder(Color.blue, 2));
}
public void dragOver(DropTargetDragEvent e){}
public void dropActionChanged(DropTargetDragEvent e) { }

public void setHandler(FoodCourt h) {
handler = h;

}

public void setBorderColor(Color col) {
setBorder(BorderFactory.createLineBorder(col, 2));

}

Click-handling routines are implemented through the FoodCourt interface with the assistance of the
mouse event listeners. The Food class handleClick() method is invoked when a user clicks on the
hamburger, hotdog, and pizza food items:

public void addClickHandler(FoodCourt h) {
clickHandler = h;

}

public void mouseClicked(MouseEvent e) {
if (clickHandler != null) {

clickHandler.handleClick();
}

}

public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}

}

The CondimentPanel class generates a decorator object for the cheese item and associates a coin value
with that object so that it can be passed along to the food item it is decorated with. A hamburger costs
$1.35 alone, but will add to, or decorate, that cost by 35 cents if cheese is appended to it. The panel lay-
out consists of a combination GridLayout manager called pictures, with the cheese image and label,
added to a BoxLayout manager that combines this panel with a label component for presentation in the
GUI display above the three different food items:

[CondimentPanel.java]
// package name and import statements omitted

156

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 156

public class CondimentPanel extends JPanel {

private static Logger logger = Logger.getLogger(“CondimentPanel”);

JPanel pictures = null;
GridLayout pictureLayout = null;
Hashtable condimentPrices = new Hashtable();

public CondimentPanel(String title) {
super();
setBackground(Color.white);

pictures = new JPanel();
pictureLayout = new GridLayout(1, 1);
pictures.setLayout(pictureLayout);
pictures.setAlignmentX(CENTER_ALIGNMENT);
pictures.setBorder(BorderFactory.createLineBorder(Color.red));

pictures.add(new FoodDecoratorGraphic(“Cheese”, “resources/Cheese.gif”,
0.35f));

condimentPrices.put(“Cheese”, new Float(0.35f));

JLabel label = new JLabel(title, SwingConstants.CENTER);
label.setPreferredSize(new Dimension(200, 25));
label.setMinimumSize(new Dimension(200, 25));
label.setMaximumSize(new Dimension(200, 25));
label.setAlignmentX(CENTER_ALIGNMENT);

setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));

add(label);
add(pictures);

}
}

The Food class implements the FoodCourt interface so that the application can polymorphically dis-
cover the methods needed for processing during run time. The FoodItems class invokes this method
three times for the three different food items displayed in the application (hamburger, hotdog, pizza):

[Food.java]
// package name and import statements omitted
public class Food implements FoodCourt {

private static Logger logger = Logger.getLogger(“Food”);
private FoodItems item = null;
private FoodGraphic graphic = null;
private String name = null;
private float cost = 0.0f;

public Food(FoodItems fooditem, String name, String imageFile, float cost) {
super();

item = fooditem;
name = name;
cost = cost;

157

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 157

graphic = new FoodGraphic(this, imageFile, 100, 35);
graphic.addClickHandler(this);

}

public String getName() { return name; }

public FoodGraphic getGraphic() { return graphic; }

public float getCost() { return cost; }

The addBehavior(String b) method takes the food item object reference and invokes the
addMemberBehavior(String name, String b) method to aggregate the behavior of your only
condiment item, cheese, with the food item it is being added to. If the food item alone is clicked by the
user, the handle event method named handleClick() will add the food item description to the test area
display using the static class DisplayPanel:

public void addBehavior(String b) { item.addMemberBehavior(name, b); }

public String getDescription() { return name; }

public void setGraphicHandler(FoodCourt h) { graphic.setHandler(h); }

public void handleClick() {

DisplayPanel.write(getDescription() + “ “);
DisplayPanel.write(“selected. That’ll cost you “ + getCost());
DisplayPanel.writeLine(“”);

}
}

The final class that will be discussed for the BoxLayoutPanel application is the FoodItems class.
FoodItems implements its layout in a similar fashion to the CondimentPanel class. A GridLayout
manager is crafted to accommodate the food item images, which is then added to a BoxLayout manager
for the final presentation. The static helper component named Box.createVerticalGlue lets the appli-
cation adjust when the parent container is resized by the user so that the box layout maintains its
spacing:

[FoodItems.java]
// package name and import statements omitted
public class FoodItems extends JPanel {

private static Logger logger = Logger.getLogger(“FoodItems”);

// declarations omitted for the sake of brevity [Please check download code]
public FoodItems(BoxLayoutPanel p, Hashtable condimentPrices) {

super();

this.name = “Condiments”;
this.panel = p;
this.condimentPrices = condimentPrices;

158

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 158

members = new HashMap();

setBackground(new Color(204,204,102));

pictures = new JPanel();
pictureLayout = new GridLayout(3, 2);
pictureLayout.setHgap(5);
pictureLayout.setVgap(5);
pictures.setLayout(pictureLayout);
pictures.setAlignmentX(CENTER_ALIGNMENT);

imagePanel = new JPanel();
imagePanel.setBackground(Color.white);
imagePanel.setLayout(new BoxLayout(imagePanel, BoxLayout.X_AXIS));

JLabel label = new JLabel(“”, SwingConstants.CENTER);
label.setAlignmentX(CENTER_ALIGNMENT);
label.setPreferredSize(new Dimension(200,20));
label.setMinimumSize(new Dimension(200,20));
label.setMaximumSize(new Dimension(200,20));

setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));

Component padding = Box.createRigidArea(new Dimension(100, 1));

This code segment illustrates how the Food objects are instantiated and manipulated by the
addMember(FoodCourt fc) method that adds a new food item to the members collection class struc-
ture for future reference and to the pictures panel for visual rendering:

food = new Food(this, “Hamburger”, “resources/Hamburger1.gif”, 1.35f);
addMember(food);
food = new Food(this, “Hotdog”, “resources/Hotdog1.gif”, 1.15f);
addMember(food);
food = new Food(this, “Pizza”, “resources/Pizza1.gif”, 1.05f);
addMember(food);

add(label);
add(padding);
add(pictures);
add(Box.createVerticalGlue());

}

public void addMember(FoodCourt fc) {
if (!members.containsKey(fc.getName())) {

members.put(fc.getName(), fc);
pictures.add(fc.getGraphic());

}
}

The addMemberBehavior(String n, String b) method outputs the food item description and cost
to the static DisplayPanel text area component. The condimentPrices collection class is used to
derive the cost of the cheese condiment, the only condiment in the BoxLayoutPanel application, so that
its cost can be added to the cost of the food item:

159

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 159

public void addMemberBehavior(String n, String b) {

Float condimentCost = (Float)condimentPrices.get(b.trim());

FoodCourt m = (FoodCourt) members.get(n);
DisplayPanel.writeLine(“Adding “ +

b +
“ (“ +
condimentCost +
“) to “ +
m.getDescription() +
“ which costs $” +
m.getCost() +
“ for a total cost of $” +

(m.getCost() + condimentCost.floatValue()));
}

// getName(), getGraphic() and getDescription() methods omitted for better
clarity

public String getDescription(String n) {
FoodCourt m = (FoodCourt) members.get(n);
if (m != null) {

return m.getDescription();
} else {

return “”;
}

}

public void setGraphicHandler(FoodCourt h) {
graphic.setHandler(h);

}

}

The BoxLayoutPanel display is demonstrated in Figure 4-4. Users can drag and drop the cheese condi-
ment on the three different food items to determine the total cost of the two products combined.
Additionally, users can click on the individual food items to determine the cost of that single item. All
events that are generated by mouse clicks or drag and drop operations are tracked by listener classes
and logged to the text area display to track the users’ navigation activities. The Decorator pattern
implementation in the BoxLayoutPanel application allows behaviors to be dynamically aggregated
during run time.

160

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 160

Figure 4-4

FlowLayout
The FlowLayout manager arranges components from left to right in the Container space; if the space on
a line is exhausted, then the components that are part of this manager will flow to the next line. By
default, all components of the FlowLayout manager are centered in a horizontal fashion on each line.
Three different constructors can be invoked to instantiate a FlowLayout manager object. The first con-
structor requires no parameters while the second constructor requires an integer alignment value that
indicates how components will be justified during construction. The last constructor method uses an
integer alignment value like the aforementioned method, but also requires two integer values that
specify horizontal and vertical gap values for pixel spacing.

The constructor methods for the FlowLayout manager are shown in the method summary table
that follows.

Method Description

public FlowLayout() No parameters

public FlowLayout(int align) Align parameter may be one of three class con-
stants: LEFT, RIGHT, or CENTER to indicate how
components will be justified

public FlowLayout Where align indicates how the components will
(int align, int hGap, int vGap) be justified and the hGap and vGap parameters

specify the horizontal and vertical pixels between
components

161

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 161

The following FlowLayout example accepts a dollar value from the user and calculates the coin
distribution using the Chain of Responsibility pattern. Figure 4-5 provides a high-level view of the
FlowLayoutPanel application and how the Swing components are positioned on the FlowLayout panel.

Figure 4-5

Request processing in the FlowLayputPanel application is handled with the Chain of Responsibility
pattern that accepts the dollar amount from the user and cascades downward from the four different
coin handlers (QuarterHandler, DimeHandler, NickelHandler, PennyHandler) until all the coins
have been accounted for in the dollar amount specified by the user.

Pattern Benefits Consequences

Chain of Responsibility Reduces coupling by Requests can go unhandled
allowing several objects with improper chain
the opportunity to handle configuration
a request

Distributes responsibilities
among objects

The FlowLayoutPanel class below illustrates how the FlowLayout manager can be implemented. This
sample application implements the JFormattedTextField class to dictate how the data must be input
by the user and the NumberFormat class to establish what that format will be. Two buttons are created
as extensions to the JButton class, one for kicking off the Chain of Responsibility pattern named
“Determine Coins” and the other for clearing the text in the coin display panel:

[FlowLayoutPanel.java]
// package name and import statements omitted

public class FlowLayoutPanel extends JPanel implements ActionListener,
PropertyChangeListener {

JTextField

Command pattern: execute()

JLabel

Chain of Responsibility Pattern: Determines
coin distribution of user input

If user expands panel to
the right, the JLabel
component will be

positioned to the right of
the Currency panel

JButtonJButton

FlowLayout

162

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 162

private JFormattedTextField amountField;
private NumberFormat amountDisplayFormat;
private NumberFormat amountEditFormat;
// some GUI component initializations/declarations omitted for the sake of brevity
private JButtonCoins coinButton = new JButtonCoins(“Determine Coins”);
private JButtonClear clearButton = new JButtonClear(“Clear”);

private QuarterHandler quarterHandler;
private DimeHandler dimeHandler;
private NickelHandler nickelHandler;
private PennyHandler pennyHandler;

public FlowLayoutPanel() {
setSize(700, 150);

// Coin Button
coinButton.setActionCommand(“Coins”);
coinButton.addActionListener(this);

// Clear button
clearButton.setActionCommand(“clear”);

clearButton.addActionListener(this);

The FlowLayoutPanel constructor establishes the currency display format using the NumberFormat
class, which is the abstract base class for all number formats. The setMinimumFractionDigits(int
newValue) method sets the minimum number of digits permitted in the fraction portion of a number.
Once the format styles have been created, they can then be applied to the JFormattedTextField class
used for rendering the dollar amount specified by the user. The PropertyChangeListener interface
forces the application to deploy the propertyChange method (PropertyChangeEvent evt) to handle
events when the dollar amount has been modified. The BorderLayout manager is applied to the
topPanel component that organizes the coinButton, amountField, and clearButton components,
which is added to the FlowLayout manager of the overall application by default:

amountDisplayFormat = NumberFormat.getCurrencyInstance();
amountDisplayFormat.setMinimumFractionDigits(0);
amountEditFormat = NumberFormat.getNumberInstance();

amountField = new JFormattedTextField(new DefaultFormatterFactory
(new NumberFormatter(amountDisplayFormat),
new NumberFormatter(amountDisplayFormat),
new NumberFormatter(amountEditFormat)));

amountField.setValue(new Double(amount));
amountField.setColumns(10);
amountField.addPropertyChangeListener(“value”, this);

topPanel.add(coinButton);
topPanel.add(amountField);
topPanel.add(clearButton);

messageText = new JLabel(“Coin Amounts”);
results.add(messageText);
results.setPreferredSize(new Dimension(400, 100));

163

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 163

results.setBorder(BorderFactory.createLineBorder (Color.blue, 2));
results.setBackground(DIGIT_COLOR);

JPanel borderPanel = new JPanel(new BorderLayout());
borderPanel.setBorder(new TitledBorder(“Formatted Currency”));
borderPanel.add(topPanel, BorderLayout.CENTER);
borderPanel.setSize(200,200);

add(borderPanel);
add(results);

The following code section implements the coin handlers that implement the Chain of Responsibility
pattern to process all of the coins that are derived from the amount specified by the user in the GUI
panel. The setSuccessor(TestHandler successor) method is used to specify the successor object
along the chain of objects:

// setup chain of responsibility pattern implementation
try {

quarterHandler = new QuarterHandler();
dimeHandler = new DimeHandler();
nickelHandler = new NickelHandler();
pennyHandler = new PennyHandler();

quarterHandler.setSuccessor(dimeHandler);
dimeHandler.setSuccessor(nickelHandler);
nickelHandler.setSuccessor(pennyHandler);

} catch(Exception e) {
e.printStackTrace();

}
}

public void propertyChange(PropertyChangeEvent e) {
Object source = e.getSource();
amount = ((Number)amountField.getValue()).doubleValue();

}

public void actionPerformed(ActionEvent e) {
Command obj = (Command)e.getSource();
obj.execute();

}

The JButtonCoins method implements the Command interface to invoke the execute() method of the
class when the user clicks on the Determine Coins button. The dollar amount is read from the
amountField component and passes that value to the quarterHandler object for coin processing.
When all of the coins have been accounted for, the coin distribution will be displayed in the
messageText component:

class JButtonCoins extends JButton implements Command {

public JButtonCoins(String caption) { super(caption); }
public void execute() {

amountField.setValue(new Double(amount));

164

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 164

int coinAmount = (int)(amount * 100);
quarterHandler.handleRequest(coinAmount);
messageText.setText(“ QUARTERS= “ + quarterHandler.getCount() +

“ DIMES= “ + dimeHandler.getCount() +
“ NICKELS= “ + nickelHandler.getCount() +
“ PENNIES= “ + pennyHandler.getCount());

}
}

class JButtonClear extends JButton implements Command {

public JButtonClear(String caption) { super(caption); }

public void execute() {

amountField.setValue(new Double(0));
messageText.setText(“User cleared text: “);

}
}

public interface Command {
public void execute();

}

// main method omitted for the sake of brevity

}

The TestHandler class is inherited by the individual coin handlers so that get/set successor methods
can be used to determine the successor objects that are implemented along the chain of coin handlers:

[TestHandler.java]
// package name and import statements omitted
public class TestHandler {

private TestHandler successor;

public void setSuccessor(TestHandler successor) { this.successor = successor; }
public TestHandler getSuccessor() { return successor; }

public void handleRequest(int coinAmount) { successor.handleRequest(coinAmount);
}
}

The QuarterHandler class inherits the successor classes from its superclass TestHandler and takes the
coin amount to determine how many quarters can be found in the dollar total. The modulus % operator
divides the coin amount by 25 to determine the number of quarters in the sum, and takes the remainder
and passes it along the chain of coin handlers for dimes, nickels, and pennies. For all of the handlers, if a
remainder of zero is discovered, then the chain processing is halted:

165

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 165

[QuarterHandler.java]
// package name and import statements omitted
public class QuarterHandler extends TestHandler {

private static Logger logger = Logger.getLogger(“QuarterHandler”);
private int count;
public void handleRequest(int coinAmount) {

int numberQuarters = coinAmount / 25;
coinAmount %= 25;
this.count = numberQuarters;
if (coinAmount > 0) getSuccessor().handleRequest(coinAmount);

}
public int getCount() {

return this.count;
}

}

Figure 4-6 represents the finished product of the FlowLayoutPanel application. When users add a dol-
lar amount in the text field of the GUI application and click the Determine Coins button, the coin distri-
bution will be displayed in the panel below the Currency panel. With the Chain of Responsibility pattern
implementation, the coins are handled sequentially from quarters to dimes to nickels to pennies until all
coins have been accounted for. An important point to take away from the Chain of Responsibility pat-
tern is that rather than calling a single method to satisfy a request, multiple methods in a chain have a
chance to fulfill that request.

Figure 4-6

166

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 166

GridLayout
The GridLayout manager arranges its components in a rectangular, gridlike fashion. When components
are added to the GridLayout manager, rows are populated first.

The constructor methods for the GridLayout manager are shown in the method summary table that
follows.

Method Description

public GridLayout() No parameters — creates a grid layout
with a default of one column per com-
ponent, in a single row

public GridLayout(int rows, int columns) Row and column parameters specify
the size of the grid

Public GridLayout(int rows, Row and column parameters specify
int columns, int hGap, int vGap) the size of the grid and the hGap and

vGap parameters specify the horizontal
and vertical pixels between components

The following GridLayout example processes mouse events on buttons generated with Java 2D classes.
Figure 4-7 shows how the buttons are organized on the GridLayoutPanel display.

Figure 4-7

Rectangle2D
buttonPanel

GridLayout

dataPanel

MouseListener

dbPanel

JTree

mouseButtonPanel

MouseListener

167

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 167

The following GridLayoutPanel code segment aggregates the different Java 2D components along
with the Swing JTree and JTable components on the grid display. The Java2DPanel and
Java2DPanelMouseover classes generate Java 2D button images that set the Cola row value of the
JTable component, and store the proper Cola data value to the JTree component when the user clicks
on them:

[GridLayoutPanel.java]
// package name and import statements omitted

public class GridLayoutPanel extends JPanel {

// declarations omitted for the sake of brevity [Please check download code]
public GridLayoutPanel() {

JPanel panelAll = new JPanel(new GridLayout(0,2,5,5));

DBPanel dbPanel = new DBPanel();
Java2DPanel buttonPanel = new Java2DPanel(dbPanel);
Java2DPanelMouseover mouseButtonPanel = new Java2DPanelMouseover(dbPanel);
JPanel dataPanel = new JPanel(new GridLayout(0,1,5,5));
dbPanel.add(mouseButtonPanel);
panelAll.add(dbPanel);

panelAll.add(buttonPanel);
panelAll.add(dataPanel);

add(panelAll);
setVisible(true);

}

// main method omitted for the sake of brevity

}

The Java2DPanel class implements the Rectangle2D class to create buttons to obtain information con-
cerning six different Cola selections. These buttons are attached to a mouseListener handler to deter-
mine if a user has clicked the mouse inside one of those buttons. The setPreferredSize method
allows the constructor class for Java2DPanel to set the panel display to a desired dimension using
height and width values:

[Java2Dpanel.java]
// package name and import statements omitted

public class Java2DPanel extends JPanel implements MouseListener {

Rectangle2D rect1, rect2, rect3, rect4, rect5, rect6;
DBPanel dbRef;

public Java2DPanel(DBPanel db) {

dbRef = db;

168

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 168

rect1 = new Rectangle2D.Double(25, 25, 100, 100);
rect2 = new Rectangle2D.Double(150, 25, 100, 100);
rect3 = new Rectangle2D.Double(25, 150, 100, 100);
rect4 = new Rectangle2D.Double(150, 150, 100, 100);
rect5 = new Rectangle2D.Double(25, 275, 100, 100);
rect6 = new Rectangle2D.Double(150, 275, 100, 100);

this.addMouseListener(this);

setBackground(Color.white);
setPreferredSize(new Dimension(300, 200));

}

The paintComponent(Graphics g) method is called when a window becomes visible or is resized,
and when a mouse listener detects a new user-generated event to draw the background graphics compo-
nents on the panel display. Six rectangle class components are constructed by instantiating Rectangle
class objects and filling them by implementing the Graphics2D fill(Shape s) method:

public void paintComponent(Graphics g) {
clear(g);

Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

Rectangle rectangle1 = new Rectangle(35, 40, 100, 100);
Rectangle rectangle2 = new Rectangle(160, 40, 100, 100);
Rectangle rectangle3 = new Rectangle(35, 165, 100, 100);
Rectangle rectangle4 = new Rectangle(160, 165, 100, 100);
Rectangle rectangle5 = new Rectangle(35, 290, 100, 100);
Rectangle rectangle6 = new Rectangle(160, 290, 100, 100);

g2.setPaint(new Color(204, 255, 153));
g2.fill(rectangle1);
g2.fill(rectangle2);
g2.fill(rectangle3);
g2.fill(rectangle4);
g2.fill(rectangle5);
g2.fill(rectangle6);
g2.setColor(new Color(123,123,45));
g2.fill(rect1);
g2.fill(rect2);

Now that the six different background buttons have been created and filled, the foreground buttons are
created by using the Graphics2D drawstring(String str, int x, int y) method to place string
text on the button display and the fill(Shape s) method to draw the button shape:

g2.setColor(Color.black);
g2.setFont(new Font(“Serif”, Font.BOLD, 18));
g2.drawString(“Cola 1”, (float)(rect1.getX())+25,

(float)(rect1.getY()+rect1.getHeight()/2));
g2.drawString(“Cola 2”, (float)(rect2.getX())+25,

(float)(rect2.getY()+rect2.getHeight()/2));

169

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 169

g2.setColor(new Color(123,123,45));
g2.fill(rect3);
g2.fill(rect4);

g2.setColor(Color.black);
g2.setFont(new Font(“Serif”, Font.BOLD, 18));
g2.drawString(“Cola 3”, (float)(rect3.getX())+25,

(float)(rect3.getY()+rect3.getHeight()/2));
g2.drawString(“Cola 4”, (float)(rect4.getX())+25,

(float)(rect4.getY()+rect4.getHeight()/2));

g2.setColor(new Color(123,123,45));
g2.fill(rect5);
g2.fill(rect6);

g2.setColor(Color.black);
g2.setFont(new Font(“Serif”, Font.BOLD, 18));
g2.drawString(“Cola 5”, (float)(rect5.getX())+25,

(float)(rect5.getY()+rect5.getHeight()/2));
g2.drawString(“Cola 6”, (float)(rect6.getX())+25,

(float)(rect6.getY()+rect6.getHeight()/2));
}

The mousePressed(MouseEvent e) method checks the user’s mouse event to see if it was clicked
inside one of the Rectangle2D button shapes. If the application detects a click inside the button display
area, then the data values associated with that button will be set in the JTree and JTable components:

public void mousePressed(MouseEvent e) {
if (insideRectangle(e.getX(), e.getY(), rect1.getX(), rect1.getY(),

rect1.getWidth(), rect1.getHeight())) {
dbRef.setRow(0);
dbRef.addTreeData(0);

}
if (insideRectangle(e.getX(), e.getY(), rect2.getX(), rect2.getY(),

rect2.getWidth(), rect2.getHeight())) {
dbRef.setRow(1);
dbRef.addTreeData(1);

}
if (insideRectangle(e.getX(), e.getY(), rect3.getX(), rect3.getY(),

rect3.getWidth(), rect3.getHeight())) {
dbRef.setRow(2);
dbRef.addTreeData(2);

}
if (insideRectangle(e.getX(), e.getY(), rect4.getX(), rect4.getY(),

rect4.getWidth(), rect4.getHeight())) {
dbRef.setRow(3);
dbRef.addTreeData(3);

}
if (insideRectangle(e.getX(), e.getY(), rect5.getX(), rect5.getY(),

rect5.getWidth(), rect5.getHeight())) {
dbRef.setRow(4);
dbRef.addTreeData(4);

}

170

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 170

if (insideRectangle(e.getX(), e.getY(), rect6.getX(), rect6.getY(),
rect6.getWidth(), rect6.getHeight())) {

dbRef.setRow(5);
dbRef.addTreeData(5);

}
}

The insideRectangle method returns a boolean true or false value depending on whether or not the
user has clicked the mouse inside the button shape on the panel display based on the coordinates passed
to the routine:

public boolean insideRectangle(int xMouse, int yMouse, double x, double y, double
width, double height) {

if ((xMouse >= x && xMouse <= x+width) && (yMouse >= y && yMouse <= y+height)
) {

return true;
}
return false;

}

protected void clear(Graphics g) {
super.paintComponent(g);

}

public void mouseDragged(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}
public void mouseMoved (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}

// main method omitted for the sake of brevity

}

The Java2DPanelMouseover class only generates a single Java 2D button that acts differently than the
Java2DPanel buttons in that when a user passes the mouse over the button, the Cola value will automat-
ically be set in the JTree and JTable data stores. The Java2DPanel application requires that a user
click inside the button display area to emulate the same behavior:

[Java2DPanelMouseover.java]
// package name and import statements omitted

public class Java2DPanelMouseover extends JPanel {

// declarations omitted for the sake of brevity [Please check download code]
public Java2DPanelMouseover(DBPanel dbRef) {

this.dbRef = dbRef;

setPreferredSize(new Dimension(100, 100));
setSize(100,100);

171

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 171

this.mouseOverColor = new Color(123,123,45);
this.normalColor = new Color(204, 255, 153);
this.paintColor = normalColor;

The addMouseListener method is used to track the individual mouse movements of the user across
the panel component. When the user crosses enters the button space with the Cola 1 label, the
mouseOverColor will displace the normalColor value and the JTable and JTree components will
point to the data associated with the Cola1 item using the displayTableRow1() method:

this.addMouseListener(new MouseListener() {
public void mouseEntered(MouseEvent e) {

displayTableRow1();
paintColor = mouseOverColor;
repaint();

}
public void mouseExited(MouseEvent e) {

paintColor = normalColor;
repaint();

}
public void mouseDragged(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}

});
}

public void displayTableRow1() {
dbRef.setRow(0);
dbRef.addTreeData(0);

}

The paintComponent(Graphics g) method applies the proper paint color inside the Java 2D button
using the value stored in the paintColor variable. The MouseEntered method sets the paintColor to
the mouseOverColor value and when the user exits the button space, it is reset to the normalColor
value:

public void paintComponent(Graphics g) {

Graphics2D g2d = (Graphics2D) g;

g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

Dimension d = this.getSize();

g2d.clearRect(0, 0, d.width, d.height);

int centerX = d.width / 2;
int centerY = d.height / 2;

int xOffset = d.width / 2 - 3;
int yOffset = d.height / 2 - 3;

g2d.setColor(this.paintColor);

172

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 172

g2d.fillRect(0, 0, 100, 100);

g2d.setColor(Color.black);
g2d.setFont(new Font(“Serif”, Font.BOLD, 18));
g2d.drawString(“Cola 1”, 25, 50);

}
}

The DBPanel class below stores the six different Cola values in the JTable component and dynami-
cally sets the row value inside the populated table associated with the button value as the user clicks
on the different Java 2D button components. The DBPanel constructor method is called when the
class is first invoked, where an object reference of the MyTableModel class, named mtm, invokes the
populateTable(String[] s) method to initialize the table values to empty strings prior to establish-
ing the layout managers needed to place the visual components on. Three different GridLayout man-
agers are instantiated, and two of those —panelData and panelTree— are placed upon the panelAll
layout panel:

[DBPanel.java]
// package name and import statements omitted

public class DBPanel extends JPanel implements PropertyChangeListener,
TableModelListener {

// declarations omitted for the sake of brevity [Please check download code]
public DBPanel() {

JPanel panelAll = new JPanel(new GridLayout(0,1,5,5));
JPanel panelData = new JPanel(new GridLayout(0,1,5,5));
panelData.add(panelTable());

setPreferredSize(new Dimension(300, 450));
String[] s = { “”, “”, “”, “” };
mtm.populateTable(s);
addTableData();

panelAll.add(panelData);

JPanel panelTree = new JPanel(new GridLayout(0,1,5,5));
panelTree.add(treePanel());

panelAll.add(panelTree);
addTreeData(0);

add(panelAll);
setBackground(Color.white);

}

The addTableData() method populates the array of string values called s with the four different Cola
attributes (Brand, Cost, Calories, and Size) and passes that array to the populateTable method for dis-
play. The addTree(int row) method allows users to add the Cola data to the row value passed into the
method:

173

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 173

public void addTableData() {
String[] s = { “”, “”, “”, “” };
for (int i=0; i < tableData.length; i++) {

s[0]=tableData[i][0]; s[1]=tableData[i][1]; s[2]=tableData[i][2];
s[3]=tableData[i][3];

mtm.populateTable(s);
}

}

public void addTreeData(int row) {
root = new DefaultMutableTreeNode(“Cola Attributes”);
tree = new JTree(root);
DefaultMutableTreeNode items;

items = new DefaultMutableTreeNode(“Cola “ + (row+1));
root.add(items);
items.add(new DefaultMutableTreeNode(“Brand= “ + tableData[row][0]));
items.add(new DefaultMutableTreeNode(“Cost= “ + tableData[row][1]));
items.add(new DefaultMutableTreeNode(“Calories= “ + tableData[row][2]));
items.add(new DefaultMutableTreeNode(“Size= “ + tableData[row][3]));
scrollPane.getViewport().add(tree);
tree.expandRow(0);

}

The panelTable() method creates a new MyTableModel object reference and adds it to a JTable object
called tree, which in turn is placed inside a scroll pane component so that users can navigate up and
down in the table when cola data attributes are added to the table component. The ListSelectionModel
interface is implemented to maintain the tables’ row selection state. The addListSelectionListener
method monitors the list so that changes to that list are reflected in the GUI representation:

public JPanel panelTable() {

JPanel tablePanel = new JPanel(new GridLayout(0,1,5,5));

mtm = new MyTableModel();
table = new JTable(mtm);
table.setPreferredScrollableViewportSize(new Dimension(250, 70));
JScrollPane scrollPane = new JScrollPane(table);

tablePanel.add(scrollPane);

table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
ListSelectionModel rowSM = table.getSelectionModel();
rowSM.addListSelectionListener(new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {
//Ignore extra messages.
if (e.getValueIsAdjusting()) return;

lsm = (ListSelectionModel)e.getSource();
if (lsm.isSelectionEmpty()) {

//no rows are selected
} else {

selectedRow = lsm.getMinSelectionIndex();

174

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 174

}
}

});
// titledBorder logic omitted for the sake of brevity

return tablePanel;
}

The treePanel() method establishes a new GridLayout manager so that a JTree structure can be
embedded within a scroll pane, which will allow the user to vertically scroll up and down the tree struc-
ture. The BorderFactory class is implemented so that a compound border titled Tree Information
frames the tree component:

public JPanel treePanel() {
JPanel tablePanel = new JPanel(new GridLayout(0,1,5,5));

scrollPane = new JScrollPane();
scrollPane.setVerticalScrollBarPolicy(

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
scrollPane.setPreferredSize(new Dimension(250, 150));
scrollPane.setBorder(
BorderFactory.createCompoundBorder(BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder(“Tree Information”),
BorderFactory.createEmptyBorder(5,5,5,5)),
scrollPane.getBorder()));

root = new DefaultMutableTreeNode(“Annotations”);
tree = new JTree(root);
scrollPane.getViewport().add(tree);

tablePanel.add(scrollPane);
return tablePanel;

}

public void propertyChange(PropertyChangeEvent e) {}
public void tableChanged(TableModelEvent e) {}

The MyTableModel class handles all of the table data for the six different Cola types through its method
implementations. The setValueAt method stores an individual object value at a designated row and
column value. The populateTable method reads in a string array and populates the table with those
values. The fireTableDataChanged() method tells the application’s listeners that changes have been
made to the table and need to be shown in the GUI representation:

class MyTableModel extends AbstractTableModel {
String[] columnNames= { “Brand”, “Cost”, “Calories”, “Size” };
private Object[][] data;
public int getColumnCount() { return columnNames.length; }
public int getRowCount() { return (data == null) ? 0 : data.length; }
public String getColumnName(int col) { return columnNames[col]; }
public Object getValueAt(int row, int col) { return data[row][col]; }

// addRow() and deleteRow(int row) methods were omitted for sake of brevity

175

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 175

public void setValueAt(Object value, int row, int col) {
data[row][col] = value;

}

The populateTable method receives a string array of table data that relates to the Cola button selection
so that it can be added to the JTable component for observation. Once the table has been populated,
then the fireTableDataChanged() method is invoked so that these table changes are updated in the
GUI view:

public void populateTable(String[] s) {
// if data exists in table, rewrite table for new entry
int rowCount = getRowCount();
if (rowCount != 0) {

// add another row
Object[][] temp = data;
data = new Object[rowCount+1][getColumnCount()];
// copy old items into new structure
for (int i=0; i < temp.length; i++) {

data[i][0] = temp[i][0];
data[i][1] = temp[i][1];
data[i][2] = temp[i][2];
data[i][3] = temp[i][3];

}
for (int i=0; i < getColumnCount(); i++)

setValueAt(s[i], rowCount-1, i);
} else {

data = cData;
for (int i=0; i < getColumnCount(); i++)

setValueAt(s[i], 0, i);
}
fireTableDataChanged();

}
}

public void setRow(int row) {
table.setRowSelectionInterval(row, row);

}

// main method omitted for the sake of brevity

}

Figure 4-8 represents the GridLayoutPanel application defined in the source code above. When users
click on the Java 2D button images, proper Cola values will be highlighted in the Swing components on
the right side of the GUI display.

176

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 176

Figure 4-8

GridBagLayout
The GridBagLayout manager manages its components both vertically and horizontally by maintaining
a rectangular grid of cells in its display area. Components are manipulated through constraint param-
eters using the GridBagConstraints class. These constraints specify where a component’s display area
should be positioned on the grid and its size using minimum and preferred size attributes. The construc-
tor methods for the GridBagLayout manager are shown in the method summary table that follows.

Method Description

public GridBagLayout() No parameters

The table below outlines the different instance variables that can be implemented with the
GridBagLayout manager. These variables can be implemented interchangeably to satisfy an applica-
tion’s visual requirements.

Instance Variables Description

gridx, gridy The gridx and gridy instance variables specify the cells con-
taining the leading corner of the component’s display area,
where the cell at the origin of the grid has address x = 0
degrees and y = 0 degrees. For applications that have horizon-
tal left-to-right layouts, the leading corner is on the upper left.
For applications that have horizontal right-to-left layouts, the
leading corner is on the upper right.

Table continued on following page

177

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 177

Instance Variables Description

weightx, weighty The weightx and weighty instance variables are used to
determine how to distribute space for resizing. All components
are placed together in the middle of a container unless a
weightx or weighty value is specified. The GridBagLayout
manager appends additional space between its cells and the
container edges when the default weight is initialized to zero.

insets The insets instance variable specifies the component’s
padding, which amounts to the minimum space available
between the component and the display area edges.

fill The fill instance variable is implemented when the compo-
nent’s display area is larger than the component’s requested
size to determine whether (and how) to resize the component.

GridBagConstraints.NONE (the default)

GridBagConstraints.HORIZONTAL— enables the component
to fill its display area horizontally, not vertically

GridBagConstraints.VERTICAL— allows the component to
fill its display area vertically, not horizontally

GridBagConstraints.BOTH— allows the component to fill its
display area both vertically and horizontally

The following GridBagLayout example applies both the Command and Visitor patterns to handle user
events and message generation from Swing component activities. Figure 4-9 provides a model of the
application and the component distribution on the GridBagLayout and their listeners.

The GridBagLayoutPanel application will incorporate the Command and Visitor patterns to handle
button requests for answers to the questions selected by the user in the different question components.
Some of the benefits and shortcomings of these patterns are shown in the following table.

Pattern Benefits Consequences

Visitor Separates operations from the Difficult to maintain
objects that perform operations
on it. Objects of the primary type Forces you to provide public
accept the visitor and then call the operations that access internal state
visitor’s dynamically bound data, which may break
method in a process referred to encapsulation
as double dispatch.

Adding new operations is
facilitated, no need for
recompilation.

178

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 178

Figure 4-9

The GridBagLayoutPanel class incorporates the GridBagLayout manager, which allows for the place-
ment of GUI components in a grid formation of rows and columns. The width and height of the rows
and columns do not necessarily have to be the same size throughout a panel display, but this sample
application maintains consistency across rows and columns for its GUI components:

[GridBagLayoutPanel.java]
// package name and import statements omitted

public class GridBagLayoutPanel extends JPanel implements ActionListener {
// declarations omitted for the sake of brevity [Please check download code]

The GridBagLayoutPanel constructor method declares and initializes the Swing components used for
the fortune teller application. First a JcomboBox component is created with a list of questions that can be
selected from the drop-down box. Next, a group of radio buttons is created, grouped together, and regis-
tered to the application using the RadioListener class. Those radio buttons are grouped vertically and
appended to the radioPanel. Both the drop-down list and the radio buttons are appended to the
topPanel display. Lastly, a list of questions is generated and added to a JScrollPane component and
registered with a MouseListener to generate fortunes when a user double-clicks a question in the list:

public GridBagLayoutPanel() {

setSize(200, 150);
cbQuestion = new JComboQuestion();
cbQuestion.addActionListener(this);

label = new JLabel(“Question: “);
label.setFont(messageFont);

RadioListener radioListener = new RadioListener();

JLabel

GridBagLayout

FlowLayout: topPanel

JComboBoxJLabel
ButtonGroup

JScrollPane MouseListener

RadioListener

Command pattern: execute()

Visitor pattern:
 Generate random message in displayMessage()

GridLayout: radioPanel

179

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 179

question1Button.setMnemonic(‘1’);
question2Button.setMnemonic(‘2’);
question3Button.setMnemonic(‘3’);
question1Button.addActionListener(radioListener);
question2Button.addActionListener(radioListener);
question3Button.addActionListener(radioListener);
ButtonGroup group = new ButtonGroup();
group.add(question1Button);
group.add(question2Button);
group.add(question3Button);

JPanel radioPanel = new JPanel();
radioPanel.setLayout(new GridLayout(0, 1));
radioPanel.add(question1Button);
radioPanel.add(question2Button);
radioPanel.add(question3Button);

String[] data = {“Will the Yankees win the pennant?”,
“Will the Giants win the Super Bowl?”,
“Will the Rangers win the Stanley Cup?”};

In the code snippet below, a JList component is instantiated and attached to a mouse listener so that
user clicks are detected upon that list. If a user double-clicks a list item, then the displayMessage()
method will be invoked with a randomly generated fortune related to the question selected by the user
in the list:

final JList list = new JList(data);
MouseListener mouseListener = new MouseAdapter() {

public void mouseClicked(MouseEvent e) {
if (e.getClickCount() == 2) {

logger.info(“Double clicked: “ + list.locationToIndex(e.getPoint()));
displayMessage();

}
}

};
list.setFont(listFont);
list.addMouseListener(mouseListener);
JScrollPane listScroller = new JScrollPane(list);
listScroller.setPreferredSize(new Dimension(100, 125));
listScroller.setBorder(new TitledBorder(“Double-click query for fortune”));
topPanel.add(label);
topPanel.add(cbQuestion);
topPanel.add(radioPanel);
topPanel.setBorder(new TitledBorder(“Question components”));

messageText = new JLabel(“Please pick a question...”);
messageText.setFont(messageFont);
results.add(messageText);
results.setPreferredSize(new Dimension(400, 50));
results.setBorder(BorderFactory.createLineBorder (Color.blue, 2));
results.setBackground(Color.yellow);

The following code segment demonstrates how the components are rendered using the GridBagLayout
manager. The GridBagConstraints class is instantiated so that constraints can be specified for the GUI
components in the application using the GridBagLayout manager:

180

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 180

setLayout(new GridBagLayout());

GridBagConstraints c = new GridBagConstraints();
c.gridx = 0;
c.gridy = 0;
c.weightx = 0.5;
c.insets = new Insets(2, 2, 2, 2);
c.fill = GridBagConstraints.BOTH;
add(topPanel, c);

c.gridy = 1;
c.weightx = 0.5;
c.gridwidth = 1;
c.fill = GridBagConstraints.HORIZONTAL;
add(listScroller, c);

c.gridx = 0;
c.gridy = 2;
c.weightx = 0.0;
c.insets = new Insets(50, 50, 0, 0);
c.fill = GridBagConstraints.NONE;
add(results, c);

}

public void actionPerformed(ActionEvent e) {
JComboQuestion cb = (JComboQuestion)e.getSource();
Command obj = (Command)e.getSource();
String question = (String)cb.getSelectedItem();

if (!question.equals(“Pick a question?”)) {
obj.execute();

}
}

The JComboQuestion class implements the Command pattern interface so that the GridBagLayoutPanel
class can invoke its execute() method when a user clicks the combo box affiliated with a question list
reference qbQuestion. The Command pattern increases reuse by decoupling the interface from the imple-
mentation, which means that all GUI components in the GridBagLayoutPanel class can use the public
execute() method interface to serve as a gateway to private implementations associated with them:

class JComboQuestion extends JComboBox implements Command {

public JComboQuestion() {
this.addItem(“Pick a question?”);
this.addItem(“Will I pass my class?”);
this.addItem(“Will my candidate win the election?”);
this.addItem(“Will I grow up to be a doctor?”);
setFont(messageFont);

}
public void execute() {

displayMessage();
}

}

181

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 181

The displayMessage() method selects a random number between 1 and 3 and uses that number to
generate a fortune using the Visitor pattern. The Visitor pattern implementation polymorphically
determines the proper accept method to call during operations:

public void displayMessage() {
MessageText mt = new MessageText();
int number = (int) (Math.random () * 3 + 1);
switch(number) {

case 1: ((FortuneTeller)new Message1()).accept(mt); break;
case 2: ((FortuneTeller)new Message2()).accept(mt); break;
case 3: ((FortuneTeller)new Message3()).accept(mt); break;

}
messageText.setFont(messageFont);
messageText.setText(mt.toString());
results.add(messageText);

}

public interface Command {
public void execute();

}

class RadioListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

displayMessage();
}

}

static public void main(String argv[]) {
JFrame frame = new JFrame(“GridBagLayout”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}
});
frame.getContentPane().add(new GridBagLayoutPanel(), BorderLayout.CENTER);
frame.pack();
frame.setVisible(true);

}

}

Figure 4-10 shows the visual representation of the GridLayoutPanel application. Random fortunes will
be generated by the Visitor pattern implementation when the user selects a question from the different
Swing components.

182

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 182

Figure 4-10

SpringLayout
The SpringLayout manager lays out its Container components according to user-specified constraint
parameters. Each constraint, represented by a Spring object, controls the vertical or horizontal distance
between two component edges. The edges can belong to any child of the container, or to the container
itself.

The SpringLayout manager does not set the location of its components automatically like some of the
other layout managers. Component locations need to be initialized through constraint parameters so
that minimum, maximum, and preferred lengths can be contained and bound. The constructor methods
for the SpringLayout manager are shown in the method summary table below.

Method Description

SpringLayout() Constructor (no parameters)

The following are some of the fields used to describe the constraints for component placement.

Field Description

static String EAST Right edge of component

static String NORTH Top edge of component

static String SOUTH Bottom edge of component

static String WEST Left edge of component

183

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 183

The following SpringLayout example allows users to generate log entries for their triathlon events using
a simple form display. Simple checks will be performed on the data prior to submission to ensure that all
of the relevant data has been entered by the user. When the user saves that event, it will be stored in a
JTable component for review. Figure 4-11 demonstrates what the SpringLayout application will look like.
Only one tabbed panel will be on display at a time, which will be dictated by the user navigations from
the button components at the bottom of the application.

Figure 4-11

The following code segment outlines in code how the model in Figure 4-11 will be realized:

[SpringLayoutPanel.java]
// package name and import statements omitted

public class SpringLayoutPanel extends JPanel implements ActionListener {

// declarations omitted for the sake of brevity [Please check download code]
public SpringLayoutPanel(String name) {

initComponents();
}

private void initComponents() {
tabPanel = new JTabbedPane();

eventPanel = new JPanel();
eventPanel.setLayout(new BorderLayout());
eventPanel.setPreferredSize(new Dimension(350, 400));
eventPanel.setToolTipText(“Event”);

SpringLayout

eventPanel

JTabbedPane

JTable

JButton

JTextArea

JTextfieldJLabel

JLabel JLabel

JLabel

JCombobox JCombobox

JLabelJSpinner JCombobox

Command pattern: execute()

(add event)

SpringLayout: panelInput

JTabbedPane

Command pattern: execute()

JButton
(save)

JButton
(cancel)

184

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 184

eventPanel.add(“Center”, EventPanel());

tabPanel.addTab(“Triathlon Record Log”, eventPanel);
add(tabPanel, BorderLayout.CENTER);

}

The EventPanel() method initializes many of the Swing components in the SwingLayoutPanel appli-
cation and combines BorderLayout and GridLayout manager panels to obtain its visualization needs:

public JPanel EventPanel() {
JPanel ePanel = new JPanel(new GridLayout(0, 1, 5, 5));
ePanel.setMaximumSize(new Dimension(350, 400));
ePanel.setMinimumSize(new Dimension(350, 400));
ePanel.setPreferredSize(new Dimension(350, 400));

eventPanel = new JPanel();
eventButtonPanel = new JPanel();
addEventButton = new JAddEventButton();

eventPanel.setLayout(new BorderLayout());
eventPanel.setMinimumSize(new Dimension(350, 400));
eventPanel.setPreferredSize(new Dimension(350, 400));

gridPanel = new JPanel(new GridLayout(0, 1, 5, 5));
gridPanel.add(panelTable());

eventButtonPanel.setLayout(new GridLayout(1, 2));

addEventButton.setText(“Add New Event”);
addEventButton.setToolTipText(“Add New Event”);
addEventButton.addActionListener(this);
eventButtonPanel.add(addEventButton);
eventButtonPanel.setPreferredSize(new Dimension(350, 30));
eventPanel.add(eventButtonPanel, BorderLayout.SOUTH);
eventPanel.add(gridPanel, BorderLayout.NORTH);

String[] s = { “”, “”, “”, “” };
mtm.populateTable(s);

ePanel.add(eventPanel);

return ePanel;
}

The panelTable method implements a GridLayout manager to accommodate the inclusion of a JTable
component that will store the different triathlon log entries. A ListSelectionListener is instantiated to
handle user events that affect the table:

public JPanel panelTable() {

JPanel tablePanel = new JPanel(new GridLayout(0, 1, 5, 5));

mtm = new MyTableModel();

185

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 185

table = new JTable(mtm);
table.setPreferredScrollableViewportSize(new Dimension(250, 70));
JScrollPane scrollPane = new JScrollPane(table);
tablePanel.add(scrollPane);

table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
ListSelectionModel rowSM = table.getSelectionModel();
rowSM.addListSelectionListener(new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {
if (e.getValueIsAdjusting()) return;

lsm = (ListSelectionModel) e.getSource();
if (lsm.isSelectionEmpty()) {

//no rows are selected
} else {

selectedRow = lsm.getMinSelectionIndex();
logger.info(“selectedRow= “ + selectedRow);

}
}

});
return tablePanel;

}

The formPanel() method implements a SpringLayout manager where all of the log entry components
are placed so that user training activities can be tracked. Two Swing library layout managers,
BorderLayout and GridLayout, are combined so that a SpringLayout manager that holds the triathlon
training attributes can be placed above the Save and Cancel buttons:

public JPanel formPanel() {

springLayout = new SpringLayout();
panelInput = new JPanel(springLayout);
panelInput.setMinimumSize(new Dimension(350, 370));
panelInput.setPreferredSize(new Dimension(350, 370));

eventPanel = new JPanel();
eventPanel.setLayout(new BorderLayout());
eventPanel.setPreferredSize(new Dimension(350, 400));

panelButton = new JPanel();
panelButton.setLayout(new GridLayout(1, 4));

panelButton.setMinimumSize(new Dimension(350, 30));
panelButton.setPreferredSize(new Dimension(350, 30));

textareaDescription = new JTextArea();

buttonSave = new JButtonSave();
buttonCancel = new JButtonCancel();

comboboxTime = new JComboBox();

trainingLength = new String[] { “15 min”, “30 min”, “45 min”, “1 hr”, “2 hrs”
};

comboboxLength = new JComboBox(trainingLength);

186

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 186

textfieldTitle = new JTextField();
category = new String[] { “Swim”, “Bike”, “Run”, “Other” };
comboboxCategory = new JComboBox(category);

model = new SpinnerDateModel();
model.setCalendarField(Calendar.WEEK_OF_MONTH);
spinner = new JSpinner(model);
JSpinner.DateEditor editor =

new JSpinner.DateEditor(spinner, “MMMMM dd, yyyy”);
spinner.setEditor(editor);
ChangeListener listener = new ChangeListener() {

public void stateChanged(ChangeEvent e) {
SpinnerModel source = (SpinnerModel) e.getSource();
System.out.println(“The value is: “ + source.getValue());

}
};
model.addChangeListener(listener);

// label declarations and initializations for Title, Date, Category, Time,
Duration, and Description omitted for better clarity

The code segment below establishes two button components and a text area display for the triathlon
entry form. The text area named textareaDescription is enabled and has an etched border frame to sur-
round it. Minimum and maximum size constraints are defined as well as column values and line wrap-
ping so that text entered by a user remains in sight of that user. Buttons for both the save and cancel
operations have text labels attached to them with new font declarations and tool tip text for mouse over
pop-ups that indicate what purpose those buttons serve:

textareaDescription.setEnabled(true);
textareaDescription.setBorder(BorderFactory.createEtchedBorder());
textareaDescription.setMinimumSize(new Dimension(85, 51));
textareaDescription.setPreferredSize(new Dimension(85, 51));
textareaDescription.setText(“”);
textareaDescription.setColumns(25);
textareaDescription.setLineWrap(true);

buttonSave.setText(“Save event”);
buttonSave.setFont(new java.awt.Font(“Dialog”, 1, 12));
buttonSave.addActionListener(this);
buttonSave.setToolTipText(“Save event.”);
buttonSave.setPreferredSize(new Dimension(58, 25));

buttonCancel.setText(“Return to event list.”);
buttonCancel.setFont(new java.awt.Font(“Dialog”, 1, 12));
buttonCancel.addActionListener(this);
buttonCancel.setToolTipText(“Return to event list.”);
buttonCancel.setPreferredSize(new Dimension(58, 25));

The following code segment dictates how to implement SpringLayout constraints to achieve the look and
feel of the disparate Swing components for tracking. The Constraints object of the SpringLayout manager
positions the edges of the children in the container object through vertical and horizontal values:

187

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 187

//Add the components to the panel using SpringLayout.
panelInput.add(labelTitle,new

SpringLayout.Constraints(Spring.constant(15),Spring.constant(21)));
panelInput.add(textfieldTitle,new

SpringLayout.Constraints(Spring.constant(45),Spring.constant(17)));
panelInput.add(labelTime,new

SpringLayout.Constraints(Spring.constant(13),Spring.constant(69)));
panelInput.add(comboboxTime,new

SpringLayout.Constraints(Spring.constant(45),Spring.constant(63)));
panelInput.add(labelLength,new

SpringLayout.Constraints(Spring.constant(190),Spring.constant(69)));
panelInput.add(comboboxLength,new

SpringLayout.Constraints(Spring.constant(250),Spring.constant(63)));
panelInput.add(labelCategory,new

SpringLayout.Constraints(Spring.constant(190),Spring.constant(115)));
panelInput.add(comboboxCategory,new

SpringLayout.Constraints(Spring.constant(250),Spring.constant(109)));
panelInput.add(labelDate,new

SpringLayout.Constraints(Spring.constant(15),Spring.constant(115)));
panelInput.add(spinner,new

SpringLayout.Constraints(Spring.constant(45),Spring.constant(111)));
panelInput.add(textareaDescription,new

SpringLayout.Constraints(Spring.constant(10),Spring.constant(217)));
panelInput.add(labelDescription,new

SpringLayout.Constraints(Spring.constant(11),Spring.constant(201)));

for (int i = 0; i < 24; i++) {
timeString = Integer.toString(i);
if (timeString.length() == 1)

timeString = “0” + timeString;
if (i != 0) {

comboboxTime.addItem(timeString + “00”);
comboboxTime.addItem(timeString + “15”);
comboboxTime.addItem(timeString + “30”);
comboboxTime.addItem(timeString + “45”);

} else {
comboboxTime.addItem(timeString + “00”);
comboboxTime.addItem(timeString + “15”);
comboboxTime.addItem(timeString + “30”);
comboboxTime.addItem(timeString + “45”);

}
}
comboboxTime.addItem(“2400”);
comboboxTime.setSelectedItem(“0930”);

eventPanel.add(BorderLayout.CENTER, panelInput);
eventPanel.add(BorderLayout.SOUTH, panelButton);

JPanel ePanel = new JPanel(new BorderLayout());
ePanel.add(eventPanel, BorderLayout.CENTER);

panelButton.add(buttonSave);
panelButton.add(buttonCancel);

188

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 188

return ePanel;
}

The JAddEventButton class handles mouse events on the first tabbed pane display that occur when the
user clicks the Add Event button on the bottom of the display. The application polymorphically invokes
the execute() method, which removes all of the current panel components with the removeAll() method,
and then creates a new layout so that the SpringLayout manager can be applied from the formPanel()
method:

class JAddEventButton extends JButton implements Command {
public JAddEventButton() {

super();
}
public void execute() {

logger.info(“[JAddEventButton:execute]”);
eventPanel.removeAll();
eventPanel.setLayout(new BorderLayout());
eventPanel.add(formPanel());
eventPanel.requestFocusInWindow();
eventPanel.validate();

}
}

The JButtonSave component handles user events that occur when the user clicks the Save Event button.
A cursory data check is performed on the title field to ensure that a proper title has been entered by the
user prior to moving back to the initial tabbed panel screen with the user entry displayed in a JTable
component:

class JButtonSave extends JButton implements Command {
public JButtonSave() {

super();
}
public void execute() {

if (textfieldTitle.getText().length() == 0 || textfieldTitle.getText() ==
null) {

Toolkit.getDefaultToolkit().beep();
JOptionPane.showMessageDialog(null, “Please Enter Event Title”,

“Error”, JOptionPane.ERROR_MESSAGE);
textfieldTitle.requestFocusInWindow();
textfieldTitle.selectAll();
return;

}

JOptionPane.showMessageDialog(null, “Event saved.”,
“Operation Completed”,

JOptionPane.INFORMATION_MESSAGE);

restoreLogPanel();
String[] s = { “”, “”, “”, “” };
s[0] = (String) comboboxCategory.getSelectedItem();
s[1] = textareaDescription.getText();
s[2] = (String) comboboxTime.getSelectedItem();

189

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 189

mtm.populateTable(s);
}

}

class JButtonCancel extends JButton implements Command {
public JButtonCancel() {

super();
}
public void execute() {

logger.info(“[JButtonCancel:execute] date = “ + getDate());
restoreLogPanel();

}
}

The getDate() method returns a string value from the JSpinner component that represents the date affili-
ated with the triathlon event. The restoreLogPanel() method invokes the removeAll() method to clear the
panel display, establishes a new BorderLayout presentation panel, and initializes that new panel with
the triathlon event components for logging operations. The requestFocusInWindow() method is called to
request that the panel component gets the input focus. Lastly, the validate() method is implemented to
cause the container to lay out its subcomponents again:

public String getDate() {
return ((JSpinner.DateEditor) spinner.getEditor()).getTextField().getText();

}

public void restoreLogPanel() {
removeAll();
setLayout(new BorderLayout());
initComponents();
requestFocusInWindow();
validate();

}

public void actionPerformed(ActionEvent e) {
Command obj = (Command) e.getSource();
obj.execute();

}

// main method omitted for better clarity

}

Figure 4-12 represents the SpringLayoutPanel tabbed panel application that appears on the user display
when a user invokes the Add Event button. The form display performs a cursory check on the data to
ensure proper data is entered by the user when the Save Event button is clicked. The SpringLayout man-
ager distributes JTextfield, JComboBox, JSpinner, and JTextArea components using constraint values
positioning.

190

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 190

Figure 4-12

CardLayout
The CardLayout manager organizes its components as a stack of cards, where components are displayed
one at a time. This allows components to be easily swapped in and out like a slide show presentation.
The constructor methods for the CardLayout manager are shown in the method summary table below.

Method Description

public CardLayout() No parameters

public CardLayout(int hGap, Constructor where the hGap and vGap parameters
int vGap) specify the horizontal and vertical pixels between

components

The following CardLayout example employs the Command and Strategy patterns to encapsulate behav-
ior that will be applied to the user text. Figure 4-13 shows the CardLayout model and the different
Swing components applied to that layout manager panel.

191

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 191

Figure 4-13

The CardLayoutPanel application utilizes the Strategy pattern to apply different algorithms to user spec-
ified text. The Command pattern is used to polymorphically determine what strategy to apply during
run time. Some of the benefits and drawbacks of these two patterns are shown in the following table.

Pattern Benefits Consequences

Strategy Decouples algorithms so that programs Increases number of objects
can be more flexible in their execution of
logic and behavior

Reduces multiple conditional statements

The CardLayoutPanel source code follows to demonstrate how the model in Figure 4-13 can be
developed:

[CardLayoutPanel.java]
// package name and import statements omitted

public class CardLayoutPanel extends JPanel implements ActionListener, ItemListener
{

// declarations omitted for the sake of brevity [Please check download code]

The CardLayoutPanel constructor lays out the manager for the two card panels, card1 and card2. The
card1 panel contains two independent buttons that implement the Strategy pattern on user specified

JTextField1

JPanel

CardLayout cards

Command pattern: execute()card1
JLabel1 JButton JButton JButton

JTextField2

Strategy #1
Strategy pattern : StartsWithAEIOU

Strategy #2
Strategy pattern : AlphabeticChars

JPanel Command pattern: execute()card2

JPanel results
JLabel

JLabel2 JButton JButton JButton

swap

192

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 192

text. The card2 panel reveals the text that results from the State pattern algorithm application. The
JButtonStrategy1 class applies the Pig-Latin algorithm to the use text when solicited by the user. The
JButtonStrategy2 button converts the user text to uppercase text by applying the AlphabeticChars algo-
rithm in its operations:

public CardLayoutPanel() {

setSize(700, 150);
cards = new JPanel(new CardLayout());
card1 = new JPanel();
card2 = new JPanel();
card3 = new JPanel();

// swap buttons
swapButton1.addActionListener(this);
swapButton1.setActionCommand(“Swap to Strategy 2”);
swapButton2.addActionListener(this);
swapButton2.setActionCommand(“Swap to Strategy 1”);

// Strategy Buttons
strategyButton1.setActionCommand(“Strategy #1”);
strategyButton1.addActionListener(this);
strategyButton2.setActionCommand(“Strategy #2”);
strategyButton2.addActionListener(this);

// Clear button
clearButton1.setActionCommand(“clear”);
clearButton1.addActionListener(this);
clearButton2.setActionCommand(“clear”);
clearButton2.addActionListener(this);

topPanel1.add(labelText1);
topPanel1.add(textfield1);
topPanel1.add(strategyButton1);
topPanel1.add(clearButton1);
topPanel1.add(swapButton1);

topPanel2.add(labelText2);
topPanel2.add(textfield2);
topPanel2.add(strategyButton2);
topPanel2.add(clearButton2);
topPanel2.add(swapButton2);

messageText = new JLabel(“Enter messages”);
results.add(messageText);
results.setPreferredSize(new Dimension(700, 100));
results.setBorder(BorderFactory.createLineBorder (Color.blue, 2));
results.setBackground(DIGIT_COLOR);

card1.add(topPanel1);
card2.add(topPanel2);

cards.add(cardText[0], card1);

193

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 193

cards.add(cardText[1], card2);

card3.add(results, “Results Panel”);

add(cards);
add(card3);

}

The CardLayoutPanel class implements the ActionListener interface so that component objects created
with that class can be registered using the addActionListener(ActionListener l) method shown in the
previous code segment. The actionPerformed(ActionEvent e) method then processes those requests that
are registered through the action listener. All of the JButton components in CardLayoutPanel implement
the Command pattern interface method named execute() so that the appropriate button control method
logic is executed when the user clicks that component. This is feasible because the application uses the
object reference to that execute() method for execution. If one of the swap buttons is selected, then the
sample application will alternate between strategy operations. The CardLayout next method is imple-
mented to swap operations, but alternative code that performs that same operation using the
swapNumber token and the CardLayout show method also demonstrate how to swap layouts:

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand.startsWith(“Swap”)) {

CardLayout cardLayout = (CardLayout)(cards.getLayout());
// ++swapNumber;
// cardlayout.show(cards, cardText[swapNumber%2]);
cardLayout.next(cards);

} else {
Command obj = (Command)e.getSource();
obj.execute();

}
}

The testStrategy(TestStrategy strategy, String m) method allows the application to send in the appropri-
ate Strategy algorithm class along with a String variable that will be applied to that algorithm. The object
reference, called strategy, invokes the test() method in the TestStrategy interface:

public boolean testStrategy(TestStrategy strategyApproach, String s) {
return strategyApproach.test(s);

}

The JButtonStrategy1 class invokes the execute() method when the user clicks the Strategy #1 button on
the GUI panel. The text specified in the text field is stripped into individual tokens that are passed into
the StartsWithAEIOU strategy class to return a boolean value, true or false, if the token starts with either
an a, e, i, o, or u. Strings that satisfy this test are converted to Pig-Latin by appending the word way to
the end of the string. Tokens that don’t match that test have their initial consonant value stripped from
the start of the word and appended to the end along with the letters ay:

class JButtonStrategy1 extends JButton implements Command {

public JButtonStrategy1(String caption) { super(caption); }
public void execute() {

String s = textfield1.getText();
String[] sArray = s.split(“[,]+”);
StringBuffer sb = new StringBuffer();

194

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 194

sb.append(“PIG-LATIN: “);

for (int i=0; i < sArray.length; i++) {
if (testStrategy(new StartsWithAEIOU(), sArray[i])) {

sb.append(sArray[i] + “way “);
} else {

sb.append(sArray[i].replaceAll(“^([^aeiouAEIOU])(.+)”, “$2$1ay “));
}

}
messageText.setText(sb.toString());

}
}

The JButtonStrategy2 class invokes the execute() method when the user clicks the Strategy #2 button on
the GUI panel. The text specified in the text field is stripped into individual tokens that are passed into
the AlphabeticChars strategy class to determine if they can be properly converted to uppercase lettering:

class JButtonStrategy2 extends JButton implements Command {

public JButtonStrategy2(String caption) { super(caption); }
public void execute() {

String s = textfield2.getText();
String[] sArray = s.split(“[,]+”);
StringBuffer sb = new StringBuffer();
sb.append(“UPPERCASE: “);

for (int i=0; i < sArray.length; i++) {
if (testStrategy(new convertUppercase(), sArray[i])) {

sb.append(sArray[i].toUpperCase());
sb.append(“ “);

}
}
messageText.setText(sb.toString());

}
}

class JButtonClear extends JButton implements Command {

public JButtonClear(String caption) { super(caption); }
public void execute() {

textfield1.setText(“”);
textfield2.setText(“”);
messageText.setText(“User cleared text: “);

}
}

public void itemStateChanged(ItemEvent evt) {
CardLayout cl = (CardLayout)(cards.getLayout());
cl.show(cards, (String)evt.getItem());

}

public interface Command {
public void execute();

}

195

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 195

The TestStrategy interface is implemented by the StartsWithAEIOU and AlphabeticChars classes so that
the CardLayoutPanel application can apply different string algorithms to the user-specified text. Regular
expression constructs are used to determine the patterns of the strings passed into the test method:

public interface TestStrategy {
public boolean test(String s);

}

public class StartsWithAEIOU implements TestStrategy {
public boolean test(String s) {

if(s == null || s.length() == 0) return false;
return (s.toUpperCase().charAt(0) == ‘A’ ||

s.toUpperCase().charAt(0) == ‘E’ ||
s.toUpperCase().charAt(0) == ‘I’ ||
s.toUpperCase().charAt(0) == ‘O’ ||
s.toUpperCase().charAt(0) == ‘U’

);
}

}

public class convertUppercase implements TestStrategy {
public boolean test(String s) {

if(s == null || s.length() == 0) return false;
Pattern pattern = Pattern.compile(“[a-zA-Z]”);
Matcher match = pattern.matcher(s);
if (!match.find()) {

return false;
} else {

return (true);
}

}
}

// main routine omitted for brevity

}

Figure 4-14 represents the CardLayoutPanel application modeled in the source code above. Users can
enter text in the card layout show in the top panel and hit either strategy pattern button to apply the
appropriate Strategy algorithm to that text. Results of those actions will be rendered in the card layout
below. All of the button components employ the Command pattern to allow the application to determine
at run time the proper execute() method to invoke based on the user’s navigations.

196

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 196

Figure 4-14

JFrame and JDialog Components
The JFrame class is used in Java applications to construct a top-level window for GUI components with
a border and title, as well as buttons for minimization, maximization, and closure. The JDialog class is
used to build pop-up windows for user decision making and aggregating unified data entries. Both
classes are important features of the Swing libraries to build cohesive GUI components.

This portion of the chapter will disclose how the JFrame and JDialog classes can be used in tandem to
build an effective Annotation Editor application. The sample application will allow users to mark up text
files so that meta data, in the form of comments and associated attributes, can be linked to a document
passage from a user-specified file. Annotations typically mean comments, notes, or explanations that can
be attached to the text without actually needing to touch the document. When a user opens a document
in the editor, all meta data text that is persisted in a MySQL database will be attached to the text marked
up by users who have commented on passages in that file (see Figure 4-15).

197

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 197

Figure 4-15

The code here demonstrates how the Annotation Editor was developed. A MySQL database is used to
persist meta data associated with marked text in the document. Additionally, logic was added to save
the annotation to Microsoft Excel spreadsheet artifacts using Jakarta POI libraries, as well as XML docu-
ments using dom4j libraries:

// package name and import statements omitted

public class AnnotationEditor extends JFrame {

// declaration omitted for sake of brevity [please check out source download]

public AnnotationEditor() {
super(“Annotation Editor”);

initPopupMenu();
popupListener = new PopupListener();
componentListener = new ComponentListener();

textComp = createTextComponent();
textComp.addMouseListener(popupListener);
textComp.addCaretListener(componentListener);
textComp.setBorder(BorderFactory.createCompoundBorder(

BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder(“Text”),
BorderFactory.createEmptyBorder(5,5,5,5)),
textComp.getBorder()));
textComp.setEditable(false);

scrollPane = new JScrollPane();
scrollPane.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
scrollPane.setPreferredSize(new Dimension(350, 150));

198

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 198

scrollPane.setBorder(BorderFactory.createCompoundBorder(
BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder(“Annotations”),
BorderFactory.createEmptyBorder(5,5,5,5)),
scrollPane.getBorder()));

root = new DefaultMutableTreeNode(“Annotations”);
tree = new JTree(root);
scrollPane.getViewport().add(tree);

content = getContentPane();
content.add(textComp, BorderLayout.CENTER);
content.add(createToolBar(), BorderLayout.NORTH);
content.add(scrollPane, BorderLayout.SOUTH);
setJMenuBar(createMenuBar());
setSize(700, 500);

}

The AnnotationEditor(String filename) constructor method invokes the createTextComponent()
method to instantiate a JTextArea component used to display the file used for annotating text. The
FileReader class is used to read the file for annotation and posit in the text area display textComp. The
center and north quadrants of a BorderLayout manager are used to display the annotation file and tool-
bar components:

public AnnotationEditor(String filename) {
super(“Annotation Editor”);

textComp = createTextComponent();
File file = new File(filename);
if (file == null) return;

FileReader reader = null;
try {

reader = new FileReader(file);
textComp.read(reader, null);

} catch (IOException ex) {
JOptionPane.showMessageDialog(AnnotationEditor.this,
“File Not Found”, “ERROR”, JOptionPane.ERROR_MESSAGE);

}
finally {

if (reader != null) {
try {

reader.close();
} catch (IOException x) {}

}
}

Container content = getContentPane();
content.add(textComp, BorderLayout.CENTER);
content.add(createToolBar(), BorderLayout.NORTH);
setJMenuBar(createMenuBar());
setSize(320, 240);

}

protected JTextComponent createTextComponent() {

199

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 199

JTextArea ta = new JTextArea();
ta.setLineWrap(true);
return ta;

}

The initPopupMenu() method kicks off a dialog panel that allows users to input meta data associated
with the person highlighted in the editor display. The actionPeformed(ActionEvent evt) method is imple-
mented to handle mouse events when the user right-clicks text within the GUI display. If the user selects
the Person link inside the pop-up panel, then the application will pop up the AnnotationPeopleDialog
component so that users can attach meta data to the text highlighted by the user:

protected void initPopupMenu() {
popup = new JPopupMenu();
ActionListener menuListener = new ActionListener() {

public void actionPerformed(ActionEvent event) {
if (“Person”.equals(event.getActionCommand())) {

String[] markedText = textComp.getSelectedText().trim().split(“[
]+”);

for (int i=0; i < markedText.length; i++)
AnnotationPeopleDialog dlg =

new AnnotationPeopleDialog(textComp.getSelectedText().trim(),
filename.toString(),
getAnnotationStart(),
getAnnotationEnd());

dlg.show();
highlight(textComp, textComp.getSelectedText().trim());

} else if (“Annotations”.equals(event.getActionCommand())) {
AnnotationSearchResultsDialog d = new AnnotationSearchResultsDialog();
d.show();

}
}

};

Users can kick off the dialog panel for annotation entry by right-clicking their mouse inside the GUI pre-
sentation, which will pop up a panel with two user selections, Person or Export Excel. If the user selects
Person, then the dialog will present the data input form. Alternatively, if the user clicks Export Excel,
then all of the annotations that reside in the database will be exported to an Excel spreadsheet. Figure
4-16 illustrates how the AnnotationPeopleDialog display is rendered so that users can attach meta data
to the highlighted Gillian Stern text.

200

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 200

Figure 4-16

// add images and listeners
itemPerson = new JMenuItem(“Person”, createImageIcon(“images/people.gif”));
itemPerson.setActionCommand(“Person”);
itemPerson.addActionListener(menuListener);
popup.add(itemPerson);
itemExportExcel = new JMenuItem(“Export Excel”,

createImageIcon(“images/excel.gif”));
itemExportExcel.setActionCommand(“Export Excel”);
itemExportExcel.addActionListener(menuListener);
popup.add(itemExportExcel);

// The code here is commented out, but is a new feature of J2SDK1.5 that
// allows users to easily implement context-sensitive menus that appear when
// a user right-clicks over a specified area in a GUI display. Rather than
// checking the trigger within the MouseEvent class, control is passed to
// to the JpopupMenu class itself. If the code below is commented out, then
// the PopupListener class below should be omitted, as well as the
// instantiation of that class above and its ties to the JTextArea mouse
// listener in the textComp.addMouseListener(popupListener) operation
//
// JButton button = new JButton(“Test”);
// button.setComponentPopupMenu(popup);
// getContentPane().add(button, BorderLayout.CENTER);

}

class PopupListener extends MouseAdapter {
public void mousePressed(MouseEvent e) { showPopup(e); }
public void mouseClicked(MouseEvent e) { showPopup(e); }
public void mouseReleased(MouseEvent e) { showPopup(e); }

201

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 201

private void showPopup(MouseEvent e) {
if (e.isPopupTrigger()) {

popup.show(e.getComponent(), e.getX(), e.getY());
}

}
}

The ComponentListener class implements the CaretListener interface to process the user marking activi-
ties inside the editor application. The Select operation in the PreparedStatement below takes the start and
end positions of the annotation text to determine what annotations have been affiliated with that text:

public class ComponentListener implements CaretListener {

public void caretUpdate(CaretEvent e) {
displaySelectionInfo(e.getDot(), e.getMark());

}

protected void displaySelectionInfo(final int dot, final int mark) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {

setAnnotationInfo(mark, dot);
// retrieve annotation text
try {

Class.forName(“org.gjt.mm.mysql.Driver”);
Connection conn =

DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”, “”, “”);
PreparedStatement preparedStmt =

conn.prepareStatement(“SELECT F_FILENAME, ANNOTATION_TYPE,
ANNOTATION_TEXT FROM ANNOTATION_TABLE WHERE ? >= ANNOTATION_START AND ? <=
ANNOTATION_END”);

preparedStmt.setInt(1, mark);
preparedStmt.setInt(2, dot);
ResultSet result = preparedStmt.executeQuery();
if (result != null) {

String annotationFilename=””;
String annotationType=””;
while (result.next()) {

annotationFilename = result.getString(1);
annotationType = result.getString(2);

}

If the annotation filename is not empty, then all of the attributes of the annotation file are retrieved (so
that they can be added to the JTree component for visualization) and the database connection is closed:

if (!annotationFilename.equals(“”)) {
preparedStmt =

conn.prepareStatement(“SELECT * FROM “ + annotationType +
“ WHERE FILENAME = ?” +

“ AND ? >= ANNOTATION_START AND ? <= ANNOTATION_END”);
preparedStmt.setString(1, annotationFilename);
preparedStmt.setInt(2, mark);
preparedStmt.setInt(3, dot);

202

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 202

result = preparedStmt.executeQuery();

int itemsCount = 0;
root = new DefaultMutableTreeNode(“Annotations”);
tree = new JTree(root);
DefaultMutableTreeNode items;

if (annotationType.equals(“PERSON”)) {
while (result.next()) {

items = new DefaultMutableTreeNode(“Item” +
(++itemsCount));

root.add(items);
items.add(new DefaultMutableTreeNode(“First Name= “ +

result.getString(2)));
items.add(new DefaultMutableTreeNode(“Middle Name= “ +

result.getString(3)));
items.add(new DefaultMutableTreeNode(“Last Name= “ +

result.getString(4)));
items.add(new DefaultMutableTreeNode(“DOB= “ +

result.getString(5)));
items.add(new DefaultMutableTreeNode(“Comments= “ +

result.getString(6)));
}

}
scrollPane.getViewport().add(tree);
tree.expandRow(0);

}
}
conn.close();

} catch (Exception e) {
logger.info(“Exception: “ + e.toString());

}
}

});
}

}
// setAnnotationInfo(), getAnnotationStart() and getAnnotationEnd() omitted for

the sake of brevity

The createToolBar() method instantiates a new toolbar component to add the actions that a user can per-
form in the editor application. Those actions include the opening and printing of files and the exporting
of annotations to XML and Excel spreadsheet artifacts:

protected JToolBar createToolBar() {
JToolBar bar = new JToolBar();
bar.add(getOpenAction()).setText(“”);
bar.add(getPrintAction()).setText(“”);
bar.add(getXmlAction()).setText(“”);
bar.add(getExcelAction()).setText(“”);
return bar;

}

203

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 203

The highlight and removeHighlights methods are invoked by the user when text inside the editor is
marked and unmarked by mouse activities by the user. The text marked inside the text area component
textComp is collected by the invocation of the getHighlighter() method, and the text is highlighted in the
view by the addHighlight method. Alternatively, text highlights are removed by invoking the
removeHighlights method:

public void highlight(JTextComponent textComp, String pattern) {

try {
hilite = textComp.getHighlighter();
doc = textComp.getDocument();
String text = doc.getText(0, doc.getLength());
int pos = 0;

// save annotation position and length for future reference
int x = text.indexOf(pattern, pos);
if (x > 0) {

hilite.addHighlight(x, x+pattern.length(), myHighlightPainter);
}

} catch (BadLocationException e) {
logger.severe(“BadLocationException e” + e.toString());

}
}

public void removeHighlights(JTextComponent textComp) {
Highlighter hilite = textComp.getHighlighter();
Highlighter.Highlight[] hilites = hilite.getHighlights();

for (int i=0; i<hilites.length; i++) {
if (hilites[i].getPainter() instanceof MyHighlightPainter) {

hilite.removeHighlight(hilites[i]);
}

}
}

The HighlightPainter class is instantiated with color attributes sent to the Color constructor so that all
highlights in the text document persist the same color throughout the text. The createMenuBar()
method returns a JMenuBar object with actions for opening and printing files, as well as for persisting
the annotations in XML and Microsoft Excel files and finally for exiting the application altogether:

Highlighter.HighlightPainter myHighlightPainter = new MyHighlightPainter(new
Color(255,204,51));

class MyHighlightPainter extends DefaultHighlighter.DefaultHighlightPainter {
public MyHighlightPainter(Color color) {

super(color);
}

}

protected JMenuBar createMenuBar() {
JMenuBar menubar = new JMenuBar();
JMenu file = new JMenu(“File”);
menubar.add(file);

file.add(getOpenAction());

204

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 204

file.add(getPrintAction());
file.add(getXmlAction());
file.add(getExcelAction());
file.add(new ExitAction());
return menubar;

}

The Action interface provides an extension to the ActionListener interface whereby an application needs
to implement an actionPerformed() method to obtain desirable system behavior. That behavior could be
for a fly-over text display or to modify component event generation. The AnnotationEditor establishes
four user actions for File Open, Print, XML, and Excel spreadsheet generation operations.

The peopleAction method kicks off a dialog that allows users to add people information that has been
marked in the editor display. When invoked, the application creates a new instance of the
AnnotationPeopleDialog class, the class reference invoked the show() method to display the panel to
the user for data input:

protected Action getOpenAction() { return openAction; }
protected Action getPrintAction() { return printAction; }
protected Action getXmlAction() { return xmlAction; }
protected Action getExcelAction() { return excelAction; }

protected JTextComponent getTextComponent() { return textComp; }

protected Action getPeopleAction() { return peopleAction; }

public class peopleAction extends AbstractAction {
public peopleAction() {

super(“People”, new ImageIcon(“images/people.gif”));
}
public void actionPerformed(ActionEvent ev) {

AnnotationPeopleDialog dlg = new AnnotationPeopleDialog();
dlg.show();

}
}

public class ExitAction extends AbstractAction {
public ExitAction() { super(“Exit”); }
public void actionPerformed(ActionEvent ev) { System.exit(0); }

}

The PrintAction class collects all information from the Person database table and kicks off a print GUI to
allow users to dictate where the aggregated people information will be printed. All of the annotation text
that will be submitted for printout will be aggregated through the Select construct placed in the
PreparedStatement that follows. Each individual row of the Person table will be stuffed into an instance
of a AnnotationPersonRecord object and added to a list collection before it is passed to the printArrays
method of the AnnotationPrint class:

public class PrintAction extends AbstractAction {
public PrintAction() {

super(“Print”, new ImageIcon(“icons/print.gif”));
}
public void actionPerformed(ActionEvent ev) {

205

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 205

try {
Class.forName(“org.gjt.mm.mysql.Driver”);
Connection conn =

DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”,
“”, “”);

PreparedStatement preparedStmt =
conn.prepareStatement(“SELECT * FROM PERSON WHERE FILENAME = ?”);

preparedStmt.setString(1, filename.toString());

ResultSet result = preparedStmt.executeQuery();
ArrayList list = new ArrayList();
while (result.next()) {

AnnotationPersonRecord person = new AnnotationPersonRecord();
person.setFirstName(result.getString(2));
person.setMiddleName(result.getString(3));
person.setLastName(result.getString(4));
person.setDob(result.getString(5));
person.setComments(result.getString(6));
person.setFilename(result.getString(7));
person.setAnnotationStart(result.getString(8));
person.setAnnotationEnd(result.getString(9));
list.add(person);

}
if (list != null) {

for (int i=0; i < list.size(); i++) {
AnnotationPersonRecord element =

(AnnotationPersonRecord)list.get(i);
}
AnnotationPrint.printArrayS(list);

}
} catch (Exception e) {

logger.info(“Exception: “ + e.toString());
}

}
}

The createDocument(ResultSet rs) method works in conjunction with the XMLAction class to export
annotation data to an XML file upon user request. Libraries are used from the dom4j package to craft an
XML file artifact with the annotation text. The addElement method adds a new Element node to the
topic branches of the document data structure:

static public org.dom4j.Document createDocument(ResultSet rs) {

org.dom4j.Document document = org.dom4j.DocumentHelper.createDocument();
org.dom4j.Element root = document.addElement(“Annotation”)

.addAttribute(“text”, “Default annotation”)

.addAttribute(“value”, “default”);

try {
org.dom4j.Element topic = null;
int item=0;
while (rs.next()) {

++item;
topic = root.addElement(“person”).addAttribute(“value”, “item”

).addAttribute(“text”, String.valueOf(item));

206

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 206

topic.addElement(“attribute”).addAttribute(“value”, “First Name”
).addAttribute(“text”, rs.getString(2));

topic.addElement(“attribute”).addAttribute(“value”, “Middle Name”
).addAttribute(“text”, rs.getString(3));

topic.addElement(“attribute”).addAttribute(“value”, “Last Name”
).addAttribute(“text”, rs.getString(4));

topic.addElement(“attribute”).addAttribute(“value”, “DOB”
).addAttribute(“text”, rs.getString(5));

topic.addElement(“attribute”).addAttribute(“value”, “Comments”
).addAttribute(“text”, rs.getString(6));

topic.addElement(“attribute”).addAttribute(“value”, “Filename”
).addAttribute(“text”, rs.getString(7));

}
} catch (Exception sqle) {

logger.info(“SQLException: “ + sqle.toString());
}
return document;

}

The XMLAction class establishes a database connection to the annotationtest database and performs a
select operation so that the attributes of the annotation table will be output to an XML file. The data col-
lected from the SQL operation is passed to the createDocument method described earlier:

public class XmlAction extends AbstractAction {
public XmlAction() {

super(“XML”, new ImageIcon(“icons/xml.gif”));
}
public void actionPerformed(ActionEvent ev) {

logger.info(“Generating XML.”);
try {

Class.forName(“org.gjt.mm.mysql.Driver”);
Connection conn =

DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”,
“”, “”);

PreparedStatement preparedStmt =
conn.prepareStatement(“SELECT * FROM PERSON WHERE FILENAME = ?”);

preparedStmt.setString(1, filename.toString());

ResultSet result = preparedStmt.executeQuery();
XMLWriter writer = new XMLWriter(new FileWriter(“Annotation.xml”),

OutputFormat.createPrettyPrint());
writer.write(createDocument(result));
writer.close();

} catch(Exception e) {
logger.info(“Exception: “ + e.toString());

}
}

}

The ExcelAction class implements the Open-source Jakarta POI libraries to convert the Person table data
to an Excel spreadsheet document. New workbook and sheet objects are created with the POI libraries
and the annotation attributes that make up the annotation table are saved to those objects. For demon-
stration purposes, only the first, middle, and last name values are placed in the worksheet template:

207

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 207

public class ExcelAction extends AbstractAction {
public ExcelAction() {

super(“Excel”, new ImageIcon(“icons/excel.gif”));
}
public void actionPerformed(ActionEvent ev) {

logger.info(“Generating Excel Spreadsheet.”);
int rownum;

try {

FileOutputStream out = new FileOutputStream(“annotations.xls”);
HSSFWorkbook wb = new HSSFWorkbook();

HSSFSheet s = wb.createSheet();

HSSFRow r = null;

HSSFCell c = null;
HSSFCellStyle cs = wb.createCellStyle();
HSSFDataFormat df = wb.createDataFormat();
HSSFFont f = wb.createFont();

f.setFontHeightInPoints((short) 12);

cs.setFont(f);

cs.setDataFormat(HSSFDataFormat.getBuiltinFormat(“text”));

wb.setSheetName(0, “Test”, HSSFWorkbook.ENCODING_COMPRESSED_UNICODE);
// set title row
String[] titles = {“First Name”, “Middle Name”, “Last Name” };
r = s.createRow(0);
for (int i=0; i < titles.length; i++) {

s.setColumnWidth((short) (i + 1), (short) ((50 * 8) / ((double) 1 /
20)));

c = r.createCell((short) (i + 1));
c.setCellStyle(cs);
c.setEncoding(HSSFCell.ENCODING_COMPRESSED_UNICODE);
c.setCellValue(titles[i]);

}

The following code segment demonstrates how the SQL construct is built and executed so that the data
collected can be saved to the Excel template file:

try {
Class.forName(“org.gjt.mm.mysql.Driver”);
Connection conn =

DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”,
“”, “”);

PreparedStatement preparedStmt =
conn.prepareStatement(“SELECT * FROM PERSON”);

ResultSet result = preparedStmt.executeQuery();
int row = 1;
while (result.next()) {

208

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 208

r = s.createRow(row);
c = r.createCell((short) (1));
c.setCellStyle(cs);
c.setEncoding(HSSFCell.ENCODING_COMPRESSED_UNICODE);
c.setCellValue(result.getString(2));
c = r.createCell((short) (2));
c.setCellStyle(cs);
c.setEncoding(HSSFCell.ENCODING_COMPRESSED_UNICODE);
c.setCellValue(result.getString(3));
c = r.createCell((short) (3));
c.setCellStyle(cs);
c.setEncoding(HSSFCell.ENCODING_COMPRESSED_UNICODE);
c.setCellValue(result.getString(4));
row++;

}

} catch (Exception e) {
logger.info(“Exception: “ + e.toString());

}
wb.write(out);
out.close();

} catch(IOException ioe) { logger.info(“IOException= “ + ioe.toString()); }
}

}

The OpenAction class uses the JFileChooser class to enable users to dynamically determine the files that
will read into the AnnotationEditor for annotation operations. When a user selects the Open link in the
menu bar, the showOpenDialog method will pop up a dialog box that allows users to drill across the
system’s file structures for retrieval and manipulation:

// An action that opens an existing file
class OpenAction extends AbstractAction {

public OpenAction() {
super(“Open”, new ImageIcon(“icons/open.gif”));

}

// Query user for a filename and attempt to open and read the file into the
// text component.
public void actionPerformed(ActionEvent ev) {

JFileChooser chooser = new JFileChooser();
if (chooser.showOpenDialog(AnnotationEditor.this) !=

JFileChooser.APPROVE_OPTION)
return;

filename = chooser.getSelectedFile();
if (filename == null)

return;

FileReader reader = null;
try {

reader = new FileReader(filename);
textComp.read(reader, null);
// read annotations and markup text here
try {

Class.forName(“org.gjt.mm.mysql.Driver”);

209

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 209

The code snippet below establishes a database connection with the annotationtest database to retrieve
the annotations associated with the document opened in the code above. Once all of the annotations
have been retrieved, then the text associated with those annotations is highlighted in the
AnnotationEditor application:

Connection conn =
DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”,

“”, “”);
PreparedStatement preparedStmt =

conn.prepareStatement(“SELECT ANNOTATION_START, ANNOTATION_END,
ANNOTATION_TEXT FROM ANNOTATION_TABLE”);

ResultSet result = preparedStmt.executeQuery();
while (result.next()) {

highlight(textComp, result.getString(3));
}

} catch (Exception e) {
logger.info(“Exception: “ + e.toString());

}

} catch (IOException ex) {
JOptionPane.showMessageDialog(AnnotationEditor.this,
“File Not Found”, “ERROR”, JOptionPane.ERROR_MESSAGE);

} finally {
if (reader != null) {

try {
reader.close();

} catch (IOException x) {}
}

}
}

}
// main method omitted for the sake of brevity

}

The importance of dialog components cannot be understated because they allow applications to orga-
nize and prioritize data for your user interface so that information can be properly propagated to your
data persistence mechanism, which might be a database or collection class implementation. When an
application invokes a dialog box, it forces the user to aggregate information in a controlled fashion from
a user so that information can be added or modified for your application’s operations.

Some dialog applications are modal, which means that they block all user input to windows in a pro-
gram when they are visible, but the AnnotationDialog application is nonmodal because it uses the
JDialog class directly.

The AnnotationDialog application below enables users to dynamically add information about people
that a user has marked for insertion by the user in the editor application (see Figure 4-17).

Figure 4-17

Export Excel

Person

210

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 210

// [AnnotationPeopleDialog.java]
// package name and import statements omitted
public class AnnotationPeopleDialog extends JDialog implements ActionListener {

// declarations omitted for the sake of brevity [please look at source downloads]
public interface Command {

public void execute();
}

public AnnotationPeopleDialog(String annotation, String filename,
int annotationStart, int annotationEnd) {

// parameter save omitted for the sake of brevity
createGUIDisplay();

}

public AnnotationPeopleDialog() {
createGUIDisplay();

}

public void createGUIDisplay() {
JPanel panelAll = new JPanel(new GridLayout(0,1,5,5));
JPanel panelTest1 = new JPanel(new GridLayout(0,1,5,5));
panelTest1.add(panelGUI());

JPanel panelTest2 = new JPanel(new GridLayout(0,1,5,5));
panelTest2.add(panelComments());

panelAll.add(panelTest1);
panelAll.add(panelTest2);

String[] name = annotation.trim().split(“[]+”);
if (name.length == 3) {

firstName.setText(name[0]);
middleName.setText(name[1]);
lastName.setText(name[2]);

} else {
firstName.setText(name[0]);
lastName.setText(name[1]);

}
getContentPane().add(panelAll);
getContentPane().setVisible(true);

pack();
}

The panelGUI() method establishes a GridLayout display so that users can enter user data that will be
affiliated with highlighted text inside the AnnotationEditor. Figure 4-16 represents the GUI presentation
that will be rendered when the panelGUI() method is invoked:

public JPanel panelGUI() {
JPanel peoplePanel = new JPanel(new GridLayout(0,2,5,5));

firstName = new JTextField(20);
middleName = new JTextField(20);
lastName = new JTextField(20);

211

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 211

model1 = new SpinnerDateModel();
model1.setCalendarField(Calendar.WEEK_OF_MONTH);
spinner1 = new JSpinner(model1);
JSpinner.DateEditor editor1 = new JSpinner.DateEditor(spinner1, “MM/dd/yyyy”);
spinner1.setEditor(editor1);

// add items to panel
peoplePanel.add(new JLabel(“First Name:”));
peoplePanel.add(firstName);
peoplePanel.add(new JLabel(“Middle Name:”));
peoplePanel.add(middleName);
peoplePanel.add(new JLabel(“Last Name:”));
peoplePanel.add(lastName);
peoplePanel.add(new JLabel(“Date of Birth:”));
peoplePanel.add(spinner1);
titledBorder = BorderFactory.createTitledBorder(new EtchedBorder

(EtchedBorder.LOWERED), “Person Information”);
titledBorder.setTitleJustification(TitledBorder.LEFT);
peoplePanel.setBorder(titledBorder);

return peoplePanel;
}

The panelComments() method generates the text area component that collects user comments that will
be associated with the name and date of birth text in the AnnotationPeopleDialog class:

public JPanel panelComments() {

JPanel peoplePanel = new JPanel(new GridLayout(0,1,5,5));

peopleComments = new JTextArea(“”);
peopleComments.setFont(new Font(“Serif”, Font.ITALIC, 16));
peopleComments.setLineWrap(true);
peopleComments.setWrapStyleWord(true);
areaScrollPane1 = new JScrollPane(peopleComments);
areaScrollPane1.setVerticalScrollBarPolicy(

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
areaScrollPane1.setPreferredSize(new Dimension(50, 50));
areaScrollPane1.setBorder(BorderFactory.createCompoundBorder(

BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder(“ People Comments”),
BorderFactory.createEmptyBorder(5,5,5,5)),
areaScrollPane1.getBorder()));

addPersonRecord = new JAddPersonButton(“ Add Person Record “);
addPersonRecord.addActionListener(this);
addPersonRecord.setFont(navigationFont);
addPersonRecord.setBorder(raisedBevelBorder);

peoplePanel.add(areaScrollPane1);
peoplePanel.add(addPersonRecord);

return peoplePanel;
}

212

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 212

The ComboListener class listens for user actions on the combobox component on the GUI display. The
actionPerformed(ActionEvent e) method implements the Command pattern so that user activities are
handled appropriately by the AnnotationEditor application:

class ComboListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

JComboBox cb = (JComboBox)e.getSource();
logger.info(“Combo selection= “ + (String)cb.getSelectedItem());

}
}

public void actionPerformed(ActionEvent e) {
Command obj = (Command)e.getSource();
try {

obj.execute();
} catch (Exception ex) {

logger.info(“Exception: “ + ex);
}

}

The JAddPersonButton method polymorphically invokes the execute() method, which uses the
JOptionPane class to pop up a standard dialog box to collect relevant annotation data that relates to the
person highlighted in the Annotation Editor. The showConfirmDialog method asks the user whether or
not the information entered should be persisted by the application or neglected when the dialog box
exits. If the user selects Yes when queried, “Are You Sure?”, then an SQL prepared statement is con-
structed to aggregate the user information for insertion to the person and annotation_table tables,
respectively:

class JAddPersonButton extends JButton implements Command {

public JAddPersonButton(String caption) { super(caption); }
public void execute() {

int selection = JOptionPane.showConfirmDialog(null, “Are you sure?”,
“People database insert.”,

JOptionPane.YES_NO_CANCEL_OPTION);
if (selection == 0) {

try {
Class.forName(“org.gjt.mm.mysql.Driver”);
Connection conn =

DriverManager.getConnection(“jdbc:mysql://localhost/annotationtest”, “”, “”);
PreparedStatement preparedStmt =
conn.prepareStatement(“INSERT INTO PERSON (FIRST_NAME, MIDDLE_NAME,

LAST_NAME, DOB, COMMENTS, FILENAME, ANNOTATION_START, ANNOTATION_END) VALUES
(?,?,?,?,?,?,?,?)”);

preparedStmt.setString(1, firstName.getText().toString());
preparedStmt.setString(2, middleName.getText().toString());
preparedStmt.setString(3, lastName.getText().toString());
preparedStmt.setString(4,

((JSpinner.DateEditor)spinner1.getEditor()).getTextField().getText());
preparedStmt.setString(5, peopleComments.getText().toString());
preparedStmt.setString(6, filename);

213

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 213

preparedStmt.setInt(7, annotationStart);
preparedStmt.setInt(8, annotationEnd);
preparedStmt.executeUpdate();

preparedStmt =
conn.prepareStatement(“INSERT INTO ANNOTATION_TABLE (F_FILENAME,

ANNOTATION_TYPE, ANNOTATION_START, ANNOTATION_END, ANNOTATION_TEXT) VALUES
(?,?,?,?,?)”);

preparedStmt.setString(1, filename);
preparedStmt.setString(2, “PERSON”);
preparedStmt.setInt(3, annotationStart);
preparedStmt.setInt(4, annotationEnd);
preparedStmt.setString(5, annotation);
preparedStmt.executeUpdate();

conn.close();

} catch(Exception e) { logger.info(“Exception = “ + e.toString());}
} else {

logger.info(“User selected: NO”);
}
hidePanel();

}
}

public void hidePanel() {
setVisible(false);

}

// main method omitted for brevity

}

Managing Navigation Flows in Swing
Applications

Installation wizards are common Swing applications to consign software applications and their libraries
to their file systems during their development or deployment tasks. Wizards typically perform initializa-
tion activities, gather user directory designations, and perform post-installation tasks for clean-up
actions by leading users through a series of requests to ensure that applications and their libraries are
configured properly for operations. This last segment of the chapter will demonstrate how an
InstallationWizard application can be developed using the State Pattern, a GoF behavioral pattern, to
delegate behaviors across objects during user navigations at run time. Each state, or step, of the wizard
is encapsulated as an object, which is affiliated to a subclass of an abstract class for proper state manage-
ment This same application could have easily been developed with the CardLayout manager using its
first(), last(), previous(), and next() methods, but the intent was to show how you could manage those
flows in a different fashion. Additionally, the Singleton pattern is implemented in the sample application
to demonstrate how a single object can be created and referenced from a program without incurring the
overhead of creating superfluous objects.

214

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 214

The following table outlines some of benefits and drawbacks of implementing both patterns in your
applications.

Pattern Benefits Consequences

Singleton Direct control over how many instances Inability to subclass an
can be created application that implements it,

which prevents extendibility
Ensures that a class has only one instance
and enforces controlled access to the
sole instance

State Allows an object to modify its behavior Preponderance of classes to
when its state changes internally support the different states of an

application
Localizes all behavior of a particular
state in a single object

Polymorphically defines behaviors and
states of an object

The individual panel display components represent state-specific behaviors that are derived from the
abstract State class. The application maintains a pointer to the current state position in the installation
process and reacts to changes by the user as navigation is performed in a forward and backward direc-
tion using the Previous and Next buttons on the GUI display (see Figure 4-18).

Figure 4-18

The InstallationWizard application implements two JPanel components, componentPanel and
buttonPanel, to display the individual Swing visualizations for user input and the buttons used for pre-
vious/next operations, respectively:

// [InstallationWizard.java]
// package name and import statements omitted

public class InstallationWizard extends JFrame implements ActionListener {

private static Logger logger = Logger.getLogger(“InstallationWizard”);

215

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 215

private JPreviousButton previousButton = new JPreviousButton(“<< Previous”);
private JNextButton nextButton = new JNextButton(“Next >>”);
private JFinishButton finishButton = new JFinishButton(“Finish”);
private JPanel componentPanel;
private JPanel buttonPanel;
private Context context = new Context();

InstallationWizard() {
super(“State Pattern”);
setDefaultCloseOperation(EXIT_ON_CLOSE);

The application establishes a context reference that the application uses to determine proper panel visu-
alization flows. The FlowLayout manager is used with the buttonPanel to position the buttons used for
directing the wizard flow. The context reference invokes the getColor() method to set the background
color of the panel component (the default color is Yellow) with the setBackground(Color bg)
method. Additionally, the previousButton and finishButton components are disabled by the
setEnabled(Boolean b) method:

context = new Context();

componentPanel = new JPanel();

previousButton.addActionListener(this);
nextButton.addActionListener(this);
finishButton.addActionListener(this);

buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());
buttonPanel.add(previousButton);
buttonPanel.add(nextButton);
buttonPanel.add(finishButton);

getContentPane().add(componentPanel, BorderLayout.CENTER);
getContentPane().add(buttonPanel, BorderLayout.SOUTH);

// default is yellow
componentPanel.setBackground(context.getColor());
previousButton.setEnabled(false);
finishButton.setEnabled(false);
componentPanel.add(context.getPanel(), BorderLayout.CENTER);
componentPanel.setBackground(context.getColor());
componentPanel.validate();

setSize(700,300);
}

public void actionPerformed(ActionEvent e) {
Command obj = (Command)e.getSource();
obj.execute();

}

public interface Command {
public void execute();

}

216

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 216

The JPreviousButton component manages all user requests when the Previous button is clicked by the
user. The execute() method uses the application’s context reference to invoke the previous() and
getState() methods to set the application to its previous state. The removeAll() method of the
Container class is then used to remove all of the components from the container so that the appropriate
panel display will be positioned in the user visualization:

class JPreviousButton extends JButton implements Command {

public JPreviousButton(String caption) { super(caption); }
public void execute() {

context.previous();
context.getState();

componentPanel.removeAll();
componentPanel.add(context.getPanel(), BorderLayout.CENTER);
componentPanel.setBackground(context.getColor());
componentPanel.validate();

nextButton.setEnabled(true);
finishButton.setEnabled(false);
if (context.getColor() == Color.yellow) {

previousButton.setEnabled(false);
} else {

previousButton.setEnabled(true);
}

}
}

The JNextButton component implements the same methods as the JPreviousButton component to render
the appropriate user display when the installation invokes the Next button on the GUI presentation.
When the Next button is invoked by the user, all of the components on the panel display will be
removed using the removeAll() method. Once the remove operation has been executed, the next color
panel will be discovered by using the reference state of the application using the context reference:

class JNextButton extends JButton implements Command {

public JNextButton(String caption) { super(caption); }
public void execute() {

context.next();
context.getState();

componentPanel.removeAll();
componentPanel.add(context.getPanel(), BorderLayout.CENTER);
componentPanel.setBackground(context.getColor());
componentPanel.validate();

previousButton.setEnabled(true);
if (context.getColor() == Color.blue) {

nextButton.setEnabled(false);
finishButton.setEnabled(true);

} else {
nextButton.setEnabled(true);
finishButton.setEnabled(false);

217

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 217

}
}

}

The FinishButton class is enabled when the user has reached the final panel display in the series of four
panel components:

class JFinishButton extends JButton implements Command {

public JFinishButton(String caption) { super(caption); }
public void execute() {

System.exit(1);
}

}

public static void main(String s[]) {
InstallationWizard st = new InstallationWizard();
st.setVisible(true);

}

}

The abstract State class is a generalized class used by the Context class to establish a blueprint needed to
describe the methods needed to handle the state flows in the wizard across the different panel displays.
Two get methods, getColor() and getPanel(), are used to retrieve color and panel values of the individual
JPanel components implemented for display:

[State.java]
public abstract class State {

public abstract void handlePrevious(Context c);
public abstract void handleNext(Context c);
public abstract Color getColor();
public abstract JPanel getPanel();

}

The Context class below sets the initial state to yellow, so the YellowState application will start the instal-
lation program and create objects for the four color applications: Blue, Green, Orange, and Yellow:

// [Context.java]
// package name and import statements omitted

public class Context {

private State state = null;
public BlueState blueState;
public GreenState greenState;
public OrangeState orangeState;
public YellowState yellowState;

public Context(State state) { this.state = state; }
public Context() {

// get instances for all panels
blueState = new BlueState();
greenState = new GreenState();

218

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 218

orangeState = new OrangeState();
yellowState = new YellowState();

state = getYellowInstance();
}
public State getState() { return state; }
public void setState(State state) { this.state = state; }
public void previous() { state.handlePrevious(this); }
public void next() { state.handleNext(this); }
public Color getColor() {

return state.getColor();
}
public JPanel getPanel() {

return state.getPanel();
}

The following methods are used to return references to the object instances of the four different panel
displays:

public BlueState getBlueInstance() {
return blueState.getInstance();

}

public GreenState getGreenInstance() {
return greenState.getInstance();

}

public OrangeState getOrangeInstance() {
return orangeState.getInstance();

}

public YellowState getYellowInstance() {
return yellowState.getInstance();

}

}

The YellowState class is the first panel display invoked by the Installation Wizard to start the install pro-
cess. The YellowState constructor method initializes all of the different textfield components that are
used for data collection. The getInstance() method creates a new YellowState instance for reference by
other objects if the reference has not been created. If a reference value has already been established, then
the reference will be returned to the object that references it:

// [YellowState.java]
// package name and import statements omitted

public class YellowState extends State {

// component declarations and initialization omitted for better clarity

static private YellowState _instance = null;

public YellowState() {
firstName = “”;

219

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 219

lastName = “”;
city = “”;
state = “”;
zipcode = “”;
generatePanel();

}

static public YellowState getInstance() {
if(null == instance) {

instance = new YellowState();
}
return instance;

}

The handlePrevious(Context c) and handleNext(Context c) methods invoke the setValues()
method to persist the values entered into the form display by the user. Once the data has been saved off
the local instance variables, the context reference is implemented to obtain the reference to the next panel
display. The get<color>Instance() method acquires the Singleton instance generated in the individ-
ual panel components:

public void handlePrevious(Context c) {
setValues();
c.setState(c.getBlueInstance());

}

public void handleNext(Context c) {
setValues();
c.setState(c.getOrangeInstance());

}

public Color getColor() { return (Color.yellow); }

public JPanel getPanel() {
return panelYellow;

}

public void generatePanel() {
log.info(“[YellowState:generatePanel]”);
panelYellow = new JPanel(new GridLayout(0,1));
panelYellow.setSize(200,200);

formPanel.add(fnameLabel);
formPanel.add(fnameTextfield);
formPanel.add(lnameLabel);
formPanel.add(lnameTextfield);
formPanel.add(cityLabel);
formPanel.add(cityTextfield);
formPanel.add(stateLabel);
formPanel.add(stateTextfield);
formPanel.add(zipcodeLabel);
formPanel.add(zipcodeTextfield);

Border etchedBdr = BorderFactory.createEtchedBorder();
Border titledBdr = BorderFactory.createTitledBorder(etchedBdr, “Registration

Form”);

220

Chapter 4

07_574868 ch04.qxd 12/21/04 5:59 PM Page 220

Border emptyBdr = BorderFactory.createEmptyBorder(15,15,15,15);
Border compoundBdr=BorderFactory.createCompoundBorder(titledBdr, emptyBdr);
formPanel.setBorder(compoundBdr);

getValues();

panelYellow.add(formPanel);
}

The getValues() method sets the text in the various textfield components using the setText methods
that are part of the JTextField class. The setValues() method retrieves the text from the textfield com-
ponents and saves them to the various instance variables associated with the panel display:

public void getValues() {
fnameTextfield.setText(firstName);
lnameTextfield.setText(lastName);
cityTextfield.setText(city);
stateTextfield.setText(state);
zipcodeTextfield.setText(zipcode);

}

public void setValues() {
firstName = fnameTextfield.getText();
lastName = lnameTextfield.getText();
city = cityTextfield.getText();
state = stateTextfield.getText();
zipcode = zipcodeTextfield.getText();

}

}

An important object-oriented (OO) concept to remember is that the InstallationWizard uses object com-
position to alter the behavior of the objects during run time. The wizard application delegates behavior
to a known interface and varies the implementation details for the different installation panels.

Summary
This chapter covered a tremendous amount of ground regarding all of the JFC components. All of
the Swing top-level containers were discussed (JFrame, JDialog, and JPanel), as well as many of the
other Swing visualization components (JButton, JLabel, JSpinner, JTextField, JTextArea, and others).
Lastly, Swing listener and layout managers were implemented along with GoF design patterns to craft
effective user interface displays. All of the sample applications should help developers address complex
GUI development activities and influence designers with their modeling conceptualizations.

The difficulty in explaining the Java Foundation Class (JFC) libraries is that they’re broad and varied.
The complexities of their implementation can be overcome, as with many things in software develop-
ment, by actually doing it. With a better understanding of what is possible with JFC packages, a devel-
oper can approach a task with confidence that it will get done.

221

Developing Effective User Interfaces with JFC

07_574868 ch04.qxd 12/21/04 5:59 PM Page 221

07_574868 ch04.qxd 12/21/04 5:59 PM Page 222

Persisting Your Application
Using Files

Saving an application’s state is one of the most important qualities necessary to reuse an applica-
tion. Imagine what life would be like if word processors could not save documents, or image
manipulation programs could not save images! If a user had to retype a document every time he
or she wanted to print it, many tasks now common to computers would probably still be done by
hand. An end user calls the ability of a word processing application to save its state saving a docu-
ment. To the software developer, saving a document means saving the internal memory state of the
word processing application in such a way as to be able to recreate it exactly as it was left at a
future point in time. In this chapter, there will be more references to persisting an application’s
state than to saving a document, but in reality, they are similar phrases — the former is simply
more precise (since an application’s state can be saved in other ways than to a file).

Different applications need to save different pieces of information to disk to properly recreate their
state. Some applications only need to save their configuration settings to disk, as they may save
their other data to a database (see the subsequent chapter to see how to persist your application’s
data to a database). A typical single-user application such as a word processor or image manipula-
tion program will need to save its state to files (for example, Word documents or JPEG images).
Java provides a couple built-in mechanisms for saving or serializing data to files. The two major
APIs in the JDK for persisting application data to disk are: the Java Serialization API for generic
serialization and the XMLEncoder/Decoder API for serializing Java Bean components. These two
APIs will be discussed in depth in this chapter along with the Java API for XML Binding (JAXB).
JAXB provides the ability to read and write data to user-defined XML formats. Each of these three
APIs has a different approach to serialization and as such should be used in different circum-
stances. In this chapter, you will first look at how application data is structured in memory, and
then apply the Java Serialization API, the XMLEncoder/Decoder API, and the JAXB API to actu-
ally serialize the data to disk. These three APIs are a great foundation for persisting your applica-
tion’s data to disk.

08_574868 ch05.qxd 12/21/04 5:57 PM Page 223

Application Data
Every application has some sort of in-memory data structure from which to retrieve its data. Besides
data structures like maps, lists, sets, and trees, custom data structures are often built. For an application
to save its state, the data in these structures must be saved to disk, and then at a later time, loaded back
into the same data structure. Web browsers, for example, create what’s called a Document Object Model
(DOM) in memory for every Web page that is loaded. It is their internal data structure for displaying
HTML pages. Word processors also keep some sort of document object model as well — some way to
represent the fact that certain pieces of text are aligned to the right, or possibly that other paragraphs of
text are highlighted in a particular color. These custom data structures are necessary for the application
to display the data properly to the user.

Viewer applications like Web browsers essentially read files and display them to the user. Web browsers
first read HTML files over a network or from a disk, and then parse the data into its internal in-memory
data structure, the DOM. Once the data is in the Web browser’s data structure, its rendering functions
can now properly display the page to the user. Image viewing programs are similar, in that they read an
image into their internal data structure representing images, and then display that image to the user.
Other types of applications, though, also allow the user to manipulate the data. Word processors, in
addition to reading files into their internal data structures and displaying them, also must allow the user
to manipulate the data, and therefore the internal data structure, and then write the data back to disk.

Many of these other applications that allow the user to manipulate data follow the Model-View-
Controller (MVC) design pattern (see Chapter 3 more for information on design patterns). In this pat-
tern, the internal data structures of the application are called its data model. This data model is contained
in structures that are separate from UI components and UI-related data structures. In Java-based applica-
tions, the data model usually consists of Java Bean components, along with other data storage and col-
lection classes. These data classes are manipulated and modified by UI controller classes (such as events
generated by buttons, menus, et cetera), and viewed and presented by other UI components. A simple
MVC diagram is shown in Figure 5-1, illustrating how only the data model of an MVC-based application
needs to be saved to restore the state of the application. Swing or other UI toolkit/utility classes would
be in both the view and controller areas while the internal data model specific to the domain of the
application would be contained in the data model. This step of separating domain data from UI compo-
nents allows for a much easier process of saving and loading the data from disk since the data is all in
one place: the model.

The Imager Application — Since saving an application’s state can be a rather abstract
topic, the various persistence strategies that are appropriate to use with the three dif-
ferent APIs with concrete examples will be discussed. A hypothetical image manip-
ulation program will be created and the focus will be on using the Java Serialization
API, the XMLEncoder/Decoder API, and JAXB to persist its state to disk. The image
manipulation program will be referred to as The Imager Application throughout the
chapter, and is hypothetical because it will not actually implement image manipula-
tion, since the focus of this chapter is persistence, not GUI development (see the pre-
vious chapter for more information on building graphical user interfaces with
Swing and the Java Foundation Classes).

224

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 224

Figure 5-1

Once all the domain data is contained in its own model, separate from the UI components, the parts of
the data model that need to be persisted can be identified. Some pieces of an internal data structure need
not necessarily be saved. Some parts of the data structure in an application will not change from time to
time or they can be recreated given that certain other aspects of the data structure exist. Developers
wishing to save the state of their application must look carefully at the data they hold in memory in their
model, identify the pieces of it that must be saved, and then write routines for saving and loading the
data from the data structure to and from disk.

Saving Application Data
Now that application data structures have been discussed in a general sense, it is time to move to some-
thing a little more tangible and realistic. How exactly do Java applications store their data model in
memory? Since Java is an object-oriented language, most applications have a set of data classes (which is
the application’s data model). Instances of these data classes reside in memory. The viewer and controller
components (the UI) of the application interact with them to produce the functionality of the application.

Any Java class that has attributes (or properties in Java Bean terms) can be thought of as a data structure.
A simplistic data structure could be simply a Person class with two String attributes, representing a
first name and last name. More complex classes, which in addition to storing primitive data types con-
tain references to other classes, effectively form an object graph. An object graph is a graph in which
objects are the nodes in the graph and the connections are references from one instance of an object to
another. The notion of object graphs is important because when you want to serialize the information
contained in a class, you must also consider what data the class relies on that is stored in other classes,
the dependencies these other classes have, and so on. In the next section, a tangible data model for The
Imager will be outlined and its object graph will be viewed.

A Configuration Data Model for the Imager Application
Throughout this chapter, you will be developing a sample application to demonstrate different strategies
for persisting application data using the three APIs discussed (Java Serialization, the XMLEncoder/
Decoder APIs, and JAXB). The application is called The Imager, and is some sort of image editing and

View

Controller

Data ModelDisk Reads/Writes

Updates/Changes

Modifies
Modifies

225

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 225

drawing program. You will not be implementing any actual image manipulation functionality in the
application, but merely persistence and serialization code to show how to save the application’s data
model to disk — how to persist the state of the application.

Since your application is merely a placeholder for learning serialization, you will delve into designing a
data model for the Imager’s configuration settings. Many applications have various preferences, set-
tings, and options available for users to change and modify. Web browser’s can store a user’s HTTP
proxy settings; mail client programs store the server names and passwords for a user’s e-mail account.
These preferences are generally stored on disk, sometimes in the user’s home directory, sometimes in the
application’s root directory. The first step to building any sort of data model that can eventually be per-
sisted to disk is identifying attributes you want to save. Your Imager program probably should have set-
tings for, at the least, the following properties:

❑ Location of the user’s home directory or default directory to load and save files

❑ A list of recent files loaded or saved by the user

❑ Whether or not the application should use a tabbed windowed interface or a multiple document
interface (MDI) with child windows

❑ Foreground and background colors last used (for drawing or painting operations)

❑ The last positions of the tool and palette windows within the application when the application
was last closed

In a full-fledged paint or photo editing application, there would probably be many more configuration
options that users could potentially persist to a file. However, the process is the same, and can also be
applied to saving application data such as a custom image format, or reading and writing other image
formats into your application’s structure. Persisting information in Java objects to the file system is the
same whether it is application configuration data or simply application domain data itself. Figure 5-2
shows the actual model of the data in UML and Figure 5-3 shows an example object graph of an actual
instance of the data model.

Figure 5-2

Configuration

-userHomeDirectory : string
-showTabs : bool
-recentFiles : string[] 1

1

2

2

-paletteWindowPosition, toolsWindowPosition

java.awt.Point

-…

java.awt.Color

-…

-backgroundColor, foregroundColor

226

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 226

Configuration is the root object. It uses classes from java.awt to represent colors and points. In the
object graph below, you can see that an instance of configuration also contains references to instances of
java.awt.Color and java.awt.Point. When you persist the information in a Configuration
instance to disk, you must also save the information contained in the Color and Point instances (and
any other class instances they may also reference), if you want to be able to recreate your
Configuration object at a later point in time.

Figure 5-3

You will design Configuration using the Java Beans architecture (getXXX and setXXX for all proper-
ties in your class). Your application itself will read the configuration settings from this class and appro-
priately apply them throughout the application. It is typical to use Java Beans conventions to store data
in Java-based data models. The standard mechanism by which to set and get data properties allows the
designer to use many tools that are based on those standards (XMLEncoder/Decoder as you will later
see for one). Object-relational-mapping tools allow the developer to map Java objects to a database.
Almost all of these tools require the data to be accessible by using Java Beans conventions. It is just good
practice and design.

Configuration
palettePos
(instance of

Point)

toolsPos
(instance of

Point)

recentFiles
(instance of

String [])

foreground
(instance of

Color)

background
(instance of

Color)

"file1.txt"

"file2.txt"

…

…

…

…

227

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 227

Java Serialization: Persisting Object Graphs
One approach to saving a data model to disk is to write all of the object instances in the data model’s
object graph to disk, and then simply reload them at a later time. This is the approach taken by the Java
Serialization API. It saves actual object in-memory instances to disk. Serializing an object is the process of
writing its data members to disk. Deserializing an object is the process of reconstructing the object
instance from the data members written to disk. Suppose you have a simple class MyPoint:

package book;

public class MyPoint {
public int x;
public int y;

public void doSomething() { ... }
}

To save an instance of MyPoint to disk, its two data members must be written to disk. Saving x and y
allow you to create a new instance of MyPoint at a later point in time and set its x and y values to the
ones saved to disk — effectively recreating the original instance. The method doSomething() is already
specified in the compiled class file, and there is no need to store any method information in the serializa-
tion process. All a class instance is in memory is the values for all of its attributes. To serialize an instance
to disk, all of its data members must be saved. What if a data member is a reference to another object
instance? The reference itself is just a memory address and would obviously be meaningless to save. The
object instance the reference points to also would need to be saved as well. Suppose you add a color
attribute to MyPoint:

package book;

import java.awt.Color;

public class MyPoint {
public int x;
public int y;

private Color pointColor;

public void doSomething() { ... }
}

The data members of the instance of java.awt.Color must now also be saved. As you can see, the
entire object graph of an object instance must be saved when it is serialized to disk. If only x and y were
saved from MyPoint and then subsequently recreated in MyPoint later, its color information would be
lost. So how is an external API able to access all of the fields of a particular class? Java’s reflection mech-
anism allows the dynamic ability to find out the fields and field values of any class, whether those fields
are marked public or private. Thankfully, the Java Serialization API takes care of all these details for
us, and it is easy to serialize object instances to disk.

Note: It is important to note that the file format used by the Java Serialization API is a special binary
file format developed specifically for Java Serialization and therefore not human-readable. It is an effi-
cient format, but also specific to Java.

228

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 228

Key Classes
The Java Serialization API hides most of the complexity required to save off object graphs to disk
(such as circular references and multiple references to the same object). There are really only two
interfaces and two classes that need to be learned in order to use the API. ObjectInputStream and
ObjectOutputStream are two stream classes that can be wrapped around any type of java.io.
InputStream or java.io.OutputStream, respectively, making it possible to send serialized objects
over a network or simply save them to disk. The two interfaces, Serializable and Externalizable,
allow for implementing classes to be serialized. If a class does not implement one of these two interfaces,
it cannot be serialized using the API. This means that if a class that does implement either Serializable
or Externalizable contains a reference to a class that does not implement that interface somewhere in
its object graph, it cannot be serialized successfully without some modification (discussed later on in this
chapter).

Class or Interface (From java.io) Function

Serializable Interface for marking the fact that a class supports
serialization

ObjectInputStream Input stream used to read object instances that were writ-
ten by an ObjectOutputStream

ObjectOutputStream Output stream used to write object instance data that can
later be read by an ObjectInputStream

Externalizable Interface that extends Serializable to give a class com-
plete control over how it is read and written to streams

Serializing Your Objects
Performing the actual serialization of objects is straightforward. There are four main steps.

1. Make sure the class to be serialized has a default constructor (one that takes no arguments).

2. Implement the Serializable or Externalizable interface to mark the class as supporting
serialization.

3. Use ObjectOutputStream to serialize a class instance.

4. Use ObjectInputStream to read a serialized instance back into memory.

Classes you wish to serialize must have default constructors. This is because the serialization API needs
to create blank instances of the class when it recreates object instances saved to disk — it does so by call-
ing the default constructor. After it creates the new class, it simply populates the data members of the
class via reflection (so accessor and mutator methods are not required for private data members). The
class must also be marked as serializable by implementing the Serializable interface. The
Serializable interface contains no method definitions; it is simply a marker to the serialization API to
indicate that the class is indeed serializable. Not all classes store their data — the classic example is
java.sql.ResultSet, which is used in the Java DataBase Connectivity API (JDBC) to access data from
a database. The ResultSet object is querying the database for data when its methods are called and
hence it does not store the information it returns. Since it is a mediator between the client and the

229

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 229

database, it has no information to serialize! The Serializable interface exists to give developers the
ability to mark certain classes as potentially serializable — essentially meaning the author of a particular
class planned for the fact that the class may be saved to disk. The Externalizable interface gives
developers more control over the actual serialization process, and it will be discussed in more detail later
on in this chapter.

Configuration Example: Saving Your App’s Configuration to Disk
Earlier, you developed the high-level data model for a sample configuration for your generic image
manipulation application. Suppose that now you want to develop that data model and the UI compo-
nents to save and load it from disk. The first step is translating your data model into code. You will have
one class, Configuration, represent the application’s configuration. You will model it using the Java
Bean conventions, implicitly provide it a default constructor (by having no constructors), and implement
the Serializable interface. The two classes referenced in Configuration, java.awt.Point, and
java.awt.Color also both implement Serializable, so the entire graph is guaranteed to serialize.
The code for Configuration is as follows:

package book;

import java.awt.Color;
import java.awt.Point;
import java.io.Serializable;

public class Configuration implements Serializable {

private String userHomeDirectory;

private Color backgroundColor;
private Color foregroundColor;

private boolean showTabs;

private Point paletteWindowPosition;
private Point toolsWindowPosition;

private String[] recentFiles;

public Color getBackgroundColor() {
return backgroundColor;

}

public void setBackgroundColor(Color backgroundColor) {
this.backgroundColor = backgroundColor;

}

public Color getForegroundColor() {
return foregroundColor;

}

public void setForegroundColor(Color foregroundColor) {
this.foregroundColor = foregroundColor;

}

230

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 230

public Point getPaletteWindowPosition() {
return paletteWindowPosition;

}

public void setPaletteWindowPosition(Point paletteWindowPosition) {
this.paletteWindowPosition = paletteWindowPosition;

}

public String[] getRecentFiles() {
return recentFiles;

}

public void setRecentFiles(String[] recentFiles) {
this.recentFiles = recentFiles;

}

public boolean isShowTabs() {
return showTabs;

}

public void setShowTabs(boolean showTabs) {
this.showTabs = showTabs;

}

public Point getToolsWindowPosition() {
return toolsWindowPosition;

}

public void setToolsWindowPosition(Point toolsWindowPosition) {
this.toolsWindowPosition = toolsWindowPosition;

}

public String getUserHomeDirectory() {
return userHomeDirectory;

}

public void setUserHomeDirectory(String userHomeDirectory) {
this.userHomeDirectory = userHomeDirectory;

}
}

Writing the Configuration to Disk
With your configuration data model in hand, you can write the code to serialize and deserialize
instances of Configuration. Saving an instance of Configuration is almost too easy. First, you create
an ObjectOutputStream object, and since you want to save your instance of Configuration to a file,
you wrap it around a FileOutputStream:

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(“appconfig.config”));

231

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 231

Now you can create an instance of Configuration and save it to the file appconfig.config:

Configuration conf = new Configuration();
// ... set its properties

out.writeObject(conf);

Now all you have to do is close the stream:

out.close();

Note: Multiple object instances (of potentially differing types) can be written to the same
ObjectOutputStream. Simply call writeObject() more than once, and the next object is appended
to the stream. Also note that the file extension config, appended to the file, was arbitrarily chosen.

Reading the Configuration from Disk
Deserializing objects back into memory is as easy as serializing them. To read your configuration data
model from disk, you create an ObjectInputStream wrapped around a FileInputStream (since in
this case you saved your Configuration instance to a file):

ObjectInputStream in = new ObjectInputStream(
new FileInputStream(“appconfig.config”));

The counterpart to ObjectOutputStream’s writeObject() is readObject() in ObjectInputStream.
If more than one object was explicitly written with multiple calls to writeObject(), readObject() can
be called more than once. The method readObject() returns an Object that needs to be cast the
proper type — so the developer must know some of the details about the order in which object instances
were saved to the stream. In addition to potentially throwing a java.io.IOException if the stream
was corrupted or other I/O error, readObject() can throw a java.lang.ClassNotFoundException.
The ClassNotFoundException occurs if the VM cannot find the class for the type of the object instance
being deserialized on the classpath. The following line of code reads your Configuration object back
into memory:

Configuration conf = (Configuration) in.readObject();

After reading the object back in, you can use it like you use any normal Java object. After you are done
with your ObjectInputStream, you close it as you do any other subclass of InputStream:

in.close();

As you can see, reading and writing objects using ObjectInputStream and ObjectOutputStream is a
simple process with powerful functionality. Later on in this Java Serialization section there will be talk
about customizing and extending the serialization process, as well as some of the pitfalls that can occur
along the way.

Wrapping Serialization and Deserialization Code into Swing Actions
Now that you have seen how to create and store data models, it is time to see your configuration data
model serialization and deserialization code in the context of a real application. Since your application is

232

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 232

a JFC-based Swing application, you will integrate your code to serialize and deserialize Configuration
into the UI framework via Swing’s javax.swing.Action interface. Actions are a useful way to general-
ize UI commands — such as a save or open command. These commands usually appear in multiple places
in a UI. In the case of save and open, usually in the File menu and on the application’s toolbar. Swing
components such as menus and toolbars allow actions to be added and they create the necessary events
and properties to control them. Actions abstract away some of the UI code, and allow the developer to
concentrate on the logic of an action, like saving a file to disk. Your actions will need a reference to your
application, to get and set its configuration before it serializes or deserializes the Configuration
instance. Your actions will inherit from the class javax.swing.AbstractAction as that class takes care
of all of the methods in the Action interface except for the event method actionPerformed(). The
class diagram that follows in Figure 5-4 illustrates where your actions, LoadConfigurationAction and
SaveConfigurationAction, fit with respect to Action and AbstractAction.

Figure 5-4

All of the code for both of these actions will reside in the event-driven method, actionPerformed().
When the user of the application clicks the save configuration menu item or button, this code will be
invoked. The same goes for the action to load the application’s configuration.

«interface»
ActionListener

+actionPerformed(in event : ActionEvent) : void

+actionPerformed(in event : ActionEvent) : void

-…

«interface»
javax.swing.Action

+addPropertyChangeListener(in listener : PropertyChangeListener) : void
+getValue(in key : String) : Object
+isEnabled() : bool
+putValue(in key : String, in value : Object) : void
+removePropertychangeListener(in listener : PropertyChangeListener) : void
+setEnable(in enabled : bool) : void

javax.swing.AbstractAction

-myApp : Application

LoadConfigurationAction

-myApp : Application

SaveConfigurationAction

233

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 233

The main area of interest in any Action implementation is the actionPerformed() method. This
method is called when a user clicks the menu item or button containing the Action. For your save
action, you want the user first to be prompted to choose a file location, and then save the application’s
Configuration object instance to that file location. The implementation is fairly straightforward. First,
a file chooser is displayed, and if the user selects a file, the application’s Configuration instance is
retrieved:

public void actionPerformed(ActionEvent evt) {
JFileChooser fc = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == fc.showSaveDialog(myApp)) {

try {
Configuration conf = this.myApp.getConfiguration();

Now that you know the file location to save to, you simply serialize the Configuration object to disk to
eventually be loaded at a later point in time:

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(fc.getSelectedFile()));

out.writeObject(conf);

out.close();

} catch (IOException ioe) {
JOptionPane.showMessageDialog(this.myApp, ioe.getMessage(), “Error”,

JOptionPane.ERROR_MESSAGE);

ioe.printStackTrace();

}
}

}

The load action is similar to the save action. Again, the user is first prompted for a file. If the user selects
a file, you will try to open it. To read your Configuration object instance back into memory so it can
then be loaded into the application, you must create an ObjectInputStream. The ObjectInputStream
is creating a FileInputStream, which reads the data from the file the user selected:

public void actionPerformed(ActionEvent evt) {
JFileChooser fc = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == fc.showOpenDialog(myApp)) {

try {
ObjectInputStream in = new ObjectInputStream(

new FileInputStream(fc.getSelectedFile()));

If the user selects a file that is not a serialized instance of Configuration, an IOException will be
thrown when readObject() is called. If the instance of Configuration is successfully read, load it
into the application via the application’s setConfiguration() method. It’s that simple — the applica-
tion has now loaded a previously saved instance of Configuration:

234

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 234

Configuration conf = (Configuration) in.readObject();

in.close();

myApp.setConfiguration(conf);
} catch (IOException ioe) {

JOptionPane.showMessageDialog(this.myApp,
“File is not a configuration file!”, “Error”,

JOptionPane.ERROR_MESSAGE);

ioe.printStackTrace();

} catch (ClassNotFoundException clEx) {
JOptionPane.showMessageDialog(this.myApp,

“Classpath incorrectly set for application!”,
“Error”, JOptionPane.ERROR_MESSAGE);

clEx.printStackTrace();
}

}
}

Giving Your Application a Time-based License Using
Serialization

Serialization can be used in a variety of helpful ways. It is easy to save Java Beans and the data models
for various kinds of application data as seen in the last example. Serialization, though, is not limited to
simply saving objects to disk. Since ObjectInputStream and ObjectOutputStream are subclasses of
InputStream and OutputStream, respectively, they can be used in any situation that a normal stream
could be. Objects can be serialized over the network or read from a JAR file. Serialization is a fundamen-
tal aspect of Java’s Remote Method Invocation (RMI) — it is the technology behind passing objects by
value in RMI method calls.

To continue with the Imager Application example, suppose you want to give it a time-based license. For
the demo version of the application, it should only be fully active for 30 days. After 30 days, users will
be required to purchase a full license to use the product. There are many ways to do this, but using the
serialization API could be an effective way to produce a time-based license file. The biggest challenge to
creating time-based licenses is making it difficult for the user to overcome the license, which they usu-
ally can do by setting their computer’s clock to an incorrect time, or by modifying whatever license file
gets distributed (or registry key for some Windows’ based applications, et cetera). Since Java’s serializa-
tion produces a binary format that is unfamiliar to anyone except Java developers, it will make a good
format for the application’s license file. The application will also need some mechanism to guard against
users setting the incorrect date on their computer clock to give them a longer license. To do so, the appli-
cation will authenticate the license file against a timeserver on your network. The high-level design is
shown in Figure 5-5.

235

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 235

Figure 5-5

The next step in the design is to model the license file. Since you are using Java Serialization, all that
needs to be done is to produce a class that implements Serializable and contains the necessary fields
to do license validation against the timeserver. The License class will look like Figure 5-6.

Figure 5-6

Implementing the License
The license file for the application will consist of a serialized instance of the License class. The two data
attributes it contains are: expirationDate, which is the date when the license expires (stored in a
java.util.Calendar instance), and timeServerHost, which is the java.net.URL representing the
Internet address of your timeserver. This address, as well as the expiration date, has been saved to pre-
vent tampering with the URL. The isValid() method gets the current date from the timeserver and
checks to see if the expiration date is before the date returned from the timeserver. If it is, the license is
valid. Actually implementing the License yields the following code listing:

package book;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.Serializable;

License

-expirationDate : Calendar
-timeServerHost : URL
+isValid() : boolean

license.file

1. Read license.file

2. Query Time Server for Date

3. If server date is after the date in license.file, start the application

Timeserver

Internet

236

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 236

import java.net.URL;
import java.util.Calendar;

public class License implements Serializable {
private Calendar expirationDate;

private URL timeServerHost;

public boolean isValid() throws IOException, ClassNotFoundException {
ObjectInputStream in = new ObjectInputStream(timeServerHost.openStream());

Calendar serverDate = (Calendar) in.readObject();

in.close();

return serverDate.before(expirationDate);
}

public Calendar getExpirationDate() {
return expirationDate;

}

public void setExpirationDate(Calendar expirationDate) {
this.expirationDate = expirationDate;

}

public URL getTimeserverHost() {
return timeServerHost;

}

public void setTimeServerHost(URL timeServerHost) {
this.timeServerHost = timeServerHost;

}
}

Look into the implementation for isValid(). One detail of the design that has not yet been discussed is
the protocol you need to define between the timeserver and the License. How does the isValid()
method get the current date from the timeserver? A normal HTTP GET request is sent to the URL in
timeServerHost, which resides on the timeserver, and instead of it returning an HTML page, it will
return an instance of java.util.Calendar. Using this timeServerHost URL object, the connection to
the timeserver via an HTTP request over the network is established and an ObjectInputStream is con-
structed to read a serialized Calendar instance:

ObjectInputStream in = new ObjectInputStream(timeServerHost.openStream());

Now a Calendar object is read just like any other object in Java serialization. After the object is read in,
the expirationDate can be compared with the date returned from the timeserver to see whether the
license is valid:

Calendar serverDate = (Calendar) in.readObject();

in.close();

return serverDate.before(expirationDate);

237

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 237

Serialization can make complex tasks very straightforward. Java programmers can serialize and deserial-
ize information without ever really leaving the Java environment in the sense that actual class instances
can be serialized. Rather than creating your own date format on the server, an instance of Calendar
was returned. All the low-level details of marshalling information over the network and finding a for-
mat you can use for date information were all taken care of by Java Serialization and the URL class.

Implementing the Timeserver
So now that you know what the timeserver is supposed to do, you must actually implement it. The time-
server will run as a Java Web Application (see Chapters 7 and 8 for much more detailed information on
Web applications). A simple servlet is all that is necessary to implement the timeserver. The servlet will
take care of the HTTP request and response, and allow you to write a Calendar object out to the client.
Here is the servlet code that runs on the timeserver:

package book;

import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.logging.Logger;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ServerDate extends HttpServlet {

private Logger logger;

public void init(ServletConfig config) throws ServletException {
logger = Logger.getLogger(ServerDate.class.getName());

}

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException, ServletException {

logger.info(“Received date request”);

ObjectOutputStream out = new ObjectOutputStream(resp.getOutputStream());
Calendar calendar = new GregorianCalendar();

out.writeObject(calendar);

out.close();

logger.info(“Wrote the date: “ + calendar.getTime());
}

}

238

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 238

By implementing the doGet() method, your servlet handles HTTP GET requests (which is expected
from your License clients). The method is straightforward. All you do is wrap an
ObjectOutputStream around the normal ServletOutputStream:

ObjectOutputStream out = new ObjectOutputStream(resp.getOutputStream());

Now that the output stream back to the client has been wrapped in an ObjectOutputStream, a new
Calendar instance (which corresponds to the current date and time on the server) can be written back to
the client:

Calendar calendar = new GregorianCalendar();

out.writeObject(calendar);

out.close();

The License class and ServerDate servlet take care of the actual license file and the means to validate
the date it stores, respectively. In the next section, you will see how to integrate the components in this
example, with your configuration data model and Swing actions, into the actual Swing implementation
of the Imager Application.

Tying Your Serialization Components into the Application
You have developed Swing actions that load and save your configuration data model. You wrote a
licensing system that uses serialization to specify both the license file format, as well as specifying the
date and time format of your simple timeserver. Actually tying these pieces into the Imager Application
is not very difficult, but helps to paint the larger picture of how serialization can fit into a real applica-
tion design.

The first task your application does at startup is to load the license file and verify that the date contained
therein is before the date returned on the timeserver. The license.file is read in from the applica-
tion’s Java Archive file (JAR) and then the validity of the license is verified against the timeserver found
at the URL in the serialized license:

try {
ObjectInputStream in = new ObjectInputStream(

Application.class.getResourceAsStream(“license.file”));

License license = (License) in.readObject();

in.close();

if (!license.isValid()) {
JOptionPane.showMessageDialog(this, “Your license has expired”,

“License”, JOptionPane.ERROR_MESSAGE);
System.exit(1);

}

} catch (Exception ex) {
JOptionPane.showMessageDialog(this, ex.getMessage(), “License”,

JOptionPane.ERROR_MESSAGE);
System.exit(1);

}

239

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 239

Notice how the license file, license.file, is loaded as a resource. Your application assumes that the
license was packaged into the same JAR file as the application. This means that there must be some sort of
license managing utility to create and put a valid license.file into the same JAR file as the application —
it will not be discussed though, as it is irrelevant to this example. Getting the license.file from the
JAR file reduces the risk of a user attempting to tamper with its contents to gain a longer license. The
Java Serialization API is a binary format that is not human-readable, but could potentially be recognized
by another Java developer. If you really cared an awful lot about anyone tampering with your
license.file, it could always be encrypted using the Java Cryptography Extension (JCE) (included in
the JDK). JCE allows one to encrypt any OutputStream and hence you could encrypt (and later decrypt)
an ObjectOutputStream.

Adding your Swing actions to the File menu looks like the following:

fileMenu.add(new JMenuItem(new LoadConfigurationAction(this)));
fileMenu.add(new JMenuItem(new SaveConfigurationAction(this)));

Now you have tied in all of your components based on serialization. Below is a stripped-down code list-
ing for the basic application, showing your serialization code in the context of the application. Look at
the setConfiguration(), loadConfiguration(), and getConfiguration() methods as these are
what your Swing actions manipulate:

package book;

import java.awt.Color;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.io.ObjectInputStream;

import javax.swing.*;

public class Application extends JFrame {

private Configuration configuration = new Configuration();

private JButton hdButton;

private JButton bcButton;
private JButton fgButton;
private Color defaultColor;

private JCheckBox showTabsCheckBox;

...

public Application() {
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setTitle(“The Imager”);

try {
ObjectInputStream in = new ObjectInputStream(

Application.class.getResourceAsStream(“license.file”));

240

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 240

License license = (License) in.readObject();

in.close();

if (!license.isValid()) {
JOptionPane.showMessageDialog(this, “Your license has expired”,

“License”, JOptionPane.ERROR_MESSAGE);
System.exit(1);

}

} catch (Exception ex) {
JOptionPane.showMessageDialog(this, ex.getMessage(), “License”,

JOptionPane.ERROR_MESSAGE);
System.exit(1);

}

...

JMenuBar menu = new JMenuBar();
JMenu fileMenu = new JMenu(“File”);
fileMenu.add(new JMenuItem(new LoadConfigurationAction(this)));
fileMenu.add(new JMenuItem(new SaveConfigurationAction(this)));
fileMenu.addSeparator();

...
this.pack();
this.setVisible(true);

}

private JPanel createConfigDisplayPanel() {
...

return panel;
}

private void loadConfiguration() {
hdButton.setText(this.configuration.getUserHomeDirectory());

Color bcColor = this.configuration.getBackgroundColor();
if (bcColor != null) {

bcButton.setBackground(bcColor);
bcButton.setText(null);

} else {
bcButton.setText(“<No color set>”);
bcButton.setBackground(this.defaultColor);

}

Color fgColor = this.configuration.getForegroundColor();
if (fgColor != null) {

fgButton.setBackground(fgColor);
fgButton.setText(null);

} else {
fgButton.setText(“<No color set>”);
fgButton.setBackground(this.defaultColor);

}

showTabsCheckBox.setSelected(this.configuration.isShowTabs());
}

241

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 241

public Configuration getConfiguration() {
return configuration;

}

public void setConfiguration(Configuration configuration) {
this.configuration = configuration;

this.loadConfiguration();
}

public static void main(String[] args) {
Application app = new Application();

}
}

In Figure 5-7 that follows, your application is editing part of your configuration data model. To get to
this screen means that the application was able to verify the license (since the license is verified before
the main application window is even fully loaded). Notice in the loadConfiguration() method in the
preceding code listing how the color buttons are set, the checkbox is checked, and the user’s home direc-
tory is placed on the first button when a configuration is loaded. The user can then change these options,
which modifies the application’s Configuration object.

Figure 5-7

Once the data in the Configuration object is changed, it can be saved back to disk. Since the whole
configuration data model is rooted in the Configuration object, all you need to do is export it to disk
using your action, as shown in the screen shot in Figure 5-8.

Figure 5-8

242

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 242

Extending and Customizing Serialization
Though most of the time, the Java Serialization API provides plenty enough functionality out of the box,
there are some times when a greater level of control is necessary for the developer. Sometimes a devel-
oper will not want every field of a class serialized to disk. Other times, the developer may want to
append additional information not included in class fields into the stream — or maybe modify the class’s
data structure before serialization occurs. When a class definition is modified (in other words, the code is
changed and the class recompiled — that is, fields are renamed, or other fields are added and still others
removed), classes serialized previously to these changes will have errors upon deserialization. In this
section, some of the commonly used mechanisms for customizing and extending Java Serialization will
be discussed.

The Transient Keyword
The transient keyword in the Java language is used for Java Serialization. Any field marked tran-
sient will not be saved to disk. This is useful when a class contains a reference to another object that
does not implement Serializable, but you still would like to persist a class instance to disk.
Sometimes certain fields are runtime-dependent and should not be persisted. Suppose in your
Configuration object you wanted to additionally store a reference to your Application (for callbacks
perhaps). When you saved your application to disk, you would certainly not want to persist the
Application and every object associated with it on its object graph (even if all its objects implemented
Serializable anyhow). To mark a field transient, simply put the keyword before the definition of
the object or primitive:

private transient Application application;

The transient keyword is an easy way to quickly mark which fields of your class you would like the
Serialization API to skip over and not save.

Note, though, that when a class is reconstructed after being serialized, these fields marked transient will
be null (or if they are primitives, their default value), unless they are given a default value or set in the
default constructor of the class.

Customizing the Serialization Format
Sometimes there is a need to perform additional operations either right before an object is serialized or
right after it is deserialized. This need could arise if a class must retrieve data that is externally stored,
such as on a server or in a cache, right before it is serialized. Objects may wish to verify some of their
fields right after deserialization and fill in or create some of the fields marked transient. There are two
methods you can add to a class to add additional behavior to the serialization and deserialization pro-
cess. These methods are not part of any interface, and for them to be called, they must have the exact sig-
nature as shown. These are writeObject() and readObject(), as defined by the following:

private void writeObject(ObjectOutputStream out) throws IOException {
// can do things like validate values, get data from an external source, etc

out.defaultWriteObject(); // invokes normal serialization process on this object
}

private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException {

243

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 243

in.defaultReadObject(); // invokes normal deserialization process on this object

// can do things like validate values, produce new values based on data, etc
}

The method writeObject() is called right before a class is serialized. The user can control when the
class is actually serialized by calling defaultWriteObject() on the ObjectOutputStream as shown
above. Doing so invokes the normal Java Serialization process on the current object. Before or after the
object is written to the stream though, values to current data members could be changed or updated.
Additional information can also be written to the ObjectOutputStream at this time. The
ObjectOutputStream also implements the java.io.DataOutput interface, which includes methods
for writing primitives (and Strings).

The readObject() method is called right before an object is deserialized. It is the natural counterpart
to writeObject(). Similarly, the user can control when the object is deserialized by calling
defaultReadObject() on the ObjectInputStream. After an object is deserialized, fields that did not
have values could be assigned default values, or the values that were assigned could be checked. If any
extra data was written to the ObjectOutputStream in writeObject() it must be read back in the
readObject() method. For example, if the user wrote the java.util.Date object to the stream before
writing the current object (to signify when the object was serialized), the Date object would have to be
read in before defaultReadObject() was called.

Verification and Validation for Configuration
One example of how implementing writeObject() and readObject() could be useful to your
Configuration object is data verification and validation. Your Configuration object stores the user’s
home directory and a list of recently accessed files. Between the time when a Configuration instance is
serialized and later deserialized, the files and directory may not exist (they could have been moved or
deleted). When your Configuration instance is deserialized, you want to remove the references to the
directory or files that no longer exist to where they originally were. To do this, the readObject()
method is implemented as shown below. After defaultReadObject() is called to populate the current
instance of your object, the userHomeDirectory field and the recentFiles field can be verified to
check if the files (and directory) exist. Any file or directory that does not exist will simply be set to null:

private void writeObject(ObjectOutputStream out) throws IOException {
out.defaultWriteObject();

}

private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException {

in.defaultReadObject();

if (this.userHomeDirectory != null) {
File f = new File(this.userHomeDirectory);
if (!f.exists())

this.userHomeDirectory = null;
}

if (this.recentFiles != null) {
List list = new LinkedList();
Collections.addAll(list, this.recentFiles);

244

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 244

ListIterator it = list.listIterator();
while (it.hasNext()) {

String curr = (String) it.next();
File f = new File(curr);
if (!f.exists()) {

it.remove();
}

}

this.recentFiles = new String[list.size()];
list.toArray(this.recentFiles);

}
}

The Externalizable Interface
Besides implementing readObject() and writeObject(), there is also an interface that extends
Serializable that allows for greater customization of serialization and deserialization. This interface,
java.io.Externalizable, allows more control of the serialization format than readObject() and
writeObject(). It exists to allow developers to write their own custom formats for a class. With
Externalizable, only the class identity is written to the stream by the Java Serialization API, the rest is
left for the developer. The Externalizable interface looks like the following:

public interface java.io.Externalizable extends java.io.Serializable {
public void readExternal(java.io.ObjectInput in) throws java.io.IOException,

java.lang.ClassNotFoundException { }

public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException
{ }

}

The methods writeExternal() and readExternal() are public, instead of private like readObject()
and writeObject(). Other classes can call these methods to read and write a class to disk without
specifically invoking Java Serialization. Externalizable is not generally used very often, because
when you normally want to save a class to disk, there is no need to completely customize the format.
However, there may be times when Externalizable could come in handy. If you wanted to serialize a
class that represented an image, and the in-memory representation was huge because it represented
every pixel (like a bitmap), the Externalizable interface could be used to write the image in a
different and compressed format (such as JPEG). The same could be done with readObject() and
writeObject(), but these methods are not public, and in the case of your image-saving class, you may
also want to save your image to disk outside of a serialization stream.

Versioning
The biggest stumbling block most developers run into with serialization is versioning. Many times classes
will be serialized to disk, and then the definition of the class will change as source code is modified and
the class recompiled. Maybe a field is added, or one is taken away. Design decisions could force the
change of some internal data structures, say, from lists to maps or trees. Any change to a class, by
default, results in the inability to restore any previously serialized instance — a version error results.
Serialization versioning works by default by hashing a class based on its fields and class definition.
Even if one of the field names is changed (but not its data type), previously serialized instances will not
deserialize — the hash for the class has changed, and when the definition of a class is changed, there is

245

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 245

no way to retain backward compatibility with previously saved instances. For smaller changes, espe-
cially things like name changes or the addition or removal of one field, you will probably want to retain
backward compatibility with previously saved instances.

The Java Serialization API provides a way to manually set the hash of a class. The following field must
be specified exactly as shown to provide the hash of the class:

private static final long serialVersionUID = 1L; // version 1 of our class

If the serialVersionUID is specified (and is static and final), the value given will be used as the
hash for the class. This means that if you define a serialVersionUID for your class and keep it the
same value between different class versions, then you will not get versioning errors when deserializing
instances of previous class definitions. The Serialization API provides a best-effort matching algorithm
to try to best deserialize classes saved with an older class definition against a newer definition. If a field
was added since a class was serialized, upon deserialization, that field will be null. Fields in which
names have changed or types have changed will be null. Fields removed will not be set. The developer
will still need to account for these older versions, but by setting the serialversionUID, the developer
is given the chance to do so, rather than just have an exception thrown right when the deserialization
process is attempted. It is recommended to always set a serialVersionUID for a class that implements
Serializable, and change it only when you want previously serialized instances to be incompatible.

So, say you have previously serialized class instances and want to change a field or add another. You did
not originally set a serialVersionUID, so any change you make will render it impossible to deserialize
the old instances. The JDK provides a tool to identify a class’s hash that has not been manually set. The
serialver tool identifies the JVM’s current hash of a compiled class file. Before you modify your class,
you can find the hash previously being used. For your Configuration object, for example, you did not
previously define a serialVersionUID field. If you add a field, you will not be able to deserialize old
instances. Before modifying the class, you need to find the hash. By running the serialver tool, you
find the hash by the following:

serialver book.Configuration

Configuration must be on the classpath for the serialver tool to work. The output of the tool is
shown in Figure 5-9.

Figure 5-9

Note: Serialver is located in the \bin directory of your JDK.

Now this serialVersionUID value can be added to your Configuration class:

private static final long serialVersionUID = 6563629108912000233L;

246

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 246

New fields can now be added without breaking backward compatibility with your older instances.
Versioning is such an issue with serialization that it is recommended to always set a serialVersionUID
for any class that implements Serializable right off the bat. This is especially important since differ-
ent JVMs can utilize different hashing algorithms — manually setting the serialVersionUID from the
get-go mitigates this issue.

When to Use Java Serialization
Java Serialization is a simple but very powerful API. It is easy to use and can serialize most any type of
data your application could have. Its main strengths follow:

❑ Simplicity

❑ Efficient binary file format

The file format defined by the Serialization API is usually what determines its suitability for an applica-
tion. It is a fairly efficient file format, since it is binary as opposed to XML or other textual file formats.
However, the file format also produces the following weaknesses (though possibly not weaknesses
depending on your requirements or design decisions):

❑ Not human-readable

❑ Only Java-based applications can access the serialized data

Since the data is in a binary format, it cannot be edited with simple text editors. Your application’s con-
figuration from the example could only be modified from the application. The data was not in an XML
format (or other textual format) where you could edit it in both the application or in an external editor.
Sometimes this is important, but certainly not always. The key downside to Java Serialization is that
only Java-based applications can access the serialized data. Since the serialization format is storing
actual Java class instances in a file specification particular to Java, no parsers have been written in other
languages for parsing data serialized with the Java serialization API.

The Java Serialization API is most useful when developing data models for Java applications and per-
sisting them to disk. If your application needs a common file format with other applications not written
in Java, serialization is the wrong design choice. If the files do not need to be human-readable, and the
only applications written for reading them will be in Java, serialization is a great design choice.

Serialization can usually be a good temporary solution. Every Java application will have some sort of in-
memory data model. Certain classes will store data in memory for the application to use. These classes
could be persisted to disk, or populated from reading some other file format. Serialization could be ini-
tially used to save and restore these class instances, especially because of the little effort it takes to write
serialization and deserialization code. Later on though, as the need for a common file format between
non-Java based applications arises, routines could be written to take the data in those classes and persist
it to another format. In other words, the same classes would still be used for the application’s internal
memory model, but the load and save routines would have to change. You will see in the next sections
how you can serialize the application’s configuration data in other formats and still retain the use of
Configuration as your in-memory way of representing that data. Only the load and save code will
need to change — not the actual data model.

247

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 247

Java Beans Long-Term Serialization:
XMLEncoder/Decoder

The XMLEncoder/Decoder API is the new recommended persistence mechanism for Java Beans compo-
nents starting from the 1.4 version of the JDK. It is the natural progression from serialization in many
respects, though it is not meant to replace it. Like Java Serialization, it too serializes object graphs.
XMLEncoder/Decoder came around in response to the need for long-term persistence for Swing toolkit
components. The Java Serialization API was only good for persisting Swing components in the short
term because it was only guaranteed to work for the same platform and virtual machine version. The
reason for this is that some of the core UI classes that Swing depends on must be written in a plat-
form/VM dependent manner, and thus their private data members may not always match up — leading
to incompatibility problems in using the normal Serialization API. The Swing API has also had a lot of
fluctuation in its implementation. Classes like JTable used to take up 30 megabytes of memory alone in
memory. As the implementations have improved, especially in the new 5.0 release of the JDK, the inter-
nal implementations of many of these Swing classes have drastically changed. A new serialization API
was developed in response to the challenge of true portability between different implementations and
versions of the JDK for Swing/JFC classes. XMLEncoder/Decoder thus has a different set of design cri-
teria than the original Java Serialization API. It was designed for a different usage pattern. Both APIs are
necessary, with XMLEncoder/Decoder filling in some of the gaps of the Java Serialization API.
XMLEncoder is a more robust and resilient API for long-term serialization of object instances, but is lim-
ited to serializing only Java Beans components, and not any Java class instances.

Design Differences
Since the XMLEncoder/Decoder API was designed to serialize only Java Beans components, the design-
ers had the freedom to make XMLEncoder/Decoder more robust. Some of the key issues many devel-
opers had with the original Java Serialization API were version and portability problems. The
XMLEncoder/Decoder API was written in response to these issues. Unlike the Java Serialization API,
the XMLEncoder/Decoder API serializes object instances without any knowledge of their private data
members. It serializes based upon the object’s methods, its Java Bean properties, exposed through the
Java Beans convention of getters and setters (getXXX and setXXX). By storing an object based upon its
interface rather than its underlying implementation, the underlying implementation is free to change
without affecting previously serialized instances (as long as the interface remains the same). This allows
for long-term persistence. The class’s internal structure could be completely rewritten, or differ across
platforms, and the serialized instance would still be valid (and truly portable). A simple example of a
Java Bean follows:

public class MyBean {
private String myName;

public String getMyName() { return this.myName; }

public void setMyName(String myName) { this.myName = myName; }
}

Internal data members could be added, the field myName could be changed to a character array or
StringBuffer, or some other mechanism of storing a string. As long as the methods getMyName() and
setMyName() did not change, the serialized instance could be reconstructed at a later time regardless of

248

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 248

other changes. You will notice that MyBean does not implement Serializable. XMLEncoder/Decoder
does not require classes it serializes to implement Serializable (or any other interface for that matter).
Only two requirements are levied upon classes for XMLEncoder/Decoder to serialize:

❑ The class must follow Java Bean conventions.

❑ The class must have a default constructor (a constructor with no arguments).

In the upcoming “Possible Customization” section, you will see how both of these requirements can pos-
sibly be sidestepped, but at the expense of writing and maintaining additional code to help the
XMLEncoder/Decoder API.

XML: The Serialization Format
The XMLEncoder/Decoder API naturally lives true to its name and has its serialization format based in
XML text (in contrast to the binary format used by Java Serialization). The format is essentially a series of
processing instructions telling the API how to recreate a given object. The processing instructions instanti-
ate classes, and set Java Bean properties. This idea of serializing how to recreate an object, rather than
every private data member of an object, leads to a robust file format capable of withstanding any internal
class change (obviously not changes to the interface of the properties stored, though). You will not get into
the nitty-gritty details of the file format. It is helpful, though, to see the result of serializing a Java Bean
using the XMLEncoder/Decoder API. Below is the output of an instance of the Configuration object,
serialized using the XMLEncoder/Decoder API. Since Configuration already follows Java Bean conven-
tions (as most all Java data models should), no special code additions were necessary to serialize an
instance using XMLEncoder/Decoder. Notice how the whole object graph is again saved like the Java
Serialization API, and since java.awt.Color and java.awt.Point follow Java Bean conventions, they
are persisted as part of the graph. XMLEncoder/Decoder also optimizes what information is saved — if
the value of a bean property is its default value, it does not save the information:

<?xml version=”1.0” encoding=”UTF-8”?>
<java version=”1.5.0-beta3” class=”java.beans.XMLDecoder”>
<object class=”book.Configuration”>
<void property=”recentFiles”>
<array class=”java.lang.String” length=”3”>
<void index=”0”>
<string>c:\mark\file1.proj</string>

</void>
<void index=”1”>
<string>c:\mark\testproj.proj</string>

</void>
<void index=”2”>
<string>c:\mark\final.proj</string>

</void>
</array>

</void>
<void property=”userHomeDirectory”>
<string>C:\Documents and Settings\Mark\My Documents</string>

</void>
<void property=”showTabs”>
<boolean>true</boolean>

</void>
<void property=”foregroundColor”>
<object class=”java.awt.Color”>
<int>255</int>

249

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 249

<int>255</int>
<int>51</int>
<int>255</int>

</object>
</void>
<void property=”backgroundColor”>
<object class=”java.awt.Color”>
<int>51</int>
<int>51</int>
<int>255</int>
<int>255</int>

</object>
</void>

</object>
</java>

One key point about the XML file format used by XMLEncoder/Decoder is that even though an XML
parser in any language could read the file, the file format is still specific to Java. The file format encodes
processing instructions used to recreate serialized Java Bean class instances, and is therefore not directly
useful to applications written in other languages. It would be possible of course to implement a reader in
another language that read some data from this file format, but it would be a large and fairly difficult
task (at least to write a generalized one). The other language would also need to have some sort of
notion of Java Bean. In other words, think of this as a Java-only file format and do not rely on it for trans-
mitting data outside of the Java environment. The Java API for XML Binding (JAXB) will be discussed,
which is far more suited to exporting data to non-Java consumers.

Since XML is text and therefore human-readable, it is possible to save class instances to disk and then
edit the information with a text file. However, editing the preceding XML document would not be for
the casual user; it would be more useful to a developer, since some knowledge of how the
XMLEncoder/Decoder API stores information is necessary to understand where to modify the file. If you
wanted users to be able to save your Configuration object to disk and then edit it outside of your
application, you probably would not choose the XMLEncoder/Decoder XML file format. In the file
above, for example, java.awt.Color was persisted using four integer values, described only by int
for each one. What casual user would know that they correspond to the red, blue, green, and alpha
channels of a color, and that they can range from 0 to 255? A descriptive configuration file format in XML
would probably be a task for JAXB, as discussed in the next section. The file format used by
XMLEncoder/Decoder is Java-specific and is also not well suited for general hand editing like many
XML formats are. XML was simply the storage mechanism chosen — why define a new file format when
you can use XML?

Key Classes
Using the XMLEncoder/Decoder API is very similar to using the Java Serialization API. It was devel-
oped to have the same core methods, and as such, java.beans.XMLEncoder and java.beans
.XMLDeocoder could literally be substituted for ObjectOutputStream and ObjectInputStream,
respectively. XMLEncoder and XMLDecoder are the only classes needed to serialize Java Beans. In the
“Possible Customization” section, some other classes that are needed to serialize Java Beans that do not
completely follow Java Bean conventions will be briefly discussed. Below is a table of the classes needed
to use XMLEncoder/Decoder.

250

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 250

Class (From java.beans) Function

XMLEncoder Class that takes an instance of a Java Bean and writes the corre-
sponding XML representation of it to the java.io.OutputStream it
wraps

XMLDecoder Class that reads a java.io.InputStream and decodes XML format-
ted by XMLEncoder back into instances of Java Beans

Serializing Your Java Beans
The process of serializing Java Beans using XMLEncoder/Decoder is almost exactly like the process of
serializing a Java class using normal Java Serialization. There are also four steps to serialization:

1. Make sure the class to be serialized follows Java Bean conventions.

2. Make sure the class to be serialized has a default (no argument) constructor.

3. Serialize your Java Bean with XMLEncoder.

4. Deserialize your Java Bean with XMLDecoder.

To save an instance of your Configuration object to disk, you simply begin by creating an XMLEncoder
with a FileOutputStream object:

XMLEncoder encoder = new XMLEncoder(
new FileOutputStream(“c:\\mark\\config.bean.xml”));

Then you simply write your instance of Configuration, conf, to disk and close the stream:

encoder.writeObject(conf);

encoder.close();

Reading the serialized instance of Configuration back into memory is just as simple. First the
XMLDecoder object is created with a FileInputStream:

XMLDecoder decoder = new XMLDecoder(
new FileInputStream(“c:\\mark\\config.bean.xml”));

Next you read in your object, much like you did with ObjectInputStream, and then close your stream:

Configuration config = (Configuration) decoder.readObject();

decoder.close();

On the surface, XMLEncoder/Decoder works much like Java Serialization. The underlying implementa-
tion though, is much different, and allows for the internal structure of classes you serialize to change
drastically, yet still work and be compatible with previously saved instances. XMLEncoder/Decoder
offers many ways to customize how it maps Java Beans to its XML format; some of these will be dis-
cussed in the “Possible Customization” section.

251

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 251

Note: Just like the Java Serialization API, multiple objects can be written to the same stream.
XMLEncoder’s writeObject() method can be called in succession to serialize more than one object
instance. When instances are deserialized though, they must be deserialized in the same order in which
they were written.

Robustness Demonstrated: Changing Configuration’s Internal Data
Suppose you want to change the way your Configuration object stores the references to the user’s
recently accessed files of your application. They were stored previously using a string array. There were
two methods that gave access to the bean property, recentFiles: getRecentFiles() and
setRecentFiles(). Your Configuration object looked like:

package book;

import java.awt.Color;
import java.awt.Point;
import java.beans.XMLDecoder;
import java.io.File;
import java.io.FileInputStream;
import java.util.ArrayList;
import java.util.List;

public class Configuration {

...

private String[] recentFiles;

public String[] getRecentFiles() {
return recentFiles;

}

public void setRecentFiles(String[] recentFiles) {
this.recentFiles = recentFiles;

}

...

}

Now you would like to store the recentFiles property internally as a java.util.List full of
java.io.File objects. If you do not change the signature of the getRecentFiles() and
setRecentFiles(), you can do whatever you like with the underlying data structure. The modified
Configuration class below illustrates how the storage of recent files could be changed to a List with-
out changing your method signatures for the recentFiles bean property:

package book;

import java.awt.Color;
import java.awt.Point;
import java.beans.XMLDecoder;
import java.io.File;
import java.io.FileInputStream;
import java.util.ArrayList;

252

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 252

import java.util.List;

public class Configuration {

...

private List recentFiles;

public String[] getRecentFiles() {
if (this.recentFiles == null || this.recentFiles.isEmpty())

return null;

String[] files = new String[this.recentFiles.size()];

for (int i = 0; i < this.recentFiles.size(); i++)
files[i] = ((File) this.recentFiles.get(i)).getPath();

return files;
}

public void setRecentFiles(String[] files) {
if (this.recentFiles == null)

this.recentFiles = new ArrayList();

for (int i = 0; i < files.length; i++) {
this.recentFiles.add(new File(files[i]));

}
}

...

}

Notice how in the setRecentFiles() method, an array of String objects is converted to a List of
File objects. In the getRecentFiles() method, the intenal List of File objects is converted back into
an array of String objects. This conversion is the key to the information hiding principle that
XMLEncoder/Decoder uses to serialize and deserialize object instances. Since XMLEncoder/Decoder
only works with the operations and interface to a class, the private data members can be changed. By
keeping the interface the same, your Configuration class can undergo all kinds of incremental changes
and improvements under the hood without affecting previously saved instances. This is the key benefit
of XMLEncoder/Decoder that provides its ability to serialize instances not just in the short-term, but
also in the long-term, by weathering many types of changes to a class definition.

The main() method below demonstrates XMLDecoder deserializing an instance of Configuration pre-
viously saved with your older version of Configuration that stored the recentFiles property as a
String array. The file this method is loading is the one shown previously in this section as sample out-
put for XMLEncoder/Decoder (see the previous section “XML: The Serialization Format”):

public static void main(String[] args) throws Exception {
XMLDecoder decoder = new XMLDecoder(

new FileInputStream(“c:\\mark\\config.bean.xml”));

Configuration conf = (Configuration) decoder.readObject();

253

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 253

decoder.close();

String[] recentFiles = conf.getRecentFiles();
for (int i = 0; i < recentFiles.length; i++)

System.out.println(recentFiles[i]);
}

As you can see, the output from your main() method confirms that not only was your old
Configuration instance successfully read by the XMLEncoder/Decoder API, but your new List of
File objects is working properly and is populated with the correct objects:

c:\mark\file1.proj
c:\mark\testproj.proj
c:\mark\final.proj

Possible Customization
XMLEncoder/Decoder supports serialization of Java Beans out of the box, but it can also be customized
to serialize any class — regardless of whether or not it uses Java Beans conventions. In fact, throughout
the Swing/JFC class library you will find classes that do not fully conform to Java Bean conventions.
Many types of collection classes do not; some Swing classes have other ways of storing data besides get-
ters and setters. The following XML file is a serialized instance of a java.util.HashMap, and a
javax.swing.JPanel. Both of these classes have their data added to them by methods that do not fol-
low the Java Beans convention:

<?xml version=”1.0” encoding=”UTF-8”?>
<java version=”1.5.0-beta3” class=”java.beans.XMLDecoder”>
<object class=”java.util.HashMap”>
<void method=”put”>
<string>Another</string>
<string>AnotherTest</string>

</void>
<void method=”put”>
<string>Mark</string>
<string>Test</string>

</void>
</object>
<object class=”javax.swing.JPanel”>
<void method=”add”>
<object class=”javax.swing.JLabel”>
<void property=”text”>
<string>Mark Label</string>

</void>
</object>

</void>
</object>

</java>

Note how data is added to a HashMap by the put() method, and components are added to JPanels by
the add() method. How does the XMLEncoder/Decoder API know how to look for this — or even find

254

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 254

the data that should be inserted via those methods? Since its file format is a series of processing instruc-
tions, XMLEncoder/Decoder can serialize the information necessary to make method calls to disk. This
generic ability lets XMLEncoder/Decoder do any kind of custom initialization or setting of data that a
class may require — and all through its methods, its interface. Just because the file format supports this
type of generic processing instruction, though, does not mean that the XMLEncoder automatically
knows how to use them. The solution is the API’s java.beans.PersistenceDelegate class.

Persistence Delegates
Every class serialized and deserialized has an instance of java.beans.PersistenceDelegate associ-
ated with it. It may be the default one, included for classes following the Java Beans conventions, or it
could be a custom subclass of PersistenceDelegate that writes the processing instructions needed to
recreate a given instance of a class. Persistence delegates are responsible only for writing an object to
disk — not reading them. This is because all objects are written in terms of known processing instruc-
tions. These instructions can be used to recreate the object without the need of any custom information
contained in the persistence delegate. How to write a custom persistence delegate is a fairly complex
topic that is out of the scope of this section. It is what allows classes like HashMap and JPanel to be suc-
cessfully serialized. The XMLEncoder/Decoder includes a number of PersistenceDelegates used for
classes found in the JDK that do not fully conform to Java Beans conventions.

For detailed information on how to use and create custom persistence delegates, see the following arti-
cle, written by Philip Mine, the designer and author of XMLEncoder/Decoder API:

http://java.sun.com/products/jfc/tsc/articles/persistence4/

When to Use XMLEncoder/Decoder
Use of the XMLEncoder/Decoder API over the Java Serialization API is generally preferred when you
are serializing object graphs consisting of Java Beans and Swing components. It was designed precisely
for that purpose and fixes the more generic Java Serialization API’s shortcomings with respect to both
Java Beans, but especially Swing components. Prior to the XMLEncoder/Decoder API, there was no
built-in mechanism for the long-term serialization of Swing components. XMLEncoder/Decoder has
only been around since JDK 1.4; if you must support any JDK released before 1.4, you cannot use
XMLEncoder/Decoder.

Thinking in more general terms, and assuming your application has a data model you wish to persist to
disk, XMLEncoder/Decoder has the following advantages:

❑ It’s simple to implement.

❑ You can add properties and remove properties from your Java Beans class definitions without
breaking previously serialized instances.

❑ The internal private data structure of your beans can change without breaking previously serial-
ized instances.

❑ Instances are saved in XML, making the resulting files human-readable.

255

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 255

Some of the potential downsides to choosing the XMLEncoder/Decoder for serializing your object
graph of Java Beans follow:

❑ Even though the file format is human-readable, it is editable in the real world only by develop-
ers or power users.

❑ Even though the file format is XML, it is still Java-specific — it would take great effort to allow a
non-Java-based application to read the data.

❑ Every piece of data you want persisted in the class must be a Java Bean property (or customized
with a special persistence delegate).

The XMLEncoder/Decoder API is perfect for what it is designed for — the long-term serialization of Java
Beans components for use later on by Java-based applications. Because it is so customizable, it can often
be used for a variety of other purposes, and serialize a lot of data beyond ordinary Java Beans. Generally,
though, its main advantage over normal Java Serialization is its robustness, even through class definition
changes. Apart from that, however, it still has the same limitations of the Java Serialization API. When
you have an internal data model based with Java Beans, XMLEncoder/Decoder makes sense. If you
would like your application’s file formats to be read by other non-Java applications, eventually you will
have to specify some other custom file format or write to an existing standard.

XML Schema-Based Serialization:
Java API for XML Binding (JAXB)

The last method to be discussed in this chapter for persisting an application’s data is the Java API for
XML Binding (JAXB). This method is fundamentally different from the other two serialization methods
that have already been discussed (the Java Serialization API and the XMLEncoder/Decoder API). Both
of these models involve taking a data model consisting of classes already defined and persisting
instances of these classes. Later on, the information on disk could then be used to reconstruct the object
graph back into the in-memory model used by an application. Both of these models map Java classes to
a file format. JAXB takes the opposite approach. It maps a file format to Java classes. The diagram shown
in Figure 5-10 illustrates this difference.

Figure 5-10

Serialization
Binary Format

Schema defines

JAXB writes

JAXB generates

Java Serialization API writes

XMLEncoder/Decoder API writes
XMLEncoder
Bean XML

Format

User Defined
XML Schema

Generic XML
Format

JAXB Generated Class

User Defined Java Class

256

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 256

Instead of defining Java classes, which in turn are written to predefined file formats, the developer
defines the file format in the XML schema language. Once the file format is defined, JAXB generates a set
of Java classes that read and write the XML instance documents that correspond to the defined XML
schema.

JAXB generally requires more work on the part of the developer. The benefit is that other applications
can easily read and write the data model defined by the XML schema. Because XML schema is a well-
accepted standard, other languages and development languages also have tools to generate data storage
classes based on an XML schema. This makes JAXB ideal for applications that must share a common
data format. When other applications specify their file formats in XML schema, JAXB makes life simple
for the developer, since the developer already has a file format specification defined and simply has to
generate the Java classes that bind to XML documents that follow the schema.

Since JAXB generates Java classes based on a particular XML schema, the developer does not have as
much room to customize the data structure. In most cases, developers will find themselves going back to
the XML schema, modifying it, and regenerating the classes’s additional information or changes to cur-
rent information that must be stored. Generated code provides a set of different issues for the developer.
Names for data members, while following the schema, can be tedious to work with, and code using gen-
erated classes can easily become difficult to read. Many times developers will be forced with the addi-
tional burden of mapping data in JAXB-generated classes to classes in the JDK — like mapping color
information to a java.awt.Color instance, or constructing a java.net.URL or file path from a String.
This additional overhead is one of the downsides of JAXB — it is usually worth the effort though, if
interoperability and a readable file format are requirements of your application. The quick and easy days
of the Java Serialization API and the XMLEncoder/Decoder API give way to the slightly more tedious
JAXB methodology of programming. Anytime you need to interface with non-Java applications, the
complexity increases.

Sample XML Document for Your Configuration Object
Suppose you want to take your Configuration data model and define an XML schema to represent
it. You will not be able to write an XML schema that maps directly to your already-existing
Configuration class, but you can write an XML schema that saves all the necessary data attributes to
recreate your Configuration instance. This is where the extra effort comes in on the part of the developer.
After the in-memory data model is defined, in your case the Configuration object, an XML schema
must additionally be defined to represent all the necessary data attributes to recreate it. If you did not
already have a class for your Configuration data model, you would still have to write some sort of
conversion between types like java.awt.Color and the JAXB class that you generate with that same
information — after all, other Swing classes were developed to interact with java.awt.Color, not
whatever custom class JAXB decides to generate for you! To refresh your memory on what data
attributes are stored in Configuration, Figure 5-11 is the original data model diagram displayed earlier
in the chapter.

The XML schema language is the World Wide Web Consortium’s standard for defin-
ing XML instance documents of a particular type. It is a widely accepted standard
and already defines many different types of XML documents. XML schemas also let
XML parsers validate an XML instance document to verify that they conform to the
schema’s requirements. This can greatly reduce the time it takes to write code that
must read XML, as it does a lot of the validation for you. View the XML schema
specification at the following URL: http://www.w3.org/TR/xmlschema-0/.

257

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 257

Figure 5-11

Essentially, data representing a color, a point, directory and file locations, and a boolean variable needs to
be stored. XML schema is more than equipped to handle this — you just have to actually define it. Below
is an XML instance document that contains all of the information you would need to recreate your
Configuration object. Notice how it is not only human-readable in the sense that it is text, but it is also
conceivably modifiable by a user. Colors are obviously defined, and the user’s home directory is easily
modified. The XML below is far more readable than the output from the XMLEncoder/Decoder API:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<configuration xmlns=”http://book.org/Configuration”>

<user-settings>
<user-home-directory>C:\Documents and Settings\Mark\My Documents</user-home-

directory>

<recent-files>
<recent-file>c:\mark\file1.proj</recent-file>

<recent-file>c:\mark\testproj.proj</recent-file>

<recent-file>c:\mark\final.proj</recent-file>
</recent-files>

</user-settings>

<ui-settings>
<palette-window-position>

<x-coord>5</x-coord>

<y-coord>5</y-coord>
</palette-window-position>

<tools-window-position>

Configuration

-userHomeDirectory : string
-showTabs : bool
-recentFiles : string[] 1

1

2

-paletteWindowPosition, toolsWindowPosition

java.awt.Point

-…

java.awt.Color

-…

-backgroundColor, foregroundColor

2

258

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 258

<x-coord>10</x-coord>

<y-coord>10</y-coord>
</tools-window-position>

<background-color>
<red>51</red>

<green>51</green>

<blue>255</blue>

<alpha>255</alpha>
</background-color>

<foreground-color>
<red>255</red>

<green>255</green>

<blue>51</blue>

<alpha>255</alpha>
</foreground-color>

<show-tabs>true</show-tabs>
</ui-settings>

</configuration>

Note though, that this XML file is not the XML schema; it is a document that conforms to the XML
schema defined in the next section of this chapter. JAXB will generate Java classes that read and write
files like the preceding XML conforming to your schema. It will give you Java Bean–like access to all of
the data contained in the document.

Defining Your XML Format with an XML Schema
Now that you have looked at a sample XML instance document containing a sample set of
Configuration data for your data model, you can look under the hood and see how to specify the file
format. In this section, the various data types for your configuration will be analyzed and then defined
in a schema. To reiterate the following data is necessary to store in your configuration data model:

❑ The user’s home directory, a string value

❑ A flag whether or not to use a tabbed interface, a boolean value

❑ A list of recently accessed files by the user, an array of string values

❑ Two colors, foreground and background, for drawing operations, color values

❑ Two points, for the last position of the tool and palette windows, point values

While this section will not be a thorough guide in any sense to XML schema, you will go through how to
define the data bullets listed earlier. First, though, XML schema must be briefly discussed. XML schema
is a simple but powerful language for defining and specifying what types various XML elements can be,

259

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 259

and where they can appear in a document. Essentially, there are two types of XML elements you can
define with XML schema: simple elements and complex elements. Simple elements have no attributes
and contain only text data — they also have no child elements. An example of a simple element follows:

<hello>world</hello>

Complex elements can have attributes, child elements, and potentially mix their child elements with
text. The following is an example of a complex element:

<complex c=”12”>
<hello>world</hello>

</complex>

XML schema is fairly intuitive, but a full and thorough coverage of it is beyond the scope of this book. A
great online tutorial can be found at the following URL:

http://www.w3schools.com/schema/default.asp

Defining Your Data: Configuration.xsd
To define your data, you will be using both simple and complex elements. Looking back at the bullet list
of data points necessary, both the user’s home directory and your tabbed interface flag (the first two bul-
lets) can probably be modeled with simple elements. Here is how you will model them in XML schema:

<xs:element name=”user-home-directory” type=”xs:string” />
<xs:element name=”show-tabs” type=”xs:boolean” />

You are defining elements and requiring that the text within those elements be of the type specified. An
instance example of both of these elements follows:

<user-home-directory>c:\mark</user-home-directory>
<show-tabs>true</show-tabs>

The string array of recent files is slightly more complex to model. It will be modeled as a complex ele-
ment, with a child element for each individual recent file. First, you define your complex type:

<xs:complexType name=”recentFilesType”>
<xs:sequence>

<xs:element name=”recent-file” type=”xs:string” maxOccurs=”unbounded” />
</xs:sequence>

</xs:complexType>

After defining your complex type, which is a sequence of recent-file elements, you can define your
element that uses your custom XML type. Note how the type attribute in the element definition that fol-
lows corresponds to the name attribute in your preceding complex type definition:

<xs:element name=”recent-files” type=”recentFilesType” minOccurs=”0” />

260

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 260

An example instance of your recent-files element looks like the following:

<recent-files>
<recent-file>c:\mark\file1.proj</recent-file>

<recent-file>c:\mark\testproj.proj</recent-file>

<recent-file>c:\mark\final.proj</recent-file>
</recent-files>

Defining colors presents an interesting challenge. You must make sure you have enough information
specified in the XML file to construct a java.awt.Color object. If you specify in the XML file the red,
green, blue, and alpha components of a color, you will have enough information to construct a
java.awt.Color instance. The color type can then be modeled as follows:

<xs:complexType name=”colorType”>
<xs:sequence>

<xs:element name=”red” type=”xs:int” />

<xs:element name=”green” type=”xs:int” />

<xs:element name=”blue” type=”xs:int” />

<xs:element name=”alpha” type=”xs:int” default=”255” />
</xs:sequence>

</xs:complexType>

As you can see, your complex type (colorType) contains child elements for the RGBA components.
These components are integer values and if the alpha component is not specified, it defaults to 255 (a
totally opaque color). After defining two elements that take your newly defined type (colorType), the
foreground and background colors for your application’s configuration data model can be declared:

<xs:element name=”background-color” type=”colorType” minOccurs=”0” />
<xs:element name=”foreground-color” type=”colorType” minOccurs=”0” />

An example instance of a foreground-color element is shown as follows:

<foreground-color>
<red>255</red>

<green>255</green>

<blue>51</blue>

<alpha>255</alpha>
</foreground-color>

The last major custom type you must define is your type for point objects. This type must have enough
information encoded in the XML to construct a java.awt.Point instance. All you essentially need are
integer values representing the x and y coordinates of a point. The last two element definitions that use
your new XML type for points, pointType, are also listed below. These elements represent the positions
of the palette window and the tool window of your application:

261

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 261

<xs:complexType name=”pointType”>
<xs:sequence>

<xs:element name=”x-coord” type=”xs:int” />

<xs:element name=”y-coord” type=”xs:int” />
</xs:sequence>

</xs:complexType>

<xs:element name=”palette-window-position” type=”pointType” minOccurs=”0” />
<xs:element name=”tools-window-position” type=”pointType” minOccurs=”0” />

Now that you have defined all of your basic types in your schema, they can be organized around other
elements for better readability of your XML instance documents. The actual schema listed at the end of
this section will have more element and complex type definitions to account for document readability.
The next step will be to generate JAXB classes from your schema in order to start reading and writing
XML documents that conform to your schema.

The full XML Schema Definition (XSD) file for your configuration data model, configuration.xsd, is
listed as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<xs:schema targetNamespace=”http://book.org/Configuration”
elementFormDefault=”qualified” xmlns=”http://book.org/Configuration”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:complexType name=”configurationType”>
<xs:sequence>

<xs:element name=”user-settings” type=”user-settingsType” />

<xs:element name=”ui-settings” type=”ui-settingsType” />
</xs:sequence>

</xs:complexType>

<xs:complexType name=”recentFilesType”>
<xs:sequence>

<xs:element name=”recent-file” type=”xs:string” maxOccurs=”unbounded” />
</xs:sequence>

</xs:complexType>

<xs:complexType name=”pointType”>
<xs:sequence>

<xs:element name=”x-coord” type=”xs:int” />

<xs:element name=”y-coord” type=”xs:int” />
</xs:sequence>

</xs:complexType>

<xs:complexType name=”colorType”>
<xs:sequence>

<xs:element name=”red” type=”xs:int” />

<xs:element name=”green” type=”xs:int” />

<xs:element name=”blue” type=”xs:int” />

262

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 262

<xs:element name=”alpha” type=”xs:int” default=”255” />
</xs:sequence>

</xs:complexType>

<xs:complexType name=”ui-settingsType”>
<xs:sequence>

<xs:element name=”palette-window-position” type=”pointType” minOccurs=”0”
/>

<xs:element name=”tools-window-position” type=”pointType” minOccurs=”0” />

<xs:element name=”background-color” type=”colorType” minOccurs=”0” />

<xs:element name=”foreground-color” type=”colorType” minOccurs=”0” />

<xs:element name=”show-tabs” type=”xs:boolean” />
</xs:sequence>

</xs:complexType>

<xs:complexType name=”user-settingsType”>
<xs:sequence>

<xs:element name=”user-home-directory” type=”xs:string” />

<xs:element name=”recent-files” type=”recentFilesType” minOccurs=”0” />
</xs:sequence>

</xs:complexType>

<xs:element name=”configuration” type=”configurationType” />

</xs:schema>

Generating JAXB Java Classes from Your Schema
Generating JAXB classes from an XML schema requires the Java Web Services Development Pack from
Sun. The latest version of JWSDP from Sun is version 1.4 and version 1.0 of the JAXB specification
(implemented by version 1.03 of Sun’s reference implementation). Sun’s reference distribution of JAXB
includes an XML schema compiler. This compiler outputs Java classes that read and write the particular
XML schema from which they were generated. The JWSDP installer can be downloaded from Sun’s Web
site from the following URL:

http://java.sun.com/webservices/jwsdp/index.jsp

Installing it is straightforward, as it installs much like any Windows application. JWSDP includes many
tools besides JAXB, but JAXB is all that will be discussed in this chapter. To use the XML schema com-
piler, you must make sure your PATH environment variable includes the /jaxb/bin directory under the
folder where you installed JWSDP. Sun’s compiler is called by the xjc batch file located in the
/jaxb/bin directory. Once it is on your PATH, running it is straightforward. You saved your schema to
the file configuration.xsd. To compile your schema, you simply type the following at the command
prompt:

xjc –d gen configuration.xsd

263

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 263

The -d option simply tells the compiler in which directory to put the generated Java source files. In your
case, you have a directory under your main project specifically for generated source files, gen, so that if
you modify your schema, you can easily regenerate the files to this same location. Figure 5-12 shows the
output of the xjc compiler.

Figure 5-12

After the xjc compiler is run to compile your schema, the following Java source files and resources are
generated:

org\book\configuration\bgm.ser
org\book\configuration\ColorType.java
org\book\configuration\Configuration.java
org\book\configuration\ConfigurationType.java
org\book\configuration\jaxb.properties
org\book\configuration\ObjectFactory.java
org\book\configuration\PointType.java
org\book\configuration\RecentFilesType.java
org\book\configuration\UiSettingsType.java
org\book\configuration\UserSettingsType.java
org\book\configuration\impl\ColorTypeImpl.java
org\book\configuration\impl\ConfigurationImpl.java
org\book\configuration\impl\ConfigurationTypeImpl.java
org\book\configuration\impl\JAXBVersion.java
org\book\configuration\impl\PointTypeImpl.java
org\book\configuration\impl\UiSettingsTypeImpl.java
org\book\configuration\impl\UserSettingsTypeImpl.java

Note: There are also many Java sources generated in the org\book\configuration\impl\runtime folder.
These sources are required in addition to the JAXB library JAR files at run time. You will not be analyz-
ing them or their content, however; just be aware that they are necessary at run time. There is a com-
mand-line option to disable the runtime package generation — if you generate classes for more than one
schema, you only need to reference one runtime package. In those scenarios, the runtime classes are not
needed (though you will need to pass along where a current runtime package exists for the xjc compiler
to disable the generation of the runtime package).

264

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 264

Generated JAXB Object Graphs
JAXB generates its classes to follow certain conventions that correspond to how an XML schema is writ-
ten. Package names for generated classes follow whatever XML namespace the elements have in the
schema (though the package names can be changed with a certain command-line argument to the xjc
compiler). Every top-level XML element or complex type defined in a schema gets its own interface in
the root package generated by JAXB. A top-level element or complex type in an XML schema is one that
is not nested in other elements — its definition is a direct child element to the root element of the schema
definition. For example, in your schema, the complex type pointType is a top-level definition because
its location in the schema is right under the parent schema definition element. The only interface that
represents an element definition in your list of generated files is the org.book.configuration
.Configuration interface. This interface corresponds to the following element definition from the
schema:

<xs:element name=”configuration” type=”configurationType” />

Note: The type org.book.configuration.Configuration is different from the type
book.Configuration that has been referred to in the earlier sections of this book (though it repre-
sents the same logical data points). The type org.book.configuration.Configuration is the
JAXB-generated class that represents the data defined in your XML schema.

As you can see, the name of the interface comes from the name of the element. Every top-level element
in a schema definition gets its own interface that extends the interface javax.xml.bind.Element. This
is JAXB’s way of marking that a particular interface is a top-level element in an XML schema. It is similar
in concept to java.io.Serializable, in the sense that it contains no methods. It is also similar
because in JAXB, you cannot serialize or deserialize any structure that is not a javax.xml.bind
.Element (much like you cannot use the Java Serialization API to serialize any class not marked
Serializable). This is important to know, because when you define your schema, you must have at
least one top-level element definition. These top-level element definitions are potential root elements in
an XML instance document.

You may have guessed by now that the rest of the root package org.book.configuration consists
mainly of all interfaces. That is the case, and the org.book.configuration.impl package contains the
implementations of these interfaces. The rest of the interfaces in your package all correspond to top-level
complex type definitions in your schema. A couple of them will be looked at in detail, namely
ColorType and PointType. Any interface that represents a complex type definition will have the Type
suffix appended to the complex type name, hence your interfaces PointType and ColorType represent
the complex schema types pointType and colorType, respectively (the generator is smart enough not
to make the name PointTypeType, since you already appended type to the name of your complex type
definitions in the schema; see Figure 5-13).

As you can see from the diagram in Figure 5-13, JAXB maps XML elements and attributes of complex
types to Java Bean properties. The complex type colorType in the schema had four subelements: red,
blue, green, and alpha. These were all mapped to Java Bean int properties. They were mapped to int
because that was the type specified in their element definitions. Their type could also potentially be
another complex type, which would map to another generated JAXB interface, rather than a Java primi-
tive type like int.

265

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 265

Figure 5-13

Since XML documents are hierarchical in nature, the structure the generated JAXB classes naturally take
on is hierarchical. JAXB serializes and deserializes root elements in an XML document. It is the begin-
ning of an object graph. The XML complex type pointType, for instance, has subelements x-coord and
y-coord; they are therefore properties of pointType. In the generated JAXB class, these coordinates
become properties of the PointType interface. Figure 5-14 shows the generated JAXB object graph from
the root element of your configuration data model, configuration. The Configuration interface not
only extends javax.xml.bind.Element because it is a root element, but since it is an instance of XML
complex type configurationType, it also extends the org.book.configuration.ConfigurationType
interface. This interface has the properties as shown in the diagram. The object graph then extends out
from there.

The complete class diagram of all of the JAXB generated interfaces from your XML schema are pictured
in Figure 5-15. Notice how only the Configuration interface extends javax.xml.bind.Element. This
means that it is the only element that can be serialized or deserialized by JAXB. The rest are all subtypes
and elements branching off from Configuration. By looking at the object graph above and the class
diagram below, you can match up the XML element and its place in the object graph with the JAXB
interface that implements it.

«interface»
PointType

+getYCoord() : int
+getXCoord() : int
+setYCoord(in value : int) : void
+setXCoord(in value : int) : int

<xs:complexType name="pointType">
 <xs:sequence>
 <xs:element name="x-coord" type="xs:int: />

 <xs:element name="y-coord" type="xs:int: />
 </xs:sequence>
</xs:complexType>

«interface»
ColorType

+getRed() : int
+getBlue() : int
+getGreen() : int
+getAlpha() : int
+setRed(in value : int) : void
+setBlue(in value : int) : void
+setGreen(in value : int) : void
+setAlpha(in value : int) : void

<xs:complexType name="colorType">
 <xs:sequence>
 <xs:element name="red" type="xs:int: />

 <xs:element name="green" type="xs:int: />

 <xs:element name="blue" type="xs:int: />

<xs:element name="alpha" type="xs:int" default="255" />
 </xs:sequence>
</xs:complexType>

266

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 266

Figure 5-14

<configuration>

<user-settings>

<ui-settings>

<show-tabs>

<foreground-color>

<background-color>

<palette-window-position>

<tools-window-position>

<recent-files>

<user-home-directory>

267

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 267

Fi
gu

re
 5

-1
5

«in
te

rf
ac

e»
C

on
fig

ur
at

io
nT

yp
e

+
ge

tU
iS

et
tin

gs
()

: U
iS

et
tin

gs
+

ge
tU

se
rS

et
tin

gs
()

: U
se

rS
et

tin
gs

+
se

tU
iS

et
tin

gs
(in

 v
al

ue
 :

U
iS

et
tin

gs
)
: v

oi
d

+
se

tU
se

rS
et

tin
gs

(in
 v

al
ue

 :
U

se
rS

et
tin

gs
)
: v

oi
d

«in
te

rf
ac

e»
U

se
rS

et
ti

ng
s

+
ge

tR
ec

en
tF

ile
s(

)
: R

ec
en

tF
ile

sT
yp

e
+

ge
tU

se
rH

om
eD

ire
ct

or
y(

)
: S

tr
in

g
+

se
tR

ec
en

tF
ile

s(
in

 v
al

ue
 :

R
ec

en
tF

ile
sT

yp
e)

 :
vo

id
+

se
tU

se
rH

om
eD

ire
ct

or
y(

in
 v

al
ue

 :
S
tr

in
g)

 :
vo

id

«in
te

rf
ac

e»
U

iS
et

ti
ng

s

+
ge

tB
ac

kg
ro

un
dC

ol
or

()
: C

ol
or

Ty
pe

+
ge

tF
or

eg
ro

un
dC

ol
or

()
: C

ol
or

Ty
pe

+
ge

tP
al

et
te

W
in

do
w

Po
si

tio
n(

)
: P

oi
nt

Ty
pe

+
ge

tT
oo

ls
W

in
do

w
Po

si
tio

n(
)
: P

oi
nt

Ty
pe

+
is

S
ho

w
Ta

bs
()

: b
oo

le
an

+
se

tB
ac

kg
ro

un
dC

ol
or

(in
 v

al
ue

 :
C
ol

or
Ty

pe
)
: v

oi
d

+
se

tF
or

eg
ro

un
dC

ol
or

(in
 v

al
ue

 :
C
ol

or
Ty

pe
)
: v

oi
d

+
se

tP
al

et
te

W
in

do
w

Po
si

tio
ni

(in
 v

al
ue

 :
Po

in
tT

yp
e)

 :
vo

id
+

se
tT

oo
ls

W
in

do
w

Po
si

iti
on

(in
 v

al
ue

 :
Po

in
tT

yp
e)

 :
vo

id
+

se
tS

ho
w

Ta
bs

(in
 v

al
ue

 :
bo

ol
ea

n)
 :

vo
id

«in
te

rf
ac

e»
R

ec
en

tF
ile

sT
yp

e

+
ge

tR
ec

en
tF

ile
()

: L
is

t

«in
te

rf
ac

e»
ja

va
x.

xm
l.b

in
d.

El
em

en
t

«in
te

rf
ac

e»
C

on
fig

ur
at

io
n

«in
te

rf
ac

e»
C

ol
or

Ty
pe

+
ge

tR
ed

()
: i

nt
+

ge
tB

lu
e(

)
: i

nt
+

ge
tG

re
en

()
: i

nt
+

ge
tA

lp
ha

()
: i

nt
+

se
tR

ed
(in

 v
al

ue
 :

in
t)

 :
vo

id
+

se
tB

lu
e(

in
 v

al
ue

 :
in

t)
 :

vo
id

+
se

tG
re

en
(in

 v
al

ue
 :

in
t)

 :
vo

id
+

se
tA

lp
ha

(in
 v

al
ue

 :
in

t)
 :

vo
id

«in
te

rf
ac

e»
P
oi

nt
Ty

pe

+
ge

tY
C
oo

rd
()

: i
nt

+
ge

tX
C
oo

rd
()

: i
nt

+
se

tY
C
oo

rd
(in

 v
al

ue
 :

in
t)

 :
vo

id
+

se
tX

C
oo

rd
(in

 v
al

ue
 :

in
t)

 :
in

t

268

08_574868 ch05.qxd 12/21/04 5:57 PM Page 268

JAXB API Key Classes
The classes that the xjc compiler generates are not the classes that are used by the developer to serialize
or unserialize any data, or in JAXB terms, marshall or unmarshall any data. The classes and resources
generated by JAXB from an XML schema merely provide the rules and data structure necessary for the
JAXB runtime libraries to marshall and unmarshall XML data conforming to that schema. Because the
JAXB run time must be made aware of the particular constraints and rules for each individual schema, a
JAXBContext object must first be created with the particular context of the particular schema and data
structure classes to be used. From there, Marhsallers and Unmarshallers can be created to actually
serialize and deserialize XML data.

Class or Interface (From javax.xml.bind) Function

JAXBContext The JAXBContext is the initial class; one creates
Marshaller and Unmarshaller classes for various
JAXB-generated types

Marshaller Interface that allows for the marshalling of
JAXB-generated objects to XML in various formats
(stream, DOM nodes, SAX events, and so on)

Unmarshaller Interface that allows for the unmarshalling of vari-
ous XML representations (from a stream, a DOM
tree, or SAX events) to populate instances of JAXB-
generated classes

Validator Interface through which JAXB-generated class
instances can be verified that the data they contain
conforms to the XML schema they were generated
against

Marshalling and Unmarshalling XML Data
The process of marshalling and unmarshalling data into and from JAXB classes occurs through three
classes: JAXBContext, Marshaller, and Unmarshaller. Both Marshaller and Unmarshaller are cre-
ated from an instance of JAXBContext, and they do the actual work of marshalling and unmarshalling
the data, respectively. A different JAXBContext is required for every different XML namespace from
XML schemas, or more specifically, the Java package that contains the generated JAXB classes. This
allows the JAXBContext to set up the Marshaller and Unmarshaller objects with that particular
schema’s rules and constraints. There are three steps to unmarshalling XML instance data conforming to
a schema into a JAXB-generated object graph:

1. Retrieve an instance of JAXBContext specific to the root package of the generated JAXB classes.

2. Create an Unmarshaller object from the JAXBContext instance.

3. Use the Unmarshaller to unmarshall XML data into instances of the generated JAXB classes.

You will now unmarshall XML data conforming to your configuration.xsd schema into your gener-
ated JAXB classes. First, the JAXBContext is retrieved:

JAXBContext ctx = JAXBContext.newInstance(“org.book.configuration”);

269

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 269

Then Unmarshaller can then be created from the context:

Unmarshaller u = ctx.createUnmarshaller();

Now that you have an Unmarshaller, various representations of XML data can be passed to it to trans-
form the XML into instances of the JAXB-generated object graph. In this example, you will pass it a
FileInputStream corresponding to an XML file saved on disk that conforms to your schema:

org.book.configuration.Configuration conf = (org.book.configuration.Configuration)
u.unmarshal (new

FileInputStream(“c:\\mark\\configuration.xml”));

The Unmarshaller returns a populated instance of Configuration, which represents the root node of
the XML file, and is the root of your object graph. The XML data can now be used as necessary in your
application. Marshalling data back into XML is just as straightforward as unmarshalling. The three steps
to marshall data mirror the three steps to unmarshall it:

1. Retrieve an instance of JAXBContext specific to the root package of the generated JAXB classes.

2. Create a Marshaller object from the JAXBContext instance.

3. Use the Marshaller to marshall XML data into instances of the generated JAXB classes.

Now instances of org.book.configuration.Configuration can be marshalled back to disk (or to
DOM or SAX representations). Just like before, the JAXBContext particular for your package of JAXB-
generated classes must be obtained:

JAXBContext ctx = JAXBContext.newInstance(“org.book.configuration”);

The Marshaller can then be created from the context:

Marshaller m = ctx.createMarshaller();

The Marshaller instance can now be used to serialize the information in your conf instance of
org.book.configuration.Configuration to a FileOutputStream (and hence a file on the file sys-
tem):

m.marshal (conf, new FileOutputStream(“c:\\mark\\configuration.xml”);

That’s all there is to marshalling and unmarshalling data. As you can see, the difficult part of using JAXB
is writing the schema.

Note: If the org.book.configuration.Configuration type is not populated with all the data
the schema requires, the instance will not be able to be marshalled into XML. By the same token, XML
documents containing errors — in other words not exactly conforming to the schema — will not be able
to be unmarshalled. Exceptions will be thrown and the instance document will have to be fixed.

Creating New XML Content with JAXB-Generated Classes
You have looked at how to load XML data into a JAXB object graph. You have looked into saving an
existing JAXB object graph back into XML. How would you create a new JAXB graph and populate it

270

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 270

programmatically (to later save to XML)? Unfortunately, this is one area where JAXB becomes a little
unwieldy. In JAXB, every set of generated classes comes with an ObjectFactory class at the
root package of the generated classes. You may have noticed the class org.book.configuration
.ObjectFactory back when you generated your set of classes for your configuration.xsd schema.
This is the class necessary to create blank new instances of every JAXB object. Since every JAXB
representation of either an element or complex type definition corresponds to a Java interface, the
ObjectFactory finds the right implementation class (from the generated package’s subpackage, impl)
and creates it. In any given JAXB object graph, there are potentially many element and complex type
definitions turned into interfaces, and each of these must be created with the ObjectFactory. Once
these types are created, though, it is easy to populate them with data, since they all follow Java Bean
conventions. The example below shows the creation and population of an org.book.configuration
.Configuration instance:

ObjectFactory factory = new ObjectFactory();

ConfigurationType configType = factory.createConfiguration();
UiSettingsType uiSettingsType = factory.createUiSettingsType();
UserSettingsType userSettingsType = factory.createUserSettingsType();

configType.setUiSettings(uiSettingsType);
configType.setUserSettings(userSettingsType);
ColorType fgColorType = factory.createColorType();
fgColorType.setRed(255);
fgColorType.setBlue(255);
fgColorType.setGreen(0);

uiSettingsType.setForegroundColor(fgColorType);

uiSettingsType.setShowTabs(true);

userSettingsType.setUserHomeDirectory(“c:\\mark”);

... // continue on as such, populating the entire object graph

One thing to take into consideration when manually populating JAXB object graphs is completeness and
conformance to the schema. While it is easy to populate your JAXB objects and use the data in a Java
application, if you want to save the data you are populating out to disk (or somewhere else) as XML,
every schema-required piece of data must exist in your newly created object graph. In the example
above, if you did not create a UserSettingsType instance and set it on your Configuration instance,
JAXB exceptions would be thrown when the instance was later marshalled to disk.

Using JAXB-Generated Classes in Your Application
One of the potential issues that arise whenever information is saved and loaded from a file is that the infor-
mation must be turned into objects used by the application. The nice thing about the Java Serialization API
and XMLEncoder/Decoder is that they save the actual Java class instances used by an application,
so there is no need to transform the data loaded into a format used internally by the application — it
is already in the format used by the application. The classes that JAXB generates can be used as the
in-memory data model for your application, but generally, there is a need to perform at least some trans-
formations. The Java classes in the JDK are rich and full of functionality — and it would be wasteful to
ignore them. Why store URLs as Strings? Why store File objects as Strings? Why not represent a

271

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 271

color with a java.awt.Color object? Because it makes sense to use the classes in the JDK, a lot of the
time you will find yourself taking data from the Java Beans generated by JAXB, and putting them into
your own data structures. You will find yourself adding JAXB classes to your own lists, maps, trees,
and other data structures, especially since java.util.List is the only collection class ever used by
JAXB-generated classes. This is the added burden of using JAXB over using Java Serialization or
XMLEncoder/Decoder. Not only do you have to create a schema, but also it is often a necessity to trans-
form some of the data from the JAXB classes into classes more usable by your application. In the exam-
ple configuration data model used throughout this chapter for the Imager Application, you use an
instance of book.Configuration to represent the model. It contains Java representations of points and
colors that could be used by the AWT and Swing UI frameworks. To use your JAXB-generated configu-
ration data model in your application, you will as such have to transform it to and from your book
.Configuration data model. It is not a difficult task, but must be done for things like your color and
point representations to have any meaning to your application. The diagram in Figure 5-16 that follows
shows where your transformations fit into the bigger picture of your application.

Figure 5-16

In your original Configuration data model example, you wrapped your serialization code into Swing
actions to use in the UI for the Imager Application. This let you easily add your code to save and load
configuration data to your menus and buttons in your application. You will do the same for your code to
save and load your configuration data, this time with your XML format based on your configuration
.xsd schema file. The key difference, though, will be that you need to integrate transformation function-
ality into these actions, since a conversion needs to be done between your JAXB-generated data model
and your original Configuration data model (as shown in Figure 5-16). Other than this transformation,
your new XML save and load Swing actions will be very similar in structure and nature to your older
actions.

book.Configuration Data Model

JAXB-Generated Data Model

Our Transformer

XML Document
conforming to

configuration.xsd

272

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 272

Implementing Your Save Action
As shown in the code that follows, your save action’s actionPerformed() method will start out the
same way as your original save action — by prompting the user for a file in which to save the configura-
tion information:

package book;

...

import org.book.configuration.ColorType;
import org.book.configuration.ConfigurationType;
import org.book.configuration.ObjectFactory;
import org.book.configuration.PointType;
import org.book.configuration.RecentFilesType;
import org.book.configuration.UiSettingsType;
import org.book.configuration.UserSettingsType;

public class SaveXMLConfigurationAction extends AbstractAction {

private Application myApp;

public SaveXMLConfigurationAction(Application app) {
super(“Export XML Configuration”);

this.myApp = app;
}

public void actionPerformed(ActionEvent arg0) {
JFileChooser fc = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == fc.showSaveDialog(myApp)) {

try {

If the user chooses a file to save the configuration to, the application’s book.Configuration
object is retrieved, and the process of mapping its data to a new JAXB org.book.configuration
.Configuration object is begun. The first step to completing this mapping is to create the
ObjectFactory. After the factory is created, all of the types necessary, starting with ConfigurationType,
can be created. Notice in the code that follows how values are then retrieved from the application’s
book.Configuration data model, and then mapped into their appropriate place in the JAXB-generated
ConfigurationType data model:

Configuration conf = this.myApp.getConfiguration();

JAXBContext ctx = JAXBContext.newInstance(“org.book.configuration”);

Marshaller m = ctx.createMarshaller();
ObjectFactory factory = new ObjectFactory();

ConfigurationType configType = factory.createConfiguration();
UiSettingsType uiSettingsType = factory.createUiSettingsType();
UserSettingsType userSettingsType = factory.createUserSettingsType();

configType.setUiSettings(uiSettingsType);
configType.setUserSettings(userSettingsType);

273

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 273

Color fgColor = conf.getForegroundColor();
if (fgColor != null) {

ColorType fgColorType = factory.createColorType();
fgColorType.setRed(fgColor.getRed());
fgColorType.setBlue(fgColor.getBlue());
fgColorType.setGreen(fgColor.getGreen());
fgColorType.setAlpha(fgColor.getAlpha());

uiSettingsType.setForegroundColor(fgColorType);
}

Color bgColor = conf.getBackgroundColor();
if (bgColor != null) {

ColorType bgColorType = factory.createColorType();
bgColorType.setRed(bgColor.getRed());
bgColorType.setBlue(bgColor.getBlue());
bgColorType.setGreen(bgColor.getGreen());
bgColorType.setAlpha(bgColor.getAlpha());

uiSettingsType.setBackgroundColor(bgColorType);
}

Point ppPoint = conf.getPaletteWindowPosition();
if (ppPoint != null) {

PointType ppPointType = factory.createPointType();
ppPointType.setXCoord(ppPoint.x);
ppPointType.setYCoord(ppPoint.y);

uiSettingsType.setPaletteWindowPosition(ppPointType);
}

Point tpPoint = conf.getToolsWindowPosition();
if (ppPoint != null) {

PointType tpPointType = factory.createPointType();
tpPointType.setXCoord(tpPoint.x);
tpPointType.setYCoord(tpPoint.y);

uiSettingsType.setToolsWindowPosition(tpPointType);
}

uiSettingsType.setShowTabs(conf.isShowTabs());

userSettingsType.setUserHomeDirectory(conf.getUserHomeDirectory());
String[] recentFiles = conf.getRecentFiles();
if (recentFiles != null) {

RecentFilesType rFilesType = factory.createRecentFilesType();

Collections.addAll(rFilesType.getRecentFile(), recentFiles);

userSettingsType.setRecentFiles(rFilesType);
}

274

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 274

Finally, after you finish mapping the data, the JAXB data model is marshalled to XML in the file speci-
fied by the user:

m.marshal (configType, new FileOutputStream(fc.getSelectedFile()));

} catch (IOException ioe) {
JOptionPane.showMessageDialog(this.myApp, ioe.getMessage(), “Error”,

JOptionPane.ERROR_MESSAGE);

ioe.printStackTrace();

} catch (JAXBException jaxbEx) {
JOptionPane.showMessageDialog(this.myApp, jaxbEx.getMessage(), “Error”,

JOptionPane.ERROR_MESSAGE);

jaxbEx.printStackTrace();
}

}
}

}

Note how you must catch JAXBException in the above code. Most JAXB operations can throw a
JAXBException— when saving it can mean that you did not populate all the information that was
required in your generated object structure as specified in the originating XML schema.

Implementing Your Load Action
The load action is of course similar to your original load action — and probably most actions that load
files, actually. As shown in the code that follows, the user is prompted for a file from which to load the
configuration at the beginning of the actionPerformed() method:

package book;

...

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

import org.book.configuration.ColorType;
import org.book.configuration.ConfigurationType;
import org.book.configuration.PointType;
import org.book.configuration.RecentFilesType;

public class LoadXMLConfigurationAction extends AbstractAction {

private Application myApp;

public LoadXMLConfigurationAction(Application app) {
super(“Import XML Configuration”);
this.myApp = app;

275

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 275

}

public void actionPerformed(ActionEvent evt) {
JFileChooser fc = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == fc.showOpenDialog(myApp)) {

try {

Once the user has picked the file, you begin the process of unmarshalling the XML data contained in the
file to your JAXB-generated data model. The code below shows the XML file the user specified being
unmarshalled into a new instance of org.book.configuration.Configuration, the JAXB object rep-
resenting the root node of the XML document specified in your configuration.xsd schema file:

JAXBContext ctx = JAXBContext.newInstance(ConfigurationType.class
.getPackage().getName());

Unmarshaller u = ctx.createUnmarshaller();
org.book.configuration.Configuration configType =

(org.book.configuration.Configuration)
u.unmarshal (fc.getSelectedFile());

Now that the data has been unmarshalled, the data from the JAXB model must be mapped back from
the JAXB model to your original book.Configuration model. This is essentially the reverse-process of
what occurred in your save action. You are converting things like your JAXB ColorType back into a
form that can be displayed in your Swing user interface, the java.awt.Color object. After the data has
been mapped into your book.Configuration class, it can then be loaded into the application via the
myApp.setConfiguration() method:

Configuration conf = new Configuration();

ColorType bgColorType = configType.getUiSettings().getBackgroundColor();
if (bgColorType != null) {

Color bgColor = new Color(bgColorType.getRed(),
bgColorType.getGreen(), bgColorType.getBlue(),
bgColorType.getAlpha());

conf.setBackgroundColor(bgColor);
}

ColorType fgColorType = configType.getUiSettings().getForegroundColor();
if (fgColorType != null) {

Color fgColor = new Color(fgColorType.getRed(),
fgColorType.getGreen(), fgColorType.getBlue(),
fgColorType.getAlpha());

conf.setForegroundColor(fgColor);
}

PointType ppPointType = configType.getUiSettings()
.getPaletteWindowPosition();

if (ppPointType != null) {

276

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 276

Point ppPoint = new Point(ppPointType.getXCoord(),
ppPointType.getYCoord());

conf.setPaletteWindowPosition(ppPoint);
}

PointType tpPointType = configType.getUiSettings()
.getToolsWindowPosition();

if (tpPointType != null) {
Point tpPoint = new Point(tpPointType.getXCoord(),

tpPointType.getYCoord());

conf.setToolsWindowPosition(tpPoint);
}

conf.setShowTabs(configType.getUiSettings().isShowTabs());

conf.setUserHomeDirectory(
configType.getUserSettings().getUserHomeDirectory());

RecentFilesType rFilesType =
configType.getUserSettings().getRecentFiles();

if (rFilesType != null) {
List recentFileList = rFilesType.getRecentFile();
if (recentFileList != null) {

String[] recentFiles = new String[recentFileList.size()];

recentFileList.toArray(recentFiles);

conf.setRecentFiles(recentFiles);
}

}

myApp.setConfiguration(conf);
} catch (JAXBException jaxb) {

JOptionPane.showMessageDialog(this.myApp, jaxb.getMessage(), “Error”,
JOptionPane.ERROR_MESSAGE);

jaxb.printStackTrace();

}
}

}

}

Similar to your save action, you must also catch JAXBException. If an error occurs while loading the
file, that is, if it does not conform to your configuration.xsd schema or the file could not be found,
etc., the exception will be thrown.

277

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 277

The Swing actions you just developed get integrated into your application the same way the previous
ones did. Your application now has two mechanisms for persisting its configuration data model. One is
user-friendly to edit, the other one cannot be edited outside of the application. JAXB takes more effort on
the part of the developer, but can provide added value over normal Java Serialization. Figure 5-17 shows
a screen shot of your updated application.

Figure 5-17

When to Use JAXB
JAXB is fundamentally different from either the Java Serialization API or the XMLEncoder/Decoder API.
It takes a completely different approach. Instead of first specifying a data structure using Java classes, one
first specifies the serialization format itself. The two are drastically different design approaches. In the
Java Serialization and XMLEncoder/Decoder API, you design Java classes and do not worry about the
serialization file format — that is taken care of by the APIs. However, it has the unfortunate disadvantage
of limiting the use of the serialized objects to only Java-based applications. JAXB generates your Java data
classes for you (at the expense of a very loose integration of your data with the JDK libraries) from the
specification of a file format in a W3C standard XML Schema Definition. JAXB adds more complexity to
an application and requires more development effort. Its advantages are as follows:

❑ Reads and writes standard file formats that applications written in any language can read, and
in many languages generates classes to use the data similarly to how JAXB generates classes
based on the file

❑ Resulting serialized documents are human-readable and as friendly to edit as they are defined

❑ Fast way to read XML data based on an XML schema — uses far less memory to represent an
XML document in memory than a DOM tree

Its disadvantages are namely the following:

❑ Requires more development effort — sometimes it is necessary to manage two data models: one
your application can more efficiently use and the JAXB-generated data model

❑ Working with JAXB objects can be unwieldy since they are generated — things like naming and
object creation are more tedious to develop with than custom Java classes

278

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 278

JAXB should be used when you want a human-readable file format that can be edited by users. It should
be used when you are developing a file format you want non-Java-based applications to be able to read.
It can be used in conjunction with other XML technologies, and to read third-party XML documents
based on third-party XML schemas. It is a valuable tool that requires more development effort and more
design, but its benefits far outweigh its costs — if you need a universal file format or just simply human-
readable XML.

Future Direction of JAXB 2.0
JAXB 2.0 will fix the one main problem with JAXB 1.0. It will allow developers to map existing Java
classes to an XML schema. Essentially this solves the problem you had to deal with when you had to
transform your JAXB-generated configuration data model to the Swing/UI-friendly one you custom
developed. If JAXB had given you the ability to map your original book.Configuration data model to
XML directly, there would have been no need to generate an additional data model and convert between
the two. JAXB 2.0 will build on some of the new JDK 5.0 language features, such as annotations.
Developers will have the ability to annotate their classes to define how they will be serialized to XML.
This really is the best of both Java Serialization or XMLEncoder/Decoder and JAXB. Developers can
design their data model in a way friendly to the Java environment, building their in-memory representa-
tions of the data, and then simply map it straight to human-readable and XML schema conforming XML.
Once JAXB 2.0 is released, it will become probably the best way to serialize your classes out of the three
technologies discussed in this chapter for most all design cases (though certainly not all). You can view
the JAXB 2.0 specification online at the following URL:

http://www.jcp.org/aboutJava/communityprocess/edr/jsr222/

Summary
Saving the state of an application to a file is saving all of the pieces of its in-memory data model neces-
sary to reconstruct it exactly as it was at a later point of time. Most object-oriented applications store
their data model as a set of data storage classes. In Java, it is standard practice to have the data model
represented as a series of classes following the Java Beans conventions and utilizing collection classes
where necessary (such as lists, maps, trees, sets, etc.). In applications that have graphical user interfaces,
it is best to separate the in-memory data structure from the GUI toolkit classes as much as possible. The
standard Java GUI toolkit, Swing, follows the Model-View-Controller design pattern to accomplish this
separation. This way, to persist the state of an application, only the data model needs to be written to
disk — the GUI is simply a transient aspect of the state of the application. Normally, when you say you
want to be able to save an application’s state, you are referring to saving some sort of file that an applica-
tion produces, whether an image file, a word processing document, or a spreadsheet. These types of files
are simply a data model persisted to disk. By keeping your data model separate from your GUI classes,
it is easier to save it off to a file. The Java Serialization API and the XMLEncoder/Decoder API have been
looked at in this chapter. These APIs literally take a set of Java classes, and persist enough information to
disk to reconstruct the actual object instances as they used to look in memory. This methodology makes
adding serialization capabilities to an application very easy, but at the cost of limiting the use of the seri-
alized information to Java-based applications.

279

Persisting Your Application Using Files

08_574868 ch05.qxd 12/21/04 5:57 PM Page 279

The JAXB API takes a fundamentally different approach, and first defines a common file format that
can be read from any application using the W3C standard XML schema technology. From this schema,
JAXB generates the in-memory data model for an application. It is essentially the reverse design
process of the Java Serialization API and the XMLEncoder/Decoder API. Both the JAXB API and
the XMLEncoder/Decoder API persist their information in XML — but the XML produced by the
XMLEncoder/Decoder API can only be used by Java-based applications. The Java Serialization API seri-
alizes its information in a Java-specific binary format that is much more efficient than XML, but again, is
only useful by Java applications and is not human readable. Persisting your applications using files can
require as little design and development time as you give it. If you use JAXB, it takes a little more time.
Your application’s in-memory data model is probably the most important aspect of your data design.
Once that exists, the various serialization and persistence strategies found in this chapter can all be
applied. The next chapter talks about how to serialize your application’s data model using a database,
which is usually necessary for multi-user systems.

280

Chapter 5

08_574868 ch05.qxd 12/21/04 5:57 PM Page 280

Persisting Your Application
Using Databases

In the last chapter, you learned about how to persist the state of your application using file-based
mechanisms. This is a useful way to handle things in a single-user model, but when multiple users
need to share the same data, databases are the solution. Now, you will learn about how to persist
your application to a database.

Persisting your data to a database has always required true effort, regardless of your development
language. Java has been making substantial leaps in this area and has come a long way in making
the task much easier with their addition of the JDBC 3.0 API. Java also has an ever-growing open
source community that is releasing new and improved technologies every year.

This chapter will discuss how to persist your application’s data to a database using features of the
JDBC 3.0 API, such as RowSets and Distributed Transactions. It will also allow you to take an in-
depth look at Hibernate, a powerful object/relational mapping tool that is used to store and retrieve
Java objects to and from relational databases.

Java and its open source community are becoming extremely aware of the importance of data per-
sistence, especially for a developer in a J2EE architecture. Therefore they continue to enhance the
JDBC API to support the ever-growing needs of its developers.

JDBC API Overview
The JDBC API provides a simple way for Java applications to access data from one or more rela-
tional data sources. A Java developer can use the JDBC API to do the following things:

❑ Connect to a data source

❑ Execute complex SQL statements

09_574868 ch06.qxd 12/21/04 6:00 PM Page 281

❑ Persist changes to a data source

❑ Retrieve information from a data source

❑ Interact with legacy filesystems

The JDBC API is based on the specification X/Open SQL Call Level Interface (CLI), which provides an
application with an alternative method for accessing databases with embedded SQL calls. This specifica-
tion has been accepted by the International Organization for Standards (ISO) as an international standard.
ODBC is also based on this standard, and the JDBC API can interface with ODBC through JDBC-ODBC
bridge drivers.

The JDBC API makes it relatively simple to send SQL statements to databases, and it doesn’t matter what
platform, what database vendor, or what combination of platform and vendor you choose to use. It’s all
done through one common API layer for all platforms. This is what makes Java the front-runner of pro-
gramming languages in today’s market. Although there are different vendors who are creating their own
drivers, they all must follow the JDBC 3.0 specification. With that said, all drivers fit into four categories.

Driver Type Description

JDBC-ODBC Bridge Driver This is a JDBC driver that is used to bridge the gap between
JDBC and ODBC. It allows them to communicate and is
mostly used in three-tier architectures. This is not a pure
Java solution.

Native API/Part Java Driver This type of driver is specific to a DBMS (Database
Management System) and converts JDBC calls to specific
client calls for the DBMS being used. This type of driver is
usually operating-system specific and is also not a pure
Java solution.

JDBC-Net Pure Java Driver This type of driver uses net server middleware for connect-
ing Java clients to DBMS. It converts the JDBC calls into an
independent protocol that can then be used to interface with
the DBMS. This is a pure Java solution with the main draw-
back being security.

Native-Protocol Pure Java Driver This type of driver is provided by the database vendor, and
its main purpose is to convert JDBC calls into the network
protocol understood by the DBMS. This is the best solution
to use and is pure Java.

The first two driver-type options are usually temporary solutions to solve the problem, where the JDBC
driver for the particular DBMS (Database Management System) in use does not exist. The third and
fourth driver-type options represent the normal, preferred usage of JDBC because they keep the platform-
independent fundamentals in place. If you would like to find out if your DBMS vendor supports a par-
ticular version of the JDBC API, please check out the following Web site for details: http://servlet.
java.sun.com/products/jdbc/drivers.

282

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 282

The JDBC API is contained in two Java packages — java.sql and javax.sql. The first package, java.sql, con-
tains the original core APIs for JDBC. The second package, javax.sql, contains optional, more advanced
features such as row sets, connection pooling, and distributed transaction management. It is important to
determine your application’s data access needs and architecture ahead of time to properly assess which
packages you need to import.

Setting Up Your Environment
To use the JDBC API and its advanced features, it is recommended that you install the latest Java 2 SDK
Standard Edition. The JDBC API is currently shipping with both Java 2 SDK SE and Java 2 SDK Enterprise
Edition (the latter is a must if you are doing server-side development).

You will also need to install a JDBC driver that implements the JDBC 3.0 features. Your driver vendor
may not support all the features that are in the javax.sql package, so you should check with them first.

Finally you will need access to a Database Management System that is supported by your driver. Further
information on JDBC support can be found at http://java.sun.com/products/jdbc/.

JDBC API Usage in the Real World
The JDBC API is most commonly used by applications to access data in two main models: the two-tier
model and three-tier model, both of which will be covered in the following paragraphs.

Understanding the Two-Tier Model
The two-tier model is the simplest of the models. It comprises a client layer and a server layer. The client
layer interacts directly with the server layer, and no middleware is used. The business logic, application/
presentation layer, transaction management, and connection management are all handled by the client
layer. The server layer contains only the data source and doesn’t manage anything that the client is doing,
except for user access and rights. Figure 6-1 illustrates the two-tier model.

This is a good design for small applications but would present a scalability dilemma for larger applica-
tions requiring more robust connection and transaction management.

283

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 283

Figure 6-1

Understanding the Three-Tier Model
The three-tier model is the most complex and the most scalable of the models. It removes the business
logic and adds a layer of abstraction to the data sources. This model is shown in Figure 6-2.

The client layer in this model is a thin client layer that contains only very lightweight presentation layers
that will run on Web browsers, Java Programs, PDAs, Tablet PCs, and so forth. It does not handle busi-
ness logic, methods of accessing the data sources, the drivers used to provide access, or the methods in
which data is saved.

The middle layer is where the core of the functionality exists in the three-tier model. The thin clients inter-
act with applications that support the business logic and interactions with data sources. Connection pools,
transaction management, and JDBC drivers can all be found here. This is the layer that adds increased
performance and scalability compared to the two-tier model.

The data layer is where the data sources such as database management systems and files exist. The only
interaction that occurs here is from the middle layer to the data layer through a JDBC driver.

The main benefit of the three-tier model is the fact that it adds layers of abstraction that can be scaled,
removed, added, and improved upon. It also adds extra performance benefits when simultaneously
accessing multiple data sources. The main drawback is that it can be expensive, depending on the choices
made for the application server software and the hardware to run the system.

JDBC Driver

CLIENT LAYER

SERVER LAYER

Client

Server
Data

284

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 284

Figure 6-2

Grasping JDBC API Concepts
For this part of the chapter, you will explore the main usage of the JDBC API before moving on to more
advanced topics, such as managing database meta data, utilizing RowSets, connection pooling, and
managing transactions to insure that you have a solid foundation with which to start your JDBC API
journey. This section will also act as a good review for those of you who need it, and it will cover the
following topics:

❑ Managing JDBC API connections using the DriverManager class and the new DataSource
interface

❑ Creating, defining, and understanding statements

❑ Utilizing result sets to retrieve and manage database information

Client Layer

Middle Layer

Server Layer

Thin Clients

Server

Applications

App. Servers

Drivers

Connection
Pools

Transaction
Management

Data Data Data

285

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 285

Managing Connections
A Java application can establish a connection to a data source via a JDBC API–enabled driver. Connections
are maintained in code by the Connection object. A Java application can have multiple connections to
multiple data sources at the same time using multiple Connection objects. A Connection object can be
obtained by a Java application in two ways: through a DriverManager class or through an implementa-
tion of the DataSource interface.

DriverManager Class
The traditional method to establish a connection is to use the DriverManager class, load the driver, and
then make the connection:

String sDriver = “com.sybase.jdbc2.jdbc.SybDataSource”;
String sURL = “jdbc:sybase:Tds:127.0.0.1:3000?ServiceName=sybase”;
String sUsername = “Andrew”;
String sPassword = “Vitale”;

try {
// Load the driver
Class.forName(sDriver);

// Obtain a connection
Connection cConn = DriverManager.getConnection(sURL, sUsername, sPassword);

} catch (...) {
} finally {

if (cConn != null) {
cConn.close(); // Close the connection

}
}

The driver is loaded into memory for use by the Class.forName(driver) call, and then a Connection
object is obtained by a static DriverManager API call, getConnection(JDBCURL, Username,
Password). A connection is now established. The driver itself views the Connection object as the user’s
session.

DataSource Interface
The preferred method to establishing a connection is to use the DataSource interface. The DataSource
interface is preferred because it makes the code more portable, it allows for easier program maintenance,
and it permits the Connection object to participate in distributed transaction management as well as
transparent connection pooling. Connection pooling is a great idea when performance is the primary
goal for your application. The ability to reuse Connection objects eliminates the need to constantly create
a new physical connection every time a connection request is made. Distributed transactions allow you
to create applications that work well in robust enterprise architectures where an enormous amount of
concurrent database tasks are likely to occur.

The DataSource interface utilizes the Java Naming and Directory Interface (JNDI) to store a logical name
for the data source instead of using the fully qualified driver name to connect to the data source. This
type of usage aids in code portability and reusability. One of the very neat features of a DataSource object
is that it basically represents a physical data source; if the data source changes, the changes will be auto-
matically reflected in the DataSource object without invoking any code.

286

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 286

Using JNDI, a Java application can find a remote database service by its logical name. For the application
to use the logical name, it must first be registered with the JNDI naming service. The following code
shows an example of how to register a data source with the JNDI naming service:

VendorDataSource vdsDataSource = new VendorDataSource();
vdsDataSource.setServerName(“Our_Database_Server_Name”);
vdsDataSource.setDatabaseName(“Our_Database_Name”);
vdsDataSource.setDescription(“Our database description”);

// Get the initial context
Context ctx = new InitialContext();

// Create the logical name for the data source
ctx.bind(“jdbc/OurDB”, vdsDataSource);

If JNDI is new to you, it can best be thought of as a directory structure like that of your file system that
provides network-wide naming and directory services. However, it is independent of any naming or
directory service. For more information on JNDI, please visit http://java.sun.com/products/jndi/.

Once you have registered the data source with the JNDI naming service, establishing a connection to the
data source is very straightforward:

Context ctx = InitialContext();

// Look up the registered data source from JNDI
DataSource dsDataSource = (DataSource) ctx.lookup(“jdbc/OurDB”);

// Obtain a Connection object from the data source
Connection cConn = dsDataSource.getConnection(“username”, “password”);

// Close the connection
cConn.close();

Now that you have established a connection, there are a couple of things that can occur that are trans-
parent to the developer. The first thing is that the data source’s properties that you are connected to can
change dynamically. These changes will be automatically reflected in the DataSource object. The second
thing that could occur, which is very nice, is that the middle tier managing the connections could seam-
lessly switch the data source to which you are connected, without your knowledge. This is definitely a
benefit for fail-over, clustered, and load-balanced enterprise architectures.

Understanding Statements
Statements are essential for communicating with a data source using embedded SQL. There are three main
types of statements. The first one is the Statement interface. When objects are created from Statement
interface implementations, they are generally used for executing generic SQL statements that do not take
any parameters. The second type of statement is the PreparedStatement, which inherits from the Statement
interface. PreparedStatement objects are useful when you need to create and compile SQL statements
ahead of time. PreparedStatement objects also accept IN parameters, which will be discussed further in
this section under the title “Setting IN Parameters.” The final type of statement is the CallableStatement.
The CallableStatement inherits from the PreparedStatement and accepts both IN and OUT parameters.
Its main purpose is to execute stored database procedures.

287

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 287

Investigating the Statement Interface
The basic Statement object can be used to execute general SQL calls once a connection has been estab-
lished and a Connection object exists:

Connection cConn = dsDataSource.getConnection(“username”, “password”);

Statement sStatement = cConn.createStatement();

// Execute the following SQL query
ResultSet rsResults = sStatement.executeQuery(“SELECT * FROM PLAYERS WHERE” +

“AGE=25”);

while (rsResults.next()) {
// Perform operations

}

You can see from the previous code that once you establish a connection, creating a Statement object is
trivial. The main area of importance is the Statement execution method, called executeQuery, which exe-
cutes the given SQL command with the data source. The following list describes the different execution
methods that can be used with a Statement object.

Method Description

boolean execute(String sql) Use this method to execute a generic SQL
request. It may return multiple results. Use
getResultSet to retrieve the ResultSet.

boolean execute(String sql, int autoGenKeys) This method executes the SQL request and
also notifies the driver that auto-generated
keys should be made accessible.

boolean execute(String sql, int [] columnIndexes) This method allows you to specify, via the
array, which auto-generated keys should
be made accessible.

boolean execute(String sql, String [] columnNames) This method also allows you to specify,
via the array, which auto-generated keys
should be made accessible.

int [] executeBatch() This method executes a batch of database
commands and returns an array of update
counts.

ResultSet executeQuery(String sql) This method executes the SQL string and
returns a single ResultSet object.

int executeUpdate(String sql) This method executes an SQL string,
which must be an INSERT, UPDATE,
DELETE, or a statement that doesn’t
return anything.

288

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 288

Method Description

int executeUpdate(String sql, This method executes an SQL string,
int autoGeneratedKeys) which must be an INSERT, UPDATE,

DELETE, or a statement that doesn’t
return anything. It will also allow you to
notify the driver that auto-generated keys
should be made accessible.

int executeUpdate(String sql, int[] columnIndexes) This method executes an SQL string, which
must be an INSERT, UPDATE, DELETE, or
a statement that doesn’t return anything. It
will also allow you to specify, via the array,
which auto-generated keys should be
made accessible.

int executeUpdate(String sql, This method executes an SQL string,
String[] columnNames) which must be an INSERT, UPDATE,

DELETE, or a statement that doesn’t return
anything. It will also allow you to specify,
via the array, which auto-generated keys
should be made accessible.

Exploring the PreparedStatement Interface
If you need to execute an SQL statement many times, the PreparedStatement is the perfect choice for
the task because it increases program efficiency and performance. The PreparedStatement is the logical
name choice for the interface because it contains an SQL statement that has been previously compiled
and sent to the DBMS of choice, hence the term prepared. The PreparedStatement is a subclass of the
Statement interface; therefore, it inherits all of the functionality listed in the previous “Investigating
the Statement Interface” section, with a few exceptions. When using the execute methods with a
PreparedStatement object, you should never attempt to pass parameters to the methods execute(),
executeQuery(), or executeUpdate(). These methods have been modified to be parameterless for
the PreparedStatement interface and should be called without parameters.

Setting IN Parameters
The PreparedStatement also gives the developer the ability to embed IN parameters in the SQL state-
ment contained in the PreparedStatement object. These IN parameters are denoted in the SQL statement
by the question mark symbol. Anywhere in the SQL statement where an IN parameter occurs, you must
have your application fill in a value for the IN parameter using the appropriate setter method before
executing the PreparedStatement. The most common setter methods are listed in the following table.

Note: There are many more setter methods from which to choose than those listed in this table. These
are just the ones that are most commonly used.

289

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 289

Method Description

void setBoolean(int paramIndex, boolean x) Sets the IN parameter to a boolean value

void setDate(int paramIndex, Date x) Sets the IN parameter to a java.sql.Date value

void setDouble(int paramIndex, double x) Sets the IN parameter to a double value

void setFloat(int paramIndex, float x) Sets the IN parameter to a float value

void setInt(int paramIndex, int x) Sets the IN parameter to an int value

void setLong(int paramIndex, long x) Sets the IN parameter to a long value

void setString(int paramIndex, String x) Sets the IN parameter to a String value

void clearParameters() Clears the parameter values set by the setter
methods

The following is a code example of how to effectively use a PreparedStatement with IN parameters:

// Remember, the “?” symbol denotes an IN parameter
PreparedStatement psStatement = cConn.prepareStatement(“SELECT * FROM PLAYERS” +

“ WHERE AGE=? AND TEAM=?”);

// Set the first IN parameter to 25
psStatement.setInt(1, 25);

// Set the second IN parameter to Titans
psStatement.setString(2, “Titans”);

// Execute the statement
ResultSet rsResults = psStatement.executeQuery();

// Clear parameters
psStatement.clearParameters();

You’ll notice at the end of the code example, you call psStatement.clearParameters. This call clears any
parameters that are currently set for the PreparedStatement object. Therefore, if you wanted to execute
the PreparedStatement again, you would have to reset all the IN parameters with the appropriate values
you would want to send to the DBMS.

IN Parameter Pitfalls
There are certain pitfalls that can occur when setting parameters with the setter methods that may not be
obvious to you. Anytime you set a parameter and then execute the PreparedStatement object, the JDBC
driver will convert the Java type into a JDBC type that the DBMS understands. For instance, if you were
to set a parameter to a Java float type and pass it to a DBMS that is expecting an INTEGER JDBC type,
you could run into serious problems: potential data loss or exceptions, depending on how the DBMS
handles the situation. Trying to write code that is portable to different vendors is possible, but it definitely
requires knowledge of the mappings that occur between Java types and JDBC types. The following table
lists the most commonly used Java types and their mappings to JDBC types.

290

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 290

Java Object/Type JDBC Type

Int INTEGER

Short SMALLINT

Byte TINYINT

Long BIGINT

Float REAL

Double DOUBLE

java.math.BigDecimal NUMERIC

Boolean BOOLEAN or BIT

String CHAR, VARCHAR, or LONGVARCHAR

Clob CLOB

Blob BLOB

Struct STRUCT

Ref REF

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.net.URL DATALINK

Array ARRAY

byte[] BINARY, VARBINARY, or LONGVARBINARY

Java class JAVA_OBJECT

Specifying JDBC Types with setObject
A way around the potential mapping pitfalls of using IN parameters is by using the PreparedStatement.
setObject() method for setting IN parameters:

void setObject(int paramIndex, Object x, int targetSqlType)

The setObject method allows you to pass a Java object and specify the targeted JDBC type. This
method will ensure that the conversion from the Java type to the JDBC type occurs as you intend. Here
is an example using setObject to specify a JDBC type:

PreparedStatement psStatement = cConn.prepareStatement(“SELECT * FROM PLAYERS WHERE
TEAM=?”);

// Set the IN parameter to Titans using setObject

291

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 291

psStatement.setObject(1, “Titans”, java.sql.Types.VARCHAR);

// Execute the statement
ResultSet rsResults = psStatement.executeQuery();

// Clear parameters
psStatement.clearParameters();

User Defined Types (UDT), which are classes that implement the SQLData interface, can also be used as
a parameter for the setObject method. All of the conversion details are kept from the programmer, so
it is important to use the following form of the setObject method rather than the previous form, which
explicitly maps the Java types to JDBC Types:

void setObject(int paramIndex, Object x)

The difference between the two setObject methods is that this form intentionally omits the parameter
for specifying the target JDBC type. Another valuable method that requires mentioning is the setNull
method, which allows you to send a NULL for a specific JDBC type to the DBMS:

void setNull(int paramIndex, int sqlType)

Even though you are sending a NULL value to the DBMS, you still must specify the JDBC type
(java.sql.Types) for which the NULL will be used.

Retrieving Meta data about Parameters
Using the getParameterMetaData method of a PreparedStatement object, an application can retrieve
information about the properties and types of parameters contained in a PreparedStatement object. The
results are returned in a ParameterMetaData object, which can then be manipulated to find the specific
information in question. For example, if you wanted to know the name type, the mode, whether it is
nullable, or the JDBC type of a specific parameter, you could issue the following method calls:

ParameterMetadata pmdMetaData = psStatement.getParameterMetaData();

String sTypeName = pmdMetaData.getParameterTypeName(1);
int nMode = pmdMetaData.getParameterMode(1);
int nJDBCType = pmdMetaData.getParameterType(1);

int nNullable = pmdMetaData.isNullable(1);

// Print out values...

You can also retrieve the parameter count, the fully-qualified Java class name, the decimal digits, the
scale of the decimal digits, and information about whether a parameter can be a signed number all from
the ParameterMetadata object.

Exploring the CallableStatement Interface
Occasionally you may run into to a situation where you will need to execute stored procedures on a
Remote Database Management System (RDBMS). The CallableStatement provides a standard way to
call stored procedures using the JDBC API stored procedure SQL escape syntax. The SQL escape syntax
supports two forms of stored procedures. The first form includes a result parameter known as the OUT

292

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 292

parameter, and the second form doesn’t use OUT parameters. Each form may have IN parameters. The
IN parameters are discussed in depth earlier in the “Exploring the PreparedStatement Interface” section
of this chapter. The syntax of the two forms is listed as follows:

This form does not return a result.
{call <procedure name>[(?,?, ...)]}
This form does return a result.
{? = call <procedure name>[(?,?, ...)]}

The CallableStatement interface extends PreparedStatement and therefore can use all of the methods
contained in the PreparedStatement interface. As a result, IN parameters are handled the same way as in
the PreparedStatement; however, OUT parameters must be handled differently. They must be registered
before the CallableStatement object can be executed. Registration of the OUT parameters is done through
a method contained in the CallableStatement object called registerOutParameter. The intent is to register
the OUT parameters with the appropriate JDBC type (java.sql.Types), not the Java type. Here is the
registerOutParameter method in its simplest form:

void registerOutParameter (int paramIndex, int sqlType) throws SQLException

There is one more type of parameter that hasn’t yet been discussed, and it is called the INOUT parameter.
This simply means that an IN parameter that you are passing in will also have a new value associated
with it on the way out. These must also be registered as OUT parameters with the registerOutParameter
method. Listed below are code examples that show how to prepare a callable statement, and they also
illustrate all three parameter types (IN, OUT, and INOUT).

❑ CallableStatement using an IN parameter:

CallableStatement cStatement = cConn.prepareCall(
“{CALL setPlayerName(?)}”;

cStatement.setString(“John Doe”);

cStatement.execute();

❑ CallableStatement using an OUT parameter:

CallableStatement cStatement = cConn.prepareCall(
“{CALL getPlayerName(?)}”;

cStatement.registerOutParameter(1, java.sql.Types.STRING);

cStatement.execute();

// Retrieve Player’s name
String sName = cStatement.getString(1);

❑ CallableStatement using an INOUT parameter:

CallableStatement cStatement = cConn.prepareCall(
“{CALL getandsetPlayersName(?)}”;

cStatement.setString(“John Doe”);
cStatement.registerOutParameter(1, java.sql.Types.STRING);

293

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 293

cStatement.execute();

// Retrieve Player’s name
String sName = cStatement.getString(1);

There is another escape syntax that has not been discussed because it may be supported differently by
different vendors. It is the escape syntax for scalar functions and its form is as follows:

{ fn <function name> (?, ...)}

To figure out which scalar functions your DBMS uses, the JDBC API provides several methods in the
DatabaseMetaData class for retrieving a comma-separated list of the available functions. These methods
are shown in the following table.

Method Description

String getNumericFunctions() Returns a comma-separated list of math functions
available for the given database. Example:
POWER(number, power)

String getStringFunctions() Returns a comma-separated list of string functions
available for the given database. Example:
REPLACE(string)

String getSystemFunctions() Returns a comma-separated list of system functions
available for the given database. Example:
IFNULL(expression, value)

String getTimeDateFunctions() Returns a comma-separated list of time and date
functions available for the given database. Example:
CURTIME()

The DatabaseMetaData class contains an enormous amount of useful functions for retrieving meta data
about a database. This will be discussed more in the “Managing Database Meta Data” section of this
chapter. However, there are two other methods of the DatabaseMetaData class that are worth mention-
ing here because they relate to stored procedures. They are the supportsStoredProcedures method
and the getProcedures method. The supportsStoredProcedures method returns true if the DBMS
supports stored procedures. The getProcedures method returns a description of the stored procedures
available in a given DBMS.

Utilizing Batch Updates
To improve performance, the JDBC API provides a batch update facility that allows multiple updates to
be submitted for processing at one time. Statement, PreparedStatement, and CallableStatement all sup-
port batch updates. Imagine a case where you have to input 100 new changes to a database using single
calls to it. Wouldn’t it be easier if you could just send the request at one time instead of making 100 calls
to the database? Well, that is exactly the type of functionality that batch updates provide. This portion of
the chapter will explain how to create batch updates for the Statement, PreparedStatement, and
CallableStatement objects.

294

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 294

Creating Batch Updates Using a Statement Object
The Statement object can submit a set of updates to a DBMS in one single execution; however, statement
objects are initially created with empty batch command lists. Therefore you must invoke the Statement.
addBatch method to add SQL commands to the Statement object. The SQL commands must return an
update count and are not allowed to return anything else, like Resultsets. If a return value other than that
of an update count is returned, a BatchUpdateException is thrown and must be processed. An applica-
tion can determine why the exception occurred by calling the BatchUpdateException.getUpdateCounts
method to retrieve an integer array of update counts, which allows you to determine the cause of the
failure.

To properly process batch commands, you should always set auto-commit to false so that the DBMS’s
driver will not commit the changes until you tell it to do so. This will give you a chance to catch exceptions
and clear the batch list, if necessary. To clear a batch list that has not been processed, use the Statement.
clearBatch method. This will clear the Statement object’s batch list of all commands. If a batch is success-
fully processed, it is automatically cleared.

When a Statement.executeBatch is successful, it will return an array of update counts that are in the same
order as the commands were when added to the batch of the Statement. Each entry in the array will con-
tain one of the following:

❑ A value that is 0 or greater, which means the command was processed successfully. If the value
is greater than 0, the number signifies the number of rows that were affected when the com-
mand was executed.

❑ A Statement.SUCCESS_NO_INFO, which signifies that the particular command was processed
successfully; however, it did not contain any information about the number of rows that were
affected by the command.

In the event of a failure during the execution of the batch command, a BatchUpdateException will be
thrown. Certain drivers may continue with the execution of the batch commands, and others will stop
execution all together. If the batch command fails and the driver stops processing after the first failure,
it will return the number of update counts via the BatchUpdateException.getUpdateCounts. If the batch
command fails and the driver continues to process other commands in the batch list, it will return in its
update counts array a value of Statement.EXECUTE_FAILED for the command or commands that failed
during the batch execution. You can determine which type of driver you have by checking to see whether
an error occurs and whether the size of the returned array from BatchUpdateException.getUpdateCounts
is equal to the same number of commands submitted.

JDBC drivers do not have to support batch updates. Typically you will know if your driver supports
batch updates via its documentation. If you don’t know, you can always detect it in code using the
DatabaseMetaData.supportsBatchUpdates method.

The following is an example of creating a batch update to enter five new team members into a TEAMS
table and checking to make sure that the database driver supports batch updates:

try {
// Make sure that autocommit is off
cConn.setAutoCommit(false);

// Retrieve metadata info about the data source

295

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 295

DatabaseMetaData dbmData = cConn.getMetaData();

// Make sure our driver supports batch updates
if (dbmData.supportsBatchUpdates()) {

Statement sStatement = cConn.createStatement();

// Add batch commands
sStatement.addBatch(“INSERT INTO TEAMS VALUES (“‘Joon Lee’)”);
sStatement.addBatch(“INSERT INTO TEAMS VALUES (‘Jennie Vitale’)”);
sStatement.addBatch(“INSERT INTO TEAMS VALUES (‘Kyle Rice’)”);
sStatement.addBatch(“INSERT INTO TEAMS VALUES (‘Steve Brockman’)”);
sStatement.addBatch(“INSERT INTO TEAMS VALUES (‘Arnie Voketaitis’)”);

int []uCounts = sStatement.executeBatch();

// Commit the changes
cConn.commit();

} else {
System.err.print(“Your driver does not support batch updates!”);

}
} catch(BatchUpdateException batchEx) {

int []uCounts = batchEx.getUpdateCounts();
for (int i = 0; i < uCounts.length; i ++) {

System.err.print(“Count #” + i + “=” + uCounts[i] + “\n”);
}
// Handle errors further here if necessary

}

Creating Batch Updates Using a PreparedStatement Object
The PreparedStatement object batch updates follow mostly the same method of operations as the
Statement object batch updates, with the exception that you now have to deal with parameterized SQL
statements and setting each parameter before adding a batch command. So for each command you will
need to set the necessary IN parameter before issuing a PreparedStatement.addBatch call. The following
code example shows how to correctly add batch commands to a PreparedStatement object:

try {
// Make sure that autocommit is off
cConn.setAutoCommit(false);

// Retrieve metadata info about the data source
DatabaseMetaData dbmData = cConn.getMetaData();

// Make sure our driver supports batch updates
if (dbmData.supportsBatchUpdates()) {

PreparedStatement psStatement = cConn.prepareStatement(
“INSERT INTO TEAMS VALUES (?)”);

// Set the IN parameter
psStatement.setString(1, “Jennie Vitale”);

// Add batch command
psStatement.addBatch();

296

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 296

// Set the IN parameter for the next command
psStatement.setString(1, “Andrew Vitale”);

// Add batch command
psStatement.addBatch();

int []uCounts = psStatement.executeBatch();

// Commit the changes
cConn.commit();

} else {
System.err.print(“Your driver does not support batch updates!”);

}
} catch(BatchUpdateException batchEx) {
}

The key point to note from the code above is where the PreparedStatement.addBatch methods occur. They
occur after the IN parameters are set, so you simply change the IN parameters for each batch command
you wish to execute.

Creating Batch Updates Using a CallableStatement Object
The CallableStatement object handles batch commands in the exact same way as the PreparedStatement
object. Now I know what you are thinking, “What about all the stored procedures that require OUT or
INOUT parameters?” Well the answer is that OUT and INOUT parameters are not allowed to be used to
call stored procedures in a batched fashion. If you did call a stored procedure that required either an
OUT or an INOUT parameter, a BatchUpdateException would be thrown because SQL commands must
return an update count and are not allowed to return anything else, such as result sets. So the code syntax
looks remarkably the same as the PreparedStatement object, with the exception that you are calling stored
procedures. The following code illustrates using a CallableStatement object to perform batch updates:

// Make sure that autocommit is off
cConn.setAutoCommit(false);
CallableStatement csStatement = cConn.prepareCall(

“{call updatePlayers(?)}”);

// Set the IN parameter
csStatement.setString(1, “Jennie Vitale”);

// Add batch command
csStatement.addBatch();

// Set the IN parameter for the next command
csStatement.setString(1, “Andrew Vitale”);

// Add batch command
csStatement.addBatch();
int []uCounts = csStatement.executeBatch();

// Commit the changes
cConn.commit();

297

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 297

Utilizing Result Sets
In simple terms, a ResultSet object is a Java object that is created to contain the results of an SQL query that
has been executed. The results are in table row fashion, meaning they contain column headers, types, and
values. All this information can be obtained through either the ResultSet object or the ResultSetMetaData
object.

ResultSet objects are very common, and you will interface with them on a continuous basis when doing
JDBC programming, so it is important to understand the different types of ResultSet objects that are
available for you to exploit. Understanding how ResultSet objects are created and manipulated is crucial
when you are designing different algorithms, especially with regard to performance. So find the best
possible option for executing a query, and manipulate its results for your particular situation.

Investigating Types of Result Sets
There are two main areas of interest when dealing with result sets of which you must be aware. The first
area of interest is the concentration on how the cursor in a result set can be exploited. Cursors can be
limited to only moving forward, or they can be allowed to move in both forward and backward direc-
tions. The second area of interest is how changes in the data source affect the result set. You can instruct
a result set to be aware of changes that occur in an underlying data source and have a ResultSet object
reflect those changes.

There are three types of result sets that warrant explanation. Each of these types will be scrollable or non-
scrollable, sensitive or insensitive. Scrollable means that the cursor in the result set can move both for-
ward and backward. Non-scrollable signifies that the cursor can only move in one direction: forward.
If the result set is sensitive to change, it will reflect changes that occur while the result set is open. If the
result set is insensitive to change, it will usually remain fixed with no change to its structure, even if
the underlying data source changes. The following is a list of constants that are in the ResultSet interface
that you can use to specify a result set type:

❑ TYPE_FORWARD_ONLY — The result set cursor can only be moved forward from the begin-
ning to the end. It cannot move backwards. Also, the result set is not sensitive to change from
the data source.

❑ TYPE_SCROLL_INSENSITIVE — The result set cursor can move forward and backward and
jump to rows specified by the application. Also, the result set is not sensitive to change from
the data source.

❑ TYPE_SCROLL_SENSITIVE — The result set cursor can move forward and backward and jump
to rows specified by the application. This time the result is sensitive to changes to the data source
while the result set is open. This provides a dynamic view to the data.

Setting Concurrency of Result Sets
Result sets have only two levels of concurrency: read-only and updatable. To find out if your driver sup-
ports a specific concurrency type, use the DatabaseMetaData.supportResultSetConcurrency method to
find out. The following is a list of constants that are in the ResultSet interface that you can use to specify
a result set concurrency type:

❑ CONCUR_READ_ONLY — Specify this constant when you want your result set to be read-only,
meaning it cannot be updated programmatically.

❑ CONCUR_UPDATABLE — Specify this constant when you want your result set to be updatable,
meaning it can be updated programmatically.

298

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 298

Setting Holdability of Result Sets
Result sets are generally closed when a transaction has been completed. This means that a Connection.
commit has been called, which in turn closes any related result sets. In special cases, this may not be the
desired behavior that you were hoping for. It is possible to hold a result set open and keep its cursor
position in the result set after a Connection.commit has been called by creating your statements with the
following ResultSet interface constants present:

❑ HOLD_CURSORS_OVER_COMMIT — Specifies that a ResultSet object will not be closed when
a Connection.commit is called. Instead, it will remain open until the program calls the method
ResultSet.close. If you are interested in better performance, this is usually not the best option.

❑ CLOSE_CURSORS_AT_COMMIT — Specifies that a ResultSet object will be closed when a
Connection.commit occurs. This is the best performance option.

Another interesting point to note is that the default holdability is determined by the DBMS that you are inter-
facing with. In order to determine the default holdability, use the DatabaseMetaData.getResultSetHoldability
method to retrieve the default holdability for the DBMS.

Using Result Sets
Now that you know the different types of result sets that exist and the concurrency and holdability levels,
it is time to see what a result set looks like in action. The following code shows how to create a statement
that is scrollable, updatable, insensitive to data source changes, and closes the cursor when a commit
occurs:

// Look up the registered data source from JNDI
DataSource dsDataSource = (DataSource) ctx.lookup(“jdbc/OurDB”);

// Obtain a Connection object from the data source
Connection cConn = dsDataSource.getConnection(“username”, “password”);

Statement sStatement = cConn.createStatement(
ResultSet.CONCUR_UPDATABLE,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CLOSE_CURSORS_AT_COMMIT

);

ResultSet rsResults = sStatement.executeQuery(“SELECT NAME, TEAM FROM PLAYERS”);

// Though we have not done anything to warrant a commit we put this here to show
where the ResultSet would be closed
cConn.commit();

// Close the connection
cConn.close();

Navigating Result Sets
The ResultSet interface of the JDBC API provides a rich set of methods for navigating through ResultSet
objects. If your ResultSet object is scrollable, you can easily jump to different rows in the ResultSet object
with little effort. Here is a list of the main methods provided in the ResultSet interface for navigation with
a ResultSet object.

299

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 299

Method Description

First This method moves the cursor to the first row in the ResultSet object.
Returns true if successful. Returns false if there are no rows in the
ResultSet object.

Last This method moves the cursor to the last row in the ResultSet object.
Returns true on success. Returns false if there are no rows in the
ResultSet object.

Next This method moves the cursor one row forward in the Result object.
It will return true if successful and false if the cursor has been moved
past the last row.

Previous This method moves the cursor one row backwards in the Result
object. It will return true if successful and false if the cursor has been
moved past the first row.

absolute(int) This method will move the cursor to the row specified by the int
parameter. The first row is represented by the number 1. If you send
a 0 as a parameter, the cursor is moved just before the first row. If the
integer specified is a negative number, it will move the number of
rows specified backwards from the end of the ResultSet object.

BeforeFirst This method will move the cursor to the beginning of the
ResultObject just before the first row.

AfterLast This method will move the cursor to the end of the ResultObject just
after the last row.

relative(int) Depending on whether the integer specified is negative or positive,
this method will move the cursor the number of rows specified from
its current position. A positive value signifies a forward movement.
A negative value signifies a backward movement. A zero signifies that
the cursor remains in the same position.

Manipulating Result Sets
The ResultSet interface has an enormous number of methods that can be used for updating a ResultSet
object. The majority of the methods are prefixed with the word update. In order to be able to update a
ResultSet object, it must have a concurrency of type CONCUR_UPDATABLE. If a ResultSet object is
updatable, its columns can be altered, its rows can be deleted, new rows can be added, and its data can
be changed. The following code example shows several ways to manipulate a ResultSet object:

Statement sStatement = cConn.createStatement(
ResultSet.CONCUR_UPDATABLE,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CLOSE_CURSORS_AT_COMMIT

);

ResultSet rsResults = sStatement.executeQuery(“SELECT NAME, TEAM, AGE, “ +

300

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 300

“RANK FROM PLAYERS”);

// Move to the last row
rsResults.last();

// Update specific data in the row
rsResults.updateString(2, “Hornets”);
rsResults.updateInt(3, 27);
rsResults.updateLong(4, 502l);

// Commit the changes to the row
rsResults.updateRow();
cConn.commit();

// Close the connection
cConn.close();

The following example will show you how to insert and delete rows. Inserting rows is not a difficult
process but it does require a bit of know-how since it is not initially intuitive. In order to insert a row into
a ResultSet object, you must first make a call to ResultSet.moveToInsertRow. This may seem confusing,
but the JDBC API defines a concept of an insert row in the ResultSet object. When you call ResultSet.
moveToInsertRow, this essentially allows you to remember your current cursor position, move to a tem-
porary area in memory, perform the creation of your new row, and call the ResultSet.insertRow to insert
the newly created row into the ResultSet object at the cursor position you were at before calling ResultSet.
moveToInsertRow.

Deleting a row is much more trivial than inserting a row. To delete a row, you simply move to the row
you want to delete and call ResultSet.deleteRow. The following code will demonstrate how to delete and
insert a row using the methods that were just described:

Statement sStatement = cConn.createStatement(ResultSet.CONCUR_UPDATABLE);

ResultSet rsResults = sStatement.executeQuery(“SELECT NAME, TEAM, AGE,” +
“RANK FROM PLAYERS”);

// Move to the fourth row
rsResults.absolute(4);

// Delete the fourth row
rsResults.deleteRow();

// Now let’s insert a new row
rsResults.moveToInsertRow();

// Build data for new row
rsResults.updateString(1, “Ken Pratt”);
rsResults.updateString(2, “Tigers”);
rsResults.updateInt(3, 32);
rsResults.updateLong(4, 752l);

// Add the new row to the ResultsSet

301

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 301

rsResults.insertRow();

// Move the cursor back the original position
rsResults.moveToCurrentRow();

// Commit changes
cConn.commit();

// Close the connection
cConn.close();

Closing Result Sets
If the Statement object that created the ResultSet object is not yet closed, you can use the ResultSet.close
method to close a ResultSet object and free its resources. If you specified the
HOLD_CURSORS_OVER_COMMIT flag when you created the Statement object, then you will also need
to call the ResultSet.close method when you are done with the ResultSet object. Otherwise it would
remain open even if a Connect.commit is called. However, if the Statement object that created the
ResultSet object is closed, the ResultSet object would be closed as well even if the
HOLD_CURSORS_OVER_COMMIT was specified during creation.

Examining JDBC Advanced Concepts
This portion of the chapter will discuss concepts that are generally used in advanced Java applications
that definitely fall in the three-tier model that was described in the section “JDBC API Usage in the Real
World,” earlier in this chapter. This section will cover the following:

❑ Meta data — Explore retrieving meta data about your data source and understanding how to use it.

❑ RowSets — Explain RowSets in depth.

❑ Connection Pooling — Discuss all the ins and outs of connection pooling.

❑ Transactions — Both standard and distributed transactions.

Managing Database Meta Data
Sometimes the JDBC-supported applications that you write may need to acquire more information
about a data source. Specifically, information that is not readily available through Statement objects with
embedded SQL calls or through the results that they return. Suppose you want to obtain information
about whether or not your DBMS supports transactions, batch updates, or save points. The only way
to determine this type of information is through the DBMS’s meta data. The JDBC API has an interface
called DatabaseMetaData that allows an application to retrieve meta data about a DBMS through an enor-
mous array of methods. These methods can be used to retrieve meta data information that is classified
into the following categories:

❑ Discovering limitations of the data source

❑ Determining what capabilities and features a data source supports

❑ Retrieving general information about a data source such as a database version or what SQL key-
words it supports

302

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 302

With the DatabaseMetaData interface, you can even retrieve the tables, columns, user-defined types, and
the schema of a particular data source. This can be a very useful tool when you know very little about the
data source with which you are interfacing.

Discovering Limitations of a Data Source
Discovering the limitations of a data source is easily done using a DatabaseMetaData object. Most of the lim-
itations methods are prefixed with the words getMax. For example, DatabaseMetaData.getMaxConnections
retrieves the maximum number of connections that can occur at the same time within a data source.
Listed below are some of the more common limitation methods that are used for a given data source. To
see a list of all the limitation methods, please see the DatabaseMetaData Java doc.

Method Description

int getMaxColumnsInTable() Returns the maximum number of columns that a table is
allowed to have.

int getMaxRowSize() Returns the maximum size a row can be in bytes.

int getMaxStatements() Returns the maximum number of statements a data source
can have open at the same time.

int getMaxStatementLength() Returns the maximum length an SQL statement can be.

int getMaxUserNameLength() Returns the allowed maximum length a user name can be.

Determining Which Features a Data Source Supports
The DatabaseMetaData object provides numerous methods for determining whether or not your DBMS
driver supports a feature that you are interested in using. Most of the methods begin with the prefix
supports. The most commonly used features are listed in the following table:

Method Description

boolean supportsBatchUpdates() Returns true if the data source supports batch updates
or false if it does not.

boolean supportsSavepoints() Returns true if the data source supports savepoints or
false if it does not.

boolean supportsStoredProcedures() Returns true if the data source supports stored proce-
dures or false if it does not.

boolean supportsTransactions() Returns true if the data source supports transactions
or false if it does not.

boolean supportsGroupBy() Returns true if the data source supports the GROUP
BY clause or false if it does not.

303

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 303

Retrieving General Information about a Data Source
There is an enormous amount of general information that can be retrieved about a data source using
the DatabaseMetaData methods. There are over 100 methods, so I decided to focus on a few of the core
methods that you are most likely to use, such as: retrieving the database schema; obtaining the names of
the tables in the database; and retrieving the columns for a specific table. The rest of the methods can be
found in the DatabaseMetaData Java docs that come with the Java SDK 1.5 documentation.

I decided to show you a practical example of how to use these methods, rather than bore you with the
details of how each method operates. This example will show you how to create a keyword search that can
explore an entire database without knowing anything about it except how to connect to it and retrieve
specific rows that contain the keywords for which you are searching. The keyword search example has
three main classes that make up its architecture: DBDatabase, DBTable, and DBColumn. DBDatabase han-
dles the connection to the data source, reading meta data information such as tables and columns, and
searching for specific keywords.

The DBTable class stores information about a table’s makeup as well as its individual columns that are
associated with the table. The column objects are stored in an ArrayList and can be accessed via the
DBTable.getColumns method:

public class DBTable {
private String m_sTblName;
private ArrayList m_alColumns;

public DBTable(String sName) {
m_sTblName = sName;
m_alColumns = new ArrayList();

}
public String getTableName() {

return m_sTblName;
}
public void addColumn(DBColumn Column) {

m_alColumns.add((DBColumn) Column);
}

public ArrayList getColumns() {
return m_alColumns;

}
}

The DBColumn class contains information about a specific column that belongs to a table. This informa-
tion consists of the table name it belongs to, the column’s name, the SQL data type of the column, the size
of the data contained in the column, and whether or not the column is nullable:

public class DBColumn {
private String m_sTblName;
private String m_columnName;

private String m_datatype;
private int m_datasize;
private int m_digits;

304

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 304

private boolean m_nullable;

public DBColumn(String sTableName, String sCol, String sDType, int idsize,
int idigits, boolean bnullable) {

// Initialize variables here
}

// getter methods
public String getTableName() { return m_sTblName; }
public String getColumnName() { return m_columnName; }
public String getDataType() { return m_datatype; }
public int getDataSize() { return m_datasize; }
public int getDecimalDigits() { return m_digits; }
public boolean isNullable() { return m_nullable; }

}

The final class in this example is the DBDatabase class, which is too large to display in its entirety so I
will only illustrate its basic structure. Its main purpose is to create a connection with a database and start
the process to load the DBTable and DBColumn objects with data through the load, readTables, and
readTableColumns methods. The searchAllByKeyword method allows the application to search an entire
database for a specific keyword:

public class DBDatabase {
private Connection m_cConnection;

private ArrayList m_alTables;
private ArrayList m_alResults;

public DBDatabase(String sDriver, String sURL, String sUser, String sPass)
{ }

public boolean load()
{ }

public void readTables(Connection currentConnection) throws Exception
{ }

public void readTableColumns(DatabaseMetaData meta, DBTable table) throws
Exception

{ }

public ArrayList searchAllByKeyword(String saKeyword)
{ }

I demonstrate the classes that are contained in this example and show the steps in action to execute a
keyword search of the database. Here are the steps:

1. The first thing you need to do is call the DBDatabase.load method to create a connection to the
data source and read the meta data from the data source that contains the tables and columns.
The DBDatabase.readTables creates a DBTable object for each table in the database and also
calls the DBDatabase.readTableColumns method to associate DBColumn objects with the appro-
priate DBTable objects.

305

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 305

Once a connection is established through the DBDatabase.load method, it will call the
DBDatabase.readTable method to get the table and column meta data:

// Setup and retrieve the metadata info
DatabaseMetaData metadata = null;
metadata = currentConnection.getMetaData();

String[] names = {“TABLE”};
ResultSet tableNames = metadata.getTables(null,”%”, “%”, names);

while (tableNames.next()) {
String sTName = tableNames.getString(“TABLE_NAME”);
if (sTName != null) {

DBTable dTable = new DBTable(sTName);
readTableColumns(metadata, dTable);
m_alTables.add((DBTable) dTable);

}
}

Each DBTable object that is created will call the DBDatabase.readTableColumns automatically to
create DBColumns objects for the given DBTable:

ResultSet columns = meta.getColumns(null, “%”, table.getTableName(), “%”);

while (columns.next()) {
String columnName = columns.getString(“COLUMN_NAME”);
String datatype = columns.getString(“TYPE_NAME”);

int datasize = columns.getInt(“COLUMN_SIZE”);
int digits = columns.getInt(“DECIMAL_DIGITS”);
int nullable = columns.getInt(“NULLABLE”);
boolean bNull = (nullable == 1);

DBColumn dCol = new DBColumn((String)table.getTableName(),
columnName, datatype, datasize, digits, bNull);

table.addColumn((DBColumn)dCol);
}

2. Once you have created a connection and obtained the table and column meta data you need,
then execute the DBDatabase.searchAllByKeyword method to search the entire data source for
the given keyword in all tables and all columns:

public ArrayList searchAllByKeyword(String saKeyword)
{
try {

// Clear result list
m_alResults.clear();

// Get size of Tables ArrayList
int nSize = m_alTables.size();

// Create our basic SQL statement

306

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 306

String sStartSQL = “Select * from “;

DBTable dbTable;

for (int i = 0; i < nSize; i++) {
String sSQL = sStartSQL;

// Get table
dbTable = (DBTable) m_alTables.get(i);
if (dbTable == null) {

break;
}

// Add the table name
sSQL = sSQL + “[“ + dbTable.getTableName() + “] WHERE “;

// Get column objects
ArrayList alCols = dbTable.getColumns();

if (alCols == null) {
continue;

}

int nColSize = alCols.size();
if (nColSize <= 0) {

continue;
}

String sSQLColumns = “”;

// Get individual columns for table and add to SQL
for (int k = 0; k < nColSize; k++) {

DBColumn dbCol = (DBColumn) alCols.get(k);

if (dbCol != null) {
if (k == 0) {

sSQLColumns = dbCol.getColumnName();
} else {

sSQLColumns = sSQLColumns + “ & “ + dbCol.getColumnName();
}

}

// Add keyword to SQL string
sSQL = sSQL + sSQLColumns + “ LIKE ‘%” + saKeyword + “%’”;

// Search Table and Save result set
Statement statement = m_cConnection.createStatement();

// Execute SQL statement
ResultSet resultSet = statement.executeQuery(sSQL);

// Add to resultset array list
m_alResults.add(resultSet);

}

307

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 307

} catch(Exception e) {
System.out.println(e);
e.printStackTrace(System.out);

}
return m_alResults;

}

This code is an excellent example of how you can utilize the DatabaseMetaData object to create code that
does not fit under normal database operations. Using the DatabaseMetaData object, you were able to
design code that has the ability to grab all the meta data information, create a list of all tables and all
columns, and search the entire database for a specific keyword.

Utilizing RowSets
A RowSet represents a set of rows obtained from a tabular form of data such as a result set. RowSet inter-
faces are a JavaBeans component; therefore they support event notifications and property manipulations.
RowSets can be used in Integrated Development Environments (IDE) that support visual JavaBeans
development. This allows you to create a RowSet at design time and then execute its methods at run time.

RowSets are usually implemented as either connected or disconnected implementations. Connected RowSet
implementations establish a connection with a data source and keep the connection until the RowSet is
discarded. Disconnected RowSet implementations are very interesting because they don’t require a JDBC
driver or the full use of the JDBC API until they need to establish a connection to retrieve or update data.
Once the operations are finished, the RowSet disconnects. The disconnected RowSet implementation
stores all the data and meta data about a data source in memory; so most manipulations of the data can
occur offline until there is a need to commit the data. RowSets provide the perfect mechanism for send-
ing formatted data over a low bandwidth network to clients that do not possess an extreme amount of
capabilities for data processing.

Understanding RowSet Events
RowSets support JavaBeans events that notify other JavaBeans components that implement the
RowSetListener interface and are registered with the appropriate RowSet object. In order to register with
a RowSet object, the method RowSet.addRowSetListener() is provided for applications to use. There
are three types of events that can occur which will cause an event to fire:

❑ cursorMoved — Notifies listeners that the cursor has moved within the RowSet object.

❑ rowChanged — Notifies listeners that the RowSet object has changed one of its rows.

❑ rowSetChanged — Notifies listeners that the entire content of the RowSet object has changed.

RowSet Standard Implementations
Up until this point in time there have not been any finalized standard implementations on RowSets.
Now there are five available for use in the J2SE 1.5 platform that are maintained by the Java Community
Process (JCP) under the alias JSR 114.

308

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 308

Implementation Description

CachedRowSetImpl Used for RowSets that want to cache rows in memory. It is a
disconnected RowSet.

FilteredRowSetImpl Provides filtering capabilities on RowSets without using a
heavyweight query language.

JdbcRowSetImpl This is basically a wrapper for ResultSet objects. This essen-
tially turns a ResultSet into a JavaBeans component. This
RowSet implementation is classified as a connected RowSet.

JoinRowSetImpl This implementation allows disconnected RowSet objects to
perform SQL JOIN operations between RowSet objects with-
out having to reconnect to the data source.

WebRowSetImpl This implementation is provided to allow a standard way of
describing a JDBC RowSet in XML.

Using the New JdbcRowSetImpl
The JdbcRowSetImpl is a new implementation of the JdbcRowSet interface that is provided with J2SE 1.5.
This implementation essentially encapsulates a ResultSet and in turn makes the ResultSet and its driver
usable as a JavaBeans component. The JdbcRowSetImpl supports all the ResultSet methods and it even
has the added benefit of making nonscrollable ResultSets scrollable. So you could take a nonscrollable
ResultSet, plug it into a JdbcRowSetImpl and make it scrollable as well as updatable:

JdbcRowSetImpl jrsRowSet = new JdbcRowSetImpl();

jrsRowSet.setURL(jdbc:sybase:Tds:127.0.0.1:3000?ServiceName=Sybase”);
jrsRowSet.setUsername(“jconnelly”);
jrsRowSet.setPassword(“secret”);

jrsRowSet.setCommand(“SELECT * FROM EMPLOYEES WHERE TITLE = ? AND AGE = ?”);
jrsRowSet.setString(1, “SOFTWARE ENGINEER”);
jrsRowSet.setInt(2, 27);

// This establishes the connection, creates the prepared statement, and creates the
// ResultSet if successful
jrsRowSet.execute();

The code in the sample above creates a JdbcRowSetImpl called jrsRowSet and then sets its properties,
which include a JDBC URL to the data source, a username and password for the data source, and an
SQL command to be executed. Once all the properties are set, the JdbcRowSetImpl.execute method is
called, which internally establishes a connection to the data source, creates any necessary prepared state-
ments, and executes the statements, which in turn generate a ResultSet. The jrsRowSet can now be tra-
versed just like any other scrollable, updatable ResultSet object.

The beauty of it all is that now the jrsRowSet that contains a ResultSet object can be a component in a
Swing application, if so desired.

309

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 309

Connection Pooling
The trouble with the normal way of connecting to a data source is that, if your application requires
numerous connections to occur with a data source, every time you close the Connection object, the phys-
ical connection is closed. Therefore, every time you open a connection, the connection has to be reestab-
lished with the data source, initialized, and eventually closed again before repeating the same process
over and over again. This is a performance and scalability nightmare.

Connection pooling is the answer to this problem. It provides a way to maintain a certain amount of
physical database connections that can be reused by applications as necessary. Connection pooling is
typically used in a three-tier environment, but it can be used in a two-tier environment as well if the
JDBC driver provides an implementation of the ConnectionPoolDataSource interface.

From an applications standpoint, connection pooling is virtually transparent. There are only two things
you need to know in order to utilize connection pooling correctly, and they are listed here:

❑ Never use the DriverManager class to get a Connection object; always use the DataSource object
to create a Connection object.

❑ Always use finally statements to close a Connection object.

Administrators of application servers are responsible for managing the connection pools, so talk to your
application server administrator to find out specifics for your particular server.

Managing Transactions
Transaction management is extremely important when dealing with data sources. Transaction manage-
ment ensures data integrity and data consistency; without it, it would be very easy for applications to
corrupt data sources or cause problems with the synchronization of the data. Therefore, all JDBC drivers
are required to provide transaction support.

What Is a Transaction?
To explain transactions best, take using an ATM machine as an example. The steps to retrieve money are
as follows:

1. Swipe your ATM card.

2. Enter your PIN number.

3. Select the withdrawal option.

4. Enter the amount of money to withdraw.

5. Agree to pay the extremely high fee.

6. Collect your money.

If anything was to go wrong along the way and you didn’t receive your money, you would definitely not
want that to reflect on your balance. So a transaction encompasses all the steps above and has only two
possible outcomes: commit or rollback. When a transaction commits, all the steps had to be successful.
When a transaction fails, there should not be any damage done to the underlying data source. In this
case, the data that stores your account balance!

310

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 310

Standard Transactions
JDBC transactions are extremely simple to manage. Transaction support is implemented by the DBMS,
which eliminates your having to write anything — code-wise — that would be cumbersome. All the
methods you need are contained in the Connection object. There are two main methods you need to
be concerned about: Connection.commit and Connection.rollback. There isn’t a begin transaction method
because the beginning of a transaction is implied when the first SQL statement is executed.

In JDBC 3.0, there is a new concept called a savepoint. Savepoints allow you to save moments in time inside
a transaction. For example, you could have an application that sends an SQL statement, then invokes a
savepoint, tries to send another SQL statement, but a problem arises and you have to rollback. Now
instead of rolling back completely, you can choose to rollback to a given savepoint. The following code
example demonstrates JDBC transactions and the new savepoint method, Connection.setSavepoint:

Statement stmt = cConn.createStatement();

int nRows = stmt.executeUpdate(“INSERT INTO PLAYERS (NAME) “ +
VALUES (‘Roger Thomas’)”);

// Create our save point
Savepoint spOne = cConn.setSavepoint(“SAVE_POINT_ONE”);

nRows = stmt.executeUpdate(“INSERT INTO PLAYERS (NAME) “ +
VALUES (‘Jennifer White’)”);

// Rollback to the original save point
cConn.rollback(spOne);

// Commit the transaction.
cConn.commit();

From this example, the second SQL statement never gets committed because it was rolled back to
SAVE_POINT_ONE before the transaction was committed.

Distributed Transactions
Participation in distributed transaction management is the same as participating in connection pooling.
You must create connections from the DataSource interface. Transactions are no longer maintained by
applications; rather, they are now maintained by transaction managers outside your control. Therefore,
your program must not call any of the following methods:

❑ commit

❑ rollback

❑ setSavePoint

❑ setAutoCommit(true) — false is acceptable

If your application calls any of these methods while participating in a distributed transaction architecture,
an SQLException will be thrown. The following are the two things you doneed to do to participate fully
in a distributed transaction management architecture:

311

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 311

❑ Never use the DriverManager class to get a connection; always use the DataSource interface to
create a new Connection object.

❑ Always use finally statements to close Connection objects.

Object to Relational Mapping
with Hibernate

Object to Relational Mapping (ORM) technologies are becoming very popular in today’s fast-paced,
develop-it-yesterday environment. ORM is an approach to developing applications that persist objects
to relational databases. Another term that is frequently used when discussing ORM technologies is trans-
parent persistence. Simply stated, it is the ability to store objects in a database using an object-oriented
programming language while hiding the details from the application. Hibernate does exactly that.

Hibernate (http://www.hibernate.org) is one of the most popular and versatile ORM tools on the
market. It acts as a persistent service for your applications to store and retrieve Java objects to and from
relational databases. Hibernate is designed to be as transparent to the developer as possible and one of
the main architectural features it possesses to accomplish this is the use of runtime reflection instead of
build-time code generation. This type of architecture allows you to write and compile your code without
Hibernate intruding on the build process. Hibernate doesn’t enter the picture until the application is
actually executed.

Hibernate, like most ORM tools, has its own query language called Hibernate Query Language (HQL).
HQL is an object-oriented query language that looks very similar to SQL. It supports the use of sub-
queries; group by, having, and order by; retrieval of arbitrary data objects using its select new construct;
table joins; native SQL Queries; SQL functions and operators; aggregate functions; and query by criteria.

Hibernate handles the object to relational bridge through plain-text XML files that map classes and
variables of those classes to tables and columns in a relational database. It also has mapping support for
one-to-one, many-to-one, one-to-many, and many-to-many relationships. If your particular application
will require complex mapping of an already existing database, I recommend a third-party tool called
MiddleGen (http://middlegen.codehaus.org/) to perform all of your mapping needs. MiddleGen
provides a Hibernate plug-in that supports the creation of Hibernate’s mapping configuration files and
eliminates the need for you to generate the mappings by hand. For more information on how
MiddleGen interacts with Hibernate, please visit http://www.hibernate.org/98.html.

Exploring Hibernate’s Architecture
Hibernate’s architecture is very flexible, and trying to narrow it down to one specific, overall architecture
is rather difficult. The reason is that Hibernate can basically plug in to any J2EE architecture without
hampering it. So the majority of its use will be based upon your architectural needs. This is not a draw-
back but a major winning point for Hibernate. You can base your needs on your requirements and not
worry about how they will affect the tool. Figure 6-3 shows a very basic architecture that shows where
Hibernate could reside.

312

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 312

Figure 6-3

Workstations

Application Layer

Laptops

Clients

Java
Apps.

Configurations

Database

XML Mappings

HIBERNATE

Server

Server Layer
Pe

rs
is

te
nt

O
bj

ec
ts

Tr
an

sp
ar

en
t

Pe
rs

is
te

nc
e

313

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 313

Supported Database Platforms
Hibernate supports a large array of database platforms to which objects may be persisted. Each database
will require its own JDBC driver in order to communicate with it. The currently supported database
platforms are as follows:

❑ MySQL

❑ Oracle

❑ Sybase

❑ Microsoft SQL Server

❑ Informix

❑ DB2

❑ PostgreSQL

❑ SAP DB

❑ HypersonicSQL

❑ Interbase

❑ Pointbase

❑ Mckoi SQL

❑ Progress

❑ FrontBase

You can always add more database platforms when their drivers become available.

Plugging Hibernate In
To use Hibernate in your application, you need to understand what is required in order to set up
Hibernate successfully. The JARs that Hibernate uses are listed in the following table.

JAR File Description

hibernate2.jar This is the main jar that contains the portable hibernate
functionality

cglib-2.0-rc2.jar Code generation library used at run time

commons-collections-2.1.jar Random utilities provided by the Apache Jakarta Commons
project that Hibernate uses

commons-logging-1.0.3.jar Used in conjunction with log4j-1.2.8.jar for log support

dom4j-1.4.jar Used for XML parsing and mappings

Ehcache-0.6.jar Support for caching needs

314

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 314

JAR File Description

log4j-1.2.8.jar The commons-logging-1.0.3.jar uses this file for specific log-
ging needs — Hibernate uses the commons-logging-1.0.3.jar
for its logging needs

odmg-3.0.jar ODMG compliant persistence manager interface

Depending on your particular needs, some of these JARs can be optionally included.

Developing with Hibernate
This section will explore how to develop applications using Hibernate. The section will end with a com-
plete working example of a forum that allows users to collaborate via a Web browser on various topics.
This example will also show how to use Hibernate with Tomcat.

Understanding Mappings
The XML mapping files are a great place to start when learning Hibernate. This is the area where you will
build your object mappings to the relational database of choice. No code has to be written at this point
because Hibernate can actually generate the stub classes for you using the CodeGenerator that ships
with the Hibernate Extensions package. If you have downloaded and installed the Hibernate Extension
package, you can issue the following command on your mapping files to generate the source stubs:

java -cp classpath net.sf.hibernate.tool.hbm2java.CodeGenerator options
mapping_files

Mapping documents are usually created in the same directory as your generated class files where your
source files are. If you had a class named Employee, then the mapping file for that class should be called
Employee.hbm.xml. Below is a sample mapping file showing the basics of how to map a generic class, in
this case Employee, to a relational data source:

<hibernate-mapping package=”org.hibernate”>
<class name=”Employee” table=”tblEmployees”>

<id name=”id” column=”employee_id” type=”long” unsaved-value=”null”>
<generator class=”native”/>

</id>

<property name=”name” column=”employee_name” type=”string”
length=”25” not-null=”true”/>

<set name=”Payroll” cascade=”all” inverse=”true” lazy=”true”>
<key column=”employee_id”/>
<one-to-many class=”Employee”/>

</set>

</class>
</hibernate-mapping>

315

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 315

The mapping file is fairly straightforward once you understand the basic principles in mapping a class
to a table in a relational data source. The first element is the beginning <hibernate-mapping/> ele-
ment. It contains one attribute called package that simply states the package name that the class elements
belong to. This is an optional attribute. The <class/> element in the above example maps the class
named Employee to a table in a relational database named tblEmployees.

Mapping classes are also required to define an <id/> element, which defines the mapping of a class prop-
erty to a primary key column in the data source. Primary keys must be available in all the tables you
plan to use from a data source. A required child element of the <id/> element, <generator> is used to
generate unique identifiers for the instance of the persistent class. The following are the ten built-in gen-
erator shortcut names that can ultimately be used.

Generator Description

Assigned Allows the application to specifically assign an identifier to the object
prior to calling the save() method.

Foreign Primarily used in <one-to-one> key associations, this uses an identi-
fier of another object.

Hilo Uses a hi/lo algorithm to generate identifiers of type int, long, or
short. Please be aware that this generator uses a table and a column,
which can be supplied to generate the identifiers. See the Hibernate
documentation for more details.

Identity This generator returns an identifier of type int, long, or short and is
designed for use with identity columns in DB2, HypersonicSQL, MS
SQL Server, and MySQL.

Increment Not to be used with clusters, this generates identifiers of type int,
long, and short that are only unique when a table is currently not
being used by a process to insert data.

Native This generator decides which generator to use based on the data
source. It will pick one of the following to use: hilo, identity, or
sequence.

Seqhilo Generates identifiers of type int, long, or short based upon a hi/lo
algorithm and the given named database sequence.

Sequence This generator returns an identifier of type int, long, or short based on
a sequence in either DB2, PostgreSQL, Oracle, SAP DB, McKoi, or a
generator in Interbase.

uuid.hex Returns a UUID encoded string of hexadecimal digits of length 32.

uuid.string Returns a UUID encoded string of 16 ASCII characters. Not recom-
mended for PostgreSQL.

The <property/> element is used to map a Java attribute to a column in a table. You can specify the
SQL type, column length, and whether to allow NULL values or not.

316

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 316

The <set name=”Payroll”> element is an example of how to use Hibernate’s one-to-many mapping
features. The <key/> element depicts a foreign key and the <one-to-many> element specifies the rela-
tionship between the Employee class and the Payroll class. The <set name=”Payroll”> element also
has an attribute <lazy> and it is set to true. This means that the collection of objects will not automati-
cally be populated when first acquired from the data source. It will be populated when the application
decides to use it.

Setting Hibernate Properties
Hibernate uses a hibernate.properties file for its main configurations. This file should be stored in your
class path and will be used to set configurations such as the following:

❑ Query language constants

❑ Database platform and connection properties

❑ Connection pool settings

❑ Query cache properties

❑ JNDI settings

❑ Transaction API properties

❑ Miscellaneous settings such as showing SQL statements

The ability to store all these settings in a properties file eliminates the need to hard code them into your
source code. This is a huge plus when you need to quickly configure your application for a particular
architecture.

Using Hibernate’s APIs for Persistence
The basic Hibernate APIs needed to persist objects to a data source are described in this section. In order
to persist an object using Hibernate, one of the first requirements is to create a SessionFactory object. A
SessionFactory can be created once the net.sf.hibernate.cfg.Configuration object has loaded all the necessary
mappings into memory. The following code shows an example of the appropriate way to load the map-
pings into a Configuration object and how to create a SessionFactory object once the new Configuration
object has been populated:

SessionFactory factory;

// Load configurations
Configuration cfg = new Configuration()

.addClass(Category.class)

.addClass(Post.class)

.addClass(Topic.class);

// Create a new SessionFactory
factory = cfg.buildSessionFactory();

The Configuration object, cfg, is populated with mappings for the three classes listed in the example:
Category.class, Post.class, and Topic.class. Hibernate knows to search for the XML files containing the
mappings for the classes in the directory in which they are stored. The XML files should be named with

317

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 317

the prefix of the class name and the suffix hbm.xml. So, for the Category.class file, the name of its XML
mapping file should be Category.hbm.xml.

The next steps on your way to persisting your objects are the following:

1. Open a session with the data source.

2. Start a transaction.

3. Create the objects that you want to persist and populate them with data.

4. Save the objects to the session.

5. Commit the changes to the data source and close your connection.

The following code illustrates these steps in detail:

// Step 1, open a session with the data source
Session snSession = factory.openSession();

// Step 2, start a transaction
Transaction tTransaction = snSession.beginTransaction();

// Step 3, create the objects we want to persist.
Category cat = new Category();

cat.setCategoryMsg(“Astronomy”);
cat.setDescription(“Discuss all your Astronomy topics here!”);

// step 4, save the objects to the session
snSession.save(cat);

// Step 5, commit the changes and close our session
tTransaction.commit();
snSession.close();

Your object Category is now persisted to the data source with little effort. You did not have to know any-
thing about the columns, tables, JDBC types, and so on to accomplish your goal because all the work had
been done up front with the XML mapping files. The underlying mapping files and data sources could
change without affecting your code.

You can also search for specific data in a data source using Hibernate’s Criteria query API. This API
allows you to avoid embedding long SQL strings in queries and provides you with an object-oriented
approach to queries. The following is an example of how to query specific information by criteria:

Session snSession = factory.openSession();
Transaction tTransaction = null;

try {
tTransaction = snSession.beginTransaction();

// Retrieve a list of Category objects that have an “id”
// greater than 0.

318

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 318

List list = snSession.createCriteria(Category.class)
.add(Expression.gt(“id”, new Long(0L)))

.list();

if (list.size() == 0) return;

Iterator it = list.iterator();
while (it.hasNext()) {

Category cat = (Category) it.next();
System.out.println(“Category Description = “ + cat.getDescription();

}

tTransaction.commit();

} catch (Exception e) {
// Handle Exceptions

}finally {
snSession.close();

}

The code is designed to return all the Category objects that have an id that is greater than 0 into a net.sf.
hibernate.collection.List object. Once the List object is populated, you then iterate through the list pulling
out the Category objects and printing information from each one to the console. Session.createCriteria is
a very versatile API and it should contain enough functionality to satisfy your most complicated search-
ing needs.

The Session operations that can be performed are extensive. The following table describes some of the
core functionality. For an extensive list, please see Hibernate’s Java docs.

Method Description

Transaction beginTransaction() Creates a Transaction object and returns it for use.

Connection close() This method completely ends the session and dis-
connects it from the JDBC connections.

Criteria createCriteria(Class persistentClass) This method allows you to create a Criteria
instance and allows you to query the
persistentClass using the specific Criteria
instance for information.

void delete(Object object) Deletes the specific object from the data source.

List find(String query) This method allows you to find specific informa-
tion using an HQL string.

void saveOrUpdate(Object object) Depending on the value of its identifier property,
this method will either save or update the given
instance. Its default behavior is to issue a save()
call.

void update(Object object) This method updates the given instance.

319

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 319

Putting It All Together: The Forum Example
The forum example will demonstrate the creation of a fully functional forum where users can create
categories, create topics for a specific category, and generate posts that reside inside topics. You will use
Hibernate to perform all of the necessary database transactions utilizing its object to relational mapping
capabilities. To develop this type of example in JDBC would have been very time-consuming, but by
using Hibernate it can be developed relatively quickly.

Understanding the Forum Architecture
The forum is housed in a Web application that resides on an Apache Tomcat server and is accessed via
a Web browser by the user. The Web application uses Java Server Pages (JSPs) for the presentation layer,
which will process user requests. Figure 6-4 illustrates the architecture of the forum example and where
each component resides.

Figure 6-4

The Java classes, Hibernate libraries and settings, and JSP pages are all encapsulated in a Web applica-
tion called forum. The database used is a MySQL database that stands alone as a self-contained DBMS.

TOMCAT Server

User

JSP
Pages

XML
Mappings

Java
Classes

Hibernate
Properties

MySQL

Server

Client

Server

Web
Browser

Thin Client

320

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 320

The Forum’s Database
The forum’s database comprises three tables, which are used to store user posts, user topics, and user
categories. The table schemas are illustrated in Figure 6-5.

Figure 6-5

The tblCategories table is used to store category information. An example of a category would be music.
Each category could then have subcategories called topics. The tblTopics table stores information on a
specific topic such as what category it belongs to, who created the topic, and the description of the topic
itself. An example of a topic that could fall under the category astronomy could be telescopes. Users
would post information to the different topic areas such as questions or technical information. The tblPosts
table stores topic posts that users have submitted. This table stores information on posts such as who
posted the information, what topic the post belongs to, the date the post occurred, and of course the post
itself.

The Forum’s File Structure
The forum example utilizes the Apache Tomcat server to host your Web application. Because of this,
Hibernate must be configured in such a way that it will play nicely with Tomcat. You must put your
JDBC driver that you wish to use in the TOMCAT/COMMON/LIB directory; all the other files will be
contained in your forum Web application directory. The required libraries, properties, classes, and JSP
files that make the forum example are illustrated in Figure 6-6. Please take note that all the properties files
(including the hibernate.properties file) should be contained in the WEB-INF/classes directory.

tbICategories

CategoryID

Category
Description

PK

tbITopics

TopicID

Topic
TopicAuthor
CategoryID

PK

There can also be
many posts associated

with a single Topic

FK1,I1

FK1,I1

tbIPosts

PostID

Post
PostAuthor
DatePosted
TopicID

PK

There can be many
topics associated with

a single Category

321

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 321

Figure 6-6

The Forum’s User Interface
The forum’s user interface comprises six JSP pages. Three are used for displaying categories, topics, and
posts; the other three are used for submitting categories, topics, and posts. The first user interface shown
in Figure 6-7 is the interface for viewing categories. Its filename is index.jsp and it is the first page that
the user will see upon accessing the forum webapp. This page retrieves the categories using Hibernate,
which are in turn contained in the table tblCategories of the forum database.

Figure 6-7

Category.class

org/hibernate/forum

Driver.class
Post.class
Topic.class
Category.hbm.xml
Post.hbm.xml
Topic.hbm.xml

commons-collections-2.1.jar
commons-logging-1.0.3.jar
dom4j-1.4.jar
ehcache-0.6.jar
hibernate2.jar
log4j-1.2.8.jar
odmg-3.0.jar

hibernate.properties

web.xml

classes

WEB-INFTOMCAT

log4j.properties

cglib-2.0-rc2.jar

lib

newcategory.jsp
newpost.jsp
newtopic.jsp
post.jsp
topic.jsp

index.jsp

webapps/forum

mysql.jar

common/lib

322

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 322

The second user interface (UI) shown in Figure 6-8 is the interface used for displaying topics that are
stored in the table tblTopics of the forum database. The user would first need to select a category from
the category user interface, which would then trigger the topic UI to display the topics related to that
specific category. The topic UI knows which category it belongs to because a parameter (cid) is passed
to the underlying JSP (topic.jsp) that represents the category ID.

Figure 6-8

The third user interface shown in Figure 6-9 is the interface used to display posts that are associated with
a particular topic. These posts are stored in the table tblPosts of the forum database. The user would first
need to select a topic from the topic user interface which would display the post UI and display the
appropriate posts. The post UI obtains the topic ID through a parameter (TID) that is passed to its JSP
(post.jsp).

Figure 6-9

The other three interfaces are used for submitting new posts (newpost.jsp), topics (newtopic.jsp), and cate-
gories (newcategory.jsp). These interfaces and all the source code can be found at http://www.wrox.com.

323

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 323

The Forum’s Code
The forum is made up of Java Server Pages (JSPs), which interact with the Hibernate API. The mapping
files that Hibernate uses are mapped to Java classes, which you created by hand. As stated earlier, it is
possible to have Hibernate generate the classes for you if you downloaded the Hibernate Extensions
package. Simply use the utility net.sf.hibernate.tool.hbm2java.CodeGenerator to generate the code after
you have created the mapping files.

The first code example I will show you is the Category class and its mapping file, Category.hbl.xml. Here
is the Category mapping file:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 2.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping package=”org.hibernate.forum”>

<class name=”Category” table=”tblcategories”>
<id name=”id” column=”CategoryID”>

<generator class=”native”/>
</id>

<property name=”CategoryMsg” column=”`Category`”/>
<property name=”Description” column=”`Description`”/>

</class>

</hibernate-mapping>

The element <hibernate-mapping> contains a package attribute that specifies the package name in
which the Category class is contained. In this case, it is org.hibernate.forum. The <class> element has
an attribute called name, which is the name of the Java class to use, and a table element called tblcate-
gories that specifies the name of the table to which the class maps. The <id> element has a attribute
called name, which has a value of id. This id value is the name of an attribute in the Category Java class.
The column attribute of <id> has a value of CategoryID, which is the column name of the primary key
in the table tblcategories. Simply stated, the Java attribute id contained in the class Category now maps
to the primary key CategoryID in the table tblcategories of the forum database. The <id> element is
required and any tables that you intend to map with must have a primary key. There is a child element
called <generator> that is used to automatically generate a unique ID.

The <property> element is used to map Java class attributes to columns in the specified table. Here we
are mapping CategoryMsg to column Category and Description to column Description. The code exam-
ple that follows shows the code for the Category class:

package org.hibernate.forum;
import java.util.*;

public class Category
{
private Long id;
private String CategoryMsg;

324

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 324

private String Description;

public Long getId() {
return id;

}
public String getCategoryMsg() {

return CategoryMsg;
}
public String getDescription() {

return Description;
}

public void setId(Long nID) {
id = nID;

}
public void setCategoryMsg(String string) {

CategoryMsg = string;
}
public void setDescription(String string) {

Description = string;
}

}

The preceding code shows all the Java class attributes that were referred to in the mapping example. The
Java class is also required to provide getter and setter methods for each attribute that is mapped.
Hibernate will use these methods to communicate with the class.

Note: The getter and setter method names must be prefixed with get or set and be completed
with exact spelling of the attribute name.

The other two classes that are mapped are the Topic and Post classes. They are mapped in the exact same
fashion as the preceding examples; therefore, they will not be displayed here. If you are interested in
looking at them, the code for the example is available at http://www.wrox.com.

At this point, you haven’t had to use any Hibernate APIs in your code, mainly because Hibernate uses
runtime reflection instead of compile-time code. Where you will need to utilize the Hibernate APIs is
in the code for the JSPs that access the information from the data source. There are six JSPs in this exam-
ple: three for viewing data, three for submitting data. I will now demonstrate and explain the post.jsp
and the newpost.jsp. All the other JSPs use similar coding techniques and are less complicated than these
two particular JSPs.

The newpost.jsp purpose is to insert a new posting to the database for a specific topic. The code that fol-
lows shows the core code that does all the work:

public void createPost(Long lTopicID, String sAuthor, String sPost) throws
Exception {

SessionFactory factory;

// Load configurations
Configuration cfg = new Configuration()

.addClass(Category.class)

325

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 325

.addClass(Post.class)

.addClass(Topic.class);

// Create a new SessionFactory
factory = cfg.buildSessionFactory();

// Open Session
Session sn = factory.openSession();
Transaction transaction = null;

try {
tx = sn.beginTransaction();

// Create a new Post object with a specified Topic ID
Post post = new Post(lTopicID);

// Populate the post object before saving it
post.setPostDate(new java.sql.Date(System.currentTimeMillis()));
post.setPostMsg(sPost);
post.setPostAuthor(sAuthor);

// Save the Post object
sn.save(post);

// Commit the transaction and close the session
transaction.commit();
sn.close();

} catch (Exception e) {
if (transaction!= null) {

transaction.rollback();
throw e;

}finally {
sn.close();

}
}

The post.jsp allows the user to view posts for a specific topic. It utilizes the following code, which queries
the data source for posts that have the same topic id associated with them as the topic id that is being
passed to the viewPosts method:

public void viewPosts(JspWriter out, Long catID, Long topID) throws Exception {

// final Driver test = new Driver();
SessionFactory factory;

Configuration cfg = new Configuration()
.addClass(Category.class)
.addClass(Post.class)
.addClass(Topic.class);

factory = cfg.buildSessionFactory();

Session s = factory.openSession();

326

Chapter 6

09_574868 ch06.qxd 12/21/04 6:00 PM Page 326

Transaction tx=null;

try {
tx = s.beginTransaction();
List list = s.createCriteria(Post.class)

.add(Expression.eq(“TopicID”, topID))
.list();

if (list.size()==0) return;
Iterator it = list.iterator();

while (it.hasNext()) {
Post post = (Post) it.next();

out.write(“<tr>”);
// Insert information from Post object here to display
// to the user.

out.write(“</tr>”);

tx.commit();
} catch (Exception e) {

if (tx!=null) tx.rollback();
throw e;

} finally {
s.close();

}
}

The forum example that was just demonstrated is a lightweight use of Hibernate’s capabilities. Its main
intent was to help you get your feet wet with Hibernate and provide you with an end-to-end example
that doesn’t cover the query language or mapping collections in great depth. These particular topics will
be covered in greater detail later on in the book.

Summary
Developing applications that are required to persist data to relational database management systems is a
need that continues to grow throughout the IT industry. This chapter provided you with a strong sense
of how Java technologies and open source products are being used to solve data persistence issues. Java
2 SDK 1.5 edition provides extensive data persistence support through its new and improved JDBC API.
The different features that the JDBC API provides were discussed in-depth and intuitive examples were
created that should help you choose the best features to fit your particular application’s architecture.

Through the use of Hibernate, this chapter was able to show you just how easy it is to utilize an object
with the relational mapping technology in your application. It also explored why Hibernate is one of the
most popular tools on the market based on its ability to provide scalability and performance benefits
with little effect on your existing applications code.

Simple Web applications were also used to demonstrate Hibernate’s persistence. In the next couple
chapters, your focus will turn more toward Web applications themselves. Chapter 7 starts with building
Web applications using the Model 1 Architecture.

327

Persisting Your Application Using Databases

09_574868 ch06.qxd 12/21/04 6:00 PM Page 327

09_574868 ch06.qxd 12/21/04 6:00 PM Page 328

Developing Web
Applications Using the

Model 1 Architecture

Software development activities generally involve domain-driven speculations that attempt to
tackle complexity by aggregating knowledge of a subject matter so that it can be handled for your
own purposes. This reflection generally involves experimentation by software and domain experts
to organize knowledge for use by development teams. Ultimately, these modeling tasks involve
the abstraction and filtering of nonessential data and the attainment of purposeful knowledge so
that developer needs are served and proper deployments are made to customers.

This chapter will demonstrate how you can overcome speculation over how to construct a Web
application using the Model 1 Architecture by constructing a hands-on Contact Management Tool.
Two different types of Java syntax, JSTL 1.1 and JSP 2.0, will be utilized to craft the sample GUI
component that will allow users to manage contact information through upload and query activi-
ties. The sample application’s use of Model 1 was chosen to suit design and implementation needs
for a quick prototype that can be implemented by novice Java Web developers in an easy fashion,
and to demonstrate some of the new Java language enhancements that were delivered with the
JSTL 1.1 and JSP 2.0 specifications.

What Is Model 1? Why Use It?
The Model 1 Architecture is a page-centric approach where page flows are handled by individual
Web components. This means that request and response processing are hard-coded into pages to
accommodate user navigations in a Web application. With Model 2 Architecture, navigation flows
are generally handled by a servlet controller that works in conjunction with configuration files to
dictate page renderings during application operations.

10_574868 ch07.qxd 12/21/04 6:00 PM Page 329

Naturally, this presents maintenance problems when logic modifications are needed to accommodate
changes in requirements and end-user needs. Those changes would oblige developers to comb through
code to ensure that all logic flows are properly handled as users navigate through a Web application.
Along with the responsibilities of maintaining navigation flow in Model 1 deployments is the need to
manage concerns regarding security and application state.

Model 1 Architecture concerns are certainly difficult design decisions to tackle at the inception of a project,
but limitations in your team’s development expertise, the scope of your application, and time to delivery
might persuade you to adopt this development philosophy to get your project going. Adoption of the
Model 1 philosophy is not necessarily a bad decision depending on your predicament and your estima-
tion of what and how your team will deliver in an allotted delivery schedule. Model 2 implementations
would most likely help you overcome maintenance issues in the long run, so it is paramount that your
team overcomes its deficiencies by practicing with Model 2 frameworks and their configurations to bet-
ter understand their intricacies so that your earlier Model 1 applications can be migrated fairly easily.

Figure 7-1 provides a high-level overview of a Model 1 template used for the sample Contact Management
application that will be built to demonstrate Web application assembly combining JSP and JSTL tech-
nologies. Notice the individual JSP components (header, leftNav, content, and footer) that are all
aggregated in the home page. As a user navigates the taxonomy in the application, indexes are established
and passed along all of the individual pages so that operations can be performed inside those pages based
on those indexes.

Figure 7-1

Content placed here.

content.jsp

footer.jsp

leftNav.jsp

header.jsp

home.jsp (aggregates all *.jsp pages)

JSP / Servlet
Container

JavaBean

Database

*.XML

330

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 330

On many Web application components, content is typically retrieved from Java Bean components that
persist data on the back-end tier of an enterprise system for visualization on the client tier. The sample
application modeled in Figure 7-1 aggregates content from a MySQL database by using indexes from the
left panel drill-down to determine proper page inclusion demonstrated in the content.jsp code shown
below. When a user clicks on the initial Tasks link in the left panel, three navigation links will be pre-
sented (Add Profile, Add Contact, and View Contacts) so that contact names can be saved and queried:

<!--content.jsp -‡
<%@ taglib prefix=”c” uri=”http://java.sun.com/jstl/core” %>

<link href=”CMS.css” rel=”stylesheet” type=”text/css”>

<c:if test=”${param.taxonomyIndex == ‘101’}”>
<jsp:include page=”addProfile.jsp”/>

</c:if>

<c:if test=”${param.taxonomyIndex == ‘102’}”>
<jsp:include page=”addContact.jsp”/>

</c:if>

<c:if test=”${param.taxonomyIndex == ‘103’}”>
<jsp:include page=”viewContacts.jsp”/>

</c:if>

The Expression Language (EL) construct <c:if> is used in content.jsp to evaluate the three different
test conditions so that the appropriate JSP script will be included, which will in turn collect the proper
content for visualization.

Java Server Page (JSP) 2.0 and Java Standard Template Library (JSTL) 1.1 are both important Web applica-
tion components for constructing dynamic content on J2EE platforms. JSP 2.0 scripts can easily construct
HTML content and access JavaBean properties through Expression Language libraries. JSTL components
encapsulate functionalities that allow developers to iterate through data, perform XSLT transform opera-
tions, and access both database and object data. Both technologies can be combined to craft presentation-
tier components to display and interact with back-end data models.

This section will discuss JSP 2.0 and JSTL 1.1 technologies by presenting overviews of their capabilities
followed by some individual components of their libraries and demonstrate their usage in figures and
source code listings.

JSP 2.0 Overview
The viability of the Model 1 Architecture depends heavily on a number of the new features in the JSP 2.0
specification. In this section you will learn about the following:

❑ Servlet 2.4 specification support

❑ Expression Language (EL) support

❑ Code reuse with *.tag and *.tagx files

❑ JSP page extensions (*.jspx)

❑ Simple Invocation Protocol

331

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 331

The introduction of these new script language constructs with the JSP 2.0 and JSTL 1.1 specifications was
meant to eliminate the need to include Java expressions in script code, which would result in scriptless
page development. These enhancements will certainly provide more controlled interactions and flexibil-
ity with other components as well as reusability among common actions.

Servlet 2.4 Support
The JSP 2.0 specification uses the Servlet 2.4 specification for its syntax, which allows applications to
handle Expression Language (EL) expressions as native syntax.

The following table describes some of the ServletRequest methods that were introduced with the Servlet
2.4 specification to determine client connection attributes.

Method Description

getRemotePort() Method that returns the IP address of the port that sent a request

getLocalName() Method that returns the hostname of the IP address from which the
request was received

getLocalAddr() Method that returns the IP Address from which the request was received

getLocalPort() Method that returns the IP port number from which the request was
received

This code segment illustrates how these methods can be implemented to realize these client connection
values:

<html>
<head>
<title>Servlet 2.4 Features</title>
</head>
<body>
<h2>Servlet 2.4 Features</h2>
<%
out.println(“Remote Port : “ + request.getRemotePort() + “
”);
out.println(“Local Name : “ + request.getLocalName() + “
”);
out.println(“Local Address : “ + request.getLocalAddr() + “
”);
out.println(“Local Port : “ + request.getLocalPort() + “
”);
%>
</body>
</html>

Additionally, Servlet 2.4 support includes the introduction of new features for the RequestDispatcher
and ServletRequest listener classes, as well as login capabilities related to the HttpSession class.

Expression Language Support
The Expression Language implementation in JSP 2.0 allows easy access to data from JSP scripts. This
enhancement has allowed developers to avoid writing scriptlets inside their pages, which should result
in cleaner and more readable JSP pages.

332

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 332

Expression Language syntax is purported to be more user-friendly than Java and was introduced to
encourage its use for accessing data over Java language implementations. The power of Expression
Language constructs is that they allow users to embed Java code in a Java Server Page through scripting
elements. Three types of scripting elements are shown in the following table.

Scripting Element Example

expressions <jsp:expression> objectRef.loadValues() </:jsp:expression>

scriptlets <% for (int increment = 0; increment < 25; increment++) { }

declarations <%! boolean firstPass = true; %>

The following code examples use Expression Language features to perform pig Latin word translations
and string replacement operations. The tag library prefix test is used to access the pigLatin and
dwReplacement methods to perform string operations on user specified text that is saved in the
sampleText parameter:

<%-- index.jsp --%>
<%@ taglib prefix=”test” uri=”/WEB-INF/el-taglib.tld”%>

<html>
<head>

<title>Expression Language Examples</title>
</head>
<body>
<h1>Expression Language Examples</h1>

<form action=”functions.jsp” method=”GET”>
sampleText = <input type=”text” name=”sampleText”

value=”${param[‘sampleText’]}”>
<input type=”submit”>

</form>

<table border=”0”>
<tr>

<td bgcolor=”#ffff99”>Pig-Latin = </td>
<td bgcolor=”#ffff99”>${test:pigLatin(param[“sampleText”])} </td>

</tr>
<tr>

<td bgcolor=”#ffff99”>Dirty Word Replacement = </td>
<td bgcolor=”#ffff99”>${test:dwReplacement(param[“sampleText”])} </td>

</tr>
</table>

</body>
</html>

The Java method below performs regular expression string manipulation operations on the text expres-
sions specified by the user in the text field components of index.jsp. For the pigLatin method, a check
is performed on the first character of the string passed in to see if that character is a vowel; if so, then the

333

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 333

string will be returned with the word “way” appended to the end of it. Strings that start with consonants
will have their first character moved to the end of the string and then have “ay” added to the end of
string:

// [StringMethods.java]
package examples.el;

import java.util.*;
import java.util.regex.*;

public class StringMethods {

public static String pigLatin(String text) {
// works for one word ONLY
Pattern pattern = Pattern.compile(“^([aeiouAEIOU])”);
Matcher matcher = pattern.matcher(text);
if (matcher.find())

return text+”way”;
else

return text.replaceAll(“^([^aeiouAEIOU])(.+)”, “$2$1ay”);
}

public static String dwReplacement(String text) {
Pattern pattern = Pattern.compile(“(darn|damn|stupid|dummy)”);
Matcher matcher = pattern.matcher(text);
text = matcher.replaceAll(“#%&@”);
return text;

}
}

The tag library definition file below defines the two different text functions, pigLatin and dwReplacement,
that are invoked in the index.jsp file and defined in StringMethods.java:

<!-- el-taglib.tld -->
<?xml version=”1.0” encoding=”UTF-8” ?>

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd”
version=”2.0”>

<description>Function Examples</description>
<tlib-version>1.0</tlib-version>
<short-name>Function Examples</short-name>
<uri>/el</uri>

<function>
<description>PIG-Latin</description>

<name>pigLatin</name>
<function-class>examples.el.StringMethods</function-class>
<function-signature>

java.lang.String pigLatin(java.lang.String)
</function-signature>

334

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 334

</function>
<function>
<description>Dirty Word Replacement</description>

<name>dwReplacement</name>
<function-class>examples.el.StringMethods</function-class>
<function-signature>

java.lang.String dwReplacement(java.lang.String)
</function-signature>
</function>

</taglib>

As this example demonstrates, Expression Language library extensions are powerful features that
strengthen developer’s capabilities for Web development. The function methods described here are
mapped to public static methods in Java classes that can be accessed through Expression Language
constructs throughout your Web application.

Code Reuse with *.tag and *.tagx Files
The implementation of *.tag and *.tagx files allows for better code reuse among developers. With these
tags, developers can encapsulate common behavior that will support reuse activities.

The following code snippet demonstrates how tag files can be implemented for reuse by other Web
applications. In this example, a portlet-like visualization component is crafted using a tagged file named
portlet.tag. Two parameters, title and color, are passed into the portlet tag file to dynamically
alter those properties in the component display:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>
<html>
<head><title>tagx test</title>
</head>
<body>
<table width=”100%”><tr><td>

<tags:portlet title=”Portlet” color=”#0000ff”> Test 1
</tags:portlet>

</td></tr></table>
</body>
</html>

The portlet.tag file encapsulates the portlet component and renders the title and color features passed
into the file by the preceding script:

<!--portlet.tag -->
<%@ attribute name=”title” required=”true” %>
<%@ attribute name=”color” required=”true” %>

<table width=”250” border=”1” cellpadding=”2” cellspacing=”0”>
<tr bgcolor=”${color}” color=”#ffffff”>

<td nowrap>
${title}

</td>
</tr>

335

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 335

<tr>
<td valign=”top”>

• Test1

• Test2

</td>
</tr>

</table>

These tag files can be important components for header and footer implementations that contain common
information that can be easily propagated to the Web pages in your project.

JSP Page Extensions (*.jspx)
Java Server Pages that have *.jspx extensions are meant to advocate the use of XML syntax to generate
XML documents in JSP 2.0 compliant Web containers.

The code specified below describes how jspx files can be implemented when you develop Web applica-
tions to generate user displays:

<!--forms.jspx ‡
<?xml version=”1.0”?>
<tags:test xmlns:tags=”urn:jsptagdir:/WEB-INF/tags”

xmlns:jsp=”http://java.sun.com/JSP/Page”
xmlns:c=”http://java.sun.com/jsp/jstl/core”
xmlns=”http://www.w3.org/1999/xhtml”>

<jsp:directive.page contentType=’text/html’/>
<head><title>Form Test</title></head>
<body>

<c:choose>
<c:when test=’${param.name == null} and ${param.address == null}’>

<form action=”form.jspx”>
Please enter your name and address:

<input name=”name” size=”40”/>

<input name=”address” size=”40”/>

<input type=”submit”/>

</form>
</c:when>
<c:otherwise>

User entered name=${param.name}, address=${param.address}

</c:otherwise>
</c:choose>

</body>
</tags:test>

The test.tag file below is used to invoke the JSP fragments using the <jsp:doBody> standard action:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<jsp:doBody/>
</html>

336

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 336

As the JSP 2.0 specification indicates, Web applications that contain files with an extension of .jspx will
have those files interpreted as JSP documents by default.

Simple Invocation Protocol
This API enhancement was developed to exploit the use of scriptless pages among Web developers using
JSP libraries in their development activities for implementing tag files.

In the code example below, the <lottery:picks/> tag file invocation demonstrates how simple it is to
incorporate logic into a Web page using tag libraries:

<%@ taglib uri=”/WEB-INF/tlds/lottery.tld” prefix=”lottery” %>
<html>
<head>
<title>Lottery Picks</title>
</head>
<body>
<h2>Lottery Picks</h2>
Lottery number generated is...<lottery:picks/>
</body>
</html>

The lottery tag library descriptor file, lottery.tld, outlines the lottery tag file application invoked from the
preceding Web application:

<!--lottery.tld ‡
<?xml version=”1.0” encoding=”UTF-8” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd”
version=”2.0”>

<description>
Lottery picks

</description>
<jsp-version>2.0</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>picks</short-name>
<uri></uri>

<tag>
<name>picks</name>
<tag-class>lottery.LotteryPickTag</tag-class>
<body-content>empty</body-content>
<description>Generate random lottery numbers</description>

</tag>
</taglib>

The LotteryPickTag application below illustrates how the SimpleTagSupport class can be extended
to allow developers to craft tag handlers. The doTag() method is invoked when the end element of the
tag is realized. In the sample Lottery application, the getSixUniqueNumbers() method is called from
the doTag method which in turn displays the string output of six unique lottery numbers generated in
random fashion:

337

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 337

package lottery;

import java.io.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class LotteryPickTag extends SimpleTagSupport {

public LotteryPickTag(){}

public void doTag() throws JspException, IOException {
getJspContext().getOut().write(“Random #’s =” + getSixUniqueNumbers());

}

public String getSixUniqueNumbers() {
StringBuffer sb = new StringBuffer();
int count = 0, number = 0;
int numbers[] = {0,0,0,0,0,0,0};
boolean found;

while (count < 6) {
number = (int)(Math.random()*59) + 1;
found = false;
for (int i=0; i < numbers.length; i++)

if (numbers[i] == number) found = true;
if (!found) {

if (count != 0) sb.append(“ - “);
sb.append(number);
numbers[count++] = number;

}
}
return sb.toString();

}
}

JSP tag files are converted into Java code by the JSP container in the same fashion that JSP scripts are
translated into servlets. It should be fairly evident from this example how easily tag files can be con-
structed for deployment in Web components for enterprise systems because they hide the complexity of
building custom JSP tag libraries, which makes them easier to maintain in the long run.

Figure 7-2 outlines visually some of the enhancements of the JSP 2.0 specification along with some of the
backwards compatibility issues that are addressed in the JSP 2.0 specification.

Certainly, the JSP 2.0 upgrade, with its ready-made Expression Language implementations, along with
improvements in Java Server Pages Standard Tag Libraries, will enhance developer’s abilities to build
cohesive and robust Web components.

338

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 338

Figure 7-2

Integrated Expression Language (EL)
The following section concentrates on the Expression Language (EL) and its implementation in JSP
applications. Certainly, there is ample content in the JSP 2.0 specification to discuss and demonstrate,
especially some of the Servlet 2.4 features that were discussed briefly above, but this section will concen-
trate on EL implementations because they are exploited prominently in the Contact Management Tool.
Some of the other aspects of that specification are fairly involved and extend beyond the scope of this
chapter.

Expression Language (EL) expressions can be used with three different attribute values. First, they can
be applied when an attribute value has a single expression; second, they can be used when the attribute
value contains one or more expressions surrounded or separated by text; and lastly, they can be used when
the attribute value contains only text. The table below shows how these operations can be implemented.

EL Expressions Implementation

Single expression <xyz.tag value=”${expression}”/>

One or more expressions <xyz.tag value=”abc${expression}text${expression}”/>

Text only <xyz.tag value=”abc text”/>

Lack of EL
support in JSP

1.2 pages

JSP interpretation
of *.jspx files by

default

‘/$’ support now
longer there, returns

‘$’

Tag Library
Validation

Tag coercion
rule adherence

Servlet 2.4
Specification

support

*.tag and *.tagx
support for

reuse

Simple Invocation
Protocol for script-

less pages

JSP page
extensions

(*.jspx)

Expression
Language (EL)

Support

extends

JSP 1.2 Backwards compatibility issues

I18N behavior
differences

web.xml

339

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 339

JSP 2.0 scripts allow EL expressions to perform conditional operations on your Web page variables. An
example of this follows:

<c:if test=”${param.Comments > 250}”>
</c:if>

The parameter param.Comments is checked to see if it is greater than 250; if so, then the logic that lies
between the if statement is executed.

The JSTL core tag libraries can also be used for variable output. Here is an example of this:

<c:out value=”${testELexpression}”/>

JSP 2.0 pages implement several different implicit objects through EL expressions; the table below lists
some examples.

Implicit Object Description

pageContext Accesses the PageContext object, which provides access to all the
namespaces associated with a JSP page

pageScope A Map that contains page-scoped attribute names and values

requestScope A Map that contains request-scoped attribute names and values

sessionScope A Map that contains session-scoped attribute names and values

applicationScope A Map that contains application-scoped attribute names and values

Param A Map that correlates parameter names to single String parameter
values

paramValues A Map that correlates parameter names to a String[] of all values of
that parameter

header A Map that contains header names in a String

headerValues A Map that contains header names in a String array component

Cookie A Map that contains Web cookie objects

initParam A Map that holds context initialization parameter names and their
values

Implicit objects, for example, objects that don’t need to be declared and are declared automatically, allow
developers to access Web container services and resources.

JSTL 1.1 Overview
Capabilities of the Java Standard Template Library (JSTL 1.1) specification are too numerous to elaborate
on in great depth, so this chapter will concentrate on two tag library capabilities that are helpful in the
sample Contact Management Tool (CMT). The CMT application persists data in a MySQL database dur-
ing storage and retrieval operations so that the SQL Actions libraries are implemented and the Function
Tag Library operations are used for string manipulation. So the latter will be discussed too.

340

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 340

Function Tag Library
The Function Tag Library capabilities were introduced with the JSP 2.0 specification to allow developers
to extend Expression Language (EL) functionalities with string manipulation libraries. The JSTL 1.1 spec-
ification outlines these functions as follows. The following table demonstrates some of the new method
functions available as part of the expression language support in JSP 2.0.

Function [fn:] Description of Function

fn:contains(string, substring) If the substring exists in a specified string value, true
will be returned to the user, otherwise false.
Example, fn:contains(“independence”, “depend”)
returns true

fn:containsIgnoreCase(string, substring) Ignoring case differences, if a substring exists in a
specified string value, true will be returned to the
user, otherwise false.
Example, fn:containsIgnoreCase(“independence”,
“DEPEND”) returns true

fn:endsWith(string, suffix) Tests the end of a string with the suffix specified to
determine if there is a match.
Example, fn:endsWith(“whirlyjig’, “jag”) returns
false

fn:escapeXml(string) Escape characters that might be XML
Example, fn.escapeXml(“<test>yea</test>”) returns
converted string

fn:indexOf(string, substring) Returns integer value of the first occurrence of the
specified substring in a string.
Example, fn:indexOf(“democratic”, “rat”) returns 6

fn:join(array, separator) Joins elements from an array into a string with a
specified separator
Example, array[0]=”X”, array[1]=”Y”
fn:join(array,”;”) returns String = “X;Y”

fn:length(item) Returns a collection count or the number of charac-
ters in a string as an integer value
Example, fn.length(“architecture”) returns 12

fn:replace(string, before, after) Returns a new string after replacing all occurrences
of the before string with the after string.
Example, fn:replace(“downtown”, “down”, “up”)
returns uptown

fn:split(string, separator) Returns an array where all the items of a string are
added based on a specified delimiter
Example, fn:split(“how now brown cow”,” “)
returns
array[0]=”how”, array[1]=”now”,
array[2]=”brown”, array[3]=”cow”

Table continued on following page

341

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 341

Function [fn:] Description of Function

fn:startsWith(string, prefix) Returns a boolean value (true/false) depending on
whether or not a string contains a specified prefix
value
Example, fn:startsWith(“predicament”, “pre”)
returns true

fn:substring(string, begin, end) Returns a substring of a string based upon specified
index values
Example, fn:substring(“practical”, 2,5) returns act

fn:substringAfter(string, substring) Returns a string value that follows a specified
substring
Example, fn:substringAfter(“peppermint”,”pepper”)
returns mint

fn:substringBefore(string, substring) Returns a string value that precedes a specified sub-
string value
Example, fn:substringBefore(“peppermint”, “mint”)
returns pepper

fn:toLowerCase(string) Converts all the characters of a specified string to
lowercase
Example, fn:toLowerCase(“Design Patterns”)
returns design patterns

fn.toUpperCase(string) Converts all the characters of a specified string to
uppercase
Ex., fn:toUpperCase(“Patterns”) returns PATTERNS

fn:trim(string) Eliminates leading and trailing white space from a
specified string
Example, fn:trim(“ almost done “) returns “almost
done”

Since text manipulation is so prevalent in Web applications, these function libraries are invaluable com-
ponents for your development and deployment operations. Many of these functions mirror the same
APIs that the Java String class possesses, so they should be learned fairly easily.

SQL Actions
A general rule of thumb for SQL transactions on enterprise systems is to handle database operations
within business logic operations; we’ll demonstrate that with the Add Contact component below. But,
sometimes you might want to perform those activities with the SQL tag libraries that are part of the JSTL
1.1 libraries.

JSTL SQL Actions allow developers to interact with databases on the presentation layer. An overview of
its capabilities include the ability to perform queries through select statements, database updates with
insert, update, and delete operations, and transactional activities that allow the aggregation of database
operations.

342

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 342

The following table illustrates the SQL Action tags for establishing a data source.

Tag Description

<sql:setDataSource> This tag exports a data source.
<sql:setDataSource

{datasource=”dataSource” |
url = “jdbcUrl”
[driver = “driverClassName”]
[user = “userName”]
[password = “password”] }
[var=”varName”]
[scope=”{page|request|session|application}”]/>

The following table illustrates the SQL Action tags for query operations.

Tag Description

<sql:query> This tag queries the database.
Without body content
<sql:query sql=”queryString”

var=”varName”
[scope=”{page|request|session|application}”]
[maxRows=”maxRows”]
[startRow=”startRow”] />

With a body for query parameters
<sql:query sql=”queryString”

var=”varName”
[scope=”{page|request|session|application}”]
[maxRows=”maxRows”]

[startRow=”startRow”]
<sql:param> actions

</sql:query>
With a body for query parameters and options
<sql:query sql=”queryString”

var=”varName”
[scope=”{page|request|session|application}”]
[maxRows=”maxRows”]

[startRow=”startRow”]
query optional
<sql:param> actions

</sql:query>

343

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 343

The following table illustrates the SQL Action tags for update operations.

Tag Description

<sql:update> This tag executes an INSERT, UPDATE, or DELETE statement.
Without body content
<sql:update sql=”updateString”

[datasource=”datasource”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

With a body for query parameters
<sql:update sql=”updateString”

[datasource=”datasource”]
[var=”varName”]
[scope=”{page|request|session|application}”]

<sql:param> actions
</sql:update>

With a body for query parameters and options
<sql:update sql=”updateString”

[datasource=”datasource”]
[var=”varName”]
[scope=”{page|request|session|application}”]

update statement optional
<sql:param> actions

</sql:update>

The SQL Action tags elaborated on above certainly are powerful mechanisms to perform SQL transac-
tions inside your JSP Web components without having to worry about back-end JavaBean applications
to perform the same duties. Ultimately, developers must decide during their coding operations if they
opt to perform script or JavaBean queries in their deployments. Fortunately, the Contact Management
Tool illustrates both to facilitate your design decisions.

Developing Your Web Application Visualizations with JSTL
Our code example below demonstrates the use of SQL actions mentioned previously. The first course
of action in our code is to establish a data source object that will allow the application to connect to the
picture database so that queries can collect data for visualization on your JSP page:

<%@ page language=”java”
contentType=”text/html”
import=”java.util.*,java.lang.*,java.io.*” %>

<%@ taglib prefix=”c” uri=”http://java.sun.com/jstl/core_rt” %>
<%@ taglib prefix=”sql” uri=”http://java.sun.com/jstl/sql” %>

<HTML><HEAD><TITLE>Contact Management Tool</TITLE>
<link href=”CMT.css” rel=”stylesheet” type=”text/css”>

<sql:setDataSource

344

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 344

var=”pictures”
driver=”org.gjt.mm.mysql.Driver”
url=”jdbc:mysql://localhost/picture”
user=””
password=””
scope=”page”/>

After the data source has been established, a query is performed using the database reference ${pictures}
where the result set is stored in the results variable:

<sql:query var=”results” dataSource=”${pictures}”>
select * from picture

</sql:query>

The result set variable is then used to iterate through the individual database entries so that they can be
shown on the user display:

<table cellSpacing=0 cellPadding=4 align=center><tr><td bgColor=#7b849c>
<table border=”0”><tr><td>

<c:forEach var=”row” items=”${results.rows}” varStatus=”counter”>
<tr class=”row1”>
<td>
<table cellSpacing=”0” cellPadding=”0” border=”0”>

<td valign=”top”>${counter.count}.</td>
<td>
<table width=”500” border=”0”>

<tr>
<td class=”smallblue” noWrap align=”middle”>

${row.marking}
</td>
<td>

<u>Attributes:</u>
</td>

</tr>
<tr>

<td align=”middle”>

</td>
<td>
<table>
<tr>

<td>Phone Number:</td>
<td>${row.telephone_num}</td>

</tr>
<tr>

<td>Comments:</td>
<td>${row.comments}</td>

345

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 345

</tr>
</table>
</td>

</tr>
</table>
</td>

</table>
</td>
</tr>

</c:forEach>
</td></tr></table>

</td></tr></table>

The resulting display is demonstrated in the Contact Management Tool screenshot (see Figure 7-3 fol-
lowing). The JSP script culls the picture database for the image and meta data associated with that image
for rendering. The person that is marked in the file text is hyperlinked so that users can click it and
obtain more information about the selected contact.

Figure 7-3

346

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 346

The next application, addProfile.jsp, uses both the core tag libraries for logic operations and the SQL
actions to perform form processing actions on the Add Profile page. Once the form has been properly
filled out, checks will be done to ensure that required fields have been entered. Once those checks have
been performed, and the application has determined that the form entries can be pushed to the back-end
database, the application will send the data to the registration database for storage and subsequent
retrievals:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jstl/fmt” %>
<%@ taglib uri=”http://java.sun.com/jstl/sql_rt” prefix=”sql” %>

<script language=”JavaScript”>
function textCounter(field, countfield, maxlimit) {
if (field.value.length > maxlimit) {
field.value = field.value.substring(0, maxlimit);
} else {
countfield.value = maxlimit - field.value.length;
}
}
</script>

The JSTL 1.1 core library tags are used below to perform logic operations on the form entries specified
by the user. If either firstName, lastName, or email is empty, the application will not allow the form to
pass the data to the back-end registration database:

<c:if test=”${param.submitted}”>

<c:if test=”${empty param.firstName}” var=”noFirstName” />
<c:if test=”${empty param.lastName}” var=”noLastName” />
<c:if test=”${empty param.email}” var=”noEmail” />

<c:if test=”${not (noFirstName or noLastName or noEmail)}”>
<c:set value=”${param.firstName}” var=”firstName” scope=”request”/>
<c:set value=”${param.lastName}” var=”lastName” scope=”request”/>
<c:set value=”${param.email}” var=”email” scope=”request”/>

Once the proper form entries have been entered by the user, the data source will be established with
the SQL action tags by passing familiar JDBC driver, URL, username, and password parameters to the
library to create a connection. After the connection has been created, then the SQL update tag can be
used to perform an insert operation on the registration database using a prepared statement construct:

<sql:setDataSource
var=”datasource”
driver=”org.gjt.mm.mysql.Driver”
url=”jdbc:mysql://localhost/registration”
user=””
password=””
scope=”page”/>

<sql:update dataSource=”${datasource}”>
INSERT INTO registration (registration_id, first_name, last_name, email)

VALUES(?, ?, ?, ?)

347

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 347

<sql:param value=”${param.firstName}” />
<sql:param value=”${param.lastName}” />
<sql:param value=”${param.email}” />

</sql:update>

</c:if>
</c:if>

The following code represents the registration form and its components that will be used to register con-
tacts in the Contact Management Tool. Expression Language constructs, like ${param.lastName}, are
used to represent and persist data items entered by the form user:

<form method=”post”>

<table border=”0” cellpadding=”0” cellspacing=”0”><tbody>

<tr valign=”bottom”>
<td nowrap=”nowrap”>

<table cellspacing=”2” cellpadding=”2” bgcolor=”#336699”>
<tbody>

<tr>
<td nowrap=”nowrap” colspan=”2”>Registration</td>

</tr>

<tr>
<td nowrap=”nowrap” class=”mandatory”>First Name: (required)</td>
<td class=”value”>
<input name=”firstName” value=”${param.firstName}” size=”25” maxlength=”50”>
<c:if test=”${noFirstName}”>

<small>
Please enter a First Name
</small>

</c:if>
</td>

</tr>

<tr>
<td nowrap=”nowrap” class=”mandatory”>Last Name: (required)</td>
<td class=”value”>
<input name=”lastName” value=”${param.lastName}” size=”25” maxlength=”50”>
<c:if test=”${noLastName}”>

<small>
Please enter a Last Name
</small>

</c:if>
</td>

348

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 348

</tr>

<!--- Email, Gender, Marital Status, Date of Birth, Country, Zip Code, Age,
Place of Birth, Occupation and Interests components were omitted for the sake of
brevity -- >

<tr>
<td align=”left” nowrap=”nowrap” class=”field” colspan=”2”>
Characters remaining:
<input readonly=”readonly” type=”text” name=”inputcount” size=”5”

maxlength=”4” value=”” class=”text”>

<script language=”JavaScript”>
document.form1.inputcount.value = (200 -

document.form1.interests.value.length);
</script>
</td>

</tr>

<tr>
<td nowrap=”nowrap” class=”field” align=”middle” colspan=”2”>
<input type=”hidden” name=”submitted” value=”true” />
<input type=”submit” value=”Register” />
</td>

</tr>

</tbody>
</table>

</form>

The form visualization (see Figure 7-4 following) is the result of the code fragments in the addProfile.jsp
script described above. Some JavaScript code was used for the comments section to provide client-side
validation, which ensures that the user does not enter more than 200 characters.

349

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 349

Figure 7-4

Developing Your Web Application Visualizations
with JSP 2.0

Java Server Pages (JSPs) are generally implemented in distributed systems to aggregate content with
back-end components for user visualizations. When application servers first receive a request from a JSP
component, the JSP engine compiles that page into a servlet. Additionally, when changes to a JSP occur,
that same component will be recompiled into a servlet again where it will be processed by a class loader
so that it can restart its life cycle in the Web container.

A general best practice for developing Web components is to use JSPs for display generation and servlets
for processing requests. The idea is to encapsulate complicated business logic in JavaBean components
written in Java that are entirely devoid of scriplet syntax so that display scripts are not obfuscated with
complicated logic that might make your code hard to decipher for maintenance purposes. Naturally, your
JavaBean code artifacts will transfer across platforms because they are written in Java, which accommo-
dates reuse in your overall development operations.

350

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 350

The benefits of JSP technology include the following points:

❑ Code reuse across disparate platforms. Components and tag libraries can be shared in develop-
ment operations and among different tools.

❑ Separation of roles. Web designers can work presentation scripts and developers can work
back-end data transaction activities.

❑ Separation of content. Both static and dynamic content can be “template-tized”, which
inevitably facilitates coding operations.

A JSP page has two distinct phases during operations: translation and execution. During translation, the
Web container validates the syntax of a JSP script. The Web container manages the class instances of a
JSP during the execution phase as user requests are made for it.

Figure 7-5 conceptualizes how a Web page can be constructed using the Model 1 Architecture.

Figure 7-5

The following code is used by the leftNav.jsp page to read an XML file so that a drill-down naviga-
tion component can be used by a user to select different views for presentation. This application uses an
open source product called dom4j to extract and navigate links from a hierarchical tree in an XML file.
The dom4j library is a great tool for parsing and manipulating content because it offers full support for
JAXP, SAX, DOM, and XSLT. It also has Xpath support for navigating XML artifacts, and is based on Java
interfaces for flexible support:

content.jsp

NOTE:
As a user clicks down the
taxonomy in the leftNav.jsp,,
a different parameter will be
generated and passed to the
content.jsp page. Logic
inside the content.jsp
component will be used to
determine which view to
present to the user display.

footer.jsp

leftNav.jsp

header.jsp

View #1

home.jsp

View #2

View #3

351

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 351

package taxonomy;

/**
* @author MMitchell
*
* To change this generated comment edit the template variable “typecomment”:
* Window>Preferences>Java>Templates.
* To enable and disable the creation of type comments go to
* Window>Preferences>Java>Code Generation.
*/

import java.net.*;
import java.util.*;
import javax.naming.*;
import java.util.logging.*;
import org.dom4j.*;
import org.dom4j.io.*;

public class TopicGenerator {

protected static String EXPANDED_SYMBOL = “- ”;
protected static String COLLAPSED_SYMBOL = “+ ”;
protected static String LEAF = “• ”;
protected static String SPACER = “ ”;
protected static String TOPIC_CSS_CLASS = “SelectedTopic”;

private Document document;
private static Logger log = Logger.getLogger(“TopicGenerator”);

The following code represents the constructor methods for the TopicGenerator application that reads the
Topic.xml file into memory so that it can be navigated by users in the Contact Management Tool, which
in turn will render a different view in the content.jsp page:

public TopicGenerator() throws NamingException {
Context initCtx = new InitialContext();
Context ctx = (Context) initCtx.lookup(“java:comp/env”);
String topicsDirectory = (String) ctx.lookup(“topicsDirectory”);
setFilename(topicsDirectory + java.io.File.separator + “Topic.xml”);
log.info(“topicsDirectory= “ + topicsDirectory);

}

public TopicGenerator(String fileName) throws Exception {
parseDocument(fileName);
if (this.document == null)

throw new Exception(“Problem initializing TopicGenerator”);
}

public void setFilename(String fileName) {
parseDocument(fileName);

}

352

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 352

The parseDocument method initiates the application by reading the filename Topic.xml into memory for
manipulation:

private void parseDocument(String fileName) {
try {

SAXReader reader = new SAXReader();
document = reader.read(fileName);

} catch (DocumentException de) {
log.info(“Problem initializing TopicGenerator.”);
de.printStackTrace();

} catch (MalformedURLException me) {
log.info(“Malformed URL.”);
me.printStackTrace();

}
}

The addElement method adds hyperlinked elements to the navigation tree for visualization. The imple-
mentation of the StringBuffer class is preferred over String class concatenation because of significant per-
formance differences:

private void addElement(StringBuffer sb, Set set, Element element, String
topicId,

String topicParamName, String href, String extraParams,
int level) {

if (level != -1) {
// write current node
for (int i = 0; i < level*4; i++)

sb.append(TopicGenerator.SPACER);

if (element.elements().isEmpty())
sb.append(TopicGenerator.LEAF);

else if (set.contains(element))
sb.append(TopicGenerator.EXPANDED_SYMBOL);

else sb.append(TopicGenerator.COLLAPSED_SYMBOL);

String thisTopicId = element.attributeValue(“value”);

if (topicId.equals(thisTopicId))
sb.append(“<a class=\”” + TopicGenerator.TOPIC_CSS_CLASS + “\” “);

else
sb.append(“<a “);

sb.append(“href=\””);
sb.append(href);
sb.append(‘?’);
sb.append(topicParamName);
sb.append(‘=’);
sb.append(thisTopicId);
sb.append(extraParams);
sb.append(“\”>” + element.attributeValue(“text”) + “
”);

353

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 353

}

if (set.contains(element) || level == -1) {
Iterator it = element.elementIterator();
while (it.hasNext()) {

Element currElement = (Element) it.next();
addElement(sb, set, currElement, topicId, topicParamName, href,

extraParams,
level + 1);

}
}

}

The generateParams method receives a HashMap object from the getTopics method so that it can
generate the parameters needed for traversal. Please note that it is always a good practice to check the
input parameters that are passed into a method prior to performing operations on them as has been
done in the following example code:

private String generateParams(HashMap params) {
if (params == null || params.isEmpty())

return “”;

StringBuffer toReturn = new StringBuffer();

Iterator keys = params.keySet().iterator();
while (keys.hasNext()) {

String currParam = (String) keys.next();
String currParamValue = (String) params.get(currParam);

if (currParamValue != null) {
toReturn.append(‘&’);
toReturn.append(currParam);
toReturn.append(‘=’);
toReturn.append(currParamValue);

}
}

return toReturn.toString();
}

The getTopics method establishes a tree structure based on the taxonomies residing in the Topic.xml
file, which is discovered by a context lookup at the onset of the application. The overloaded getTopics
methods return the topic values that are read from the taxonomy for user navigation:

354

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 354

public String getTopics(String topicId, String topicParamName, String href,
HashMap params) {

if (topicId == null)
topicId = “”;

Element taxonomy = (Element)
document.selectSingleNode(“/navigation/taxonomy”);

List list = taxonomy.selectNodes(“//topic[@value=’” + topicId + “‘]/
ancestor-or-self::*”);

Set expandedNodeSet = new HashSet(list);
StringBuffer toReturn = new StringBuffer();

addElement(toReturn, expandedNodeSet, taxonomy, topicId, topicParamName,
href,

generateParams(params), -1);

return toReturn.toString();
}

public String getTopics(String topicId, String topicParamName, String href) {
HashMap params = new HashMap();
return getTopics(topicId, topicParamName, href, params);

}

public static void main(String[] args) throws Exception {
String s = “c:\\tomcat5019\\webapps\\mojo\\WEB-INF\\classes\\Topic.xml”);”
TopicGenerator tg = new TopicGenerator(s);

}
}

In our GUI presentation shown in Figure 7-6, when a user attempts to add a new contact to the Contact
Management Tool, a form will be presented to the user for a picture and meta data that will be associ-
ated with that picture. The Web application uses JSP 2.0 Expression Language (EL) features to present
data, and JavaBean components to persist and manipulate contact data for retrieval and storage.

<%@ page language=”java”
contentType=”text/html”
import=”java.util.*,java.nio.channels.*,java.lang.*,java.io.*,com.model1.*” %>

<jsp:useBean id=”fd” class=”com.model1.FileDir” scope=”request”>
<jsp:setProperty name=”fd” property=”*”/>

</jsp:useBean>

<title>Insert Contact</title>

355

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 355

Figure 7-6

The code below performs Expression Language checks to ensure that the user-specified filename is not
null and its length is greater than zero. The code also performs checks with the JavaBean FileDir to
determine if all of the input fields (Name, Telephone, Marking, Comments) have been properly entered.
If that action has been performed properly, then the application will use that bean to upload the image
file designated for upload and insert the meta data associated with that image into the picture database
for future retrieval. The string validation checks are redundant for the filename attribute, but were
shown to demonstrate how user form inputs might be implemented to ensure that proper data is
propagated to back-end components:

<c:if test=”${param.filename != null && fn:length(param.filename) > 0}”>
<%
if (fd.isValid()) {

if (fd.fileUpload(fd.getFilename())) {
fd.addMetadata(fd.getName(), fd.getTelephone(), fd.getMarking(),

fd.getComments());
}

} else {
System.out.println(“INVALID...”);

356

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 356

}
%></c:if>

<form method=”post” action=”home.jsp?taxonomyIndex=102”>

<table border=”0” cellpadding=”0” cellspacing=”0” bgcolor=”#336699”><tbody>
<tr valign=”bottom”><td nowrap=”nowrap”>

The following code represents the form values for input. Notice the JSP 2.0 syntax without scriplets, like
${fd.filename}. The Servlet 2.4 container, along with the JSP 2.0 container, now can handle EL expres-
sions as native JSP syntax:

<table cellspacing=”2” cellpadding=”2”>
<tbody>

<tr>
<td nowrap=”nowrap” class=”mandatory” colspan=”2”>
Add Contact [NOTE: All field inputs required]
</td>

</tr>
<tr>

<td nowrap=”nowrap” class=”mandatory”>File:</td>
<td class=”value”>
<input type=”file” size=”60” name=”filename” value=”${fd.filename}”>
</td>

</tr>
<tr>

<td nowrap=”nowrap” class=”mandatory”>Name:</td>
<td class=”value”>
<input name=”name” value=”${fd.name}” size=”40” maxlength=”50”>
</td>

</tr>
<tr>

<td nowrap=”nowrap” class=”mandatory”>Telephone:</td>
<td class=”value”>
<input name=”telephone” value=”${fd.telephone}” size=”40” maxlength=”50”>
</td>

</tr>
<tr>

<td nowrap=”nowrap” class=”mandatory”>Marking:</td>
<td class=”value”>
<input name=”marking” value=”${fd.marking}” size=”40” maxlength=”50”>
</td>

</tr>
<tr>

<td nowrap=”nowrap” class=”mandatory”>Comments:</td>
<td class=”value”>
<input name=”comments” value=”${fd.comments}” size=”40” maxlength=”50”>
</td>

</tr>
<tr>

<td align=”middle” class=”mandatory” colspan=”2”>

357

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 357

<input type=”submit” name=”UploadFile” value=”Upload”>
</td>

</tr>

</tbody>
</table>

</td></tr>
</tbody>
</table>

</form>

The Java Bean FileDir below accepts the inputs from the addContact.jsp file and performs checks to
ensure that all of the proper fields have been entered prior to uploading the user-specified image and its
related meta data:

// FileDir.java

package com.model1;

import java.io.*;
import java.net.*;
import java.sql.*;
import java.util.*;
import java.util.logging.*;
import java.nio.channels.*;

// needed for marking
import java.awt.*;
import java.awt.image.BufferedImage;
import javax.imageio.*;
import javax.imageio.stream.*;
import javax.imageio.ImageIO.*;
import com.sun.media.imageio.plugins.tiff.TIFFImageWriteParam;
import javax.imageio.plugins.jpeg.JPEGImageWriteParam;

public class FileDir {

private static Logger log = Logger.getLogger(“FileDir”);

private String txtPath = “C:\\tmp”; // image repository directory
private Connection connection;
private Statement statement;
private String driverName = “”;
private String className = “”;
private String user = “”;
private String pass = “”;

// form entries
private String filename;
private String name;
private String telephone;
private String marking;
private String comments;

358

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 358

The FileDir constructor uses a class loader object to discover the file.properties file that outlines the
JDBC parameters needed to connect to the picture database. If all goes well, a connection object will be
instantiated to perform operations on that database:

public FileDir() throws ClassNotFoundException, SQLException {

Properties resource = new Properties();
try {

URL url =
this.getClass().getClassLoader().getResource(“file.properties”);

resource.load(new FileInputStream(url.getFile()));
// Get properties
driverName = resource.getProperty(“driverName”);
className = resource.getProperty(“className”);
user = resource.getProperty(“user”);
pass = resource.getProperty(“pass”);
log.info(“Using parameters from the file.properties file for Contact

Information.”);
} catch (Exception e) {

log.info(“[FileDir()] EXCEPTION. “ + e.toString());
}

Class.forName(className);
connection = DriverManager.getConnection(driverName,user, pass);
statement = connection.createStatement();

}

The fileUpload method is passed the filename specified by the user in the Add Contact form above so
that it can be uploaded to the filesystem for rendering when queried by the View Contact page. The
method uses the NIO (New IO) libraries to stream the data from the local filesystem. A local file copy
routine was introduced here for demonstration purposes only; normally, an enterprise Web upload
application would handle remote file upload, too:

public boolean fileUpload(String srcFilename) {

String dstFilename = “”;
log.info(“srcFilename= “ + srcFilename);

if ((srcFilename != null) && (!srcFilename.equals(“”))) {

int x = srcFilename.lastIndexOf(File.separatorChar)+1;
if (x > 0) {

dstFilename = txtPath + File.separatorChar + srcFilename.substring(x);
log.info(“dstFilename= “ + dstFilename);

try {
File f = new File(dstFilename).getParentFile();
if (f.mkdirs() || f.isDirectory()) {

FileChannel srcChannel = new
FileInputStream(srcFilename).getChannel();

FileChannel dstChannel =
new FileOutputStream(dstFilename).getChannel();

dstChannel.transferFrom(srcChannel, 0, srcChannel.size());

359

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 359

srcChannel.close();
dstChannel.close();
log.info(“uploaded to “ + txtPath + “ file -> “ + dstFilename);

} else {
log.info(“FAILURE with file [f]”);
return false;

}
} catch (IOException e) {

log.info(“IOException= “ + e.toString());
return false;

}

} else {
log.info(“could not parse: “ + srcFilename);
return false;

}
}
return true;

}

The markImage method allows users to pass an image file with a marking value so that the marking
can be overlayed on to that image file. The Java Image IO libraries are used to perform these actions. The
sample application is set up so that *.jpeg images can be uploaded for tag marking. Logic has also been
added to accommodate *.tif files, which would need to be uncommented in order to work:

public void markImage(String inFile, String outFile, String marking) {

try {

BufferedImage image = ImageIO.read(new File(inFile));

Graphics graphics = image.getGraphics();
graphics.setColor(Color.black);
graphics.setFont(new Font(“Arial”, Font.BOLD | Font.ITALIC, 20));

graphics.drawString(marking, (image.getWidth()*4/10),
(image.getHeight() - (image.getHeight()/10)));

graphics.drawString(marking, (image.getWidth()*4/10) ,
image.getHeight()/10);

// Create Image
IIOImage iioImage = new javax.imageio.IIOImage(image, null, null);

// If TIFF document used, uncomment this and comment JPEG
// Iterator writers = ImageIO.getImageWritersByFormatName(“tiff”);
Iterator writers = ImageIO.getImageWritersByFormatName(“jpeg”);
ImageWriter writer = (ImageWriter)writers.next();

// Set WriteParam’s
// TIFFImageWriteParam writeParam =

(TIFFImageWriteParam)writer.getDefaultWriteParam();

360

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 360

// writeParam.setCompressionMode(ImageWriteParam.MODE_EXPLICIT);
JPEGImageWriteParam writeParam =

(JPEGImageWriteParam)writer.getDefaultWriteParam();
// writeParam.setCompressionType(“CCITT T.6”); // for TIF compression
writeParam.setCompressionType(“JPEG”);

// Create File to save the image
File f = new File(outFile);
if (!f.exists()) f.createNewFile();
ImageOutputStream ios = createImageOutputStream(f);
writer.setOutput(ios);

// Save the image
writer.write(null, iioImage, writeParam);
ios.close();

} catch (IOException e) {
log.info(“FILE FAILED:” + inFile);

}
}

The addMetadata method adds the meta data associated with the image file uploaded to the picture
database. Additional checks on the meta data passed for database insertion could also be added to this
routine to ensure that properly formatted data is passed to the database, but such checks were omitted
for the sake of brevity. The string value passed in for marking text is passed along to the markImage
method, which inserts that marking into the image file using the Java IO image libraries:

public void addMetadata(String name, String telephone, String marking,
String comments) {

StringBuffer sqlString = new StringBuffer();

sqlString.append(“INSERT INTO picture (name, telephone_num, marking,
comments) VALUES (“);

sqlString.append(“‘“ + name + “‘,”);
sqlString.append(“‘“ + telephone + “‘,”);
sqlString.append(“‘“ + marking + “‘,”);
sqlString.append(“‘“ + comments + “‘);”);

try {
statement.executeUpdate(sqlString.toString());
// mark images.
markImage(dstFilename, dstFilename, marking);

} catch (SQLException sqle) {
log.info(“SQLException: “ + sqle.toString());

}
}

The getFiles method can be used to check the file system for files loaded to the c:\\tmp directory,
which is the designated repository for image file uploads. Checks are performed on the filesystem to
ensure that only *.gif and *.jpg files are loaded to the Map object that is returned to the routine that
invoked it:

361

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 361

public Map getFiles() {

Map map = new HashMap();
map = new TreeMap();

File dir = new File(“C:\\tmp”);

String[] children = dir.list();

if (children == null) {
log.info(“Directory does not exist, or perhaps is NOT a directory.”);

} else {

for (int i=0; i < children.length; i++) {
// Get filename of file or directory
String filename = children[i];
if ((filename.endsWith(“.gif”)) || (filename.endsWith(“.jpg”)))

map.put(filename, filename);
}
// Iterate over the keys in the map
Iterator it = map.keySet().iterator();
while (it.hasNext()) {

Object key = it.next();
log.info(“[FileDir] key= “ + key);

}
}
return map;

}

The next section of the FileDir code represents the setter methods that are used by the Add Contact
form to persist the form parameters that have been entered by the form user:

// setters
public void setFilename(String filename) {

this.filename = filename;
}

public void setName(String name) {
this.name = name;

}

public void setTelephone(String telephone) {
this.telephone = telephone;

}

public void setMarking(String marking) {
this.marking = marking;

}

public void setComments(String comments) {
this.comments = comments;

}

362

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 362

The getter methods below retrieve the form values so that the user form can ensure that all the fields
have been properly entered by the user, prior to having the FileDir JavaBean application upload and
save the meta data:

// getters
public String getFilename() {

return filename;
}

public String getName() {
return name;

}

public String getTelephone() {
return telephone;

}

public String getMarking() {
return marking;

}

public String getComments() {
return comments;

}

public boolean isValid() {
return ((filename != null) && (!filename.equals(“”)) &&

(name != null) && (!name.equals(“”)) &&
(telephone != null) && (!telephone.equals(“”)) &&
(marking != null) && (!marking.equals(“”)) &&
(comments != null) && (!comments.equals(“”)));

}

public static void main(String[] args) {

try {
FileDir fd = new FileDir();
log.info(“getting files...”);
fd.getFiles();
String s = “c:\\tmp\\test\\screenshot1.gif”;
fd.fileUpload(s);

} catch(Exception e) {
log.info(“EXCEPTION: “ + e.toString());

}

}
}

The FileDir Bean application demonstrates how Java components can be constructed with robust
libraries to facilitate form processing and data persistence activities. The key to good bean development
is to migrate common methods with one another for easy maintenance and to provide simple interfaces
to data so that users will be more likely to incorporate them into their presentation code.

363

Developing Web Applications Using the Model 1 Architecture

10_574868 ch07.qxd 12/21/04 6:00 PM Page 363

Summary
This chapter has demonstrated two different implementations of database transactions using both tag
libraries and JavaBean components within the Contact Management Tool incorporating the Model 1
Architecture approach. The page flows were hard-coded to accommodate user navigations from a tax-
onomy drill-down component, with the assistance of core tag library logic operators and JavaBean vali-
dation methods. Naturally, not all of the features of the JSP 2.0 and JSTL 1.1 specifications and API
libraries could be discussed in this chapter alone, but the sample Web application that was constructed
should provide ample knowledge on how to craft J2EE Web components for the needs of the presenta-
tion tier.

Hopefully, you will find that this chapter eliminates some of your problems with your development
operations and enhances your ability to make knowledgeable design decisions concerning Model 1
Architecture deployments.

364

Chapter 7

10_574868 ch07.qxd 12/21/04 6:00 PM Page 364

Developing Web
Applications Using the

Model 2 Architecture

In the last chapter, you learned about building Web applications using the Model 1 Architecture,
which is heavily dependent on a page-centric development focus. In this chapter, you will review
and apply a prominent pattern in software development known as Model-View-Controller (MVC)
to build Web applications in a more modular and componentized manner. You will learn a little
about the Model 2 Architecture, particularly a framework known as WebWork, and its use of a
concept known as Inversion of Control. You will see an example of how componentized develop-
ment with WebWork provides a tremendous advantage to you as a Web developer, as it saves you
time in having to rebuild the same components over and over in your application.

The Problem
Imagine your office needed a centralized contact manager for referencing people that could be
used for given projects. You know that such functionality would be useful, but are worried about
trying to do something too ad hoc and inflexible, leading to it being quickly thrown away.

You need something quick, but flexible. You need something where you can reuse a lot of compo-
nents to build your solution. You need to look at a Model 2 Architecture framework.

What Is Model 2?
In order to understand Model 2, you should review the Model-View-Controller paradigm, which
you examined in depth in Chapter 3, “Exploiting Patterns in Java.” As you saw in Chapter 3, MVC

11_574868 ch08.qxd 12/21/04 5:55 PM Page 365

is often described in the context of Swing, so you may be wondering, “But these are Web applications,
how could they have much to do with each other?” So, you should remember that the Model-View-
Controller Architecture simply refers to breaking your system into distinct components to satisfy three
concepts:

❑ The Model refers to the real-world representation of your domain. For example, if I have a golf
scoring system, I would have objects to represent things like a golf hole, a score, and so on.

❑ The View refers to the ways that you view the data you are managing. For example, you may
have a view of every player on a given hole, or you may have a scorecard for a given player
over the whole course.

❑ The Controller refers to the actual discrete actions that the system can perform. For example,
“enter a score,” “generate a leaderboard,” and so on.

Of course, there are wide debates about where the divisions really exist — is your model just data objects
and does your controller handle the business logic? For purposes of this book, just simplify it down to
three basic concepts: The model is “what it is”; the view is “what it looks like”; and the controller is
“what it does.”

So, how does the Model 2 Architecture actually work? Figure 8-1 demonstrates the Model 2 Architecture
in action.

Figure 8-1

Contact

-lastName : String
-firstName : String
-im : String
-email : String
-phones : Set
-expertises : Set

1

1

*

*

Phone

-phoneNumber : String
-phoneType : String
-id : int

Expertise

-id : int
-title : String
-description : String

366

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 366

The Model 2 Architecture works like this:

1. The Request comes into the Controller.

2. The Controller performs a given action with the provided parameters.

3. The Controller forwards control to the View in order to give the response.

4. The View refers to the domain model to build the presentation.

5. The View is passed back in the Response to the user.

A critical thing that is usually missed by a lot of people who look at this diagram is the concept of
“scope.” Think of it like this. There are objects that are along for the ride, whether they are along for the
duration of the request, the session, or the application.

Those are the key principles of Model 2 Architectures; now you will learn why the Model 2 Architecture
is good for use in Web applications.

Why Use Model 2?
Now that you have a good sense of what the Model 2 Architecture is, you may be asking, “Why do I
need this?” or “Isn’t that a lot of effort for a Web page?” Well, there are a number of significant advan-
tages to the Model 2 architectures, particularly in large-scale applications. Here are several of the advan-
tages of the Model 2 Architecture.

Advantage Description

Flexibility Model 2 is flexible because it separates your application into components
by their relevant piece of what they do. This allows you to plug in new
views or actions as needed without having to rewrite everything. You can
even reuse your components in other application platforms like Swing.

Reuse Since Model 2 is componentized by definition, you can reuse a framework
to provide a lot of the glue that holds your application together. A couple of
examples of Model 2 frameworks are Apache Struts and OpenSymphony’s
WebWork.

Scalability Because you have separated out the components, it is easy to add more
components where necessary. Plus, you can cache your data components
more easily because of the separation of concerns — your view doesn’t care
if it is handling a cached version of an object or a real version.

Security By handling all actions through a central controller, you can easily config-
ure and manage access control to your data and actions.

However, there is no perfect solution. There are disadvantages to using the Model 2 Architecture, which
are illustrated in the following table.

367

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 367

Disadvantage Description

Learning curve You cannot use the Model 2 Architecture if you do not under-
stand it. Furthermore, if you want to reuse a framework, then
you must learn the particulars of that application. Of course,
you are reading this chapter, so this should be fairly well miti-
gated after you read all about WebWork.

Complexity There are many things to learn about Model 2 Architecture in
order to use it effectively. Learning curves are different, but
compared to JSP, it can be quite intimidating to the average
Web developer who has been building page-centric database-
driven Web applications for quite a while.

Programming vs. scripting Many Web developers are used to developing their applica-
tions interactively — as if they were scripting their Web site.
The concept of compiling and dependencies is simply some-
thing foreign to them, particularly if they came to Web devel-
opment out of graphical design rather than programming.
Now, you can still separate responsibilities among the team
and allow these scripters to handle the views of the applica-
tion, which are still conventional JSP.

The critical concept in deciding whether to go with Model 2 is to decide whether it is overkill or not. A
rule of thumb could be that if you have more than five or six pages in your Web application, you really
should use Model 2 Architecture. Note that this assumes that you will never have more than five or six
pages, or that you are building a throwaway application.

The example application in this chapter deals directly with this issue of Model 1 versus Model 2. Too
many explanations of Model 2 find it necessary to describe a system sufficiently complex to demonstrate
the utility of Model 2, while ignoring the fact that the bigger the scope, the harder it is to wrap your
mind around it. This application, a contact manager, would probably be a good candidate for Model 1, if
it were not going to change or grow.

That is the fundamental distinction in Model 1 versus Model 2 — “Pay me now or pay me later.” Either
way you are not really saving any effort with Model 1 unless you intend not to be around later — because
the project is not expected to undergo further development (as opposed to some untimely demise).

Now that you understand the concepts, advantages, and disadvantages of the Model 2 Architecture, you
will want to look at an implementation of a Model 2 Architecture. For this chapter, you will see a simple
example of building a Model 2 application using the popular Web application framework called
WebWork.

Developing an Application with WebWork
Building applications with the Model 2 Architecture is not very helpful if you have to build all of this
additional glue code that provides the framework that implements the architecture. It is far better if you
use a framework like Struts to implement Model 2. In this chapter, you will see one of the more popular
emerging frameworks known as WebWork, or more specifically, WebWork2. WebWork is a Web application

368

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 368

framework built upon a generic command framework that provides for modularizing code through a
concept known as Inversion of Control (IoC). While WebWork could be used to build a Model 1 Web
application, it is really geared towards being a great Model 2 framework.

What Is Inversion of Control and Why Is It Useful?
To explain Inversion of Control, you should be familiar with a couple of concepts that are widely used
by software/system architects to categorize components and services of a bigger system. These cate-
gories are

❑ Vertical. When a component or service is referred to as being vertical, it is focused on a business
process. For example, a billing application would be a vertical application.

❑ Horizontal. Conversely, a component or service that is horizontal provides something that is
relevant to all of the vertical services and components. A security manager and database con-
nection pool are examples of horizontal components.

What has become increasingly painful in developing enterprise applications, that is, vertical compo-
nents, is interfacing to horizontal services and components. Outside of the obvious performance benefit,
how much better is it to have to do a custom, configurable lookup of a database connection pool than
just creating the connection yourself? Furthermore, you don’t want to have to account for all of the hori-
zontal services in all of your application components, so you end up creating another layer of indirection
on top of the horizontal service in order to provide the role for that service in your application.

Here is what that would look like in code:

package org.advancedjava.ch08;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
public class LookupMethod {

private DataSource ds;
public LookupMethod() {

try {
Context initCtxt = new InitialContext();
ds = (DataSource) initCtxt.lookup(“/jdbc/DS”);

} catch (NamingException e) {
e.printStackTrace();

}
}
/**
* @return
*/

public DataSource getDs() {
return ds;

}
/**
* @param source
*/

public void setDs(DataSource source) {
ds = source;

}
}

369

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 369

Note in the constructor how you must go to the trouble to look up a component using the Java Naming
and Directory Interface — and you tie yourself to that name. Now, this wouldn’t be such a big problem
in such a limited circumstance, but consider that this class is not the start point for your application,
rather it is just a component of the application. You may have many of these components, all looking
things up for themselves.

What if you inverted the whole equation and you simply declared your need for a given horizontal ser-
vice? This is what Inversion of Control does; it allows you to develop your application components inde-
pendent of how they will actually be provided. You simply declare the need for a given component, and
allow the framework to inject the dependency — that is, provide the needed component at run time
for you.

Instead, you could write it as what they call a Plain Old Java Object (POJO), which simply declares a
member variable for the needed dependency and leaves the how and where of satisfying that depen-
dency to the framework that runs it. So, your class would look something like this:

package org.advancedjava.ch08;
import javax.sql.DataSource;
public class InjectorMethod implements Injector {

private DataSource ds;
public InjectorMethod() {
}
/**
* @return
*/

public DataSource getDs() {
return ds;

}
/**
* @param source
*/

public void setDs(DataSource source) {
ds = source;

}
}

Note how you have implemented an interface known as Injector, to declare the method through which
you expose your dependency. Here is what that interface looks like:

package org.advancedjava.ch08;

import javax.sql.DataSource;
public interface Injector {

public void setDs(DataSource ds);
}

By doing this, you are keeping your objects based more purely on solving the domain problems of your
application, and deferring the context (setting up resources and finding them, and so on) to another part
of the application. You have inverted the control, that is let the infrastructure call your code to do its spe-
cific part, rather than having your code and every other piece of code call the infrastructure to suit their
needs.

370

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 370

Before you stop reading under the pressure of having to understand every nuance of all these complex
pieces and abstract concepts, realize that you are learning these things as the background to understand-
ing how things work under the hood. The nice thing about frameworks is that they handle a lot of the
heavy lifting for you.

Now that you have learned the foundation concepts of WebWork — Inversion of Control and Model 2
Architecture — you will get some background in the WebWork framework in particular.

Architecture
You don’t need to know every intricacy of WebWork in order to use it, but this text will provide you
with some of the fundamental concepts so that you understand how it all fits together. Figure 8-2
demonstrates how the framework fits together.

Figure 8-2

Note how the WebWork components (JSP tags, servlets, listeners, and servlet filters) are really just Web
extensions to the generic command pattern framework known as XWork. In fact, you could easily wrap
your exact same XWork Actions with RMI or Web service interfaces, or even embed them within a Swing
application. That is the key concept; you are only applying the Web context to your core POJOs that rep-
resent your domain.

The essence of WebWork (and XWork) is that you write basic Java objects called Actions, and then allow
the framework to inject the dependencies that you need. By configuring interceptors, you can inject the
dependencies that your Java object requires. Figure 8-3 shows how the request-response flow works in
WebWork.

Webwork Components

XWork
Command
Framework

371

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 371

Figure 8-3

The request comes into the interceptor stack and is processed in the order of the interceptors until it gets
to your developed Action class. Then, in reverse sequence, it makes its way back out through the
response processing. This allows you to configure interceptors to provide facilities that are independent
of the domain action, you can thus inject those dependencies, without burdening your Action with
unneeded code.

Interceptors
Several Interceptors come with the WebWork framework; here is what each of them provides.

Action result

Action

Request

Response

Interceptor n response processing

Interceptor n request processing

Interceptor B response processing

Interceptor B request processing

Interceptor A response processing

Interceptor A request processing

372

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 372

Interceptor Description

LoggingInterceptor Provides a logging statement before and after the execu-
tion of an action. Helpful for tracing through the applica-
tion.

TimerInterceptor Tracks the time taken to execute a given action. Useful
for isolating bottlenecks, particularly in multiple action
chains.

StaticParametersInterceptor Maps the configuration parameters provided in your
xwork.xml to the Action.

ParametersInterceptor Populates the Action with the parameters passed in with
the request.

ModelDrivenInterceptor Unlike the other parameter interceptors, which only
apply parameters directly to the member variables in the
Action, this interceptor will allow you to map them into
more complex domain objects in your action.

ChainingInterceptor Applies the result of the previous action to the next
action, useful for tying together multiple actions to form
a useful composite. For example, you may have an action
for calculating the sales tax which is chained to an action
that handles the totaling of the whole bill.

DefaultWorkflowInterceptor If the Action implements Validateable, it will call
validate(). If the Action implements Validation-
Aware, it will call hasErrors() to see if there are any
registered error messages; if there are, it will return the
INPUT status. If neither of these occur, it will invoke the
Action execute method.

Of course, you can implement your own interceptors, and later in the chapter, you will see this in action,
as it is used to provide support for Hibernate.

ValueStack
Remember how you learned earlier in the chapter about how your domain specific objects are “along for
the ride?” The ValueStack is where they ride. Much like Java uses a stack to hold the relevant objects it
uses within a given method or code block, XWork uses the ValueStack to accumulate the results of
what has happened through your request’s life cycle. This is useful because the View components can
simply build themselves using JSP (or Velocity) tags that interact with the ValueStack.

The way that your views interact with the ValueStack is through something called the Object Graph
Navigation Language (OGNL).

OGNL
OGNL, pronounced like it would sound if you tried to say it, provides you with a useful and easy way
to express how you retrieve objects from an object graph. It also does things like automatic type conver-
sion. (You think to yourself, “Sure, the request sends all of its parameters as String objects and yes, the domain

373

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 373

object takes an int, so why do I have to always tell it to execute Integer.parseInt()?”) In effect, it is very useful
for providing simple expressions for manipulations of objects that otherwise take several lines of code.

Not only does the WebWork tag library make great use of OGNL for traversing the ValueStack, but
WebWork also uses it to populate Action objects from request parameters.

Components
As you learned earlier, WebWork is built upon IoC. The first way that IoC is used is in injecting depen-
dencies into Actions. However, WebWork also provides the ability to use a Component to inject
resources into various scopes. You can configure your WebWork application to inject components into
three different scopes:

1. Request. The Component will be attached to every user request, making it accessible to each
Action.

2. Session. The Component will be attached when each new user session is created.

3. Application. The Component will exist throughout the life cycle of the application.

However, a practical example would probably make it easier to understand how components are used.
Next, you will see how Hibernate is configured as a set of WebWork components to provide a comple-
mentary solution for persisting your objects.

Extending the Framework to Support Hibernate
The nice thing about Model 2 Architecture frameworks in general and WebWork in particular is that
they are easily componentized and extended. One of the more exciting open source tools available
online is the Hibernate tool, which provides object/relational persistence. Put more simply, it allows you
to persist your objects more easily to a relational database than conventional SQL. For more discussion
of the problem that Hibernate seeks to address, see Chapter 6: “Persisting Your Application Using
Databases.

The genius behind Hibernate is a guy named Gavin King. King wanted to demonstrate how easily
Hibernate pulled into a Model 2 Framework, so he created a sample application to provide user and role
administration for Tomcat by linking Hibernate to WebWork.

In order to make it more focused, King’s example has been stripped down to the point that it would
probably not be recognizable to him, but he still deserves credit for the concepts. Plus, you can refer to
his application if you want to see a more sophisticated use of these techniques. It can be downloaded at
hibernate.org.

The fundamental component in building your Hibernate applications is the HibernateFactory object.
This object performs the setup and configuration of Hibernate, and then provides Session objects for
users to interact with the framework. As you might imagine, you only need one of these for your appli-
cation, any more would be excessive and inefficient.

So what if you could create one at startup time and share it among all of your applications? That is
where WebWork components come into play. As demonstrated in Figure 8-4, WebWork will initialize a
HibernateFactory at startup and inject that dependency into your application’s context.

374

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 374

Figure 8-4

But WebWork doesn’t stop with just injecting a HibernateFactory into your application; it also pro-
vides the ability to inject a Hibernate Session object into every user request. Figure 8-5 demonstrates
how a Session object is injected into the request object that is created to service a given request.

Figure 8-5

Now that you have learned how WebWork components inject Hibernate into your Model 2 Architecture
application, you will see how that comes in very useful.

Preventing the Hanging Session
A tough problem in matching up Model 2 Architecture applications with object/relational mapping
tools is that they tend to have two common operating models that can work against each other:

❑ A Model 2 application wants to conduct an action to retrieve a given graph of objects in the
domain model and then forward it along to the view. In effect, it wants to disconnect from the
database to prevent unnecessary binding. Also, it allows for clear packaging and handling of
unanticipated actions in processing, namely exceptions and errors. Model 2 wants to consider
the View part of the model to be about rendering data, independent of where it comes from.

❑ An ORM tool (like Hibernate) tends to prefer deferring initializing all of the objects on a given
graph until they are needed, to avoid performance problems, data latency issues, and so on.
Basically, the more data you pull, the slower and less efficient your application can become.
Furthermore, the longer it is disconnected, the less likely it is to be current.

Request Object

WebWork injects Hibernate
Session into the Request

Web Container
creates Request

Object to handle a
request

Web Application

WebWork injects Hibernate
Factory into the Application’s

Context

Web Container
starts the Web

Application

375

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 375

Now, before you start dismissing the two models as inconsistent, realize that this is a hiccup in two oth-
erwise very compatible techniques. So, there is clearly a motivation to try to make the two work together
more cleanly.

This is where the HibernateInterceptor comes into play. The short answer to what it does is allow
you to maintain an open Hibernate session during the rendering of your view, because it intercepts the
request model going out and closes the session cleanly.

Here is what the HibernateInterceptor looks like:

package org.advancedjava.ch08.interceptor;
import net.sf.hibernate.HibernateException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.advancedjava.ch08.HibernateAction;
import org.advancedjava.ch08.component.HibernateSession;
import com.opensymphony.xwork.Action;
import com.opensymphony.xwork.ActionInvocation;
import com.opensymphony.xwork.interceptor.Interceptor;
public class HibernateInterceptor implements Interceptor {

private static final Log LOG =
LogFactory.getLog(HibernateInterceptor.class);

public void destroy() {
}
public void init() {
}
public String intercept(ActionInvocation invocation)

throws Exception {
Action action = invocation.getAction();
if (!(action instanceof HibernateAction))

return invocation.invoke();
HibernateSession hs =

((HibernateAction) action).getHibernateSession();
try {

return invocation.invoke();
}
// Note that all the cleanup is done
// after the view is rendered, so we
// have an open session in the view
catch (Exception e) {

hs.setRollBackOnly(true);
if (e instanceof HibernateException) {

LOG.error(“HibernateException in execute()”, e);
return Action.ERROR;

} else {
LOG.error(“Exception in execute()”, e);
throw e;

}
} finally {

try {
hs.disposeSession();

} catch (HibernateException e) {
LOG.error(“HibernateException in dispose()”, e);
return Action.ERROR;

}

376

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 376

}
}

}

This brings the discussion back to the aforementioned HibernateAction class. Simply extending this
class will allow your other actions to use these advantages rather transparently:

package org.advancedjava.ch08;
import net.sf.hibernate.HibernateException;
import net.sf.hibernate.Session;

import org.advancedjava.ch08.component.HibernateSession;
import org.advancedjava.ch08.component.HibernateSessionAware;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.opensymphony.xwork.ActionSupport;

public abstract class HibernateAction
extends ActionSupport
implements HibernateSessionAware {
private static final Log LOG =

LogFactory.getLog(HibernateAction.class);
private HibernateSession session;
public String execute() throws Exception {

if (hasErrors()) {
LOG.debug(“action not executed, field or action errors”);
LOG.debug(“Field errors: “ + getFieldErrors());
LOG.debug(“Action errors: “ + getActionErrors());
return INPUT;

}
LOG.debug(“executing action”);
return go();

}
protected abstract String go() throws HibernateException;
public void setHibernateSession(HibernateSession session) {

this.session = session;
}
public HibernateSession getHibernateSession() {

return session;
}
/**
* Get the Hibernate Session instance
*/

protected Session getSession() throws HibernateException {
return session.getSession();

}
protected void setRollbackOnly() {

session.setRollBackOnly(true);
}

}

Now that you have seen all that the WebWork2 and Hibernate frameworks have to offer, it is time to
move on to a more concrete example of using them — your contact manager.

377

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 377

Defining Your Domain Model
One of the first things you will do in your project is get your hands around what things your system will
manage. Whether you call them entities or objects, and no matter where you store them (in a database or
file system), there are still a set of conceptual classes that hold your system (and your business) together.

When it comes to defining your domain model, you have three things to consider:

❑ What domain objects already exist in the form of databases, documents, and so on?

❑ If I don’t have them, what is available to help me make them up?

❑ What if my domain already exists, but is unsatisfactory for the users?

In essence, you generally fall into one of these two scenarios: Either you already are managing this data,
in which case you are probably already in possession of a database, or you are starting from something
new. The third way, having something already and needing something new, is the most painful.

Since data modeling and data migration are beyond the scope of this chapter (and book), focus instead
on the domain on a basic model. Figure 8-6 demonstrates the conceptual classes for our small contact
management system.

Figure 8-6

Contact

-id : Long
-lastName : String
-firstName : String
-im : String
-email : String
-phone : Phone
-expertises : Set

1

*

1

*

Phone

-id : Long
-phoneNumber : String
-phoneType : String

Expertise

-id : Long
-title : String
-description : String

378

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 378

This model provides you with a basic capability to track a person and their relevant phone number and
expertise. A person can be related to many expertise objects, but only one phone number, as well as the
inverse being true. There are many experts in Java, and someone can be an expert in many things.

There are no methods represented in this diagram, although you could assign behaviors to domain
objects if they were to make sense. An example of where you may want to capture a behavior would be
something like a calculator object where you would have obvious domain behaviors. The diagram in
Figure 8-6 demonstrates what is the primary domain of this application — storing information on con-
tacts and their expertise.

Models really embody the core concept behind Object Oriented Programming, creating software objects
that represent the system-relevant attributes and behaviors of a real-world object.

Now, the model is turned into a set of JavaBeans, with accessor and mutator methods (the “getters and
setters”). For the sake of brevity, you will not have to look through all of them here, but instead they are
provided with the source on the companion Web site.

Hibernate is going to handle our object persistence to a database, so you should take a look at the
Hibernate mapping file to see how the object and the database model are resolved. In this first section,
you declare your mapping package, and the first part of your first class, Contact. In there you define
your basic properties and to which columns they bind. An interesting thing to note here: You are letting
the database handle creating unique Ids for your contact objects, so you should leave the id property
alone in your code. It will be null until the database assigns it an identifier:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD 2.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping package=”org.advancedjava.ch08.model”>
<class name=”Contact” table=”contacts”>

<id name=”id” column=”ID”
unsaved-value=”null”>
<generator class=”increment”/>

</id>
<property name=”firstName” column=”FIRST_NAME” />
<property name=”lastName” column=”LAST_NAME”/>
<property name=”email” column=”EMAIL”/>
<property name=”im” column=”IM”/>

In this next section of code, you are mapping the set of Expertise objects for a given Contact. Note
how it specifies your conventional many-to-many join table, with the key column referring to the key of
the containing object and the many-to-many column referring to the key of the related class:

<set name=”expertises”
table=”contact_expertise”
cascade=”save-update”>
<!-- the foreign key of the Contact -->
<key column=”CONTACT_ID”/>
<many-to-many column=”EXPERTISE_ID”

class=”Expertise”/>
</set>

379

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 379

The last section shows an example of mapping a complex type with a one-to-one relationship (phone),
and then gives the mapping definitions for the other classes in our domain model. Note that generally
mappings are defined each in its own file, but for brevity, they are defined together here. It is important
to recognize that you must not define the same class twice:

<one-to-one name=”phone” cascade=”all”/>
</class>

<class name=”Expertise” table=”expertise”>
<id name=”id” column=”ID”

unsaved-value=”null”>
<generator class=”increment”/>

</id>
<property name=”title” column=”TITLE” />
<property name=”description” column=”DESCRIPTION”/>

</class>

<class name=”Phone” table=”phone”>
<id name=”id” column=”ID”

unsaved-value=”null”>
<generator class=”increment”/>

</id>
<property name=”phoneNumber” column=”PHONENUMBER” />
<property name=”phoneType” column=”PHONETYPE”/>

</class>
</hibernate-mapping>

Wait a second! You may be thinking that now you have to go and create the database, being careful to set
everything up to match this mapping file. You may also be thinking: “There is no way I am going to do
this myself for this little sample application, where is the SQL script to load this database?”

Not so fast. Now that you have defined the semantics of how the database should look, you can just use
Hibernate’s SchemaExport tool to create the database for you!

Along with the Hibernate distribution, there is a Windows batch file called SchemaExport.bat that
looks a little like this (the actual paths are changed in this one from the one that ships with Hibernate):

@echo off
rem ---
rem Execute SchemaExport tool
rem ---

set JDBC_DRIVER=C:\jakarta-tomcat-4.1.24-LE-jdk14\webapps\contact\WEB-
INF\lib\mysql-connector-java-3.0.9-stable-bin.jar
set HIBERNATE_HOME=..
set LIB=%HIBERNATE_HOME%\lib
set PROPS=C:\jakarta-tomcat-4.1.24-LE-jdk14\webapps\contact\WEB-INF\classes
set CP=%JDBC_DRIVER%;%PROPS%;%HIBERNATE_HOME%\hibernate2.jar;%LIB%\commons-logging-
1.0.3.jar;%LIB%\commons-collections-2.1.jar;%LIB%\commons-lang-1.0.1.jar;%LIB%\cgli
b-2.0-rc2.jar;%LIB%\dom4j-1.4.jar;%LIB%\odmg-3.0.jar;%LIB%\xml-
apis.jar;%LIB%\xerces-2.4.0.jar;%LIB%\xalan-2.4.0.jar

java -cp %CP% net.sf.hibernate.tool.hbm2ddl.SchemaExport C:\jakarta-tomcat-4.1.24-
LE-jdk14\webapps\contact\WEB-INF\classes\org\advancedjava\ch08\model\Model.hbm.xml

380

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 380

If you are using Linux or Unix, it probably goes without saying that you would have to change this
script for the shell that you use. It is incredibly unlikely that you would choose to use Linux or Unix
without understanding any of the shells. In essence, you are just building a big Java command for the
tool, so conceivably you could type all of this by hand (and probably still save time over writing the
DDL by hand!)

Note that somewhere in the classpath it will look for a properties file to tell it how to configure
Hibernate for your purposes. The one that comes with the Hibernate distribution has a tremendous
number of options and examples, so this one is simplified for our purposes. Here is what that properties
file will look like for your MySQL implementation:

hibernate.query.substitutions true 1, false 0, yes ‘Y’, no ‘N’
hibernate.dialect net.sf.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql:///contact
hibernate.connection.username root
hibernate.connection.password
hibernate.connection.pool_size 5

#Comment this out as soon as you have seen the SQL
hibernate.show_sql true

#Left these in here to set properties for hbm2ddl
#hibernate.hbm2ddl.auto create-drop
#hibernate.hbm2ddl.auto create
#hibernate.hbm2ddl.auto update

hibernate.jdbc.batch_size 0
hibernate.jdbc.use_streams_for_binary true
hibernate.max_fetch_depth 1

#If you are having Hibernate problems, set this to true
#very helpful for debug.
#hibernate.cglib.use_reflection_optimizer false
hibernate.cache.use_query_cache true
hibernate.cache.provider_class net.sf.ehcache.hibernate.Provider

Of course, most of the examples for other databases have been taken out for the sake of brevity, but you
could easily substitute another database for this one. You will reuse this properties file later to configure
your Web application:

<!DOCTYPE hibernate-configuration PUBLIC
“-//Hibernate/Hibernate Configuration DTD//EN”
“http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd”>

<hibernate-configuration>
<session-factory>

<mapping resource=”org/advancedjava/ch08/model/Model.hbm.xml”/>
</session-factory>

</hibernate-configuration>

381

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 381

It is very interesting to see what happens when you run the SchemaExport utility, as it offers much
insight into how Hibernate operates. In this first section, Hibernate does its setup and configuration:

C:\hibernate-2.1.4\bin>SchemaExport
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: Hibernate 2.1.4
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: loaded properties from resource hibernate.properties: {hibernate.connectio
n.driver_class=com.mysql.jdbc.Driver, hibernate.cglib.use_reflection_optimizer=t
rue, hibernate.cache.provider_class=net.sf.ehcache.hibernate.Provider, hibernate
.cache.use_query_cache=true, hibernate.max_fetch_depth=1, hibernate.dialect=net.
sf.hibernate.dialect.MySQLDialect, hibernate.jdbc.use_streams_for_binary=true, h
ibernate.jdbc.batch_size=0, hibernate.query.substitutions=true 1, false 0, yes ‘
Y’, no ‘N’, hibernate.connection.username=root, hibernate.connection.url=jdbc:my
sql:///contact, hibernate.connection.password=, hibernate.connection.pool_size=5
}
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: using java.io streams to persist binary types
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: using CGLIB reflection optimizer
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration addFile

Now that it has configured the environment, it starts picking up the mapping files or, in this case, the
only mapping file. On the first pass, it maps all of the entities, and then it does a second pass to map the
relationships and constraints:

INFO: Mapping file: C:\jakarta-tomcat-4.1.24-LE-jdk14\webapps\contact\WEB-INF\cl
asses\org\advancedjava\ch08\model\Model.hbm.xml
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Binder bindRootClass
INFO: Mapping class: org.advancedjava.ch08.model.Contact -> contacts
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Binder bindCollection
INFO: Mapping collection: org.advancedjava.ch08.model.Contact.expertises -> cont
act_expertise
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Binder bindRootClass
INFO: Mapping class: org.advancedjava.ch08.model.Expertise -> expertise
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Binder bindRootClass
INFO: Mapping class: org.advancedjava.ch08.model.Phone -> phone
Jun 12, 2004 3:15:46 PM net.sf.hibernate.dialect.Dialect <init>
INFO: Using dialect: net.sf.hibernate.dialect.MySQLDialect
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-many association mappings
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-one association property references
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing foreign key constraints
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-many association mappings
Jun 12, 2004 3:15:46 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-one association property references
Jun 12, 2004 3:15:47 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing foreign key constraints

382

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 382

Here it sets up its database connection, using the specified parameters (This is a good place to check if
your database isn’t where you expect it.):

Jun 12, 2004 3:15:47 PM net.sf.hibernate.tool.hbm2ddl.SchemaExport execute
INFO: Running hbm2ddl schema export
Jun 12, 2004 3:15:47 PM net.sf.hibernate.tool.hbm2ddl.SchemaExport execute
INFO: exporting generated schema to database
Jun 12, 2004 3:15:47 PM net.sf.hibernate.connection.DriverManagerConnectionProvi
der configure
INFO: Using Hibernate built-in connection pool (not for production use!)
Jun 12, 2004 3:15:47 PM net.sf.hibernate.connection.DriverManagerConnectionProvi
der configure
INFO: Hibernate connection pool size: 5
Jun 12, 2004 3:15:47 PM net.sf.hibernate.connection.DriverManagerConnectionProvi
der configure
INFO: using driver: com.mysql.jdbc.Driver at URL: jdbc:mysql:///contact
Jun 12, 2004 3:15:47 PM net.sf.hibernate.connection.DriverManagerConnectionProvi
der configure
INFO: connection properties: {user=root, password=}

Finally, it spits out the SQL that it will execute and reports on its success with the export. It then reports
that it is cleaning up after itself:

drop table if exists phone
drop table if exists contacts
drop table if exists contact_expertise
drop table if exists expertise
create table phone (ID BIGINT not null, PHONENUMBER VARCHAR(255), PHONETYPE VARC
HAR(255), primary key (ID))
create table contacts (ID BIGINT not null, FIRST_NAME VARCHAR(255), LAST_NAME VA
RCHAR(255), EMAIL VARCHAR(255), IM VARCHAR(255), primary key (ID))
create table contact_expertise (CONTACT_ID BIGINT not null, EXPERTISE_ID BIGINT
not null, primary key (CONTACT_ID, EXPERTISE_ID))
create table expertise (ID BIGINT not null, TITLE VARCHAR(255), DESCRIPTION VARC
HAR(255), primary key (ID))
alter table contact_expertise add index FK750E78B22540BDBA (CONTACT_ID), add con
straint FK750E78B22540BDBA foreign key (CONTACT_ID) references contacts (ID)
alter table contact_expertise add index FK750E78B2B1D44A29 (EXPERTISE_ID), add c
onstraint FK750E78B2B1D44A29 foreign key (EXPERTISE_ID) references expertise (ID
)
Jun 12, 2004 3:15:47 PM net.sf.hibernate.tool.hbm2ddl.SchemaExport execute
INFO: schema export complete
Jun 12, 2004 3:15:47 PM net.sf.hibernate.connection.DriverManagerConnectionProvi
der close
INFO: cleaning up connection pool: jdbc:mysql:///contact

In this case, you are using the MySQL database, so you can execute the Show Tables command and view
that they were actually created:

mysql> show tables;
+-------------------+
| Tables_in_contact |
+-------------------+
| contact_expertise |

(continued)

383

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 383

| contacts |
| expertise |
| phone |
+-------------------+
5 rows in set (0.01 sec)

Now that you have handled the domain model for this application, it is time to bring this application to
life and actually do something by implementing your Action classes.

Implementing Your Use Cases with Actions
So now what is it that your system does? Your use cases describe what a user hopes to achieve through
interacting with your system. They describe the behavior of your system, or the actions that your system
can provide. Now, the chicken and egg argument is only slightly older than the old software argument
concerning whether you should describe your system’s behavior or structure first. In this case, you have
described the structure first for two reasons:

1. This sample is an overwhelmingly data-centric application.

2. Because it is a data-centric application, the easiest way to restrict the scope is to define the
data first.

Now, you develop the use cases that comprise this application. Here is a set of use cases for the system.

Use Case Description

Browse Contacts If you specify a given expertise, it will display the contacts that have
that expertise.

Add Contact Gather the relevant information to add a contact to the contact manager.

Remove Contact Remove a contact from the contact manager.

Each of these use cases maps into an XWork Action. Here is the XWork Action used to handle the Browse
Contacts use case. The interesting points about it are

❑ It is just one plain old Java object; its simplicity is that it has methods for accessing and mutat-
ing its member variables and a go method to handle executing its intended function.

❑ It extends HibernateAction providing easy access to the Hibernate framework.

❑ It only takes a handful of lines of code to implement the use case. Even novice developers could
start doing the basics very quickly. In this case, you execute a query based on the Id of the
expertise for which you seek to find Contacts, and assign it to your List of contacts. Simply
return SUCCESS; if anything should fail in terms of the database, query, and so on, it will be han-
dled by the HibernateInterceptor:

package org.advancedjava.ch08;
import java.util.List;
import net.sf.hibernate.HibernateException;
import net.sf.hibernate.Query;
public class BrowseContactAction extends HibernateAction {

384

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 384

private Integer expertiseId;
private List contacts;
public String go() throws HibernateException {

Query q =
getSession().createQuery(

“select con from Contact con join con.expertises as exp where exp.id =
:ids”);

q.setParameter(“ids”, expertiseId);
contacts = q.list();
return SUCCESS;

}
/**
* @return
*/

public List getContacts() {
return contacts;

}
/**
* @return
*/

public Integer getExpertiseId() {
return expertiseId;

}
/**
* @param list
*/

public void setContacts(List list) {
contacts = list;

}
/**
* @param integer
*/

public void setExpertiseId(Integer integer) {
expertiseId = integer;

}
}

Of course, there is nothing to browse if you do not add contacts to the database. Here is the Action that
adds a Contact into the database. Note a couple of interesting things here:

❑ You are not handling the individual form elements or parameters and mapping them into the
domain objects. WebWork is doing that for you, along with the tedious type conversion code.

❑ Since you only got the Ids for the types of expertise, you need to pull the actual objects from the
database and assign them as a set to your Contact object.

package org.advancedjava.ch08;
import java.util.HashSet;
import net.sf.hibernate.HibernateException;
import net.sf.hibernate.Query;
import org.advancedjava.ch08.model.Contact;
import org.advancedjava.ch08.model.Phone;
public class AddContactAction extends HibernateAction {

private Integer[] selectedExpertises;
private Contact contact;

385

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 385

private Phone phone;
public AddContactAction() {

contact = new Contact();
phone = new Phone();

}
public String go() throws HibernateException {

Query q =
getSession().createQuery(

“from Expertise exp where exp.id in (:ids)”);
q.setParameterList(“ids”, selectedExpertises);
contact.setExpertises(new HashSet(q.list()));
contact.setPhone(phone);
getSession().save(contact);
return SUCCESS;

}

The remainder of this code demonstrates just the conventional accessor and mutator methods of the
object. Though frequently overlooked, and rarely considered very seriously, you must not forget them
when they are necessary, and with two frameworks like Hibernate and WebWork that make such exten-
sive use of reflection, they are very often necessary:

/**
* @return
*/

public Contact getContact() {
return contact;

}
/**
* @return
*/

public Phone getPhone() {
return phone;

}
/**
* @return
*/

public Integer[] getSelectedExpertises() {
return selectedExpertises;

}
/**
* @param contact
*/

public void setContact(Contact contact) {
this.contact = contact;

}
/**
* @param phone
*/

public void setPhone(Phone phone) {
this.phone = phone;

}
/**

386

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 386

* @param integers
*/

public void setSelectedExpertises(Integer[] integers) {
selectedExpertises = integers;

}
}

Of course, note that you could have written validation rules in your code, but instead it is easier to lever-
age XWork’s validation framework. Here is the validation XML file for this Action. It is pretty straight-
forward; you specify the types of validators that you wish to apply to each field, as well as a message if
it fails. You can consult XWork’s documentation for all of its validation features:

<!DOCTYPE validators
PUBLIC “-//OpenSymphony Group//XWork Validator 1.0//EN”
“http://www.opensymphony.com/xwork/xwork-validator-1.0.dtd”>

<validators>
<field name=”contact.firstName”>

<field-validator type=”requiredstring”>
<message>You must enter a first name.</message>

</field-validator>
</field>
<field name=”contact.lastName”>

<field-validator type=”requiredstring”>
<message>You must enter a last name.</message>

</field-validator>
</field>
<field name=”contact.email”>

<field-validator type=”email”>
<message>Please correct the e-mail address.</message>

</field-validator>
<field-validator type=”required”>

<message>Please enter an e-mail address.</message>
</field-validator>

</field>
</validators>

These Action classes provide the core business logic of your application, but no application would be
complete without considering the user interface.

Developing Your Views
Now, it is time to specify what the user will see as they traverse through the Web application. You will
now describe your system’s user interface. Given different actions, what will the user see? In Figure 8-7,
you have a drawing of how this Web application flows.

387

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 387

Figure 8-7

The flow starts with the default page of the Web application (specified just like any other J2EE Web
application, in the web.xml file) —index.jsp. This page just serves as the front page for the applica-
tion, which gives you links to your two major branches of the application: browsing contacts and adding
contacts. Figure 8-8 shows you the simplicity of this page.

As you start to mock up your view elements, it becomes obvious that you will need to pull expertise
data in order to populate the lists of expertise available in order to assign to a given contact, or by which
to browse your contacts. Thus, based on these views, you have now derived two use cases in support of
them.

Derived Use Case Description

Browse Contact Form This action will retrieve the relevant domain information required to
build the browse contact view. In this case, it will just be a list of
types of expertise.

Add Contact Form In the same way, you will need to gather that expertise list in order to
provide the user with the ability to assign which types of expertise a
contact brings.

SUCCESS

SUCCESS

INPUT

browseResults.jsp

deleteContact

index.jsp

browse.jsp

browseContacts

Default page

addContact.jspaddContactForm addContact

browseContactForm

388

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 388

Figure 8-8

Often in situations like this one, where you have use cases specified simply to build the view, you will
make a small departure from Model 2 purity and allow these pages to call their own application code
specific to just building the view. WebWork provides the ability to reference its Actions and framework
from within its WebWork JSP custom tags. However, for the sake of this chapter, since you used JSP cus-
tom tags extensively in the last chapter, you will use the pure approach.

Adding Contacts to the System
In order to browse the contacts in the system, first you must add some contacts to the system.
Following the Add a Contact link on the Web application’s homepage leads you to this screen,
displayed in Figure 8-9.

389

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 389

Figure 8-9

Here is addContact.jsp, which renders the input form. The important point to take away from this
important form is how it maps onto your Action class, right down to the internal attributes of its domain
objects (like Contact and Phone).

<%@ taglib prefix=”ww” uri=”webwork” %>
<jsp:include page=”index.jsp”/>
<table cellspacing=”0” cellpadding=”0” border=”0”>

<tr>
<th>Enter Contact:</th>

</tr>
<tr>

<td class=”mask”>
<ww:form name=”’createContactForm’”

action=”’addContact.action’” method=”’POST’”>
<ww:textfield label=”’First Name’” name=”’contact.firstName’”/>
<ww:textfield label=”’Last Name’” name=”’contact.lastName’”/>
<ww:textfield label=”’Email’” name=”’contact.email’”/>
<ww:textfield label=”’IM’” name=”’contact.im’”/>
<ww:textfield label=”’Phone Number’” name=”’phone.phoneNumber’”/>
<ww:textfield label=”’Phone Type’” name=”’phone.phoneType’”/>

390

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 390

<ww:select label=”’Expertise’” name=”’selectedExpertises’”
listKey=”id”
listValue=”title”
list=”expertises”
multiple=”true”

/>
<ww:submit value=”’CREATE’” />
</ww:form>

</td>
</tr>

</table>

Of course, after you submit your new Contact, it brings you right back to the same page, with the form
already filled in. This would be an ill-advised thing in production, but for a personal use system, it
would probably save some data entry. Either way, in this case, you are just doing this to reduce the scope
of the application so it can focus on the critical concepts of Model 2.

Browsing Contacts
Now that you have contacts, you can browse through them based on their expertise. Clicking on
“Browse Contacts” leads you to the screen displayed in Figure 8-10.

Figure 8-10

391

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 391

This page was built by using the Browse Contact Form use case, which provides an opportunity to
demonstrate how to map the domain object into a Select box. Here is the code for browse.jsp. Note
how the WebWork select tag maps to the List of Expertise objects that this page renders. The
listKey attribute provides the value for each of the options within the HTML select, while the
listValue provides the display value:

<%@ taglib prefix=”ww” uri=”webwork” %>
<jsp:include page=”index.jsp”/>
<table cellspacing=”0” cellpadding=”0” border=”0”>

<tr>
<th>Select an expertise:</th>

</tr>
<tr>

<td class=”mask”>
<ww:form name=”’browseContactForm’”

action=”’browseContacts.action’” method=”’POST’”>
<ww:select label=”’Expertise’” name=”’expertiseId’”

listKey=”id”
listValue=”title”
list=”expertises”

/>
<ww:submit value=”’BROWSE’” />
</ww:form>

</td>
</tr>

</table>

When you submit this page, you get a table of contacts with their relevant information. This table is
shown in Figure 8-11.

392

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 392

Figure 8-11

This screen is rendered by browseContacts.jsp. In it you see the use of the WebWork iterator tags
to traverse the list of contacts and print out the relevant details about each contact:

<%@ taglib prefix=”ww” uri=”webwork” %>
<jsp:include page=”index.jsp”/>
<table cellspacing=”1” cellpadding=”1” border=””>

<tr>
<th>Contacts</th>

</tr>
<tr>

<td class=”mask”>
<table cellspacing=”4” cellpadding=”4”>

<tr>
<th>Name</th>
<th>E-mail</th>
<th>IM</th>
<th>Phone Number (Type)</th>
<th>Expertise</th>
<th>Delete?</th>

</tr>
<ww:iterator id=”curContact” value=”contacts”>

393

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 393

<tr>
<td>

<ww:property value=”firstName”/>, <ww:property value=”lastName”/>
</td>
<td><a href=”mailto:<ww:property value=”email”/>”/>

<ww:property value=”email”/>
</td>

<td>
<ww:property value=”im”/>

</td>
<td>

<ww:property value=”phone.phoneNumber”/>
(
<ww:property value=”phone.phoneType”/>
)</td>

<td>
<ww:iterator id=”expertiseCur” value=”expertises”>
<a href=”browseContacts.action?expertiseId=<ww:property value=”id”/>”>
<ww:property value=”title”/>

</ww:iterator>

</td>
<td><a href=”deleteContact.action?selectedContact=<ww:property

value=”id”/>”>
Delete</td>

</tr>
</ww:iterator>

</table>
</td>

</tr>
</table>

Of course, the link to Delete will remove a given Contact from the database, but it returns the user back
to the Browse Contacts screen, so it is unnecessary to review again.

Now that you have put together all of the components of a WebWork application, you need to review
how to configure all of them to work together.

Configuring Your Application
In putting together all of these components that you have built using the WebWork framework, the first
thing to remember is that WebWork is a J2EE Web application first and foremost. Therefore, it is useful to
start with the Web application deployment descriptor, commonly called the web.xml:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>

394

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 394

<display-name>Contact manager</display-name>
<description>Example of Model 2 using Hibernate</description>
<filter>

<filter-name>container</filter-name>
<filter-

class>com.opensymphony.webwork.lifecycle.RequestLifecycleFilter</filter-class>
</filter>
<filter-mapping>

<filter-name>container</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<listener>

<listener-
class>com.opensymphony.webwork.lifecycle.ApplicationLifecycleListener</listener-cla
ss>

</listener>
<listener>

<listener-
class>com.opensymphony.webwork.lifecycle.SessionLifecycleListener</listener-class>

</listener>
<servlet>

<servlet-name>velocity</servlet-name>
<servlet-

class>com.opensymphony.webwork.views.velocity.WebWorkVelocityServlet</servlet-class
>

<load-on-startup>1</load-on-startup>
</servlet>
<servlet>

<servlet-name>webwork</servlet-name>
<servlet-

class>com.opensymphony.webwork.dispatcher.ServletDispatcher</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>webwork</servlet-name>
<url-pattern>*.action</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>velocity</servlet-name>
<url-pattern>*.vm</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
</welcome-file-list>
<taglib>

<taglib-uri>webwork</taglib-uri>
<taglib-location>/WEB-INF/webwork.tld</taglib-location>

</taglib>
</web-app>

Note that the WebWork wrapper to XWork is composed of a servlet filter, a listener, two servlets, and a
tag library. You could always modify the mappings as you see fit, for example, if you prefer to make
your actions more like those of Struts and end in .do, rather than .action.

395

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 395

The XWork framework, of course, defines the flow of the application, and that is defined within the
xwork.xml file:

<!DOCTYPE xwork
PUBLIC “-//OpenSymphony Group//XWork 1.0//EN”
“http://www.opensymphony.com/xwork/xwork-1.0.dtd”>

<xwork>
<include file=”webwork-default.xml”/>
<package name=”default” extends=”webwork-default”>

<default-interceptor-ref name=”defaultStack”/>
<action name=”browseContactForm”

class=”org.advancedjava.ch08.BrowseContactFormAction”>
<result name=”success” type=”dispatcher”>

<param name=”location”>/browse.jsp</param>
</result>
<interceptor-ref name=”defaultStack”/>

</action>
<action name=”addContactForm”

class=”org.advancedjava.ch08.AddContactFormAction”>
<result name=”success” type=”dispatcher”>

<param name=”location”>/addContact.jsp</param>
</result>
<interceptor-ref name=”defaultStack”/>

</action>
<action name=”addContact” class=”org.advancedjava.ch08.AddContactAction”>

<result name=”input” type=”dispatcher”>
<param name=”location”>/addContact.jsp</param>

</result>
<result name=”success” type=”chain”>

<param name=”actionName”>addContactForm</param>
</result>
<interceptor-ref name=”defaultStack”/>
<interceptor-ref name=”validation”/>

</action>
<action name=”browseContacts”

class=”org.advancedjava.ch08.BrowseContactAction”>
<result name=”success” type=”dispatcher”>

<param name=”location”>/browseResults.jsp</param>
</result>
<interceptor-ref name=”defaultStack”/>

</action>
<action name=”deleteContact”

class=”org.advancedjava.ch08.DeleteContactAction”>
<result name=”success” type=”chain”>

<param name=”actionName”>browseContactForm</param>
</result>
<interceptor-ref name=”defaultStack”/>

</action>
</package>

</xwork>

As you learned earlier in the chapter, WebWork provides the ability to inject dependencies into a Web
application, which was used to strap Hibernate into the application. In the components.xml, you spec-
ify the components and the enabler interfaces:

396

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 396

<components>
<component>

<scope>request</scope>
<class>org.advancedjava.ch08.component.HibernateSession</class>
<enabler>org.advancedjava.ch08.component.HibernateSessionAware</enabler>

</component>
<component>

<scope>application</scope>
<class>org.advancedjava.ch08.component.HibernateSessionFactory</class>
<enabler>org.advancedjava.ch08.component.HibernateSessionFactoryAware

</enabler>
</component>

</components>

Now, that you have built the components and configured the application, you are ready to deploy and
use your application.

Adapting to Changes
Now that the contact manager is up and running, what if you wanted to add an attribute to your
Contact object? Since your application has become so wildly successful, you have forgotten who all of
these contacts are and need to add a description to your contact. To accomplish this, change the UML
diagram in Figure 8-6 to look like Figure 8-12.

Figure 8-12

Contact

-id : Long
-lastName : String
-firstName : String
-im : String
-email : String
-phone : Phone
-expertises : Set
-description : String

1

*

1

*

Phone

-id : Long
-phoneNumber : String
-phoneType : String

Expertise

-id : Long
-title : String
-description : String

397

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 397

Of course, you would have to modify the Hibernate mapping file to accommodate the change to the
domain model. Here is the change to Model.hbm.xml:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD 2.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping package=”org.advancedjava.ch08.model”>
<class name=”Contact” table=”contacts”>

<id name=”id” column=”ID”
unsaved-value=”null”>
<generator class=”increment”/>

</id>
<property name=”firstName” column=”FIRST_NAME” />
<property name=”lastName” column=”LAST_NAME”/>
<property name=”email” column=”EMAIL”/>

<property name=”description” column=”DESCRIPTION”/>
<property name=”im” column=”IM”/>

Now, that you have added your addition column, you could do one of two things: You can modify the
database schema by hand, or you can run Hibernate’s SchemaUpdate tool to resynchronize your
database with your Hibernate mappings.

Once you have gotten your database and mappings back up to date, you will need a place to enter the
data. This is the change to your addContact.jsp file:

<%@ taglib prefix=”ww” uri=”webwork” %>
<jsp:include page=”index.jsp”/>
<table cellspacing=”0” cellpadding=”0” border=”0”>

<tr>
<th>Enter Contact:</th>

</tr>
<tr>

<td class=”mask”>
<ww:form name=”’createContactForm’”

action=”’addContact.action’” method=”’POST’”>
<ww:textfield label=”’First Name’” name=”’contact.firstName’”/>
<ww:textfield label=”’Last Name’” name=”’contact.lastName’”/>
<ww:textfield label=”’Email’” name=”’contact.email’”/>
<ww:textfield label=”’IM’” name=”’contact.im’”/>
<ww:textfield label=”’Description’” name=”’contact.description’”/>
<ww:textfield label=”’Phone Number’” name=”’phone.phoneNumber’”/>
<ww:textfield label=”’Phone Type’” name=”’phone.phoneType’”/>
<ww:select label=”’Expertise’” name=”’selectedExpertises’”

listKey=”id”
listValue=”title”
list=”expertises”
multiple=”true”

/>
<ww:submit value=”’CREATE’” />
</ww:form>

</td>
</tr>

</table>

398

Chapter 8

11_574868 ch08.qxd 12/21/04 5:55 PM Page 398

Other than the obvious change to your Contact.java, that is all you need to do in order to add an
attribute to your model. This is the key point in using the Model 2 Architecture: Modularity allows
flexibility.

Summary
You have built a contact manager using the Model 2 Architecture leveraging WebWork framework (and
Inversion of Control) to add support for the Hibernate Object persistance framework. While the applica-
tion is simplified in order to keep the examples easy to understand, it clearly demonstrates how you can
easily adapt your application to new requirements.

In this chapter, you learned the following things:

❑ Web applications do not have to be developed using a page-centric approach, but rather there is
an approach towards building modular Web applications known as the Model 2 Architecture.

❑ In a popular Web application framework called WebWork, the Model 2 Architecture is com-
bined with a concept known as Inversion of Control, to allow Plain Old Java Objects (POJOs) to
implement your functionality independent of the burdens of configuring external components.

❑ The modularity of WebWork allows you to plug in useful tools like Hibernate to build very
streamlined applications that focus directly on your business domain.

The next chapter will discuss how to leverage code developed in other languages through the Java
Native Interface.

399

Developing Web Applications Using the Model 2 Architecture

11_574868 ch08.qxd 12/21/04 5:55 PM Page 399

11_574868 ch08.qxd 12/21/04 5:55 PM Page 400

Interacting with C/C++
Using Java Native Interface

This chapter discusses connecting Java programs to programs written in C/C++. Java Native
Interface (JNI) provides a sophisticated mechanism for invoking routines written in native code,
and also provides a mechanism for native code to call routines that are written in Java.

A First Look at Java Native Interface
Creating a Java program that uses native code is fundamentally simple. First, you write the Java
code and mark certain methods as native and leave the method un-implemented (as if you were
writing an abstract method). Next, you run a utility that comes with the JDK to create a C/C++
header file. The native methods are then implemented in C/C++, with signatures matching the
version in the generated header file. The Java code must then load this library in order to obtain
access to the native routines. This process is illustrated in Figure 9-1.

To get a basic idea of how to write a program using JNI, create a small library of math routines
implemented in C++ and invoke this from Java.

12_574868 ch09.qxd 12/21/04 5:54 PM Page 401

Figure 9-1

Creating the Java Code
The Java code is straightforward. Two methods are created, addTwoNumbers and multiplyTwoNumbers.
These methods have no method bodies and are marked with the native keyword:

public class JNIMathClient {
public native int addTwoNumbers(int one, int two);
public native int multiplyTwoNumbers(int one, int two);

static {
System.loadLibrary(“MathLibrary”);

}

public static void main(String args[])
{

JNIMathClient client = new JNIMathClient();

Write the Java code,
marking methods

implemented in native code
with the “native” keyword

OVERVIEW OF
USING JNI

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Place the name of the library
in a call to System.load or
System.loadLibrary in the

Java source

Write the native code in C++
based on the generated

header file

Generate a C++ header file
using javah

Execute the Java program

402

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 402

int num1, num2;

num1 = 5;
num2 = 100;
System.out.println(num1 + “ + “ + num2 + “ = “ +

client.addTwoNumbers(num1, num2));
System.out.println(num1 + “ * “ + num2 + “ = “ +

client.multiplyTwoNumbers(num1, num2));
}

}

The rest of the Java program is written as expected. The native methods are called as if they were nor-
mally implemented routines in Java. The static initializer is used to ensure the native library is loaded
before it can be used inside the program. The discussion of the loadLibrary call is saved for the next
section since it requires details of the native library.

Creating the Native Code and Library
In order to write the code in C++, javah — a tool that comes with the JDK — must be used to generate a
header file. This header file contains the prototypes for the functions that must be implemented in C++.
The Java code is first compiled and then this tool is executed on the class file. You execute javah by speci-
fying the name of the class (not a filename) as the first parameter. The output of javah is a header file
that has the same name as the class, and h as the file extension.

The resulting header file after executing javah JNIMathClient is JNIMathClient.h:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class JNIMathClient */

#ifndef _Included_JNIMathClient
#define _Included_JNIMathClient
#ifdef __cplusplus
extern “C” {
#endif
/*
* Class: JNIMathClient
* Method: addTwoNumbers
* Signature: (II)I
*/

JNIEXPORT jint JNICALL Java_JNIMathClient_addTwoNumbers
(JNIEnv *, jobject, jint, jint);

/*
* Class: JNIMathClient
* Method: multiplyTwoNumbers
* Signature: (II)I
*/

JNIEXPORT jint JNICALL Java_JNIMathClient_multiplyTwoNumbers
(JNIEnv *, jobject, jint, jint);

#ifdef __cplusplus
}
#endif
#endif

403

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 403

Each native method declaration is translated into a counterpart in C++. Each function always takes as its
first two parameters a handle to the Java VM environment and a handle to the object that called the
native method. Each parameter after those are the parameters specified in the original declaration of
the function in the Java code.

After creating the header file, it can then be used in a C++ project. Using Visual Studio 6.0, create a sim-
ple DLL project and include this header file. Implementing the functions is a simple matter of copying
the function signatures and filling in the bodies.

Select File ➪ New and navigate to the Projects tab. Choose Win32 Dynamic-Link Library and give it a
name. Figure 9-2 shows an example. On the first step of the wizard, choose A Simple DLL Project in
order to already have the boilerplate code for a DLL. Click on Finish and then OK. Look at Figure 9-2 to
see these options chosen in the Visual C++ wizard.

Figure 9-2

Continuing this example, the routines in the source file MathLibrary.cpp will be filled in. Don’t forget to
include the generated header file at the top of the source file:

// MathLibrary.cpp : Defines the entry point for the DLL application.
//

#include “stdafx.h”
#include “..\JNIMathClient.h”

JNIEXPORT jint JNICALL Java_JNIMathClient_addTwoNumbers
(JNIEnv *, jobject, jint one, jint two)

{
return(one + two);

404

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 404

}

JNIEXPORT jint JNICALL Java_JNIMathClient_multiplyTwoNumbers
(JNIEnv *, jobject, jint one, jint two)

{
return(one * two);

}

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved

)
{

return TRUE;
}

After the native methods are implemented in C++, build the project. If there are no errors, you end
up with a DLL file. This is the native library that then must be referenced in a call to System.load or
System.loadLibrary. The library must be in the same directory as the Java program, or found somewhere
in the paths specified in the system property java.library.path. If you use System.loadLibrary, specify only
the base name of the native library — don’t include the extension or a path. If you use System.load, you
can specify a full path and must specify the extension of the library. The name of the library has nothing to
do with the routines inside it, so feel free to name this file anything you want, but preserve the extension.

Executing the Code
If all is configured correctly, executing the Java code loads the native library, calls the routines, and uses
the returned results. Executing the above Java code provides the following output:

5 + 100 = 105
5 * 100 = 500

If the library (MathLibrary.dll) is not found, you will end up with the following error:

java.lang.UnsatisfiedLinkError: no MathLibrary in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1644)
at java.lang.Runtime.loadLibrary0(Runtime.java:817)
at java.lang.System.loadLibrary(System.java:986)
at JNIMathClient.<clinit>(JNIMathClient.java:7)

Exception in thread “main”

You will also get this error if you try to use the native routines before you’ve called System.load or
System.loadLibrary. By placing this call in the static initializer, you ensure the native library will be
loaded well before it is needed.

Prototypes, also known as function signatures, follow a specific naming convention.
The full package name comes first (following the prefix _Java) with each dot replaced
with an underscore, then the name of the class, another underscore, then the name of
the method. A native method named addNumbers defined in a package com.mathlib
and inside a class named Math becomes _Java_com_mathlib_Math_addNumbers in
the header file.

405

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 405

Java Native Interface
JNI provides many functions, such as string and array handling, and a complete set of functions to
create and use Java objects. These functions all take a pointer to the Java environment as the first param-
eter. However, in order to simplify programming, these functions all have an alias that is defined in the
JNIEnv structure. This means you can invoke any JNI function by calling it through the pointer to the
JNI environment. The rest of this chapter describes functions that are defined in this structure instead of
the full version that includes this first parameter. Each function’s full declaration will precede its expla-
nation throughout the rest of this chapter.

Data Types
The most important aspect of interfacing with other languages is the treatment of various data types
such as strings. Different languages store strings in different ways. For example, character array strings
in C and C++ are null-terminated. Strings in Java store the length separately, but are also 0-indexed. JNI
provides a number of functions to manipulate strings, described in detail later. The primitive data types
are provided with natural analogs on the native side. Consult the following table to see how data types
in Java translate to types in C++.

Primitive Type Native Type Size (Bits)

boolean jboolean 8, unsigned

byte jbyte 8

char jchar 16, unsigned

short jshort 16

int jint 32

long jlong 64

float jfloat 32

double jdouble 64

void void n/a

Strings in JNI
The jstring data type is used to handle Java strings in C/C++. This type should not be used directly. If
you try to use it in a call to printf (a C function to output text to the screen), for example, you run the
risk of crashing the Java virtual machine. The jstring must first be converted to a C-string using one of
several string conversion functions that JNI provides.

Java passes strings to the native environment in a slightly modified UTF-8 format. Take a look at Figure
9-3 to see how UTF-8 characters are organized in memory. If the high bit is set for a particular byte, the
byte is part of a multibyte character. This means that ASCII characters from value 1 to 127 stay the same,

406

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 406

and though you can’t count on it, if all the characters in the jstring are in this range, you can use the
jstring directly in C/C++ code. Java does not use UTF-8 characters longer than three bytes, and the null
character (ASCII 0) is represented by two bytes, not one. This means you will never have a character that
has all its bits set to 0.

Figure 9-3

There are also routines that work with Unicode strings. Unicode characters always take up two bytes. If
you’re writing a program that uses localized strings, always handle your strings in Unicode since UTF-8
does not support internationalization. There are five functions that work with UTF-8 strings, and each
has a counterpart for Unicode strings. Two additional functions round out the set of string functions.
These last two functions obtain a lock or release a lock on the string for purposes of synchronizing
strings when in a threaded environment. Each string function takes as its first parameter a pointer to the
Java environment. This is already passed in when a native function is called, so this is easily available:

jstring NewString(const jchar *unicodeChars, jsize len);
jstring NewStringUTF(const char *bytes);

The Unicode version of NewString takes a sequence of characters (jchar, which is two bytes) and the
length in number of characters (not number of bytes). The UTF version simply takes a sequence of bytes.

A single byte accounts for
characters in the range \u0001

to \u007F. The high bit is
always 0.

Two bytes account for
characters in the range\u0080

to \u07FF, and the null
character, \u0000

UTF-8 Character Encoding

Bits 0-6
0

(Bit 7)

Bits 6-10 Bits 0-5

High Byte Low Byte

1 01 1 0

Three bytes account for
characters in the range \u0800

to \uFFFF

Bits 12-15 Bits 6-11

High Byte Low Byte

1 01 1 1 0 Bits 0-51 0

407

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 407

Each byte may form part of a one-, two- or three-byte character, and the end of the string is marked by a
two-byte NULL character:

jsize GetStringLength(jstring string);
jsize GetStringUTFLength(jstring string);

Both the Unicode and UTF versions of GetStringLength take a jstring and return its size in number of
characters:

const jchar *GetStringChars(jstring string, jboolean *isCopy);
const char *GetStringUTFChars(jstring string, jboolean *isCopy);

These two GetStringChars functions return a pointer to the sequence of characters in a specified jstring.
These are the main functions used to take a jstring and turn it into a string that can be easily used in
native code. The pointer is valid until the accompanying version of ReleaseStringChars is invoked.
The Unicode version returns a pointer to jchar, and the UTF returns a pointer to jbyte. The isCopy
parameter is set to JNI_TRUE if a copy of the string is made, or set to NULL or JNI_FALSE if no copy
is made:

void ReleaseStringChars(jstring string, const jchar *chars);
void ReleaseStringUTFChars(jstring string, const char *utf);

Invoking one of the ReleaseStringChars functions tells the VM that the native code no longer needs to
use the character sequence obtained in the call to the accompanying version GetStringChars. The pointer
to the characters is no longer valid after this function is called. The original string must be passed in
along with the pointer obtained from the GetStringChars call:

void GetStringRegion(jstring str, jsize start, jsize len, jchar *buf);
void GetStringUTFRegion(jstring str, jsize start, jsize len, char *buf);

The GetStringRegion functions transfer a substring of the string str to a character buffer. The substring
starts at position start and stops at len-1 (therefore transferring len number of characters). This may
throw a StringIndexOutOfBoundsException:

const jchar *GetStringCritical(jstring string, jboolean *isCopy);

The GetStringCritical function returns a pointer to the characters in the specified string. If necessary, the
characters are copied and the function returns with isCopy set to JNI_TRUE. Otherwise, isCopy is NULL
or set to JNI_FALSE. After this function is invoked, and up to the point ReleaseStringCritical is invoked,
the functions used cannot cause the current thread to block:

void ReleaseStringCritical(jstring string, const jchar *carray);

The ReleaseStringCritical function releases the pointer obtained from the call to GetStringCritical.

String Example
Here’s an example of implementing a string-replace function in native code. The function replaceString
takes a source string and replaces a string inside of the source string with another, then returns the new
string. The Java code sets up what is needed on the native side:

408

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 408

public class StringExamples {
public native String replaceString(String sourceString, String strToReplace,

String replaceString);

static {
System.loadLibrary(“StringLibrary”);

}

public static void main(String args[])
{

StringExamples ex = new StringExamples();
String str1 = “”;
String str2 = “”;

str1 = “Sky Black”;
str2 = ex.replaceString(str1, “Black”, “Blue”);
System.out.println(“The string before: “ + str1);
System.out.println(“The string after: “ + str2);

}
}

The C++ implementation of the replaceString method, shown next, makes use of the string functions
that you just learned:

JNIEXPORT jstring JNICALL Java_StringExamples_replaceString
(JNIEnv *env, jobject obj,
jstring _srcString, jstring _strToReplace, jstring _replString)

{
const char *searchStr, *findStr, *replStr, *found;
jstring newString = NULL;
int index;

searchStr = env->GetStringUTFChars(_srcString, NULL);
findStr = env->GetStringUTFChars(_strToReplace, NULL);
replStr = env->GetStringUTFChars(_replString, NULL);

found = strstr(searchStr, findStr);

if(found != NULL) {
char *newStringTemp;

index = found - searchStr;
newStringTemp =

new char[strlen(searchStr) + strlen(replStr) + 1];

strcpy(newStringTemp, searchStr);
newStringTemp[index] = 0;
strcat(newStringTemp, replStr);
strcat(newStringTemp, &searchStr[index+strlen(findStr)]);

newString = env->NewStringUTF((const char*)newStringTemp);

409

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 409

}

env->ReleaseStringUTFChars(_srcString, searchStr);
env->ReleaseStringUTFChars(_strToReplace, findStr);
env->ReleaseStringUTFChars(_replString, replStr);

return(newString);
}

The GetStringUTFChars function is used to convert the string to a string guaranteed useable in native
code. The code within the if clause performs the search and replace, and finally allocates a new UTF
string with the affected string. This reference is returned, so it is the only reference not released using
ReleaseStringUTFChars.

Arrays in JNI
JNI supports the use of both arrays of primitive types and arrays of objects. Each primitive type has an
array type counterpart. These array types are listed in the following table.

Name of Primitive Data Type Array Type (For Use in C/C++ Code)

boolean jbooleanArray

byte jbyteArray

char jcharArray

short jshortArray

int jintArray

long jlongArray

float jfloatArray

double jdoubleArray

Much like strings in JNI, arrays cannot be used directly. JNI provides a complete set of functions to
access, get information about, create, and synchronize both arrays of objects and arrays of primitive data
types. The following is an example of how Java arrays should NOT be used in C/C++:

JNIEXPORT jint JNICALL
int findNumber(JNIEnv *env, jobject obj, jintArray intArray,

jint arraySize, jint numberToFind)
{

int i;

for(i=0; i<arraySize; i++) {
if(intArray[i] == numberToFind) {

return(i);
}

}

return(-1);
}

410

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 410

This piece of code does not take into account any of the functions provided by JNI for processing arrays. JNI
has a function to get the length of an array, and functions to access the array elements since the elements
cannot be accessed directly. If you attempt to compile and execute the above code, it will crash the VM.

Array Functions
This section separates the array functions into those that work with arrays of objects and those that work
with arrays of primitive data types. The function GetArrayLength works with any array. This is what the
function looks like:

jsize GetArrayLength(jarray array);

The GetArrayLength function returns the length of the array. This is the same value you get when
accessing the length property of the array in Java code.

Functions for Arrays of Objects
There are three functions that are provided for working with arrays of Java objects in native code. These
are NewObjectArray, GetObjectArrayElement, and SetObjectArrayElement:

jobjectArray NewObjectArray(jsize length, jclass elementClass,
jobject initialElement);

The NewObjectArray function creates a new object array of size length that holds objects of type
elementClass. All elements in the array are set to initialElement, thus providing an easy way to
initialize the entire array to null (or to another value):

jobject GetObjectArrayElement(jobjectArray array, jsize index);

The GetObjectArrayElement function retrieves an object inside the array at the index specified by
index. If the index is out of bounds, an IndexOutOfBoundsException is thrown:

void SetObjectArrayElement(jobjectArray array, jsize index, jobject value);

The SetObjectArrayElement function sets the array element inside array at position index to value. If
the index is out of bounds, an IndexOutOfBoundsException is thrown.

Functions for Arrays of Primitive Types
There are five core functions for use with each primitive data type. There is one version of each function
for each primitive data type. Because there are so many functions, this section uses an abbreviation for
each function. Certain information must be replaced with correct data types. In the following list of
functions, the [Type] is replaced with the exact name of a primitive type from the first column in the fol-
lowing table. The [ArrayType] is replaced with the exact name of the array data type from the second
column in the table. The [NativeType] is replaced with the exact name of the native data type from col-
umn three in the table. For example, to create a new integer array, you use the function NewIntArray
that returns jintArray.

411

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 411

Name of Primitive Array Type (For Use Primitive Type (For Use
Data Type in C/C++ Code) in C/C++ Code)

boolean jbooleanArray jboolean

byte jbyteArray jbyte

char jcharArray jchar

short jshortArray jshort

int jintArray jint

long jlongArray jlong

float jfloatArray jfloat

double jdoubleArray jdouble

[ArrayType] New[Type]Array(jsize length);

The NewArray function returns a newly created Java array that is length elements in size.

[NativeType] *Get[Type]ArrayElements([ArrayType] array, jboolean *isCopy);

The GetArrayElements function returns a pointer to an array of the native type that corresponds to the
Java data type. The parameter isCopy is set to JNI_TRUE if the memory returned is a copy of the array
from the Java code, or JNI_FALSE if the memory is not a copy.

void Release[Type]ArrayElements([ArrayType] array, [NativeType] *elems, jint mode);

The ReleaseArrayElements function releases the memory obtained from the call to
Get[Type]ArrayElements. If the native array is not a copy, then the mode parameter can be used to
optionally copy memory from the native array back to the Java array. The values of mode and their
effects are listed in the following table.

Value of Mode Description

0 Copies the memory from the native array to the Java array
and deallocates the memory used by the native array

JNI_COMMIT Copies the memory from the native array to the Java array, but
does NOT deallocate the memory used by the native array

JNI_ABORT Does not copy memory from the native array to the Java array.
The memory used by the native array is still deallocated.

void Get[Type]ArrayRegion([ArrayType] array, jsize start, jsize len,
[NativeType] *buf);

412

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 412

The GetArrayRegion function operates much like Get[Type]ArrayElements. However, this is used to
copy only a subset of the array. The parameter start specifies the starting index to copy from, and len
specifies how many positions in the array to copy into the native array:

void Set[Type]ArrayRegion([ArrayType] array, jsize start, jsize len,
[NativeType] *buf);

The SetArrayRegion is the counterpart to Get[Type]ArrayRegion. This function is used to copy a segment
of a native array back to the Java array. Elements are copied directly from the beginning of the native array
(index 0) but are copied into the Java array starting at position start and len elements are copied over:

void *GetPrimitiveArrayCritical(jarray array, jboolean *isCopy);

The GetPrimitiveArrayCritical function returns a handle to an array after obtaining a lock on the array. If
no lock could be established, the isCopy parameter comes back with a value JNI_TRUE. Otherwise,
isCopy comes back NULL or as JNI_FALSE:

void ReleasePrimitiveArrayCritical(jarray array, void *carray, jint mode);

The ReleasePrimitiveArrayCritical releases the array previously returned from a call to
GetPrimitiveArrayCritical. Look at the next table to see how the mode parameter affects the array and
carray parameters.

Value for Mode Meaning

0 Copies the values from carray into array and frees the mem-
ory associated with carray

JNI_COMMIT Copies the values from carray into array but does not free
the memory associated with carray

JNI_ABORT Does not copy the values from carray to array, but does free
the memory associated with carray

Array Examples
Here’s an example of implementing a sort routine in native code. In order to keep things simple, the
insertion sort is used. The Java code, as usual, is fairly simple. The native method is declared, then the
library is statically loaded, and the native method is invoked in the main method:

public class PrimitiveArrayExample {
public native boolean sortIntArray(int[] numbers);

static {
System.loadLibrary(“PrimitiveArrayLibrary”);

}

public static void main(String args[])
{

PrimitiveArrayExample pae = new PrimitiveArrayExample();

413

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 413

int numberList[] = {4, 1, 2, 20, 11, 7, 2};

if(pae.sortIntArray(numberList)) {
System.out.print(“The sorted numbers are: “);
for(int i=0; i<numberList.length; i++) {

System.out.print(numberList[i] + “ “);
}
System.out.println();

} else {
System.out.println(“The sort operation failed because “ +

“the array memory could not be allocated.”);
}

}
}

The native code uses the array functions to work with an array of integers:

JNIEXPORT jboolean JNICALL Java_PrimitiveArrayExample_sortIntArray
(JNIEnv *env, jobject obj, jintArray intArrayToSort)

{
jint *intArray;
jboolean isCopy;
int i, j, num;

intArray = env->GetIntArrayElements(intArrayToSort, &isCopy);

if(intArray == NULL) {
return(false);

}

for(i=1; i<env->GetArrayLength(intArrayToSort); i++) {
num = intArray[i];

for(j=i-1; j >= 0 && (intArray[j] > num); j--) {
intArray[j+1] = intArray[j];

}

intArray[j+1] = num;
}

env->ReleaseIntArrayElements(intArrayToSort, intArray, 0);
return(true);

}

This sortIntArray function uses the GetIntArrayElements in order to work with the array in a native
form. The GetArrayLength function is used to know how many elements are in the array, and finally,
ReleaseIntArrayElements is used to both save the changed memory to the Java array and deallocate
the memory.

As one final example of arrays, create an array of strings and then implement a find function that returns
the index to the string:

414

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 414

public class ObjectArrayExample {
public native int findString(String[] stringList, String stringToFind);

static {
System.loadLibrary(“ObjectArrayLibrary”);

}

public static void main(String args[])
{

ObjectArrayExample oae = new ObjectArrayExample();
String[] colors = {“red”,”blue”,”black”,”green”,”grey”};
int foundIndex;

System.out.println(“Searching for ‘black’...”);
foundIndex = oae.findString(colors, “black”);

if(foundIndex != -1) {
System.out.println(“The color ‘black’ was found at index “

+ foundIndex);
} else {

System.out.println(“The color ‘black’ was not found”);
}

}
}

An array of strings is created and passed to the native method findString. If the string is not found, the
method returns -1 and otherwise returns the index to the string from the array:

JNIEXPORT jint JNICALL Java_ObjectArrayExample_findString
(JNIEnv *env, jobject obj, jobjectArray strList, jstring strToFind)

{
const char *findStr;
jint i;
int arrayLen;

arrayLen = env->GetArrayLength(strList);
findStr = env->GetStringUTFChars(strToFind, NULL);

if(findStr == NULL) {
return(-1);

}

for(i=0; i<arrayLen; i++) {
jstring strElem = (jstring)env->GetObjectArrayElement(strList, i);

if(strElem != NULL) {
const char *strTemp = env->GetStringUTFChars(strElem, NULL);

if(strcmp(strTemp, findStr) == 0) {
env->ReleaseStringUTFChars(strElem, strTemp);
env->ReleaseStringUTFChars(strToFind, findStr);
env->DeleteLocalRef(strElem);

415

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 415

break;
}

env->ReleaseStringUTFChars(strElem, strTemp);
env->DeleteLocalRef(strElem);

}

env->ReleaseStringUTFChars(strToFind, findStr);
}

if(i == arrayLen) {
return(-1);

} else {
return(i);

}
}

The GetArrayLength function is used to retrieve the length of the object array. The object array is then
accessed using the GetObjectArrayElement function to retrieve a specific element. Note that the object is
then cast to a jstring in order to get a handle to the array element’s specific type. Also note that since the
GetObjectArrayElement function returns a local reference, the reference is freed using DeleteLocalRef.
As explained in the local reference section, this call to DeleteLocalRef isn’t necessary here, but it helps to
remind you that many native functions return a local reference.

Working with Java Objects in C/C++
Java Native Interface also provides a set of functions to manipulate Java objects (using methods/fields),
handle exceptions, and synchronize data for threads. These functions provide greater access to Java
objects on the native side, allowing for more sophisticated applications. One way that these functions
can be used is to make callbacks to Java methods, perhaps to communicate information. You will see
this in action in the mail client example at the end of this chapter.

Accessing Fields in JNI
There are two types of member variables in Java classes — static fields, that belong to classes, and non-
static fields, that belong to individual objects. In order to gain access to a field, you must pass a field
descriptor and the name of the field to GetFieldID or GetStaticFieldID. A field descriptor is one or more
characters that fully describe a field’s type. For example, the field int number has as its field descriptor I.
Consult the next table for a full list of descriptors for primitive types. The descriptor for an array type is
prefixed with the character [for each dimension of the array. Therefore, the type int[] numbers is
described by [I, and int[][] numbers is [[I. For reference types, the fully qualified name of the class is
used but the dots are replaced with a forward slash and the descriptor is surrounded by an L at the
beginning and a semicolon at the end. For example, the type java.lang.Integer is described by
Ljava/lang/Integer.

416

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 416

Primitive Type Field Descriptor

boolean Z

byte B

char C

short S

int I

long J

float F

double D

Much like the variety of functions for use with arrays of primitive types, each primitive type has its own
Get and Set function for fields. This section also uses the abbreviated version for compactness. The
[NativeType] is replaced by a string from the first column of the next table, and [Type] is replaced by the
corresponding string from the second column in the table.

Name of Primitive Data Type Primitive Type (For Use in C/C++ Code)

boolean jboolean

byte jbyte

char jchar

short jshort

int jint

long jlong

float jfloat

double jdouble

Here are the functions that are provided to access fields inside Java classes:

jfieldID GetFieldID(jclass clazz, const char *name, const char *sig);

The GetFieldID function returns a handle to the specified field for use in the Get and Set functions. The
GetObjectClass function (described later) can be used to get a jclass suitable for the first parameter to
this function. The name is the name of the field, and the sig parameter is the field descriptor. If this
function fails, it returns NULL:

[NativeType] Get[Type]Field(jobject obj, jfieldID fieldID);

417

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 417

The GetField function returns the value of a particular field specified by fieldID that belongs to the Java
object obj:

void Set[Type]Field(jobject obj, jfieldID fieldID, [NativeType] val);

The SetField function sets the value of a particular field specified by fieldID that belongs to the Java
object obj to the value val:

jfieldID GetStaticFieldID(jclass clazz, const char *name, const char *sig);

The GetStaticFieldID function works the same as GetFieldID but is used for getting a handle to a static field:

[NativeType] GetStatic[Type]Field(jclass clazz, jfieldID fieldID);

The GetStaticField function returns the value of a static field specified by the fieldID handle and belong-
ing to the class described by clazz:

void SetStatic[Type]Field(jclass clazz, jfieldID fieldID, [NativeType] value);

The SetStaticField function sets the value of a static field specified by the fieldID that belongs to the class
described by clazz:

Here’s an example of accessing fields on an object. The Java code defines a Point class and the native
code performs some transformation on that point:

class Point {
public int x, y, z;

public String toString()
{

return(“(“ + x + “, “ + y + “, “ + z + “)”);
}

}

public class FieldAccessExample {
public native void transformPoint(Point p);

static {
System.loadLibrary(“FieldAccessLibrary”);

}

public static void main(String args[])
{

FieldAccessExample fae = new FieldAccessExample();
Point p1 = new Point();

p1.x = 17;
p1.y = 20;
p1.z = 10;
System.out.println(“The point before transformation: “ + p1);

418

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 418

fae.transformPoint(p1);
System.out.println(“The point after transformation: “ + p1);

}
}

The native library is loaded as usual. An instance of the Point class is created and set up, then the native
function is called. The native code accesses the fields in the Point object and modifies these fields. Note
that the object passed in isn’t a copy — any changes done to it in native code take effect in the Java code
when the native function returns:

JNIEXPORT void JNICALL Java_FieldAccessExample_transformPoint
(JNIEnv *env, jobject obj, jobject thePoint)

{
jfieldID x_id, y_id, z_id;
jint x_value, y_value, z_value;
jclass cls;

cls = env->GetObjectClass(thePoint);

x_id = env->GetFieldID(cls, “x”, “I”);
y_id = env->GetFieldID(cls, “y”, “I”);
z_id = env->GetFieldID(cls, “z”, “I”);

x_value = env->GetIntField(thePoint, x_id);
y_value = env->GetIntField(thePoint, y_id);
z_value = env->GetIntField(thePoint, z_id);

x_value = x_value;
y_value = 10*y_value + 5;
z_value = 30*z_value + 2;

env->SetIntField(thePoint, x_id, x_value);
env->SetIntField(thePoint, y_id, y_value);
env->SetIntField(thePoint, z_id, z_value);

}

The GetObjectClass function is used to get a handle to the class behind a specified object. In this case,
GetObjectClass returns a handle to the Point class. Each field is an integer, so the field descriptor used is
simply I. After the field ID’s are retrieved, accessing the value of the field happens through GetIntField
and the field values are written back using SetIntField.

Invoking Java Methods Using JNI
Just like fields, there are static and nonstatic methods in Java. JNI provides functions to execute methods
on Java objects and also static methods on Java classes. Much like accessing fields, the name and a
descriptor for the method are used in order to get a handle to a specific Java method. Once you have this
handle, you pass it to one of the CallMethod functions along with the actual parameters for the method.
There are actually a number of CallMethod functions — one for each possible return type from a method.
Consult the previous table for a listing of the various return types.

419

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 419

The method descriptor is formed by placing all the method’s parameter types inside a single set of
parentheses, and then specifying the return type after the closing parenthesis. Types for parameters and
return type use the field descriptor described in the previous section. If the method returns void, the
descriptor is simply V. If the method does not take any parameters, the parentheses are left empty. The
method descriptor for the main method that you are familiar with is ([Ljava/lang/String;)V. The param-
eters to main are placed inside the parentheses. The square bracket followed by the String object type
corresponds to the data type String []args. Outside the parentheses is a single V since main has void as
its return type. If you wish to invoke the constructor, use the method name <init>, and for static con-
structors, use the name <clinit>.

Following is a list of functions for use when invoking methods on Java objects. The various CallMethod
functions have versions for each data type, much like the functions for accessing fields, so the abbrevia-
tion is also used here. Replace the [NativeType] with a native data type, and replace the [Type] with the
type name to finish the name of the function:

jclass GetObjectClass(jobject obj);

The GetObjectClass function returns a jclass that represents the class of the Java object obj that is passed in:

jmethodID GetMethodID(jclass clazz, const char *name, const char *sig);
jmethodID GetStaticMethodID(jclass clazz, const char *name, const char *sig);

A shortcut to deriving field and method descriptors can be found in the javap utility
that comes with the JDK. By passing the command-line option -s to javap, you get a
listing of the descriptors for the methods and fields of a class. For example, running
javap on the Point class generates the following output:

H:\CHAPTER9\code>javap -s Point
Compiled from FieldAccessExample.java
class Point extends java.lang.Object {

public int x;
/* I */

public int y;
/* I */

public int z;
/* I */

Point();
/* ()V */

public java.lang.String toString();
/* ()Ljava/lang/String; */

}

Both field descriptors and method descriptors are output. You can copy these
descriptors directly into the calls to the GetFieldID or GetMethodID functions
instead of figuring the descriptors out manually.

420

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 420

The GetMethodID and GetStaticMethodID functions return a handle to the specified method for use in
the various CallMethod functions. The GetObjectClass function can be used to get a jclass suitable for
the first parameter to this function. The name is the name of the method, and the sig parameter is the
method descriptor. If this function fails it returns NULL:

[NativeType] Call[Type]Method(jobject obj, jmethodID methodID, ...);
[NativeType] Call[Type]MethodV(jobject obj, jmethodID methodID, va_list args);
[NativeType] Call[Type]MethodA(jobject obj, jmethodID methodID,

const jvalue *args);

The CallMethod functions (and variants) are used to invoke an instance method on a Java object. The
first two parameters to all these functions are a handle to the object that has the method, and the handle
to the specific method to invoke. The other parameters are the actual parameters to the Java method
about to be invoked. The first function accepts a variable number of arguments and passes these argu-
ments directly to the Java method. The second function accepts the list of arguments as a va_list struc-
ture that is prepackaged with the list of arguments. The third function accepts the method arguments as
an array of jvalue, which is a union able to take the form of any of the native data type versions of the
Java data types, including jobject. If you wish to invoke a constructor or a private method, the method
ID has to be obtained based on the actual class of the object, not one of the object’s super-classes:

[NativeType] CallNonvirtual[Type]Method(jobject obj, jclass clazz,
jmethodID methodID, ...);

[NativeType] CallNonvirtual[Type]MethodV(jobject obj, jclass clazz,
jmethodID methodID, va_list args);

[NativeType] CallNonvirtual[Type]MethodA(jobject obj, jclass clazz,
jmethodID methodID,
const jvalue *args);

The CallNonvirtual functions also invoke an instance method of an object, but which Java method to
invoke is based on the clazz parameter. These enable you to invoke a specific method somewhere in the
hierarchy of the object’s class instead of invoking a method based on just the object’s class. Just like the
normal CallMethod functions, these allow you to pass in arguments to the Java method in the same
three different ways:

[NativeType] CallStatic[Type]Method(jclass clazz, jmethodID methodID, ...);
[NativeType] CallStatic[Type]MethodV(jclass clazz, jmethodID methodID,

va_list args);
[NativeType] CallStatic[Type]MethodA(jclass clazz, jmethodID methodID,

const jvalue *args);

The CallStaticMethod functions (and variants) invoke a static method belonging to the class clazz that is
passed in. Use GetStaticMethodID to obtain a handle to the specific method to invoke. Arguments to the
method can be passed in to this function in the same three ways as described above.

Along with showing how to invoke Java methods, the following example shows the relationship of the
Call and CallNonvirtual functions to combinations of an object and a handle to a class and a handle to a
method:

421

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 421

class InvokeMethodParentClass {
public void printMessage()
{

System.out.println(“Inside InvokeMethodParentClass”);
}

}

public class InvokeMethodExample extends InvokeMethodParentClass {
public native void execMethods();

static {
System.loadLibrary(“InvokeMethodLibrary”);

}

public void printMessage()
{

System.out.println(“Inside InvokeMethodExample”);
}

public static void main(String args[])
{

InvokeMethodExample ime = new InvokeMethodExample();

ime.execMethods();
}

}

The Java source defines a parent and a child class and both classes define the same method. The
execMethods native method invokes the Call and CallNonvirtual functions in a variety of ways:

JNIEXPORT void JNICALL Java_InvokeMethodExample_execMethods
(JNIEnv *env, jobject obj)

{
jclass childClass, parentClass;
jmethodID parent_methodID, child_methodID;

childClass = env->GetObjectClass(obj);
parentClass = env->FindClass(“InvokeMethodParentClass”);

if(childClass == NULL || parentClass == NULL) {
printf(“Couldn’t obtain handle to parent or child class”);
return;

}

parent_methodID = env->GetMethodID(childClass, “printMessage”, “()V”);
child_methodID = env->GetMethodID(parentClass, “printMessage”, “()V”);

if(parent_methodID == NULL || child_methodID == NULL) {
printf(“Couldn’t obtain handle to parent or child method”);
return;

}

// These two calls invoke the method on the child class
env->CallVoidMethod(obj, parent_methodID);

422

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 422

env->CallVoidMethod(obj, child_methodID);

// These two calls invoke the method on the parent class
env->CallNonvirtualVoidMethod(obj, childClass, parent_methodID);
env->CallNonvirtualVoidMethod(obj, parentClass, parent_methodID);

// These two calls invoke the method on the child class
env->CallNonvirtualVoidMethod(obj, childClass, child_methodID);
env->CallNonvirtualVoidMethod(obj, parentClass, child_methodID);

}

Here’s the output from this example:

Inside InvokeMethodExample
Inside InvokeMethodExample
Inside InvokeMethodParentClass
Inside InvokeMethodParentClass
Inside InvokeMethodExample
Inside InvokeMethodExample

Using the regular version, CallVoidMethod, the child’s method is always invoked, regardless of which
method ID is used (the one for the parent class or the one for the child). The CallNonvirtualVoidMethod
must be used to cause the method of the parent class to execute. Note that regardless of which class type
is passed in, the determining factor for which method to execute is the method ID that is passed in.

Handling Java Exceptions in Native Code
JNI provides hooks to the Java exception mechanism in order to handle exceptions that are thrown in the
course of executing methods that are implemented in Java code, or native methods written to throw Java
exceptions. This mechanism has no bearing on standard error handling for regular functions imple-
mented in C/C++. JNI provides a set of functions for checking, analyzing, and otherwise handling Java
exceptions in native code. This section explores these functions and shows how to go about handling
Java exceptions in native code in order to maintain Java’s approach to exception handling:

jboolean ExceptionCheck();

The ExceptionCheck function returns JNI_TRUE if an exception has been thrown, or JNI_FALSE if one
hasn’t:

jthrowable ExceptionOccurred();

The ExceptionOccurred function retrieves a local reference to an exception that is being thrown. The
native code or the Java code must handle this exception:

void ExceptionDescribe();

The ExceptionDescribe function prints information about the exception that was just thrown to the
standard error output. This information includes a stack trace:

void ExceptionClear();

423

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 423

The ExceptionClear function clears an exception if one was just thrown:

jint Throw(jthrowable obj);

The Throw function throws an exception that has already been created. If the exception was successfully
thrown, 0 is returned; otherwise, a negative value is returned:

jint ThrowNew(jclass clazz, const char *msg);

The ThrowNew function creates an exception based on clazz, which should inherit from Throwable,
with the exception text specified by msg (in UTF-8 format). If the construction and throwing of the
exception is successful, this function returns 0; otherwise, a negative value is returned:

void FatalError(const char *msg);

The FatalError function causes the signaling of a fatal error. A fatal error is only for situations where
recovery is not possible. The VM is shut down upon calling this function.

You should always check for exceptions that might occur in the course of executing native code. If an
exception is left unhandled, it will cause future calls to most JNI functions to fail. Here’s a simple sce-
nario using the FindClass function to try to find a class that isn’t there and then handle the exception:

JNIEXPORT void JNICALL Java_ExceptionExample_testExceptions
(JNIEnv *env, jobject obj)

{
// Try to find a class that isn’t there to trigger an exception
env->FindClass(“NoSuchClass”);

// If an exception happened, print it out and then clear it
if(env->ExceptionCheck()) {

env->ExceptionDescribe();
env->ExceptionClear();

}
}

The first statement in the function triggers a NoClassDefFoundError exception. When running this
native function, the following output is generated:

java.lang.NoClassDefFoundError: NoSuchClass
at ExceptionExample.testExceptions(Native Method)
at ExceptionExample.main(ExceptionExample.java:13)

Exception in thread “main”

The exception details are printed, specifying which exception was thrown, extra information (in this
case, the name of the class passed to FindClass), and the stack trace showing the method calls up to the
native method, where the exception was thrown. The stack trace doesn’t include line numbers in the
native code since Java does not have native code line number information immediately available to it.

424

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 424

Working with Object References in Native Code
JNI provides sets of functions to utilize Java objects in native code, as you’ve seen with strings, arrays,
and general objects. This raises an important question that you may have already considered — how are
references to objects handled? More specifically, how does the garbage collector handle object references
and know when to collect garbage? JNI provides three different types of references:

❑ Local References. For use only in a single native method.

❑ Global References. For use across multiple invocations of native methods.

❑ Weak Global References. Just like global references, but these do not prevent the object from
being garbage collected.

Local References
Local references are explicitly created using the NewLocalRef function, though a number of JNI func-
tions return a local reference. These references are intended only for use while a native function executes
and disappear when that function returns. Local references should not be cached on the native side
(such as in a local static variable) since they are not valid across multiple calls to the native method. As
soon as the native function returns, any local references that existed are now eligible for garbage collec-
tion. If you want to deallocate the local reference before the function returns, you can explicitly deallo-
cate the local reference using the DeleteLocalRef function. Local references are also only valid in the
thread that created them, so don’t try to store a local reference and use it in a different thread.

The following functions are available to explicitly create and destroy local references:

jobject NewLocalRef(jobject ref);

The NewLocalRef function returns a new local reference to the object reference passed in. If NULL is
passed in, the function returns NULL:

void DeleteLocalRef(jobject obj);

The DeleteLocalRef function deallocates the local reference that is passed in.

All local references are available for garbage collection when a native function returns. Local references
are created by many JNI functions, such as GetStringUTFChars. Most local references are created and
cleaned up automatically. Since local references are so common, look at the example in the next section
to see an example of explicitly accounting for local references.

Managing Local References
You must be conscious of how many local references are currently in use since many functions return
local references. JNI only allows for a set maximum number of local references. Also, if you create refer-
ences to large objects, you run the risk of exhausting the available memory. The following functions are
provided for management of local references:

jint EnsureLocalCapacity(jint capacity);

425

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 425

This function ensures that at least capacity number of local references can be created. The VM ensures
that at least 16 local references can be created when a native method is called. If you try to create more
local references than are available, FatalError is invoked. This function returns 0 on success and a nega-
tive number on failure along with throwing an OutOfMemoryException:

jint PushLocalFrame(jint capacity);

The PushLocalFrame is a useful function to create a new scope of local references. This makes it simple
to release all local references allocated in this frame by using the PopLocalFrame function. When this is
called, at least capacity number of local references can be created in this frame. This function returns 0
on success and a negative number on failure along with throwing an OutOfMemoryException:

jobject PopLocalFrame(jobject result);

The PopLocalFrame function releases all local references in the current frame (pops up a level). Since
storing the result of this function (the return value) might cause a local reference creation in the about-to-
be-popped frame, this function accepts a parameter that causes the reference creation to happen in the
topmost frame after the current one is popped. This ensures you maintain a reference that stores the
result of this function.

Here’s an example showing the usage of the local reference management functions:

JNIEXPORT void JNICALL Java_LocalRefExample_testLocalRefs
(JNIEnv *env, jobject obj)

{
jint count;

// Let’s figure out just how many local references
// we can create...
for(count=16; count<10000; count++) {

if(env->EnsureLocalCapacity(count+1)) {
break;

}
}

printf(“I can create up to %d local references\n”, count);

// Now let’s create a few...
jcharArray charArray;
jintArray intArray;
jstring str;

str = env->NewStringUTF(“This is a test”);

if(env->PushLocalFrame(10)) {
charArray = env->NewCharArray(13);

if(charArray == NULL) {
printf(“Failed to create character array\n”);

426

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 426

return;
}

if(env->PushLocalFrame(10)) {
intArray = env->NewIntArray(14);

if(intArray == NULL) {
printf(“Failed to create integer array\n”);
return;

}

// intArray created. Use PopLocalFrame to free all allocated
// references in this scope level, in this case just intArray
env->PopLocalFrame(NULL);

}

// charArray created. Use PopLocalFrame to free all allocated
// references in this scope level, in this case just charArray
env->PopLocalFrame(NULL);

}

// ‘str’ is freed after this function exits
}

When I ran this function, it printed that it can allocate 4,096 local references. The Java VM only guaran-
tees 16 local references, so always call the EnsureLocalCapacity function if you need a large number of
local references. Each call to PushLocalFrame allocates a new scope level for allocating local references.
All local references that are allocated are automatically freed when PopLocalFrame is called. Only
intArray is freed when the first PopLocalFrame is called, and only charArray is freed when the second
call to PopLocalFrame happens.

Global and Weak Global References
Global references are meant for use across different invocations of a native method. They are created
only by using the NewGlobalRef function. Global references can also be used across separate threads.
Since global references give you these added benefits, there is a small trade-off: Java cannot control the
lifetime of a global reference. You must determine when the global reference is no longer needed and
deallocate it manually using the DeleteGlobalRef function. Weak global references are much like global
references, but the underlying object might be garbage collected at any time. JNI provides a special invo-
cation of IsSameObject for finding out if the underlying object is still valid.

The following functions are used for creating and destroying global references:

jobject NewGlobalRef(jobject lobj);
jweak NewWeakGlobalRef(jobject obj);

NewGlobalRef creates a new global reference and returns it, and NewWeakGlobalRef creates and
returns a new weak global reference. The parameter to these functions is the class of the object to create.
If you don’t have a handle to a class, you can obtain one by invoking the FindClass function. If you try

427

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 427

to create a reference to the null object, or the object cannot be created, these functions return NULL. If
the reference cannot be created due to no more available memory, an OutOfMemoryException is thrown:

void DeleteGlobalRef(jobject gref);
void DeleteWeakGlobalRef(jweak ref);

The DeleteGlobalRef/DeleteWeakGlobalRef functions deallocate the global (or weak global) reference
that was previously allocated in a call to NewGlobalRef or NewWeakGlobalRef.

Here’s an example of how to cache a class for use across multiple calls to this native function:

JNIEXPORT void JNICALL Java_GlobalRefExample_testGlobalRef
(JNIEnv *env, jobject obj)

{
static jstring globalString = NULL;
const char *gStr;

if(globalString == NULL) {
// First time through, create global reference
jstring localStr;

localStr = env->NewStringUTF(“This is a string”);

if(localStr == NULL) {
return;

}

printf(“Global reference does not exist, creating...\n”);
globalString = (jstring)env->NewGlobalRef(localStr);

}

gStr = env->GetStringUTFChars(globalString, NULL);

printf(“The contents of globalString: %s\n”, gStr);
fflush(stdout);

env->ReleaseStringUTFChars(globalString, gStr);
}

The globalString is marked static so it is preserved across multiple calls to the function. The globalString
reference must be created using NewGlobalRef so that the underlying object is also preserved across
multiple calls to this function. The first time this is invoked, a local reference to a string is created. This
local reference is then used to create a global reference, which is then stored in globalString. The output
from the above function, invoked twice, shows how the globalString is created only the first time
through:

--- FIRST TIME CALLING ---
Global reference does not exist, creating...
The contents of globalString: This is a string
--- SECOND TIME CALLING ---
The contents of globalString: This is a string

428

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 428

Don’t forget to build in code to deallocate the global reference. This example shows only how to create a
global reference. When to call DeleteGlobalRef depends on your application design.

Comparing References
JNI provides a special function, IsSameObject, in order to test whether the object behind two references
is the same. In C++, the keyword NULL corresponds to a null object in Java. Thus, you can pass NULL
as a parameter to IsSameObject or compare an object reference directly to NULL. The IsSameObject
function has the following prototype:

jboolean IsSameObject(jobject obj1, jobject obj2);

The IsSameObject function returns JNI_TRUE if the objects are the same, and JNI_FALSE otherwise. If
you attempt to compare a weak global reference to NULL using IsSameObject, it returns JNI_TRUE if the
underlying object hasn’t been garbage collected, and JNI_FALSE if the object has.

Advanced Programming Using JNI
JNI provides several other capabilities to the programmer of native routines. Since Java is a multithreaded
environment, routines related to threading are available on the native side. JNI also supports a way of
exposing native routines to Java code singly, rather than making all native functions immediately avail-
able through a call to System.load or System.loadLibrary. In addition to these features, Java exposes the
reflection library natively.

Java Threading
Since Java is a multithreaded environment, it is possible that one or more threads in a system will invoke
native methods. This makes it important to know how native methods and things like global references
in native libraries relate to threading in Java. The pointer to the Java environment is thread specific, so
don’t use one thread’s environment pointer in another thread. If you plan to pass a local reference from
one thread to another, convert it to a global reference first. Local references are also thread specific.

Thread Synchronization
JNI provides two native functions for synchronizing objects, MonitorEnter and MonitorExit. These are
the only threading functions that are exposed directly at the native level since these are time-critical
functions. Other functions such as wait and notify should be invoked using the method invocation func-
tions described in an earlier section:

jint MonitorEnter(jobject obj);

Invoking the MonitorEnter function is equivalent to using synchronized(obj) in Java. The current thread
enters the specified object’s monitor, unless another thread has a lock on the object, in which case the
current thread pauses until the other thread releases the object’s monitor. If the current thread already
has a lock on the object’s monitor, a counter is incremented for each call to this function for the object.
Returns a 0 on success, or a negative value if the function failed:

jint MonitorExit(jobject obj);

429

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 429

The MonitorExit function decrements the object’s monitor counter by 1, or releases the current thread’s
lock on the object if the counter reaches 0. Returns a 0 on success, or a negative value if the function
failed.

Native NIO Support
Introduced to JNI in the 1.4 version of Java are three functions that work with NIO direct buffers. A
direct byte buffer is a container for byte data that Java will do its best to perform native I/O operations
on. JNI defines three functions for use with NIO:

jobject NewDirectByteBuffer(void* address, jlong capacity);

Based on a pointer to a memory address and the length of the memory (capacity), this function allocates
and returns a new java.nio.ByteBuffer. Returns NULL if this function is not implemented for the current
Java virtual machine, or if an exception is thrown. If no memory is available, an
OutOfMemoryException is thrown:

void *GetDirectBufferAddress(jobject buf);

The GetDirectBufferAddress function returns a pointer to the address referred to by the java.nio.ByteBuffer
object that is passed in. Returns NULL if the function is not implemented, if the buf is not an object of the
java.nio.ByteBuffer type, or if the memory region is not defined:

jlong GetDirectBufferCapacity(jobject buf);

The GetDirectBufferCapacity function returns the capacity (in number of bytes) of a java.nio.ByteBuffer
object that is passed in. Returns -1 if the function is not implemented or if the buf is not an object of the
java.nio.ByteBuffer type.

Manually Registering Native Methods
JNI provides a way to register native methods at run time. This dynamic registration is especially useful
when a native application initiates an instance of the virtual machine at run time. Native methods in this
application cannot be loaded by the VM (since they aren’t in a native library), but can still be used by the
Java code after the functions have been manually registered. It is also possible to register a native func-
tion multiple times, changing its implementation at run time. The only requirement for native functions
is that they follow the JNICALL calling convention. In this section you will see how to utilize these func-
tions to perform more sophisticated coding tasks using JNI:

jint RegisterNatives(jclass clazz, const JNINativeMethod *methods,
jint nMethods);

The RegisterNatives function is used to register one or more native methods. It returns 0 if successful, or
a negative value otherwise. The parameter clazz is a handle to the Java class that contains the native
methods about to be registered. The nMethods parameter specifies how many native methods are in
the list to register. The methods parameter is a pointer to a list of native methods (can be one or more
methods). Each element of the methods array is an instance of the JNINativeMethod structure. The
JNINativeMethod structure is as follows:

430

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 430

typedef struct {
char *name;
char *signature;
void *fnPtr;

} JNINativeMethod;

The strings are UTF-8 encoded strings. The name member contains the name of the native method to
register (from the Java class) and signature is the method descriptor that fully describes the method’s
type. The fnPtr member is a function pointer that points to the C function to register. The function
behind this pointer must adhere to the following prototype:

[ReturnType] (*fnPtr)(JNIEnv *env, jobject objectOrClass, ...);

The [ReturnType] must be one of the native equivalents of the Java data types. The first two parameters
to all native method implementations are a pointer to the Java environment and a reference to the
class/object invoking the native method. The variable argument list is for the regular parameters passed
to the method:

jint UnregisterNatives(jclass clazz);

The UnregisterNatives function should not be used except in highly specialized situations. This function
unregisters all native methods registered with the class passed in. This function returns 0 on success and
a negative value otherwise.

Here’s an example of manually registering a native method. The Java code defines two native functions,
one that is used to select which sort routine to use, and the other to perform the sort. The sortNumbers
method has no implementation when the library is loaded. The setSort function uses an input parameter
to know which sort routine to manually register:

import java.io.*;

public class RegisterNativeExample {
public native boolean sortNumbers(int strList[]);
public native void setSort(int whichSort);

static {
System.loadLibrary(“RegisterNativeLibrary”);

}

public static void main(String args[])
{

RegisterNativeExample rne = new RegisterNativeExample();
int sortType = 1;
int nums[] = {23, 1, 6, 1, 2, 7, 3, 4};

try {
BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));

System.out.println(“Choose a sort routine”);
System.out.println(“ 1. Bubble”);
System.out.println(“ 2. Insertion”);

431

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 431

System.out.print(“% “);
sortType = Integer.parseInt(br.readLine());
rne.setSort(sortType);
rne.sortNumbers(nums);
System.out.print(“Sorted numbers are: “);
for(int i=0; i<nums.length; i++) {

System.out.print(nums[i] + “ “);
}
System.out.println(“”);

} catch(IOException ioe) {
System.out.println(“IOException occurred”);
ioe.printStackTrace();

}
}

}

Much like the example of using primitive arrays, the list of numbers is hard-coded. The user is asked to
choose which sort to use, and the setSort function manually registers the chosen sort routine.

Here’s the native code. The sort routines are what you would expect, so just their signatures are listed
here, along with the setSort function. The full code is available online:

jboolean JNICALL bubbleSort(JNIEnv *env, jobject obj, jintArray intArrayToSort)
{ /* ... */ }

jboolean JNICALL insertionSort(JNIEnv *env, jobject obj, jintArray intArrayToSort)
{ /* ... */ }

JNIEXPORT void JNICALL Java_RegisterNativeExample_setSort
(JNIEnv *env, jobject obj, jint which)

{
JNINativeMethod sortMethod;

sortMethod.name = “sortNumbers”;
sortMethod.signature = “([I)Z”;

if(which == 1) {
sortMethod.fnPtr = bubbleSort;

} else {
sortMethod.fnPtr = insertionSort;

}

env->RegisterNatives(env->GetObjectClass(obj), &sortMethod, 1);
}

The name of the sort method in the Java code is sortNumbers and its signature is ([I)Z; that is, it takes an
array of integers and returns a boolean. The final member of the JNINativeMethod structure is the func-
tion pointer and is set to either bubbleSort or insertionSort. Finally the RegisterNatives function is called
to register the single method that was just configured. After this call, the sortNumbers method can be
invoked in the Java code.

Reflection
JNI provides a set of reflection functions that mirror those in the Java API. Using these functions makes
it possible to discover information about classes such as a class’s super-class or whether one type can be

432

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 432

cast to another. Functions are also provided to convert jmethodID and jfieldID types to and from their
corresponding method or field:

jclass FindClass(const char *name);

The FindClass function searches all classes/jar files found in the CLASSPATH for the class name passed
in. If the class is found, a handle to that class is returned. The name is a UTF-8 string that includes the
full package name and class name, but the dots are replaced with forward slashes. If the class is not
found, NULL is returned and one of the following exceptions are thrown:

❑ ClassFormatError. The class requested is not a valid class.

❑ ClassCircularityError. Tthe class/interface is its own super-class/superinterface.

❑ OutOfMemoryError. There is no memory for the handle to the class.

jclass GetObjectClass(jobject obj);

The GetObjectClass function returns a handle to the class of the object passed in:

jclass GetSuperclass(jclass sub);

The GetSuperclass function returns a handle to the super-class of the class passed in. If java.lang.Object
is passed in, or an interface is passed in, this function returns NULL:

jboolean IsAssignableFrom(jclass sub, jclass sup);

The IsAssignableFrom function is used to determine if an object of the class described by sub can be suc-
cessfully cast to the class described by sup. Returns JNI_TRUE if sub and sup are the same classes, sub is
a subclass of sup, or sub implements the interface sup. Returns JNI_FALSE otherwise:

jboolean IsInstanceOf(jobject obj, jclass clazz);

The IsInstanceOf function returns JNI_TRUE if obj is an instance of clazz, and JNI_FALSE otherwise.
Passing in NULL for obj causes the function to always return JNI_TRUE since null objects can be cast to
any class:

jmethodID FromReflectedMethod(jobject method);

The FromReflectedMethod function accepts a handle to an object of the java.lang.reflect.Method and
returns a jmethodID suitable for use in the functions that require a jmethodID:

jobject ToReflectedMethod(jclass cls, jmethodID methodID, jboolean isStatic);

The ToReflectedMethod function accepts a handle to a Java class and a handle to a specific method
(which might be a constructor) and returns a java.lang.reflect.Method object corresponding to that
method. Set isStatic to JNI_TRUE if the method is a static method, and JNI_FALSE (or 0) otherwise. If the
function fails, it returns NULL and throws an OutOfMemoryException:

jfieldID FromReflectedField(jobject field);

433

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 433

The FromReflectedField function accepts a handle to an object of the java.lang.reflect.Field and returns a
jfieldID suitable for use in the functions that require a jfieldID:

jobject ToReflectedField(jclass cls, jfieldID fieldID, jboolean isStatic);

The ToReflectedField function accepts a handle to a Java class and a handle to a specific field and returns
a java.lang.reflect.Field object corresponding to that field. Set isStatic to JNI_TRUE if the field is a static
field, and JNI_FALSE (or 0) otherwise. If the function fails, it returns NULL and throws an
OutOfMemoryException.

Developing an E-Mail Client
To wrap up this chapter, look at a larger program that will retrieve information stored in MS Outlook.
This example is based on a project I worked on in the past and provides a way to bring different aspects
of JNI together to show what a real-world application of JNI might look like. The e-mail client will pro-
vide a user interface to check mail and send mail. This is displayed in a Swing user interface. The mail
and mail folder information is accessed using the MAPI routines through COM. The JNI portion is the
most important, so the complete user interface is not included here (but is available in the code online
for this chapter). In order to retrieve e-mail on the client side, CDO (Collaborative Data Objects) is used,
so this example assumes you are running Outlook and it is configured to send mail. Note that due to
security updates in Outlook, you might be presented with a dialog cautioning you that an external
program is attempting to access information from Outlook or attempting to send mail.

System Design
Take a look at Figure 9-4 to see how the Java code relates to the native code. The MailClient contains the
user interface (using Swing). The MailClient class communicates with the JNIMailBridge, which has the
native functions to invoke the send and check e-mail native functions. The native library then uses COM
to access the information stored in Outlook.

Figure 9-4

Outlook
(Mail Folders

and Mail)

MailLibrary
(C++)

MAPI (COM)
JNIMailBridge

(Java)

MailClient
(Java)

JNI

434

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 434

User Interface
The following two figures, Figures 9-5 and 9-6, are screen shots of the actual mail client. In the first screen
shot, the Mail Folders tree contains all the folders beneath the top folder from Outlook. The table in the top
right shows all the messages in the Example folder (shown after double-clicking on Example). The bottom
right contains the body of the message (shown after double-clicking on a specific message in the table).

Figure 9-5

This second screen shot contains a basic set of fields to address an e-mail, write the e-mail, and send it
(after hitting the Send Mail button).

Figure 9-6

435

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 435

The JNIMailBridge class contains all the code related to the retrieval and storage of messages from
Outlook. The native code uses the method-calling functions in order to pass data back to the Java appli-
cation. Two helper classes are defined as follows in order to store the folder/e-mail information:

class MailMessage {
public String fromAddress;
public String subject;
public String body;

public MailMessage(String from, String subj, String b)
{

fromAddress = from;
subject = subj;
body = b;

}

public String toString()
{

return(“FROM: “ + fromAddress + “ SUBJECT: “ + subject);
}

}

class MailFolder {
String folderName=””;
ArrayList<MailMessage> messageList;

public MailFolder(String name)
{

setFolderName(name);
messageList = new ArrayList<MailMessage>();

}

public String getFolderName()
{

return(folderName);
}

public void setFolderName(String name)
{

folderName = name;
}

public int getMessageCount()
{

return(messageList.size());
}

public MailMessage getMessage(int index)
{

if(index < 0 || index >= messageList.size()) {
return(null);

}

return((MailMessage)messageList.get(index));

436

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 436

}

public void addMessage(MailMessage msg)
{

messageList.add(msg);
}

public void clearMessages()
{

messageList = new ArrayList<MailMessage>();
}

public String toString()
{

return(folderName);
}

}

The MailMessage class stores basic information about a single e-mail message. The MailFolder class stores
a collection of these MailMessage objects in an ArrayList and allows for ease of saving and retrieving
e-mail messages. The real work on the Java side happens in the JNIMailBridge class:

public class JNIMailBridge {
ArrayList<MailFolder> mailFolders;

public native void sendMail(String profile, String to,
String subject, String body);

public native void getFolderContents(String profile,
String topFolderName, String folderName);

public native void getFolderList(String profile, String topFolderName);

static {
System.loadLibrary(“MailLibrary”);

}

These methods establish the functions that will be implemented on the native side. The sendMail
method sends an e-mail from the user associated with the profile. The getFolderContents returns a list of
all pieces of mail inside a specified folder. The getFolderList returns a list of all folders within a top-level
folder. The following methods are used to store and retrieve lists of folders and mail messages:

public void clearFolderList()
{

mailFolders = new ArrayList<MailFolder>();
}

public void addFolder(String folderName)
{

mailFolders.add(new MailFolder(folderName));
}

public int getFolderCount()
{

437

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 437

return(mailFolders.size());
}

public MailFolder getFolder(int index)
{

if(index < 0 || index >= mailFolders.size()) {
return(null);

}

return(mailFolders.get(index));
}

public MailFolder findFolder(String folderName)
{

int index;
MailFolder folder;

for(index=0; index<mailFolders.size(); index++) {
folder = mailFolders.get(index);

if(folder.getFolderName().equals(folderName)) {
return(folder);

}
}

return(null);
}

public void clearMessageList(String folderName)
{

MailFolder folder;

folder = findFolder(folderName);

if(folder != null) {
folder.clearMessages();

}
}

public void addMessage(String folderName, String from,
String subj, String body)

{
MailFolder folder;
MailMessage msg;

folder = findFolder(folderName);

if(folder != null) {
msg = new MailMessage(from, subj, body);
folder.addMessage(msg);

}
}

}

438

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 438

The JNIMailBridge class defines three native functions. The profile parameter is used to select a specific
profile in Outlook. Each user generally has one profile for storing mail and other data in Outlook. The
other parameters to sendMail are the address to send the mail message to, and the subject and text of the
mail message. The getFolderContents method transfers messages from a specified folder in Outlook
(using the two parameters top folder; that is, the folder that contains other folders, and the individual
folder that has the messages) to the JNIMailBridge class using the clearMessageList and addMessage
methods. The getFolderList method transfers all folders that are located beneath the top folder. For pur-
poses of this example, Outlook has the set of standard folders beneath the folder named Top of Personal
Folders and the profile name is Outlook.

The code on the native side performs the necessary communication with Outlook. The three native func-
tions are implemented using COM to utilize the MAPI routines. MAPI provides an interface to access
mail data and send mail through Outlook:

JNIEXPORT void JNICALL Java_JNIMailBridge_getFolderList
(JNIEnv *env, jobject obj, jstring _profile, jstring _topFolder)

{
const char *folderName = env->GetStringUTFChars(_topFolder, 0);
const char *profile = env->GetStringUTFChars(_profile, 0);

_SessionPtr pSession(“MAPI.Session”);

// Log on with a specific profile.
// If this isn’t specified a logon box would pop up.
pSession->Logon(profile);

InfoStoresPtr pInfoStores;
InfoStorePtr pInfoStore;
FolderPtr pTopFolder;
FoldersPtr pPSTFolders;
long l;

pInfoStores = pSession->GetInfoStores();

if(pInfoStores == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to InfoStores”);
return;

}

// Search for the specific folder name
for(l=1; l <= (long)(pInfoStores->GetCount()); l++) {

pInfoStore = pInfoStores->GetItem(l);
pTopFolder = pInfoStore->GetRootFolder();

_bstr_t fName = folderName;
_bstr_t compName = (_bstr_t)pTopFolder->GetName();

if(fName == compName) {
// We’ve found it, exit the loop
break;

}

439

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 439

}

if(pTopFolder == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to top folder”);
return;

}

pPSTFolders = pTopFolder->GetFolders();

if(pPSTFolders == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to PST folders”);
return;

}

This block of code will look familiar to you shortly. This code establishes a connection to the data stored
in Outlook via the MAPI object. The InfoStores contains all top-level folders. This collection is searched
for the top-level folder that contains the various mail folders:

jclass cls = env->GetObjectClass(obj);
jmethodID clearFolderID =

env->GetMethodID(cls, “clearFolderList”, “()V”);
jmethodID addFolderID =

env->GetMethodID(cls, “addFolder”, “(Ljava/lang/String;)V”);

This code establishes handles to the clearFolderList and addFolder methods defined in the Java code.
These handles are then used to invoke the methods on the Java side in order to communicate data back
to the Java object:

// First reset the list of folders
env->CallVoidMethod(obj, clearFolderID);

// Loop over all available folders
for(l=1; l <= (long)(pPSTFolders->GetCount()); l++) {

FolderPtr tempFolder = pPSTFolders->GetItem(l);

_bstr_t pstName = tempFolder->GetName();

// Add folder. Remember that the string must be transformed
// into a Java string using NewStringUTF.
env->CallVoidMethod(obj, addFolderID,

env->NewStringUTF((char *)pstName));
}

env->ReleaseStringUTFChars(_topFolder, folderName);
env->ReleaseStringUTFChars(_profile, profile);

}

The getFolderList function retrieves the list of folders beneath a specified top folder. Note how the
strings are allocated and released at the end. The method invocation functions are used to make call-
backs to the Java code in order to first reinitialize the list of folders (invoking clearFolderList) and then

440

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 440

adding each folder to the collection in Java by invoking addFolder. The getFolderContents function,
listed next, performs a retrieval of e-mail messages in a specified folder using similar callback semantics
to getFolderList. Take a look at this function piece by piece:

JNIEXPORT void JNICALL Java_JNIMailBridge_getFolderContents
(JNIEnv *env, jobject obj,
jstring _profile, jstring _folderName, jstring _searchName)

{
jclass mapiSupportClass;
jmethodID mAddMessage, mClearMessages;

const char *folderName = env->GetStringUTFChars(_folderName, 0);
const char *searchName = env->GetStringUTFChars(_searchName, 0);
const char *profile = env->GetStringUTFChars(_profile, 0);

mapiSupportClass = env->GetObjectClass(obj);

if(mapiSupportClass == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain class handle from object passed in”);
return;

}

_SessionPtr pSession(“MAPI.Session”);

// Log on with a specific profile.
// If not specified a logon box would pop up.
pSession->Logon(profile);

The three jstrings that are passed in must first get converted to strings suitable for use in the native code.
Next, since methods will be invoked on a Java object, a handle to the Java object must be obtained. This
happens via the call to GetObjectClass. Next, a pointer to the MAPI.Session object is obtained and then
Logon is called in order to work with the MAPI object since it requires authentication:

InfoStoresPtr pInfoStores;
InfoStorePtr pInfoStore;
FolderPtr pTopFolder;
FoldersPtr pPSTFolders;
long l;

pInfoStores = pSession->GetInfoStores();

if(pInfoStores == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Handle to info stores is invalid”);
return;

}

// First we search for the correct collection of folders.
for(l=1; l <= (long)(pInfoStores->GetCount()); l++) {

pInfoStore = pInfoStores->GetItem(l);

441

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 441

pTopFolder = pInfoStore->GetRootFolder();

_bstr_t fName = folderName;
_bstr_t compName = (_bstr_t)pTopFolder->GetName();

if(fName == compName) {
break;

}
}

pPSTFolders = pTopFolder->GetFolders();

if(pPSTFolders == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t create global reference to Java class”);
return;

}

The InfoStores collection contains all the top-level folders. This loop executes in order to find the root
folder of the mail folders. If at any point an object is NULL, an exception is thrown:

// Second we need a handle to the correct folder,
// so search for folderName.
for(l=1; l <= (long)(pPSTFolders->GetCount()); l++) {

FolderPtr tempFolder = pPSTFolders->GetItem(l);
_bstr_t pstName = tempFolder->GetName();

_bstr_t compSearchName = searchName;

if(pstName == compSearchName) {
break;

}
}

// Get a handle to the first message (after getting
// a handle to the folder, then the folder’s
// message collection)
FolderPtr pFoundFolder = pPSTFolders->GetItem(l);

if(pFoundFolder == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Folder requested was not found”);
return;

}

MessagesPtr pMessages = pFoundFolder->Messages;

if(pMessages == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to message collection”);
return;

442

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 442

}

MessagePtr pMessage = pMessages->GetFirst();

if(pMessage == NULL) {
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to first message in collection”);
return;

}

After obtaining a handle to the correct top-level folder, its contents are searched to obtain a handle to the
mail folder. A MessagePtr is then configured to point to the first message in this folder:

mAddMessage = env->GetMethodID(mapiSupportClass,
“addMessage”,
“(Ljava/lang/String;Ljava/lang/String;”
“Ljava/lang/String;Ljava/lang/String;)V”);

mClearMessages = env->GetMethodID(mapiSupportClass,
“clearMessageList”,
“(Ljava/lang/String;)V”);

if(mAddMessage == NULL || mClearMessages == NULL) {
printf(“Can’t obtain handle to class\n”);
env->ThrowNew(env->FindClass(“java/lang/Exception”),

“Can’t obtain handle to addMessage”
“ or clearMessageList Java method”);

return;
}

These two calls to GetMethodID return handles to the Java methods that will soon get called in order to
pass information back to the Java object. If either of these handles are NULL, an exception is thrown:

// Call the clearMessageList method to reset the
// message collection
env->CallVoidMethod(obj, mClearMessages, _searchName);

// Loop through all messages in the folder, using the
// addMessage method to store each message
while(pMessage != NULL) {

_bstr_t subject, sender, text, sent;
subject = pMessage->GetSubject();

sender = pMessage->GetSender();
text = pMessage->GetText();

jstring jsSubject, jsSender, jsText;

jsSubject = env->NewStringUTF((char *)subject);
jsSender = env->NewStringUTF((char *)sender);

443

Interacting with C/C++ Using Java Native Interface

12_574868 ch09.qxd 12/21/04 5:54 PM Page 443

jsText = env->NewStringUTF((char *)text);

env->CallVoidMethod(obj, mAddMessage, _searchName,
jsSender, jsSubject, jsText);

pMessage = NULL;
pMessage = pMessages->GetNext();

}

The first CallVoidMethod is invoked to cause the clearMessageList method to execute. This resets the
collection of messages inside the Java object, allowing multiple calls to this function, each returning a
different set of messages. For each message in the folder, the appropriate information (subject, sender,
and recipient information) is converted to a jstring via NewStringUTF and then passed to addMessage
via the CallVoidMethod invocation. This sends basic information about each message, one message at a
time, to the Java code for storage and later processing:

pFoundFolder = NULL;
pMessages = NULL;
pMessage = NULL;

// Release the strings
env->ReleaseStringUTFChars(_searchName, searchName);
env->ReleaseStringUTFChars(_folderName, folderName);

}

The Java code and C++ code work together to create a miniature e-mail client. The Java code is responsi-
ble for the user interface and storing the message and folder information. The C++ code is responsible
for using COM to access the folders and e-mail in MS Outlook. Java Native Interface is the technology
that allows Java code to work with C++ code with a minimum of hassle to you, the developer. This
application demonstrates many elements of JNI that were discussed in this chapter and should serve as
an instructive example of using JNI to solve real problems.

Summary
Java Native Interface is a powerful mechanism for writing advanced systems in Java. Linking Java to
native code enables a developer to leverage functionality provided by the operating system, such as uti-
lizing COM in Windows or perhaps using a native user interface library (presenting vast speed improve-
ments over Swing). This chapter has given you a lot of information about how to utilize JNI, presenting
you with plenty of examples that demonstrate common constructs on both the native and Java side. You
should now be able to judge if, when, and where to use JNI in your projects.

444

Chapter 9

12_574868 ch09.qxd 12/21/04 5:54 PM Page 444

Communicating between
Java Components
with RMI and EJB

This chapter explains how to communicate between two Java components using Remote Method
Invocation (RMI) and how to also use Enterprise JavaBeans (EJB) for more enterprise-oriented archi-
tectures. It will explore the different intricacies of each Java technology and explain why one technol-
ogy may not always be the right fit for all of your architecture needs. Client/server development is
becoming extremely hot in the marketplace today. Applications that just exist on a desktop and are
tied to a particular operating system are few and far between on the list of development tasks that
are going on. With the rise of the Internet, homeland security, online banking, and online shopping,
there is a significant need for applications to share information in a quick and secure manner.
Therefore, new technologies continue to be developed every day to try and meet those needs.

Web services using SOAP seem to be the latest rage, but if you have ever tried to build a large-
scale system and imposed stringent security requirements on Web services, you can quickly see
major degradation in performance. The concept of Web services that use SOAP for their protocol is
grand, but the tools are not yet there from a performance and interoperability standpoint. While
these tools are maturing, developers have other alternatives that perform better and are already
highly scalable. RMI and EJBs have been the mature favorites and continue to prove why they are
some of the best technologies to use if performance and scalability is your concern. So get started
and explore these two technologies.

Remote Method Invocation
Java’s claim to fame is the “Write once, run anywhere” model. What about the need for a “Write
once, communicate anywhere” model? Java’s Remote Method Invocation (RMI) is Java’s answer to
writing distributed objects, and coupled with Java’s Native Interface (JNI), the need to “communi-
cate anywhere” with different languages can be met.

13_574868 ch10.qxd 12/21/04 5:55 PM Page 445

In the past, the use of sockets was the primary way for applications to communicate with each other.
This of course was not an object-oriented approach to communication and, if you have ever worked with
socket code, you realized real fast just how tedious it was to create a client/server architecture that had
some complexity to it and performed all the necessary operations you may have needed.

Remote Procedure Call (RPC) services were the next attempt at eliminating the complicated communica-
tion layer of using sockets and to also make it easier for programmers to call remote procedures, but the
parameters that could be passed to these procedures usually weren’t very complex. If the need to pass
more complex parameters arose, the burden would lie on the programmer to process the types and per-
form monotonous conversions. Plus, the parameters were usually not very portable between languages.

RMI picks up where RPC services left off by being designed in an object-oriented fashion which allows
programmers to communicate using objects and not just predefined data types that are language-centric.
These objects can be as complex as you need them to be and values that are returned can be of any type.
The communication layer is completely hidden from the programmer, which allows you to concentrate
on more important aspects of programming, like the business logic.

RMI makes applet coding a dream since you can now have your applets easily communicate with back-
end distributed systems. RMI is also very secure and uses security managers to prevent malicious code
from attacking your network. If your applications require multithreading, RMI also supports threads
flawlessly.

Exploring RMI’s Architecture
RMI’s basic architectural components usually consist of a client, a server, and an RMI registry, which
exists on the server side. The client is able to look up and retrieve the remote objects from the server. The
server receives client requests for objects and looks for them in the RMI registry. The server also has the
task of registering any remote objects with the RMI registry when it is started. Figure 10-1 shows the
basic RMI architecture that was just described.

Figure 10-1

RMI
Registry

The Java
Objects are

registered in the
RMI registry

SERVER
with Java Objects

RMI Protocol

RMI Protocol

446

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 446

The communication transport protocol is completely handled by RMI and is invisible to the program-
mer. There is no need for you to have to worry about writing any socket code or other transport methods
to establish communication with the server. However, you do need to process remote exceptions because
at various points, communication breakdowns can occur.

The beauty of RMI is that it lets you call methods on remote objects in the same way you would call
methods of a normal Java object. It appears to be almost completely transparent to the programmer.
Now, there are certain things you do need to know that affect only RMI applications:

❑ Clients only interact with remote objects that are tied to a remote interface. They can never actu-
ally interface with the implementation classes of those interfaces.

❑ Networks can fail, and because at any given time the network connection to the server can drop,
you must capture java.rmi.RemoteExceptions. Also, servers must have the method signatures
they expose to clients throw java.rmi.RemoteExceptions in the event of a communication failure.

❑ Arguments are passed by value (copy) instead of by reference. When you are programming in
Java, objects are passed by reference; with RMI applications, you are dealing with separate Java
Virtual Machines, so you can only pass object arguments by value. However, keep in mind that
remote objects are passed by reference. A simple rule to remember when dealing with passing
objects is that if it is not a remote object, it is passed by value instead of reference.

❑ It is important that you also consider your security architecture when you are dealing with RMI
applications. All of your object calls are being transmitted over the network and therefore can be
intercepted by someone who could then alter the contents of your calls or simply monitor what
you are transmitting. Therefore, for applications that need to be security aware, it is imperative
that you do your upfront security design work before developing your applications. Security
should never be an afterthought. It will cost you valuable development time if you ignore secu-
rity requirements in the beginning.

❑ Another design consideration when dealing with RMI is performance. Make sure that you try to
design your RMI applications to be as lightweight as possible and avoid any unnecessary over-
head. You should definitely plan out your scalability requirements ahead of time during the
design phase of your project.

❑ The other aspect of RMI that is transparent to you is remote garbage collecting. Java RMI has
incorporated a remote garbage collector for you so you do not need to worry about cleaning up
any unused objects.

Although it may seem like there are lots of differences between normal Java applications and RMI Java
applications, the differences are relatively simple to grasp and use. The more you develop with RMI, the
more the differences will make sense, and you will also discover that all the differences are extremely
valuable to you when developing RMI applications. For instance, without remote exceptions, you would
never be able to tell when a network error occurred. Having this capability allows you to not only make
correct programming decisions when remote exceptions occur, but to also display useful error messages
to the users of your applications.

447

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 447

Developing RMI Applications
When developing RMI applications, there is a component called stubs that you need to know about in
order to develop and communicate successfully with an RMI application. Stubs basically act as remote
object proxies that are local to a client. Stubs are generated after you have defined your remote interface
containing all the methods you wish to expose to clients. To generate the stubs, you will need to use the
rmic tool that comes with your installation of Java. The rmic tool will take a specified class and generate
the stub file for that class, which exposes all the methods to be used by the client. Stub classes are named
with the name of the class that is used followed by a _Stub tag. So if you had a class called
RMIChatImpl.class and ran the rmic tool against it, the resulting file would be called
RMIChatImpl_Stub.class.

Stubs are then used transparently by the client. Clients will call methods that reside in the local stub and
then the local stub will execute the necessary protocol to call the method on the remote object. The proto-
col the stub uses involves the following steps:

❑ Establish a connection with the remote JVM that contains the remote object to be used.

❑ Take the parameters for the remote method and marshall them to the remote JVM.

❑ Wait for the results that may be returned from the process of invoking the remote object.

❑ Unmarshall the results back to their original object forms.

All the communication layers, including marshalling, are hidden from the clients calling the remote
object methods and the developer. Figure 10-2 depicts the usage of stubs and the basic RMI architecture.

Using Threads in RMI
Threading is usually great for performance issues but can be a bit cumbersome when dealing with
remote objects. The RMI specification has no set way of mapping remote objects to threads that the
clients use. Therefore you must make sure that your application is thread-safe when it needs to deal with
remote object calls. This simply means that if you plan to use threads, then you need to take the neces-
sary time to architect your application in a manner that will be thread-friendly and also to make sure
that you have considered any potential thread pitfalls in your architectural design.

Note: Marshalling is the act of taking an object and converting it into a byte stream
that is compatible with the connection protocol you are using for communication
and sending it through the connection pipe. Java accomplishes this by using its
serialization specification. Unmarshalling is the act of taking the byte stream and
converting it back to its original object form.

Note: The new Java 5 SDK supports dynamic generation of stub classes at run time,
which eliminates the need to use the rmic tool to pregenerate your stub classes for
your remote objects. However, you will still need to use the rmic tool if you plan to
support clients that use earlier versions of the Java SDK.

448

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 448

Figure 10-2

Using Dynamic Class Loading
One of the greatest features of RMI is its ability to download classes from another virtual machine that
may not exist in the receiving virtual machine. The ability to download almost any object type as long as
it is serializable makes RMI extremely simple to use from a development standpoint and eliminates the
need for the developer to be concerned with doing any type of custom marshalling and unmarshalling
of Java objects. The large benefit is that you can use the downloaded class objects just like you would use
any other Java object and call its methods. The only real requirement is to make sure that you capture
RemoteExceptions.

Distributed Garbage Collection
A mess that can occur with distributed systems is the need to keep track of all the remote objects you are
creating and make sure that you destroy them so that you are not creating memory leaks anywhere.
Luckily for you, RMI has a distributed garbage collector that keeps track of all the remote objects and
deletes them when they are no longer in use. Without this feature, you would have to do your own
garbage collecting, which could be quite burdensome and error-prone.

Examining Remote Object Activations
Systems that would use an RMI type of architecture could potentially be systems that need to support
thousands of object creations, and at any given time there could be a need to have access to all those
objects if the situation arose. For instance, say you developed a super IM chat system that covered the
entire east coast and a certain event happened that caused users to get on and chat with each other all at
the same time. Even though all the users are logged on, would you want to continuously keep their

Clients

Lookup remote object RMI Registry

Bank_Stub

Server

Bank_Stub

BankImpl

Bind Im
pl to

RMI re
gist

ry

Invoke Remote Methods

449

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 449

objects in memory? RMI has a mechanism, called Remote Object Activations, that allows on-demand
access to remote objects. These are called activatable remote objects. To make activatable remote objects
work, two things were developed:

❑ A class called java.rmi.activation.Activatable, which makes remote objects activatable.

❑ An activation daemon called rmid. The rmid manages the creation of activatable objects and it
also manages how the objects are executed.

So just how do you make your remote interfaces activatable, you might ask? Well, first you must include
the java.rmi.activation package, and then you must extend the class Activatable for your class while
implementing your remote interface. Here is a quick example demonstrating how to use basic activations.

TestRemoteInterface Interface
This TestRemoteInterface looks like a standard remote interface class for RMI. Basically, there is no dif-
ference between creating a remote interface with activations and a remote interface without activations.
The changes start to come into play when you create the implementation and client classes. The follow-
ing code demonstrates how to create the TestRemoteInterface:

import java.rmi.*;

public interface TestRemoteInterface extends Remote {

public String rmiWelcome() throws RemoteException;

}

TestActivationImpl Class
The implementation class is the first exposure to the activation world in this text. In this class, you need
to extend the java.rmi.activation.Activatable class and set up a constructor that takes two new parame-
ters. In the constructor, you must call the parent construct to register the new object with the parent class
and have it assign an anonymous port to the class:

import java.rmi.*;
import java.rmi.activation.*;

public class TestActivationImpl extends Activatable implements TestRemoteInterface
{

public TestActivationImpl(ActivationID activationID, MarshalledObject mObject)
throws RemoteException {

// Register the object
super(activationID, 0);

}

// Now you will need to implement your remote interface methods here
public String rmiWelcome() throws RemoteException {

return (String) “Welcome to activatable RMI!”;
}

}

450

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 450

At this point, you have achieved the creation of a remote interface and an implementation of the remote
interface. You now need to turn your attention to the client class and how it uses activations.

TestClient Class
In order to test out the activation capability, a client must be created to look up the remote objects and
execute the methods associated with them. The following code will demonstrate to you all the intricacies
involved in creating the client code:

import java.rmi.*;

public class TestClient {

public static void main(String args[]) {

String sURI = “rmi://127.0.0.1/TestActivationImpl”;

// Get a security manager
RMISecurityManager rmSM = new RMISecurityManager();
System.setSecurityManager(rmSM);

The preceding code creates a variable to hold the URL to the TestActivationImpl. This variable is cur-
rently pointing to localhost but could easily point to any server available on the network. The security
manager must be set up so that the client can download and access the remote objects stub. That is
accomplished with the method call System.setSecurityManager(rmSM):

try {

TestRemoteInterface testRI = (TestRemoteInterface)Naming.lookup(sURI);

String sResponse = (String)testRI.rmiWelcome();

System.out.println(“Received the following response from “ +
“activatable remote object: “ + sResponse);

} catch (Exception e) {
e.printStackTrace();

}
}

}

The URL is looked up using the call Naming.lookup(sURI), and if everything is successful, a
TestRemoteInterface object should be received. After obtaining the remote object, the remote method
TestRemoteInterface.rmiWelcome can now be executed to create the welcome message. That is all there is
to the basics of activations. It gets a little more hairy when you introduce the Register class. This text
explores that class next.

451

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 451

Register Class
The main purpose of this class is to handle the registration of the implementation class with the RMI
registry and the rmid daemon. Once the implementation class has been registered, the class can then be
looked up remotely:

import java.rmi.*;
import java.rmi.activation.*;
import java.util.Properties;

public class Register {

public static void main(String[] args) throws Exception {

RMISecurityManager rmiMGR = new RMISecurityManager();

System.setSecurityManager(rmiMGR);

The first thing you need to do is get and set a security manager to use so that you have access to the nec-
essary files to perform your registration options:

Properties pProperties = new Properties();
pProperties.put(“java.security.policy”, “C:/rmitest/policy”);

ActivationGroupDesc.CommandEnvironment actCommandEnv = null;

ActivationGroupDesc actGroup = new ActivationGroupDesc(
pProperties, actCommandEnv);

ActivationGroupID actGroupID =
ActivationGroup.getSystem().registerGroup(actGroup);

The activation groups above will provide the rmid with the required information it needs to contact
the VM of the activatable object. Here you are simply setting up a policy that will allow the VM to be
contacted:

String sFileLocations = “file:///C:/rmitest/”;

// Create the rest of the parameters that will be passed to
// the ActivationDesc constructor
//
MarshalledObject mObject = null;

ActivationDesc actDesc = new ActivationDesc(actGroupID,
“TestActivationImpl”, sFileLocations, mObject);

The activation description shown above will provide the rmid with the necessary info it needs to create a
new instance of the implementation class. Here you are telling the rmid the name of the implementation
class and the file location and are also providing it with a MarshalledObject:

452

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 452

// Register with rmid
TestRemoteInterface trInterface =

(TestRemoteInterface)Activatable.register(actDesc);

// Bind the stub that we received with the RMI registry
Naming.rebind(“TestActivationImpl”, trInterface);

}

}

Finally, you need to register with the rmid and the RMI registry. This now allows you to test the sample
code fully. Remember, you must also have a policy file created and located in C:\rmitest\policy.
Here is an example of the contents of a policy file that grants the program all permissions:

grant {
permission java.security.AllPermission;

};

You have not yet started the RMI registry or the rmid daemon server. These must be started for the code
to function properly and for the registration to occur.

Starting the Activation Tools
There are two main tools that you need to start before running the above code. You must start the RMI
registry and you must start the rmid daemon.

To start the RMI registry, type the following from a command prompt:

start rmiregistry

To start the rmid daemon, you will need to type following from a command prompt:

start rmid -J-Djava.security.policy=rmid.policy

After both tools are running, you should then be able to run your remote-activatable object code and
register with the RMI registry and rmid daemon tools.

In the next section of this chapter I will show you an example of a nonactivatable application called
RMIChat. The RMIChat example is much more complex than the previous activatable example and it
will dive into the more intricate details of RMI.

RMIChat Example
The RMIChat example that I will discuss here shows you how to create a chat server, a chat applet, and
how to register the objects with the RMI registry. The RMIChat example allows multiple users to com-
municate with each other via an applet that is embedded in a Web browser. A single server will be used
for communication. The following illustration, Figure 10-3, shows the graphical user interface (GUI) of
the RMIChat application.

453

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 453

Figure 10-3

Figure 10-4 shows the chat application being used by multiple users at the same time from different
browsers. There are two users, Bob and Jenna, who are currently using the chat application. This is
Jenna’s view of the application.

Figure 10-4

This type of design would normally require an enormous amount of upfront socket work just to estab-
lish the communication layer that RMI provides you with. It is pretty amazing how fast you can build
your own chat application with little effort. So, with that said, dive into the example and explore the
different classes and methods that it uses to achieve its communication and presentation goals.

RMIChat Interface
This RMIChat interface is the interface that exposes the methods that can be accessed remotely by RMI
clients. For this interface to function properly, it must extend the java.rmi.Remote interface. This inter-
face will be used by the RMIChatImpl as a guideline for implementation.

454

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 454

You should also take note that all the methods that will be exposed remotely to RMI clients must throw
RemoteExceptions. RemoteExceptions are what the RMI clients will receive when an error occurs during
communication with the RMI server:

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.ArrayList;

/**
* RMIChat is the main remote interface for the RMIChat application.
*/

public interface RMIChat extends Remote {

public ChatUser logIn(String sNickName) throws RemoteException;
public boolean logOut(ChatUser cu) throws RemoteException;

void sendMessage(String sMessage, ChatUser cu) throws RemoteException;
String getMessage() throws RemoteException;

ChatUser findUser(String sNickName)throws RemoteException;
ArrayList getUsers() throws RemoteException;

int getUserCount() throws RemoteException;

}

RMIChatImpl Class
The RMIChatImpl class is the class that is the implementation of the RMIChat interface. It defines each
of the methods that exist in the RMIChat interface and its primary purpose is to act as a server for con-
necting RMIClients. So when new chat sessions are created via the chat applet, they will communicate
with the RMIChatImpl class. This class is also registered with the RMI registry so that clients can look it
up in the registry and obtain a remote object to the class:

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.Naming;
import java.rmi.RMISecurityManager;

import java.util.ArrayList;

/*
* The RMIChatImpl class is the implementation of the RMIChat interface class.

*/
public class RMIChatImpl extends UnicastRemoteObject implements RMIChat {

private String m_sServerName;
private String m_sLastMsg;
private int nGUID;
public ArrayList m_alUsers;

The RMIChatImpl class implements the RMIChat interface and begins to define its methods. In case you
haven’t noticed, the class also extends the UnicastRemoteObject. The reason for this is that RMI requires

455

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 455

you to export the object and bind it to a port. In order to do this you can use the method
UnicastRemoteObject.exportObject(this, 3432) in your default constructor or you can simply extend
UnicastRemoteObject as demonstrated in this example and allow it to do the export for you.

In the preceding code, there are also four variables that are explicitly used by this class for tracking user,
server, and message information. They are described in the following table.

Variable Description

String m_sServerName Allows you to associate a name with the server. Not a critical
variable, but it can be useful if you were to set up multiple
servers.

String m_sLastMsg This variable holds the last chat message that was submitted
by a client to the server.

int nGUID This variable is called the Global Unique Identifier. It is
used to assign a unique ID to each client that is using the
chat server.

ArrayList m_alUsers This array list holds ChatUser objects, each which repre-
sents an individual chat user or client of the server.

The main variables that are constantly changing throughout the life of the server are the m_alUsers,
nGUID, and the m_sLastMsg:

// Default Constructor
public RMIChatImpl() throws RemoteException {

super();

nGUID = 0;

m_sLastMsg = “”;
m_alUsers = new ArrayList();

}

// Constructor which excepts a server name
public RMIChatImpl(String sServerName) throws RemoteException {

super();
nGUID = 0;

m_sLastMsg = “”;
m_sServerName = sServerName;
m_alUsers = new ArrayList();

}

The contructors for the RMIChatImpl class reset all the variables and call their respective super construc-
tors. One thing to note is that the nGUID and the array list of users are always reinitialized when the
RMIChatImpl server is created:

456

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 456

public ChatUser logIn(String sNickName) throws RemoteException {

ChatUser cu = this.findUser(sNickName);

if (cu != null) {
return cu;

}

cu = new ChatUser(sNickName, nGUID);

m_alUsers.add(cu);

nGUID++;

return cu;
}

The first real remote method is shown above and it is called the logIn method. Its main purpose is to
allow chat users to log in to the server. When users log in, they must supply the nickname that they wish
to use. When the server receives a login request, it will first check to see if the user already exists on the
server. If the user doesn’t exist, a new ChatUser object is associated with the user and the new user is
added to the array list of users:

public boolean logOut(ChatUser cuUser) throws RemoteException {

if (cuUser == null) {
return false;

}

return m_alUsers.remove(cuUser);
}

The logOut remote method is just the opposite of the logIn remote method. It allows users to discon-
nect from the chat server. When users invoke the logOut method, they must supply their credentials
in the form of a ChatUser object. Once this is received, the server will then attempt to log the user out
and perform any necessary cleanup operations:

public void sendMessage(String sMessage, ChatUser cuUser) throws
RemoteException {

if (cuUser != null) {
m_sLastMsg = “<” + cuUser.getUserName() + “> “ + sMessage;

}
}

The sendMessage remote method is a bit deceiving. It requires a user to submit their credentials and a
message to be displayed to all the other chat clients. However, if you look closely, the code doesn’t phys-
ically send the message anywhere; it simply stores the message in the m_sLastMsg variable. The reason
for this is that the chat clients (users) are constantly pinging the server for the last message that was sent.
If the last message has changed, they will display the new message. This was an easy approach to take to
make this sample code smaller in size and more understandable:

457

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 457

public String getMessage() throws RemoteException {
return m_sLastMsg;

}

The getMessage remote method is the method that the clients continuously poll for new messages:

public ChatUser findUser(String sNickName) throws RemoteException {
if (m_alUsers != null && this.getUserCount() > 0) {

int alSize = m_alUsers.size();
ChatUser cuTemp;

for (int i = 0; i < alSize; i++) {
cuTemp = (ChatUser) m_alUsers.get(i);

if (cuTemp != null) {
String sTmp = cuTemp.getUserName();

if (sTmp.equalsIgnoreCase(sNickName)) {
return cuTemp;

}
}

}
}

return null;
}

The findUser remote method allows clients or servers to retrieve a user’s credentials or ChatUser object
based on the user’s nickname. You may have noticed that this is the first RMI remote method that
returns a custom object. RMI is so powerful that it allows you to utilize your own custom objects with
one main constraint — the custom object you are returning must be serializable. ChatUser is the object
being returned and it is serializable, so it is perfectly valid:

public ArrayList getUsers() throws RemoteException {
return m_alUsers;

}

public int getUserCount() throws RemoteException {
if (m_alUsers == null) {

return 0;
}

return m_alUsers.size();
}

public String getServerName() throws RemoteException {
return m_sServerName;

}

The above code is used to retrieve the values of different variables. You can retrieve a list of users on the
server that could possibly be used by the clients to show a list of users in a listbox. I did not add this to
the present example. However, it would be a good exercise for you to try:

458

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 458

public static void main(String[] args) {
// Setup a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}

try {
RMIChatImpl rmiObj = new RMIChatImpl();

// Bind this object to “RMIChatServer”
Naming.rebind(“RMIChatServer”, rmiObj);

System.out.println(“RMIChatServer registered with the RMI registry”);
} catch (Exception ex) {

System.out.println(“RMIChatImpl error: “ + ex.getMessage());
ex.printStackTrace();

}
}

}

The main method of the class is important because it is used when the RMIChatImpl class is registered
with the RMI registry. Following is a list of necessary steps that it performs:

1. First it sets up a security manager for the server. You can tailor the security manager to fit your
individual architectural needs. This simple example just uses the default system security manager.

2. It then constructs an RMIChatImpl object that will be registered with the RMI registry.

3. Finally it uses the Naming.bind method to bind the RMIChatImpl object with the name
“RMIChatServer” in the RMI registry. Clients can search for “RMIChatServer” to obtain a
remote RMIChatImpl object.

The RMI registry must be started before the steps above are executed to ensure proper registration with
the RMI registry.

ChatUser Class
The ChatUser class is used to store specific information about users of the RMIChatImpl server. The
server uses this class extensively to track, search, and accept messages, and authenticate users. While
there isn’t much to this class, there is something important that must be noted. Since this class is being
returned through a remote object via one of the RMIChatImpl server’s methods, it must be serializable.
If it were not serializable, exceptions would be thrown and the server would not work:

public class ChatUser implements java.io.Serializable {
private String m_sUserName;
private int m_nUserID;

protected Object clone() throws CloneNotSupportedException {
return super.clone();

}

protected void finalize() throws Throwable {

459

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 459

super.finalize();
}

public boolean equals(Object arg0) {
return super.equals(arg0);

}

public int hashCode() {
return super.hashCode();

}

The preceding code is mainly used for serialization purposes to make sure that the class is utilizing seri-
alization as specified by the interface java.io.Serializable. The code shown below is simply used to track
user information such as the user’s name (or nickname) and the user’s unique ID:

public ChatUser(String sUserName, int nUserID) {
m_sUserName = sUserName;
m_nUserID = nUserID;

}

public int getUserID() {
return m_nUserID;

}

public void setUserID(int userID) {
m_nUserID = userID;

}

public String getUserName() {
return m_sUserName;

}

public void setUserName(String userName) {
m_sUserName = userName;

}
}

ChatApplet Class
The ChatApplet class is the main class for the client. It contains the Swing code for the GUI and it also
contains the client code for sending and receiving messages. Since the Swing code can be very large, I
will eliminate most of it from the chapter discussion. However you can find all of the working code on
http://www.wrox.com:

import javax.swing.*;
import java.rmi.Naming;

public class ChatApplet extends JApplet implements Runnable {
private JPanel jContentPane = null;

private JButton jButton = null;
private JTextField jTextField = null;
private JButton jButton1 = null;

460

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 460

private JScrollPane jScrollPane = null;
private JList jList = null;
private JLabel jLabel = null;
private DefaultListModel listModel = null;

private RMIChat m_rmiChat = null;
private ChatUser m_ChatUser = null;

private boolean m_bIsConnected = false;

The ChatApplet class does not extend or implement any specific RMI interfaces or classes, nor is it
required to. The code for accessing the remote objects of the RMIChatImpl object will be shown shortly.
Throughout the explanation of this class there are three variables that are considered global. They are
described in the following table.

Variable Description

RMIChat m_rmiChat This represents an RMIChat object that will be used later to
communicate with the remote objects on the server.

ChatUser m_ChatUser This variable contains specific user information that per-
tains to the client.

Boolean m_bIsConnected This is a boolean flag that lets you constantly know what
your status is with the server. So if the value is set to true,
you are connected to the server, otherwise you are not.

public void start() {
super.start();

Thread t = new Thread(this);
t.start();

}

public void stop() {
super.stop();

}

The start and stop methods can be used to determine when an applet has been started or when it has
been stopped. In the start method, you are spawning off a thread which will be used to poll the server
for new chat messages:

public void run() {
String sOldMsg = “”;
String sNewMsg = “”;

while (true) {
if (this.m_bIsConnected) {

try {
if (this.m_rmiChat != null) {

461

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 461

sNewMsg = this.m_rmiChat.getMessage();
if (!sNewMsg.equalsIgnoreCase(sOldMsg)) {

listModel.addElement(sNewMsg);
sOldMsg = sNewMsg;

}
}

} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();

}
}

try {
Thread.currentThread().sleep(500);

} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();

}
}

}

The run method is the body of the thread that was spawned in the start method. This method checks to
see if you are connected and that you have a valid remote RMIChat object. If you do, it polls the chat
server every 500 milliseconds using the RMIChat object, m_rmiChat, for new messages with the
rmiChat.getMessage method:

public ChatApplet() {
super();
init();

}

public void init() {
listModel = new DefaultListModel();
listModel.addElement(“Chat Client loaded successfully.”);
listModel.addElement(“Chat messages will appear below.”);

jList.setModel(listModel);

try {
m_rmiChat = (RMIChat) Naming.lookup(“RMIChatServer”);

} catch (Exception ex) {
System.out.println(“ChatApplet error: “ + ex.getMessage());
ex.printStackTrace();

}

}

The init method contains your core RMI code. It looks up the RMIChatServer remote object using the
Naming.lookup method and returns an RMIChat object upon success. If the operation was successful, you
can immediately begin using the RMIChat object to call remote methods on the server. It is that easy!

462

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 462

private javax.swing.JButton getJButton() {
if (jButton == null) {

jButton = new javax.swing.JButton();
jButton.setText(“Send”);
jButton.setName(“btSend”);
jButton.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent e) {
if (m_bIsConnected) {

if (m_rmiChat != null && m_ChatUser != null) {
try {

m_rmiChat.sendMessage(jTextField.getText(), m_ChatUser);
} catch (Exception ex) {

System.out.println(ex.getMessage());
ex.printStackTrace();

}
}

}

}
});

}
return jButton;

}

The getJButton method is where you will perform your send message code. When the send button is
pressed, you should grab the text from the jTextField control and then send a message to the server
using the m_rmiChat.sendMessage method. This method simply takes as parameters the message you
want to send in String form and your credentials in the form of a ChatUser object:

private javax.swing.JButton getJButton1() {
if (jButton1 == null) {

jButton1 = new javax.swing.JButton();
jButton1.setText(“Connect”);
jButton1.setName(“btConnect”);
jButton1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent e) {
if (jButton1.getText().equalsIgnoreCase(“Connect”)) {

// Create user here
m_bIsConnected = true;

if (m_rmiChat != null) {
String sUserName = jTextField.getText();

if (sUserName.equalsIgnoreCase(“”)) {
sUserName = “noname”;

}
try {

m_ChatUser = m_rmiChat.logIn(sUserName);
} catch (Exception ex) {

System.out.println(ex.getMessage());
ex.printStackTrace();

}
}

463

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 463

When the user clicks the Connect or Disconnect button, the above ActionEvent is fired. What occurs is
the applet will send a message to the server requesting to log in with a particular username using the
m_rmiChat.logIn method. If the network layer is present and the method succeeds, an m_ChatUser
object is returned. If a connection already exists, then the logOut code below will be executed. The
applet will attempt to disconnect the client from the server once the m_rmiChat.logOut method is called:

jButton1.setText(“Disconnect”);
} else {

m_bIsConnected = false;
jButton1.setText(“Connect”);

if (m_rmiChat != null && m_ChatUser != null) {
try {

m_rmiChat.logOut(m_ChatUser);
} catch (Exception ex) {

System.out.println(ex.getMessage());
ex.printStackTrace();

}
}

}
}

});

}
return jButton1;

}

}

The final piece of code in this example is the HTML code for loading the applet. This code will embed
the applet in your Web browser of choice:

<html>
<body>

<applet code=ChatApplet.class width=”300” height=”200” >
</applet>

</body>
</html>

Compiling the RMIChat Application
So far, this chapter has briefly touched on the subject of compiling RMI applications and using the rmic
tool to generate stubs, but it has not yet shown you an example of how to do so. Below are the necessary
steps to compile an RMI application:

1. The first step is to compile all the source files as you normally would do with any Java application.

2. You will need to then run the rmic tool on the RMIChatImpl class to generate the appropriate
stub. From a command prompt in the directory where your compiled source files are located,
type the following:

rmic RMIChatImpl

464

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 464

3. Once you have compiled the source files and generated the appropriate stubs, you will then
need to start the RMI registry using the command stated below:

start rmiregistry

4. The final step is to start the RMIChatImpl server. This will register the server with the RMI reg-
ister and cause it to await client connections.

java -Djava.rmi.server.codebase=http://host/username/dir/
-Djava.security.policy=policy RMIChatImpl

And that is all there is to creating a very significant RMI application. This example has covered the most
important functionalities of RMI, and this knowledge hopefully will provide you with a solid founda-
tion for building future RMI applications. Now turn your attention to Enterprise JavaBeans.

Enterprise JavaBeans
Enterprise JavaBeans, or EJBs, are a server-side component-based architecture that is used to build
applications that are scalable, transactional, distributable, portable, and secure. If you think in terms of
reusable code, then you will see why EJBs are so vital. EJBs are only concerned with the business logic of
the application; the system logic is the requirement of the EJB container. EJB containers are basically
application servers that provide you with a server platform to deploy your EJBs on. They handle all the
scalability, transactional, security, connection pools, and other system logic components, thus making
your job as a developer much easier. Because EJBs are a standard, and application servers must imple-
ment the EJB specification, EJBs can be deployed on different application servers with very little configu-
ration changes and almost no code changes. Therefore EJBs are very portable.

RMI, on the other hand, is great if you never really plan to have a very robust enterprise application. In
order to make a robust RMI enterprise application, it would require much more work to write all the
transaction, security, and connection pools that EJB containers provide. So, depending on your needs,
you can decide which technology is best for your architectural requirements.

RMI is also involved in EJB development. EJBs are accessed via RMI, so all that you learned about RMI
will apply nicely to EJB development. Several of the components you used in RMI you will also use in
EJBs, like remote interfaces and remote exceptions, but you won’t have to deal with complex system
logic components like transaction support.

EJB Basics
Just like RMI, EJB clients interact with interfaces that expose methods that they can use to communicate
with the server. Therefore, clients never need access to the implementation code on the server in order to
communicate and use its methods. EJBs also do not need to manage resources; they simply interact with
their container in order to obtain connections to external resources like databases. Developers can lever-
age these resources quickly and easily and do not need to worry about setting up connection pools,
transaction support, or security restrictions. Those tasks fall on the administrator of the container and
keep the EJB code itself portable.

465

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 465

Types of EJBs
There are four basic types of EJBs that compose the following discussion: Stateless-Session, Stateful-
Session, Entity, and Message-Driven beans. Each type has a specific purpose and it is important that you
understand each type before deciding on the EJB architectural design for your system.

Session Beans
Session beans contain session information about the clients they are interacting with. Session beans oper-
ate on a single client and their life spans are usually very short-lived. They can be transaction aware and
interface with shared data sources. The container class can handle a large number of session beans con-
currently. If the container was to crash, session beans would lose all the information that they contain.
This means the clients would have to reconnect to the session beans and start over.

Stateless-Session
The name stateless simply means that an instance of the bean contains no state information for a particu-
lar client. Therefore, many instances of this bean can be created and used by any client that requires its
uses. The container can manage different instances of these beans as needed. Only one thread can be asso-
ciated with a bean at any time, so it is sometimes necessary to have multiple instances of stateless-session
beans available for use. Otherwise, clients would have to wait for the instance of the stateless-session bean
to be released before they could use it.

Stateful-Session
The opposite of stateless-session beans, stateful-session beans are dedicated to a particular client. The
container manages this dedication. In the event that the container has an enormous amount of client
stateful-session beans to manage, it can remove the bean from RAM and store it on disk in a state called
passivate. When the bean is needed again by the container, it can read it into memory from disk. This
prevents the container from filling up the machine’s RAM with stateful-session beans.

A good example of a stateful-session bean is an online Web site that possesses a shopping cart mecha-
nism. An online shopping cart keeps track of items that a user wishes to purchase as the user continues
to navigate the site. Stateful-session beans can be used to keep track of this user information.

Entity
Entity beans can be thought of as beans that are used to persist data to a database. They basically repre-
sent a single row within a given database. It is important to put emphasis on the word single since entity
beans access one row of data at a time. A session bean can have more than one representation of data by
simply having multiple instances of itself. Entity beans cannot do that; in fact, an entity bean’s life span
is directly tied to its relationship with the data, whereas session beans care about clients and not data.

Message Driven
Message-driven beans are message consumers that clients use transparently when they send messages to
specific destinations or endpoints that the message-driven beans are aware of. Message-driven beans are
asynchronous and in the past only used JMS for communication. With the arrival of the EJB 2.1 specifica-
tion, message-driven beans are no longer tied completely to JMS.

466

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 466

Message-driven beans are generally invoked and managed by containers. They are completely transpar-
ent to the clients that use them to reach a specific destination. When a client makes a request to send a
message to a particular destination, the container can then execute the message-driven bean to handle
the communication needs.

Examining EJB Containers
As the name suggests, EJB containers are complete systems that house EJBs and allow clients to access
the EJBs through the Java Naming and Directory Interface (JNDI) by exposing the EJBs home interface.
Here is an example of how clients can look up EJBs locally using JNDI calls:

Context initialContext = new InitialContext();

TestHome testHome = (TestHome) initialContext.lookup(“java:comp/env/ejb/test”);

The home interfaces of the EJBs can actually reside on multiple machines on multiple networks. The
location of the EJBs would be totally transparent to the user. It is the container’s job to find the EJB’s
home interfaces and provide them to the clients. Figure 10-5 shows the client asking for the EJBRocket
home interface, and container 1 gets the interface from container 2 and returns it to the client without the
client having any knowledge of where the EJB was located.

Figure 10-5

Some of the more popular application servers that are EJB containers provide a great amount of
functionality — including caching, security, connection pools, thread pools, and transaction support —
that the EJBs can leverage. This allows EJB developers to separate the business logic of the application
from the system logic and also prevents the developer from having to reinvent the wheel every time the
developer needs to create an EJB that requires transaction or database support. This adds to interoper-
ability and is exactly what the architects of J2EE had in mind.

Laptop

Client looks for
EJBRocket

Container 1

EJBMissle

Server Server

Container 2

EJBRocket

467

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 467

All of the system logic can now be controlled by an administrator of the EJB container, and therefore it
gives corporations and government agencies more control over security, scalability, and performance.

If you are looking for a good application server/EJB container to develop EJBs in, try the open-source
solution, JBoss.

EJB Loan Calculator Example
The EJB Loan Calculator example will demonstrate how to use a stateless-session bean for the purpose
of calculating the monthly payment of a loan given the loan amount, loan term (in months), and interest
rate. The beauty of the EJB is that it can be used by any client that requires its loan calculating services.
This really shows the benefit of creating EJBs versus individual applications to do all the work. Now,
multiple clients can simply call this EJB to perform loan calculations by looking up the loan calculator
bean with JNDI.

LoanObject Interface
The first thing you need to do in the example is design the remote interface that clients will be interfac-
ing with. This remote interface must extend the javax.ejb.EJBObject class in order to become a valid
remote interface. Any methods associated with this interface must throw a RemoteException in the event
of an error. The LoanObject interface is your remote interface that will be used by clients to gain access to
its only method that is used for calculating a loan payment. The method calculateLoanPayment takes
three doubles and returns the result in double form:

package sample.loanejb;

import java.rmi.RemoteException;

/**
* The LoanObject class is the remote interface of the EJB
* and it contains a method which can be invoked remotely by
* clients.
*/

public interface LoanObject extends javax.ejb.EJBObject {

// The method to calculate monthly payments on a given loan.
public double calculateLoanPayment(double dLoanAmount, double dLoanTerm,

double dLoanRate) throws RemoteException;
}

LoanHome Interface
The LoanHome interface is the EJB home interface that is used to create the LoanObjects and distribute
them to clients as needed. The LoanHome interface contains only one method called create to accom-
plish its task. You may have noticed that the create method not only throws a RemoteException but also
a CreateException, which is a requirement for the create method:

package sample.loanejb;

import java.rmi.RemoteException;
import javax.ejb.CreateException;

/**

468

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 468

* LoanHome is the home interface of the EJB. We have one method create
* which is used to create a LoanObject.
*
*/

public interface LoanHome extends javax.ejb.EJBHome {

// Creates a LoanObject
public LoanObject create() throws CreateException, RemoteException;

}

LoanBean Class
The LoanBean class is the implementation of the LoanObject interface. It contains the remote methods
that clients will use when connecting to the EJB. The calculateLoanPayment method is implemented
fully along with the ejbCreate method below:

package sample.loanejb;

import javax.ejb.*;
import javax.naming.*;

/**
* The LoanBean class is the implementation of the
* remote interface. It contains the implementations of the
* LoanObject class.
*/

public class LoanBean implements SessionBean
{

// Used to store the name of the EJB
String m_ObjectName;

/**
* This method is used to obtain the monthly payment of a given loan
*/

public double calculateLoanPayment(double dLoanAmount, double dLoanTerm,
double dLoanRate) {

double dLoanPayment = 0.0d;
double dRate = 0.0d;

dRate = dLoanRate / 1200;

// Algorithm = dLoanAmount * dRate /
// (1 - (Math.pow(1/(1 + dRate), dLoanTerm)))

dLoanPayment = dLoanAmount * dRate /
(1.0d - (Math.pow(1.0d/(1.0d + dRate), dLoanTerm)));

return dLoanPayment;
}

469

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 469

The ejbCreate method is used to give the developer a chance to execute commands when the EJB is cre-
ated. In this case, the name of the EJB is being retrieved in the form of a string and then it is saved for
later use:

public void ejbCreate() throws CreateException
{

try {

// Get and save our name
m_ObjectName = (String) new

InitialContext().lookup(“java:comp/env/loanEJB”);

} catch (NamingException ne) {
throw new CreateException(“Could not obtain the name for this EJB”);

}
}

The methods below are required but not used for stateless-session beans. This example does not need to
use them, but they must be implemented because they are required methods of the SessionBean inter-
face that must be implemented for the LoanBean class:

public void setSessionContext(SessionContext ctx)
{

// Not required
}

public void ejbActivate()
{

// used only for stateful session beans
}

public void ejbPassivate()
{

// used only for stateful session beans
}

public void ejbRemove()
{

// Any clean up code you need to do should go here for the
// EJB.

}
}

LoanClient Class
The LoanClient class is the class that communicates with the EJB and performs the necessary operations
to calculate the loan payments due each month. The class expects three command-line arguments to be
passed to it:

❑ The loan amount. This amount will be converted to a double internally so decimal points in the
amount are excepted. An example of a loan amount, if you were financing a car, would be
20000.00.

470

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 470

❑ The loan term. The program expects the loan term to be in months. An example of loan term
would be 60 months (which is the equivalent of five years).

❑ The loan rate. This is the percentage rate you expect for the loan. In order to enter a percentage
rate of 7 1⁄2 percent, simply send in the number 7.5.

Take a look at the code. The significant aspects of the class will be explained as the code is presented:

package sample.loanejb;

import java.rmi.RemoteException;
import javax.ejb.CreateException;

import javax.naming.*;
import sample.loanejb.LoanHome;
import sample.loanejb.LoanObject;

In order to use the LoanHome and LoanObject classes, they must be imported since they are a significant
part of the design of this class:

/**
* This is the LoanClient that will communicate with the EJB.
*/

public class LoanClient {

private LoanHome m_LoanHome;

public LoanClient() throws Exception {

try {
Context ctx = new InitialContext();
m_LoanHome = (LoanHome) javax.rmi.PortableRemoteObject.narrow(

ctx.lookup(“LoanEJB”), LoanHome.class);

ctx.close();

} catch (NamingException e) {
System.out.println(“Could not lookup LoanEJB home”);
throw e;

}
}

The default constructor performs a crucial operation of looking up the remote object LoanEJB that is
required in order to use its remote methods. Once the object is found, it is then stored in a LoanHome
variable for later use:

public LoanHome getHome() {
return m_LoanHome;

}

public static void main(String[] args) throws Exception {

if (args.length != 3) {

471

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 471

System.out.println(“Usage: java -jar client.jar “ +
“loanAmount (5000.00, loanTerm (in months, 60), “ +
“loanRate (7.5)”);

System.exit(0);
}

The main method expects three arguments to be sent to it as was discussed earlier in this section. If they
do not exist, the program will print out a usage statement to the user and exit without further execution:

// Obtain a client object
LoanClient lcClient = new LoanClient();

// Collect arg info into appropriate variables
double dLoanAmount = Double.parseDouble(args[0]);
double dLoanTerm = Double.parseDouble(args[1]);
double dLoanRate = Double.parseDouble(args[2]);

// Create LoanEJB
LoanObject loanObj;

try {
// Create the EJB object
loanObj = lcClient.getHome().create();

} catch (CreateException ex) {
System.out.println(“Error creating EJB!”);
throw ex;

}

There are many neat things happening in this segment of the client class. First a LoanClient object is cre-
ated, which is an object of this class. This triggers the default constructor, which looks up the LoanEJB
and stores it in the m_LoanHome variable of the class. Once the home object is obtained, an EJB object is
created by calling lcClient.getHome().create() and then it is stored in the loanObj variable which
is of type LoanObject. Now you are ready to continue and make remote calls as needed:

double dResult;

try {

dResult = loanObj.calculateLoanPayment(dLoanAmount,dLoanTerm,dLoanRate);

} catch (RemoteException ex) {

System.out.println(“Error calling loanObj.calculateLoanPayment()”);
throw ex;

} finally {
// perform clean up
loanObj.remove();

}

472

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 472

Using the loanObj, a call to calculateLoanPayment is made to get the monthly payment for the loan
specified. Since the object is no longer needed, loanObj.remove is called to perform any cleanup routines
that may be needed prior to the EJB being garbage collected:

// Print out result
System.out.println(“The amount it will cost you each month for a” +

“ period of “ + dLoanTerm +
“ month(s)\non a $”+ dLoanAmount +” loan with an interest rate of “ +
dLoanRate + “ percent is: $” + dResult);

}
}

Finally, the result of the loan is printed out. Here is the printout of a sample result for a loan that has a
loan amount of $20,352.07 with a term of 60 months at an interest rate of 7.5 percent.

Examining the EJB-JAR.XML File
The ejb-jar.xml file is the basic EJB deployment descriptor that is used by containers to locate classes and
interfaces, impose security restrictions, and set up transaction support. Depending on the application
server you are using for your EJBs, you may be required to fill out another XML file that is specific to
your application server. The ejb-jar.xml file generally coexists with the application server’s deployment
descriptor file. For example, JBoss uses both ejb-jar.xml and jboss.xml. The file jboss.xml is obviously
jboss-specific and is not compatible with other application servers:

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar>
<description>

LoanEJB example takes a loan amount, term in months and interest
rate then computes and returns the monthly payment for the loan

</description>

<display-name>LoanEJB example</display-name>

These are the basic description and name tags for the EJB that may show up in the container’s adminis-
trator page or elsewhere. They are not critical configurations, but are worth noting:

<enterprise-beans>
<session>

<display-name>Loan EJB</display-name>
<ejb-name>LoanEJB</ejb-name>

<home>sample.loanejb.LoanHome</home>
<remote>sample.loanejb.LoanObject</remote>
<ejb-class>sample.loanejb.LoanBean</ejb-class>

<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

The amount it will cost you each month for a period of 60.0 month(s) on a $20352.07
loan with an interest rate of 7.5 percent is: $407.81373247452996.

473

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 473

Explore the elements shown above a little closer. The <ejb-name> element specifies the name for the EJB.
The <home> element must point to the EJB home interface. The <remote> element must point to the remote
interface. For this example, that is the LoanObject interface. The <ejb-class> element must point to the
fully qualified name of the enterprise bean’s class. The <session-type> has only two possible values,
Stateful or Stateless. Stateless is what was required for this example. Finally, the <transaction-type>
element must specify the type of management that will occur, either Bean or Container:

<env-entry>
<env-entry-name>loanEJB</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>LoanEJB</env-entry-value>

</env-entry>
</session>

</enterprise-beans>

The <env-entry> section contains environment entries that are optionally set for the EJB’s environ-
ment. These entries can be looked up by JNDI as shown in this example. The <env-entry-name> ele-
ment contains the name of the EJB’s environment entry. The <env-entry-type> describes the Java
type of the value of the environment entry. The <env-entry-value> contains the value of the environ-
ment entry:

<assembly-descriptor>

<security-role>
<role-name>guest</role-name>

</security-role>

<method-permission>
<description>This is the guest account to access the EJB</description>
<role-name>guest</role-name>

<method>
<ejb-name>LoanEJB</ejb-name>

<method-name>*</method-name>
</method>

</method-permission>

<container-transaction>
<description>LoanEJB transaction</description>

<method>
<ejb-name>LoanEJB</ejb-name>
<method-name>*</method-name>

</method>

<trans-attribute>Supports</trans-attribute>
</container-transaction>

</assembly-descriptor>

</ejb-jar>

474

Chapter 10

13_574868 ch10.qxd 12/21/04 5:55 PM Page 474

The final code segment above is contained in the element <assembly-descriptor>. This element can
contain information on security roles, method permissions, and transaction attributes. There are so many
here to examine that the best way to describe them is in a table. Here are the descriptions of each child
element of the <assembly-descriptor> element.

Element Description

<security-role> This element contains info about a security role such as a
description and role name

<role-name> This element contains a security role name that must
conform to the NMTOKEN lexical rules.

<method-permission> This element sets permissions for individual methods of
an EJB and it ensures that one or more security roles can
be allowed to access the methods.

<method> This element allows you to associate all methods or spe-
cific methods of an EJB with a specific security role of the
method-permission element.

<container-transaction> This element has child elements that manage how trans-
actions apply to EJB methods.

<trans-attribute> When dealing with EJB methods, this element tells the
container how it should manage transaction boundaries.
Valid values are as follows: NotSupported, Supports,
Required, RequiresNew, Mandatory, Never.

Summary
This chapter explored RMI and EJB Java technologies that allow Java components to communicate with
each other on different levels using different protocols. It also demonstrated how EJBs are the better
approach of the two technologies for communication between Java components and for interoperability
needs when dealing with enterprise applications. RMI is still very useful, and depending on your archi-
tecture needs, you should choose the technology that works best for you.

The next chapter will focus in on how to perform communication between Java components using other
technologies, such as Web services, CORBA, and sockets.

475

Communicating between Java Components with RMI and EJB

13_574868 ch10.qxd 12/21/04 5:55 PM Page 475

13_574868 ch10.qxd 12/21/04 5:55 PM Page 476

Communicating between
Java Components and
Components of Other

Platforms

Java is an ideal platform for server-side development. Many of the ongoing professional and open
source Java development projects are for various server-side applications. J2EE dominates this
Java server space, providing a strong open platform for many different types of server applica-
tions. One of the core principles and architectural themes in J2EE is the ability to segregate and
distribute various components of the same software system to different machines. Remote commu-
nication between Java objects and components to other Java objects and components is at the heart
of J2EE. Since J2EE is an open platform, it also defines how external objects and components in
other applications (and even other programming languages) communicate with J2EE components.
In today’s heterogeneous Internet-centric computing world, this communication is absolutely
essential.

Components–Component is an ambiguous term that can mean many different things
to many different developers. In the context of this chapter, component refers to any
software object or collection of objects that are network-aware, either sending infor-
mation to other components or receiving it from the latter. For example, a Web server
could be considered a component. Web browsers and other client applications need
to communicate with this component. Enterprise JavaBeans (EJBs; see Chapter 10,
“Communicating between Java Components with RMI and EJB”) could also be
thought of as components.

14_574868 ch11.qxd 12/21/04 5:58 PM Page 477

In this chapter, you will investigate the general high-level design of component-to-component communi-
cation as well as some concrete examples for coding the actual communication. The java.net package
will be looked at first for its socket’s API, since sockets are the basic building block for all other commu-
nication technologies. A brief discussion of Remote Method Invocation (RMI) and the Common Object
Request Broker Architecture (CORBA) will follow. Concluding the chapter will be information on how
best to utilize the latest and greatest craze in distributed software development, Web services.

Component Communication Scenarios
A few examples of where component-to-component communication takes place will aid the understand-
ing of where sockets, CORBA, RMI, and Web services fit into a given application’s architecture. In each
of the scenarios shown, almost any of these technologies could be used. Being equipped with more in-
depth knowledge of these technologies later on in the chapter will allow the software developer to
weigh the pros and cons of each in their particular situation and pick the right technology for the job.

News Reader: Automated Web Browsing
Little software utilities can often eliminate tedious tasks such as constantly watching and monitoring
particular Web sites. Software can be developed to automate these tasks as much as possible. Developing
an application for monitoring Web sites would involve communicating with the remote Web server to
check various news sites for new stories and information on topics of interest every ten minutes.
Whenever a new story popped up, fitting your criteria, the user would be notified, eliminating the need
to constantly check and refresh certain Web sites. Writing client components that monitor data sources
for new information is a common task in distributed computing.

A Bank Application: An EJB/J2EE Client
Because of J2EE’s component-based nature, existing systems can often be extended by simply adding
new software components, without destroying their existing infrastructure. Suppose a bank wants to
modernize their client software that their tellers use to access the banking infrastructure. The terminals
the bank tellers use daily are all running Microsoft Windows 2000 and the application must run on this
existing infrastructure. The bank already has a J2EE-based back end to keep track of all banking data,
and the application merely needs to interface with it. This J2EE system exposes a Web front end, which is
good for personal use over the Internet by various members of the bank, but not for the heavy daily use
necessary for tellers. A thick client is needed. The EJB components on the server will need to be accessed
by the client. Writing client applications that access EJBs (or other J2EE components) is typical in profes-
sional Java development.

A Portal: Integrating Heterogeneous Data Sources and
Services

Many Web portals, such as Yahoo!, integrate various pieces of data such as stock tickers, sports scores,
and news headlines. The software design of such a portal must be flexible enough to integrate many of
these different pieces of data, oftentimes from many different locations. Many larger corporations have
their own internal intranet portal. These portals need to access information from a variety of sources.
Component-to-component communication is crucial to access the databases, files, and information from
other software applications necessary for the functionality of the portal.

478

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 478

Overview of Interprocess Communication
and Basic Network Architecture

In the development of these distributed software applications, it is often necessary for components run-
ning in one process to communicate with components running in another process. For instance, a
database runs in one process on a server, and the client application that reads and writes information
from and to this database runs in a separate process (and possibly on a different machine). There must
be some mechanism through which these two processes communicate. Often, these other processes that
your Java application must communicate with are not written in Java and are not running inside a vir-
tual machine. Whether or not another process is running in a Java Virtual Machine, any communication
between two processes must follow some sort of protocol. Protocols are the language two disparate com-
ponents use to speak to one another. Your Web browser speaks the HyperText Transfer Protocol (HTTP)
to Web servers to retrieve Web content to your local machine. Your instant messaging client speaks a cer-
tain protocol back to its server and potentially to other users of an instant messaging service. Peer-to-
peer file-sharing services speak protocols to allow the searching and sharing of files (Gnutella is one
popular example of a common protocol allowing many different file-sharing clients to communicate
with each other.).

All of the applications and protocols mentioned can communicate over a network. They can also com-
municate to another process on the same machine. This is because these protocols have been abstracted
from their transport. They could run locally, or over a TCP/IP network. In communicating between Java
components and components of other platforms, you must always consider possible network transports.
The Open Systems Interconnection (OSI) network architecture gives a high-level abstraction of some of
the layers in any form of interprocess network communication. For the discussion in this chapter, you
can think of an even higher-level architecture (derived from the OSI architecture) for understanding
component-to-component communication. Figure 11-1 shows the derived architecture with three main
layers: the application layer, the protocol layer, and the transport layer.

Figure 11-1

Transport Layer (Ethernet)

Protocol Layer (TCP/IP)

Application Layer (HTTP)

Transport Layer (Ethernet)

Protocol Layer (TCP/IP)

Application Layer (HTTP)

Network

479

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 479

Two disparate components communicate by sending data through each of the layers as shown. The
application layer represents high-level protocols such as HTTP or FTP. The protocol layer represents
lower-level transport protocols such as TCP or UDP running over IP. The transport layer represents the
actual physical transport, such as Ethernet, as its corresponding mechanisms for sending and retrieving
data. For distributed components to communicate, they must speak the same protocol at the application
level.

This chapter focuses on the application level; the lower-level hardware transport is out of the scope of
this book. For most distributed application development, the application layer is most important to soft-
ware developers. In Web applications, for example, HTTP is the application level protocol that dictates
many of the application’s design decisions. HTTP does not support stateful connections, and therefore
the state of any user’s session must be simulated by the use of session cookies or session identification
parameters. Designing any network-aware application, or in other words, any application that must
communicate between separate components, Java or non-Java, locally or remote, requires the knowledge
of the limitations and features of the various application level and transport level protocols available to
facilitate such communication.

Note: Threads are a critical aspect of designing any good I/O-intensive application, especially I/O over
a network and between two disparate processes.

Sockets
Sockets are the basic mechanism for interprocess communication provided by the operating system. In
most development projects, they will probably not have to be used explicitly, since they are fairly low-
level. However, any type of interprocess communication is built on top of sockets, and in any type of net-
work communication, sockets are used implicitly. Therefore, it would be prudent to understand just
some simple background as to how they work. This section of the chapter will provide a broad overview
of sockets for the purposes of better understanding RMI, CORBA, and Web services.

A socket is essentially a defined endpoint for communication between two processes. It provides a full
duplex channel to two different parties (potentially more if it is multicasting) involved in communication —
there are two separate data streams, one going in and one going out. There are two types of sockets:

❑ User Datagram Protocol (UDP). Sockets using UDP provide a datagram service. They receive
and send discrete packets of data. UDP is a connectionless protocol, meaning that there is no
connection setup time as there is in TCP. However, UDP is unreliable — packets are not guaran-
teed to be sent or received in the right order. UDP is mainly used for applications such as multi-
media streaming and online gaming, where not all data is necessary, for which the UDP’s
best-effort service model is well suited.

❑ Transmission Control Protocol (TCP). Sockets using TCP provide a reliable byte-stream service.
TCP guarantees delivery of all packets sent and the reception of them in the correct order. TCP
is a connection-oriented protocol, which allows it to provide the byte-stream service. TCP is best
suited for applications that cannot allow data transmitted to be lost, such as for file transfer,
Web browsing, or Telnet.

This section will only consider using TCP sockets, since UDP is more for advanced network applications
that require the development of their own low-level protocols or multimedia streaming algorithms,
which are out of the scope of this book. For the purposes of this text, sockets simply allow you an input
and output stream to another process, either running locally or remotely.

480

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 480

The Java Socket API
The Java Socket API is the core Java interface to network programming. As such, all of the core socket
classes are found in the java.net package. Java implements the two types of sockets: TCP sockets,
which communicate using the Transmission Control Protocol, and UDP sockets, which communicate via
the Universal Datagram Protocol. In addition to the normal UDP socket implementation, Java also pro-
vides a UDP multicast socket implementation, which is a socket that sends data to multiple clients
simultaneously. Since Java was built from the ground up as an object-oriented language, you will find
that the socket library interacts heavily with the Java I/O libraries (both java.io and java.nio). If you
need a refresher on some of the aspects of Java I/O and serialization, see Chapter 5, “Persisting Your
Application Using Files.” This section concentrates on TCP sockets throughout, because they are far
more prevalent than UDP sockets in most client/server or distributed systems.

Key Classes
The following table shows the four major classes used for socket communication in Java. The Socket and
DatagramSocket classes implement TCP and UDP, respectively. Both TCP and UDP use an IP address
and port number as the demultiplexing key, or address, to another process. InetSocketAddress repre-
sents this address. Both Socket and DatagramSocket use an InetSocketAddress to locate the machine
and process that should be the recipient of any data sent.

Class (From java.net) Function

Socket Class used to represent a client socket endpoint for sending and
receiving data over TCP connections.

DatagramSocket Both client and server class for sending and receiving data sent
via UDP.

ServerSocket Class used for TCP servers. Once a client connects, this class returns
a Socket class to actually send and receive data.

InetSocketAddress Represents an IP address (or hostname) along with a port
number. For example, InetSocketAddress could represent
www.example.com:8080.

Client Programming
The Socket and InetSocketAddress classes are used by a client to connect to a server running in
another process (whether remote or local). Once a connection is set up, all communication takes place
utilizing normal Java I/O classes. There is a stream of data coming in, and a stream of data going out. To
set up a connection, first create the address object that defines which server and port to connect:

InetSocketAddress address = new InetSocketAddress(“www.example.com”, 80);

InetSocketAddress objects can also be created with an IP address:

InetSocketAddress address = new InetSocketAddress(“127.0.0.1”, 80);

Once the address of the remote endpoint has been defined, a connection can be attempted. Be sure to
catch java.io.IOException, as this exception will be thrown if there are any problems connecting

481

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 481

(such as the network is down, the server is busy, the server cannot be located, and so on). In network
programming, it is important to pay extra attention to error-handling details, as communication prob-
lems aren’t just a possibility — they are pretty much guaranteed to happen at some point. Now that you
have defined an address, you can create a new Socket class to attempt a connection:

Socket socket = new Socket();
socket.connect(address);

If the connection succeeds, either Java I/O classes or NIO (java.nio) classes can be used to send and
receive data. In these examples, you will use normal Java I/O because it is often easier to understand
and provides better code readability. Once the socket is connected, both InputStream and
OutputStream objects from the java.io package can be retrieved and communication can begin:

InputStream in = socket.getInputStream();
OutputStream out = socket.getOutputStream();

These objects are often wrapped around other higher-level and easier to use I/O classes just as they are
in normal Java I/O programming. Suppose, for example, that all the communication you are going to
send and receive over the socket is textual data. Java provides the BufferedReader and PrintWriter
objects that can be wrapped around the input and output stream objects:

PrintWriter out = new PrintWriter(out);
BufferedReader br = new BufferedReader(new InputStreamReader(in));
out.println(“Hello, remote computer”);
out.flush();
String serverResponse = br.readLine();

Note: The call to flush() in the preceding code segment is important. PrintWriter and other I/O
classes buffer data before writing them to their underlying output stream. To have the send take place
immediately, you flush the underlying output stream so the data you have written to the PrintWriter
is immediately written to the underlying output stream, in this case, the OutputStream from the
Socket, which then sends the data over the network. PrintWriter can also be created to automati-
cally flush any output written straight to the underlying output stream, at the disadvantage of losing the
ability to buffer data before it is sent to optimize network performance.

That’s really all there is to sockets. The difficult aspect of sockets comes when determining and imple-
menting the protocol by which two different processes agree to communicate. In the “Implementing a
Protocol” section, the difficulties will be explored, and a small portion of HTTP will be implemented.

Server Programming
Programming server-side sockets with Java is just as easy as on the client-side. The ServerSocket class
is used to initiate a passive TCP connection. A passive TCP connection monitors a particular port on the
host machine and waits for a remote client to connect. Once a connection is initiated by a client, the
ServerSocket class dispatches a Socket class, which in turn can be used to get the input and output
streams associated with the connection (as well as the hostname and address of the client machine).
Certain ports on computers are generally associated with certain protocols, port 80 is HTTP, 23 is Telnet,
25 is SMTP, and so on. When picking a port to use for your application, the general rule of thumb is to
keep it above 1000, as most common server applications do not use ports in this range. If a
ServerSocket is created on a port that is already in use, an exception will be thrown, and the server

482

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 482

socket will not be created. Only one application on a machine can use any given port at one time. The
code below creates a ServerSocket and prepares it to accept incoming connections on port 1500:

ServerSocket serverSocket = new ServerSocket(1500);
Socket incomingClient = serverSocket.accept();

The accept() method blocks until a client connects. Once a client connects, a Socket instance is
returned that represents the connection to the remote process. Input and output streams can be obtained
to facilitate communication using the same mechanisms described in the preceding section. You do not
have to call connect() on the incoming Socket though, since the connection setup has already
occurred.

The previous code segment listed will accept one connection, and one connection only. Server-side appli-
cations generally need to service more than one client simultaneously however. Imagine if eBay or other
popular Web sites could only serve one client at a time! The accept() method on the ServerSocket
negotiates another port on the server for the client’s connection to move to, freeing up the original port
the ServerSocket was created on for another incoming connection. You could call accept() again to
wait for another connection. However convenient the behavior of accept() is though, it does not solve
the problem of allowing multiple simultaneous connections. This is solved through the use of threads.
The code below is a simple example of how a server could allow for multiple simultaneous connections:

boolean conditionToKeepRunning = true;

while (conditionToKeepRunning) {
Socket client = serverSocket.accept();

Thread clientServiceThread = new Thread(new ClassThatImplementsRunnable(client));
clientServiceThread.start();

}

Notice how every time your server receives a connection, it spawns off a worker thread to handle the
incoming request. This allows the incoming request to be serviced while the server waits for another con-
nection. Since each request receives its own thread, more than one request can also be processed at the
same time.

Note: This model of one thread per request is not the most efficient solution; it is used here for simplicity.
Creation and destruction of threads is an expensive operation, and a thread pool would be a better solu-
tion. Keeping a fixed number of active threads and using them as they become available can keep the
server from being overloaded, as well as virtually eliminating the cost of thread creation and destruction.

Putting It All Together: An Echo Server
Writing a simple server application will demonstrate a full application using sockets. This cleverly-
named echo server will echo any text sent to it back to the client. Whenever a client connects, they will
receive a welcome message, and after the message is sent, your server will simply begin its loop of echo-
ing back to the client any text the client sends.

Our server class, SocketEcho, will implement java.lang.Runnable since every instance you create of
SocketEcho will be running in a separate thread, allowing you to process multiple simultaneous con-
nections. All of the server logic will reside in the SocketEcho.run() method (for the threading). In its
constructor, SocketEcho is passed a Socket with which it conducts all communications with its client

483

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 483

in the run() method. The run() method is shown below, and as you can see after the welcome message
is printed, the application simply loops on receiving textual input from its client. Every time a new char-
acter is received, the server checks to see if it was the exit character (the ? in this case). If the exit charac-
ter was received, the application breaks out of its loop and the socket is closed in the finally block.
Any other character besides the exit character is sent back to the client:

public void run() {
try {

BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream());

// print a welcome message
out.println(“Hello, you’ve contacted the Echo Server.”);
out.println(“\tWhatever you type, I will type back to you...”);
out.println(“\tPress ‘?’ to close the connection.”);
out.println();
out.println();
out.flush();

int currChar = 0;
while ((currChar = br.read()) != -1) {

char c = (char) currChar;

// if ‘?’ is typed, close the connection
if (c == ‘?’)

break;

out.print(c);
out.flush();

}
} catch (IOException ioe) {

ioe.printStackTrace();
} finally {

try {
if (socket != null) {

socket.close();
}

} catch (IOException ex) {
ex.printStackTrace();

}
}

}

The main() function simply launches the server, using a ServerSocket. In here, the code for accepting
client connections and spawning new threads is found. Every time a client connects, a new instance of
SocketEcho is created with the client’s corresponding Socket instance, and a thread to run it is pro-
duced. Once this new thread is started, the control flow for the client that connected goes to the run()
method in SocketEcho (which is in a different thread). While one or many clients are connected, the
server can still wait for new connections, because the server handles each client in a separate thread:

try {
ServerSocket serverSocket = new ServerSocket(port);

System.out.println(“Echo Server Running...”);

484

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 484

int counter = 0;
while (true) {

Socket client = serverSocket.accept();

System.out.println(“Accepted a connection from “ +
client.getInetAddress().getHostName());

// use multiple threads to handle simultaneous connections
Thread t = new Thread(new SocketEcho(client));
t.setName(client.getInetAddress().getHostName() + “:” + counter++);
t.start(); // starts up the new thread and SocketEcho.run() is called

}
} catch (IOException ioe) {

ioe.printStackTrace();
}

The full listing of the code for SocketEcho is found below:

package book;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

public class SocketEcho implements Runnable {

private Socket socket;

public SocketEcho(Socket socket) {
this.socket = socket;

}

public void run() {
try {

BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream());

// print a welcome message
out.println(“Hello, you’ve contacted the Echo Server.”);
out.println(“\tWhatever you type, I will type back to you...”);
out.println(“\tPress ‘?’ to close the connection.”);
out.println();
out.println();
out.flush();

int currChar = 0;
while ((currChar = br.read()) != -1) {

char c = (char) currChar;

// if ‘?’ is typed, close the connection
if (c == ‘?’)

485

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 485

break;

out.print(c);
out.flush();

}
} catch (IOException ioe) {

ioe.printStackTrace();
} finally {

try {
if (socket != null) {

socket.close();
}

} catch (IOException ex) {
ex.printStackTrace();

}
}

}

public static void main(String[] args) {
// our default port
int port = 1500;

// use port passed in by the command line, if one was
if (args.length >= 1) {

try {
port = Integer.parseInt(args[0]);

} catch (NumberFormatException nfe) {
System.out.println(“Error: port must be a number -- using 1500 instead.”);

}
}

try {
ServerSocket serverSocket = new ServerSocket(port);

System.out.println(“Echo Server Running...”);
int counter = 0;
while (true) {

Socket client = serverSocket.accept();

System.out.println(“Accepted a connection from “ +
client.getInetAddress().getHostName());

// use multiple threads to handle simultaneous connections
Thread t = new Thread(new SocketEcho(client));
t.setName(client.getInetAddress().getHostName() + “:” + counter++);
t.start(); // starts up the new thread and SocketEcho.run() is called

}
} catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

486

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 486

Running the Echo Server
To start up the echo server, simply run it like any other Java application from the command prompt:

java book.SocketEcho

Once the server is started, it will begin accepting connections on port 1500 (or what was specified as a
parameter in the command line). Whenever a connection is accepted, information about who connected
is outputted to the screen as seen in Figure 11-2.

Figure 11-2

To connect to your client, run Telnet. Because you are running your server on a different port than
Telnet’s default, you have to specify the port to which you want Telnet to connect:

telnet localhost 1500

Notice the welcome message displays. Now anything you type will be sent to the server and then
echoed back to your screen. If you press the ? character, the server closes the connection. Figure 11-3
shows an example conversion between the client and server.

Figure 11-3

Implementing a Protocol
Sockets provide the building blocks for developing communication languages, or protocols, between
two separate applications. TCP sockets provide input and output streams, but any data sent on one end
is simply bytes to the other end unless the other end understands its meaning. In the previous echo

487

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 487

server example, the server did not understand any of the data sent to it. It only read the data, and passed
it back to the client. In practice, applications such as these are really only good to test network connectiv-
ity. They can serve no other purpose. To have any sort of meaningful communication, both a client and
server must talk the same language, or protocol. Implementing protocols is a difficult task. As you have
seen previously, sockets in Java are not difficult to program — they are simply another way of reading
from an input stream and writing to an output stream. Many of the hard tasks associated with socket
programming are the same hard problems associated with reading certain types of files. Files are struc-
tured in some sort of meaningful way — for instance, bitmaps are basically a two-dimensional array of
color values. Programs that can read and display bitmaps must understand how to parse the file format.
Writing parsers for anything more involved than simple text commands can be a daunting task, and is
out of the scope of this chapter. Implementing a protocol requires agreeing on some form of a contract
(or file/data format) between the client and server. Once this protocol has been developed, clients and
servers can then implement it to talk to each other. The protocol needs to be unambiguous for two sepa-
rate implementations to work correctly with each other. It is no trivial task to specify an unambiguous proto-
col, and then have two separate implementations work with each other. In this section, a simple implementation
of one of the commands in the HTTP protocol will be explored. By implementing just a minute fraction
of a simple textual protocol like HTTP, you will appreciate the difficulty in writing and implementing
more detailed protocols. Other options will then follow that spare application programmers the need to
recreate the wheel by writing new protocols for every application they develop.

Protocol Specification
During the development of an application that employs the use of sockets, there will be some point
where either a custom protocol is defined, or the definition of an existing protocol is used as the founda-
tion for the logic in all socket programming in the application. Only for the development of specialized
applications is there ever a need to develop a custom protocol. For example, the communications mod-
ules of the Mars Landers from NASA probably have to use sockets to issue commands to the robot and
receive its status (or if not sockets, some other software abstraction of communication for which you
would develop your own protocol). A custom protocol would need to be specified and implemented for
this unique set of commands for the Lander. In most applications though, there is probably a protocol
out there that suits the application’s needs. There are many different ways to write a protocol specifica-
tion, and this chapter will not delve into such matters, as it is a large subject on its own. In this section,
HTTP is used as a test case for implementing someone else’s protocol. Only a small portion of the HTTP
specification will be looked at and a simple piece implemented.

Basic Elements of HTTP
HTTP follows the simple request/response paradigm. A client sends a request to an HTTP server, issu-
ing a particular command. The server then returns a response to the client based upon what command
was sent. HTTP is a stateless protocol, meaning that the HTTP server does not need to retain information
about a particular client across different requests. Every request is treated the same, no matter what
requests a client has previously made.

Note: There are ways to simulate state over HTTP, and this is what all Web applications do. They use
session identifiers and cookies to retain information about a particular client across multiple requests.
This is how sites like amazon.com can identify particular users and provide one of the building blocks
necessary for e-commerce.

HTTP was developed purposely to be a simple protocol and easy to implement. This is why things such
as stateful-session support had to be built on top of HTTP later — HTTP was originally designed just to

488

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 488

be a mechanism for transferring HTML pages across a network. In HTTP, a client merely connects to a
port (usually 80) on a remote machine and issues an HTTP command. The main HTTP commands are

❑ GET. Retrieves the content found at the URL specified.

❑ POST. Sends data to the HTTP server and retrieves the content found at the URL specified.
Oftentimes the content the HTTP server passes back is based on the data sent in by the POST
command (that is, form data passed to a server).

❑ PUT. Asks the HTTP server to store the data sent with the request to the URL specified.

❑ HEAD. Retrieves only the HTTP headers of a request, and not the actual content.

❑ DELETE. Asks the HTTP server to delete the content found at the URL specified.

After receiving an HTTP command, an HTTP server returns a response. It returns a response code to
indicate something about the response. I’m sure you have seen some of these response codes while sim-
ply browsing the Web. Depending on which response code is returned, content may be returned along
with the response code. The client can then parse through the content and display it as necessary. Some
of the more common HTTP response codes are

❑ 200. Response OK, the request was fulfilled.

❑ 404. The requested URL could not be found.

❑ 403. The request for the URL was forbidden.

❑ 500. The server encountered an internal error that prevented it from fulfilling the request.

See the actual HTTP specification online at the following URL:

http://www.w3.org/Protocols/HTTP/

It is detailed and precise, and gives a good idea of what a specification for even a protocol as simple as
HTTP looks like. For this example, you are going to look at a simple implementation of GET, and how it
is be implemented.

A Simple Implementation of HTTP GET
By implementing a small portion of a protocol, the inherent complexity and difficulty of implementing a
full protocol specification will be revealed. Writing custom protocols is no picnic, and often leads to
hard-to-maintain systems. Open protocols such as HTTP, which are published, are among the easiest to
implement. The source code to reference and sample implementations can often be found. Freely avail-
able test suites to test the validity of an implementation often exist for open protocols. In the next exam-
ple, first some of the details of HTTP GET (though not all by any means) must be examined. Your
implementation of a simple stripped-down version of GET can then commence, concluding with a look
at some methods for testing the validity of the implementation.

Background on HTTP GET

HTTP GET is probably the most commonly used HTTP request operation. Anytime a user types a URL
into the address bar of his or her browser and navigates to that URL, GET is used. GET simply asks the
server to retrieve a particular file. The server returns a response code indicating whether or not it was
successful and, if successful, returns the file. A sample HTTP GET request looks like this:

489

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 489

GET / HTTP/1.1
Accept: */*
Accept-Language: en-nz
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)
Host: www.cnn.com
Connection: Keep-Alive

Notice the format of the request. First the HTTP command line is given:

GET / HTTP/1.1

GET signifies the HTTP GET command. The / signifies the file on the server (in this case the root file) —
for example it could be /index.html, which would correspond to the URL http://www.cnn.com/
index.html. The HTTP/1.1 signifies which version of HTTP is being used by this request — this request
is using the 1.1 version of the protocol. HTTP/1.0 is the other valid entry in this field.

After the HTTP command line, HTTP headers follow. An HTTP header follows the format:

Key: Value

Headers are optional in HTTP 1.0, but in 1.1 certain headers are defined to be required, though most
HTTP servers are lenient and do not enforce these requirements. Many of the optional features of HTTP
are built on top of headers. Features, such as compressing responses or setting cookies, are all based on
HTTP headers. This part of the book will not delve further into the meaning of individual HTTP headers
as this simple implementation of HTTP GET will not make use of them. At the end of the headers, the
request is ended by two line-feeds, or new line characters. This notifies the server that no more HTTP
headers will be sent, and the server can begin sending the response.

An HTTP response is similar in structure to an HTTP request. The first line of a response contains the
HTTP response status code. Headers follow, and then the content of the file requested (in the case of a suc-
cessful HTTP GET). The response you receive from your request in the previous example looks like this:

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.1 AOL
Date: Tue, 08 Jun 2004 10:33:25 GMT
Last-modified: Tue, 08 Jun 2004 10:33:23 GMT
Expires: Tue, 08 Jun 2004 10:34:23 GMT
Cache-control: private,max-age=60
Content-type: text/html
Transfer-Encoding: chunked

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”><html
lang=”en”><head><title>CNN.com</title>
... (more html follows)

The first line of the response contains the HTTP protocol version, the status code of the response, and a
brief textual message indicating the nature of the response code. Following are headers, and then the
actual content of the page requested. An implementation of HTTP GET must be able to read the status
code to determine and report back to the user the success or failure to retrieve a page.

490

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 490

HttpGetter: The Implementation

Our implementation of HTTP GET will be a simple command-line Java application. It will save a remote
HTML file specified by the user to a local file. Your application will do four main tasks in a simple
sequential order:

1. Parse URL and file location to save the remote file from the command-line parameters.

2. Set up the Socket and InetSocketAddress corresponding to the URL parsed from the com-
mand line, and connect to the remote host.

3. Write the HTTP GET request to the Socket’s OutputStream.

4. Read the HTTP GET response from the server from the Socket’s InputStream, and write the
remote file to disk in the file location specified in the command line.

To parse the URL from the command line, you will use the java.net.URL class. This class breaks up a
URL into its components, such as host, port, and file. The code to parse the URL and local filename to
save the URL to disk from the command-line parameters is straightforward:

URL url = new URL(args[0]);
File outFile = new File(args[1]);

Note: Persons experienced with the URL class will note that it already has HTTP protocol capabilities —
we will not be using them, as the exercise is to show the HTTP protocol via sockets.

Now that the URL has been successfully parsed, the connection to the remote server can be set up. Using
socket programming techniques learned from the previous section, the connection is set up as follows:

Socket socket = new Socket();

int port = url.getPort();
if (port == -1)

port = url.getDefaultPort();

InetSocketAddress remoteAddress = new InetSocketAddress(url.getHost(), port);
socket.connect(remoteAddress);

One of the idiosyncrasies of the URL class is that if no port is explicitly set in the URL (like
http://www.example.com:1234), getPort() returns -1, meaning you have to check for it. Once you
have the port, you can create the InetSocketAddress, representing the endpoint on the remote server
to connect, and then connect to it.

Now connected to the remote server, you simply write the request to the socket’s output stream, and
then read the HTTP server’s response from the input stream. Since HTTP is a text-based protocol,
PrintWriter is the perfect class to wrap your Socket’s OutputStream and use to send character data
over the socket. Notice in the code below how the two HTTP headers, User-Agent and Host, are sent.
User-Agent tells the HTTP server what client software is making the request. Since your client software
is called HttpGetter, that is the value put in the header. This header is mainly a courtesy to the server,
since many Web servers return different content based on the value of User-Agent (that is, Netscape
compatible pages or Internet Explorer compatible pages). The Host value is simply the hostname of the
remote server to which you are connecting:

491

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 491

PrintWriter out = new PrintWriter(socket.getOutputStream());

// write our client’s request
out.println(“GET “ + url.getFile() + “ HTTP/1.0”);
out.println(“User-Agent: HttpGetter”);
out.println(“Host: “ + url.getHost());
out.println();
out.flush();

After you send the request, you must now read the response. The first line of any HTTP response con-
tains the status code for the request. That is the first thing you must check — if the response code is any-
thing other than 200 (OK), you do not want to save the contents of the input to a file, since the only
content that could be sent back would be some sort of error message. In the first line of the response, the
status code is the second of the three groups of information:

HTTP/1.1 200 OK

We want to parse out the 200 in the case above and then continue on in this case, since the 200 is HTTP
OK, meaning your request was successfully processed and the content of the page you request will fol-
low. In the following code, first use a BufferedReader to begin reading character data from the remote
server. To parse the status code out of the first line, use a StringTokenizer to separate the three groups
of values and then choose the second one to convert to an integer:

Note: Since you are using a BufferedReader, you can only read character data from the remote
server. This means that your implementation will not be able to request any file in your HTTP GET
command that contains binary data (such as an image file, a zip file, and so on).

InputStream in = socket.getInputStream();
boolean responseOK = true;

BufferedReader br = new BufferedReader(new InputStreamReader(in));
String currLine = null;

// get http response code from first line of result
currLine = br.readLine();
if (currLine != null) {

System.out.println(currLine);
StringTokenizer st = new StringTokenizer(currLine, “ \t”);
st.nextToken();
String responseCode = st.nextToken();

int httpResponseCode = Integer.parseInt(responseCode.trim());

if (httpResponseCode != 200) {
// response not OK
responseOK = false;

}
} else {

System.err.println(“Server returned no response!”);
System.exit(1);

}

492

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 492

The last step is to print out the headers, and then save the content of the request to the file specified at
the command line by the user. The headers follow the status-code line of the response until a blank line
is encountered. In the first loop in the code below, simply print the headers out on the standard output
stream for the user to see until you encounter a blank line when you break out of your loop, knowing
the content will immediately follow. If the status code previously parsed was 200, save the remaining
content found in the Socket’s InputStream (which is wrapped in a BufferedReader) to the file speci-
fied by the user:

// read headers
while ((currLine = br.readLine()) != null) {

System.out.println(currLine);

// done reading headers, so break out of loop
if (currLine.trim().equals(“”))

break;
}

if (responseOK) {
FileOutputStream fout = new FileOutputStream(outFile);

int currByte;
while ((currByte = br.read()) != -1)

fout.write(currByte);

fout.close();
System.out.println(“** Wrote result to “ + args[1]);

} else {
System.out.println(“HTTP response code not OK -- file not written”);

}

The following is the full listing for the code for HttpGetter:

package book;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.InetSocketAddress;
import java.net.MalformedURLException;
import java.net.Socket;
import java.net.URL;
import java.util.StringTokenizer;

public class HttpGetter {
public static void main(String[] args) {

try {
if (args.length < 2) {

System.out.println(“Usage”);
System.out.println(“\tHttpGetter <Http URL> <file to save>”);
System.out.println

(“\tExample: HttpGetter http://www.google.com/ google.html”);

493

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 493

System.exit(1);
}

URL url = new URL(args[0]);
File outFile = new File(args[1]);

Socket socket = new Socket();

int port = url.getPort();
if (port == -1)

port = url.getDefaultPort();

InetSocketAddress remoteAddress = new
InetSocketAddress(url.getHost(), port);

socket.connect(remoteAddress);
PrintWriter out = new PrintWriter(socket.getOutputStream());

// write our client’s request
out.println(“GET “ + url.getFile() + “ HTTP/1.0”);
out.println(“User-Agent: HttpGetter”);
out.println(“Host: “ + url.getHost());
out.println();
out.flush();

// read remote server’s response
InputStream in = socket.getInputStream();
boolean responseOK = true;

BufferedReader br = new BufferedReader(new
InputStreamReader(in));

String currLine = null;

// get http response code from first line of result
currLine = br.readLine();
if (currLine != null) {

System.out.println(currLine);
StringTokenizer st = new StringTokenizer(currLine, “ \t”);
st.nextToken();
String responseCode = st.nextToken();

int httpResponseCode =
Integer.parseInt(responseCode.trim());

if (httpResponseCode != 200) {
// response not OK
responseOK = false;

}
} else {

System.err.println(“Server returned no response!”);
System.exit(1);

}

// read headers
while ((currLine = br.readLine()) != null) {

494

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 494

System.out.println(currLine);

// done reading headers, so break out of loop
if (currLine.trim().equals(“”))

break;
}

if (responseOK) {
FileOutputStream fout = new FileOutputStream(outFile);

int currByte;
while ((currByte = br.read()) != -1)

fout.write(currByte);

fout.close();
System.out.println(“** Wrote result to “ + args[1]);

} else {
System.out.println(“HTTP response code not OK -- file not written”);

}

socket.close();
} catch (MalformedURLException me) {

me.printStackTrace();
} catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

Congratulations, you have implemented part of a real protocol. There a couple of things to note about
this simple implementation. First, as noted before, your implementation can only read text, not binary,
which makes it not too robust, since images and other binary files are frequently served from HTTP
servers. Secondly, it does not handle errors gracefully, and in reality would require more of a full-fledged
parser than your handyman java.io usage. This implementation is a minimal amount of code and
logic to implement HTTP GET.

The command-line screen shot in Figure 11-4 shows a user downloading the root Web page of
http://www.google.com/ to google.html.

Figure 11-4

495

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 495

TCP Monitoring: Testing with Apache TCPMon
Testing and debugging protocol implementations is far more difficult and tedious than testing and
debugging a standalone application. To make sure the protocol implementation you are developing is
correct, it is extremely helpful to see what is being sent and received over the wire with the remote
server. There are utilities available to do just that — view what is being sent and received over a TCP/IP
socket connection. For HttpGetter, I used the Apache utility, TCPMon, to monitor my TCP/IP connec-
tion with remote Web servers. Being able to read my request from the utility let me know that my
request was following the HTTP specification. If there was any trouble parsing the response, I could look
at exactly what was sent back from the server using the monitoring utility. Parsing the input from a
socket is very similar to parsing a file — the data is in a certain format, and the code must read in that
format. With sockets though, there is no file to view and test against. If there is a bug, it is difficult to see
what in the protocol could be causing it. This is why the TCPMon utility is invaluable; it lets the devel-
oper look at the server’s response as if it were a file on the local machine. It is useful for the implementa-
tion of any protocol based on TCP/IP, or during development with Web services. This chapter will also
discuss using TCPMon in the “Web Services” section.

Getting, Building, and Running TCPMon

TCPMon is included as part of Apache AXIS. Apache AXIS is an implementation of SOAP that will be
discussed in more detail in the “Web Services” section. However, the TCPMon utility, which is also use-
ful in Web services development (hence it is included with AXIS), can also be useful for socket develop-
ment as well, especially when implementing a protocol. The AXIS distribution can be downloaded from
the following URL:

http://ws.apache.org/axis/index.html

Make sure to download a source distribution of AXIS. You will also need the Apache Ant build tool to
build and run TCPMon (as well as the AXIS distribution). See Chapter 2, “Tools and Techniques for
Developing Java Solutions,” for more information regarding Ant. In the AXIS source distribution /docs
folder, there is documentation on building AXIS (building-axis.html at the time of this writing). You
will have to download a few libraries before you can actually build AXIS. Look at the “Building without
Any Optional Components” and the “Building with Servlets” sections (in building-axis.html) for
the links to these libraries. After all the required jars are in /lib of the AXIS source distribution, build
AXIS by running the following in the directory with build.xml (the root directory of the distribution):

ant compile

After AXIS has been successfully built, run TCPMon by again using ANT:

ant -buildfile tcpmon.xml

Using TCPMon

To have TCPMon be able to print out your requests and the server’s responses, it must be set up as a
middleman between your local machine and the remote server. To test your program, it will have to con-
nect to TCPMon, which in turn connects it to the remote server. TCPMon relays whatever is sent to it to

496

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 496

the remote server, and whatever the remote server sends it, it relays back to your application. To config-
ure TCPMon in this manner, it must be set up as a Listener, and given a port number on the local
machine. The screen in Figure 11-5 is the first screen and main configuration screen of TCPMon. The fig-
ure shows the configuration necessary for TCPMon to act as a Listener on port 8079. TCPMon will
relay any connection made to port 8079 on the local machine to www.google.com, port 80 (the default
HTTP port). Once the Add button is clicked, TCPMon will set up the relay.

Figure 11-5

Now that the relay is running, HttpGetter can be tested by running:

java book.HttpGetter http://localhost:8079/ tester.html

HttpGetter connects to TCPMon, which in turn, connects it to www.google.com. Going to the Port
8079 tab on TCPMon yields a list of all connection attempts made to www.google.com in this session.
Figure 11-6 shows each request and response in detail.

497

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 497

Figure 11-6

Debugging a protocol implementation is far easier with a utility such as Apache TCPMon, which allows
the developer to view the data sent and received over a TCP/IP connection.

Proprietary Protocols and Reverse Engineering
Some protocols are not open. The instant messaging protocols for AOL’s Instant Messenger and
Microsoft’s Messenger clients are proprietary information that currently is not shared (although the FCC
is trying to force an open instant messaging standard to allow various clients to interoperate). If your
software must communicate with servers such as these, whose protocol is either unknown or propri-
etary, there are not a whole lot of options. Some groups such as Gaim (http://gaim.sourceforge.net), an
open-source, instant messaging client, have attempted to reverse-engineer the instant messaging proto-
cols. This is done by monitoring the TCP connections and data sent between proprietary clients and
servers. Sometimes portions of a protocol can be identified. When designing a proprietary protocol, tak-
ing into account how easy it would be to reverse-engineer is important (especially if security is a high
priority). For extra security, some sort of encryption may be necessary for the protocol to avoid being
reverse-engineered. Most of the time, protocols should be open. The specifications are generally easier
for everyone to implement, since they have the advantage of being reviewed by many different sets of
eyes. HTTP, for example, has undergone a number of performance-improving amendments from version
1.0 to 1.1. The most robust and stable implementations of protocols generally result from free and open
protocols that have been in use for a while. High-quality reference implementations have been devel-
oped for protocols such as HTTP, TCP/IP, and X-Windows precisely because those protocols are open.

498

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 498

Utilizing Existing Protocols and Implementations
Developers will want to avoid designing and writing their own protocol if at all possible. Some existing
protocol somewhere usually will fulfill the requirements of almost any application. There is no point in
reinventing the wheel, and oftentimes using open protocols is a good avenue to ease the difficultly of
interoperating with the outside world. If your app needs to interface to other applications, writing and
designing a custom protocol has even more costs. Any other application that wishes to interface with
your application must now implement a custom protocol. Getting two disparate implementations of a
protocol to work robustly together is no easy task in itself, let alone in addition to normal application
development. There are many protocols out there that already have high-quality implementations freely
available to Java developers. The Jakarta Project from Apache hosts many open source projects. The
Jakarta Commons Net package, for example, provides an API that implements FTP, NNTP, SMTP, POP3,
Telnet, TFTP, and more. You can find more information about it at the following URL:

http://jakarta.apache.org/commons/net/

Even though in your HttpGetter example, you found that implementing one small section of HTTP was
fairly simple, implementing the entire protocol with all of its optional components would be far more
difficult. There are already optimized implementations of HTTP out there, and using one would be a far
better design choice in any application that requires HTTP client support. The JDK provides limited sup-
port for HTTP via the java.net.URL class. It is good for simple HTTP operations, but sometimes more
control over how HTTP is used is necessary. For example, to view and set HTTP headers, an HTTP client
library that exposes more HTTP details than the java.net.URL class found in the JDK would be
required. The HTTP Client project in the Jakarta Project provides a high-quality HTTP implementation.
More information on HTTP Client can be found here:

http://jakarta.apache.org/commons/httpclient/

You have just looked at some freely available client libraries. There are also freely available libraries for
servers. The Jakarta Project provides an HTTP server implementation with its servlet container, Tomcat.
There are implementations of POP3 mail servers available. It should, almost 100 percent of the time,
make sense to use an existing protocol in your application for communicating between your Java com-
ponents and components on other platforms. You also should not have to implement the protocol your-
self as there are high-quality robust open source implementations available for almost all of the major
open protocols in use today.

Some great resources for finding and aggregating open source Java projects into your application are
listed in the following table.

Resource URL

The Jakarta Project http://jakarta.apache.org

OpenSymphony Quality Components http://www.opensymphony.com

JBoss: Professional Open Source http://www.jboss.org

The Apache XML Project http://xml.apache.org

The Eclipse Project http://www.eclipse.org

499

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 499

Remote Method Invocation
Remote Method Invocation is the Java platform’s standard for remote procedure calls (RPC). Remote
procedure calls are abstractly the same concept as a normal procedure call within a program, except that
the calls can happen over a network, and are between two separate processes. Different forms of RPC
have been around for a while, but the concepts are similar. There is a client program and a server pro-
gram, each running on separate machines (or at the very least, on two separate processes on the same
machine). The client program calls a procedure (or in Java terminology, a method) on the server, and
waits till the server returns the method result before continuing its normal execution (just like a normal
local method call). Figure 11-7 illustrates a high-level view of object-to-object communication over a net-
work in different JVMs.

Figure 11-7

Remote Method Invocation (RMI) is such a large topic that it has its own chapter. See Chapter 10,
“Communicating between Java Components with RMI and EJB,” for detailed information on how to use
RMI in your applications. This chapter will take a more abstract view of RMI and see how it fits as a
technology into distributed systems.

Core RPC/RMI Principles
The Java platform makes writing client/server programs fairly simple. In Java, you can call methods on
an object, and not even necessarily know that the object resides on a remote machine. The code for the
method call is no different than a normal local method call. In J2EE, you generally have to look object

Network

Remote
ObjectJVM

Remote
ObjectJVM

500

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 500

instances up from a naming service before using them. When you look the object up and receive a refer-
ence to it, it may be a local reference or a remote reference. The code does not change though, and it is one
of the reasons Java is such a powerful server language — a lot of the complex details of technologies
such as RMI have been abstracted away. Now, this does not mean developers can be completely oblivi-
ous to whether an object instance is remote or local. Remote objects have certain design trade-offs that
must be taken into account. Method calls happen across a network, and thus are limited to the reliability
and speed of the network. RMI is a powerful mechanism for writing distributed systems. The following
sections look into the basic core principles common to almost all RPC mechanisms, and show how they
relate to RMI.

In RPC, all method calls must be transformed into a format that can be sent over the network and under-
stood by a remote process. In order to call methods on a remote object, three main steps occur:

1. A reference to the remote object must be obtained. The remote object must be looked up on the
remote server

2. Marshalling and unmarshalling of parameters. When a method is invoked on the remote refer-
ence, the parameters must be marshalled into a byte stream that can be sent over the network. On
the server side, these parameters must be unmarshalled from the byte stream into their original
values and then passed to the appropriate method.

3. Transmission of data through a common protocol. There must be a protocol defined for the
transport and delivery of these method calls and returns. A standard format for parameters is
necessary, along with standards to tell the server which method on which object is to be
invoked.

To make the remote call appear like a local call, a local implementation exists with the same interface (all
RMI objects must be defined as Java interfaces). This local implementation is called a stub and is essentially a
proxy to the real implementation. Whenever a method is called on this local implementation or stub, the
local implementation performs the operations necessary to send the method call to a remote implemen-
tation of the same interface on another server. The stub marshalls the parameters and sends them over
the network using a common RMI protocol. In turn, a stub on the server side implementing the same
interface unmarshalls the parameters and then passes them on to the actual remote object in a normal
method call. This process is reversed for the return value; the stub on the server side marshalls and
sends it, and the stub on the client unmarshalls and returns it to the original caller. Figure 11-8 displays
this entire process graphically.

Marshalling and Unmarshalling
The parameters and method call must be flattened into a byte stream before they can be sent over the
network. This process is called marshalling. The reverse is called unmarshalling, when the byte stream is
decoded into the original parameters and method call information. After unmarshalling the parameters
and method call, the server dispatches the method call to the appropriate object that actually imple-
ments the remote method and then marshalls the return value back to the client. By serializing the
parameters and method into a byte stream, RMI protocols can work on top of network protocols which
provide a reliable byte stream, such as TCP/IP.

501

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 501

Figure 11-8

In RMI, there are two types of objects besides primitives that can be passed as parameters. Objects that
implement the java.rmi.Remote interface or objects that implement the java.io.Serializable
interface. These two interfaces do not contain any methods, instead they mark objects with a particular
property. Java’s RMI mechanism knows that Remote objects could be on another virtual machine, and
will have stubs. Objects that implement Serializable, on the other hand, can be transformed into a
byte stream (to save to disk, or in RMI’s case, to send over a network). In RMI, objects that implement
Remote are passed by reference while objects that implement Serializable (and not Remote) are
passed by value. When parameters are marshalled over the network and transformed into a byte stream,
any object that must be passed via an RMI call must be Serializable. So now for the first time, objects
in Java can be passed by value. This is not as confusing as it sounds —Remote objects are passed by ref-
erence and Serializable objects are passed by value. This helps reduce the number of network calls
that must occur. If an object being passed contains a large number of properties that must be accessed
through getXXX methods, there would be a large number of network calls taking place. By serializing
the object, all these calls become local calls on the remote server and use up far less network bandwidth.
Method calls on Remote objects passed in, on the other hand, will go over the network and must be
taken into consideration.

Actual Implementation

ClientStub ServerSkeleton«interface»
Remote Object Interface

Network

Client Application Server Application

502

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 502

Suppose this is an implementation of a method on a server that is being invoked remotely by a client:

public void myTestMethod(A a, B b) {
a.remoteMethod();
Data d = b.getData();

...
}

In this example, A implements java.rmi.Remote, and thus a call to remoteMethod() is a remote call-
back to your client. B implements Serializable and hence getData() is a local call to b which was
unmarshalled from its serialized state back into an object now running on the server.

See Chapter 5, “Persisting Your Application Using Files,” for more information on
java.io.Serializable and serializing objects to disk.

Protocols
In RPC, all method calls must be transformed into a standard format that can be sent over a network. In
other words, two programs running on two separate processes must be able to read and write this same
format. RPC mechanisms have their own protocols. Sometimes these protocols are built on top of
TCP/IP, or at other times they define their own transport protocol in addition to the RPC protocol, com-
bining the transport layer and the application layer protocols for optimal performance. Operating sys-
tems sometimes provide system-level services in this manner.

RMI is implemented such that it can support more than one underlying transport protocol (though obvi-
ously only one protocol can be used between any two objects). There are two main choices as the trans-
port protocol for RMI:

❑ Java Remote Method Protocol (JRMP)

❑ Internet InterORB Protocol (IIOP)

Either one of these protocols could be used in a given system, and both have their trade-offs. IIOP offers
compatibility with CORBA, which will be discussed later in this chapter. IIOP, since it was not designed
specifically for Java remote procedure calls, does not support some of the features JRMP supports, such
as security and distributed garbage collection. Using IIOP as the underlying protocol for RMI makes it
easy to integrate legacy objects written in other languages however (discussed more in the “Common
Object Request Broker Architecture” section of this chapter). JRMP is the default protocol for RMI. IIOP
stubs differ from JRMP stubs and must be generated separately. See rmic tool documentation for more
details.

RMI Registry
Object instances must be made available in a registry on the server before they can be used by remote
clients. Clients obtain an instance by looking up a particular name — for example, the string
EmployeeData might refer to a class containing the data for the employees of a particular company.

Note: Any objects passed by value in RMI must be in the classpath of the JVM run-
ning on the remote server.

503

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 503

When a server is starting up, it creates instances of the objects it wishes to be available, and registers
them in a registry. Since these objects are globally available, they must be thread safe (since their meth-
ods can be called at the same time by different threads). The code to look up a particular instance of a
class is not very difficult, and uses the Java Naming and Directory Interface (JNDI) API (found in
javax.naming). A small snippet of code to look up an object on a remote server follows:

import javax.naming.InitialContext;
...

InitialContext ctx = new InitialContext();

EmployeeData data = (EmployeeData) ctx.lookup(“CompanyX\\MyEmployeeDataInstance”);
...

JNDI is configured by setting certain Java system properties to tell it the location and protocol of the reg-
istry. This is how objects can be transparently remote or local. If the registry is configured locally, in the
same JVM, then all calls to data will be local. If data is an instance on a remote server, all calls will go
through RMI, using whatever protocol was specified.

See Chapter 10, “Communicating between Java Components with RMI and EJB,” for more detailed
information on the mechanics and details of RMI.

Distributed Objects
RMI allows a developer to abstract away where objects physically reside from his application. Object-
oriented applications can be transparently spread across multiple machines. Objects that do heavy pro-
cessing or provide server-side functionality, such as mail services, transactional database services, or file
serving services, can be located on server-class machines. Typical desktop client applications can then
access these objects as if they were local and part of the same object-oriented application. Location-inde-
pendent objects are powerful since they can be dynamically moved around from machine to machine. If
mail services’ objects on a server become too bogged down, they can be spread across multiple
machines, all transparently to the client applications using them. Java’s platform independence adds
even more value to its location-independent objects. Server objects could reside on a Unix-based operat-
ing system for example, and client objects on a Microsoft Windows platform. Figure 11-9 shows many
objects communicating from different JVMs on different machines.

Middleware and J2EE
Most of time, the main reasons for distributing objects onto various machines is to give access to various
services provided by these machines. Mail services, transactional-database services, and file-server ser-
vices all can be encapsulated by various software components, or in this case, Java objects. By allowing
all these objects to communicate in a standard, distributed way, server-side applications can be devel-
oped with ease. Location-independent objects allow for server applications to scale, since when one
server no longer provides enough horsepower for a server application, you just add a couple more
machines and spread the objects around.

Middleware is a software layer between various data sources and their client applications. RMI dis-
tributed objects is one way to implement middleware for different applications. Middleware abstracts
away the details of the one-or-many data sources. RMI is the perfect building block for middleware
because of its location and platform independence. Java is most prevalent in server-side applications and
middleware because of the foundation it provides for building stable and reliable software systems.

504

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 504

Figure 11-9

The Java 2 Enterprise Edition (J2EE) platform uses RMI as one of its core technologies. J2EE provides
reliable messaging, rock-solid transactional storage capabilities, remote management and deployment,
and frameworks for producing Web-enabled server-side applications. J2EE is a standard platform for
developing middleware and other server-side services. RMI enables J2EE to be location-independent
and distributed. Rather than developing one’s own middleware solely with RMI, it is far better to build
on the J2EE standard for writing server-side applications.

Common Object Request Broker Architecture
The Common Object Request Broker Architecture, or CORBA for short, is a set of specifications by the
Object Management Group (OMG) for language-independent distributed objects. It allows for objects
written in a number of different programming languages to interoperate and communicate with one
another. C++ classes can talk to Java classes. C# can talk to C++ or Java. Programs written in C are sup-
ported by some CORBA implementations, as well as even scripting languages such as Python. CORBA is
similar to RMI conceptually, but supports more languages than simply Java. CORBA itself is a set of
specifications, not an actual implementation. For it to be possible for a language to support CORBA and
other CORBA objects, it must have an implementation in its native language (or somehow be bound to
an implementation). For instance, the Java Development Kit (JDK) includes an implementation of the
CORBA 2.3.1 specification. That means that, out of the box, Java supports CORBA implementations up
to and including the 2.3.1 specification (the latest CORBA specification at the time of this writing is 3.02).

Network

Remote
ObjectJVM

Remote
ObjectJVM

Remote
ObjectJVM

Remote
ObjectJVM

Remote
ObjectJVM

505

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 505

Though there has been industry criticism for the age of the JDK’s support for CORBA, 2.3.1 includes
many of CORBA’s modern features, and is certainly enough to implement and use most CORBA dis-
tributed objects. There are many implementations of CORBA that can be used with Java besides the
implementation that comes with the JDK. A list of free CORBA downloads (either trials of commercial
implementations or free open-source implementations) can be found on OMG’s Web site at the follow-
ing URL:

http://www.omg.org/technology/corba/corbadownloads.htm

CORBA is a massive set of specifications and has been an immense undertaking. CORBA has a history of
having slow, bloated, and buggy implementations — on top of being extremely complex and difficult to
develop with. Today though, as CORBA is a stable and mature technology, its implementations are much
faster and reliable, and it is used in many mission-critical environments. CORBA is still complex and not
as developer friendly as technologies such as RMI though, and usually for newer systems, J2EE-based
servers are the best design choice if the Java platform is the primary development environment. This
chapter will briefly examine CORBA, though not in any depth worthy of its complexity.

CORBA Basics
There are four main concepts of the CORBA specification that define how distributed objects written in
different languages communicate with one another. Like RMI, there is a naming service, where remote
object references can be registered, to be retrieved at some point in time by one or more clients. The
Internet InterORB Protocol (IIOP) is used for the communication between clients and servers. This is the
protocol that is responsible for defining the format of the marshalling and unmarshalling of remote
method invocations and parameter passing. Object Request Brokers (ORBs) are responsible for process-
ing all remote method calls and dispatching them to the appropriate object, both on the client and server.
Figure 11-10 demonstrates these CORBA concepts.

The paradigm for object-to-object communication is similar to RMI:

1. Remote object references are obtained using the COS Naming Service.

2. Method call information and parameters are marshalled into a byte stream to send over the net-
work via the Internet InterORB Protocol (IIOP).

3. An Object Request Broker (ORB) receives incoming requests on the remote server, and dis-
patches them to the object implementing the CORBA interface called.

506

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 506

Figure 11-10

IDL: Interface Definition Language
The Interface Definition Language (IDL) is a CORBA specification for writing an interface. In CORBA,
all distributed objects must implement a CORBA interface. These interfaces are similar to Java’s concept
of an interface — an interface allows for multiple implementations. CORBA interfaces though, can be
implemented by any language that supports CORBA. Figure 11-11 shows a class diagram of a CORBA
being implemented both in Java and C#.

Figure 11-11

Java Class C# Class«interface»
IDL Interface

Client Application

Distributed
Object

Distributed
Object

ORB

COS Naming
Service

1. Naming Lookup

3. ORB dispatches request, remote object returns result

2. Remote Method Calls sent to ORB over IIOP

507

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 507

Three things can be declared in CORBA interfaces:

❑ Operations (like Java methods)

❑ Attributes (like JavaBean properties, implemented by getXXX and setXXX methods)

❑ Exceptions

A CORBA interface for each distributed object allows IDL compilers to compile IDL to stub classes in an
existing language. For instance, the JDK provides tools that map CORBA IDL types to Java types, and
generate stub classes for any given IDL file. These stub classes allow Java programmers to see the
CORBA object as a Java class, and call its methods with Java syntax just like any other Java class. IDL is
the link between different languages — it provides the description of an interface that can be trans-
formed into the corresponding class in a concrete programming language.

When using remote CORBA objects, the client programmer is using the interface, not the specific object
implementing it. The ORB running on the remote machine resolves the request, and dispatches it to the
correct implementation. The client never knows which language the remote object was written in, it is all
transparent.

In the “Distributed Filesystem Notifications: An Example CORBA System” section that follows at the
end of this CORBA section, a CORBA interface called FileNotification will be defined. Seeing the
Java representation will help you understand the CORBA representation. Here is the Java representation
of that interface:

package book;

public interface FileNotification
{

public void fileModified (String fileName);
public void fileDeleted (String fileName);
public void fileCreated (String fileName);

}

The equivalent definition of this Java interface in IDL looks like this:

#include “orb.idl”

#ifndef __book_FileNotification__
#define __book_FileNotification__

module book {

interface FileNotification {

void fileModified(
in ::CORBA::WStringValue fileName);

void fileDeleted(
in ::CORBA::WStringValue fileName);

void fileCreated(
in ::CORBA::WStringValue fileName);

508

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 508

};

#pragma ID FileNotification “RMI:book.FileNotification:0000000000000000”

};

#endif

If you have developed with C++ before, you will notice that the IDL syntax is similar to the C++ syntax,
since C++ was the dominant language at the time of CORBA’s inception. This chapter will not go heav-
ily into the IDL syntax, as that is better left to books dedicated solely to CORBA. The main concept of
IDL is simple: Separate the interface from the implementation. This principle applies to good software
design in general, but is absolutely essential when an implementation could be written in more than one
language. There would be no other way to have two disparate languages communicate with one another
if not for a common interface.

ORB: Object Request Broker
The Object Request Broker is responsible for mediating incoming CORBA method invocations. ORBs are
the core infrastructure of any CORBA implementation. They provide a common entry point for all
CORBA requests to any given server. Many different method invocations on a number of CORBA objects
go through the same entry point, the ORB. The ORB then dispatches the request to the correct CORBA
object instance corresponding to the client’s reference.

Common Object Service (COS) Naming
The Common Object Service (COS) Naming provides a registry to hold references to CORBA objects. It is
similar in concept to the RMI registry. When a server wants to expose CORBA object instances to remote
clients, it registers each instance with the naming service. Each instance gets a unique name on the
server. Clients use the name to retrieve the reference and call its methods.

JNDI provides an InitialContext that can interact with COS Naming and look up various CORBA objects
in the same fashion as one would look up an RMI object. As long as the correct stubs for IIOP are in
place, setting the following system properties (which is the URL containing the correct hostname and
port for the remote COS Naming service), client Java programs can access CORBA objects transparently:

java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
java.naming.provider.url=iiop://hostname:1049

Once these properties are set (using the -D option at the command line is one way to set them), the JNDI
lookup occurs normally.

Note: Client programs can also use the org.omg.CORBA package to manually access CORBA refer-
ences, and have all of the many intricacies of CORBA at their disposal.

IIOP: Internet InterORB Protocol
The Internet InterORB Protocol is the protocol that CORBA ORBs use to communicate with one another
over a network. All method calls and parameters are marshalled and unmarshalled over this protocol. It
is an efficient binary protocol. JDK 1.5 supports version 2.3.1 of the IIOP specification.

509

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 509

RMI-IIOP: Making RMI Compatible with CORBA
RMI-IIOP combines some of the best aspects of RMI with the language independence of CORBA. RMI is
far simpler for developers to use than CORBA. The main limitation of RMI is that it only supports the
Java language. Though Java is platform independent, sometimes there are legacy components or sys-
tems written in other languages that must be interacted with. CORBA provides that channel of commu-
nication but can be a painful experience for developers. RMI-IIOP is Java RMI, but uses the IIOP
protocol for communication, meaning normal RMI objects can be exposed as CORBA objects to external
systems. By the same token, external CORBA objects can be accessed through the RMI APIs, again
because of the use of IIOP as the underlying communication protocol.

It would be a perfect world if RMI-IIOP had exactly the same feature set as RMI over JRMP. IIOP
was not designed for Java though. Objects passed by value over IIOP (ones that implement java.io
.Serializable instead of java.rmi.Remote— see “Marshalling and Unmarshalling” in the RMI
section of this chapter) get passed in the byte stream as Java objects. This means that any parameters
passed by value over RMI-IIOP can only be read by Java clients! Fortunately, CORBA has a mechanism
to deal with value types. It does, however, mean that the same interface of the value type must be
implemented by the client. For example, suppose a Java RMI object returns a value type of java.util
.ArrayList. A CORBA client cannot read this value type. The CORBA client application then must
implement the interface for ArrayList (and make it compatible with the binary representation passed
in!). Because of this large extra burden placed by objects passed by value on CORBA systems being
communicated with using RMI-IIOP, it generally makes sense to try to make the interfaces pass only
primitive types or objects by reference.

CORBA IDL unfortunately does not support method overloading. This, combined with the non-use of
value types in passing parameters, can be a burden to designing a distributed system using RMI-IIOP.
One design approach is to start thinking from the limiting IDL perspective when you are creating your
Java interface for your remote object (if the system must communicate with CORBA clients). Your code
may not be as clean using only primitive types, but the ease of interoperability makes it by far worth the
price. The client-side development is tremendously simplified when value types do not have to be
implemented also. Doing so is essentially implementing an object twice, once in Java and once in the
CORBA client’s language, and is asking for buggy and incompatible implementations, not to mention
the synchronization nightmare of keeping their functionality and IDL up to date.

In most situations though, RMI-IIOP makes CORBA programming far simpler, and is the preferred
method of integrating with CORBA in Java if the advanced features of CORBA are not necessary. The
programming model is the same as RMI, and allows the Java developer to easily integrate with other
platforms.

How to Turn an RMI Object into an RMI-IIOP Object
To take an existing RMI object and expose it via RMI-IIOP requires a minimal amount of work. Suppose
you have a simple RMI HelloWorld interface:

package simple.rmi;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloWorld extends Remote {
public void hello() throws RemoteException;

}

510

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 510

Normal RMI object implementations extend java.rmi.UnicastRemoteObject. Your simple
HelloWorldImpl as a normal RMI object looks like this:

package simple.rmi;

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class HelloWorldImpl extends UnicastRemoteObject implements HelloWorld {

public HelloWorldImpl() throws RemoteException {
super();

}

public void hello() throws RemoteException {
System.out.println(“Hello”);

}
}

To allow this object to be used over RMI-IIOP, the first step is to make the class extend javax.rmi.
PortableRemoteObject instead of java.rmi.UnicastRemoteObject:

package simple.rmi;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

public class HelloWorldImpl extends PortableRemoteObject implements HelloWorld {

public HelloWorldImpl() throws RemoteException {
super();

}

public void hello() throws RemoteException {
System.out.println(“Hello”);

}
}

Now HelloWorldImpl is ready to be used over RMI-IIOP. The last step is to generate the IDL and IIOP
stubs from your class. The IIOP stubs allow the object to be sent over the wire using IIOP. The IDL
allows CORBA clients to generate the stubs necessary to use the class. To generate both the stubs and the
IDL, use the rmic tool from the JDK (in the bin directory under the JDK home). Running rmic from the
command line, make sure that simple.rmi.HelloWorldImpl is on the classpath:

rmic -iiop -idl simple.rmi.HelloWorldImpl

Note that UnicastRemoteObject above is in context.

511

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 511

The last step is to write the main program that actually starts up the RMI-IIOP server. This book
will talk more about communicating with the Java ORB daemon included with the JDK, orbd, in the
“Distributed Filesystem Notifications: An Example CORBA System” section, including registering
objects and communicating with remote CORBA ORBs.

When to Use CORBA
CORBA is a difficult platform to develop software. It is robust and successful in mission-critical software
systems, but the learning curve is high and development costs can rise. CORBA is best used in dis-
tributed systems that must have components written in more than one language, or have the potential to
be written in more than one language. J2EE is a more ubiquitous standard for server-side applications
today. It also provides CORBA support for some of its components. If you are creating a new server-side
application in Java, sticking with J2EE is most certainly your best choice. CORBA support can always be
added on later should you need to support clients written in other languages. Here are a couple of good
instances of where to add CORBA to your distributed system:

❑ When you have to integrate with legacy systems that support CORBA in your middleware

❑ When there are components written in other languages just not available in Java that are essen-
tial to your server-side application (and would require less effort to build a CORBA link than to
rewrite the component in Java)

CORBA as a distributed technology is simply not used as much in industry practice as J2EE-based compo-
nent technologies (or COM/COM+/DCOM). It is a solid platform since it has been around for about ten
years. Most of the complaints CORBA developers had originally have been rectified. CORBA implementa-
tions are fast and efficient now, and more than robust enough to use in mission-critical applications.
CORBA has a steep learning curve, and the only value it adds over J2EE component technology is the abil-
ity to write components in different languages than Java. If your system is all Java, it just does not make
sense to use CORBA — especially since J2EE can expose Java components to CORBA systems already
through RMI-IIOP. It is best to use CORBA when you must integrate with a system that supports it.

CORBA may be a good technology to use when integrating with the Microsoft .NET platform. There has
recently been an open source project, IIOP.NET, that integrates .NET Remoting (.NET’s equivalent to
RMI) with IIOP. This product is becoming mature, and allows for easy integration between RMI-IIOP
and .NET Remoting. This is a big step towards an easier integration between .NET and Java compo-
nents. The IIOP.NET project can be found at the following URL:

http://iiop-net.sourceforge.net/

IIOP.NET provides an exciting new way to use CORBA. By integrating with .NET Remoting, it allows
programmers in the .NET environment and the Java environment to use their remote objects seamlessly
(with normal IIOP limitations, of course, with value types, and so on). You have already seen how you
can expose a Java component to CORBA using RMI-IIOP; the process is quick and easy, and better yet,
can be automated. The process on the .NET side is the same way. CORBA can be used in this manner to
allow .NET and Java components to interact transparently. The following example will examine such a
system. A .NET component is wrapped with a CORBA interface and components in Java can access it
like a normal Java component via RMI-IIOP.

512

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 512

Distributed File System Notifications:
An Example CORBA System

Java does not contain any classes in the JDK to monitor for file system events. File system events occur
when a file is deleted, modified, created, or renamed. These operations are platform specific and work
different depending not only on the file system type, but on the host operating system. The only pure
Java way to achieve this effect is to run a program that polls the file system and looks for updates —
hardly an efficient mechanism of monitoring the file system. It would be far better if you could hook into
the operating system and whenever a file system event occurred, be notified. Try to find a component
that meets these needs and then provide a CORBA wrapper to access the component from your Java
application.

Fortunately, one of the components of the .NET framework fits your needs. The FileSystemWatcher
class from the System.IO namespace hooks into the Windows operating system, and notifies the user of
file system events. Since your application is written in Java, you need somehow to integrate this non-
Java component into your application. CORBA is a fine choice in this case, especially because of the
advent of IIOP.NET, which was discussed in the proceeding section. IIOP.NET allows .NET Remoting to
run over IIOP, which basically means you can access .NET remote objects from Java’s RMI-IIOP. For this
example, you will wrap the FileSystemWatcher class in a .NET remote object, expose this object
through CORBA, and then implement the Java client. This text will not go into any code details for the
.NET side, since this is a Java book and not a C# book. However, the code for the .NET side can be
downloaded from this book’s Web site at www.wrox.com. Figure 11-12 is a high-level diagram of the
architecture for the communication between .NET and Java.

Figure 11-12

1

1

Java Implementation

FileSystemWatcher C# Wrapper

System.IO.FileSystemWatcher

«interface»
RemoteFileSystemWatcher

+registerNotification(in fileNotification : FileNotification)
+removeNotification() : FileNotification

«interface»
FileNotification

+fileCreated(in fileName : string)
+fileModified(in fileName : string)
+fileDeleted(in fileName : string)

513

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 513

You have the IDL for the remote .NET components. The CORBA object that wraps the .NET component,
FileSystemWatcher, has the following IDL:

#include “orb.idl”
#include “Predef.idl”

#include “FileNotification.idl”
#ifndef __ConsoleCorbaServer_RemoteFileSystemWatcher__
#define __ConsoleCorbaServer_RemoteFileSystemWatcher__
module ConsoleCorbaServer {

interface RemoteFileSystemWatcher {

void registerNotfication(in ::book::FileNotification notification) raises
(::Ch::Elca::Iiop::GenericUserException);
void removeNotification(in ::book::FileNotification notification) raises
(::Ch::Elca::Iiop::GenericUserException);
void setDirectory(in ::CORBA::WStringValue path) raises
(::Ch::Elca::Iiop::GenericUserException);
};

#pragma ID RemoteFileSystemWatcher
“IDL:ConsoleCorbaServer/RemoteFileSystemWatcher:1.0”

};

#endif

You can run idlj, the Java IDL compiler, to generate stub classes that will proxy your requests to these
methods to the CORBA ORB running on the.NET platform’s host machine. Notice how the IDL gener-
ated includes other IDL files, namely, orb.idl, predef.idl, and FileNotification.idl. These other
files must be in the same directory when you run idlj for the compilation to work properly. The file
orb.idl is the Java mapping definitions from IDL to Java specific types. The IIOP.NET provides
predef.idl for some types specific to its .NET to CORBA mappings. The Java IDL compiler is included
in JDK 5.0. Running the idlj compiler is simple:

idlj RemoteFileSystemWatcher.idl

By running idlj on the IDL, the following files were generated:

RemoteFileSystemWatcherStub.java
RemoteFileSystemWatcher.java
RemoteFileSystemWatcherHelper.java
RemoteFileSystemWatcherHolder.java
RemoteFileSystemWatcherOperations.java
GenericUserException.java
GenericUserExceptionHolder.java
GenericUserExceptionHelper.java

These are the stub and interfaces necessary to use the remote CORBA object, RemoteFileSystemWatcher
(which wraps the .NET component, FileSystemWatcher). Note that since the IDL contained exceptions,
exception classes were also generated. The RemoteFileSystemWatcherOperations.java defines the
interface methods available to you:

514

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 514

package ConsoleCorbaServer;

/**
* ConsoleCorbaServer/RemoteFileSystemWatcherOperations.java .
* Generated by the IDL-to-Java compiler (portable), version “3.1”
* from RemoteFileSystemWatcher.idl
* Friday, June 11, 2004 5:56:29 PM EDT
*/

public interface RemoteFileSystemWatcherOperations
{

void registerNotfication (book.FileNotification notification) throws
Ch.Elca.Iiop.GenericUserException;

void removeNotification (book.FileNotification notification) throws
Ch.Elca.Iiop.GenericUserException;

void setDirectory (String path) throws Ch.Elca.Iiop.GenericUserException;
} // interface RemoteFileSystemWatcherOperations

Notice how registerNotification() and removeNotification() have a
book.FileNotification object as their parameter. FileNotification is the callback interface
defined by RemoteFileSystemWatcher. FileNotification is defined in FileNotification.idl.
You will have to generate Java stubs for this CORBA object as well. The difference, though, is that you
will have to provide an implementation of FileNotification if you want to receive these filesystem
events. By providing an implementation of FileNotification, you will be able to pass to the remote
CORBA ORB a local instance which can receive events from the remote server. To implement
FileNotification, you must run idlj with a different parameter, one to generate both the client stubs
and the server stubs necessary for you to provide your own implementation. Here is the IDL for
FileNotification:

#include “orb.idl”

#ifndef __book_FileNotification__
#define __book_FileNotification__

module book {

interface FileNotification {

void fileModified(
in ::CORBA::WStringValue fileName);

void fileDeleted(
in ::CORBA::WStringValue fileName);

void fileCreated(
in ::CORBA::WStringValue fileName);

};

#pragma ID FileNotification “RMI:book.FileNotification:0000000000000000”

};

#endif

515

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 515

Now run idlj to produce client and server stubs (to produce both client and server stubs, the -fall
option is used):

idlj -fall FileNotification.idl

The following files were then generated:

FileNotificationStub.java
FileNotification.java
FileNotificationHelper.java
FileNotificationHolder.java
FileNotificationOperations.java
FileNotificationPOA.java

Notice how the only additional file generated with the -fall option was FileNotificationPOA.java.
This is an abstract class that gives you the means to provide an implementation of FileNotification.
By extending it and providing the implementation of the methods defined in the interface, you will have a
CORBA Portable Object Adapter (POA) that can be connected to a running ORB. By connecting the POA
to the ORB, the ORB will be able to route incoming requests for FileNotification to the correct
instance.

The Implementation
Our implementation of FileNotification will extend FileNotificationPOA. Here you will have to
provide simple implementations for the methods found in the file FileNotificationOperations
.java, since FileNotificationPOA implements FileNotificationOperations. This chapter will
then go through the code necessary to do the following:

1. Implement the FileNotificationOperations interface.

2. Connect to the local ORB.

3. Create a Portable Object Adapter for your implementation of FileNotification.

4. Connect the POA to the ORB’s root POA.

5. Register your instance of FileNotification with the local COS Naming Service.

6. Connect to the remote COS Naming Service.

7. Obtain an instance of RemoteFileSystemWatcher.

8. Register your instance of FileNotification with RemoteFileSystemWatcher to receive the
filesystem notification events.

9. Wait for filesystem events.

The key CORBA classes used in the example code are summarized in the following table. They are the
minimal set of classes necessary to use a local ORB and COS Naming service to publish an instance of a
CORBA object for use by remote clients.

516

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 516

Class Function

org.omg.CORBA.Object Class used to represent any CORBA remote
object reference.

org.omg.CORBA.ORB Class used to represent a CORBA ORB. This
class provides the core CORBA infrastructure
services, and brokers incoming and outgoing
CORBA object method invocations.

org.omg.CosNaming.NamingComponent Class used for representing a CORBA Name.
Names refer to instances of a particular object
running on a COS Naming service. With a
name, a client can look up a particular object
and receive a reference to it, and then begin to
use the object.

org.omg.CosNaming.NamingContext Class used to represent the actual COS Naming
service. This class is used to perform the actual
object lookups to receive references to remote
CORBA objects.

org.omg.PortableServer.POA Represents a Portable Object Adapter. Since JDK
1.4, the POA feature of the CORBA specification
was added to the Java implementation. POAs
allow for CORBA objects to be easily deployed
on different implementations of CORBA ORBs.
They connect a CORBA object reference to the
ORB, allowing for incoming requests for that
reference to be processed.

Your first task is to implement FileNotificationOperations in your class that extends the abstract
class FileNotificationPOA that was generated by the idlj tool. Your implementation will simply
print out what file system notifications were received to standard output:

public class FileNotificationImpl extends FileNotificationPOA {

public FileNotificationImpl() {
}

// next three methods are the implementation of FileNotification.idl
public void fileModified(String fileName) {

System.out.println(fileName + “: Modified”);
}

public void fileDeleted(String fileName) {
System.out.println(fileName + “: Deleted”);

}

public void fileCreated(String fileName) {
System.out.println(fileName + “: Created”);

}

...

517

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 517

These methods implement the CORBA interface found in the FileNotification.idl file. Now that
you have the interface implemented, you must create the main() method that starts up your server, reg-
isters an instance of your FileNotification implementation with a local ORB, retrieves an instance of
RemoteFileWatcher, and registers your instance of FileNotification with this remote instance to
receive file system events.

Our main method begins by setting the properties necessary for the local ORB to find the COS Naming
service daemon running in a separate process on your local machine. This is the naming service you will
be using to register your instance of FileNotification. The java.util.Properties object in the
code below stores where your ORB is running with its initial port. These parameters allow your ORB to
connect to the COS Naming service running on port 1049:

public static void main(String[] args) throws Exception {

Properties props = new Properties();
props.put(“org.omg.CORBA.ORBInitialHost”, “localhost”);
props.put(“orb.omg.CORBA.ORBInitialPort”, “1049”);

ORB orb = ORB.init(args, props);

...

Once you have your ORB instance, you must get the root Portable Object Adapter (POA). Every ORB
has a root POA. From this POA, all additional POAs are attached in a treelike structure with the root
POA being the root of the tree:

POA rootPOA = POAHelper.narrow(orb.resolve_initial_references(“RootPOA”));

You must activate the root POA so that the ORB will accept incoming requests:

rootPOA.the_POAManager().activate();

Now that the root POA is active, you need to create the POA that contains your implementation of
FileNotification. Once created, you connect your POA to the root POA so it can actively accept
requests. To retrieve the actual CORBA reference of your implementation, you use the
FileNotificationHelper object. The FileNotificationHelper object was also generated by the
idlj tool and the narrow() method was used to take an org.omg.CORBA.Object reference and
cast it to a FileNotification object (with CORBA, a standard Java cast would not do the trick):

FileNotificationPOA nPOA = new FileNotificationImpl();

// attach File Notification POA to the root and register a reference
org.omg.CORBA.Object ref = rootPOA.servant_to_reference(nPOA);
FileNotification fileNotification = FileNotificationHelper.narrow(ref);

The next step is to bind your reference to the COS Naming service. You will name your reference
FileNotification. You then bind your CORBA object reference ref to the naming service. Your
FileNotification instance is now ready to receive incoming requests:

// bind the reference to the local cos naming server
NamingContext ctx =

NamingContextHelper.narrow(orb.resolve_initial_references(“NameService”));

518

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 518

NameComponent comp = new NameComponent(“FileNotification”, “ “);

ctx.rebind(new NameComponent[] {comp}, ref);

Now you must look up the remote CORBA object reference of the type RemoteFileSystemWatcher.
This object allows you to register your local instance of FileNotification with it to receive file system
events. The first step is to find the remote COS Naming service and lookup the object. To do this you
must inform JNDI that you want to use a COS Naming context. The Java system property java.naming
.factory.initial is set to reflect this. The java.naming.provider.url tells JNDI where to look
for the remote COS Naming service (though in this example, the so-called remote COS Naming
service is running on the local machine, and hence the hostname localhost). You then perform a
normal JNDI lookup. However, since you are using IIOP for the underlying protocol with RMI, you
cannot simply cast the object returned to the appropriate type. You must use the static javax.rmi
.PortableRemoteObject.narrow() instead:

Hashtable env = new Hashtable();
env.put(“java.naming.factory.initial”, “com.sun.jndi.cosnaming.CNCtxFactory”);
env.put(“java.naming.provider.url”, “iiop://localhost:1500”);

// connect to the remote cos naming service and lookup the RemoteFileSystemWatcher
InitialContext remoteCtx = new InitialContext(env);
java.lang.Object fswRef = remoteCtx.lookup(“FileSystemWatcher”);

// register our File Notification reference to receive events from the watcher
RemoteFileSystemWatcher watcher = (RemoteFileSystemWatcher)
PortableRemoteObject.narrow(fswRef, RemoteFileSystemWatcher.class);

Now that you have a reference to RemoteFileSystemWatcher, you can register your local reference of
FileNotification and start receiving file system events: You tell the ORB to run() and your program
blocks so you can receive file system events:

//remote call to register our local FileNotification instance on the remote server
watcher.registerNotfication(fileNotification);

System.out.println(“File Notification registered on remote server.”);
System.out.println(“Waiting for file notification events...”);
System.out.println();

// let our server run and wait for events
orb.run();

That is all there is to it. Your implementation is finished. You implemented a CORBA interface,
FileNotification, in Java. You produced stubs for another CORBA interface,
RemoteFileSystemWatcher, to proxy requests to a remote implementation. You then set up a local
ORB with your implementation of FileNotification, looked up the remote instance of
RemoteFileSystemWatcher, and then registered your reference of FileNotification with the
remote CORBA object. The remote CORBA object now calls your local FileNotification reference
whenever a file system event occurs.

519

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 519

The following is the full code listing for FileNotificationImpl.java:

package book;

import java.util.Hashtable;
import java.util.Properties;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import org.omg.CORBA.ORB;
import org.omg.CosNaming.NameComponent;
import org.omg.CosNaming.NamingContext;
import org.omg.CosNaming.NamingContextHelper;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;

import ConsoleCorbaServer.RemoteFileSystemWatcher;

public class FileNotificationImpl extends FileNotificationPOA {

public FileNotificationImpl() {
}

// next three methods are the implementation of FileNotification.idl
public void fileModified(String fileName) {

System.out.println(fileName + “: Modified”);
}

public void fileDeleted(String fileName) {
System.out.println(fileName + “: Deleted”);

}

public void fileCreated(String fileName) {
System.out.println(fileName + “: Created”);

}

public static void main(String[] args) throws Exception {

Properties props = new Properties();
props.put(“org.omg.CORBA.ORBInitialHost”, “localhost”);
props.put(“orb.omg.CORBA.ORBInitialPort”, “1049”);

// connect to the local cos naming server, get and activate
// the RootPOA
ORB orb = ORB.init(args, props);
POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references(“RootPOA”));

rootPOA.the_POAManager().activate();
FileNotificationPOA nPOA = new FileNotificationImpl();

// attach File Notification POA to the root and register a reference
org.omg.CORBA.Object ref = rootPOA.servant_to_reference(nPOA);

520

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 520

FileNotification fileNotification = FileNotificationHelper.narrow(ref);

// bind the reference to the local cos naming server
NamingContext ctx =

NamingContextHelper.narrow(orb.resolve_initial_references(“NameService”));
NameComponent comp = new NameComponent(“FileNotification”, “ “);

ctx.rebind(new NameComponent[] {comp}, ref);

System.out.println(“File Notification bound to local ORB”);

Hashtable env = new Hashtable();
env.put(“java.naming.factory.initial”,

“com.sun.jndi.cosnaming.CNCtxFactory”);
env.put(“java.naming.provider.url”, “iiop://localhost:1500”);

// connect to the remote naming service and lookup the RemoteFileSystemWatcher
InitialContext remoteCtx = new InitialContext(env);
java.lang.Object fswRef = remoteCtx.lookup(“FileSystemWatcher”);

// register our FileNotification reference to receive events from the watcher
RemoteFileSystemWatcher watcher = (RemoteFileSystemWatcher)

PortableRemoteObject.narrow(fswRef, RemoteFileSystemWatcher.class);
watcher.registerNotfication(fileNotification);

System.out.println(“File Notification registered on remote server.”);
System.out.println(“Waiting for file notification events...”);
System.out.println();

// let our server run and wait for events
orb.run();

}
}

Running the Example
To run your example, you first need to start up the remote CORBA server. You do this by running
ConsoleCorbaServer.exe (a compiled .NET binary):

ConsoleCorbaServer

This ConsoleCorbaServer creates a C# instance of RemoteFileSystemWatcher, and registers it for
use over IIOP via a COS Naming service. ConsoleCorbaServer.exe has the instance of
RemoteFileSystemWatcher set up by default to monitor the directory d:\book. This can be changed
by calling its setDirectory() method (which is exposed via CORBA), but for the purposes of running
the example, the default is fine.

Next you must start up your local COS Naming service with which you will register your instance of
FileNotification. The JDK provides a CORBA COS Naming service with its orbd tool. To start up the
naming service, simply run orbd from the command line:

orbd

521

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 521

With no parameters specified, orbd runs on port 1049 (where your code will be looking for it). After
orbd is running, you can now start your client program:

java book.FileNotificationImpl

The output screen shot in Figure 11-13 shows your program receiving some file system events after I cre-
ated, modified, and deleted a text file in the d:\book directory.

Figure 11-13

Web Services
Sometimes it is difficult to pin down any sort of definition to the term Web services. Web services are
drowned in hype. Some proclaim them as the enabling technology for the next generation World Wide
Web, the Semantic Web. Others say they will revolutionize business-to-business communication. Still
others insist that every new server-side application must support them — in fact, any legacy systems that
do not support Web services should be retrofitted or rewritten. Web services are more than just the latest
craze in distributed programming, but only an understanding of the technology itself will help you
design your software system — don’t do Web services for the sake of doing Web services.

So what are Web services exactly? Web services, from a technical vantage point, are actually pretty sim-
ple. They enable remote procedure calls. The protocol they are generally run over is not revolutionary, it
is HTTP. XML defines the actual data being transported. In fact, Web services do not even support ses-
sions out of the box. They do not support distributed objects out of the box. They do not come close to
either RMI or CORBA in terms of features or reliability. They are not scalable, robust, or good for
mission-critical applications. So why the hype? Web services quite frankly are so simple to understand
and implement, that they become a very powerful tool. Web services value interoperability above

522

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 522

anything else. Interoperability is a goal in CORBA, but with Web services, it is the number one priority.
Web services are not fast. They simply make it easy to interoperate from a large range of platforms. Even
Microsoft is fully on board, and officially supports Web services as the recommended method for com-
municating between their new .NET platform and the Java platform. You know it’s big when Microsoft
commits itself to interoperability with any other platform, especially Java.

Web services allow the exchange of structured data over the simple HTTP protocol. Yes, they can be
used over other protocols. Yes, they can be forced to simulate the more advanced features of RMI and
CORBA. But they shouldn’t. Web services must stay simple to be effective. They make no sense other-
wise. (Otherwise the wheel has just again been reinvented.) CORBA or RMI are stable and quality imple-
mentations for distributed objects and components. Web services are simply intended to facilitate the
sending and receiving of structured data over HTTP. Your Web browser displays HTML pages. Since you can
read, all the computer must do is display the Web page. It does not understand the content. All it knows
is that a table goes here, an image goes there, and the title of the document is News. This is a fine model,
and the World Wide Web has thrived. However, what if these Web pages were machine-readable? If the
data served on HTTP servers was structured in formats that computer programs could be easily written
to make use of the data, a whole new slew of applications could be written. This is why Web services are
drowned in hype. It’s not because the technology is revolutionary, because it’s not; it’s beautifully sim-
ple, and some would say a regression from either RMI or CORBA. Web services are revolutionary
because they will enable a whole generation of new computer applications that maximize the knowl-
edge and information stored in the World Wide Web.

Evolution of the World Wide Web
Tim Berners-Lee, the visionary who created the foundation for what you now know as the World Wide
Web, envisions a greater evolution of that Web for tomorrow. Slowly over time the Web has been transi-
tioning. The first Web sites were simple and only served up static content. Later on, database-backed
Web sites allowed for the dynamic query and creation of content served over HTTP. Today, you can
manage bank accounts, pay credit card bills, purchase merchandise, and compete in online auctions. The
major limitation of today’s Web, though, is the fact that almost all of the content currently in place, the
vast wealth of information, is only good for human consumption. The best technology behind search
engines still is limited by keywords, simple site usage statistics, and primitive categorization. Advances
in artificial intelligence haven’t been all that advancing for a field where the same principles that applied
30 years ago still apply today and aren’t changed a whole lot by the more powerful machines of today.

Web services are one technology to bridge the gap from a human-readable Web to a machine-consum-
able one. Imagine if the popular retailers, search engines, online auction sites, stock tickers, and news
services all had simple APIs to programmatically access their content. Entirely new information-centric
applications could be written that simply cannot exist now — portals like my.yahoo are the best we’ve
got. I’ve created a hypothetical weather Web site. I say hypothetical because it doesn’t exist online, and it
produces completely random weather forecasts. It does, however, give a good view of what the Web
looks like today. Figure 11-14 shows a screen shot from this hypothetical site, random-weather.org.

523

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 523

Figure 11-14

It is a simple site; users enter their zip code into the form and then receive their weather forecast — not
all that different from real weather sites, except of course, that this one is hideous. This page is encoded
in HTML, and works with the browser to send the Web server whatever zip code was typed in (as with
any Web application). Here is the simple HTML of this page:

<html>
<head>

<title>Weather Page</title>
</head>
<body>
<h1>Get the Current Weather!</h1>

<form method=”get” action=”weather.jsp”>

<table border=”0” cellspacing=”2” cellpadding=”2”>
<tr>

<td><input name=”zipcode” type=”textbox”/></td>
<td><input type=”submit” value=”Get Weather!”/></td>

</tr>
</table>

</form>

</form>
</body>
</html>

Note that there are only a couple of input tags, and this is where the information is exchanged. Figure
11-15 shows what the resulting Web page from this dynamic site looks like.

524

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 524

Figure 11-15

A nice, simple little page displays the random weather forecast. The HTML looks like this:

<html>
<head>

<title>Weather for Zip Code: 12345</title>
</head>

<body>

<h1>Weather for Zip Code: 12345</h1>

<table border=”0” cellspacing=”2” cellpadding=”2”>
<tr>

<td>High Temperature</td>
<td>93</td>

</tr>
<tr>

<td>Low Temperature</td>
<td>73</td>

</tr>
<tr>

<td>Description</td>
<td>Partly Cloudy</td>

</tr>
<tr>

<td>Barometer</td>

525

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 525

<td>26.11519 and Rising</td>
</tr>

</table>

</body>
</html>

Now, what if you wanted to write a computer program to access this same repository of information. It’s
easy enough as a user to enter the Web address, type in your zip code, and view the weather forecast.
Writing a program to do the same thing, though, is a tedious task and easy to break. These types of
dynamic sites intermingle the presentation format of the data (encoded in HTML) with the data itself. If
a program were to attempt to access this information (and it is possible), it would have to know what
parameters the server needed (in this case, the name of the zip code variable and that it is an HTTP GET
request), and then know exactly what format the HTML generated will be in. A parser would have to be
written that knows exactly where the high temperature and the low temperature reside in the Web page,
parse them out, and then do something with the data. This is not only tedious, painful, and difficult, but
it is extremely prone to breakage. If random-weather.org decided to change how it presented the data,
your parser would have to be rewritten. If they modified almost any aspect of either HTML page, some
part of your program would have to be rewritten. This just does not make sense. Separating data from
its presentation is a key principle in any software design, and in the continuing evolution of the Web,
may someday become a ubiquitous reality. Web services were mainly designed to help this process. Web
services allow these types of Web queries for information to occur in a structured format, using XML,
that can be easily parsed and read by computer programs. Google is offering a sample Web services API
so developers can programmatically access the Google search engine. Developers could then write appli-
cations that integrate the Google search engine easily into their applications. Other sites are playing
around with various Web services APIs. Amazon.com offers an API to allow developers to search their
product catalog. Any site that offers dynamic content could expose useful Web services to developers
(should they so desire).

Platform Independent RPC
Web services are an implementation of platform independent remote procedure calls. Think of each indi-
vidual Web service as a remote method. An XML-encoded request is sent to a server, and an XML-
encoded response is returned. Normally, Web services are sent over the HTTP protocol via the HTTP
POST operation. XML is posted to the Web server, and XML is returned from the HTTP POST operation.
Since XML was built to be a data description language, any form of data can be encoded. Though some
would call XML a bloated data format, since it stores information in plaintext, no one argues with the
robustness of the XML parsers available to developers. Since XML is plaintext and the rules are not
overly complicated (XML specification designers originally wanted the spec to be simple enough that
any graduate-level computer science student could implement a parser in about two weeks), it is easy to
write parsers. The XML specification is simple and clear enough that different parsers do not have a
problem interoperating. A sample XML request/response posted via HTTP is diagrammed in the follow-
ing Figure 11-16.

526

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 526

Figure 11-16

There are other advantages to implementing RPC via XML over HTTP. HTTP is another rock-solid pro-
tocol, again because of its simplicity. Earlier in this chapter, you easily implemented part of the specifica-
tion. Technologies such as RMI or CORBA have specifications that are orders of magnitude more
complex than either HTTP or XML. These protocols are also binary protocols, which makes them more
efficient over the wire as more information can be encoded in less space. Debugging these protocols,
though, is no simple task. Some would argue that distributed objects themselves are just too complex of
a technology and not worth the considerable amount of design and development time required to truly
implement a server-side application consisting entirely of distributed objects. By taking the simple route,
Web services have ensured their ease of implementation. Ease of implementation is one of the single
most critical elements to a cross-platform technology.

XML Web services do not have certain features built into them out of the box. They do not support ses-
sions (since HTTP does not truly support sessions). They do not support procedure callbacks. They have
no understanding of a distributed object. They are not at all object oriented, in fact. Security, transactions,
and scalability — no, no, and no again. They are not meant to be a pillar supporting a mission-critical
application. They merely enable current Web technologies to support a new generation of applications.

HTTP Server

H
TT

P
Po

st

527

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 527

Web Services Description Language (WSDL)
The Web Services Description Language is the Web services equivalent of CORBA IDL — in the sense
that it is an interface document. It describes how to communicate with a particular Web service. Some
would say you can be more descriptive with data you are passing; since all data is defined in XML, you
are not limited to primitive data types and particular classes like you are in CORBA IDL. Web services
described in WSDL can have the following pieces of information attached to them:

❑ Types. The XML data types are defined here.

❑ Messages. The content of Web services messages is described here.

❑ Port Types. Specifies input and/or output messages for a particular operation or method.

❑ Binding. Specifies the underlying communications protocol and transport protocol the Web ser-
vices run over.

WSDL itself is described in XML and the complete specification for its format can be found at the follow-
ing URL:

http://www.w3.org/TR/wsdl

Apache AXIS is an open-source Java project for Web service development and hosting. It ships with a
couple of sample Web services. One simply returns the current version of the AXIS server. This section
will later discuss in more detail about how to use AXIS. Here is a sample WSDL document from the
Apache Version service. Note how messages, port types, and bindings are defined. There are no custom
types; this WSDL document simply describes one service (WSDL documents can describe one or more
Web services). The one service returns a string, just the version string of the AXIS server:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions targetNamespace=”http://localhost:8080/axis/services/Version”
xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://localhost:8080/axis/services/Version”
xmlns:intf=”http://localhost:8080/axis/services/Version”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<!--WSDL created by Apache Axis version: 1.2beta
Built on Mar 31, 2004 (12:47:03 EST)-->

<wsdl:message name=”getVersionResponse”>
<wsdl:part name=”getVersionReturn” type=”soapenc:string”/>

</wsdl:message>
<wsdl:message name=”getVersionRequest”>
</wsdl:message>
<wsdl:portType name=”Version”>

<wsdl:operation name=”getVersion”>
<wsdl:input message=”impl:getVersionRequest” name=”getVersionRequest”/>
<wsdl:output message=”impl:getVersionResponse” name=”getVersionResponse”/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”VersionSoapBinding” type=”impl:Version”>

<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>

528

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 528

<wsdl:operation name=”getVersion”>
<wsdlsoap:operation soapAction=””/>
<wsdl:input name=”getVersionRequest”>

<wsdlsoap:body
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://axis.apache.org” use=”encoded”/>

</wsdl:input>
<wsdl:output name=”getVersionResponse”>

<wsdlsoap:body
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://localhost:8080/axis/services/Version” use=”encoded”/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”VersionService”>

<wsdl:port binding=”impl:VersionSoapBinding” name=”Version”>
<wsdlsoap:address location=”http://localhost:8080/axis/services/Version”/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

We will not be going into too much depth for the actual details of WSDL — that is better left to books or
chapters dedicated solely to WSDL. In CORBA or RMI, you generate stub classes to use distributed
objects transparently in code. WSDL allows the same sort of functionality for Web services. There are
toolkits and compilers for WSDL in a number of languages. This chapter will later examine how to gen-
erate Java classes from WSDL and then use them in code. You never even need to know what goes on
under the hood, but it certainly helps in understanding. Since Web services, boiled down to their core,
are really just XML posted via HTTP, you could use an XML API and an HTTP API and write Web ser-
vices. This is almost always not the best way to go about using Web services though. Bindings generated
from WSDL provide far more accurate implementations (and are much more likely to be bug free).
Because of the simplicity of Web services, there is no real speed or efficiency advantage to reinventing
the wheel either. This chapter will look more at code generation from WSDL and generating WSDL from
Java methods that you wish to expose as Web services.

Simple Object Access Protocol (SOAP)
Every RPC system needs a communications protocol. RMI uses either JRMP or IIOP. CORBA uses IIOP.
Web services use the Simple Object Access Protocol, or SOAP. SOAP is a message format defined in
XML. SOAP is inherently platform independent because it is based entirely on XML. Like WSDL, SOAP
is also a W3C standard, and its specification can be found at the following URL:

http://www.w3.org/TR/soap/

Every SOAP message has the following structural attributes:

❑ Envelope. The entire XML message has as its root element the SOAP Envelope — all content of
the message is contained here.

❑ Headers. XML Data can be placed in the header of a SOAP message away from the actual
content — keeping things like usernames and passwords (if required) separate from the actual
content of the message.

❑ Body. The XML content delivered in a SOAP message is contained in the body.

529

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 529

SOAP is a fairly straightforward protocol, assuming you understand XML and XML namespaces. An
example SOAP message for the AXIS version service is listed below:

<?xml version=”1.0” encoding=”UTF-8”?>
<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<soapenv:Body>

<ns1:getVersion soapenv:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:ns1=”http://axis.apache.org”/>
</soapenv:Body>
</soapenv:Envelope>

The SOAP message returned from this version request looks like:

<?xml version=”1.0” encoding=”utf-8”?>
<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<soapenv:Body>

<ns1:getVersionResponse
soapenv:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:ns1=”http://axis.apache.org”>

<getVersionReturn xsi:type=”soapenc:string”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”>Apache Axis version:
1.2beta
Built on Mar 31, 2004 (12:47:03 EST)</getVersionReturn>

</ns1:getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

Notice how both messages are rooted with the XML element envelope. There are no headers for these
messages, and the Body for each is straightforward. This text will not go into any further depth describ-
ing SOAP. Most of its details are not as important. Learning the ins and outs of WSDL is probably more
worth your while; the exact syntax of SOAP is not as big of an issue, since most Web service toolkits will
handle it all for you (much the same way as you wouldn’t think of knowing how JRMP or IIOP work).

Sadly, perhaps one of the most exciting elements of SOAP is that Microsoft has made it a key part of its
new .NET platform. SOAP is here to stay, and will hopefully continue to provide the cornerstone proto-
col for enabling Web service communication.

Underlying Transport Protocols
SOAP can be transported over a variety of protocols. The normal course of action is over HTTP, which is
over TCP/IP. However, SOAP messages can also be sent over:

❑ Straight TCP/IP (no HTTP)

❑ Simple Mail Transport Protocol (SMTP)

❑ Java Messaging Service Protocols

The real power of SOAP lies with HTTP over TCP/IP though. Web services become normal Web
requests, can be sent through firewalls, and are just structured data requests from Web servers.

530

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 530

Weather Web Site Example
Going back to the random-weather.org site from before, this section will take a look under the hood of
how it is currently implemented. After looking at its current implementation, you will enable it for Web
services. In addition to finding out your local random weather forecast from your Web browser, devel-
opers can programmatically access this same information. Your weather Web site has a particular class
that does most of the work, WeatherGetter. WeatherGetter randomly generates a weather forecast
for a certain zip code. This forecast changes daily and randomly. If you ran a real Web site, you could
think of WeatherGetter as providing accurate weather information, maybe from a database, probably
conglomerated from local weather stations. Your weather forecasts will consist of four items:

❑ High Temperature

❑ Low Temperature

❑ Weather Description

❑ Barometer and Description

You develop a JavaBean, Weather, to hold these properties:

package book;

public class Weather {
private String description;

private int lowTemp;
private int highTemp;

private float barometer;
private String barometerDescription;

public float getBarometer() {
return barometer;

}

public void setBarometer(float barometer) {
this.barometer = barometer;

}

public String getBarometerDescription() {
return barometerDescription;

}

public void setBarometerDescription(String barometerDescription) {
this.barometerDescription = barometerDescription;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

531

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 531

public int getHighTemp() {
return highTemp;

}

public void setHighTemp(int highTemp) {
this.highTemp = highTemp;

}

public int getLowTemp() {
return lowTemp;

}

public void setLowTemp(int lowTemp) {
this.lowTemp = lowTemp;

}
}

The WeatherGetter class is also straightforward. This section will not go into detail explaining exactly
how the forecasts are generated; if you are curious, though, look at the java.util.Random class in the
JDK. The code listing is important later on so you can see how to expose it as a Web service. Here is the
code listing:

package book;

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Random;

public class WeatherGetter {

private Random random;

public WeatherGetter() {
this.random = new Random();

}

public Weather getWeather(int zipCode) {
Calendar cal = new GregorianCalendar();
// changes the weather value daily
random.setSeed(zipCode + cal.get(Calendar.DAY_OF_YEAR) +

cal.get(Calendar.YEAR));

Weather w = new Weather();

int x = random.nextInt(100);
int y = random.nextInt(100);

if (x >= y) {
w.setHighTemp(x);
w.setLowTemp(y);

} else {
w.setHighTemp(y);
w.setLowTemp(x);

532

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 532

}

w.setBarometer(25 + random.nextFloat() * 8);
if (random.nextBoolean()) {

if (random.nextBoolean()) {
w.setBarometerDescription(“Rising”);

} else w.setBarometerDescription(“Falling”);
} else w.setBarometerDescription(“Holding Steady”);

String adjective;
String noun;

if (random.nextBoolean()) {
adjective = “Partly”;

} else adjective = “”;

if (random.nextBoolean()) {
noun = “Sunny”;

} else noun = “Cloudy”;

if ((“Partly”.equals(adjective) || “Cloudy”.equals(noun))
&& random.nextBoolean()) {

noun += “, Chance of “;
if (w.getLowTemp() < 32)

noun += “snow”;
else noun += “rain”;

}

w.setDescription((adjective + “ “ + noun).trim());

return w;
}

}

The weather Web application is fairly straightforward. There is one Java Server Page (JSP) that handles
incoming weather requests and outputs the current random forecast for that zip code (like the screen
shots and HTML code from earlier). The JSP uses WeatherGetter to generate the weather requests. This
is a standard way to build dynamic sites — JSPs backed by Java classes that access data (or in this simple
case, generate data). See Chapter 7, “Developing Web Applications Using the Model 1 Architecture,” and
Chapter 8, “Developing Web Applications Using the Model 2 Architecture,” for more information on
building Web applications with Java. You will now look at how to have this same functionality exposed
as a Web service, using Apache AXIS.

Apache AXIS
Apache AXIS is an implementation of SOAP and is a rewrite of the original Apache SOAP project. It is
also the most used Java toolkit for developing Web services. One of the primary goals of the AXIS project
is to work well with other SOAP implementations. It works seamlessly with Microsoft’s .NET platform.
AXIS provides a strong toolkit for any developer wishing to implement Web services. It includes:

❑ Web application archive (WAR file) to deploy and manage Web services in standard Java Web
containers

❑ WSDL2Java and Java2WSDL toolsets — converts WSDL to Java classes and generates WSDL
from existing Java classes

533

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 533

❑ TCPMon — the TCP Monitoring utility you looked at earlier in this chapter

❑ Rich set of sample Web services

Since AXIS includes a Web application, it is complemented perfectly by Apache Tomcat, a servlet con-
tainer and HTTP server. Combing these two open-source projects yields a production quality environ-
ment for deploying Web services and Web applications.

The main alternative in the Java world to using AXIS is Sun’s Java Web Services Developer Package
(JWSDP). The current version at the time of this writing is 1.3, though 1.4 is due out soon, and will prob-
ably be the current version when you are reading this. Either AXIS or JWSDP can be used, although I
have personally found AXIS to be simpler to use, and used more widely in production. The remainder of
the “Web Services” section will discuss AXIS.

Setting up the Environment

There are four main steps to making your environment Web services ready:

1. Download and install Apache Tomcat.

There is a windows installer distribution of Apache Tomcat that makes installation a breeze
(there are also zip files and tar.gz files — for those, simply unpack them, they are ready as is).
This file can be downloaded from the following URL:

http://jakarta.apache.org/site/binindex.cgi

This site lists all of the products the Jakarta Project offers, so you’ll have to scroll down to find
the .exe file for Tomcat.

2. Download the Apache AXIS source distribution, build it (as per its instructions), and place the
AXIS Web application in the Tomcat’s directory for deploying Web applications.

AXIS can be downloaded from the following URL:

http://ws.apache.org/axis/index.html

After downloading and unzipping AXIS, go under the <AXIS_HOME>/webapps directory to find
the AXIS Web app. Copy this directory and all of its contents to the <TOMCAT_HOME>/webapps
directory. The next time you start up Tomcat, you will be able to go to the local URL:

http://localhost:8080/axis/

From here you can view the status of the AXIS installation and see what Web services have been
deployed.

3. Download the Java Activation Framework and install activation.jar to the lib directory of
the AXIS Web application.

You’ll need to download the Java Activation Framework from the following URL:

http://java.sun.com/products/javabeans/glasgow/jaf.html

After downloading and unpacking the file, you’ll find activation.jar. Copy this file to the
<TOMCAT_HOME>/webapps/axis/WEB-INF/lib directory.

534

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 534

4. Modify the web.xml configuration file of the AXIS Web application to enable the administration
servlet.

To be able to deploy Web services, you have to enable the AXIS administration servlet. Modify
the <TOMCAT_HOME>/webapps/axis/WEB-INF/web.xml file to uncomment the administration
servlet (note the comments around the servlet-mapping element below). The next time you start
Tomcat, your Web services environment will be ready:

...
<!-- uncomment this if you want the admin servlet -->

<!--
<servlet-mapping>

<servlet-name>AdminServlet</servlet-name>
<url-pattern>/servlet/AdminServlet</url-pattern>

</servlet-mapping>
-->

...

Deploying a Service

Getting back to your random-weather.org Web site, suppose you want to expose the following
method of WeatherGetter as a Web service:

public Weather getWeather(int zipcode) {...}

Doing so would enable client programmers, as well as normal Web-browsing end users, to access the
functionality of your random-weather.org Web site.

AXIS makes it easy to expose the method as a Web service — all you need is a Web Services Deployment
Descriptor, which is an AXIS-specific file type used for deploying a Web service. This text will not go
into too much detail regarding the actual format for this file; see the AXIS documentation for more infor-
mation. Here is what your deployment descriptor, desploy.wsdd, looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<deployment xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<service name=”Weather” provider=”java:RPC”>
<parameter name=”allowedMethods” value=”getWeather”/>
<parameter name=”className” value=”book.WeatherGetter”/>
<beanMapping qname=”ns:weather” xmlns:ns=”http://randomweather.org”

languageSpecificType=”java:book.Weather”/>
</service>

</deployment>

Notice how the service definition in the deployment descriptor defines the Java class and methods
exposed as the Web service. Any class used as a service in this manner by AXIS must have a default, no-
argument constructor, so the AXIS engine can create instances of it. Since the type Weather is not a
primitive type, there is some extra configuration necessary for AXIS to be able to properly serialize and
deserialize the class to and from XML. There are powerful predefined mechanisms in AXIS for defining
exactly how to serialize and deserialize data. If a predefined serializer cannot be found to properly seri-
alize a nonprimitive Java type, custom serializers can be written for the utmost control over the serializa-
tion process. Since the Weather type follows JavaBean conventions, the easiest mechanism in your case

535

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 535

is to use the AXIS bean serializer. The AXIS bean serializer takes a JavaBean and defines an XML map-
ping for it. This mapping is included when AXIS generates WSDL for the service, making third-party
developers writing client programs to use the Web service not have to write any custom code — the
WSDL generated allows them to auto-generate stubs, which then allow them to use the service transpar-
ently in their code. The <beanMapping> tag in the deployment descriptor identifies your JavaBean, and
tells AXIS what XML namespace to use when serializing the type.

Note how, in the <service> tag, the provider is defined as java:RPC. There are essentially three main
types of Web services. Each of these three services is encoded differently and possesses different attributes:

❑ Remote Procedure Call Services. The weather example seen so far in this chapter is an example
of an RPC-based Web service. Though other styles of Web services can be similar to RPC-based
services in the sense that all normally follow a request-response paradigm, services designated
as RPC use the SOAP encoding of types rather than XML schema. A huge emphasis on interop-
erability has made RPC-based services generally the most interoperable out of the box of the
three.

❑ Document-Based Services. Document-based Web services use XML schema to define the data
types passed in SOAP messages. This support is useful when you want to pass XML data itself
(and not simply encode in XML data that is not normally stored in XML). When you have exist-
ing XML schemas for certain XML file types, this format makes the most sense. This format has
been gaining ground in terms of support and is almost as interoperable as RPC. In-depth
knowledge of WSDL and XML schema is required to create and deploy document-based Web
services.

❑ Message-Style Services. Message services are the most generic of the three types. They give the
developers complete control over the incoming XML. Message style services are less of a type of
Web service as they are a method for implementing them. Message-style services are AXIS spe-
cific, but since the developer is given complete control over the XML, they can be used to imple-
ment document-based services. Implementing services in AXIS using the message-style is the
most complex, but the most control possible is given to the developer. Message-style services
are necessary when implementing advanced features such as session management, transactions,
security, and other functionality on top of normal Web services.

RPC makes the most sense for your weather Web service for interoperability and simplicity’s sake. This
method getWeather() is simple, and is not transporting a predefined XML data type, so there is no
need for using document-based Web services (or its more complex sibling, message-style).

To actually deploy your Web service, the Java classes, book.Weather and book.WeatherGetter, must
be in the classpath of the AXIS Web application. To do so, put the class files under the
<TOMCAT_HOME>/webapps/axis/WEB-INF/classes directory.

The last step to deploying your service is running the AXIS admin tool. This can be done as an ANT
task. Here is the build.xml file to use to deploy the service:

<project name=”weatherService” default=”deploy” basedir=”.”>
<path id=”axis.classpath”>

<fileset dir=”${axis.home}/build/lib”>
<include name=”**/*.jar” />

</fileset>
</path>

536

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 536

<taskdef resource=”axis-tasks.properties”
classpathref=”axis.classpath” />

<target name=”deploy”>
<axis-admin

port=”8080”
hostname=”localhost”
failonerror=”true”
servletpath=”/axis/services/AdminService”
debug=”true”
xmlfile=”deploy.wsdd”
/>

</target>
</project>

Deploy.wsdd and build.xml need to be in the same directory, and then ant can be run normally to
deploy the service.

The service is now deployed to the URL:

http://localhost:8080/axis/services/Weather

WSDL for this service is found simply by appending ?wsdl to the URL:

http://localhost:8080/axis/services/Weather?wsdl

Now Web service clients can programmatically access the weather forecasts from random-weather.org.

Writing a Web Service Client

Writing a Web services client when you have the WSDL handy for the Web service is quick and simple.
Since WSDL defines the interface and data types in a particular Web service (or multiple Web services),
classes to use the Web service can be auto-generated. AXIS provides a tool, WSDL2Java, that does just
that. This tool can be run as an ant task as well, and the build.xml file to create the client classes neces-
sary to communicate with your weather Web service looks like this:

<project name=”weatherServiceClient” default=”wsdl” basedir=”.”>
<path id=”axis.classpath”>

<fileset dir=”${axis.home}/build/lib”>
<include name=”**/*.jar” />

</fileset>
</path>

<taskdef resource=”axis-tasks.properties”
classpathref=”axis.classpath” />

<target name=”wsdl”>
<axis-wsdl2java

output=”output”
testcase=”true”
verbose=”true”

537

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 537

url=”http://localhost:8080/axis/services/Weather?wsdl” >

</axis-wsdl2java>

</target>
</project>

After creating the output directory (that is specified in the <axis-wsdl2java> tag), in this case, called
output, running ant generates the following classes:

localhost.axis.services.Weather.WeatherGetter
localhost.axis.services.Weather.WeatherGetterService
localhost.axis.services.Weather.WeatherGetterServiceLocator
localhost.axis.services.Weather.WeatherGetterSoapBindingStub
org.randomweather.Weather

These generated classes depend on the jar files in the <AXIS_HOME>/build/lib directory to build a
simple client application that accesses the Web service. Only three lines of code are required to access the
Web service. It really is too easy:

int zipcode;
URL endpoint = new URL(“http://localhost:8080/axis/services/Weather”);

WeatherGetterService serviceLocator = new WeatherGetterServiceLocator();
WeatherGetter wg = serviceLocator.getWeather(endpoint);

Weather weather = wg.getWeather(zipcode);

The WeatherGetterServiceLocator class is used to bind a URL endpoint to the service. After that,
the service can be accessed. The strength of Web services is in their simplicity, and as you can see, there
really is not a whole lot to using a Web service. The complete code listing for the simple client applica-
tion looks like the following code:

package book;

import java.net.URL;

import org.randomweather.Weather;

import localhost.axis.services.Weather.WeatherGetter;
import localhost.axis.services.Weather.WeatherGetterService;
import localhost.axis.services.Weather.WeatherGetterServiceLocator;

public class WeatherClient {
public static void main(String[] args) throws Exception {

int zipcode = 12345;
URL endpoint = null;

if (args.length >= 1) {
zipcode = Integer.parseInt(args[0]);
if (args.length >= 2) {

endpoint = new URL(args[1]);

538

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 538

}
}

if (endpoint == null)
endpoint = new URL(“http://localhost:8080/axis/services/Weather”);

WeatherGetterService serviceLocator = new WeatherGetterServiceLocator();
WeatherGetter wg = serviceLocator.getWeather(endpoint);

Weather weather = wg.getWeather(zipcode);

System.out.println(“Weather for “ + zipcode);
System.out.println(“\tDescription:\t\t” + weather.getDescription());
System.out.println(“\tHigh Temperature:\t” + weather.getHighTemp());
System.out.println(“\tLow Temperature:\t” + weather.getLowTemp());
System.out.println(“\tBarmometer:\t\t” + weather.getBarometer() + “ and “

+ weather.getBarometerDescription());
}

}

To see what gets sent and received over the HTTP connection, the Apache TCPMon application can
again be used. You will set it to listen on port 8079 (and forward to port 8080), and run your client appli-
cation as follows (assuming your CLASSPATH environment variable includes all the jars in the
<AXIS_HOME>/build/lib directory):

java book.WeatherClient 12345 http://localhost:8079/axis/services/Weather

The output follows:

Weather for 12345
Description: Partly Sunny, Chance of snow
High Temperature: 91
Low Temperature: 24
Barmoter: 27.007242 and Rising

Looking at the TCPMon screenshot in Figure 11-17, you can see the SOAP message sent and the reply
received. TCPMon is useful for debugging document-based and message-style Web services (since you
have more control over the XML passed).

Client-Side Possibilities
There are more things you could do with your random-weather.org Web service than simply write a
program that prints the information out. In Windows, you could write an application using the .NET
framework that runs in the system tray. It would check the weather every hour or so, and update the
information for the zip code of your choice. If someone ever wanted to write a larger client-side applica-
tion that included the current random weather forecast, it could be easily integrated, no matter what lan-
guage the application was being developed with, or what platform on which it ran. Other Web sites that
wanted to include the weather could connect to your Web service and then display the results on their
page. Because the data for your weather Web site is structured, it can now be used in a variety of places
besides the Web browser.

539

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 539

Figure 11-17

The Future
The future of Web services is unknown. There are many standards floating around, some by the W3C,
some by OASIS. Standards for implementing secure Web services, transactional Web services, and reli-
able Web services are all being written and implemented. Once the major vendor implementations of
Web services, such as Sun’s Java Web Services Developer Pack and Microsoft’s .NET framework, sup-
port these features out of the box, they may be practical to implement. Right now, there is minimal sup-
port for transactions and reliable messaging, and if your application needs those features today, Web
services probably are not the best choice. Web services are moving away from simply enabling existing
Web sites’ dynamic data to be accessed by a new generation of rich client-side applications, to enabling
the same securely and transactionally.

540

Chapter 11

14_574868 ch11.qxd 12/21/04 5:58 PM Page 540

Summary
In this chapter, you have learned some possible ways to enable Java components in your application to
communicate with external components in other applications or systems that could have been written in
a variety of languages. Sockets provide the building blocks for all other technologies discussed in this
chapter. With TCP/IP, they provide a reliable byte stream over a network that any language with a
socket API can use. This is the lowest level of interprocess communication. Sockets are, however, not in
themselves a guarantee of communication between two different components, a common protocol must
also be spoken. In this chapter you implemented a small portion of the HTTP specification to gain an
understanding of the immense undertaking it can be. RMI, CORBA, and Web services are all built on top
of sockets and TCP/IP. RMI and CORBA implement complex protocols allowing them to provide such
features as reliability, sessions, and transactions. They are cornerstone technologies for many enterprise
systems. J2EE makes extensive use of RMI, as RMI combined with JNDI allows for the objects of a sys-
tem to be transparently spread across multiple machines without any changes in the application’s code.
RMI and CORBA have become intertwined to some degree since support for CORBA’s IIOP protocol
was added to RMI. Now RMI and CORBA have basic interoperability, and this makes it easier for devel-
opers to integrate legacy CORBA systems into their modern J2EE equivalents.

Web services are the latest craze in distributed computing, and enable the evolution of the current World
Wide Web of unstructured information to one of structured information. Web services are not as
advanced technologically as RMI or CORBA, but there is power in their simplicity. Web services require
minimal development effort to implement and, because all of their underlying protocols are human
readable, are easy to debug. Web services have been prophesized to enable the next generation of appli-
cations that can better make use of the vast wealth of information found on the Internet.

None of the technologies used in this chapter is inherently better than any other. The right tool is needed
for the right job. Sockets provide a low-level API that allows for the optimization and creation of new
protocols. Some projects may require this — the remote control of external hardware, such as robotic
devices, can usually be done best starting with sockets, and then building a more developer-friendly API
layered on top. RMI and CORBA provide great foundations for distributed systems, and an understand-
ing of them is necessary to utilize the full power of J2EE. The network latency implications of remote
method calls must also be considered in any distributed system. Web services complement existing Web
portals. They will be the simple mechanism by which information on the World Wide Web is shared for
use by machines, not just by human eyes. Distributed applications and systems will probably make use
of more than one component-to-component technology. As the integration of systems and information
becomes easier with more platform-agnostic APIs and technologies, a whole new breed of information-
centric applications can arise.

541

Communicating between Java Components and Components of Other Platforms

14_574868 ch11.qxd 12/21/04 5:58 PM Page 541

14_574868 ch11.qxd 12/21/04 5:58 PM Page 542

Distributed Processing with
JMS and JMX

This chapter shows you how to build distributed processing applications using two standard Java
APIs. You can use this application as a starting point for CPU intensive processing tasks that
require scaling beyond a single computer. In addition to scaling, the application discussed in this
chapter can be managed very easily. It can be configured, deployed, even changed completely at
run time using a standard Web browser.

Tough software problems often require large amounts of processing power. In some cases it is nec-
essary to distribute this processing across several servers to meet the required demand. These sys-
tems are susceptible to bottlenecks and are difficult to manage. The two technologies discussed in
this chapter — JMS and JMX — reduce the inherent complexities of this problem.

Java Message System (JMS) is the Java standard API for developing Message Oriented
Middleware (MOM). JMS is one of the APIs that make up the J2EE architecture. JMS provides a
robust message capability allowing you to send and process messages across several servers
within a network.

Java Management Extensions (JMX) is also a Java standard API. JMX defines a way to provide
manageable resources to other applications, provided they comply with the same architectural
standard. This allows you to configure and manage applications at run time through standard
management tools.

The first section, “Basic Concepts,” will explore the fundamentals of both JMS and JMX. It will not
be an extensive laundry list of every method in the APIs; instead, it will be about the basics that
you need to understand to be able to build a usable application. The focus of this chapter will be to
expose you to a high value percentage of capabilities of these technologies that you can put to use
in similar processing architecture problems. The second section, “Building a Distributed
Application,” will show you how to build a usable example application. This application example
will show how to model a generic business process. The third section, “Deploying the

15_574868 ch12.qxd 12/21/04 5:56 PM Page 543

Application,” will show you how to leverage JMX technology to deploy and manage an application
remotely at run time.

The code in this chapter can then be extended to support any business process that might meet your
needs. You will also be able to download the complete example from the publishers Web site. The Web
site will give you the specific details on configuring and running the application.

Again, this chapter will not cover every detail regarding JMS and JMX. The intent is to understand
enough of the two APIs to guide the design decision-making process, and then allow you to test out and
extend the example application. The example will also help you navigate the standard API documenta-
tion with confidence after becoming familiar with the core capabilities of these two technologies.

Basic Concepts
This first section of the chapter discusses the fundamental concepts of both JMS and JMX API. With JMS,
you will look at the object model required to send and receive messages using the JMS architecture. The sec-
ond section introduces the JMX architecture for deploying standard manageable application components.

JMS Fundamentals
Messaging systems are made up of application components that do not communicate directly with each
other. All communication goes through an intermediary, called a destination. In JMS terms, a destination is
either a queue or a topic. The first thing to understand when building a message system is the difference
between these two concepts.

The difference between a queue and a topic involves how messages are delivered. It is critical to under-
stand the two delivery models when selecting the correct destination type for the problem at hand. The
best way to illustrate the difference between the two is to use two analogies.

Everything you want to learn about a queue you can observe with a visit to a bank on a Friday at 5:00 p.m.
The line, or queue, is long. There are too many customers and not enough tellers. Each customer represents
a Message or work the system needs to perform, while each teller represents a Message Receiver or a pro-
cessing node of the system. As you add tellers, each teller processes fewer customers effectively distribut-
ing the processing load of the system. The key takeaway from this is that a queue allows you to scale
processing.

A topic solves a completely different problem. An analogy that describes a topic well would be a news-
paper delivery route. A Subscription List defines who gets a copy of the newspaper. The newspaper rep-
resents the message of the system. Unlike the queue delivery model, the adding of subscribers does not
distribute the processing; it is for notification. It increases the total work the system must perform.

A rough guideline used to determine the destination type is to look at the purpose of the message being
sent. If the purpose is to do something with the message, then use a queue. If the purpose is to inform or
notify the component, then use a topic. Now you ought to understand the conceptual difference between
a queue and a topic. The next section will provide an overview of the classes used in sending and receiv-
ing a message from a JMS destination.

544

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 544

Sending and Receiving a JMS Message
In this section, you will learn how to send and receive messages from a message destination in Java. A
JMS application is a contract between a messaging system and a client API that processes messages. The
message system is a server that manages the destinations, listens for client connections, and manages
transactions. A JMS messaging system is provided commercially or through the open source vendor. The
first part of this section is an overview of the client API that interacts with a messaging system. The sec-
ond section will show how to send and receive messages using the client API.

The following table contains the classes used to communicate with a JMS messaging system. These are
interfaces defined in the javax.jms.* package. As of JMS 1.1, the object model for handling both the queue
and topic destination type is identical.

Class Purpose

ConnectionFactory Defines the behavior for creating a Connection to a JMS server. Con-
nectionFactory is an administered object bound to the JNDI context.
The messaging system will exhibit different behavior depending on
what type of ConnectionFactory is bound to the context. This behav-
ior is related to message delivery, message persistence, and transac-
tion support.

Destination An object representing the queue or topic. Logically, it is where mes-
sages are stored between processing steps.

Connection The Connection provides a unique link between the JMS server and
your client-messaging component. It is also responsible for address-
ing security and permission issues.

Session The Session object coordinates the Message Traffic between the JMS
server and the client and is associated to a specific Connection object.
It also makes sure the communication between the server and client
are thread-safe.

MessagePublisher Message publisher is able to send messages to a destination object.

MessageConsumer A Message consumer has the ability to take messages from a destina-
tion, either synchronously or asynchronously.

MessageListener Implementing the Message listener interface allows a client compo-
nent to register to receive messages asynchronously when they are
available.

Message Last, but not least, the Message object represents the information
moving through the system.

Now that you understand the purpose of the JMS interfaces that you will be working with, the next step
is to look at the code required to send and receive messages. There are four important steps to sending a
message:

1. Create a connection to the Message system.

2. Establish a JMS session.

545

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 545

3. Create a message publisher.

4. Explicitly send the message.

The code that follows will walk you through each step in the process of sending a message.

To be able to send or receive messages, you need to create a Session with the JMS server. The Session
object allows you to create the Message, MessageConsumer, and MessagePublisher objects for the spe-
cific send and receive tasks. The session object is created with the sequence of method calls found in
Figure 12-1.

Figure 12-1

The following is the code for creating a session as described in Figure 12-1:

connection.createSession(boolean transaction, int acknowledgement);

The previous code for creating a session is very important because it defines transaction support and
message acknowledgment. The first parameter defines transaction support. If the session supports trans-
actional messages and the second specifies how the client will acknowledge receipt of the messages sent.
Message acknowledgment can either be done automatically per message or by client request (in a large
batch). Once you have a reference to a Session object, you can use it to create a Message and a Message
Publisher. Figure 12-2 shows the UML for sending a message once a session object has been created.

ContextJMSClient Connection SessionConnectionFactory

create

create session

create

lookup factory, queue

create connection

546

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 546

Figure 12-2

The code for creating a publisher that was described in UML by Figure 12-2 is listed here for clarification:

MessagePublisher publisher = session.createPublisher();
publisher.send(session.createTextMessage(“message body”));

It is important to note from the code above that the publisher sent the message, not the session. This
allows you to send and receive messages from the same session. By using the same session, the message
can exist in the same transaction, which is important for fault-tolerant applications.

A JMS client can be notified when a message arrives at a JMS queue. The client must implement the
MessageListener interface from the javax.jms package.

The next section walks through this process, starting with Figure 12-3, which shows the conceptual pro-
cess for registering to receive messages from a JMS system.

Figure 12-3

Session ConnectionJMSClient MessageConsumer

create consumer

create called for each
message in the queue

start

on message

register

SessionJMSClient MessagePublisher

create publisher

create

send message

547

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 547

Now, take a look at the specific code that is involved with the collaboration described in Figure 12-3. The
class that registers with the JMS server must implement the MessageListener interface found in the
javax.jms.* package. You pass a reference to a message listener to the Consumer and the consumer will call
back the messageListener as messages become available. The callback is specified by the Messagelistener
interface by the method onMessage(Message m). The code for registering as a message consumer fol-
lows. Please note the start() method. This method is used to tell the JMS server to start sending mes-
sages to the registered client class. This will be covered in detail in the example application:

MessageConsumer consumer = session.createConsumer(queue);
consumer.addListener(this);
consumer.start();

From this section, you have learned the important conceptual differences between a queue and a topic,
as well as how to send and receive messages using a JMS system. That is a large percentage of the JMS
object model. The next section looks at the overview of JMX architecture and the capabilities it provides
to the application developer.

JMX Fundamentals
In this section of the chapter, the fundamentals of the JMX architecture will be looked at. After reading
this section, you will understand the capabilities that JMX provides the application developer, an
overview of the architecture, and how to create your own JMX components that can leverage these man-
agement capabilities.

Java Management Extensions (JMX) is a framework that allows you to expose the methods of a Java
object to other application. The Java objects that you expose are called MBeans. MBeans are the building
blocks of JMX. An MBean is deployed to a JMX Agent where it is managed. The Agent provides a com-
mon set of services to interact with the MBean. These common services provide the application devel-
oper with a large number of capabilities.

Some of the capabilities available to an MBean follow:

❑ The agent allows the properties of an MBean to be read as well as changed remotely at run time.

❑ The agent allows the methods of an MBean to be invoked at run time.

❑ The agent allows the MBeans to be deployed and undeployed at run time.

Hopefully, these capabilities will give you some insight into how powerful JMX can be for building a
distributed processing system. The application built in the upcoming section will consist of MBeans that
can be managed remotely. By taking advantage of these capabilities you can remotely deploy additional
processing components across several servers at runtime. Before moving to the example in this chapter,
there ought to be a further investigation of the JMX architecture and the naming convention an MBean
must adhere to in order to comply with the architecture.

Figure 12-4 is a logical depiction of the JMX architecture.

The architecture is logically divided into an Agent layer and an Instrumentation layer. The instrumenta-
tion layer is a collection of MBeans that provide the functionality that your application requires. This is
supported by the Agent layer providing a common set of services for each component. These services
handle component registration, event notification, and monitoring.

548

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 548

Figure 12-4

In order to use an MBean, it must be deployed to an MBeanServer. All communication with an MBean is
done indirectly through the server. This server has a standard interface for manipulating MBeans. This
standard communication is extended one step further with the use of MBean Adaptors and Connectors.
An Adaptor communicates with an MBeanServer using a standard protocol. In the example later in this
chapter, an HTTPAdaptor will be used to communicate with deployed MBeans using a standard Web
browser.

The next three sections will describe the specifics of the JMX architecture, including using standard
MBeans, deploying an MBean for management, and using Adaptors and Connectors.

Using Standard MBeans
An MBean is made up of an interface and an implementing class. The interface and class must subscribe
to a specific standard so that it can be managed by an MBeanServer. The following are the standard rules
to which an MBean must subscribe:

❑ The Interface must have the same name as the implementing class plus an MBean Suffix.

❑ The Interface must reside in the same package as the implementing class.

The following code is an example of a standard MBean interface. In this example, the MBean interface
exposes one read-only property, isRunning, and two operations, stop() and start(), to the
MBeanServer:

package wrox.processing.jmx;
public interface ExampleMBean {

public boolean isRunning();
public void stop();
public void start();

}

MBean Server

HTTPAdaptor RmiAdaptor

Monitoring

CustomMBean

CustomMBean
JVM

Agent Layer

Instrumentation
Layer

Notification Registration

CustomConnector

549

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 549

The next section of code shows the implementing class. Note the class names and package declarations:

package wrox.processing.jmx;
public class Example implements ExampleMBean {
private Boolean running;

public Boolean isRunning() {
return running;

}

}

In the example that will be created, four more MBeans provide various applications logic in support of
the business process. This section provided an example of a standard MBean; there are other types of
MBeans that are beyond the scope of this chapter, however, the same principles apply by complying
with the standard common services and management that are available through the JMX architecture.
The next section will describe the process of deploying an MBean to an MBeanServer.

Deploying MBean for Management
The MBeanServer is the heart of the Agent layer of the JMX Architecture. It provides the ability to regis-
ter an MBean. This makes them available to other components that can connect to the MBeanServer.

The interaction with the server takes place through the MBeanServer interface. The next code listing
shows an abbreviated version of the methods available in the MBeanServer. This interface allows you to
invoke methods on an MBean that has been deployed through the server. Methods of an MBean are
invoked indirectly via the MBeanServer:

public Object getAttribute(ObjectName on, String name);
public void setAttribute(ObjectName on, Attribute att);
public Object invoke(ObjectName on, String method, Object[] param, String[] sig);
public ObjectInstance registerMBean(Object obj, ObjectName on);
public Set queryMBeans(ObjectName on, QueryExp qe);

The server identifies each MBean through a unique name assigned when it is registered with the server.
This is called the objectName. It is made up of two parts: the domain and the keys separated by a colon
(:). In the example that follows, the domain is processing and the key is name=message-processor. An
object name can have any number of keys separated by a comma (,):

BeanServer server= MBeanServerFactory.createMBeanServer();
ObjectName objectname = new ObjectName(“processing:name=message-processor”);
server.register(new MessageProcessor(), objectName);

Once an MBean has been registered with the MBeanServer, it is possible to get and set attributes, invoke
methods, and query for an MBean using the ObjectName. For example, to invoke the method public
void read(String file) on an MBean registered with the name processing:name=message-processor, you
would execute the following line of code:

ObjectName on = new ObjectName(“processing:name=message-processor”);
Object[] args = { “file.txt”};
String [] sig = { “java.lang.String”};
server.invoke(on, “read”, args,sig);

550

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 550

The previous code is fairly long-winded for the invocation of a single method. Fortunately, there are sev-
eral adaptors available that make interacting with an MBean easier. This is discussed in the next section
on adaptors and connectors.

Using Adaptors and Connectors
An adaptor exposes the MBeanServer to other applications external to the JMX Agent. The adaptor com-
municates via a defined protocol. The MBeanServer is exposing MBean to external applications using
the adaptor. Every JMX agent needs to deploy at least one adaptor.

There are several Adaptors available that support various protocols. These include HTTP for Web-based
management, RMI for remote method invocation, and SNMP for communicating with network devices
such as routers and switches. This chapter will work with an HttpAdaptor allowing the management of
the example through a Web browser. The HttpAdaptor is used extensively in the “Deploying the
Application” section of this chapter.

This concludes the “Basic Concepts” section of this chapter. The next section will show how to design
and build an application using these two technologies and implement an order-processing system.

Building a Distributed Application
The objective of this chapter, and specifically this section, is to build a flexible distributed processing
application. By now it should be clear why you are using JMS and JMX to accomplish this task. JMS
allows you to partition work requests into messages and distribute these messages to numerous process-
ing nodes seamlessly across a network of computers. Furthermore, your processing components will be
built as MBeans. This allows you to monitor and communicate with them remotely at run time.

The example application will show how to perform the business process described in Figure 12-5.

Figure 12-5

The goal of the example is to build three components that implement the messaging behavior. The result
will be an abstraction that separates the JMS messaging logic from the actual business logic specific to

Check
Inventory
for each

Item

Ready to
Ship

Reject

Receive
Order

Ship
Order?

551

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 551

the business process. These fundamental message components can then be tied together in various ways
to support different, more complex, business processes.

The three components in the JMS processing architecture example define the system responsibilities
required to process messages, route messages, and split and aggregate messages. Each processing step is
mapped to a messaging component. The following diagram in Figure 12-6 shows how the example mes-
saging components are mapped to the example business process.

Figure 12-6

There are several benefits to this design. The primary benefit of this design is scalability. Any number of
components running on several different physical machines can process a message from a queue. This
creates a location-independent processing architecture. In addition, components have no direct depen-
dencies. All dependencies are established by receiving and sending messages between queues. This is an
example of a loose coupling of system components. There is also a significant amount of design flexibil-
ity. Changing the flow of messages between components can be done without modifying the compo-
nents themselves, but by simply changing the queue.

The next section will discuss the various types of messages that are available through JMS. Once a type
is selected that matches the criteria, the sections that follow will describe in the detail how to build the
three types of messaging components used in the example.

Deciding on the Message Type
Before beginning the component design, it is important to select a message type appropriate to your pro-
cessing requirement. Choosing a message type is important because it affects the persistence, perfor-
mance, and interoperability of the application.

The three types of JMS messages are described by the contents they can transport. They include the
following:

❑ ObjectMessage allows any serialized object to be passed as the payload of a JMS message.

❑ MapMessage provides a hashmap of properties, useful when sending flat data that can be repre-
sented as name value pairs.

❑ Text Message can store a Java string, which lends itself to sending messages represented as XML.

ObjectMessage allows you to wrap any serializable Java object within a message and pass it between
destinations.

receive-order

split

Order enters system

process

The software components of the processing system are loosely tied together using
message queues.

JMS Message
Queues

JMX Message
Processing

Components

order-items ship-order

reject-order

complete-items

Message Flow

complete-order

aggregate route

552

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 552

Of the three message types provided by JMS, the ObjectMessage type is the easiest to implement in a
pure Java environment. However, there can be issues persisting Java objects. For example, a message his-
tory needs to be saved; it will be persisted as a binary object in the underlying relational storage system.
If the class definition of the object message changes over time, the older message stored would no longer
be retrievable.

It’s for that reason that the text Message approach will be used in this example. Plus, by using XML text
messages you gain XML’s structure and flexibility. In addition, XML text messages lend themselves well
to integration with a Web service interface.

Since the focus of the application is to distribute computer processing work across several computers on
a network, this application will use queue as its JMS destination. Remember, a queue is a point-to-point
communication model. Once a message is taken from a queue, no other queue consumers will receive
the message. This allows you to divide and conquer requests across several message consumers.

Understanding the Three-Component Architecture
The component architecture will support any business process. The application will implement an order
processing example. The application itself will model the behavior of a business process. A business pro-
cess is really just a collection of steps. In this example, those steps fall into one of three categories. The
categories are processing, routing, and splitting and aggregating. Each category will be abstracted and
modeled as a JMX component.

The design goal of this application is to create an abstract business process — for example, if you needed
to process documents into a search index. It’s possible to extend the processing component described in
this application to suit your specific needs. By doing that you will be able to leverage the processing
scalability gained from working with queues, as well as the manageability of working with the JMX
framework with very little infrastructure code.

The next three sections will describe how to build the three MBeans required to implement your applica-
tion. The message components deployed as MBeans are the following:

❑ The MessageProcessor

❑ The MessageRouter

❑ The MessageSplitter and Aggregator

These three components represent the abstract behavior of most any business process. The concepts
expressed are based on design patterns from Enterprise Integration Patterns by Gregor Hohpe. The follow-
ing sections will show what is required to build on each of these three components. Each component sec-
tion will examine the classes and interfaces required to implement the component. For each class, the
code will be divided into logical units and discussed. The complete code listing can be downloaded from
the publisher’s Web site.

Creating a Component to Process JMS Messages
The first component to tackle will be the message processing component. A message processing compo-
nent performs three functions: It takes a message from a source queue, performs work on that message,
and then puts the resulting message on a destination queue. Figure 12-7 shows the UML design of the
message processor component.

553

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 553

Figure 12-7

The following are a few things to take away from the design:

❑ By leveraging the JMX architecture, you expose class methods so that they can be discovered
and invoked at run time.

❑ By leveraging a simple processable interface, you are able to create a separation of concern
between the JMS message logic of the MessageProcessor and the business logic of the Order
Processor class. Reducing the dependences between the JMS class and the business logic class
increases the reuse of the message code.

The following table shows the classes and interfaces that are involved in the message processing
component.

Make sure the JMX naming conventions are followed when creating standard
MBeans. The MessageProcessor and the interface MessageProcessorMBean need to
be named identically, except for the MBean suffix on the interface. The MBean suf-
fix needs to have the M and the B capitalized; otherwise it will not be recognized by
the MBeanServer.

«interface»
javax.jms::MessageListener

+onMessage(in message : Message)

-processor : Processable
-connection : Connection
-session : Session

+main()

MessageProcessor

JMX Agent used to
deploy and manage
the MessageProcessorMBean

«interface»
MessageProcessorMBean

+isRunning() : boolean
+start()
+stop()
+setProcessor(in className : String)
+getProcessor() : String

«interface»
Processable

+process(in text : String) : String

OrderProcessor

Agent

554

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 554

Component Responsibility

MessageProcessorMBean The MBean interface defines the operations and properties
that will be exposed for management using the JMX standard
architecture.

MessageProcessor The MessageProcessor is the implementing class of the MBean
interface. This class is responsible for sending and receiving
messages by connecting and registering with the JMS server.

Processable The Processable interface removes the JMS dependencies from
the specific processing task, allowing the reuse of the Message-
ProcessingMBean.

OrderProcessor OrderProcessor is a specific example of a class implementing the
processable interface. By implementing Processable interface, the
OrderProcessor class can focus on the business logic of the prob-
lem domain.

MessageListener Message listener declares the onMessage method to be called
when a message arrives at a queue.

MessageListener
The message listener interface is part of the JMS specification. Having the MessageProcessor implement
MessageListener allows the MessageProcessor to be registered with the JMS server when the connection
to the JMS server is established. When a message arrives at a queue, the message is sent to one of the
MessageListeners registered with that queue:

package javax.jms.MessageListener;

public interface MessageListener {
public void onMessage(Message message) ;

}

MessageProcessorMBean
The MessageProcessorMBean interface complies with the standard MBean naming conventions. It
defines the methods that will be exposed to the JMX Agent. In the case of the Message processing com-
ponent, it will publish the isRunning(), stop(), and start() methods. These methods can then be
invoked at run time via any application that has access to the management agent. You will not write
any code to interact with the JMX agent, instead, you will use the standard HTTPAdapter and
interact with the agent with a common Web browser. The following section shows the code for the
MessageProcessorMBean interface.

First, the code that follows is the package declaration:

package wrox.processing.jmx;

The interface declaration for the MBean must match the <class name>MBean pattern of its implement-
ing class and be in the same package. Because you are creating the MessageProcessor class from scratch,
this is an easy requirement to satisfy; however, if you are deploying a legacy application, this may not be

555

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 555

possible. The Dynamic MBean interface and meta data classes of the JMX API allow you to deal with
that requirement:

public interface MessageProcessorMBean {

The isRunning method will provide the status of the MBeans connection to the JMS server. The status is
read-only, but the value is controlled by the start and stop methods below. The start and stop meth-
ods allow you to control the message processing:

public boolean isRunning();
public void stop();
public void start();

The remaining methods of the interface define the properties exposed through the JMX Agent. These will
allow you to parameterize your component and change the source and destination queues at run time:

public void setSource(String source);
public String getSource();
public void setDestination(String destination);
public String getDestination();
public void setProcessor(String name);
public String getProcessor();

}

JndiHelper
Since you are using JMS, you need to connect to the JMS server using JNDI context lookup. The follow-
ing code is a utility class that establishes a connection with a JMS server as well as looks up the Queues
in the JNDI context:

package wrox.processing.util;
import java.util.Properties;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class JndiHelper {
private JndiHelper() {
}

The getContext() method returns a reference to the JNDI tree associated with the JMS server:

public static synchronized Context getContext() {
Context context= null;
Properties props= new Properties();

Context properties are specific to the different JMS vendors’ implementations. In this example, you are
using JBOSS 4.0, so their JNDI lookup client properties must be provided. They are shown in the code
for clarity. It’s also important to include the vendor-specific jar containing the NamingContextFactory
class. In this case, it is fr.dyade.aaa.jndi2.client.NamingContextFactory:

556

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 556

properties.put(Context.INITIAL_CONTEXT_FACTORY,”org.jnp.interfaces.NamingContextFac
tory”);

properties.put(Context.URL_PKG_PREFIXES, “org.jnp.interfaces”);
properties.put(Context.PROVIDER_URL,”localhost”);

try {
context= new InitialContext(props);

} catch (NamingException e) {
throw new RuntimeException(“could not create context”, e);

}
return context;

}

This is a convenience method for looking up a destination from the JNDI context.

public static synchronized Destination getDestination(String name) {
Context context= getContext();
Destination destination= null;
try {

destination= (Destination)context.lookup(name);
} catch (NamingException e) {

e.printStackTrace();
}
if (destination == null) {

throw new RuntimeException(“could not find destination” + name);
}
return destination;

}

This method is for looking up connection factory objects. It includes an option to specify whether trans-
action support is needed:

public static synchronized ConnectionFactory getConnectionFactory(boolean
txSupport) {

Context context= getContext();
ConnectionFactory factory= null;
try {

if (txSupport) {
factory= (ConnectionFactory)context.lookup(“XAConnectionFactory”);

} else {
factory= (ConnectionFactory)context.lookup(“ConnectionFactory”);

}
} catch (NamingException e) {

e.printStackTrace();
}
if (factory == null) {

throw new RuntimeException(“Could not find connection factory. “);
}
return factory;

}
public static synchronized ConnectionFactory getConnectionFactory(){

return getConnectionFactory(false);
}

}

557

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 557

MessageProcessor
The following shows the code for the heart of the message processing component — the message proces-
sor implementing class. The messageProcessor class implements both the MessageListener interface and
the MessageProcessorMBean. The interface and implementing class must be declared in the same pack-
age. In this case, both the interface and implementing classes are declared in the wrox.processing.jmx
package:

package wrox.processing.jmx;

import java.lang.reflect.Constructor;

There are several classes to import from the javax.jms package. Fortunately, these interfaces represent the
unified domain of the JMS 1.1 specification. They are a vast improvement over the previous 1.0 specifica-
tion. Previously, to send a message to a queue required a specific QueueConnectionFactory,
QueueConnection, QueueSession, et cetera.

It’s important to note that the JMS-specific classes are imported and used in the MessageProcessor class.
This is because it is the only class that has a dependency to JMS. A good practice in application design is
to localize dependency on external APIs. This minimizes the impact to an application if a change needs
to be made:

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

The processable interface defines the link between the JMS coding and the business logic of the application:

import wrox.processing.Processable;
import wrox.processing.util.JndiHelper;

The class declaration for the MBean needs to follow the naming conversion. The Message processor can
also implement or extend classes; however, only the methods specified in the MessageProcessorMBean
interface will be exposed for management. In this example, the onMessage() method in the
MessageListener interface will not be accessible via the MBeanServer:

Other than the hassle of the programming overhead associated with queues and top-
ics, the real problem was that you couldn’t receive from a queue and send to a topic
with the same session. Since the session performs transaction management, this
implies that you cannot send and receive between destination types in a transaction-
safe way. JMS 1.1 corrected that problem.

558

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 558

public class MessageProcessor implements MessageListener, MessageProcessorMBean {

private boolean running= false;
private String sourceName, destinationName;
private String processorName;
private Processable processable;

private ConnectionFactory factory;
private Connection connection;
private Session session;
private MessageConsumer consumer;
private MessageProducer producer;
private Destination source, destination;

Setting the destination and source queue as managed attributes allows you to configure the message
processor component at run time. This will be reviewed when the component is deployed:

public String getDestination() {
return destinationName;

}
public void setDestination(String name) {

this.destinationName= name;
}
public String getSource() {

return sourceName;
}
public void setSource(String name) {

this.sourceName= name;
}

Continuing with the description of the MessageProcessor code, this is the start method that will be
exposed to the JMX Agent. The start method is responsible for creating the connection with the JMS
server and registering the client to receive messages as they arrive to the queue:

public void start() {
ConnectionFactory factory= null;

Before establishing a connection to the JMS server, you need to look up the connectionFactory object in
the JNDI object registry. An example of using the JndiHelper class to simplify this lookup of the destina-
tion objects is listed in the following code:

JNDI plays a key role in abstracting out the vendor-specific classes from the standard interfaces defined
in the javax.jms.* package. The object bound to the context is the concrete implementation. The lookup
casts the object to standard interface, removing vend specifics from application developers’ code. This is
a common practice in a number of J2EE APIs.

factory= JndiHelper.getConnectionFactory();
source= JndiHelper.getDestination(sourceName);
destination= JndiHelper.getDestination(destinationName);
try {

559

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 559

Establish a unique connection for this client:

connection= factory.createConnection();

Create the session object. The first parameter determines transaction support. The second parameter
specifies acknowledgment of messages delivered to the client. AUTO_ACKNOWLEDGE tells the JMS
server to mark the message as received when the method call to onMessage returns. Another option is to
explicitly call message.acknowledge() to confirm message delivery. If the connection is lost or the ses-
sion is rolled back before the acknowledge method is called, the message will be resent:

session= connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
consumer= session.createConsumer(source);

Pass a reference to this object to receive a message from the server:

consumer.setMessageListener(this);

Create a producer object for sending to the next destination:

producer= session.createProducer(destination);

Starting the connection is a very important step. It tells the JMS server to begin sending messages as they
are available. Without that one line of code, you will spend a great deal of time wondering why there
aren’t any messages being sent from the queue:

connection.start();
running= true;

} catch (JMSException e) {
throw new RuntimeException(“could not start message processor”, e);

}
}

public boolean isRunning() {
return running;

}

Stop is the operation to return resources to the JMS server and close out all connections:

public void stop() {
try {

connection.stop();
producer.close();
consumer.close();
session.close();
connection.close();

} catch (JMSException e) {
e.printStackTrace();

} finally {
running= false;

}
}

560

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 560

The goal here is to be able to pass in the name of the class implementing the processable interface:

public void setProcessor(String name) {
processorName= name;
try {

The code then uses reflection to take the class name and turn it into an object instance of that class. Note
that the class described by the processorName parameter must be available in the classpath:

Class clazz=Class.forName(processorName);
Constructor ct= clazz.getConstructor(null);
Object obj = ct.newInstance(null);
If (obj instanceof Processable){

processable= (Processable)obj;
} else {

throw new RuntimeException(“processor”+name+”is not an instance of
Processable”, e);

}
} catch (Exception e) {

throw new RuntimeException(“could not create processor class”, e);
}

}

This is part of the MBean interface and will return the fully qualified name of the class implementing the
processable interface:

public String getProcessor() {
return processorName;

}
/* (non-Javadoc)
* @see javax.jms.MessageListener#onMessage(javax.jms.Message)
*/

The algorithm for the message processor component is really expressed in the onMessage method:

public void onMessage(Message message) {
TextMessage inMessage = null, outMessage = null;
try {

try {

The MessageProcessor is only designed to handle text messages. ObjectMessage and MapMessage types
will be ignored:

if (message instanceof TextMessage) {
inMessage= (TextMessage)message;

Get the body of the input message and pass it to the processable interface. Create the output message
from the session and send the new message to the next destination queue moving the message down the
processing chain:

String body= inMessage.getText();
if (processable != null) {

String result = processable.process(body);

561

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 561

outMessage = session.createTextMessage();
outMessage.setText(result);
producer.send(outMessage);

}

The process method on the Processable interface throws a ProcessingException. If this is thrown, send
the input message to the error queue. This would take place if there was something functionally wrong
with the current message:

} catch (ProcessingException pe) {
inMessage.setObjectProperty(“exception”, pe);
producer.send(JndiHelper.getDestination(JndiHelper.ERROR_QUEUE),

inMessage);
}

} catch (JMSException e) {
e.printStackTrace();

}
}

}

This concludes the code for the MessageProcessor MBean implementing class. Note that the processable
interface is responsible for the specific business logic. The next section shows the processable interface
and an example implementing class.

Processable
The processing interface defines a single method. The method takes a string parameter. This parameter
is the body of the text message to be processed. In implementing this design approach, this message
body will be a string message:

package wrox.processing;

public interface Processable {

public String process(String text) throws ProcessingException;
}

OrderProcessor
The OrderProcessor class is an example implementation of the processable interface. This would be
replaced with any application-specific behavior you need to implement. OrderProcessor is the concrete
implementation of the Processable interface. The goal of this component is to implement this one inter-
face for each of the business processing steps that need to be accomplished. The implementation of the
process method has been stubbed out for testing purposes:

public class OrderProcessor implements Processable {

public OrderProcessor(){

}
/* (non-Javadoc)
* @see wrox.jmx.Processable#process(java.lang.String)
*/

public String process(String xml) throws ProcessingException {

562

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 562

//TODO replace dummy response
return “<order><id>100</id><item><status>instock</status></item></order>”
}

JMXAgent
The final class needed is for the JMX Agent, and the code you need to write is for the JMX Agent. The
Agent is a simple application containing a main method. The Agent will create the MbeanServer and cre-
ate the HttpAdaptor. The results of running the JMXAgent class as a standalone executable will be the
deployment of the MessageProcessor MBean, HttpAdaptor, and the starting of the JMX Agent:

package wrox.processing.jmx;

Here are the imports required for the JMX Agent:

package wrox.processing.jmx;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;
import javax.management.ObjectName;

The next import is for the HTTP adaptor. This will allow management of the application via a Web
browser over HTTP protocol. As you can see, it is not part of the standard javax.management package.
At this time, adaptors are not part of the specification. This example is using an httpAdaptor, but there
are numerous protocols available. Some of the protocols include RMI for remote method invocation, and
SNMP for communicating with network devices such as a routers and switches.

The following code shows the main method for starting the deployment process for deploying a JMX
application:

import com.sun.jdmk.comm.HtmlAdaptorServer;
/**
* @author Scot
*/

public class Agent {
public static void main(String[] args) {

The first step is to create the MBean server:

MBeanServer server= MBeanServerFactory.createMBeanServer();

ObjectName adaptorName= null;
try {

Next, create the adaptor and create an object name to uniquely identify the adaptor once it is registered
with the MBean server:

HtmlAdaptorServer htmlAdaptor= new HtmlAdaptorServer();
adaptorName= new ObjectName(“Adaptor:name=html,port=8082”);

Then, register the adaptor with the MBean server. As you can see, the method to register the adaptor
reads registerMBean. That is because, just like the MessageProcessor MBean created in the previous sec-
tion, the httpadaptor also follow the JMX standard:

563

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 563

server.registerMBean(htmlAdaptor, adaptorName);

System.out.println(“adaptor starting..”);

The final step is to start the HTML adaptor. This will tell the htmlAdaptor object to open a Socket con-
nection and listening port 8082 for HTTP requests:

htmlAdaptor.start();

} catch (Exception e) {
System.out.println(“Errors starting jmx agent”);
e.printStackTrace();
return;

}
}

}

That is all the code that needs to be written for the message-processing component. The next section is
the second of three message components: the routing component.

Creating a Component that Directs Messages through the
Business Process

The second component that you will be implementing in this solution is a message routing component.
Think of this component as the decision diamond of a business process. The message routing component
takes a message from a source queue and — based on the message content — determines the next appro-
priate message Destination.

This component acts as a message control gate or traffic intersection. This is an explicit design decision
to segregate the processing logic from the message routing logic. It’s just a good practice; by separating
responsibility of components, you increase the level of reuse the component exhibits.

Just to clarify the motivation, the goal of building a process application in this manner is to be able to
support a complex business process built with simple components loosely tied together with message
queues and/or topics. For example, if you wanted to build a system that manages files on a network,
you could create a component that copies a file from one directory to another and then reuse that com-
ponent, without modification, whenever you needed to copy files.

This component helps simplify the overall system design by doing the following things:

1. Separating flow and processing logic, reducing the dependencies between each component.

2. Providing reuse of business logic.

3. Limiting the number of components that can modify each message. By design, the routing com-
ponents will not be given access to the messages.

Figure 12-8 shows the UML design for the message routing component.

564

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 564

Figure 12-8

The message router design uses the same concepts as the MessageProcessor. There, collaboration is the
same as the message processor. The only difference is the behavior specified by the Routable interface.
The algorithm in the onMessage method does not modify the message, but instead determines the next
queue in the processing chain. The responsibility of determining the next queue in the processing chain
is left to the Routable Implementer, in this case the OrderRouter class.

The MessageRouter class also implements a standard MBean interface to expose the configuration and
life-cycle methods of the component to the JMX agent. That way, the component methods will be accessi-
ble to other JMX compliant applications through any JMX-compliant adaptor.

The message routing component is similar to the message processing component in that it contains an
MBean interface, an Implementing class, as well as an interface to extend the specific application behavior.

Routeable
The Routeable interface defines the behavior of the routable component. Unlike the Processable interface,
the Routeable interface does not modify the incoming message. The Routeable interface consists of a sin-
gle method: accepting the body of the JMS message as text and returning a string that represents the
name of a queue:

package wrox.processing;

public interface Routeable {

public String route(String message);
}

MessageRouter
The MessageRouter class will implement the MessageRouterMBean and MessageListener. By implementing
the MessageRouterMBean interface, its methods will be exposed for management via the JMX server. By
implementing the MessageListener interface, the MessageRouter class can register with the JMS server
and receive messages as they arrive at the JMS destination:

package wrox.processing.jmx;
import java.lang.reflect.Constructor;

//JMS imports omitted

import wrox.processing.Routeable;
import wrox.processing.util.JndiHelper;

public class MessageRouter implements MessageRouterMBean, MessageListener {
private boolean running= false;
private Routeable routeable;

565

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 565

Life-cycle methods are the same as the Message Processor, as shown following:

public void start(){
//method bodies omitted
}
public void stop() {
//method bodies omitted
}

The setRouter method uses reflection to take the string parameter and create an instance of a Routeable
object:

public void setRouter(String className) {
try {

Class clazz= Class.forName(className);
Constructor ct= clazz.getConstructor(null);
routeable= (Routeable)ct.newInstance(null);

} catch (Exception e) {
e.printStackTrace();

}
}

}

The onMessage method passes the message body to the routable interface and the interface returns the
name of the queue to look up in the JNDI context:

public void onMessage(Message message) {
TextMessage textMessage= (TextMessage)message;
try {

String text= textMessage.getText();
String name= routeable.route(text);
Destination queue = JndiHelper.getDestination(name);
producer.send(queue, message);

} catch (JMSException e) {
e.printStackTrace();

}
}

}

So far, you have built the components to process messages and route messages between queues based on
the message content. The next component takes distributed processing a step further by dividing large
processing tasks into smaller pieces that can be executed in parallel.

Creating a Component to Divide Large
Tasks for Parallel Processing

Often, large tasks need to be divided up into small tasks that can be processed in parallel. This next com-
ponent allows large messages to be broken up into smaller messages such that each submessage can be
processed separately; however, a common scenario is that the workflow cannot continue until all sub-
messages are processed. This component uses JMS correlating messages that were created from the same
initial request.

566

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 566

This component uses two MBeans: one to split a message into submessages, and another to join the sub-
messages together after they have been processed individually. Think of these two components as book-
ends of a smaller subprocess.

The two MBeans follow the same pattern as the previous components in that they contain a behavior
interface, an MBean interface, and an implementing class. The first class discussed is the behavior inter-
face for splitting a JMS message.

Splitable
The splitable interface takes the message text as an argument and returns a list of strings for creating
submessages:

package wrox.processing;
import java.util.List;

public interface Splitable {

public List getSubMessage(String text);

}

MessageSplitter
The message splitter is similar in design to the other components already built, except that this compo-
nent creates several messages from a single input message:

package wrox.processing.jmx;
import java.lang.reflect.Constructor;
import java.util.Iterator;
import java.util.List;
// jms import statements omitted.
import wrox.processing.Splitable;
import wrox.processing.util.JndiHelper;

public class MessageSplitter implements MessageListener, MessageSplitterMBean {
private boolean running;
private Splitable splitable;
private String splitterName;

The JMX exposed properties are as follows:

public String getDestination() {
return destinationName;

}

public void setDestination(String name) {
destinationName= name;

}

public String getSource() {
return sourceName;

}

567

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 567

public void setSource(String name) {
sourceName= name;

}

Again, the onMessage method is where the algorithm for the component is implemented:

public void onMessage(Message m) {
try {

TextMessage textMessage= (TextMessage)m;

Get the Unique message ID assigned by the JMS server when the message was created:

String correlationId= m.getJMSMessageID();
String text= textMessage.getText();

The onMessage method takes an input text message and splits it into submessages:

List messages= splitable.getSubMessage(text);

int count= messages.size();

The getJMSCorrelationID is a header parameter used to show that several message are related to one
another. In this example, you will split one message into several submessages. Using the messageID of
the source message as the correlationID of all the submessage, you will be able to identify which mes-
sage produced a given submessage. This creates a relationship between all the new submessages that
can be looked up in the MessageAggregator component. You have also set a property count on the mes-
sage header. This will tell the MessageAggregator how many messages exist with this correlationId:

for (Iterator iter= messages.iterator(); iter.hasNext();) {
TextMessage subMessage= session.createTextMessage();
subMessage.setJMSCorrelationID(correlationId);
subMessage.setStringProperty(“count”, count);
String subText= (String)iter.next();

subMessage.setText(subText);
producer.send(subMessage);

}
} catch (JMSException e) {

e.printStackTrace();
}

}

Given the example message described in the following code, the OrderSplitter would transform the
input message into submessages by applying an XML transformation that extracts each of the items in
order, as in the following example message:

568

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 568

<order>
<id>400</id>
<customer>

<name>Heather</name>
</customer>
<items>

<item>
<id>4034</id>

<description>VW Jetta,Blue</description>
<quantity>1</quantity>

</item>
<item>

<id>4500</id>
<description>...</description>
<quantity>2</quantity>

</item>
</items>

</order>

An example result of splitting the above message is shown by the following:

<!-- Message 1 of 2 ->
<item>
<order-reference>400</order-reference>
<id>4034</id>
<quantity>1</quantity>

</item>

<!-- Message 2 of 2 ->
<item>
<order-reference>400</order-reference>
<id>450</id>
<quantity>1</quantity>

</item>

That concludes the portion of this component that is responsible for splitting the initial message into
submessages. The next sections look at the process of taking submessages and correlating them back
together. Figure 12-9 shows an overview of the classes and interfaces that make up the design of the
AggregatorMBean.

It’s important to understand from the design that there is no guarantee that submessages will be pro-
cessed in any particular order. For that reason, the aggregator acts as a stateful message filter. It collects
and stores submessages until all the submessages for a particular correlationId have been processed.

It’s possible to see one of the benefits of the loose coupling design strategy. For example, the specific sub-
processing step is not tied to the split or aggregate component. So therefore, numerous subprocessing
steps can be configured without modifying the application code of this component.

569

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 569

Figure 12-9

Aggregateable
The aggregateable interface defines the aggregator life cycle. This defines the aggregateable strategy. The
strategy can be changed by providing a different implementation of the isComplete() and
getResultMessage():

package wrox.processing;

public interface Aggregateable {

public void setCorrelationId(String correlationId);
public void addMessage(String messageId,int count, String message);
public boolean isComplete();
public String getResultMessage();

}

MessageAggregator
This class is responsible for implementing the logic of receiving the submessages and tracking them via
the correlationId:

package wrox.processing.jmx;
import java.lang.reflect.Constructor;
import java.util.HashMap;
import java.util.Map;
//omitted jms imports
import wrox.processing.Aggregateable;
import wrox.processing.util.JndiHelper;

public class MessageAggregator implements MessageListener, MessageAggregatorMBean {

570

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 570

The Map defines the collection of aggregators, one for each correlationId as shown here:

private Map aggregators= new HashMap();
// jmx properties omitted.

public void onMessage(Message m) {
TextMessage textMessage= (TextMessage)m;
try {

String correlationId= textMessage.getJMSCorrelationID();

if (correlationId != null) {
String messageId= textMessage.getJMSMessageID();
int count= textMessage.getIntProperty(“count”);

The basic steps of the algorithm are to look up an aggregator in the aggregator map. If it doesn’t exist,
create an aggregator for that correlationId:

String text= textMessage.getText();
Aggregateable aggregateable= (Aggregateable)aggregators.get(correlationId);
if (aggregateable == null) {

aggregateable= createAggregateable();
aggregateable.setCorrelationId(correlationId);
aggregators.put(correlationId, aggregateable);

}

Next, add the message text, count property, and message ID to the aggregateable interface. Check to see
if the aggregator isComplete(), meaning the last message has been received. If it has, get the resulting
message from the aggregator and send it to the next destination queue:

aggregateable.addMessage(messageId, count, text);
if (aggregateable.isComplete()) {

String result= aggregateable.getResultMessage();
TextMessage resultMessage= session.createTextMessage(result);
producer.send(destination, resultMessage);
aggregators.remove(correlationId);

}
}

} catch (JMSException e) {
e.printStackTrace();

}
}

The next section of code shows the method of using reflection to create an instance of the agreeable inter-
face. You need to have an aggregateable class for each correlationID. This method is a variation on the
previous setProcessor, setRouter method. It will be called by the onMessage when a new correlation Id is
discovered:

protected Aggregateable createAggregateable() {
try {

Class clazz= Class.forName(aggregatorClassName);
Constructor ct= clazz.getConstructor(null);
return (Aggregateable)ct.newInstance(null);

} catch (Exception e) {

571

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 571

throw new RuntimeException(“couldn’t create aggregateable object.”, e);
}

}
// JMX properties getSource, getDestination omitted

public void start() {
//omitted
}

public void stop() {
//omitted
}

}

The only thing left to implement is the concrete aggregator used in this example. The next section shows
the OrderAggregator class. This handles the logic for your order processing example.

OrderAggregator
This section describes the orderAggregator class. This is an example aggregator used in this chapter’s
business process. It receives submessages from the queue it is registered with and saves each with a
correlationId until all the messages for that correlationId have been processed. Once all message have
been received, it sends the dummy message stating that the order has been processed:

package wrox.processing.order;
import wrox.processing.Aggregateable;

public class OrderAggregator implements Aggregateable {

int received= 0;
boolean done= false;
String correlationId;
List savedMessages = new ArrayList();
public OrderAggregator() {

}
public void setCorrelationId(String correlationId){

this.correlationId = correlationId;
}

572

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 572

The specific behavior of the OrderAggregator is to save each submessage and check the number of mes-
sages received against the number specified in the count:

public void addMessage(String messageId, int count, String message) {

savedMessages.add(message);
if (count == received) {

done= true;
}

}

public String getResultMessage() {
// transform savedmessageList into an xml result message
//TODO transform resulting xml.
return “<order><id>300</id><status>complete</status></order>”;

}
public boolean isComplete() {

return done;
}

}

This concludes the components required to implement the example business process. In review, this sec-
tion covered the development of three messaging components used in realizing an order processing sys-
tem. Each component was designed as a standard MBean. Now that these MBeans have been developed,
they can be deployed across several servers. The next section goes into the deployment process in great
detail.

Deploying the Application
Deploy the application using one of the two methods described hereafter. The “Basic Deployment” sec-
tion walks through all the pieces of the application step-by-step. Once you understand how each piece
plays together, the next section, “Advanced Deployment,” shows how to configure the application to
deploy dynamically using a built-in service that reads a text descriptor file that describes the MBean to
be deployed.

Basic Deployment
1. Start the JMS server. For the chapter examples, use JORAM JMS Server. JORAM implements the

JMS 1.1 specification and it is available free to the open source community. The server starts up
using the bat file common (see Figure 12-10):

C:\joram-4.0.0\samples\bin\windows\single_server.bat

573

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 573

Figure 12-10

2. Create the administered objects using the JMS admin tool (this is vendor specific). Once the
server is started, connect to it by running the JORAM administration console (see Figure 12-11):

C:\joram-4.0.0\samples\bin\windows\admin.bat

574

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 574

Figure 12-11

The admin console allows you to create the applications ConnectionFactory and Destinations
objects. They are bound to the JNDI context, to be accessed through the lookup(<name>)
method of the javax.naming.Context object from your application code.

Note: In this chapter, all the queues and topics will reside on the same server, but it is possible to con-
nect to and manage multiple JMS servers through a single console.

3. Start the JMX Agent containing the MBeanServer. The agent is just a standalone Java applica-
tion. The classpath environment variable must include the classes from the example as well as
the jmxri.jar from Sun’s JMX reference implementation:

java wrox.processing.jmx.Agent

575

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 575

4. Deploy your application-specific MBeans. Point a Web browser at http://localhost:8082.
This brings up the agent view of the htmlAdaptor that was just registered with the MBean
server in the Agent class (see Figure 12-12).

Figure 12-12

As you can see from Figure 12-12, the html adaptor shows two MBeans registered with the
MBeanServer. The htmlAdaptor is getting this information from the MBean Server’s query
capability.

5. Let’s add the message processing MBean to the MBeanServer. The first step is to select the
admin button in the top-right corner of the agent view as pictured in Figure 12-12. This will
bring up the Agent Administration screen pictured in Figure 12-13.

Figure 12-13

6. Specify the domain field; this can be anything you would like. The one used here is processing.
Then enter a unique key in the format key=value1,key=value..n. Then specify the fully qualified
name of the messageProcessor class and select send request. Once that is done, you should see
the Create Successful message below the registration form. Now, select Back to Agent View in
the upper-right corner and you should see what’s shown in Figure 12-14. The MBeans register
should include the name=order-processor-01 in domain processing.

List of MBeans attributes:

Name Type ValueAccess

Destination java.lang.String destination-queueRW

Processor java.lang.String wrox.processing.order.OrderProcessorRW

Running boolean falseRO

Source java.lang.String source-queueRW

Adaptor

List of registered MBeans by domain:

name=html.port=8082

JMImplementation
type=MBeanServerDelegate

processing
name=order-processor-01

576

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 576

Figure 12-14

The htmlAdaptor took the values posted by the form submission and used them to register pro-
cessor MBean with the MBean Server. That is how to create an MBean using the HtmlAdaptor,
but you can do the same programmatically as shown here:

MessageProcessor processor= new MessageProcessor();
processorName= new ObjectName(“processing:name=order-processor-01”);
server.registerMBean(processor, processorName);

7. Go back to the agent page and select the name=order-processing-01 link. This will bring up the
MBean view for the order processing MBean. This page renders as HTML the attributes and
methods specified in the MessageProcessorMBean interface.

8. In the attributes section, specify the names of the source and destination queues as well as the
name of the class implementing the processing interface. Once this is done, select Apply (see
Figure 12-15).

Figure 12-15

«interface»
Splittable

+getSubMessage(in message : String) : List

-splitter : Splittable

MessageSplitter

OrderSplitter

«interface»
MessageListener

+onMessage(in message : Message)

-router : Routeable

MessageRouter

route method returns
the name of the queue
to send the message

«interface»
MessageProcessorMBean

+isRunning()
+start()
+stop()
+setRoutable(in name)

«interface»
Routeable

+route(in message : String) : String

OrderRouter

577

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 577

This is the equivalent of executing the following operations against the MBeanServer:

processorName= new ObjectName(“wrox.processing:name=order-processor”);
server.setAttribute(processorName, new Attribute(“Source”, “source-queue”));
server.setAttribute(processorName, new Attribute(“Destination”, “destination-

queue”));
server.setAttribute(processorName, new Attribute(“Processor”,

“wrox.processing.order.OrderProcessor”));

9. Configure and start each message component.

10. Finally, go back to the MBean view of the MessageProcessor and invoke the start message. You
should see the Start Successful message at the start of the screen. This will invoke the start
method of the message processor MBean.

Start to finish, that is how to create and deploy a message processing component. The next section will
show how to use some of the advanced deployment options available through JMX to deploy MBeans
dynamically from a configuration file.

Advanced Deployment
So far, the example has shown how to deploy MBeans directly to the MBean Server as well as indirectly
using an htmlAdaptor MBean. This provides a great deal of flexibility to deploy and configure MBeans
at run time. This section will demonstration how to deploy MBeans automatically using the M-Let
Service.

M-Let is an abbreviation for managed applet. It is an agent service that works with the MBean server to
allow remote deployment of MBeans. The logical view of how this works is pictured in Figure 12-16.

Figure 12-16

There are two benefits to using the M-Let service:

❑ The M-Let service supports Remote deployment. In a distributed processing architecture; one
server can prove the MBean configuration for all the other servers in the processing architecture.
At startup, all the severs would look to the M-Let server for their configuration settings.

«interface»
Aggregateable

+setCoorilationId(in coorelationId : String)
+addMessage(in messageId : String, in count, in message : String)
+isComplete() : Boolean
+getResultMessage() : String

-aggregatable : Aggregateable

MessageAggregater

OrderAggregater

578

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 578

❑ The agent does not need to be restarted to add classes to the JVM classpath providing true hot
deployment. This allows a production environment to maintain continuity of operations, which
in turn prevents service interruptions and downtime for maintenance and software upgrades.

There are three steps to using the M-Let service: Deploy the M-Let service to the JMX Agent, configure
the M-Let deployment descriptor, and add the descriptor URL to the M-Let service.

Deploy the M-Let Service
Working with the same Agent class for creating the earlier examples, all that needs to be done is to
deploy the M-Let services as a standard MBean:

package wrox.processing.jmx;
import javax.management.loading.MLet;
public class Agent {
public static void main(String[] args) {

MBeanServer server= MBeanServerFactory.createMBeanServer();
try {

// htmlAdaptor omitted for brevity

MLet mlet= new MLet();
mletName= new ObjectName(“Services:type=MLet”);
server.registerMBean(mlet, mletName);

}

Once this is complete, it is possible to configure and manage this MBean via the HTML adaptor just like
the other MBeans in this chapter. Point a Web browser at http://localhost:8082/ to inspect the
method and properties exposed by the M-Let service.

Configure the Deployment Descriptor
The M-Let deployment descriptor is a text file that contains the definitions of MBeans to be deployed as
well as the required supporting Java classes needed to run the application. An M-Let deployment
description is shown following this paragraph. The file is called wrox.mlet and it is located in a Web
server directory so it can be viewed by selecting http://localhost/mbeans/wrox.mlet. Only the
CODE, NAME, and ARCHIVE parameters are required:

<MLET

The code attribute is the fully qualified class name of the MBean:

CODE=”wrox.processing.jmx.MessageProcessor”

The name attribute is equivalent to the string in the ObjectName constructor uniquely identifying the
MBean:

NAME = MLetDeployed:name=processor-03

579

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 579

The archive attribute specifies the jar file that contains the class name from the code attribute as well as
any other support classes needed to run the application. The archive attribute can also be a comma-
separated list of jar files:

ARCHIVE=”wrox.jar”

The code base attribute is a file path to the jar file. In this example, absolute path is used, but the path
can also be relative to the directory where the JVM was started:

CODEBASE=”file:c:\mlet”>

It is also possible to specify constructor parameters for nonzero parameter constructors. You can only
specify primitive types using this method:

<arglist>
<arg type=”java.lang.String value=”source-queue />
<arg type=”java.lang.String value=”destination-queue />

</arglist>
</MLET>

The M-Let file can have several <MLET> tag declarations. In most cases, it is recommended that you use
one M-Let config file for each type of server being deployed.

The M-Let descriptor file is part of the standard JMX specification. But there are a
few complaints about some of its limitations.

The first is, “Why is it not an XML file?” The descriptor is in an XML-like text file,
but it is not XML. This makes it a bit harder to validate and parse.

The second is that there is no built-in way of supporting deployment dependencies.
If MBean A needs to deploy before MBean B, there is no way of expressing that in
the M-Let descriptor file.

Some JMX vendors have provided extensions to the M-Let service in order to make
up for these limitations. One of the JMX implementations available under open
source license, JBoss, has a nonstandard approach to address both of these limita-
tions.

The JBoss Group (www.jboss.org) has a custom MBean descriptor file. The Jboss
JMX Agent assumes that all files using the <serviceName>-service.xml naming
convention contain Mbeans. Each Mbean description can have a <depends> tag.
This tells the server to make sure the MBean described in the depends tag is
deployed prior to this one.

JBoss also recognizes custom MBean lifecycle methods, calling create() and then
start() on each MBean as the server loads, followed by stop() and destroy() as
the server is shut down.

580

Chapter 12

15_574868 ch12.qxd 12/21/04 5:56 PM Page 580

Add the M-Let Configuration File to the M-Let Service
The M-Let file describes the MBeans that need to be deployed. All that is left to do is to point the M-Let
service to the M-Let descriptor file. This can be done through the HttpAdaptor by adding the URL
http://localhost/mbeans/wrox.mlet, to the M-Let service. The easiest way to do this is through the
htmlAdaptor. This is pictured in Figure 12-17.

The steps to load the M-Let descriptor file are as follows:

1. Load the httpAdaptor by pointing the Web browser to http://localhost:8082.

2. Select the Services:type=MLet from the list of MBeans.

3. Enter in the URL of the M-Let descriptor file.

Figure 12-17

Click the Submit button. Once you see the Success message, return to the Agent view and the MBeans
described by the wrox.mlet file will be visible and the jar file containing the depend classes deployed
remotely through the Web browser. MBeans deployed through the M-Let service can be managed as any
other MBean.

Summary
In this chapter, you have learned about building scalable and manageable distributed processing sys-
tems through JMS and JMX. The first section illustrated using some of the concepts of asynchronous
message systems to scale processing ability. Following that, you built a series of basic messaging compo-
nents. These components handled the message responsibility of processing, routing, and splitting and
aggregating. Then, the example showed how to link theses basic components to implement a business
process. The final section discussed how to deploy and manage these components remotely in a dis-
tributed computing environment.

There are other JMS design patterns to handle integration scenarios, and third-party tools built on top of
JMS for workflow management problems. JMX has applications in managing network devices and
includes methods and classes for event notification and component relationships not covered in this
chapter.

Agent Server 1
mlet

Web Server

/mbeans
 processing.mlet
 processing.jar

Agent Server 2
mlet

Agent Server ..n
mlet

581

Distributed Processing with JMS and JMX

15_574868 ch12.qxd 12/21/04 5:56 PM Page 581

15_574868 ch12.qxd 12/21/04 5:56 PM Page 582

Java Security

Security becomes ever more important as people flock to the Web and a large number of sites
(such as amazon.com and online banks) store personal information about their customers, not to
mention a wide variety of uses in custom enterprise solutions with multiple users. Java provides
for security in two major ways. Java Cryptography provides for user identification/authentication
and signing of digital messages. Java Authentication and Authorization Services provides pro-
grammatic access control and user authentication, granting a set of the program’s features based
on permissions and security policies. This chapter will give you a solid foundation in these APIs
and show you how to utilize them effectively.

The Java implementation of security addresses many standard facets of security such as access
control, public/private key generation and management, signing of digital content, and manage-
ment of digital certificates. Just what are all these components of a security package? Let’s look at
what Java provides in its various security packages and delve into the concepts of security.

Java Cryptography Architecture and Java
Cryptography Extension (JCA/JCE)

The Java Cryptography Architecture (JCA) was first introduced in JDK 1.1. Since its initial release, the
JCA went from providing APIs for digital signatures and message digests to including certificate
management and fine-grained configurable access control. The other important features of a secu-
rity implementation are encryption of data for communication, key management and exchange,
and Message Authentication Code (MAC) support. These features are all found in the Java
Cryptography Extension (JCE), which was integrated into the standard Java API in version 1.4 of the
Java 2 SDK release. Combining the functionality provided by JCA with JCE presents you with a
rich set of security and cryptography-related routines for your security needs.

16_574868 ch13.qxd 12/21/04 5:56 PM Page 583

JCA Design and Architecture
The Java Cryptography Architecture (JCA) forms the core of the security API. It was designed with two
important principles in mind. First, the JCA is implementation-independent and interoperable.
Implementation independence is achieved through the use of cryptographic service providers (or, more
simply, providers). A provider implements a cryptographic service such as generating random numbers
or creating digital signatures. Interoperability ensures that different providers will still work with each
other. For example, different providers implementing routines using the same algorithm should work
such that a message encrypted by one provider can be decrypted by another provider. The second prin-
ciple is that of algorithm independence and extensibility. Algorithm independence is achieved through
the specification of engine classes that provide a specific cryptographic service, such as a key generator or
a message digest service. Algorithm extensibility ensures that these engine classes can be updated with
new algorithms easily.

The JDK comes with a default implementation of the cryptographic service providers. This provider
package is named SUN and has the providers listed below:

❑ Implementation of DSA (Digital Signature Algorithm)

❑ Implementation of MD5 and SHA-1 message digest algorithms

❑ Key pair generator to generate public and private key pairs for the DSA algorithm

❑ DSA algorithm parameter generator

❑ DSA algorithm parameter manager

❑ DSA key factory that supports converting public keys to and from private keys

❑ SHA1PRNG pseudo-random number generator

❑ X.509 Certificate path builder and validator for PKIX

❑ A certificate store using the PKIX LDAP V2 Schema

❑ Certificate factory for X.509 certificates and Certificate Revocation Lists (CRLs)

❑ A keystore

All of these providers will be discussed in more detail in this chapter. All examples in this chapter will
use the default implementation of providers in the SUN package. Consult the third-party documentation
if you are using another provider package.

Engine Classes
An engine class provides the interface to a specific cryptographic service. This interface dictates how
programmers use a particular service. There can be a number of different implementations for a particu-
lar engine class, such as Signature implementations that use SHA-1 or MD5 algorithms. Each engine
class has a corresponding Service Provider Interface (SPI), which is an abstract class that is encapsulated
by the engine class. The SPI class must be subclassed in order to create a concrete implementation. Each
engine class also has a factory class that is used to create a specific instance of the engine class (and its
enclosed SPI class) using the getInstance factory method.

The Java SDK defines 12 engine classes. Three of which (the certificate path classes and the certificate
store) were introduced in the 1.4 version of the Java 2 SDK. These engine classes and their descriptions
are shown in the following table.

584

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 584

Engine Class Description

MessageDigest Calculates the message digest (or hash) of data

Signature Digitally signs data and verifies signatures

KeyPairGenerator Generates a public and private key pair

KeyFactory Converts opaque cryptographic keys into transparent repre-
sentations of the underlying key material

CertificateFactory Creates public key certificates and CRLs

KeyStore Creates and manages a keystore, which stores and managers
public/private keys and certificates

AlgorithmParameters Manages parameters for a particular algorithm, including
encoding/decoding of parameters

AlgorithmParameterGenerator Generates a set of parameters for a specified algorithm

SecureRandom Generates random (or pseudo-random) numbers

CertPathBuilder Builds certificate chains (or certification paths)

CertPathValidator Validates certificate chains

CertStore Retrieves certificates and CRLs from a repository

The naming convention of SPI classes is the text Spi appended to the engine class name. For example,
the SPI for the SecureRandom engine class is SecureRandomSpi. Each engine class has a getInstance
method that is used to request a particular algorithm and also a particular provider if needed.

Installing a different provider package is done by either placing the JAR file in your classpath or deploy-
ing the JAR file as an extension in your JRE. The provider must then be placed in the list of approved
providers in the java.security file. This file is found in the lib/security directory of your JDK or JRE
installation. The property in this file takes the following form:

security.provider.n=masterClassName

The n is replaced with a number, such as 1 or 2. Using numbers provides a way to rank providers, and
this list of providers is searched top down when no specific provider is specified in a call to one of the
engine classes’ getInstance methods. The masterClassName is replaced with the fully qualified class
name of the master class for the provider package. This file contains the following lines for specifying
providers in the JRE that comes with the current Java 5.0 SDK:

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider

Next, let’s take a closer look at using each of the engine classes. Examples utilize the default implemen-
tations provided by the SUN package.

585

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 585

Calculating and Verifying Message Digests
The MessageDigest engine class takes an arbitrary length byte array as input and calculates a fixed-
length hash value, known as a message digest. This is a one-way operation. It is impossible to take a
message digest and derive the original input. If this was possible, then the world would have the best
compression algorithm in existence, which a guy I know actually tried to implement in high school. This
is a vital aspect of a message digest because it keeps the original input out of the picture. Additionally,
with the complexity of the message digest algorithms, it is computationally infeasible to find two sets of
input that hash to the exact same value. Therefore, you can view a message digest as a fingerprint of
data because each input set hashes to an (almost) unique value.

Let’s take a look at using the factory creation method in action. This is the same across all engine classes,
so it will be described in detail here but glossed over for the other engine classes. Each engine class has
three static methods that conform to the following signatures:

static [engine class name] getInstance(String algorithm)
static [engine class name] getInstance(String algorithm,

String provider)
static [engine class name] getInstance(String algorithm,

Provider provider)

The second two forms of the getInstance method allow you to specify a particular provider. The last
form allows you to pass in an instance of a provider, and the second form lets you just use the name of a
provider. All strings, including algorithm, are case-insensitive. The [engine class name] is replaced with
the actual class name of the engine class.

The SUN package comes with two message digest algorithms: MD5 and SHA-1. The MD5 algorithm
accepts input and generates a 128-bit message digest for the given input. For those familiar with MD4,
the MD5 algorithm is slightly slower than MD4 but has greater assurance of security. One key benefit to
the MD5 algorithm is that it can be coded in a fairly straightforward manner, not needing any compli-
cated or large lookup tables. Although secure, it has actually been discovered that it is computationally
feasible to find two sets of input that hash to the same value. This violates one of the principles of mes-
sage digests. Due in part to this fact, SHA-1 is also available. SHA-1, short for Secure Hash Algorithm,
was developed by the NSA and first published in 1995. It is based on some of the same principles as
MD5, but produces a message digest that is 160 bits long. The maximum input size SHA-1 can take is in
the neighborhood of 2 quintillion bytes (2^64 bits).

After invoking the getInstance factory method, an initialized MessageDigest is available. The next
step is to provide the MessageDigest object with the input and then ask it to calculate the message
digest. There are three methods available to pass input data to the MessageDigest:

void update(byte input)
void update(byte[] input)
void update(byte[] input, int offset, int len)

The first form accepts a single byte of input. The second takes an array of bytes, and the length of the
array is used as the length of the input. The last form takes an array of bytes, but it allows for the calcu-
lation of a message digest based on a subset of the array starting at position offset. The input size is
described by len.

586

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 586

There are three methods that calculate the message digest, which is then returned as an array of bytes:

byte[] digest()
byte[] digest(byte[] input)
int digest(byte[] buf, int offset, int len)

The first digest method calculates the message digest based on the input already passed in via one of
the update methods. The second form is a convenience method that returns a message digest based on
input passed in to the method. The third form is not a convenience method. It calculates the message
digest based on the input set via one of the update methods and then stores the message digest in the
buf byte array that is passed in to the method. The len parameter dictates the maximum length available
for the message digest, and offset dictates where in the array the message digest should start getting
written. The return value is how many bytes were stored in buf.

You can use the MessageDigest engine class to ensure the integrity of data. Say you’re writing the secu-
rity and data integrity component of a system that is used globally. You want to ensure that data is not
altered. One way to accomplish this is to store a collection of message digests that correspond to sensi-
tive data that is communicated across the globe. These message digest values are stored in a base system
and then the message digest can be recalculated when each piece of data arrives at its destination. A
component can be developed to look up the message digests from the base system (because they are
small and shouldn’t be communicated with the data) and compare them to a newly calculated message
digest. Here’s an example implementation of a class that instantiates and computes the message digest
and then compares it to an already looked up message digest value:

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class MessageDigestExample {
public static void main(String args[])
{

try {
MessageDigest sha = MessageDigest.getInstance(“SHA-1”);
byte[] data1 = {65,66,67,68,69};
byte[] data2 = {70,71,72,73,74};

sha.update(data1);
sha.update(data2);
byte[] msgDigest = sha.digest();

// Can also combine the final update with digest like this:
// byte[] msgDigest = sha.digest(data2);

System.out.println(“--- Message Digest ---”);
for(int i=0; i<msgDigest.length; i++) {

System.out.print(msgDigest[i] + “ “);
}

System.out.println(“”);
} catch(NoSuchAlgorithmException nsae) {

System.out.println(“Exception: “ + nsae);
nsae.printStackTrace();

}
}

}

587

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 587

The SHA-1 algorithm is specified in the call to getInstance, returning an initialized MessageDigest
object that computes the message digest according to the SHA-1 algorithm. The update method is
invoked twice, simulating a multipart operation. The message digest that is calculated is a series of num-
bers shown in the following output:

--- Message Digest ---
-97 103 -17 -58 -81 -87 95 26 -17 -101 51 81 -42 -80 29 126 5 -111 -73 72

This array of numbers can be recomputed and compared on the recipient’s side to ensure the data is the
same that was originally communicated.

Digital Signing and Verification of Data
Digitally signing data is accomplished using a private key, and the verification of that signature is done
with the public key. This ensures that the data originated from the specific person that signed it with
their private key, much like signing a credit card receipt. The private key is used to sign a collection of
bytes, and a short, fixed-length signature is generated (much like a message digest). This signature can
then be verified using the public key. This process is illustrated in Figure 13-1. This is a primarily pro-
grammatic view of using the DSA algorithm. In actuality, the DSA algorithm is used with a message
digest algorithm such as MD5 or SHA-1 (to which you already have access through the MessageDigest
engine class). The actual message digest becomes input to the DSA algorithm along with the private key.
On the other side, the data is then encoded into a message digest again and serves as input to DSA along
with the public key in order to verify the integrity of the data.

Figure 13-1

Signature
Engine Class

Implementation

outputs

INPUT
TO

SIGNATURE
ALGORITHM

(such as DSA)

DATA
(array of bytes)

GENERATION OF A
DIGITAL SIGNATURE

VERIFICATION OF
DIGITAL SIGNATURE

PRIVATE
KEY

Digital
Signature

Signature
Engine Class

Implementation

resulting digital signature
is input for signature

verification

output

input

TRUE if verification of
digital signature

succeeds;
FALSE otherwise

PUBLIC
KEY

588

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 588

Much like message digests, there are two vital principles for a Digital Signature Algorithm. The first
principle is that the public key that corresponds to the private key can be used to verify the integrity of
the data. The second is that the digital signature and the public key do not reveal anything about the pri-
vate key. The actual Signature object can be in one of three states. Consult the following table for the list
of states that an object of the Signature class can assume.

Signature State Description

UNINITIALIZED The state assumed immediately after creation.

SIGN Signifies the object is initialized for signing. Set after a call to initSign.

VERIFY Signifies the object is initialized for verifying a signature. Set after a call
to initVerify.

The SUN package comes with an implementation of the Digital Signature Algorithm (DSA). DSA is part
of the Digital Signature Standard (DSS) that was developed by the NSA in 1991. Either SHA-1 or MD5
can be used with the DSA algorithm. Hopefully, the value of engine classes is making itself apparent. It
becomes easy to combine a message digest function with a digital signature function. Just like the
MessageDigest engine class, the Signature engine class has the same three getInstance methods. An
instance of a Signature class must be initialized after creation using the following method in order to
prepare it to digitally sign data:

final void initSign(PrivateKey privateKey)

After this method is called, the Signature class assumes the SIGN state. The next step is to send data to
the Signature object and actually sign it. This is accomplished by the update and sign methods:

final void update(byte b)
final void update(byte[] data)
final void update(byte[] data, int offset, int len)

The first form accepts a single byte of data. The second takes an array of bytes, and the length of the array
is used as the length of the data. The last form takes an array of bytes, but it allows for the calculation of a
signature based on a subset of the array starting at position offset. The data size is described by len:

final byte[] sign()
final int sign(byte[] outbuf, int offset, int len)

The first form of the sign method returns the signature in an array of bytes. The second form places the
signature in the outbuf array starting at offset and going for a maximum length of len. The value
returned is how many bytes were stored in the outbuf array. After a sign method returns, the Signature
object is left in the SIGN state and is still configured with the programmed private key. Call initSign
again to utilize a different private key.

The other operation that the Signature engine class supports is verifying data. The Signature object must
first be set to verify data by invoking an initVerify method:

final void initVerify(PublicKey publicKey)
final void initVerify(Certificate certificate)

589

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 589

Either a public key object or a certificate can be used to verify a digital signature. After initVerify is
invoked, the Signature object assumes the VERIFY state. The update methods are used to send data into
the Signature object to verify. Their usage does not differ from passing in data for signing. A verify
method is then invoked to determine if the signature generated from the data and public key match the
private key:

final boolean verify(byte[] signature)
final boolean verify(byte[] signature, int offset, int length)

The digital signature takes the form of a byte array. The second form of verify is used to specify the loca-
tion (at offset) and the length (specified by length) of the signature in the byte array. If it all matches up,
verify returns true. However, if the public key does not match the signature or the signature is invalid,
false is returned. After verify returns, the Signature object is left in the VERIFY state still programmed
with the public key that was passed in to initVerify. Call initVerify again to use a different public key.

One common use of public and private keys is signing and then verifying the source of communication.
For example, assume you work for a government contractor and are tasked with constructing a secure
communication system that is essentially secure e-mail. The secure e-mail client must have the capability
to digitally sign messages going out and also verify messages that are delivered. The details of generat-
ing and managing keys are saved for subsequent discussion. Assume the keys are available. You might
develop a utility class listed in the following example to assist with the signing and verifying of secure
communication:

import java.security.Signature;
import java.security.KeyPair;
import java.security.PublicKey;
import java.security.PrivateKey;
import java.security.NoSuchAlgorithmException;
import java.security.InvalidKeyException;
import java.security.SignatureException;

public class SignatureExample {
public byte[] signData(byte[] data, PrivateKey key)
{

try {
Signature signer = Signature.getInstance(“SHA1withDSA”);

signer.initSign(key);

signer.update(data);

return(signer.sign());
} catch(NoSuchAlgorithmException nsae) {

System.out.println(“Exception: “ + nsae);
nsae.printStackTrace();

} catch(InvalidKeyException ike) {
System.out.println(“Exception: “ + ike);
ike.printStackTrace();

} catch(SignatureException se) {
System.out.println(“Exception: “ + se);
se.printStackTrace();

}

return(null);

590

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 590

}

public boolean verifySig(byte[] data, PublicKey key, byte[] sig)
{

try {
Signature signer = Signature.getInstance(“SHA1withDSA”);

signer.initVerify(key);

signer.update(data);

return(signer.verify(sig));
} catch(NoSuchAlgorithmException nsae) {

System.out.println(“Exception: “ + nsae);
nsae.printStackTrace();

} catch(InvalidKeyException ike) {
System.out.println(“Exception: “ + ike);
ike.printStackTrace();

} catch(SignatureException se) {
System.out.println(“Exception: “ + se);
se.printStackTrace();

}

return(false);
}

public static void main(String args[])
{

SignatureExample sigEx = new SignatureExample();
KeyPairGeneratorExample kpge = new KeyPairGeneratorExample();
KeyPair keyPair = kpge.generateKeyPair(717);

byte[] data = {65,66,67,68,69,70,71,72,73,74};
byte[] digitalSignature = sigEx.signData(data,

keyPair.getPrivate());
boolean verified;

// This verification will succeed
verified = sigEx.verifySig(data, keyPair.getPublic(),

digitalSignature);
if(verified) {

System.out.println(“** The digital signature “ +
“has been verified”);

} else {
System.out.println(“** The digital signature is “ +

“invalid, the wrong “ +
“key was used, or the data has” +
“ been compromised”);

}

System.out.println(“”);

// Generate a new key pair. Guaranteed to be different
// and incompatible with first set.
keyPair = kpge.generateKeyPair(517);
// This verification will fail

591

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 591

verified = sigEx.verifySig(data, keyPair.getPublic(),
digitalSignature);

if(verified) {
System.out.println(“** The digital signature has” +

“ been verified”);
} else {

System.out.println(“** The digital signature is “ +
“invalid, the wrong “ +
“key was used, or the data “ +
“has been compromised”);

}
}

}

The KeyPairGeneratorExample, explained subsequently, is used to obtain a public and private key. The
data is signed with the private key and verified with the public key.

Digital Key Creation and Management
There are two representations of keys made available by the security API. Transparent representations of
keys allow you to retrieve specific information about the key, such as the algorithm parameter values
used to calculate the key. Opaque representations of keys keep these values hidden and only allow you
access to the algorithm used to create the key, the encoding used, and the encoded form of the key itself.
Transparent representations of keys inherit from a tagging interface called KeySpec. Since this is a tag-
ging interface, no methods are defined inside the interface. Key interfaces provided in the
java.security.spec package are listed in the following table.

Key Interface Description

DSAPrivateKeySpec A DSA private key specification

DSAPublicKeySpec A DSA public key specification

RSAPrivateKeySpec An RSA private key specification

RSAPrivateCrtKeySpec An RSA private key specification using Chinese
remainder theorem

RSAMultiplePrimePrivateCrtKeySpec An RSA multiple prime private key specification
using the Chinese remainder theorem

RSAPublicKeySpec An RSA public key specification

EncodedKeySpec An encoded key specification PKCS8Encoded-
KeySpec and X509EncodedKeySpec are two pro-
vided implementers.

As opposed to transparent representations of keys, opaque representations inherit from the Key inter-
face. Unlike the KeySpec interface, the Key interface defines three methods that all concrete implementa-
tions must implement. These three methods are described next:

String algorithm()

592

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 592

The algorithm method returns a string representation of the algorithm used to create the key:

byte[] getEncoded()

The getEncoded method returns the encoded version of the key (which can then be packaged and
transmitted) according to a standard encoding format such as X.509 or PKCS #8.

String getFormat()

The getFormat method returns the name of the particular encoding format used to encode the key. The
java.security.interfaces package contains 12 interfaces that inherit directly from the Key interface. These
are the various types of keys that are standard in the Java API. These are listed in the following table.

Key Interface Description

DHPrivateKey A Diffie-Hellman private key

DHPublicKey A Diffie-Hellman public key

DSAPrivateKey A DSA private key

DSAPublicKey A DSA public key

PBEKey A PBE (password-based encryption) key, supporting a
SALT value

RSAMultiPrimePrivateCrtKey An RSA multiprime private key using the Chinese remain-
der theorem. Consult PKCS#1 for more information.

RSAPrivateCrtKey An RSA private key using the Chinese remainder theorem.
Consult PKCS#1 for more information.

RSAPrivateKey An RSA private key

RSAPublicKey An RSA public key

PublicKey Used as a tagging interface for all public key
interfaces/classes

PrivateKey Used as a tagging interface for all private key
interfaces/classes

SecretKey Used as a tagging interface for all secret key
interfaces/classes

The KeyFactory engine class is used to convert transparent representations of keys to opaque representa-
tions and vice versa. The standard getInstance methods are available to create a KeyFactory. There are
two methods to convert a transparent representation to an opaque representation: one for public keys
and one for private keys. There is one method defined for the reverse operation. These methods are
described subsequently:

PublicKey generatePublic(KeySpec keySpec)
PrivateKey generatePrivate(KeySpec keySpec)

593

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 593

The generatePublic and generatePrivate methods take a transparent representation of a key (a class that
inherits from KeySpec — directly or indirectly) and return either the opaque representation of the public
key or the opaque representation of the private key:

KeySpec getKeySpec(Key key, Class keySpec)

The getKeySpec method accepts the opaque representation of the key through the key parameter and a
class that specifies which key specification class to convert the key to and return.

From more of a client perspective, the KeyPair class and KeyPairGenerator and KeyStore engine classes
are used to create, store, and manage public/private keys and certificates. The KeyPair class defines the
following two methods:

PrivateKey getPrivate()
PublicKey getPublic()

The first method returns the private key currently stored, and the second returns the public key. The
KeyPairGenerator engine class is used to generate these pairs of private and public keys and uses the
KeyPair class to store them.

The KeyPairGenerator engine class generates a pair of keys in either an algorithm-independent manner
or an algorithm-specific manner. Which of these is used depends on how the KeyPairGenerator is initial-
ized. The following two methods are for algorithm-independent initialization. Because all algorithms
use the basic concepts of size and randomness, this initialization is available when initialization based
on a specific algorithm isn’t necessary:

void initialize(int keysize, SecureRandom random)
void initialize(int keysize)

The meaning of the keysize parameter varies for each algorithm. Other algorithm parameters are given
preconfigured parameters. For example, a DSA algorithm might assign its parameters different values
based on the specified keysize. If a random number generator is not passed in, randomness is generated
via a default system generator:

void initialize(AlgorithmParameterSpec params, SecureRandom random)
void initialize(AlgorithmParameterSpec params)

These forms of initialize perform the initialization based on specific parameters that are passed through
the params parameter. If a random number generator is not passed in, randomness is generated from the
system:

KeyPair generateKeyPair()

This method creates and returns a KeyPair object. Each call to this method returns a separate and dis-
tinct pair of keys.

Here’s an example implementation of a method that utilizes the KeyGenerator class to generate a private
key and public key and store them in a KeyPair object (this is used in other examples in this chapter):

import java.security.KeyPairGenerator;
import java.security.KeyPair;
import java.security.SecureRandom;

594

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 594

import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PublicKey;
import java.security.PrivateKey;

public class KeyPairGeneratorExample {
public KeyPair generateKeyPair(long seed)
{

try {
// Get a DSA key generator from first
// provider that provides it

KeyPairGenerator keyGenerator =
KeyPairGenerator.getInstance(“DSA”);

// Get a random number generator using
// algorithm SHA1PRNG from the SUN provider package.
SecureRandom rng =

SecureRandom.getInstance(“SHA1PRNG”, “SUN”);

// Configure RNG and initialize key pair generator
rng.setSeed(seed);
keyGenerator.initialize(1024, rng);

return(keyGenerator.generateKeyPair());
} catch(NoSuchProviderException nspe) {

System.out.println(“Exception: “ + nspe);
nspe.printStackTrace();

} catch(NoSuchAlgorithmException nsae) {
System.out.println(“Exception: “ + nsae);
nsae.printStackTrace();

}

return(null);
}

public static void main(String args[])
{

KeyPairGeneratorExample kpge = new KeyPairGeneratorExample();

KeyPair kp = kpge.generateKeyPair(717);
System.out.println(“-- Public Key ----”);
PublicKey pubKey = kp.getPublic();
System.out.println(“ Algorithm=” + pubKey.getAlgorithm());
System.out.println(“ Encoded=” + pubKey.getEncoded());
System.out.println(“ Format=” + pubKey.getFormat());

System.out.println(“\n-- Private Key ----”);
PrivateKey priKey = kp.getPrivate();
System.out.println(“ Algorithm=” + priKey.getAlgorithm());
System.out.println(“ Encoded=” + priKey.getEncoded());
System.out.println(“ Format=” + priKey.getFormat());

}
}

595

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 595

This class utilizes a specific random number generator, SHA1PRNG, from the SUN provider package. It
is then seeded with the value specified in the call to generateKeyPair. If you take a look at the output,
you will see a difference between the private and public key:

-- Public Key ----
Algorithm=DSA
Encoded=[B@1a46e30
Format=X.509

-- Private Key ----
Algorithm=DSA
Encoded=[B@3e25a5
Format=PKCS#8

The public key is encoded in the X.509 format, and the private key is encoded in the PKCS#8 format.
PKCS stands for Public Key Cryptography Standards, and the eighth standard defines the format for
private keys. The usage of X.509 for the public key means that a public key certificate was generated. A
certificate allows the connecting of a trusted source with a public key, ensuring the public key is coming
from the person that it claims it is.

Storing and Managing Keys
A keystore is a database of public keys, private keys, and certificates. By default, this database is stored in
a file named keystore in the user’s home directory. The SUN provider package provides this behavior
through a proprietary format named JKS. Each private key in this file is protected by a password, and
the file itself is also protected by a password. The KeyStore engine class provides a robust interface for
implementing a keystore provider. There are two types of entries that a KeyStore stores. The first, a key
entry, contains sensitive key information such as private keys and the authenticating certificate chain, or
a secret key. The second, a trusted certificate entry, contains a certificate authenticating the owner of a spe-
cific public key. The manner in which the keystore is persisted depends upon the implementation; thus,
it is not specified by this engine class. The KeyStore engine class provides methods to load and save a
keystore, access aliases of entries, determine entry types, manage the entries themselves, and retrieve
information about the keystore. The standard getInstance methods are available to create a keystore:

final void load(InputStream stream, char[] password)

The load method loads a keystore from the specified input stream. The optional password is used as a
way to verify the integrity of the keystore. If no password is specified, this integrity check is not per-
formed. Pass in null in place of an input to create an empty keystore:

final void store(OutputStream stream, char[] password)

The store method saves the current keystore to the specified output stream. If a password is specified,
it is used to calculate a checksum of the keystore data and is appended to the end of the output stream.
This checksum is used by load to perform an integrity check:

final Enumeration aliases()

Each keystore entry has an associated alias that takes the form of a string. The aliases method returns
an enumeration of the entry aliases in the keystore:

final boolean isKeyEntry(String alias)
final boolean isCertificateEntry(String alias)

596

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 596

The isKeyEntry and isCertificateEntry methods provide a way to check the type of a keystore entry. The
first, isKeyEntry, returns true if the entry specified by alias is a key entry, and returns false otherwise.
The second, isCertificateEntry, returns true if the entry specified by alias is a certificate entry, and returns
false otherwise:

final void setKeyEntry(String alias, Key key,
char[] password, Certificate[] chain)

final void setKeyEntry(String alias, byte[] key,
Certificate[] chain)

The setKeyEntry method adds a new key entry to the keystore (if alias does not correspond to an exist-
ing entry) or changes the key at the preexisting alias in the keystore. If the key is passed in as an array of
bytes, the key should be in protected format, such as an EncryptedPrivateKeyInfo in the PKCS #8 stan-
dard. The alternate form of setKeyEntry uses a password to protect the key. The chain parameter is used
to pass in a certificate chain as a trust source for the key:

final void setCertificateEntry(String alias, Certificate cert)

The setCertificateEntry method adds a new certificate entry to the keystore (if alias does not correspond
to an existing entry) or changes the certificate at the entry named by alias (if a certificate entry already
exists):

final void deleteEntry(String alias)

The deleteEntry method removes the entry associated with alias from the keystore:

final Key getKey(String alias, char[] password)

The getKey method returns the key entry from the keystore that is associated with alias. The password
is used to retrieve the key:

final Certificate getCertificate(String alias)
final Certificate[] getCertificateChain(String alias)

The getCertificate and getCertificateChain methods return the certificate or certificate chain
(array of Certificate) specified by alias in the keystore:

final String getCertificateAlias(Certificate cert)

The getCertificateAlias method returns the alias associated with a specified certificate from the
keystore.

Algorithm Management
Algorithms have parameters associated with them, such as values of constants for the DSA algorithm.
The actual values of these parameters are revealed in transparent representations through classes that
implement the AlgorithmParameterSpec interface. This interface defines no methods, which thus makes
it a tagging interface. Opaque representations of algorithm parameters are addressed by the
AlgoithmParameters engine class. No direct access to the values of the algorithm parameters is avail-
able. The following methods, along with the expected getInstance methods, are defined in the
AlgorithmParameters engine class. After object creation using getInstance, one of the init methods
must be invoked to initialize the object:

597

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 597

void init(AlgorithmParameterSpec paramSpec)
void init(byte[] params)
void init(byte[] params, String format)

The byte array params contains the parameters in an encoded format. The form of init that only takes a
byte array uses the default decoding format ASN.1 to decode the parameters. The last form of init
accepts the byte array of parameters and format, the string representation of a decoding scheme. The
first form accepts a reference to a transparent representation of the algorithm parameters. Note that ini-
tialization can only occur once. You cannot reuse an AlgorithmParameter object like you can a
SecureSignature object:

byte[] getEncoded()
byte[] getEncoded(String format)

These methods return a byte array containing the encoded parameters. The default decoding used is
ASN.1. You can specify a specific decoding format by passing its name in format. The default implemen-
tation of this engine class as provided in the SUN provider package disregards the format parameter:

AlgorithmParameterSpec getParameterSpec(Class paramSpec)

This returns a reference to a transparent representation of the encoded parameters. The paramSpec
parameter is used to specify a particular AlgorithmParameterSpec class, such as passing in
DSAParameterSpec.class to get a DSAParameterSpec object returned.

The AlgorithmParameterGenerator is an engine class to generate parameters for a particular algorithm.
Creating an object of this class is the same as any other engine class. A particular algorithm and possibly
a provider are passed to a getInstance method. After object creation, the object must be initialized
using one of the init methods. After initialization, you can invoke generateParameters to actually gen-
erate the parameters for the specified algorithm:

void init(int size, SecureRandom random)
void init(int size)
void init(AlgorithmParameterSpec genParamSpec, SecureRandom random)
void init(AlgorithmParameterSpec genParamSpec)

Each algorithm uses two core pieces of information to generate parameters: a size and a way to create
random numbers. This size could be a number of bits or a number of bytes, all depending on the specific
algorithm. The use of SecureRandom shows the interoperability of the engine classes. Any provider’s
random number generator can be used with any other provider’s AlgorithmParameterGenerator to gen-
erate parameters. If no random number generator is specified, a system-provided source of random
numbers is used. The first two forms only allow the specification of a single size, so default values are
used for other algorithm parameters. The last two forms provide for the specification of each algorithm’s
parameter. Because there are no requirements made based on the AlgorithmParameterSpec, each algo-
rithm has its own AlgorithmParameterGenerator that works with the algorithm’s
AlgorithmParameterSpec to generate the parameters:

AlgorithmParameters generateParameters()

This generates and returns a set of algorithm parameters encoded in an AlgorithmParameters object.

598

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 598

Random Number Generation
A random number generator (RNG) is a vital part of encryption algorithms. Because most random number
generators start with a seed value, a value that causes a predictable string of numbers to get generated,
random number generators are often termed pseudo-random because they are not truly random. The
engine class for random number generators is SecureRandom and, as expected, has the standard set of
getInstance methods.

The operations available on the random number generator are seeding the generator, obtaining a ran-
dom number (or sequence of random numbers), and obtaining a random seed that can be used to seed a
random number generator. These operations are accomplished via the following methods:

synchronized public void setSeed(byte[] seed)
public void setSeed(long seed)

Invoking a setSeed method isn’t strictly necessary. When the getInstance method is invoked, the ran-
dom number generator should set itself to a random state. However, it is possible to increase the ran-
domness by which the generator works by passing in a long value or a sequence of bytes as a seed. Each
subsequent call to setSeed increases the randomness. A seed passed in later does not replace an earlier
seed; it extends it into a more random organization:

synchronized public void nextBytes(byte[] bytes)

The byte array bytes is filled with a sequence of randomly generated bytes up to the array’s allocated
length:

byte[] generateSeed(int numBytes)

This method returns a byte array of size numBytes. This byte array can then be used as a seed to the ran-
dom number generator.

Here’s a brief example using the SecureRandom class to generate random numbers:

import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;

public class SecureRandomExample {
public static void main(String args[])
{

try {
SecureRandom rng = SecureRandom.getInstance(“SHA1PRNG”);
rng.setSeed(711);

int numberToGenerate = new Integer(args[0]).intValue();
byte randNumbers[] = new byte[numberToGenerate];

rng.nextBytes(randNumbers);
for(int j=0; j<numberToGenerate; j++) {

System.out.print(randNumbers[j] + “ “);
}

System.out.println(“”);

599

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 599

} catch(NoSuchAlgorithmException nsae) {
System.out.println(“Exception: “ + nsae);
nsae.printStackTrace();

}
}

}

In this example, the user passes in how many numbers to generate on the command line as the first (and
only) parameter. The same seed is used every time this program is executed, so the same sequence of
numbers will always get generated. If you execute this program and ask for five numbers, you will get
the same output as listed in the following example:

111 100 -92 -59 -49

Certificate Management
Certificates are a vital part of the security picture. Because public keys are, by definition, public, how can
you verify that the public key truly belongs to the person that claims to own it? This is accomplished
using a certificate. A trusted third party, such as Verisign or Entrust, issues a certificate to an entity (a
person, an organization, and so forth) verifying that this entity is trusted. A public key associated with a
certificate is then trusted to come from the owner of the associated certificate. A certification path is a
sequence of trust from one authority to another. For example, one certificate authority (CA) can issue a
certificate for one public key, and the subject of this certificate is then used as a CA for another public
key. This establishes a path of trust, and each step must be validated for the entire trust relationship to
stand up.

The Java Security Architecture provides classes in the java.secuity.cert package to manage and utilize
certificates. The CertificateFactory creates certificates, certification paths, and certification revocation
lists (CRLs) from their corresponding encodings. The CertPathBuilder builds certification paths (or
chains). The CertPathValidator provides the functionality to validate the certification path stored in a
CertPath object. The CertStore class provides a repository for storing both trusted and untrusted certifi-
cations and CRLs. All of these classes are engine classes and thus have the standard getInstance meth-
ods for creating an instance of one of these classes.

CertificateFactory
The CertificateFactory engine class is a factory class that can generate certificates, certificate paths, and
CRLs. The standard getInstance methods are available for object creation.

To generate a certificate, one of the following methods is used:

final Certificate generateCertificate(InputStream inStream)
final Collection generateCertificates(InputStream inStream)

The first form creates a single certificate from a provided input stream, and the second creates a collec-
tion of zero or more certificates from a provided input stream.

Creating a CRL is similar to creating certificates:

final CRL generateCRL(InputStream inStream)
final Collection generateCRLs(InputStream inStream)

600

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 600

The first form creates a single CRL from a provided input stream, and the second creates a collection of
zero or more CRLs from a provided input stream. The CertificateFactory can also create a certification
path from a provided input stream:

final CertPath generateCertPath(InputStream inStream)
final CertPath generateCertPath(InputStream inStream, String encoding)

These methods provide a way to create a certification path from the input stream. The second form
allows you to specify the encoding used for the certification path:

final CertPath generateCertPath(List certificates)

This method creates a CertPath object and initializes it with the list of certificates passed in:

final Iterator getCertPathEncodings()

A list of certificate encodings supported by this factory is returned. The default encoding is listed first.

CertPathBuilder
The CertPathBuilder engine class is used to create a CertPath from a set of CertPathParameters. The
nature of these parameters is algorithm-specific. The standard getInstance methods are provided for
object creation. A single method is provided to build the CertPath:

public final CertPathBuilderResult build(CertPathParameters params)
throws CertPathBuilderException, InvalidAlgorithmParameterException

The CertPathBuilderResult contains a getCertPath method that returns the CertPath that is built using
this method. Using this interface allows for ease of grouping and copying (via clone) of the path that is
built.

CertPathValidator
The CertPathValidator is an engine class that validates a certiticate path. The standard getInstance
methods are provided. A single method is provided to validate the certificate path:

public final CertPathValidatorResult validate(CertPath certPath,
CertPathParameters params)

throws CertPathValidatorException,
InvalidAlgorithmParameterException

If the validation succeeds, an instance of a class implementing the CertPathValidatorResult interface is
returned. Otherwise, a CertPathValidatorException is thrown, signaling an invalid certificate path. The
CertPath and CertPathParameters that are passed in must be compatible with the algorithm, or an
InvalidAlgorithmParameterException is thrown.

CertStore
The CertStore is an engine class designed to store certificates and CRLs. The getInstance methods are
augmented with a CertStoreParameters parameter. The revised getInstance methods are listed next:

601

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 601

public static CertStore getInstance(String type,
CertStoreParameters params)

public static CertStore getInstance(String type,
CertStoreParameters params,
String provider)

public static CertStore getInstance(String type,
CertStoreParameters params,
Provider provider)

The type parameter represents the name of a repository type, such as LDAP or Collection for Java collec-
tions. The specific CertStoreParameters are specific to each repository type.

The parameters used to initialize the CertStore can be retrieved using the following method:

public final CertStoreParameters getCertStoreParameters()

To retrieve certificates and CRLs from a CertStore, the concept of a selector is introduced. This selector
defines the criteria used to select a set of certificates or CRLs to return. The following methods are pro-
vided to select and return a set of certificates or CRLs:

public final Collection getCertificates(CertSelector selector)
throws CertStoreException

public final Collection getCRLs(CRLSelector selector)
throws CertStoreException

Each method returns a collection of their corresponding objects. The selector interfaces both define a sin-
gle method named match that accepts a certificate or a CRL and returns true if the specified object
matches some criteria, or false otherwise. There are concrete implementations of these interfaces that are
available as part of the security library, such as X509CertSelector and X509CRLSelector, which verify
whether a certificate or CRL matches the format of X509 certificates/CRLs.

Java Cryptography Extension
The Java Cryptography Extension (JCE) specifies other cryptographic services that are important for a
more complete security package. The JCE is based on the same architecture as the JCA and is thus
provider-based. The default provider package that comes with J2SDK 1.5 is named SunJCE. The services
provided by the JCE are as follows:

❑ Encryption/Decryption: Converts a nonencrypted plaintext (or cleartext) message into an
encrypted form using a key or performing the opposite operation.

❑ Password-Based Encryption (PBE): Derives an encryption key from a given password, some-
times based on a salt (a random number) to extend the time needed for a brute force attack,
which thus makes a brute force attack more infeasible.

❑ Cipher: An object that carries out the encryption and decryption of information based on a par-
ticular algorithm.

❑ Key Agreement: A protocol that enables two or more parties to establish the same cryptographic
keys without needing to share secret information.

❑ Message Authentication Code (MAC): A short code that is used to verify the integrity/origina-
tion of information, similar to using a digital signature to verify data integrity/origination.

602

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 602

The engine classes provided by the JCE are Cipher, KeyGenerator, KeyAgreement, and Mac. These
engine classes and classes related to each are discussed in detail in this section.

The Cipher Engine Class
The Cipher engine class is the largest engine class in the JCE. It provides both encryption and decryption
support. The JCE also introduces CipherInputStream and CipherOutputStream, which provide secure
input and output streams when combined with a Cipher object. The getInstance methods available on
the Cipher object differ from the getInstance methods of engine classes from the JCA:

public static Cipher getInstance(String transformation);
public static Cipher getInstance(String transformation,

String provider);

The parameter transformation is used to specify a particular transforming and takes the form of algo-
rithm/mode/padding or just algorithm. Specifying DES or DES/ECB/PKCS5Padding (the default algo-
rithm/mode/padding provided by the SunJCE) are both valid. The provider parameter lets you specify
which provider should be used. If no provider is specified, a provider is located that provides the
requested transformation.

After object creation, the Cipher object must be initialized with an operating mode and other informa-
tion. There are eight forms of the init method:

public void init(int opmode, Key key)
public void init(int opmode, Certificate certificate)
public void init(int opmode, Key key, SecureRandom random)
public void init(int opmode, Certificate certificate,

SecureRandom random)
public void init(int opmode, Key key,

AlgorithmParameterSpec params)
public void init(int opmode, Key key,

AlgorithmParameterSpec params, SecureRandom random)
public void init(int opmode, Key key,

AlgorithmParameters params)
public void init(int opmode, Key key,

AlgorithmParameters params, SecureRandom random)

The opmode parameter can take one of four integer values that are defined as final integers in the
Cipher class. These operating modes are listed in the following table.

Operating Mode Constant’s Name Description

ENCRYPT_MODE Configures Cipher to encrypt data

DECRYPT_MODE Configures Cipher to decrypt data

WRAP_MODE Configures Cipher in key wrapping mode to con-
vert a key to bytes that can be securely transported

UNWRAP_MODE Configures Cipher to unwrap a previously
wrapped key

603

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 603

You can pass in a key through the key or certificate parameters (for a certificate that contains a key). The
params parameter contains parameters for the particular algorithm requested, and random is used to
utilize a different random number generator than the system source of randomness.

If the mode is DECRYPT_MODE, the Cipher requires a key and appropriate parameters. If these are not
specified, an InvalidKeyException or InvalidAlgorithmParameterException is thrown. If the Cipher is
configured for ENCRYPT_MODE, these parameters are configured with already defined values unless
explicitly passed in to the init method.

Encrypting/Decrypting Data
Data can be passed to a Cipher object in parts or all at once. The update method is used to pass in a
chunk of data at a time, and the doFinal method is used to either pass in all of the data at a single time or
signal the end of a sequence of data that was passed in through the update method:

public byte[] update(byte[] input)
public byte[] update(byte[] input, int inputOffset,

int inputLen)
public int update(byte[] input, int inputOffset,

int inputLen, byte[] output)
public int update(byte[] input, int inputOffset,

int inputLen, byte[] output, int outputOffset)

These methods allow you to pass a piece of data to the Cipher. Using these methods lets you process
more data than you have at a single time. The last two forms store the encrypted/decrypted data in a
buffer passed in, as opposed to returning the data in the first two forms:

public byte[] doFinal(byte[] input)
public byte[] doFinal(byte[] input, int inputOffset,

int inputLen)
public int doFinal(byte[] input, int inputOffset,

int inputLen, byte[] output)
public int doFinal(byte[] input, int inputOffset,

int inputLen, byte[] output,
int outputOffset)

public byte[] doFinal();
public int doFinal(byte[] output, int outputOffset)

These methods are used to either process all the input at once or signal the end of input after repeated
calls to update. The first four forms let you combine the operation of passing in the rest of the data and
retrieving the result. The last two forms signal the end and then obtain the result. The last form returns
the length of the output.

Wrapping and Unwrapping Keys
public final byte[] wrap(Key key)

This method is used to take a key and convert it to a sequence of bytes that can be safely and easily
transported. The key is encrypted using the Cipher so that secure transmission is possible. In order for
the recipient to unwrap the key, you need to also transmit the name of the key algorithm and the type of
the key (either SECRET_KEY, PRIVATE_KEY, or PUBLIC_KEY):

604

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 604

public final Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm,
int wrappedKeyType)

This method takes a wrapped key and unwraps it using the specified algorithm and key type. The
wrappedKeyType is either SECRET_KEY, PRIVATE_KEY, or PUBLIC_KEY:

public int getOutputSize(int inputLen)

This method is useful to determine the size of the output in order for the client code to allocate enough
space in its buffer for the encrypted/decrypted data.

Two classes are provided for chaining a cipher in file input/output operations. The CipherInputStream
inherits from the FilterInputStream class. The CipherOutputStream inherits from FilterOutputStream.
Data passing through the each of these is encrypted or decrypted using an associated Cipher object.
Usage of CipherInputStream and CipherOutputStream are straightforward. Take a look at the example
to see them in action.

Here is a class that provides an interface to using the Cipher class by itself and also utilizing the
CipherInputStream and CipherOutputStream classes. This example could be modified rather easily to
work as a utility class using the Cipher engine class:

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.io.*;

public class CipherExample {
private Cipher m_encrypter;
private Cipher m_decrypter;

public void init(SecretKey key)
{

// for CBC; must be 8 bytes
byte[] initVector = new byte[]{0x10, 0x10, 0x01, 0x04,

0x01, 0x01, 0x01, 0x02};

AlgorithmParameterSpec algParamSpec =
new IvParameterSpec(initVector);

try {
m_encrypter = Cipher.getInstance(“DES/CBC/PKCS5Padding”);
m_decrypter = Cipher.getInstance(“DES/CBC/PKCS5Padding”);

m_encrypter.init(Cipher.ENCRYPT_MODE, key, algParamSpec);
m_decrypter.init(Cipher.DECRYPT_MODE, key, algParamSpec);

} catch (InvalidAlgorithmParameterException e) {
System.out.println(“Exception: “ + e);

} catch (NoSuchPaddingException e) {
System.out.println(“Exception: “ + e);

} catch (NoSuchAlgorithmException e) {
System.out.println(“Exception: “ + e);

} catch (InvalidKeyException e) {

605

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 605

System.out.println(“Exception: “ + e);
}

}

public void write(byte[] bytes, OutputStream out)
{

try {
CipherOutputStream cos =

new CipherOutputStream(out, m_encrypter);

cos.write(bytes, 0, bytes.length);

cos.close();
} catch(IOException ioe) {

System.out.println(“Exception: “ + ioe);
}

}

public void read(byte[] bytes, InputStream in)
{

try {
CipherInputStream cis =

new CipherInputStream(in, m_decrypter);

int pos=0, intValue;

while((intValue = cis.read()) != -1) {
bytes[pos] = (byte)intValue;
pos++;

}
} catch(IOException ioe) {

System.out.println(“Exception: “ + ioe);
}

}

public byte[] encrypt(byte[] input)
{

try {
return(m_encrypter.doFinal(input));

} catch(IllegalBlockSizeException ibse) {
System.out.println(“Exception: “ + ibse);

} catch(BadPaddingException bpe) {
System.out.println(“Exception: “ + bpe);

}

return(null);
}

public byte[] decrypt(byte[] input)
{

try {
return(m_decrypter.doFinal(input));

} catch(IllegalBlockSizeException ibse) {
System.out.println(“Exception: “ + ibse);

} catch(BadPaddingException bpe) {

606

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 606

System.out.println(“Exception: “ + bpe);
}

return(null);
}

public static void main(String args[])
{

try {
CipherExample ce = new CipherExample();

SecretKey key =
KeyGenerator.getInstance(“DES”).generateKey();

ce.init(key);

System.out.println(“Testing encrypt/decrypt of bytes”);
byte[] clearText = new byte[]{65,73,82,68,65,78,67,69};
byte[] encryptedText = ce.encrypt(clearText);
byte[] decryptedText = ce.decrypt(encryptedText);

String clearTextAsString = new String(clearText);
String encTextAsString = new String(encryptedText);
String decTextAsString = new String(decryptedText);

System.out.println(“ CLEARTEXT: “ + clearTextAsString);
System.out.println(“ ENCRYPTED: “ + encTextAsString);
System.out.println(“ DECRYPTED: “ + decTextAsString);

System.out.println(“\nTesting encrypting of a file\n”);

FileInputStream fis = new FileInputStream(“cipherTest.in”);
FileOutputStream fos =

new FileOutputStream(“cipherTest.out”);

int dataInputSize = fis.available();

byte[] inputBytes = new byte[dataInputSize];
fis.read(inputBytes);
ce.write(inputBytes, fos);
fos.flush();
fis.close();
fos.close();

String inputFileAsString = new String(inputBytes);
System.out.println(“INPUT FILE CONTENTS\n” +

inputFileAsString + “\n”);

System.out.println(“File encrypted and saved to disk\n”);

fis = new FileInputStream(“cipherTest.out”);

byte[] decrypted = new byte[dataInputSize];
ce.read(decrypted, fis);

607

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 607

fis.close();
String decryptedAsString = new String(decrypted);

System.out.println(“DECRYPTED FILE:\n” +
decryptedAsString + “\n”);

} catch(IOException ioe) {
System.out.println(“Exception: “ + ioe);

} catch(NoSuchAlgorithmException e) {
System.out.println(“Exception: “ + e);

}
}

}

The KeyGenerator engine class is used to generate a SecretKey. This class accepts a SecretKey as an ini-
tialization parameter, which is then used by the various instances of the Cipher class.

KeyGenerator
This engine class is used to generate secret keys for symmetric algorithms. The standard getInstance
methods are available. After object creation, one of the following methods is used to initialize the
KeyGenerator.

The following are the algorithm-independent initialization methods:

public void init(SecureRandom random)
public void init(int keysize)
public void init(int keysize, SecureRandom random)

The following are the algorithm-specific initialization methods:

public void init(AlgorithmParameterSpec params)
public void init(AlgorithmParameterSpec params, SecureRandom random)

The algorithm-independent initialization allows you to specify a RNG or a keysize — or both — as
parameters used to initialize the key generator. The algorithm-specific initialization methods accept a set
of parameters (and possibly a RNG also) that are used with the chosen algorithm. What these parame-
ters are depend on the algorithm used:

public SecretKey generateKey()

After the KeyGenerator is created and initialized, the generateKey method is called to generate a secret
key. Consult the previous Cipher example for a use of the KeyGenerator in action.

SecretKeyFactory
This is very much like the KeyFactory in the java.security package; however, this engine class only
works on secret (symmetric) keys. This class is used to convert keys back and forth between their trans-
parent and opaque representations. The standard getInstance methods are used to create a
SecretKeyFactory object. Three main methods are used to manipulate keys: generateSecret, getKeySpec,
and translateKey:

SecretKey generateSecret(KeySpec keySpec)

608

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 608

This converts a key specification into a SecretKey object. If the factory cannot convert the key using the
current algorithm, an InvalidKeySpecException is thrown:

KeySpec getKeySpec(SecretKey key, Class keySpec)

This converts a key into a key specification in the format specified by the keySpec parameter. If the fac-
tory cannot perform the conversion due to the algorithm or some other mismatch (such as incompatible
formats), an InvalidKeySpecException is thrown:

SecretKey translateKey(SecretKey key)

This translates a key object from an unknown or untrusted provider to a key object from this factory.

Protecting Objects through Sealing
The SealedObject class is used to encrypt any class that is serializable. It is used with an instance of the
Cipher class. The constructor of SealedObject is used to specify an object to seal an initialized Cipher
object. One of three getObject methods is later used to decrypt the object. The name of the algorithm
used to encrypt the object can be retrieved using the getAlgorithm method:

Object getObject(Cipher c)
Object getObject(Key key)
Object getObject(Key key, String provider)

The first form decrypts the object using a provided Cipher. The second decrypts the object using the
algorithm that encrypted the object and requires a key for decryption. The final form allows you to spec-
ify a specific provider along with the key needed to decrypt the object.

Here’s an example of creating a custom class, sealing it, and then unsealing it:

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.io.*;

class CustomerData implements Serializable {
public String name;
public String password;

}

public class SealedObjectExample {
private SecretKey secretKey;
private Cipher encrypter, decrypter;

public SealedObjectExample()
{

try {
secretKey = KeyGenerator.getInstance(“DES”).generateKey();

encrypter = Cipher.getInstance(“DES”);
encrypter.init(Cipher.ENCRYPT_MODE, secretKey);

decrypter = Cipher.getInstance(“DES”);

609

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 609

decrypter.init(Cipher.DECRYPT_MODE, secretKey);
} catch(NoSuchAlgorithmException e) {
} catch(InvalidKeyException e) {
} catch(NoSuchPaddingException e) {
}

}

public SealedObject seal(Serializable obj)
{

try {
return(new SealedObject(obj, encrypter));

} catch(IOException e) {
} catch(IllegalBlockSizeException e) {
}

return(null);
}

public Object unseal(SealedObject so)
{

try {
String algorithmName = so.getAlgorithm();

// can use algorithmName to construct a decrypter

return(so.getObject(decrypter));
} catch(IOException e) {
} catch(IllegalBlockSizeException e) {
} catch(BadPaddingException e) {
} catch(ClassNotFoundException e) {
}

return(null);
}

public static void main(String args[])
{

CustomerData cust, unsealed;
SealedObject sealed;
SealedObjectExample soe = new SealedObjectExample();

// configure a CustomerData object
cust = new CustomerData();
cust.name = “Paul”;
cust.password = “password”;

// Seal it, storing it in a SealedObject
sealed = soe.seal(cust);

// Try unsealing it
unsealed = (CustomerData)soe.unseal(sealed);

System.out.println(“NAME: “ + unsealed.name);
System.out.println(“PASSWORD: “ + unsealed.password);

}
}

610

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 610

The only requirement on the class that will be sealed is that it inherits from serializable. The
SealedObject class contains the sealed object, and to unseal the object, all that is necessary is the
SealedObject object. It is possible to retrieve the name of the algorithm used to seal it using the
getAlgorithm method on the SealedObject class. A Cipher object is also needed to perform the unsealing
operation.

Computing Message Authentication Codes
The Mac engine class computes a hash, similar to a message digest, for input data given a secret key. The
Mac class has the standard getInstance methods for object creation. After creation, the object must be ini-
tialized using one of the following methods:

public void init(Key key)
public void init(Key key, AlgorithmParameterSpec params)

The key must be a key class that inherits from the javax.crypto.SecretKey interface, such as
KeyGenerator.generateKey() or KeyAgreement.generateSecret(). Certain algorithms require that the
algorithm used to generate the key be compatible with the algorithm specified in the getInstance call. If
this is the case and the two algorithms are not compatible, an InvalidKeyException is thrown.

The Mac class follows similar semantics for sending data to the computation engine. Data can be passed
in all at once using the doFinal method or passed in piece by piece using the update method (and then
invoking doFinal to signal the end of the input):

public byte[] doFinal(byte[] input)
public byte[] doFinal()
public void doFinal(byte[] output, int outOffset)

The first doFinal method accepts a byte array containing the input data, computes the message authenti-
cation code, and returns that in a byte array. The second form is used to signal the end of input after sev-
eral invocations of the update method. The last form can be used after a sequence of update methods to
both accept the last chunk of data and signal the end of input. The outOffset parameter specifies where
in the output array to start reading data, and the data ends at the end of the array:

public void update(byte input)
public void update(byte[] input)
public void update(byte[] input, int inputOffset, int inputLen)

These methods are useful for sending data to the Mac class a piece at a time. The first method accepts a
single byte of input. The second method takes an array of bytes. The third allows you to pass in an array
and specify where in the array (starting at inputOffset) to read the data, and the length of the data
(inputLen). After you are done calling update, don’t forget to call a version of doFinal to signal the end
of input and calculate the message authentication code.

Here’s an example of creating an instance of the Mac class and computing the message authentication
code for data. This example leverages the previous KeyGeneratorExample:

import java.security.*;
import javax.crypto.*;
import java.io.*;

public class MacExample {

611

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 611

public static void main(String args[])
{

try {
String inputString = “Test input string”;

KeyGenerator keyGen = KeyGenerator.getInstance(“HmacMD5”);
SecretKey secretKey = keyGen.generateKey();

Mac mac = Mac.getInstance(secretKey.getAlgorithm());
mac.init(secretKey);

// the Mac class needs data in byte format
byte[] byteData = inputString.getBytes(“UTF8”);

// Compute the MAC for the data all in one operation
byte[] macBytes = mac.doFinal(byteData);

String macAsString =
new sun.misc.BASE64Encoder().encode(macBytes);

System.out.println(
“The computed message authentication code is: “

+ macAsString);
} catch (InvalidKeyException e) {
} catch (NoSuchAlgorithmException e) {
} catch (UnsupportedEncodingException e) {
}

}
}

Computing the message authentication code is very similar to computing the message digest using the
MessageDigest engine class. The main difference is that a key is required. Here, the key is generated via the
KeyGenerator. Normally, this key would be saved or transmitted for verifying that the MAC matches the
data. The Mac class is created with the same algorithm used for the key and then initialized with the key.

Program Security Using JAAS
JAAS stands for Java Authentication and Authorization Service. This package used to be an extension,
but it was made part of the J2SDK in the 1.4 release of the JDK. Authentication is the process by which
the user of the application (any type of Java program, including applets, servlets, and so forth) is veri-
fied. Authorization is the process by which an authenticated user is granted permission for executing
actions, such as modifying specific files that are access-controlled. Authentication and authorization
work together to provide access control for your program, but these are separate concepts.

User Identification
In order for access control to work, there must be a way of storing the user’s identity. This is accom-
plished using a Subject, a grouping of information that identifies the source of all requests, such as a par-
ticular user that is logged in to the system. A Subject has associated principals, which are other
identifying characteristics of a subject, such as a user’s social security number or name. A Subject also
has public and private credentials, such as a public and private key, but it can be any object.

612

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 612

You won’t usually need to instantiate a Subject; however, there are two constructors provided:

public Subject();
public Subject(boolean readOnly, Set principals,

Set pubCredentials, Set privCredentials);

The first constructor creates a Subject that isn’t read-only and has empty (not null) sets of principals, and
public and private credentials. The second constructor gives you an idea of the information the Subject
possesses:

public void setReadOnly();
public boolean isReadOnly();

These two methods allow you to change and retrieve the read-only state of the subject. If the Subject is
marked read-only and an attempt is made to change the principals or credentials, an IllegalStateException
is thrown:

public Set getPrincipals();
public Set getPrincipals(Class c);
public Set getPublicCredentials();
public Set getPublicCredentials(Class c);
public Set getPrivateCredentials();
public Set getPrivateCredentials(Class c);

These methods allow you to retrieve a handle to the set of principals, or public or private credentials.
Once you have this handle, you can use the methods on the Set class to manipulate the contents of the
set. Modifying this set modifies the set in the Subject.

Each version of this access method has a Class parameter that allows you to retrieve only those princi-
pals/credentials that are of a specific type. However, these methods return a new set that does not corre-
spond to the internal set of the Subject.

A Subject can be associated with an AccessControlContext. This is a snapshot of context from an
AccessController that governs how security checks are performed. You can access this through the fol-
lowing method:

public static Subject getSubject(final AccessControlContext acc);

Note that this is a static method. This method returns the Subject currently associated with the specified
AccessControlContext or null if there is no association.

Executing Code with Security Checks
The Subject class provides doAs and doAsPrivileged methods to execute code that contains security
restrictions. The java.security.PrivilegedAction interface must be implemented by another class in order
to package code for use with the doAs or doAsPrivleged methods. Only one method is defined in this
interface:

public Object run();

613

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 613

Any code in the run method executes with the Subject passed to the doAs or doAsPrivileged method. If
permission for all the operations in the code is not granted to the Subject/principals, then a
SecurityException is thrown. The value returned can have any meaning you wish to associate with it or
simply return null if you don’t need to pass any information back.

The doAs method executes a specified block of code as a particular Subject:

public static Object doAs(final Subject subject,
final java.security.PrivilegedAction action);

public static Object doAs(final Subject subject,
final java.security.PrivilegedExceptionAction action)

throws java.security.PrivilegedActionException;

These methods first associate the Subject with the current thread’s AccessControlContext and then exe-
cute the action. The first form expects the method to return, and the second allows checked exceptions to
be thrown from the executing code.

The doAsPrivileged method operates the same as the doAs method, but it allows you to specify which
AccessControlContext to use instead of the one attached to the current thread:

public static Object doAsPrivileged(final Subject subject,
final java.security.PrivilegedAction action,
final java.security.AccessControlContext acc);

public static Object doAsPrivileged(final Subject subject,
final java.security.PrivilegedExceptionAction action,
final java.security.AccessControlContext acc)

throws java.security.PrivilegedActionException;

These provide a third parameter to both methods for using a different AccessControlContext.

Principals
A principal can be of any class type as long as the class inherits from java.security.Principal and
java.io.Serializable. The Principal interface defines the following methods:

boolean equals(Object another)

The equals method returns true if the principal passed in matches the current principal and returns false
otherwise:

String toString()

The toString method returns a string representation of this principal:

int hashCode()

The hashCode method returns a hash code for this principal:

String getName()

The getName method returns the name of this principal.

614

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 614

Credentials
Credentials can be of any type, and no requirements are placed on what interfaces a credential class
must implement. However, JAAS provides two interfaces that bestow behavior on a credential class that
might prove useful. These interfaces are Refreshable and Destroyable.

The javax.security.auth.Refreshable is useful for a credential that requires a refresh of its state (perhaps
the credential is valid only for a specific length of time). Three methods are defined on this interface:

boolean isCurrent()

The isCurrent method should return true if the credential is current or return false if it has expired or
needs a refresh of its state:

void refresh() throws RefreshFailedException

The refresh method refreshes the current state of the credential, making it valid again. The javax
.security.auth.Destroyable interface gives a credential semantics for destroying its contents:

boolean isDestroyed()

The isDestroyed method returns true if the credential’s contents have been destroyed and returns false
otherwise:

void destroy() throws DestroyFailedException

The destroy method destroys the contents of the credential. Methods that require contents to be valid
should throw the IllegalStateException after destroy is called.

Authenticating a Subject
The basic manner in which a subject is authenticated is through a LoginContext object. A LoginContext
then consults another class for the specific authentication services. The sequence of steps that occurs
when a LoginContext is used for authentication is as follows:

1. A LoginContext object is instantiated.

2. The LoginContext consults a Configuration to load all LoginModules for the current applica-
tion.

3. The login method of the LoginContext is called.

4. Each LoginModule then attempts to authenticate the subject. The LoginModule should associate
principals/credentials with a successfully authenticated user.

5. The success or failure of the authentication is communicated back to the application.

Configuration
The configuration file contains a number of configurations per application for authentication. Each con-
figuration has a name (usually the application name) and then a list of login modules to use for authenti-
cation. The configuration can have one set of login modules under the name other to specify an
authentication scheme to use when no others match the name specified. Each set of login modules
adheres to the following syntax:

615

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 615

NAME {
LoginModuleClass FLAG ModuleOptions;
LoginModuleClass FLAG ModuleOptions;

}

The LoginModuleClass is the fully qualified name of a LoginModule. The FLAG can be one of the values
in the following table.

Flag Name Description

Required The LoginModule is required to succeed; however, if it fails, LoginModules
specified after the current one still execute.

Requisite The LoginModule is required to succeed. If it fails, control returns to the appli-
cation. No further LoginModules are executed.

Sufficient The LoginModule is not required to succeed. If the LoginModule succeeds,
control is immediately returned to the application. Control passes down the
list of LoginModules even if this one fails.

Optional The LoginModule is not required to succeed, and control passes down the list
if this one succeeds or fails.

The ModuleOptions is a space-separated list of login module-specific name=value pairs.

LoginContext
The LoginContext class provides a clean approach to authenticating subjects while leaving the authenti-
cation details to LoginModules. This makes it easy to change the configuration for an application by
adding or removing a LoginModule. The LoginContext class provides the following constructors:

public LoginContext(String name) throws LoginException
public LoginContext(String name, Subject subject) throws LoginException
public LoginContext(String name, CallbackHandler callbackHandler)

throws LoginException
public LoginContext(String name, Subject subject,

CallbackHandler callbackHandler)
throws LoginException

The name parameter corresponds to an entry in the configuration used for the application. The first and
third forms of the constructor create an empty subject because one isn’t passed in. If a LoginModule has
to communicate with the user, it can do so through a CallbackHandler. For example, if a username and
password are required, a class can inherit from javax.security.auth.callback.CallbackHandler and
retrieve the information from the user. The CallbackHandler interface defines a single method:

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException

One or more callbacks can be specified, allowing you to separate username and password entries into
two separate callbacks all managed by a single CallbackHandler.

616

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 616

The LoginContext also provides login and logout methods:

public void login() throws LoginException

This method causes all configured LoginModules to authenticate the subject. If authentication succeeds,
you can retrieve the subject via getSubject(). The subject may have revised credentials and principals
after all authentication is performed:

public void logout() throws LoginException

The logout method removes credentials/principals from the authenticated subject.

Essentially, the code used for an application to log in, obtain an authenticated subject, and then log out
looks like the following snippet of code:

LoginContext loginContext = new LoginContext(“BasicConsoleLogin”);

try {
loginContext.login(); // utilizes callbacks
Subject subject = loginContext.getSubject();

// ... execute specific application code here ...

loginContext.logout();
} catch(LoginException le) {

// authentication failed
}

The LoginContext retrieves the set of LoginModules to execute from the configuration under the name
BasicConsoleLogin.

Authorization
Authentication provides for more of a black-and-white approach to security. The user (or other entity) is
either authenticated or not. JAAS provides authorization for granting degrees of access to an entity. Each
application can use a policy file that contains a list of permissions for various targets. The policy file pro-
vides a way to grant permissions to both code and principals.

The javax.security.auth.AuthPermission class exists to guard access to the Policy, Subject, LoginContext,
and Configuration objects, providing a layer of security on these classes as well. Consult the documenta-
tion for this class for a full list of permissions that it provides.

The policy file contains a list of grant sections that grant permissions to code or principals. The grant
keyword is used to start a grant section, followed by zero or more optional elements: signedBy,
codeBase, and principal. The basic format looks like the following:

grant signedBy “signer_names”,
codeBase “URL”,
principal principal_class_name “principal_name”,
principal principal_class_name “principal_name”,

617

Java Security

16_574868 ch13.qxd 12/21/04 5:56 PM Page 617

... {

permission permission_class_name “target_name”, “action”,
signedBy “signer_names”;

permission permission_class_name “target_name”, “action”,
signedBy “signer_names”;

...
};

You can only specify signedBy and codeBase a maximum of one time, but the principal element can be
specified more than once. All of these are optional elements. By not specifying any at all, the permissions
specified apply to all executing code, regardless of its source.

As one example of a policy file, the java.policy that is located in the jre/lib/security directory that comes
with JDK 5 has a policy that opens permissions wide to Java extensions:

grant codeBase “file:${{java.ext.dirs}}/*” {
permission java.security.AllPermission;

};

The codeBase element is used to specify all code that is located in the java.ext.dirs (a system property)
directory, which hence grants AllPermission to all code in the Java extensions directory.

The signedBy element is used to grant permissions only when the code is signed by the specified entity.

There are many available permissions in the Java API, such as java.io.FilePermission, java.net
.NetPermission, and java.security.AllPermission. Each permission has its own set of actions, such as
FilePermission, needing to know which operations are valid on a particular file (read, write, and so
forth). Consult the online documentation for specific details on each permission.

Summary
In this chapter, you learned about Java Cryptography and Security. Security is very important in online
systems and systems that have multiple users. You now know some of the basics of security, such as gen-
erating and using keys, including digital signing and key management. You have seen how Java sup-
ports a variety of security mechanisms from data encryption to access control, and you have an
overview of how to go about securing your application.

618

Chapter 13

16_574868 ch13.qxd 12/21/04 5:56 PM Page 618

Packaging and Deploying
Your Java Applications

This chapter describes how to package and deploy your Java applications including client-side
and server-side applications. It discusses technologies like Java Web Start, JAR packaging, JAR
signing, building WAR files, and CLASSPATH manipulation. You’ll walk through the different
types of Java applications and get a brief introduction to each as well as information on a few use-
ful utilities that you can use when creating, configuring, and deploying your own applications.

Examining Java CLASSPATHs
One of the most potentially frustrating aspects of Java is the classpath. If you have coded in Java
even for a short length of time, you’re already familiar with the classpath. It is a system environ-
ment variable that directs the Java Virtual Machine (VM) to a set of classes and/or JAR files. This
is how the VM knows where code used by the program resides.

At times, you wind up needing a class and have no idea which JAR file has this class. You might
add a bunch of JAR files to your classpath, hoping you’ll accidentally add the right one in, never
truly knowing which JAR files are not needed. Many people complain about DLL Hell on
Windows, but a similar mismanagement of the classpath and the many files it points to can create
the same situation with Java. If you use a development environment such as Eclipse, you are
somewhat insulated from this problem because it is easy to manage your classpath through the
GUI. However, in a deployment scenario, you may not have the luxury of a graphical tool to help
manage the classpath. A seemingly small problem (one JAR left off the classpath, for example)
may take seconds to fix if you know where the class is, or — if you don’t know — much longer.

Another problem with classpaths is length limits on the classpath environment variable imposed
by the environment. I’ve seen more than one project with an insane number of JAR files (each with
a long path) specified within the classpath. Sometimes, there is no great solution to this problem.

17_574868 ch14.qxd 12/21/04 5:59 PM Page 619

If the classpath works and nobody needs to tweak it after deployment, you should be fine. However,
long classpaths are troublesome during development and might even grow too long for the environment
space after deployment.

Here are a few suggestions to attempt to manage long classpaths. First, know where your application is
executing from and utilize relative paths instead of absolute paths. Second, attempt to group your appli-
cation and its libraries into as few JAR files as possible. A more complicated but useful solution is group-
ing the common utility JAR files (perhaps third-party JAR files used by your application) and placing
these in the extensions directory within the installed JRE. By default, this extensions directory is
lib/ext beneath the JRE directory. By installing a JAR file as an extension, it no longer needs to appear
on the classpath. You must ensure that the JAR file is placed within the correct JRE though. This might
entail you installing your own JRE with your application, but this too cannot be done lightly. Utilizing
the extensions directory is not a great idea because you are technically not extending the Java environ-
ment, but it is one solution to consider in managing a classpath that is too long.

In hoping to alleviate your burden a little, here are a couple of utility programs that may help you in
managing your classpath. The first class is a straightforward utility that accepts a list of classes stored
inside a file and verifies that each class is present somewhere within the classpath (or in one of the JAR
files in the classpath). The file containing the class list is passed in on the command line. Each line in the
file contains a single fully qualified class name:

import java.io.*;

public class ClassPathVerifier {
public static void main(String args[])
{

try {
BufferedReader br = new BufferedReader(

new InputStreamReader(
new FileInputStream(args[0])));

String clsName=””;

while((clsName = br.readLine()) != null) {
try {

Class.forName(clsName);
System.out.print(“.”);

} catch(Exception e) {
System.out.println(“\nNOT FOUND: “ + clsName);

}
}

br.close();
} catch(IOException ioe) {

System.out.println(“IOException: “ + ioe);
ioe.printStackTrace();

}
}

}

This class uses the simple technique of passing a class name into the Class.forName method. If no
exception is thrown, the class is found. In order to show progress, a single period is printed for each
class that is successfully loaded. If you manage multiple classpaths, this utility can be used to ensure
that a set of classes is always available.

620

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 620

A utility that packs more of a punch is listed next. The purpose of this next utility is to find which JAR
file(s) a class is inside. You need not specify a fully qualified class name — any portion of the class name
and package will do. This means that you can even search for a package instead of a particular class:

import java.io.*;
import java.util.zip.*;
import java.util.StringTokenizer;

public class ClassSearch {
private String m_baseDirectory;
private String m_classToFind;
private int m_resultsCount=0;

A very interesting method that uses a bit more complex code is the searchJarFile. This method,
shown in the following example, actually opens a JAR file and searches inside it for a given class name:

public void searchJarFile(String filePath)
{

try {
FileInputStream fis = new FileInputStream(filePath);
BufferedInputStream bis = new BufferedInputStream(fis);
ZipInputStream zis = new ZipInputStream(bis);
ZipEntry ze = null;

while((ze=zis.getNextEntry()) != null) {
if(ze.isDirectory()) {

continue;
}

if(ze.getName().indexOf(m_classToFind) != -1) {
System.out.println(“ “ + ze.getName() +

“\n (inside “ + filePath + “)”);
m_resultsCount++;

}
}

} catch(Exception e) {
System.out.println(“Exception: “ + e);
e.printStackTrace();

}
}

The findHelper method searches directories and subdirectories for JAR files:

public void findHelper(File dir, int level)
{

int i;
File[] subFiles;

subFiles = dir.listFiles();

for(i=0; i<subFiles.length; i++) {
if(subFiles[i].isFile()) {

if(subFiles[i].getName().toLowerCase().indexOf(“.jar”) != -1) {
// found a jar file, process it

621

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 621

searchJarFile(subFiles[i].getAbsolutePath());
}

} else {
// directory, so recur
findHelper(subFiles[i], level+1);

}
}

}

The method searchClassPath is used to find a class in the JAR files specified in the given classpath:

public void searchClassPath(String classToFind)
{

String classPath = System.getProperty(“java.class.path”);
System.out.println(“Searching classpath: “ + classPath);
StringTokenizer st = new StringTokenizer(classPath, “;”);

m_classToFind = classToFind;

while(st.hasMoreTokens()) {
String jarFileName = st.nextToken();
if(jarFileName != null &&

jarFileName.toLowerCase().indexOf(“.jar”) != -1) {
searchJarFile(jarFileName);

}
}

}

The findClass method is kicked off from the main method and takes two parameters. One parameter is
the base directory that will be used as a starting point to begin the class search. The second parameter is
the class name that you are looking for. If the class name is found in any JAR files that exist in the base
directory or its subdirectories, the JAR filename and location are printed out to the console:

public void findClass(String baseDir, String classToFind)
{

System.out.println(“SEARCHING IN: “ + baseDir);
m_baseDirectory = baseDir;
m_classToFind = classToFind;
m_classToFind = m_classToFind.replaceAll(“\\.”, “/”);

File start = new File(m_baseDirectory);

System.out.println(“SEARCHING FOR: “ + m_classToFind);
System.out.println(“\nSEARCH RESULTS:”);

findHelper(start, 1);

if(m_resultsCount == 0) {
System.out.println(“No results.”);

}
}

622

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 622

The main method shown in the following example is the driver method of the utility class and takes a
base directory and class name for which to search:

public static void main(String args[])
{

if(args.length < 1 || args.length > 2) {
System.out.println(“Incorrect program usage”);
System.out.println(“ java ClassSearch <base directory>” +

“ <class to find>\n”);
System.out.println(“ searches all jar files beneath base” +

“ directory for class\n”);
System.out.println(“”);
System.out.println(“ java ClassSearch <class to find>\n”);
System.out.println(“ searches all jar files in classpath” +

“ for class\n”);
System.exit(1);

}

ClassSearch cs = new ClassSearch();

if(args.length == 1) {
cs.searchClassPath(args[0]);

} else if(args.length == 2) {
cs.findClass(args[0], args[1]);

}
}

}

This class uses the zip library in Java along with the directory search facilities of the File class to search
for a class/package specified on the command line. An alternate usage allows you to search for a class
within the JAR files listed in the classpath. This allows you to find every JAR file that has a class, which
thus resolves a mess in the classpath. Here’s an example usage of the program. This assumes that the
JDK is installed in D:\j2sdk1.5.0:

D:\writing\code>java ClassSearch d:\j2sdk1.5.0 ArrayList
SEARCHING IN: d:\j2sdk1.5.0
SEARCHING FOR: ArrayList

SEARCH RESULTS:
java/util/Arrays$ArrayList.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/concurrent/CopyOnWriteArrayList$1.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/concurrent/CopyOnWriteArrayList$COWIterator.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/concurrent/CopyOnWriteArrayList$COWSubList.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/concurrent/CopyOnWriteArrayList$COWSubListIterator.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/concurrent/CopyOnWriteArrayList.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
sun/swing/BakedArrayList.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)
java/util/ArrayList.class

(inside d:\j2sdk1.5.0\jre\lib\rt.jar)

623

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 623

This execution of the utility shows the various ArrayList classes in the various packages inside
the core runtime JAR that comes with every JRE. If you search for a more obscure class, such as
ByteToCharDBCS_EBCDIC, you’ll find the charsets.jar file in your search results. This utility can be used
to find which JAR file a class is in but also every JAR file that contains this class. You can find a class you
need or resolve classpath confusion if the same class is in a number of JAR files and an older version of a
class you developed is being used although you’ve specified the newer version on the command line.

Investigating the Endorsed Directory
In an installation of a Java Runtime Environment, there are packages that are not part of the standard
Java API. These packages are common third-party libraries and are considered endorsed, which means
they are distributed as an extension to the Java API. One example of an endorsed package is the
org.omg.CORBA package providing CORBA functionality. Because these packages are available to Java
programs, it is possible that there is a conflict when you distribute third-party libraries that already exist
in the endorsed directory. Java provides a mechanism called the Endorsed Standard Override Mechanism,
which gives you a way to install newer versions of libraries in the endorsed directory.

In order to override the endorsed standards, place JAR files in the endorsed directory within the JRE.
This directory is named endorsed and is located in the JRE installation beneath the lib directory, both on
Windows and on Unix. If you have multiple JREs or JDKs installed, make sure you place the JAR files in
the correct endorsed directory such that the VM that executes will recognize these JAR files. If you want
to use a different directory for overriding the endorsed standards, specify it in the java.endorsed.dirs
system property. In this property, you can list one or more directories that have JAR files you wish to
use. These directories are delimited by the value of the File.pathSeparatorChar, which is system-specific.

There is a fixed list of standard API’s that you can override, shown in the following table. Note that you
cannot arbitrarily override a package in the standard Java API.

Packages that Can Be Overridden Packages that Can Be Overridden

javax.rmi.CORBA org.omg.DynamicAny
org.omg.CORBA org.omg.DynamicAny.DynAnyFactoryPackage
org.omg.CORBA.DynAnyPackage org.omg.DynamicAny.DynAnyPackage
org.omg.CORBA.ORBPackage org.omg.IOP
org.omg.CORBA.portable org.omg.IOP.CodecFactoryPackage
org.omg.CORBA.TypeCodePackage org.omg.IOP.CodecPackage
org.omg.CORBA_2_3 org.omg.Messaging
org.omg.CORBA_2_3.portable org.omg.PortableInterceptor
org.omg.CosNaming org.omg.PortableInterceptor.ORBInitInfoPackage
org.omg.CosNaming.NamingContextExtPackage org.omg.PortableServer
org.omg.CosNaming.NamingContextPackage org.omg.PortableServer.CurrentPackage
org.omg.Dynamic

624

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 624

Exploring Java Archives
Java wouldn’t be where it is today without the creation of its archive file format. The JAVA archive,
which programmers generally refer to as a JAR file, is a way to bundle multiple files, including other
JARs, into a single file that is suffixed with the .jar extension. JAR files use the same format to compress
their files as those of the zip format. So, you can open a JAR file in a program that understands the nor-
mal zip compression and edit away. This makes the format of JAR files very portable across different
operating systems because most operating systems understand the zip format or have utilities that were
created for them to manipulate zip files. JAR files can greatly reduce the download time of classes,
images, audio, and other large files by compressing them. Applets and their resources can be com-
pressed into a JAR file, significantly reducing the amount of time it takes to download the applet.

JAR files can also be digitally signed for architectures that require a substantial amount of security
requirements to be imposed on the applications being constructed. By digitally signing a JAR file, you
can always tell who the author of the JAR file was and if it has been tampered with. In Java 5, there have
been two new enhancements of the JAR format:

❑ Faster access to the contents of JAR files has been accomplished with a new parameter addition,
-i, to the command-line JAR tool that allows you to create a JAR file index.

❑ A new API has been added for the delete-on-close mode that is used when opening JAR files.

The major feature that separates the JAR file from a normal zip file is that of its manifest file that is con-
tained in the JAR files META-INF directory. The manifest file allows you to invoke special features like
package sealing and the ability to specify the JAR as an executable JAR file. The manifest file is similar to
the format of a properties file in that it accepts NAME-VALUE pair entries that are used for changing spe-
cific settings about the JAR file. Along with the manifest file, there are also other files that can be created
in the META-INF directory of a JAR file. More about this subject will be discussed subsequently. The new
Java 5 allows you to include an INDEX.LIST in the META-INF directory, which is automatically generated
when you invoke the JAR tool and specify the -i option. This allows for quicker class loading times.

Manipulating JAR files
The Java Development Kit (JDK) contains a command-line tool called the Java Archive Tool that is used to
create JAR files via the command line. You execute the JAR tool by simply typing jar at a console win-
dow. If you can’t get the tool to run, it’s most likely that you don’t have Java set up correctly for your
environment. Reread the install instructions for your environment that comes with your JDK. You can
always run the tool from the JDK/BIN directory, but it is highly recommended that you adjust your envi-
ronment so that you can run the tool from almost anywhere. The correct syntax for executing the JAR
tool is shown in the following example:

jar {ctxu}[vfm0Mi] [jar-file] [manifest-file] [-C dir] files ...

Before you create your first JAR file, it is important to understand the options that can be used to create a
JAR file. Otherwise, it will seem like a big mystery as to why certain options were chosen to create the
JAR file. The following table lists the options and a description of the options for the JAR tool.

625

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 625

Option Description

c This option is simply used to create a new archive.

t This option will list the table of contents for the archive file. This is a great way to
inspect the contents of the JAR file right after you have created it to make sure it was
created successfully and the way you anticipated.
Note: The f option is usually combined with the t option to reduce the amount of
typing you have to do.

x This option is used to extract the specified files or all the files from the JAR file.

u This option allows you to update a JAR file with specified new or changed files. It is
more likely that you will use a tool that knows how to update a zip file format or an
IDE that can update JAR files for you because this task can be quite cumbersome if
you have a lot of files to update.

v The verbose option allows you to get more feedback from the JAR tool as it creates
the JAR. It is very helpful when debugging issues.

f This option specifies that the JAR file to update is on the command line.

m This option signifies that you are supplying the JAR tool with a manifest file that is
to be included in the JAR.

0 The zero option tells the JAR tool to not compress the files and just package them
into the archive.

M This option prevents the default manifest file from being created. Manifest files are
optional in JAR files.

i One of the new features in Java 5, this option is used to generate index information
for the JAR file into its META-INF directory under the file named INDEX.LIST.

C [DIR] This option instructs the JAR tool to change the directory to the one specified and to
JAR the files that are being referenced.

Now it is time to show you just how easy it is to create a JAR file. This example will contain two Java
files and an images directory. Normally, the Java files would be compiled into classes, and the source
code would be removed, but this example simply demonstrates how almost any type of file can be con-
tained in a JAR file. Figure 14-1 shows the directory structure prior to issuing a JAR command.

626

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 626

Figure 14-1

Once you know the files and directories you want to archive, you can issue a JAR tool command with
the options cvf from the root directory and literally compress the entire chess directory as well as any
subdirectories under it. The c option is used to create the archive, the v option specifies verbose, and the
f option signifies that you will be supplying the name of the JAR file to create on the command line.
Here is an example of the JAR tool in action:

C:\>jar -cvf chess.jar chess
added manifest
adding: chess/(in = 0) (out= 0)(stored 0%)
adding: chess/Chess.java(in = 0) (out= 0)(stored 0%)
adding: chess/ChessGUI.java(in = 0) (out= 0)(stored 0%)
adding: chess/images/(in = 0) (out= 0)(stored 0%)
adding: chess/images/board.bmp(in = 0) (out= 0)(stored 0%)

The chess.jar file is now created and contains all the files under the C:\chess directory. There is a
default manifest file that was automatically generated by the JAR tool in the META-INF directory of the
JAR file. It contains nothing more than a version string. Figure 14-2 shows the new JAR structure.

Figure 14-2

images

chess board.bmp

Chess.java
ChessGUI.java meta-inf

Manifest.mf

W#W#

W#W#

images

chess board.bmp

Chess.java
ChessGUI.java

W#W#

W#W#

627

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 627

You can also use the JAR tool to see the contents of the chess.jar file by specifying the t option on the file.
Here is an example of how to view the table of contents of a JAR file:

C:\>jar -tf chess.jar
META-INF/
META-INF/MANIFEST.MF
chess/
chess/Chess.java
chess/ChessGUI.java
chess/images/
chess/images/board.bmp

Besides viewing the contents of a JAR file, you can also extract the contents of the JAR file. This may be
necessary if you ever get into a situation when you need to unpack the JAR to patch or edit files in the
JAR file. To extract a JAR file, you will need to specify the x option. In this example, the xvf options are
used. Refer to the option table in this section for more information on options and their uses:

C:\>jar -xvf chess.jar
created: META-INF/

inflated: META-INF/MANIFEST.MF
created: chess/

extracted: chess/Chess.java
extracted: chess/ChessGUI.java

created: chess/images/
extracted: chess/images/board.bmp

The command simply extracts the JAR file to the current working directory. Now you can edit the files
and repackage them if need be.

Examining the Basic Manifest File
The manifest file can be thought of as a file that contains meta data information about the JAR file it
belongs to. By using the manifest file, you can version control, digitally sign, and seal the JAR files, pack-
ages, and extensions. When you first create your JAR file, if you didn’t specify the -M option, a default
manifest will be created for you. The M option prevents the default manifest file from being created. The
default manifest file looks something like this, depending on the version of Java you are using:

Manifest-Version: 1.0
Created-By: 1.5.0 (Sun Microsystems Inc.)

The manifest file is broken up into two general parts: a main section and an individuals section where
information about different files or packages can be listed. You don’t have to list every file you have in
the JAR file in the manifest file. In fact, you don’t have to list any unless you plan to sign particular files
in the JAR file. If you do, then those files must be listed.

628

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 628

Information in the manifest is broken up by name-value pair entries. The colon (:) character is used to
separate the name from the value. This is similar to property files except for, in property files, the delim-
iter is an equals (=) sign. Any attributes that Java can’t understand are ignored, but the attributes can still
be used by the application. Therefore, these attributes are sometimes referred to as application-specific
attributes. The following table describes several of the most common main attributes you will run across
and gives a brief description of each.

Attribute Description

Manifest-Version The value of this attribute is the manifest file version.

Created-By Generated by the JAR tool, this is the version of Java that was used to cre-
ate the JAR. It also includes the name of the vendor who created the Java
implementation.

Signature-Version The value of this attribute contains the signature version of the JAR file and
must contain a valid version number string with this specific format:
digit+{.digit+}*

Class-Path The class loader uses this value to create an internal search path that will
look for extensions or libraries that this application needs. URLs are sepa-
rated by spaces.

Main-Class This attribute is needed if you are creating a self-executing JAR file. You
need to specify the name of the class file that contains the main method.
When you specify the name, do not include the .class extension, or your
JAR will not execute.

Sealed This attribute has only two possible values: true or false. If true, all the
packages in the JAR file are sealed unless they are defined individually to
be different.

Though the manifest is not a very exciting file to read about, it definitely is worth exploring so that you
have a general understanding of the power and flexibility it provides JAR files with.

Examining Applets and JARs
One of the most common uses for JAR files is to bundle applet code inside of JAR files and make them
accessible, like any other applet via a Web browser. Because of this feature, a special attribute called an
extension in the manifest can be used to incorporate other packages in your applets. For more informa-
tion on applets, see the “Analyzing Applets” section within this chapter.

Here is a list of the extension attributes that can be used to optimize your applets.

629

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 629

Attribute Description

Extension-List This attribute is where you list the optional packages
that you would like to include in your applets. The
package names should be separated by a single
space.

(extension)-Extension-Name The unique name of the package that the Java plug-
in will use to determine if the package is installed is
stored in this attribute.

(extension)-Specification-Version This attribute lets the Java plug-in know which is the
minimum version required of the package to use.

(extension)-Implementation-Version This attribute lets the Java plug-in know which is the
minimal version of the package that is required. If
the version is too old, the plug-in will attempt to
download a newer version of the package.

(extension)-Implementation-Vendor-Id This attribute is used to assign a vendor ID to the
optional package. Again, the Java plug-in will com-
pare the vendor IDs to make sure it is getting the
correct optional package.

(extension)-Implementation-URL In order for the Java plug-in to know where to get
the latest version of the package, this attribute
would have to be set with the URL that tells the
Java plug-in where to download the latest optional
package.

Signing JAR Files
Signing JAR files is important for security-aware applications. It ensures that the JAR file has not been
tampered with and the file is from the original author. JAR files are signed using a special utility tool
called jarsigner, which can be found in your JAVA_HOME/BIN directory. JAR files can also be signed by
using the java.security API via code. The jarsigner tool signs the JAR files by accessing a keystore that
has been created by the keytool utility that is used to create public and private keys, issue certificate
requests, import certificate replies, and determine if public keys belonging to third parties are trusted.
The private key is used to sign the JAR file by the jarsigner tool, and only people who know the private
key’s password can sign the JAR file with it.

When a JAR file is signed by the jarsigner tool, all of the entries in the META-INF directory are signed.
Even nonsignature-related files will be signed. Generally speaking, signature-related files end in the fol-
lowing extensions: *.RSA, *.SF, *.DSA, and SIG-*.

You can sign the JAR file using the Java.security API; however, compared to using the jarsigner tool,
there will be a lot more work for you to do. When a JAR file is successfully signed, it must contain an
updated manifest file, signature file, and signature block file. Entries for each file signed are created in
the manifest file and look like the following example:

Name: com/wrox/SampleSigned.class
SHA1-Digest: fcavHwerE23Ff4355fdsMdS=

630

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 630

Now that you know the theory about JAR signing, it is time to show you a concrete example of how to
sign a JAR and use all the wonderful tools that the Java SDK provides you with. Note that all these tests
will not be with valid certificates or keystores; rather, it will be example keystores that you will create for
testing purposes. This is great when you need to develop applications that require you to sign JAR files
but don’t have access to a certificate or keystore. The following example will show you how to use the
keytool to generate a keystore and create a self-signed test certificate that you can use with the jartool to
sign the chess.jar file that you created earlier in this chapter.

The first thing you want to do is create a keystore that you can use for creating a self-signed certificate.
The following are the steps involved in generating the key:

1. Execute the keytool as shown. This will create a myKeystore file that will contain your key:

C:\>keytool -genkey -keystore myKeystore -alias myself

2. It will prompt you to enter a password for the keystore. Simply enter password:

Enter keystore password: password

3. Next, you will be asked to fill in several lines of data about yourself. Here is what you enter to
generate the key:

What is your first and last name?
[Unknown]: John Doe

What is the name of your organizational unit?
[Unknown]: IT

What is the name of your organization?
[Unknown]: Wrox

What is the name of your City or Locality?
[Unknown]: Springfield

What is the name of your State or Province?
[Unknown]: Ohio

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=John Doe, OU=IT, O=Wrox, L=Springfield, ST=Ohio, C=US correct?
[no]: Yes

4. The last step is to enter a password for the private key. Here, you’ll see the word password
entered again:

Enter key password for <myself>
(RETURN if same as keystore password): password

Your new myKeystore file should be generated. You can open it up and view it in a text editor if you
want, but the majority of the contents are encrypted. Even though you have a keystore, you still cannot
sign a JAR file until you have a certificate that you can use for signing. Fortunately, the keytool is able to
generate a self-signed certificate for you. This is simply done by issuing the following command:

C:\>keytool -selfcert -alias myself -keystore myKeystore

631

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 631

This command will prompt you for your keystore password. When you created the keystore, you made
it using the word password as your password so that is what you should enter. This command can some-
times take a minute or two to complete, depending on your system:

Enter keystore password: password

You now have a certificate and are ready to sign the JAR file. However, how do you know for sure that the
certificate and the keystore are okay? The easiest way is to issue a keytool command with the option -list
on the command line. This will display the contents of the keystore. Here is the output of the command:

C:\>keytool -list -keystore myKeystore
Enter keystore password: password

Again, you have to enter your password to access the information in the keystore. The output after
entering your password is shown in the following example:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

myself, Jul 21, 2004, keyEntry,
Certificate fingerprint (MD5): 96:0B:2C:20:EA:DB:87:7A:64:DA:9F:68:21:85:B6:9A

The output shows the type of keystore you are using, the provider, and the certificate fingerprint. If you
get the above printout, you are ready to sign the JAR file. In order to sign the JAR file, you must now use
the jarsigner tool. Taking the keystore you generated earlier, issue the following command at a command
prompt:

C:\>jarsigner -keystore myKeystore chess.jar myself
Enter Passphrase for keystore: password

Warning: The signer certificate will expire within six months.

You have now successfully signed your first JAR file! To verify that the jarsigning tool successfully
signed the JAR file that you specified, extract the JAR file and review its contents. You should now see
two new files in the JAR file: one called Myself.dsa and the other called Myself.sf. The .dsa (digital signa-
ture) file is unreadable, but the .sf file can be read. The contents of it are shown in the following example:

Signature-Version: 1.0
Created-By: 1.5.0 (Sun Microsystems Inc.)
SHA1-Digest-Manifest-Main-Attributes: XpKykodQ7e3bKKW8wqLFO8VocOU=
SHA1-Digest-Manifest: eL4xJ2eU5oyO7h4VVYW0hs1pEj0=

Name: chess/images/board.bmp
SHA1-Digest: wvxwx9Dqd+jbKoe8e7raVxSfNzI=

Name: chess/ChessGUI.java
SHA1-Digest: JlWKkQ9l5/82bHxMdf4nzrmphH0=

Name: chess/Chess.java
SHA1-Digest: Y4jUlkFH64RojRERTRBEIZRC+uc=

632

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 632

These three new entries show the signature for each of the files that were signed by the jarsigner. These
entries are now also shown in the manifest.mf file:

Manifest-Version: 1.0
Created-By: 1.5.0(Sun Microsystems Inc.)

Name: chess/images/board.bmp
SHA1-Digest: 2jmj7l5rSw0yVb/vlWAYkK/YBwk=

Name: chess/ChessGUI.java
SHA1-Digest: 2jmj7l5rSw0yVb/vlWAYkK/YBwk=

Name: chess/Chess.java
SHA1-Digest: 2jmj7l5rSw0yVb/vlWAYkK/YBwk=

Another way to verify that the jarsigner signed the JAR file correctly is to run the jarsigner tool with
the -verify option on the JAR file you want to verify. So, go ahead and issue the following command
on the JAR file you just signed:

C:\>jarsigner -verbose -verify chess.jar

You should see the following output if it was successful:

289 Wed July 21 21:28:58 EDT 2004 META-INF/MANIFEST.MF
410 Wed July 21 21:28:58 EDT 2004 META-INF/MYSELF.SF

1008 Wed July 21 21:28:58 EDT 2004 META-INF/MYSELF.DSA
0 Wed July 21 13:36:18 EDT 2004 META-INF/
0 Wed July 21 13:27:02 EDT 2004 chess/

sm 0 Wed July 21 13:26:32 EDT 2004 chess/Chess.java
sm 0 Wed July 21 13:26:42 EDT 2004 chess/ChessGUI.java

0 Wed July 21 13:27:14 EDT 2004 chess/images/
sm 0 Wed July 21 13:27:08 EDT 2004 chess/images/board.bmp

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore
i = at least one certificate was found in identity scope

jar verified.

If the validation failed, the jarsigner tool would either throw a security exception, or, if the JAR file was
not signed at all, it would send a message back stating that the JAR file is unsigned (signature missing or
not parsable).

If you have made it through all of these steps, congratulations! You now know how to sign your own
JAR files. This is critical when you need to ensure security on a JAR file. JAR files are generally signed
when using Java Web Start applications and especially applets, but signing can definitely be done for all
the JAR files you create.

JAR files can also be signed by multiple people. What will happen is the signatures for each of the peo-
ple who ran the jarsigner tool will be stored in the META-INF directory just as is the case when one per-
son signs it. You can even sign the JAR file with different versions of the JDK so that there are a lot of

633

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 633

security options you can do using the tools that have been mentioned for signing JAR files and creating
keystores. Before moving on, take a closer look at the options that can be used with the jarsigner tool.

Option Description

keystore <url> This option is required when signing a JAR file and will default
to the .keystore file in your user.home directory if you do not specify
the keystore file to use. You can specify a full path and filename
of the keystore file for the URL parameter.

storepass <password> This is used to supply the password that is required to access the
keystore you plan to use when signing your JAR file.

storetype <storetype> This is used to specify the keystore type to be used. The security
.properties file has an entry called keystore.type, and the jarsigner
tool will default to that value if no storetype is provided.

keypass <password> This is your password for your private key if it is different from the
store password. If you don’t supply this option, you will be
prompted for the password, if necessary.

sigfile <filename> This specifies the base of the filename to use for generating the .sf
and .dsa files. This option allows you to override the default values
generated by the jarsigner tool.

signedjar <filename> You can specify another name for the JAR file that will be signed. If
you don’t specify a name, the JAR file you are issuing the command
on is overwritten. For example, you could use chess_secure.jar for the
name if you want to have signed and unsigned copies of chess.jar.

verify <jarfile> This is an option for verifying that the JAR file is signed properly.

verbose Verbose tells the jarsigner tool to output more information during the
signing process to help with debugging issues.

certs This option should be used with verbose and verify together. It will
display certificate information for each signer of the JAR file.

tsa <url> This allows you to specify the location of the Time-Stamping
Authority.

Examining the JAR Index Option
Downloading JAR files that are required by applets can be slow and painful, and searching them for the
appropriate classes they contain used to be very linear. Linear searching of a JAR file for its class can
result in slow performance, wasted bandwidth, and waiting too long to initiate a download of a JAR file
the applet may be missing. With the JARIndex algorithm, all the JAR files in an applet can be stored into
an index file, which thus makes class loading times much faster — especially in determining what needs
to be downloaded.

634

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 634

The jar tool has a new option, -i, which means index. This option will generate index information
about the classes, packages, and resources that exist inside the JAR file. This makes access times much
quicker. The information is stored in a small text file under the META-INF directory called INDEX.LIST.
When the JAR is accessed by the class loader, it reads the INDEX.LIST file into a hash map that will
contain all the files and package names in the hash map. Instead of searching linearly in the JAR file for
the class file or resource that the class loader needs, it can now query the hash map, resulting in quicker
access times. The INDEX.LIST file is always trusted by the class loader, so manipulating it manually is
not wise. If you make a mistake and the class loader can’t locate a resource or file, it will throw an
InvalidJarIndexException so that you can capture the error and correct it. You can generate an index of
the JAR file chess.jar that you created in previous examples by issuing the following command:

C:\>jar -iv chess.jar

The contents of the JAR file now contain an INDEX.LIST file in the META-INF directory:

C:\>jar -tf chess.jar
META-INF/INDEX.LIST
META-INF/
META-INF/MANIFEST.MF
chess/
chess/Chess.java
chess/ChessGUI.java
chess/images/
chess/images/board.bmp

The INDEX.LIST file contains the following information:

JarIndex-Version: 1.0

chess.jar
chess
chess/images

The INDEX.LIST file is simply text and is compressed inside the JAR file, so the memory footprint of the
INDEX.LIST file is very light, to say the least.

Creating an Executable JAR
Java supports the ability to make JAR files executable. If a JAR file is executable, it can be run from a
console or command prompt by typing:

java –jar jar-file-name

Also, if you are in Windows and your application is GUI-driven, simply double-click an executable JAR,
and it will automatically run.

635

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 635

Making your JAR file executable is extremely simple. Just follow these procedures when creating your
JAR file, and you will instantly be able to make it executable:

1. Compile all of your Java source code.

2. Create a manifest file, and enter in (at a bare minimum) the Manifest-Version and Main-Class
properties. The Main-Class should point to the name of the class that contains the main method
in the JAR file:

Manifest-Version: 1.0
Main-Class: Test

3. Create the JAR file using the following syntax:

Jar –cmf myManifest.mf test.jar *

4. Execute the JAR using the -jar option:

java –jar test.jar

The test.jar that was created should now execute without any problem if you specified the appropriate
class in the manifest file that contains the main method for the application. It is extremely useful to make
JAR files self-executing when the JAR files are GUI-driven applications and not based upon initial user
input that would normally be supplied to the program via its ARG list in the main method of the
application.

Analyzing Applets
Java applets are one of the very elite features of the Java programming language. Applets are programs
that are designed to run within Web browsers that are compatible with and support Java. Applets can be
embedded directly in HTML and can be used on Web pages to process user input or display information
such as the current weather forecast. Applets can also exist outside of the Web browser and can have a
much more robust feature set built into them like a standalone application would. The downside of mak-
ing an applet that contains the same amount of features as say a standalone Swing application is that,
the larger the applet, the more time it would take to download the applet for the user to use. The reason
for this is that applets are downloaded every time a user accesses the Web page containing the applet.
However, this is becoming less of an issue as the caching abilities of the Java plug-in improve with each
new release of Java.

Basic Anatomy of an Applet
The basic anatomy of an applet is shown in the following class. You’ll notice that there is no main
method as is required by a standard Java application. Applets do not require such a method and only
require you to extend the class that will be run from the Applet class. Instead of having a starting point
method, applets have methods that are event-driven. There are five basic event-driven methods that are
very useful when developing a basic applet: init, start, stop, destroy, and paint. These methods
are demonstrated in the following code:

636

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 636

import javax.swing.*;
import java.awt.*;

public class Welcome extends JApplet {

public void init() {
System.out.prinln(“Initializing Applet”);
repaint();

}

public void start() {
System.out.println(“Starting Applet”);
repaint();

}

public void paint(Graphics g) {
g.drawString(“Welcome to Java Applets!”, 100, 50);

}

public void stop() {
System.out.println(“Stopping Applet”);
repaint();

}

public void destroy() {
System.out.println(“Destroying Applet”);
repaint();

}

}

The five methods shown in the code above are described in the following table.

Method Description

init This method is used to initialize the applet when it is either loaded for the first time
or reloaded thereafter.

start After the applet has been initialized, the start method will be called. Here, you can
fire off threads or begin execution of code.

stop If the user leaves the Web page that the applet is on or exits the Web browser, this
method is called. This allows you a chance to clean up code such as threads or code
that is in the middle of being executed.

destroy This method is your last chance to perform any final cleanup that is necessary before
the applet is unloaded.

paint The paint method is called any time the GUI needs to be updated based on users’
interaction with the applet.

637

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 637

You do not have to override all of the above events to get a basic applet to work. For example, you could
just override the paint method that displays a string containing the words, “Hello World!” and the
applet would function just fine. There are also many other event methods that you can override that will
allow you to react to user actions. For example, if you need to capture the mouse-down event, you could
do this by overriding the method mouseDown. These are standard AWT events. In more advanced applet
implementations, you would most likely use Swing to build your applet.

Packaging an Applet for Execution
Applets are not executed the same way as normal Java applications. They are generally embedded in an
HTML page and executed by a Java-compatible browser such as Internet Explorer. Internet Explorer
uses the Java plug-in to execute applet code. For development purposes, you can also execute applets
that are embedded in HTML files by using the appletviewer command. For example:

appletviewer com/wrox/Welcome.html

The example above executes the applet that is embedded in the Welcome.html file. The HTML code is
shown in the following example:

<HTML>
<HEAD>

<TITLE> Welcome to Java Applet </TITLE>
</HEAD>
<BODY>

<APPLET CODE=”Welcome.class” CODEBASE=”com/wrox/” WIDTH=200 HEIGHT=50>
<PARAM NAME=”exampleParam” VALUE=”whatever”>

</APPLET>
</BODY>

</HTML>

The <APPLET> and </APPLET> tags designate the specific tags belonging to the applet that will be exe-
cuting. The CODE attribute is used to reference the class name that contains the compiled applet class.
The CODEBASE attribute is optional and specifies the base directory of where the applet’s class is
stored. If you do not use this attribute, then the directory where the HTML file resides is used as the base
directory.

The <PARAM>and </PARAM> tags allow you to specify specific parameters that you may want to pass to
the applet when it is loaded. These tags have two attributes: a NAME and a VALUE. The VALUE can
then be retrieved in code via the init method of the applet as depicted in the following example:

public void init() {
String sValue = getParameter(“exampleParam”);

if (sValue != null) {
// This will print out the value “whatever”
System.out.println(sValue);

}
}

The getParameter method is used to retrieve the value of a specified parameter. In this case, you are
retrieving the exampleParam value and displaying it to the user.

638

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 638

Examining Applet Security
When creating an applet and deploying it, there are certain security restrictions that are enforced upon
applets by the Java Environment. Applets usually cannot make network connections to any other
machines except to that of the host they were downloaded from. Applets are generally restricted from
writing or reading files from the client’s machine. Also, applets cannot start applications that reside on
the client’s machine. These are not all the restrictions that are enforced on applets, but rather the most
obvious. You can relax security restrictions by using SecurityObjects and Access Control Lists.

Applets cannot read or write files if they are considered untrusted. All applets that are downloaded are
considered untrusted unless specified otherwise. In order to make an applet trusted, applets must be
signed by an identity marked as trusted in your database of identities. Generally, your Web browser can
also ask you if you trust the server that the applet is coming from. This aids in giving the applets more
rights to your computer. When developing applets on your machine, they are generally trusted because
they are being accessed from your local machine. So, you may not see the security restrictions that a
remote user would see when downloading your applet. It is important that you understand what your
applet users can and cannot do before deploying your applet. Refer to your Java documentation for
more information on Applet Security specifics.

Exploring Web Applications
Web applications are applications that can be deployed on application servers as Web Archive files or, as
the Java community calls them, WAR files. WAR files are the same format as JAR files, and, in fact,
developers use the JAR tool to create WAR files. The difference is the directory structure and files that
comprise the WAR file are different than a standard JAR. WAR files generally contain JSPs, servlets,
HTML, images, audio files, XML files, and numerous other files that you may find while surfing a nor-
mal Web site.

So, static and dynamic content make up WAR files, but WAR files themselves are used for two basic rea-
sons. One is to be front-end presentation oriented, concentrating heavily on user experience. The second
is a service-oriented approach, which means that the WAR file is used to provide a service to other appli-
cations that are calling it. The most common term used for this type of Web application is Web Service.
You can have an enormous architecture that is comprised of Web Services that may use the Simple Object
Access Protocol (otherwise known as SOAP) to communicate. If you add security on top of the SOAP
layer, you will have a very complicated system to package and deploy because you will need to manage
certificates, keystores, signed JARs, SSL, and other security-related components and protocols.
Therefore, WAR files can become much more difficult to deploy in enterprise-level usages.

However, in its simplest form, WAR files are very easy to use and are a dream for packaging and com-
pressing Web site resources that are comprised of static and dynamic data like form processing or shop-
ping carts. The WAR file format allows the whole Web site to be portable and makes it very easy to
deploy on other vendor application servers that are J2EE compliant.

639

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 639

Examining the WAR Directory Structure
As stated previously, there are differences between a JAR file and a WAR file. WAR files have additional
file and directory structures that are used for deploying the WAR file on to the application server of
choice. Figure 14-3 is an example of a Web application that is deployed on Tomcat.

Figure 14-3

The above is the forum example Web application directory structure that was used in Chapter 6. This
file is named forum.war, and, at the root level, it contains all the JSPs needed for the user interface
components. The images directory simply stores images that are used by the JSPs. The WEB-INF is the
important directory and is the directory that distinguishes a WAR file from a JAR file. The web.xml in
the directory is a required file and is officially called the Web application deployment descriptor. The
classes directory is where you would store your compiled classes that can be used by JSPs or servlets.
The libs directory contains all the necessary JAR files to make your Web application work.

Understanding the WAR Deployment Descriptor
The Web application deployment descriptor is used to configure your Web application. In this example,
this deployment descriptor is called web.xml. The deployment descriptor contains the following basic
XML elements that are configurable and must appear in this order.

Element Description

icon The icon element has two child elements that represent the small icon and
the large icon for a GUI tool.

display-name This element contains a short name this is intended for tools to use.
It doesn’t have to be unique.

description This element is used to describe information to the parent element and is
used in a number of different elements.

images

forum

file.png

Category.class
Driver.class
Post.class
Topic.class

folders.png

index.jsp
newcategory.jsp
newpost.jsp
newtopic.jsp
post.jsp
topic.jsp

WEB-INF

web.xml
web-app_2_3.dtd

cglib-2.0-rc2.jar
commons-collections-2.1.jar
commons-logging-1.0.3.jar
dom4j-1.4.jar

classes

libs

640

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 640

Element Description

distributable By having the distributable element present, you are signifying that the
Web application is programmed to be distributed in a servlet container.

context-param This element is used to initialize a Web application’s servlet context.

filter Filter elements are specifically used to map servlets or URL patterns for
Web applications.

filter-mapping The filter-mapping element is used by the container to decide which filters
to map a request to.

listener This element and its subelements are used to declare Web application lis-
tener beans. You simply specify the class that is the listener bean.

servlet The servlet element and its subelements are used to designate a specific
class or JSP as a servlet and to provide specific configurations for that
servlet.

servlet-mapping This element simply defines a mapping between a servlet and a specific
URL pattern.

session-config This is a useful element for configuring the session information for a Web
application.

mime-mapping The mime-mapping element allows you to map between a file extension
and a mime type.

welcome-file-list This is the element that is used to determine the first page to be displayed
when users hit your Web application.

error-page When errors occur, the mapping in this element allows you to map and
error code to an error page. Very handy.

taglib You should use this element to describe the JSP tag library.

resource-ref This element allows you to specify external resources to use in your Web
application.

security-constraint With this element you can associate security restraints with a particular
resource.

login-config This element is used to specify the authentication method to be used for
the Web application as well as any authentication constraints.

security-role This element allows you to define security roles for your Web application.

env-entry This element is used to specify environment entries that can be picked up
by classes, JSPs, and so forth that exist in your Web application.

Though the table explains the different elements and attributes used when creating a deployment
descriptor, it can be confusing to try and understand how to use them. The following is a sample
web.xml file for Tomcat that will hopefully shed some light on how to appropriately use some of the ele-
ments discussed in the previous table:

641

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 641

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“ http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>

Deployment descriptors are XML files; therefore, they require a standard prolog that is displayed in the
previous example:

<display-name>HelloWAR</display-name>
<description> HelloWAR </description>

<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>HelloServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

The <servlet> element allows you to specify information about a servlet that exists in the Web applica-
tion. In this case, I am referring to the servlet, HelloServlet. The <load-on-startup> attribute signifies
that the application server should load the servlet upon startup:

<!--Creating mime type mappings -->
<mime-mapping>

<extension>txt</extension>
<mime-type>text/plain</mime-type>

</mime-mapping>
<mime-mapping>

<extension>html</extension>
<mime-type>text/html</mime-type>

</mime-mapping>
<mime-mapping>

<extension>htm</extension>
<mime-type>text/html</mime-type>

</mime-mapping>
<mime-mapping>

<extension>gif</extension>
<mime-type>image/gif</mime-type>

</mime-mapping>
<mime-mapping>

<extension>jpg</extension>
<mime-type>image/jpeg</mime-type>

</mime-mapping>

The <mime-mapping> element contains two attributes called <mime-type> and <extension>. These
are used specifically for mapping mime types to file extensions:

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

642

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 642

One of the most common elements, <welcome-file-list>, is shown in the previous example. This ele-
ment has an attribute called <welcome-file> that lets you specify the file to be loaded when a user first
accesses your Web application:

<security-constraint>
<web-resource-collection>

<web-resource-name>Hello View</web-resource-name>
<url-pattern>/hello.jsp</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>tomcat</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Hello View</realm-name>

</login-config>

<security-role>
<description>

An example role defined in “conf/tomcat-users.xml”
</description>
<role-name>tomcat</role-name>

</security-role>

</web-app>

The <security-constraint> element contains attributes that allow you to assign roles to specific Web
resources. In this example, the role of Tomcat is being assigned to hello.jsp. This means that only users
with the specified role of Tomcat can view the JSP. The <security-role> element shows you how to
define a role in the Web application deployment descriptor.

Packaging Enterprise Java Beans
Chapter 10 discusses the various classes that are needed to develop different types of EJBs and also has a
very good loan calculator example that will help you get your feet wet with EJBs. The inherent problem
with deploying EJBs is that the EJB specification isn’t specific enough about the deployment process and
allows the vendors of application servers to interpret the art of deploying EJBs the way they see fit. Now,
the vendors have an opportunity to interject their own proprietary deployment requirements. This makes
it a painful experience if you want to move your EJBs from one vendor to another. So, the best advice is to
simply read the specific documentation on the vendor of choice that you want to house your EJBs.

All is not lost though in terms of deployment standardization. There is one common file that must exist
in all EJBs, and that is the ejb-jar.xml that resides in the META-INF directory of your EJBs’ JAR file. The
ejb-jar.xml file is the basic EJB deployment descriptor that must be used by the EJB container to locate
the necessary classes, interfaces, security restrictions, and transaction management support. The ejb-
jar.xml file will usually coexist with the vendor’s application server deployment descriptor. For example,
if you were to use JBoss as your application server, you would have to also configure a jboss.xml file
with your EJBs. Chapter 10 has a very good demonstration and explanation of what type of information
is contained in the ejb-jar.xml file. It is recommended that you review the examples that are in Chapter
10 for specific information on how to deploy and package an EJB application.

643

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 643

Inspecting Enterprise Archives
Once you have developed your EJBs and WARs, you should have all the components of a full applica-
tion — from the business logic (and maybe database logic) to the user interface for the Web. You may
have just a couple files or perhaps a large number of files. Either way, you might be looking at your
application and wondering if there is a way to tidy up that directory. If you have multiple applications
that use distinct EJBs and WARs, then you’re almost definitely thinking “there must be some way to eas-
ily group and distinguish these two applications.” You would be correct in thinking this, and this is
where Enterprise Archives (EARs) come into the picture. Even though mistakenly called Enterprise
Applications at times, this name might be more meaningful, because inside an EAR file resides all your
EJBs and WARs.

An EAR file has its own descriptor file, much like EJBs and WARs. Other than that the directory struc-
ture of an EAR is arbitrary, you can develop any scheme that best suits your application. An EAR file
may look like Figure 14-4. Note that there is one WAR file but multiple EJB JAR files packaged inside the
EAR. This grouping is useful to make your application a single logical unit.

Figure 14-4

The EAR Descriptor File
The descriptor file is named application.xml and is located in the META-INF directory in the EAR file.
The main component of this file is the module element. The following is an example of this file:

<?xml version=”1.0” encoding=”UTF-8”?>

<application xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd”
version=”1.4”>

<display-name>Example EAR file</display-name>
<description>Simple example</description>

WAR
User Interface for the Web

EJBs packaged inside a JAR file

More EJBs packaged inside a JAR file

644

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 644

<module>
<ejb>ejb1.jar</ejb>

</module>

<module>
<ejb>ejb2.jar</ejb>

</module>

<module>
<web>

<web-uri>mainUI.war</web-uri>
<context-root>web</context-root>

</web>
</module>

</application>

Each instance of the module element specifies a particular module to load. This module can be an EJB
(using the ejb element), a Web application (using the Web element), a connector (using the connector ele-
ment), or a Java client module (using the Java element). The context-root element for Web applications
specifies the root directory to use for the execution of the Web application.

Deployment Scenario
The previous section described a straightforward approach to packaging and using EAR files. What hap-
pens, though, if you have multiple applications that all depend upon some central component? Take a
look at Figure 14-5. In this scenario, a second EAR file depends upon a component packaged in the first.

Figure 14-5

APPLICATION A

WAR
User Interface for

the Web

APPLICATION B

EJBs packaged
inside a jar

More EJBs
packaged inside a

JAR file

WAR
User Interface for

the Web

EJBs packaged
inside a jar

645

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 645

Though this scenario may seem like it solves the problem, it just ends up creating new deployment prob-
lems. First, application A has no dependency on application B, but the opposite is not true. If application
A were to fail or be brought down for maintenance, then application B would also be down. Second, you
have to create some way of adding the stub code to application B that is necessary to utilize the EJBs in
application A. This is not addressed by the J2EE specification.

Another option is to package all these components into the same EAR file, effectively combining multi-
ple applications into a single file. Of course, this approach has problems, too. In the real world, two dif-
ferent applications will have different deployment and uptime requirements. One application might
have to always be available to its users, but the other one might have different memory requirements or
only need to be up during the night. This makes packaging both applications within the same EAR file a
poor choice due to the disparate requirements.

Another significant problem whenever there is a shared component between two or more applications is
version incompatibility. Because the shared component usually has a single owning entity, classes inside
the shared component might change method signatures, and this may break other applications that
weren’t expecting the method to change.

So, any route you choose seems to have its own set of problems. There is one other deployment scenario.
You can take the shared component and place it inside each application’s EAR file. This makes one EAR
file totally separate from another. This still presents a deployment problem though. What happens when
the API changes but the component used by all EARs is only updated in one EAR? This scenario makes
it easy for different EAR files to all have different versions of this common component.

The basic approach you should take when deciding how to package your various enterprise applications
and shared components is to consider each deployment scenario and pick the one that will (hopefully)
cause the fewest nightmares for you in the future. Consult the following table for a summary of these
deployment scenarios and rough guidelines as to when to use each one.

Scenario When to Use

Shared component external to EARs — Applications have different runtime
requirements.
— API of shared component is not expected
to change, or it is easy to update all applica-
tions that use the shared API.

Shared component packaged in a single EAR — Applications have compatible uptime
requirements and system requirements.
— API of shared component is not expected
to change, or it is easy to update all applica-
tions that use the shared API.

Placing shared component in each EAR — Each EAR is on a different system, and
the systems cannot communicate with each
other.
— The shared component is expected to stay
relatively the same over time, or updating
each EAR with a new version is easy.

646

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 646

Jumping into Java Web Star t
Web-based solutions have become the standard for delivering client/server applications even though
Web browsers were never intended to be used to deliver anything other than static content. Developers
continue to stretch the bounds of Web technologies in search of the best solution. Applets appeared to be
the answer because they delivered such a strong feature set and were able to be embedded in a Java-
supporting Web browser. Applets still require a significant amount of download time and are still not
as rich as a thick client is. Sun is again proving to be very innovative and removing the limitations of
browser-based technology by introducing a solid, rich client technology called Java Web Start. Java Web
Start is based on the Java Network Launch Protocol (JNLP) and the Java 2 platform. Java Web Start was
introduced as a standard component in Java 1.4. Because of Java Web Start’s unique architecture, it only
takes one click to download the application you wish to launch from a Web browser. The link that you
click is the JNLP file that tells Java to launch Web Start and download the application.

This section will teach you how to package and deploy a Java Web Start application through an example
of an all-time favorite game, tic-tac-toe.

Examining the TicTacToe Example
This example goes into detail on how to create, package, deploy, and launch a Java Web Start applica-
tion. The game is not exceptionally smart and could be enhanced by adding an artificial intelligence (AI)
capability. An AI would have been overkill for the purpose of this demonstration. The following table is
a list of files that make up the TicTacToe example.

File Description

tictactoe.jnlp This is the Java Network Launch Protocol file that contains all the specific
attributes to tell Java Web Start how to launch the application. It is also the file
that the user clicks on to execute the application.

ttt.htm This HTML file contains a link to the tictactoe.jnlp file used to launch the
application.

TTTMain.java This is the source file with the main method in it that drives the application.

TTTGui.java This file contains all the Swing code necessary to handle the user interaction
with the game.

TTTLogic.java This file contains all the game logic and is used to determine who wins, whose
move it is, and what positions are open on the board. This is the perfect spot
to add an artificial intelligence capability.

tictactoe.jar This is the signed JAR file that contains the compiled code and will be
launched by Java Web Start.

The tictactoe.jar file, the ttt.htm file, and the tictactoe.jnlp must all be deployed to a Web server so that
the user can download the application. When the user clicks the link that is in the ttt.htm file, the follow-
ing window is displayed to the user (see Figure 14-6).

647

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 647

Figure 14-6

This window is displayed until the application is downloaded. Once it is downloaded, the application is
launched, and the user can begin using it. If there is no specific code to tie the application to network
use, the user can also use the application offline! Try that with an applet! The TicTacToe application
shown in Figure 14-7 appears as any normal thick client would.

Figure 14-7

This is what makes Java Web Start so powerful and the technology of the future. It is just now starting to
catch on in the world of distributed computing and is proving to have all the security features required
to be a strong enterprise solution to complicated applications that require heavy client-side processing.
Also, by moving the processing to the client, you eliminate the load on the server.

Examing the TicTacToe.JNLP
Before you actually create and deploy the JNLP file, you do have to make sure that whatever Web server
you are using is configured to properly handle the JNLP mime type. To do this, simply add an entry in
your deployment descriptor for the JNLP extension. In Tomcat, you can do this in the WEB-
INF/web.xml file with the following XML entry:

<mime-mapping>
<extension>jnlp</extension>
<mime-type>application/x-java-jnlp-file</mime-type>

</mime-mapping>

TTT Team

Powered by Java (tm) Web Start

TIC TAC TOE

648

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 648

Now that you are sure the Web server can handle the JNLP extension, you can create the JNLP file:

<?xml version=”1.0” encoding=”utf-8”?>
<jnlp

spec=”1.0+”
codebase=”http://localhost/ttt”
href=”tictactoe.jnlp”>

The <spec> attribute is used to denote the JNLP specification version. The next attribute, <codebase>,
is used as a base directory to locate resources on the Web server. The final attribute, href, is used to
point to the JNLP file:

<information>
<title>TIC TAC TOE</title>
<vendor>TTT Team</vendor>
<homepage href=”http://localhost/ttt/ttt.htm”/>

<description>TICTACTOE GAME</description>

<description kind=”short”>
A demo of the capabilities of JAVA WebStart.

</description>

<offline-allowed/>
</information>

The <information> element supplies Java Web Start with general information about the application. It
has a <title> attribute to signify the title of the application. It also has a <vendor> attribute to denote
the company, organization, or supplier of the application. There is also a <homepage> attribute that is
used to tell the person where to go to get more information on the application. The <description>
attribute is used to give the application a description. There is also a short <description> attribute if
you need to supply one; finally, there is the <offline-allowed> attribute that signifies the application
can be used offline. If this attribute is not supplied, the application cannot be launched without being
first connected to the network:

<security>
<all-permissions/>

</security>
<resources>

<j2se version=”1.5”/>
<jar href=”tictactoe.jar”/>

</resources>
<application-desc main-class=”com.wrox.TTTMain”/>

</jnlp>

649

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 649

The security of a Java Web Start application is the same as that of an applet. It is very restrictive unless
instructed otherwise. You are specifying an <all-permissions/> attribute that gives the application
full access to the client’s machine. The <resources> element defines attributes that are needed in order
to run properly. The <j2se> attribute signifies which Java platform to run the application on. The <jar>
attribute tells Java Web Start which classes are required to run the application. Keep in mind that there
can be multiple <jar> tags depending on your needs. The final element is the <application-desc>
element that is instructing Java Web Start to run the com.wrox.TTTMain class. The importance of the
<application-desc> tag is to let Java Web Start know that it is to run an application and not an applet:

<html>
<head>
<meta http-equiv=”Content-Language” content=”en-us”>
<meta http-equiv=”Content-Type” content=”text/html; charset=windows-1252”>

<title>TIC TAC TOE GAME!</title>
</head>

<body topmargin=”0” leftmargin=”0” link=”#000080” vlink=”#000080”>

<center>Click Here to Launch TICTACTOE Game</center>

</body>
</html>

The ttt.htm file is shown in the previous example and is illustrated to teach you how to set up an HTML
file to launch a Java Web Start application. As you can see, all that is required is to have the HREF tag
point to the JNLP file.

TTTMain.java
The TTTMain class is the simple driver class for the application. Java Web Start calls this class to launch
the application:

public class TTTMain {
public static void main(String[] args) {

TTTLogic tLogic = new TTTLogic();
TTTGui tg = new TTTGui(tLogic);

// Set the GUI visible
tg.setVisible(true);

}
}

This class creates the TTTLogic object that is to be used by the GUI. So, when users interact with the
application, the GUI can track their interactions using this object.

TTTLogic.java
This class contains the most complicated code for the example. It keeps track of player moves, player
turns, player positions, and if there is a winner or not. There is a member variable called m_nBoard,
which is a two-dimensional array that always keeps track of which squares are occupied on the board:

650

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 650

public class TTTLogic {
int [][]m_nBoard;
int m_nX, m_nO;

boolean m_bXTurn;

The TTTLogic constructor sets the values for X and O in the m_nX and m_nO variables and sets the
default to turn to X. Finally, it clears the board array by setting it with all zeros:

public TTTLogic() {

m_nX = 1;
m_nO = 2;

m_bXTurn = true;

// Initialize array
m_nBoard = new int[3][3];

// Clear the board
for (int x = 0; x < 3; x++){

for (int y = 0; y < 3; y++) {
m_nBoard[x][y] = 0;

}
}

}

The getMarker method takes an x and y parameter. The x parameter represents a row, and the y parame-
ter represents a column. The method will return the value for the particular square on the board that is
requested. For example, an x value of 0 and a y value of 2 would result in the value of the upper-right
corner square being returned:

public int getMarker(int x, int y) {
return m_nBoard[x][y];

}

The setMarker is the opposite of getMarker and actually sets the marker value of a specified square. It
knows which mark to put in by determining whose turn it is using the this.getXTurn method. Once the
marker has been set, the method advances the turn to the next player:

public boolean setMarker(int x, int y) {
int nIsFree = 0;

nIsFree = getMarker(x, y);

if (nIsFree == 0) {
if (this.getXTurn() == true) {

m_nBoard[x][y] = m_nX;
this.setXTurn(false);

} else {
m_nBoard[x][y] = m_nO;
this.setXTurn(true);

}

651

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 651

return true;
}
return false;

}

The getWinner method is a very large method that determines who the winner is by executing different
checks on the board. The checking for the O winner was purposely removed to save space in the chapter:

public int getWinner() {
// 1 = X
// 2 = O
int nWinner = 0;
int nCount = 0;

// -------- CHECK FOR an X winner
// check the across boxes first for X
for (int x = 0; x < 3; x++){

nCount = 0;
for (int y = 0; y < 3; y++) {

if (m_nBoard[x][y] == m_nX) {
nCount++;

} else {
break;

}
}
if (nCount == 3) {

nWinner = m_nX; // X Wins!
return nWinner;

}
}

So far, you have checked the across squares to see if there is a winner. If the winner is X, the value of
m_nX is returned. Next, you will check the down squares and see if X has won:

// check the down boxes first for X
for (int y = 0; y < 3; y++){

nCount = 0;
for (int x = 0; x < 3; x++) {

if (m_nBoard[x][y] == m_nX) {
nCount++;

} else {
break;

}
}
if (nCount == 3) {

nWinner = m_nX; // X Wins!
return nWinner;

}
}

Finally, you need to check diagonally to see if X has won. If not, then you will need to search to see if O
has won:

652

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 652

// Check Diagonals
if (m_nBoard[0][0] == m_nX && m_nBoard[1][1] == m_nX &&

m_nBoard[2][2] == m_nX) {

nWinner = m_nX; // X Wins!
return nWinner;

} else if (m_nBoard[2][0] == m_nX && m_nBoard[1][1] == m_nX &&
m_nBoard[0][2] == m_nX) {

nWinner = m_nX; // X Wins!
return nWinner;

}

return nWinner;
}

The method getXTurn is used to determine if it is player X’s turn or not. The setXTurn allows you to set
whether it is player X’s turn or not:

public boolean getXTurn() {
return m_bXTurn;

}
public void setXTurn(boolean bTurn) {

m_bXTurn = bTurn;
}

}

TTTGui.java
The TTTGui is too big to display here, so what you are seeing is an example of what occurs when the
button representing square 0,0 is pressed by the user. The same code exists for almost all other buttons
with a few coordinate changes:

private javax.swing.JButton getJbtOne() {
if (jbtOne == null) {

jbtOne = new javax.swing.JButton();
jbtOne.setName(“jbtOne”);
jbtOne.setPreferredSize(new java.awt.Dimension(55,55));
jbtOne.setText(“”);
jbtOne.setFont(new java.awt.Font(“Dialog”, java.awt.Font.BOLD, 24));

jbtOne.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {

boolean bXTurn = m_TLogic.getXTurn();
if (m_TLogic.setMarker(0,0)) {

if (bXTurn) {
jbtOne.setText(“X”);

} else {
jbtOne.setText(“O”);

}
}

653

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 653

When the button is pressed, the first thing that happens is the code saves the player’s turn in the bXTurn
variable and then tries to set the marker on the space. If setMarker is successful, the appropriate symbol
is used to mark the square the user chose:

int nWinner = m_TLogic.getWinner();

if (nWinner != 0) {
if (nWinner == 1) {

JOptionPane.showMessageDialog(null, “X WINS!!!”,
“X WINS!!!”, JOptionPane.OK_OPTION);

} else {
JOptionPane.showMessageDialog(null, “O WINS!!!”,

“O WINS!!!”, JOptionPane.OK_OPTION);
}

}
}
});

}
return jbtOne;

}

Before the method is complete, it checks to see if it has a winner. If the user who clicked the square has
won, the method will pop up a message box declaring the winner! The application must now be reset in
order to play another game.

Summarizing Java Web Start
From the examples of code that you have seen, there is one step that wasn’t mentioned — signing the
JAR file. The necessary steps to sign JAR files are discussed under the JAR section of this chapter. To
summarize, you should configure your Web server to understand requests for JNLP files. You’ll then
need to create the JNLP file that describes the application to be launched with Java Web Start. You
should package your application in a JAR file and sign the JAR file using the jarsigner tool. Finally, you
should create the HTML page that will be used to access your JNLP file. That’s all that is needed to turn
your application into a Java Web Start application!

Using ANT with Web Archives
ANT is an open source application used for generally building Java applications. It has a vast array of
built-in configuration management functions that are configured through XML tags. Ant essentially is a
tool to do away with the dreaded makefiles of the past that required programmers to write an enormous
amount of fragile, shell-based commands that had to be flexible enough for the user’s environment and
demands. ANT uses Java to do its necessary work, and, instead of shell-based commands, ANT has a
concept called ANT tasks that performs almost every configuration/build task a programmer could
want. You can download the latest binary distribution of ANT from http://ant.apache.org.

Installing ANT
Once you have downloaded your ANT distribution of choice, you simply extract the file to a directory of
choice. When ANT is exploded, it creates the following main directory structure that is illustrated and
explained in the following diagram, Figure 14-8.

654

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 654

Figure 14-8

The main directory of interest should be the bin directory because this directory contains the scripts that
execute ANT. You will need to configure your environment to be able to execute the ANT scripts from a
console or command prompt. In order to do so, simply follow these three steps:

1. Set JAVA_HOME to point to the directory where your JDK is installed.

2. Create an environment variable called ANT_HOME, and set it to the directory that you have
installed Ant to. Example: ANT_HOME= C:\apache-ant-1.6.2

3. Finally, add the ANT_HOME\bin directory to your PATH environment variable so that Ant can
be accessible from any directory in any console window.

If you did not download a binary distribution of ANT, then you will have to consult the instructions that
come with ANT on how to build the source code for the particular platform you are on.

Building Projects with ANT
ANT is extremely easy to build with once you understand the basics of what is involved with creating
Ant build files. ANT requires you to create an XML file called a build file that contains a project element
and at least one target element. Each target can have multiple task elements that can perform a variety of
operations from deleting files to compiling source code. With ANT, you can incorporate property files
that you can read in, and you can also access system properties at any time during the execution of the
build file.

A basic ANT system for building a project generally consists of a simple build.xml file and sometimes a
properties file for loading in specific settings like a location of a third-party JAR. The build.xml file will

ROOT

manual

bin lib docs etc

Contains the
scripts used

to execute ANT.

Contains XSL
utilities.

Contains ANT's
documentation.

Contains all
the libraries

that ANT needs
in order to run.

The main
ANT manual can
be found here
in HTML form.

655

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 655

need to contain a project and a target element. Here is a quick example of the syntax of a very basic
build.xml file that just displays a “Hello World!” message:

<project name=”antTest” default=”Hello” basedir=”.”>
<description>A very simple build.xml file</description>

<target name=”Hello”>
<echo message=”Hello World!”/>

</target>
</project>

In order to run this example, you would change directory to the directory that contains the build.xml file
from a console window and simply type ant. ANT will automatically look for the file named build.xml
as a default. Once ANT finds the file, it executes it based on the default target supplied in the project ele-
ment of the build file. In this case, the default target and only target is Hello. The output is shown in the
following example:

C:\btest>ant
Buildfile: build.xml

Hello:
[echo] Hello World!

BUILD SUCCESSFUL
Total time: 0 seconds

The ANT manual does a terrific job of explaining the different XML elements such as project, target,
classpath, filesets, and so forth, so there isn’t a need to explain them in-depth here. What is needed is to
show you how to glue them all together. This next example will show you how to create a complete Web
Archive (WAR) file using ANT. This example contains two files: a mybuild.properties file to contain the
properties you will read in for Ant to use, and the staple build.xml file that is the main build file that Ant
will execute. The following is the content of the mybuild.properties file:

Xerces home directory
xerces.home = C:\\xerces-2_6_2

The name of the .jar file to create
jar.name = myantwebapp.jar

The name of the .war file to create
war.name = myantwebapp.war

The first property shows a third-party tool location that you will need for compiling and packaging the
source code. The next two properties list the name that you want the JAR and the final WAR file to be
called. It’s time now to dissect the complex build.xml file. This file is made up of four targets, three of
which are dependent upon another target. When a dependency occurs in an ANT target, ANT must exe-
cute the dependency first. So, if target D is dependent on target C, and target C is dependent on target B,
and target B is dependent on target A, ANT would execute the targets in the following order: A, B, C,
then D:

<project name=”MYANTWEBAPP” default=”createWAR” basedir=”.”>
<description>This a real world example of using ANT.</description>

656

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 656

The <project> tag defines a name for the project and requires you to supply a default target to execute.
In this case, you want ANT to run the createWAR target first. The createWAR target has a dependency
chain, as I explained in the A, B, C, and D target example. The basedir attribute is asking which directory
it should use as a base for execution. The . signifies the current directory:

<property file=”mybuild.properties”/>

<!-- set global properties for this build -->
<property name=”src” location=”src”/>
<property name=”jsps” location=”jsp”/>
<property name=”build” location=”build”/>
<property name=”dist” location=”dist”/>

Now, you are telling ANT to read in the properties from mybuild.properties and to also create four addi-
tional properties: src, jsps, build, and dist. These can now all be accessed by their property name with
the following syntax — ${propertyname} — in the ANT build file:

<path id=”everything”>
<fileset dir=”${xerces.home}”>

<include name=”xercesImpl.jar”/>
<include name=”xml-apis.jar”/>

</fileset>
<pathelement location=”${build}”/>

</path>

The <path> tag will be used by the build file to incorporate the files in the path into a classpath that will
be used to compile source code. Here, two Xerces jar files are being built into a path element named
everything:

<target name=”clean” description=”Deletes the build and dist directories” >
<delete dir=”${build}”/>
<delete dir=”${dist}”/>

</target>

The first target, clean, gets executed first and simply deletes the build and distribution directories. The
<delete> tag is an ANT task. ANT has a multitude of tasks that can perform many operations. Refer to
the Ant manual for more information:

<target name=”init” depends=”clean”>
<mkdir dir=”${build}”/>
<mkdir dir=”${dist}”/>

</target>

The second target, init, depends on clean. Once clean deletes the build and dist directories, the init target
recreates them. These two targets ensure that the build and dist directories will be empty before you
start compiling your source code:

<target name=”createJAR” depends=”init”
description=”Compiles source and creates new JAR” >

<javac classpathref=”everything” classpath=”${src}” srcdir=”${src}”

657

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 657

destdir=”${build}”/>

<mkdir dir=”${dist}/lib”/>

<echo message=”Creating jar: ${dist}\lib\${jar.name}”/>
<jar destfile=”${dist}/lib/${jar.name}” includes=”**/*.class”

basedir=”${build}” compress=”true” index=”true” update=”true”/>
</target>

The third target, createJAR, depends on init and uses the ANT task <javac> to compile any source code
that is in the SRC directory. You should also take note that the classpathref references the path that was
built earlier called everything. The <javac> task will use the everything path in its classpath for compil-
ing the source files. After the files are compiled, a very handy Ant task called <jar> is used to create a
JAR file into the lib directory that was created:

<target name=”createWAR” depends=”createJAR”>

<copy preservelastmodified=”true” overwrite=”true”
todir=”${jsps}/WEB-INF/lib”>

<fileset dir=”${dist}/lib”>
<include name=”${jar.name}”/>

</fileset>
</copy>

<mkdir dir=”${dist}/war”/>

<war destfile=”${dist}/war/${war.name}” webxml=”${jsps}/WEB-INF/web.xml”
update=”true”>

<fileset dir=”${jsps}” includes=”*.html,*.jsp,*.doc”
excludes=”*.jar,*.war”/>

<webinf dir=”${jsps}/WEB-INF” includes=”*.wsdd,*.lst”/>
<lib dir=”${jsps}/WEB-INF/lib” includes=”*.jar,*.war,*.zip”/>
<zipfileset dir=”${jsps}/images” prefix=”images” excludes=”*.psd”/>

</war>
</target>

</project>

The final target, createWAR, depends on createJAR and is used to create a WAR file. The JAR file was
created and moved to the WAR files WEB-INF/lib directory because it has utilities that the WAR file
needs. The other files, which you can see in the fileset, are then moved into position to create the WAR
file. The WAR file is created using another handy ANT task called <WAR>.

This ANT build file example can now be run over and over every time you need to recompile and pack-
age your program. This example shows just how useful and easy it is to use ANT. If you need to replace
Xerces with a new version, all that is required is a property change to mybuild.properties. However, this
example barely touches on all the different ANT tasks that are available to you. The ANT manual that
comes with the Ant distribution should explain all the tasks in great detail.

658

Chapter 14

17_574868 ch14.qxd 12/21/04 5:59 PM Page 658

Summary
Packaging and deploying Java applications vary depending on the program you are currently working
on. This chapter touched on the most popular types of Java applications that you will come across. It
took you through the intricacies of the different Java archive files — JAR, WAR, and EAR — and kept
going right into applet land. It also supplied you with a few helpful tools for managing your classpath
and an explanation of already existing Java tools that can aid you in your packaging efforts such as the
jarsigner and keytool tools.

This chapter discussed the great innovations of Java Web Start and how it can be the technology of the
future for deploying thick, rich clients to users over browser-based technologies. Finally, this chapter
examined the usefulness of ANT and how it can make a developer’s building and configuration man-
agement woes a thing of the past.

659

Packaging and Deploying Your Java Applications

17_574868 ch14.qxd 12/21/04 5:59 PM Page 659

17_574868 ch14.qxd 12/21/04 5:59 PM Page 660

References

[AMBLER] Ambler, Scott M. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Indianapolis, IN: John Wiley & Sons, 2002.

[BECK] Beck, Kent. Extreme Programming Explained. Boston, MA: Addison Wesley, 1999.

[FOWLER] Fowler, Martin. Refactoring. Boston, MA: Addison Wesley, 1999.

[LARMAN] Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, second edition, Upper Saddle River, NJ: Prentice Hall PTR, 2002.

18_574868 ref.qxd 12/21/04 5:58 PM Page 661

18_574868 ref.qxd 12/21/04 5:58 PM Page 662

In
de

x

Index

SYMBOLS
& (ampersand), in extends clause, 5
<> (angle braces)

in generic class definitions, 3, 5
in generic method definitions, 6

* (asterisk), in regular expressions, 53, 57, 58
\ (backslash), meta-character for, 55
{} (braces), in regular expressions, 56–58
^ (caret), in regular expressions, 55, 56
: (colon)

in for loop, 7–8
in manifest file, 629

$ (dollar sign), in regular expressions, 55
... (ellipsis), for variable arguments, 9–10
= (equal sign), in property file, 629
/ (forward slash)

directory separator, 42
in preference nodes, 63

() (parentheses), in regular expressions, 58
% (percent sign), prefixing filename patterns, 42–43
. (period), in regular expressions, 55, 56
+ (plus sign), in regular expressions, 57, 58
? (question mark), in regular expressions, 57, 58
[] (square brackets), in regular expressions, 56

A
absolute() method, ResultSet class, 300
absolutePath() method, Preference class, 65
Abstract Windowing Toolkit (AWT) classes, 143
abstraction, 114

Accessibility classes, 143
actions, Swing, 233–234, 239–242
Activatable class, 450
activatable remote objects, 450
Adaptee class, Adapter pattern, 121
Adapter class, Adapter pattern, 121
Adapter pattern, 119–122
addFolder() method, 440
addHandler() method, Logger class, 31
addListener() method, MessageConsumer

class, 548
addLogger() method, LogManager class, 29
addMessage() method, 439
addNodeChangeListener() method, Preference

class, 67
addPreferenceChangeListener() method,

Preference class, 67
addPropertyChangeListener() method,

LogManager class, 30
addRowSetListener() method, RowSet, 308
AfterLast() method, ResultSet class, 300
agile methodologies

UP (Unified Process), 83–85, 86–87
XP (eXtreme Programming), 81, 85–87

Agile Modeling: Effective Practices for Extreme Pro-
gramming and the Unified Process (Ambler,
Scott), 75, 661

algorithm() method, Key interface, 592–593
AlgorithmParameterGenerator class, JCA,

585, 598
AlgorithmParameters class, JCA, 585, 597–598

19_574868 bindex.qxd 12/21/04 5:55 PM Page 663

algorithms, replacing on the fly, 134–138, 192
aliases() method, KeyStore class, 596
Ambler, Scott (Agile Modeling: Effective Practices for

Extreme Programming and the Unified Process),
75, 661

ampersand (&), in extends clause, 5
angle braces (<>)

in generic class definitions, 3, 5
in generic method definitions, 6

Annotation Editor example
AnnotationEditor class, 198–200
ComboListener class, 213–214
ComponentListener class, 202–204
ExcelAction class, 207–209
HighlightPainter class, 204–205
OpenAction class, 209–212
PopupListener class, 201–202
PrintAction class, 205–207
XmlAction class, 207

Annotation interface, 18
annotation package, 17
AnnotationDesc interface, 20–21
AnnotationDesc.ElementValuePair interface, 21
AnnotationEditor class, Annotation Editor example,

198–200
annotations

definition of, 17–18
examples of, 19–20, 22–26
interfaces in doclet API for, 20–22
types of, 18–19

annotations() method, 20
annotationType() method, AnnotationDesc

interface, 21
AnnotationTypeDoc interface, 21
AnnotationTypeElementDoc interface, 21
AnnotationValue interface, 22
Ant application (Apache)

building projects with, 655–658
definition of, 654
development scenarios using, 87–95
installing, 655
learning, using patterns for, 113
running TCPMon with, 496

Apache AXIS
definition of, 533–534
deploying a Web service, 535–537
setting up, 534–535

TCPMon included in, 496
version of, returning, 528–529
writing Web service client, 537–539

Apache Jakarta Project, 499
Apache TCPMon, 496–498, 534, 539
Apache Tomcat server, 321, 534
The Apache XML Project, 499
APIs, learning using patterns, 112–113. See also

specific APIs
appendReplacement() method, Matcher class, 59
appendTail() method, Matcher class, 59
applets

definition of, 636
in JAR files, 629–630
packaging for execution, 638
RMI for, 446
security of, 639
structure of, 636–638

appletviewer command, 638
application data

definition of, 224–225
persisting in Swing application, 232–235
persisting (saving), 225–227, 230–232

application layer, 479–480
Application scope, WebWork framework, 374
applications. See also database, persisting applications

with; serialization; software design and
development

deploying
Ant application for, 654–658
applets, 638–639
classpaths, managing, 619–624
EAR (Enterprise Archive), 644–646
EJBs (Enterprise JavaBeans), 643
endorsed directory and, 624
JAR files for, 625–636
Java Web Start, 647–654
Web applications, 639–643

time-based license for
definition of, 235–236
implementing license, 236–238
implementing timeserver, 238–239

applicationScope implicit object, 340
application.xml file, 644–645
Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Pro-
cess (Larman, Craig), 83, 111, 661

664

algorithms, replacing on the fly

19_574868 bindex.qxd 12/21/04 5:55 PM Page 664

arguments, variable, 2, 9–10
arrays

of generic types, 6
iterators for, 8
in JNI, 410–416
of type variables, 6

asResult() method, Matcher class, 59
Assertions, JMeter, 108
assignment, boxing and unboxing conversions in, 12–13
associations between classes, creating, 115–116
asterisk (*), in regular expressions, 53, 57, 58
attributes, static, importing, 13–15
authentication

definition of, 612
JAAS (Java Authentication and Authorization Service)

authenticating a subject, 615, 616–617
authorization, 617–618
AuthPermission class, 617–618
configurations for authentication, 615–616
credentials, 613, 615
definition of, 612
Destroyable interface, 615
executing code with security checks, 613–617
LoginContext class, 615
policy file for authorization, 617–618
principals, 614
PrivilegedAction interface, 613
Refreshable interface, 615
Subject class, 612–613
user identification, 612–613

MAC (Message Authentication Code), 583, 602,
611–612

authorization, 617–618
AuthPermission class, JAAS, 617–618
AWT (Abstract Windowing Toolkit) classes, 143
AXIS (Apache)

definition of, 533–534
deploying a Web service, 535–537
setting up, 534–535
TCPMon included in, 496
version of, returning, 528–529
writing Web service client, 537–539

B
backreferences, in regular expressions, 58
backslash (\), meta-character for, 55
bank application example, 478

Beck, Kent (eXtreme Programming Explained), 85, 661
beep character, meta-character for, 55
BeforeFirst() method, ResultSet class, 300
beginTransaction() method, Session class, 319
bell character, meta-character for, 55
Berners-Lee, Tim (visionary for World Wide Web), 523
BorderLayout manager, 144–151
BorderLayout() method, BorderLayout class, 145
boxing and unboxing conversions, 2, 11–13
BoxLayout manager

definition of, 151–152
example of
CondimentPanel class, 156–157
Decorator pattern in, 152–153
DropTargetListener interface, 154–156
Food class, 157–158
FoodCourt interface, 153, 156
FoodGraphic class, 153–154
FoodItems class, 158–161
model of, 152

BoxLayout() method, BoxLayout class, 152
braces ({}), in regular expressions, 56–58
bug reporting and tracking, 81
build() method, CertPathBuilder class, 601
business logic, separating from User Interface logic,

122–130
business tier, J2EE, 87
Buyer class, Strategy pattern, 136

C
CA (certificate authority), 600
CachedRowSetImpl RowSet implementation, 309
Call Level Interface (CLI), X/Open SQL, 282
CallableStatement interface, 292–294, 297
CallbackHandler class, JAAS, 616
CallNonvirtual[Type]Method() function,

421–423
CallNonvirtual[Type]MethodA() function,

421–423
CallNonvirtual[Type]MethodV() function,

421–423
Call[Type]Method() function, 421–423
Call[Type]MethodA() function, 421–423
Call[Type]MethodV() function, 421–423
CardLayout manager

alternative to, 214
definition of, 191

665

CardLayout manager

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 665

CardLayout manager (continued)
example of
CardLayoutPanel class, 192–194
JButtonStrategy1 class, 194–195
JButtonStrategy2 class, 195
Strategy pattern in, 192
TestStrategy interface, 196–197

CardLayout() method, CardLayout class, 191
caret (^), in regular expressions, 55, 56
carriage-return, meta-character for, 55
catch clause, type variables in, 7
C/C++ programs, connecting to Java programs with JNI

arrays in, 410–416
data type conversions, 406
e-mail client example using
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

fields, accessing, 416–419
header file for native code, creating, 403–404
invoking native routines, 405
Java code invoking native routines, creating, 402–403
Java exceptions, handling in native code, 423–424
Java objects, using in C/C++, 416–423, 425–429
Java threading, 429–430
methods, invoking in, 419–423
native methods, registering manually, 430–432
native routine library, creating, 404–405
native routines, using in Java code, 401–405
NIO direct buffers, using in, 430
reflection using, 432–434
strings in, 406–410

CDO (Collaborative Data Objects), 434
certificate authority (CA), 600
certificate management, 600–602
Certificate Revocation List (CRL), 584, 600–601
CertificateFactory class, JCA, 585, 600–601
certificates, database of, 596–597
certification path, 600
CertPathBuilder class, JCA, 585, 601
CertPathValidator class, JCA, 585, 601
CertStore class, JCA, 585, 601–602
cglib-2.0-rc2.jar file, 314
Chain of Responsibility pattern, 162, 164, 166
ChainingInterceptor, WebWork framework, 373
character classes, in regular expressions, 56–57
childrenNames() method, Preference class, 65

cipher, 602
Cipher class, JCE

definition of, 603–604
encrypting/decrypting data, 604
wrapping/unwrapping keys, 604–608

CipherInputStream class, JCE, 603, 605
CipherOutputStream class, JCE, 603, 605
classes. See also objects; specific classes

associations between, creating, 115–116
as data structures, 225
designing, 115
finding in JAR files, 620–624
object graphs for, 225
parameterized, 3–4
serializable, encrypting, 609–611
statically importing data from, 13–15
type-safe (generics), 1, 2–7, 13

classpaths
definition of, 619
determining location of class in, 621–624
guidelines for, 620
limitations of, 619–620
verifying list of classes in, 620

ClassPathVerifier utility, 620
ClassSearch utility
findClass() method, 622
findHelper() method, 621–622
main() method, 623
searchClassPath() method, 622
searchJarFile() method, 621
using, 623–624

clear() method, Preference class, 67
clearMessageList() method, 439, 440, 444
clearParameters() method, PreparedStatement

interface, 290
CLI (Call Level Interface), X/Open SQL, 282
Client class, Adapter pattern, 120
client layer

three-tier model, JDBC API, 284
two-tier model, JDBC API, 283

client tier, J2EE, 87
close() method
Handler class, 39
MemoryHandler class, 44
ResultSet class, 302
Session class, 319
SocketHandler class, 41
StreamHandler class, 41

666

CardLayout manager (continued)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 666

CLOSE_CURSORS_AT_COMMIT constant, 299
CMT (Contact Management Tool) application

adding new contact to, 355–356
adding pictures to, 346
definition of, 340
registering contacts in, 348–350

code reuse, in JSP 2.0, 335–336
CodeGenerator, Hibernate, 315
Collaborative Data Objects (CDO), 434
collections, 2, 138–142
colon (:)

in for loop, 7–8
in manifest file, 629

ComboListener class, Annotation Editor example,
213–214

Command class, Command pattern, 130–131
Command pattern

Command interface, 130–131
CommandManager class, 131
definition of, 130
example of, 178, 181, 192
invoker for, 131–134

CommandManager class, Command pattern, 131
commit() method, Connection class, 311
committing transactions, 310–311
Common Object Request Broker Architecture (CORBA)

COS (Common Object Service) Naming, 506–507, 509
definition of, 505–507
example using, 513–522
IDL (Interface Definition Language), 507–509
IIOP (Internet InterORB Protocol), 503, 506–507, 509
ORB (Object Request Broker), 506–507, 509
overriding in endorsed directory, 624
RMI compatibility with, 510–512
when to use, 512

Common Object Service (COS) Naming
definition of, 506–507, 509
overriding in endorsed directory, 624

commons-collections-2.1.jar file, 314
commons-logging-1.0.3.jar file, 314
communication, importance in software development, 75
communication between components

architecture for, 479–480
CORBA (Common Object Request Broker Architecture),

505–512
EJBs (Enterprise JavaBeans), 465–475
RMI (Remote Method Invocation)

architecture of, 446–447
communication transport protocol for, 447

CORBA compatibility with, 510–512
definition of, 445–446, 465, 500–501
developing applications with, 448–449
distributed objects, 445, 504–505
dynamic class loading, 449
garbage collection by, 447, 449
marshalling and unmarshalling, 501–503
network failure and, 447
performance of, 447
protocols, 503
Remote Object Activations, 449–453
RMIChat example using, 453–465
security and, 447
serialization and, 235
stubs, generating, 448
threading, 448

sockets
definition of, 480
Java Socket API, 481–487
protocol, implementing, 487–499
types of, 480

technologies for, 478
Web services

definition of, 522–523, 639
example using, 523–526, 531–540
future of, 540
limitations of, 445, 522, 527
remote procedure calls with, 526–527
SOAP and, 529–530
types of, 536
when to use, 522–523
WSDL and, 528–529

compile() method, Pattern class, 58
Component interface, Composite pattern, 139
ComponentListener class, Annotation Editor

example, 202–204
components. See also communication between

components
definition of, 477
horizontal, 369
JavaBean components, 248–256, 308–309
scope of, in WebWork framework, 374
Swing components, serialization of, 255
vertical, 369

Composite class, Composite pattern, 140–142
Composite pattern, 138–142
CONCUR_READ_ONLY constant, 298
concurrency of result sets, 298
Concurrent Versioning System (CVS), 79

667

Concurrent Versioning System (CVS)

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 667

CONCUR_UPDATABLE constant, 298, 300
Config Elements, JMeter, 108
config() method, Logger class, 33
configuration data

deserializing, 232
modeling, 226–227
serializing with Java Serialization API, 230–235,

244–245
serializing with JAXB (Java API for XML Binding)

example of, 272–278
generating classes from XML schema, 263–268
sample XML document for, 257–259
XML schema for, 259–263

serializing with XMLEncoder/Decoder API, 252–254
verification and validation for, 244–245

configuration information (Java preferences)
definition of, 63
examples of, 69–71
exporting to XML, 68–71
Preference class, 63–68

configuration management, 78–79
connected RowSet implementations, 308
Connection class

JDBC API, 286–287, 311
JMS, 545, 558

ConnectionFactory class, JMS, 545, 558
connections to database, 286–287, 310
ConsoleCorbaServer command, 521
ConsoleHandler class, 41
Contact Management Tool (CMT) application

adding new contact to, 355–356
adding pictures to, 346
definition of, 340
registering contacts in, 348–350

contains() function, JSTL, 341
containsIgnore() function, JSTL, 341
<context-param> element, WAR deployment

descriptor, 640
continuous integration, 79
control character, meta-character for, 55
Controller, in MVC, 366–367
Controller class, Model-View-Controller pattern,

125–127
Cookie implicit object, 340
CORBA (Common Object Request Broker Architecture)

COS (Common Object Service) Naming, 506–507, 509
definition of, 505–507
example using, 513–522
IDL (Interface Definition Language), 507–509

IIOP (Internet InterORB Protocol), 503, 506–507, 509
ORB (Object Request Broker), 506–507, 509
overriding in endorsed directory, 624
RMI compatibility with, 510–512
when to use, 512

CORBA.Object class, 517
CORBA.ORB class, 517
COS (Common Object Service) Naming

definition of, 506–507, 509
overriding in endorsed directory, 624

CosNaming.NamingComponent class, 517
CosNaming.NamingContext class, 517
createConsumer() method, Session class, 548
createCriteria() method, Session class, 319
createPublisher() method, Session class, 547
createSession() method, Connection class, 546
createTextMessage() method, Session class, 547
credentials, 613, 615
CRL (Certificate Revocation List), 584, 600–601
cryptography

JCA (Java Cryptography Architecture)
algorithm management, 597–598
certificate management, 600–602
definition of, 583, 584
digital key creation, 592–596
digital key storage and management, 596–597
digital signing and verification, 588–592
engine classes in, 584–585
message digests, calculating and verifying, 586–588
provider packages for, alternatives, 585
random number generation, 599–600
SUN provider package for, 584

JCE (Java Cryptography Extension)
Cipher class, 603–608
converting keys between transparent and opaque,

608–609
definition of, 583, 602
encrypting and decrypting data, 603–604
encrypting serializable classes, 609–611
generating secret keys, 608
KeyGenerator class, 608
message authentication codes, computing, 611–612
SealedObject class, 609–611
SecretKeyFactory class, 608–609
services provided by, 602–603
wrapping and unwrapping keys, 604–608

cursor in a result set, 298
cursorMoved event, RowSet, 308
CVS (Concurrent Versioning System), 79

668

CONCUR_UPDATABLE constant

19_574868 bindex.qxd 12/21/04 5:55 PM Page 668

D
data, application

definition of, 224–225
persisting in Swing application, 232–235
persisting (saving), 225–227, 230–232

data layer, three-tier model, JDBC API, 284
data model, 224
data structures, classes as, 225
data types

for arrays, 410, 411–412
conversions between

boxing and unboxing, 2, 11–13
Java and C++ types, 406
Java and JDBC types, 290–292

descriptors for, 417
translating to C++, 406
type-safe classes (generics), 1, 2–7, 13
type-safe enumerations, 2, 15–17

database
keyword search of, 304–308
SQL Actions in JSTL, 342–344

database, persisting applications with. See also serial-
ization

using Hibernate tool
architecture of, 312–313
configuration, properties for, 317
databases supported by, 314
forum example using, 320–327
persisting objects to database, 317–319
requirements for, 314–315
XDoclet and, 104
XML mappings, 315–317

using JDBC API
connections, managing, 286–287
connections, pooling, 310
driver types for, 282
features of, 281–282
meta data for data source, retrieving, 302–308
packages in, 283
requirements for, 283
result sets for SQL queries, 298–302
RowSets, using, 308–309
SQL batch updates, executing, 294–297
SQL statements, executing, 287–294
three-tier model for, 284–285
transactions, managing, 310–312
two-tier model for, 283–284

database of keys and certificates (keystore), 596–597

DatabaseMetaData interface, JDBC API
definition of, 302–303
features of data source, determining, 303–308
limitations of data source, determining, 303
methods in, 294

DatagramSocket class, 481
DataSource interface, JDBC API, 286–287
declarations in EL, 333
Decorator pattern, 152–153, 160
defaultValue() method,

AnnotationTypeElementDoc interface, 21
DefaultWorkflowInterceptor, WebWork frame-

work, 373
DELETE command, HTTP, 489
delete() method, Session class, 319
deleteEntry() method, KeyStore class, 597
DeleteGlobalRef() function, 428
DeleteLocalRef() function, 416, 425
deleteRow() method, ResultSet class, 301
DeleteWeakGlobalRef() function, 428
deploying Java applications

Ant application for, 654–658
applets, 638–639
classpaths, managing, 619–624
EAR (Enterprise Archive), 644–646
EJBs (Enterprise JavaBeans), packaging, 643
endorsed directory, overriding standards in, 621–624
JAR files

applets in, 629–630
in classpaths, managing, 619–624
creating, 94, 625–627
definition of, 625
digitally signing, 625, 630–634
executable, 635–636
extracting contents of, 628
index file for, 634–635
installing as an extension, 620
manifest file for, 625, 628–629
viewing contents of, 628

Java Web Start, 647–654
Web applications, 639–643

Deprecated class, 18, 19
<description> element, WAR deployment

descriptor, 640
descriptors for primitive types, 417
deserialization, 228. See also serialization
Design Patterns: Elements of Reusable Object-Oriented

Software (Gamma, Erich), 111
destination, in messaging systems, 544, 564

669

destination, in messaging systems

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 669

Destination class, JMS, 545, 558
destroy() method

in applets, 637
Destroyable interface, 615

Destroyable interface, JAAS, 615
DHPrivateKey interface, 593
DHPublicKey interface, 593
digest() method, MessageDigest class, 586
digital keys. See also encryption

creating, 592–593
definition of, 588
storing and managing, 596–597

Digital Signature Algorithm (DSA), 584, 588–589
Digital Signature Standard (DSS), 589
digital signatures

for data, 588–592
for JAR files, 625

disconnected RowSet implementations, 308
<display-name> element, WAR deployment

descriptor, 640
<distributable> element, WAR deployment

descriptor, 640
distributed file system notifications example

description of, 513
IDL generator used in, 514–516
implementing, 516–521
running, 521–522

distributed objects, 445, 504–505. See also RMI
distributed processing

definition of, 543
example application of
Aggregateable interface, 570
deploying, 573–581
description of, 551–552
JMXAgent class, 563–564
JndiHelper class, 556–557
MBean components for, 553
message type for, 552–553
MessageAggregator component, 570–573
MessageListener interface, 555
MessageProcessor component, 553–564
MessageProcessorMBean interface, 555–556
MessageRouter component, 564–566
MessageSplitter component, 566–570
OrderAggregator class, 572–573
OrderProcessor class, 562–563
Processable interface, 562
Routeable interface, 565
Splitable interface, 567

JMS features for, 544–548
JMX features for, 548–551

distributed transactions, 311–312
doAs() method, 614
doAsPrivileged() method, 614
doclet API, annotations, 19–22
Document Object Model (DOM), 224
Document-based Web services, 536
Documented class, 18
doFinal() method
Cipher class, 604
Mac class, 611

dollar sign ($), in regular expressions, 55
DOM (Document Object Model), 224
dom4j libraries, 198, 206
dom4j-1.4.jar file, 314
Drag and Drop classes, 143
dragEnter() method, DropTargetListener

interface, 155
dragExit() method, DropTargetListener

interface, 155
dragOver() method, DropTargetListener

interface, 155
DriverManager class, JDBC API, 286
drivers for JDBC API, 282
drop() method, DropTargetListener interface, 155
dropActionChanged() method,

DropTargetListener interface, 155
DropTargetListener interface, 154–155
DSA (Digital Signature Algorithm), 584, 588–589
.DSA file extension, 630
DSAPrivateKey interface, 593
DSAPrivateKeySpec interface, 592
DSAPublicKey interface, 593
DSAPublicKeySpec interface, 592
DSS (Digital Signature Standard), 589
Dynamic APIs, overriding in endorsed directory, 624
dynamic class loading in RMI, 449

E
EAR (Enterprise Archive), 644–646
echo server example

description of, 483
running, 487
SocketEcho class, 483–486

The Eclipse Project, 499
EDM (Event Delegation Model), 124
Ehcache-0.6.jar file, 314

670

Destination class, JMS

19_574868 bindex.qxd 12/21/04 5:55 PM Page 670

EIS (Enterprise Information System) tier, J2EE, 87
ejb-jar.xml file, 473–475, 643
EJBs (Enterprise JavaBeans). See also JavaBean com-

ponents
containers, 465, 467–468
definition of, 465
deployment descriptor for, 473–475
in EAR (Enterprise Archive), 644–646
JNDI and, 467
loan calculator example of, 468–475

definition of, 468
EJB deployment descriptor for, 473–475
LoanBean class, 469–470
LoanClient class, 470–473
LoanHome interface, 468–469
LoanObject interface, 468

packaging, 643
types of, 466

EL (Expression Language)
Function Tag Library extensions to, 341–342
in JSP scripts, 332–335, 339–340

element() method, AnnotationDesc.Element
ValuePair interface, 21

elements() method, AnnotationTypeDoc
interface, 21

ElementType enumeration, 17–18
ElementValuePair interface, 21
elementValues() method, AnnotationDesc

interface, 21
ellipsis (...), for variable arguments, 9–10
e-mail client example using JNI
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

EncodedKeySpec interface, 592
encryption

JCA (Java Cryptography Architecture)
algorithm management, 597–598
certificate management, 600–602
definition of, 583, 584
digital key creation, 592–596
digital key storage and management, 596–597
digital signing and verification, 588–592
engine classes in, 584–585
message digests, calculating and verifying, 586–588
provider packages for, alternatives, 585
random number generation, 599–600
SUN provider package for, 584

JCE (Java Cryptography Extension)
Cipher class, 603–608
converting keys between transparent and opaque,

608–609
definition of, 583, 602
encrypting and decrypting data, 603–604
encrypting serializable classes, 609–611
generating secret keys, 608
KeyGenerator class, 608
message authentication codes, computing, 611–612
SealedObject class, 609–611
SecretKeyFactory class, 608–609
services provided by, 602–603
wrapping and unwrapping keys, 604–608

end() method, Matcher class, 59, 60
endorsed directory, 624
Endorsed Standard Override Mechanism, 624
endsWith() function, JSTL, 341
EnsureLocalCapacity() function, 425–426, 427
entering() method, Logger class, 33
Enterprise Archive (EAR), 644–646
Enterprise Information System (EIS) tier, J2EE, 87
Enterprise Integration Patterns (Hohpe, Gregor), 553
Enterprise JavaBeans (EJBs)

containers, 465, 467–468
definition of, 465
deployment descriptor for, 473–475
in EAR (Enterprise Archive), 644–646
JNDI and, 467
loan calculator example of, 468–475

definition of, 468
EJB deployment descriptor for, 473–475
LoanBean class, 469–470
LoanClient class, 470–473
LoanHome interface, 468–469
LoanObject interface, 468

packaging, 643
types of, 466

entity beans, 466
Entrust, 600
Enum class, 15–17
enumerations, 2, 15–17
EnumMap class, 16
EnumSet class, 16
<env-entry> element, WAR deployment

descriptor, 641
equal sign (=), in property file, 629

671

equal sign (=), in property file

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 671

equals() method
Level class, 38
Principal interface, 614

error handling. See exceptions; Java logging
error() method, ErrorManager class, 49
ErrorManager class, 49
<error-page> element, WAR deployment

descriptor, 641
escapeXml() function, JSTL, 341
estimates for software development, 80–81
Event Delegation Model (EDM), 124
ExcelAction class, Annotation Editor example,

207–209
ExceptionCheck() function, 423
ExceptionClear() function, 423–424
ExceptionDescribe() function, 423
ExceptionOccurred() function, 423
exceptions

generics and, 7
handling in native code, 423–424

executable JAR file, 635–636
execute() method
PreparedStatement interface, 289
Statement interface, 288

executeBatch() method, Statement interface, 288
executeQuery() method
PreparedStatement interface, 289
Statement interface, 288

executeUpdate() method
PreparedStatement interface, 289
Statement interface, 288–289

exiting() method, Logger class, 33
exportNode() method, Preference class, 67
exportSubtree() method, Preference class, 67
Expression Language (EL)

Function Tag Library extensions to, 341–342
in JSP scripts, 332–335, 339–340

extends clause
interface restrictions in, 5
super-types defined in, 3

Externalizable interface, 229–230, 245
eXtreme Programming Explained (Beck, Kent), 85, 661
eXtreme Programming (XP), 81, 85–87

F
FatalError() function, 424
fields, accessing in JNI, 416–419
FileHandler class, 42–43
filename patterns, in FileHandler class, 42

FileNotification interface, 513
FileSystemWatcher class, 513–514
fill variable, GridLayout manager, 178
<filter> element, WAR deployment descriptor, 640
Filter interface, 48
FilteredRowSetImpl RowSet implementation, 309
<filter-mapping> element, WAR deployment

descriptor, 641
find() method
Matcher class, 60
Session class, 319

FindClass() function, 433
fine() method, Logger class, 33
finer() method, Logger class, 33
finest() method, Logger class, 33
First() method, ResultSet class, 300
flags() method, Pattern class, 59
FlowLayout manager

definition of, 161
example of

Chain of Responsibility pattern in, 164
FlowLayoutPanel class, 162–164, 166
QuarterHandler class, 165–166
TestHandler class, 165

FlowLayout() method, FlowLayout class, 161
flush() method
Handler class, 39
MemoryHandler class, 44
Preference class, 67
StreamHandler class, 41

for loop, new features of, 1, 7–9
format() method, Formatter class, 45
formatMessage() method, Formatter class, 45
Formatter class, 44–48
form-feed, meta-character for, 55
forum example, Hibernate tool

architecture of, 320
code for, 324–327
database for, 321
file structure for, 321–322
user interface for, 322–323

forward slash (/)
directory separator, 42
in preference nodes, 63

Fowler, Martin (Refactoring), 77, 111, 661
framework for Model 2 Architecture

architecture of, 371–374
definition of, 368–369
IoC (Inversion of Control), 369–371

672

equals() method

19_574868 bindex.qxd 12/21/04 5:55 PM Page 672

FromReflectedField() function, 433–434
FromReflectedMethod() function, 433
function signatures (prototypes), 405
Function Tag Library, JSTL, 341–342
functions, C/C++, using in Java programs with JNI

arrays in, 410–416
data type conversions, 406
e-mail client example using
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

fields, accessing, 416–419
header file for native code, creating, 403–404
invoking native routines, 405
Java code invoking native routines, creating, 402–403
Java exceptions, handling in native code, 423–424
Java objects, using in C/C++, 416–423, 425–429
Java threading, 429–430
methods, invoking in, 419–423
native methods, registering manually, 430–432
native routine library, creating, 404–405
native routines, using in Java code, 401–405
NIO direct buffers, using in, 430
reflection using, 432–434
strings in, 406–410

G
Gaim, 498
Gamma, Erich (Design Patterns: Elements of Reusable

Object-Oriented Software), 111
garbage collection, RMI applications, 447, 449
generateCertificate() method,

CertificateFactory class, 600
generateCertificates() method,

CertificateFactory class, 600
generateCertPath() method,

CertificateFactory class, 601
generateCRL() method, CertificateFactory

class, 600–601
generateCRLs() method, CertificateFactory

class, 600–601
generateKey() method, KeyGenerator class, 608
generateKeyPair() method, KeyPairGenerator

class, 594, 596
generateParameters() method,

AlgorithmParameterGenerator class, 598

generatePrivate() method, KeyFactory class,
593–594

generatePublic() method, KeyFactory class,
593–594

generateSecret() method, SecretKeyFactory
class, 608–609

generateSeed() method, SecureRandom class, 599
generics

arrays of, 6
boxing and, 13
class instances, 5–6
classes, 3–5
definition of, 1, 2
exceptions and, 7
hierarchy restrictions of, 3–4
interfaces, 3–5
methods, 6–7
raw types (type erasure), 4–5
super-types of, 3

GET command, HTTP
definition of, 489–490
implementing, 489, 491–495

get() method, Preference class, 65
getAlgorithm() method, SealedObject class,

609, 611
getAnonymousLogger() method, Logger class, 31
GetArrayLength() function, 411, 414, 416
getBoolean() method, Preference class, 66
getByteArray() method, Preference class, 66
getCertificate() method, KeyStore class, 597
getCertificateAlias() method, KeyStore

class, 597
getCertificateChain() method, KeyStore

class, 597
getCertificates() method, CertStore class, 602
getCertPathEncodings() method,

CertificateFactory class, 601
getCertStoreParameters() method, CertStore

class, 602
getCRLs() method, CertStore class, 602
GetDirectBufferAddress() function, 430
GetDirectBufferCapacity() function, 430
getDouble() method, Preference class, 66
getEncoded() method
AlgorithmParameters class, 598
Key interface, 593

getEncoding() method, Handler class, 39
getErrorManager() method, Handler class, 39
GetFieldID() function, 417

673

GetFieldID() function

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 673

getFilter() method
Handler class, 39
Logger class, 32

getFloat() method, Preference class, 66
getFolderContents() method, 439, 441
getFolderList() method, 439, 440
getFormat() method, Key interface, 593
getFormatter() method, Handler class, 39
getHandlers() method, Logger class, 32
getHead() method, Formatter class, 45
getInstance() method
CertStore class, 601–602
Cipher class, 603
MessageDigest class, 586

getInt() method, Preference class, 66
getKey() method, KeyStore class, 597
getKeySpec() method
KeyFactory class, 594
SecretKeyFactory class, 609

getLevel() method
Handler class, 39
Logger class, 32
LogRecord class, 35

getLocalAddr() method, ServletRequest
class, 332

getLocalizedName() method, Level class, 38
getLocalName() method, ServletRequest

class, 332
getLocalPort() method, ServletRequest

class, 332
getLogger() method
Logger class, 31
LogManager class, 29

getLoggerName() method, LogRecord class, 35
getLoggerNames() method, LogManager class, 29
getLogManager() method, LogManager class, 29
getLong() method, Preference class, 66
getMaxColumnsInTable() method,

DatabaseMetaData class, 303
getMaxRowSize() method, DatabaseMetaData

class, 303
getMaxStatementLength() method,

DatabaseMetaData class, 303
getMaxStatements() method, DatabaseMetaData

class, 303
getMaxUserNameLength() method,

DatabaseMetaData class, 303

getMessage() method, LogRecord class, 35
GetMethodID() function, 420–421
getMillis() method, LogRecord class, 35
getName() method
Level class, 38
Logger class, 32
Principal interface, 614

getNumericFunctions() method,
DatabaseMetaData class, 294

getObject() method, SealedObject class, 609
GetObjectArray() function, 411
GetObjectArrayElement() function, 416
GetObjectClass() function, 419, 420, 433
getOutputSize() method, Cipher class, 605
getParameterMetaData() method,

PreparedStatement interface, 292
getParameters() method, LogRecord class, 35
getParameterSpec() method,

AlgorithmParameters class, 598
getParent() method, Logger class, 32
GetPrimitiveArrayCritical() function, 413
getPrincipals() method, Subject class, 613
getPrivate() method, KeyPair class, 594
getPrivateCredentials() method, Subject

class, 613
getProcedures() method, DatabaseMetaData

class, 294
getProperty() method, LogManager class, 29
getPublic() method, KeyPair class, 594
getPublicCredentials() method, Subject

class, 613
getPushLevel() method, MemoryHandler class, 44
getRemotePort() method, ServletRequest

class, 332
getResourceBundle() method
Logger class, 32
LogRecord class, 36

getResourceBundleName() method
Level class, 38
Logger class, 32
LogRecord class, 36

getSequenceNumber() method, LogRecord
class, 35

getSourceClassName() method, LogRecord
class, 35

getSourceMethodName() method, LogRecord
class, 35

674

getFilter() method

19_574868 bindex.qxd 12/21/04 5:55 PM Page 674

GetStaticFieldID() function, 418
GetStaticMethodID() function, 420–421
GetStatic[Type]Field() function, 418
GetStringChars() function, 408
GetStringCritical() function, 408
getStringFunctions() method,

DatabaseMetaData class, 294
GetStringLength() function, 408
GetStringRegion() function, 408
GetStringUTFChars() function, 408, 410
GetStringUTFLength() function, 408
GetStringUTFRegion() function, 408
getSubject() method, Subject class, 613
GetSuperclass() function, 433
getSystemFunctions() method,

DatabaseMetaData class, 294
getTail() method, Formatter class, 45
getThreadID() method, LogRecord class, 35
getThrown() method, LogRecord class, 35
getTimeDateFunctions() method,

DatabaseMetaData class, 294
Get[Type]ArrayElements() function, 412, 414
Get[Type]ArrayRegion() function, 412–413
Get[Type]Field() function, 417, 419
getUseParentHandlers() method, Logger

class, 32
global references to objects, 425, 427–429
greedy operators, in regular expressions, 57
GridBagLayout manager

definition of, 177–178
example of
GridBagLayoutPanel class, 179–181
GridBagLayoutPanel display, 179
JComboQuestion class, 181–182
patterns used in, 178
running, 182–183

GridBagLayout() method, GridBagLayout
class, 177

GridLayout manager
definition of, 167
example of
DBPanel class, 173–175
GridLayoutPanel class, 168–171
GridLayoutPanel display, 167
Java2DPanelMouseover class, 171–173
MyTableModel class, 175–176
running, 176–177

GridLayout() method, GridLayout class, 167
gridx variable, GridLayout manager, 177
gridy variable, GridLayout manager, 177
group() method, Matcher class, 60
groupCount() method, Matcher class, 60
GUI applications
BorderLayout manager, 144–151
BoxLayout manager, 151–161
CardLayout manager, 191–197, 214
FlowLayout manager, 161–166
GridBagLayout manager, 177–183
GridLayout manager, 167–177
layout managers for, 144
libraries for, 143
SpringLayout manager, 183–191

H
handle() method, CallbackHandler class, 616
Handler class

definition of, 38
methods in, 38–40
predefined handlers for, 40–44

Handler property, 28
hanging sessions in Model 2 Architecture applications,

375–377
hash value (message digest), 586. See also JCA
hashCode() method
Level class, 38
Principal interface, 614

HEAD command, HTTP, 489
header implicit object, 340
headerValues implicit object, 340
hexadecimal values, meta-characters for, 55
Hibernate Extension package, 315
Hibernate tool

architecture of, 312–313
configuration, properties for, 317
databases supported by, 314
example using, 379–387, 398
extending Model 2 frameworks with, 374–377
forum example using

architecture of, 320
code for, 324–327
database for, 321
file structure for, 321–322
user interface for, 322–323

675

Hibernate tool

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 675

Hibernate tool (continued)
King’s example using, 374
persisting objects to database, 317–319
requirements for, 314–315
XDoclet and, 104
XML mappings, 315–317

HibernateAction class, 377
HibernateFactory class, 374–375
HibernateInterceptor class, 376
hibernate2.jar file, 314
high cohesion, 114
HighlightPainter class, Annotation Editor example,

204–205
hitEnd() method, Matcher class, 60
Hohpe, Gregor (Enterprise Integration Patterns), 553
holdability of result sets, 299
HOLD_CURSORS_OVER_COMMIT constant, 299, 302
horizontal components, 369
HTTP protocol

implementing, 488–498
Web services using, 522–523, 526–527

HttpAdaptor, 551, 563–564, 581

I
<icon> element, WAR deployment descriptor, 640
IDL (Interface Definition Language), 507–509
IIOP (Internet InterORB Protocol), 503, 506–507, 509
IIOP.NET project, 512
Imager Application, 224
implicit objects in EL expressions, 340
import static syntax, 14
IN parameters
CallableStatement interface, 293
PreparedStatement interface, 289–291, 296–297

index file for JAR files, 634–635
indexOf() function, JSTL, 341
InetSocketAddress class, 481
info() method, Logger class, 33
inheritance, 114
inheritance loop, 117–119
Inherited class, 18
init() method
AlgorithmParameterGenerator class, 598
AlgorithmParameters class, 597–598
in applets, 637
Cipher class, 603
KeyGenerator class, 608
Mac class, 611

initialize() method, KeyPairGenerator
class, 594

initParam implicit object, 340
initSign() method, Signature class, 589
initVerify() method, Signature class, 589–590
INOUT parameters, CallableStatement interface,

293, 297
insensitive result sets, 298
insets variable, GridLayout manager, 178
Installation Wizard example, 215–221
Interceptors, in WebWork framework, 372–373
Interface Definition Language (IDL), 507–509
interfaces. See also specific interfaces

creating, 117
incompatible, communication between, 119–122
parameterized, 3–4

Internet InterORB Protocol (IIOP), 503, 506–507, 509
interprocess communication, 479–480. See also com-

munication between components
intValue() method, Level class, 38
Inversion of Control (IoC), 134, 369–371
invocation protocol for JSP 2.0, 337–339
Invoker class, Command pattern, 131–134
IoC (Inversion of Control), 134, 369–371
IOP API, overriding in endorsed directory, 624
IsAssignableFrom() function, 433
isCertificateEntry() method, KeyStore class,

596–597
isCurrent() method, Refreshable interface, 615
isDestroyed() method, Destroyable interface, 615
IsInstanceOf() function, 433
isKeyEntry() method, KeyStore class, 596–597
isLoggable() method
Filter interface, 48
Handler class, 39
Logger class, 33
MemoryHandler class, 44
StreamHandler class, 41

isReadOnly() method, Subject class, 613
IsSameObject() function, 429
isUserNode() method, Preference class, 65
Iterable interface, 8–9
Iterator interface, 9
iterators, for loop enhancements for, 7–9

J
JAAS (Java Authentication and Authorization Service)

authenticating a subject, 615, 616–617
authorization, 617–618

676

Hibernate tool (continued)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 676

AuthPermission class, 617–618
configurations for authentication, 615–616
credentials, 613, 615
definition of, 612
Destroyable interface, 615
executing code with security checks, 613–617
LoginContext class, 615
policy file for authorization, 617–618
principals, 614
PrivilegedAction interface, 613
Refreshable interface, 615
Subject class, 612–613
user identification, 612–613

Jakarta Commons Net package, 499
Jakarta POI libraries, 198, 207
The Jakarta Project (Apache), 499
jar command, 625–628, 635
JAR files

applets in, 629–630
in classpaths, managing, 619–624
creating, 94, 625–627, 658
definition of, 625
digitally signing, 625, 630–634
executable, 635–636
extracting contents of, 628
index file for, 634–635
installing as an extension, 620
manifest file for, 625, 628–629
viewing contents of, 628

JAR tool (jar command), 625–628, 635
jarsigner utility, 630, 632–634
Java

learning, using patterns for, 112–113
new features, list of, 1–2
utility libraries, list of, 26

Java 2D classes, 143, 171–173
Java Activation Framework, 534
Java API for XML Binding (JAXB)

classes used in, 269
of configuration data

example of, 272–278
generating classes from XML schema, 263–268
sample XML document for, 257–259
XML schema for, 259–263

definition of, 223, 256–257
format for, 257
future direction of, 279
generating classes from XML schema, 263–268
marshalling and unmarshalling XML data, 269–271
tying into applications, 271–278

when to use, 278–279
XML schema for, 259–263

Java Archive Tool (jar command), 625–628, 635
Java archives. See JAR files
Java Authentication and Authorization Service (JAAS)

authenticating a subject, 615, 616–617
authorization, 617–618
AuthPermission class, 617–618
configurations for authentication, 615–616
credentials, 613, 615
definition of, 612
Destroyable interface, 615
executing code with security checks, 613–617
LoginContext class, 615
policy file for authorization, 617–618
principals, 614
PrivilegedAction interface, 613
Refreshable interface, 615
Subject class, 612–613
user identification, 612–613

Java character classes, 56–57
Java components, communication between

EJBs (Enterprise JavaBeans)
containers, 465, 467–468
definition of, 465
deployment descriptor for, 473–475
in EAR (Enterprise Archive), 644–646
JNDI and, 467
loan calculator example of, 468–475
packaging, 643
types of, 466

RMI (Remote Method Invocation)
architecture of, 446–447
communication transport protocol for, 447
CORBA compatibility with, 510–512
definition of, 445–446, 465, 500–501
developing applications with, 448–449
distributed objects, 445, 504–505
dynamic class loading, 449
garbage collection by, 447, 449
marshalling and unmarshalling, 501–503
network failure and, 447
performance of, 447
protocols, 503
Remote Object Activations, 449–453
RMIChat example using, 453–465
security and, 447
serialization and, 235
stubs, generating, 448
threading, 448

677

Java components, communication between

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 677

Java Cryptography Architecture (JCA)
algorithm management, 597–598
certificate management, 600–602
definition of, 583, 584
digital key creation, 592–596
digital key storage and management, 596–597
digital signing and verification, 588–592
engine classes in, 584–585
message digests, calculating and verifying, 586–588
provider packages for, alternatives, 585
random number generation, 599–600
SUN provider package for, 584

Java Cryptography Extension (JCE)
Cipher class, 603–608
converting keys between transparent and opaque,

608–609
definition of, 583, 602
encrypting and decrypting data, 603–604
encrypting serializable classes, 609–611
generating secret keys, 608
KeyGenerator class, 608
message authentication codes, computing, 611–612
SealedObject class, 609–611
SecretKeyFactory class, 608–609
services provided by, 602–603
wrapping and unwrapping keys, 604–608

Java Development Kit (JDK). See also specific APIs
new features in 5.0 release, list of, 1–2
utility libraries in, list of, 26

Java Foundation Classes (JFC), 143–144
Java I/O classes, sockets and, 482
Java logging

definition of, 26–27
ErrorManager class (handling errors), 49
examples of, 49–53
Filter interface (filtering log records), 48
Formatter class (formatting log records), 44–48
Handler class (receive and publish log records),

38–44
Level class (levels of messages), 37–38
Logger class (log a message), 27, 30–34
LogManager class (managing logging system), 28–30
LogRecord class (encapsulate a log message),

34–37
Java Management Extensions (JMX)

definition of, 543, 548–549
MBeans, 548–551

Java Message System (JMS)
definition of, 543, 544
messages, sending and receiving, 545–548
messages, types of, 552–553
version 1.1 specification, new features in, 558

Java Naming and Directory Interface (JNDI)
accessing EJB containers using, 467
accessing RMI registry using, 504
connecting to JMS with, 556–557
storing data source name using, 286–287

Java Native Interface (JNI)
arrays in, 410–416
data type conversions, 406
e-mail client example using
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

fields, accessing in, 416–419
header file for native code, creating, 403–404
invoking native routines, 405
Java code invoking native routines, creating, 402–403
Java exceptions, handling in native code, 423–424
Java objects, using in C/C++, 416–423, 425–429
Java threading, 429–430
methods, invoking in, 419–423
native methods, registering manually, 430–432
native routine library, creating, 404–405
native routines, using in Java code, 401–405
NIO direct buffers, using in, 430
reflection using, 432–434
strings in, 406–410

Java Network Launch Protocol (JNLP), 647,
648–650, 654

Java preferences
definition of, 63
examples of, 69–71
exporting to XML, 68–71
Preference class, 63–68

Java Remote Method Protocol (JRMP), 503
Java Runtime Environment (JRE)

endorsed directory in, 624
installing JAR files in, 585, 620

Java Serialization API
classes used in, 229–230
compared to XMLEncoder/Decoder API, 248–249
of configuration data, 230–235, 244–245
customizing, 243–245

678

Java Cryptography Architecture (JCA)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 678

definition of, 223, 228
extending, 245
Externalizable interface, 229–230, 245
file format used by, 228
ObjectInputStream class, 229
ObjectOutputStream class, 229
omitting fields from, 243
procedure for, 229–230
Serializable interface, 229–230
serialization with, 229–235
time-based license example

definition of, 235–236
implementing license, 236–238
implementing timeserver, 238–239

transient keyword, 243
tying into applications, 239–242
versioning and, 245–247
when to use, 247

Java Server Page (JSP) 2.0
benefits of, 351
code reuse support, 335–336
EL (Expression Language) support, 332–335, 339–340
example of, 350–363
forum example using

architecture of, 320
code for, 324–327
database for, 321
file structure for, 321–322
user interface for, 322–323

invocation protocol for, 337–339
page extensions, 336–337
Servlet 2.4 support, 332

Java Socket API
classes in, 481
client programming using, 481–482
definition of, 481
example using, 483–487
server programming using, 482–483

Java Standard Template Library (JSTL) 1.1
CMT (Contact Management Tool) application, 340
example of, 344–350
Function Tag Library, 341–342
SQL Actions, 342–344

Java threading. See threading
Java 2 Enterprise Edition (J2EE)

architecture of, 87
definition of, 113

middleware and, 504–505
when to use, compared to CORBA, 512

Java Web Services Development Pack (JWSDP),
263, 534

Java Web Start
definition of, 647, 654
TicTacToe example of

definition of, 647–648
JNLP file for, 648–650
TTTGui class, 653–654
TTTLogic class, 650–653
TTTMain class, 650

java.awt library, 143
JavaBean components. See also EJBs

RowSets support for, 308–309
serializing with XMLEncoder/Decoder API, 248–256

Javadoc API (doclet API), annotations, 19–20
javah tool, 403
java.sql package, 283
Java2WSDL toolset, 533
java.util.logging library. See Java logging
java.util.prefs library. See Java preferences
java.util.regex library. See regular expressions
javax.sql package, 283
JAXB (Java API for XML Binding)

classes used in, 269
of configuration data

example of, 272–278
generating classes from XML schema, 263–268
sample XML document for, 257–259
XML schema for, 259–263

definition of, 223, 256–257
format for, 257
future direction of, 279
generating classes from XML schema, 263–268
marshalling and unmarshalling XML data, 269–271
tying into applications, 271–278
when to use, 278–279
XML schema for, 259–263

JAXBContext class, 269
JBoss JMX Agent, 563–564, 575, 580
JBoss: Professional Open Source Web site, 499
JButton class
CardLayout manager using, 192, 194
FlowLayout manager using, 162
SpringLayout manager using, 184

679

JButton class

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 679

JCA (Java Cryptography Architecture)
algorithm management, 597–598
certificate management, 600–602
definition of, 583, 584
digital key creation, 592–596
digital key storage and management, 596–597
digital signing and verification, 588–592
engine classes in, 584–585
message digests, calculating and verifying, 586–588
provider packages for, alternatives, 585
random number generation, 599–600
SUN provider package for, 584

JCE (Java Cryptography Extension)
Cipher class, 603–608
converting keys between transparent and opaque,

608–609
definition of, 583, 602
encrypting and decrypting data, 603–604
encrypting serializable classes, 609–611
generating secret keys, 608
KeyGenerator class, 608
message authentication codes, computing, 611–612
SealedObject class, 609–611
SecretKeyFactory class, 608–609
services provided by, 602–603
wrapping and unwrapping keys, 604–608

JDBC API
connections

managing, 286–287
pooling, 310

driver types for, 282
features of, 281–282
meta data for data source, retrieving, 302–308
packages in, 283
requirements for, 283
result sets for SQL queries, 298–302
RowSets, using, 308–309
SQL statements, executing

batch updates, 294–297
CallableStatement interface for, 292–294
PreparedStatement interface for, 289–292
Statement interface for, 288–289

three-tier model for, 284–285
transactions, managing, 310–312
two-tier model for, 283–284

JDBC-Net Pure Java Driver, 282
JDBC-ODBC Bridge Driver, 282
JdbcRowSetImpl RowSet implementation, 309

JDialog class
Annotation Editor example using
AnnotationEditor class, 198–200
ComboListener class, 213–214
ComponentListener class, 202–204
ExcelAction class, 207–209
HighlightPainter class, 204–205
OpenAction class, 209–212
PopupListener class, 201–202
PrintAction class, 205–207
XmlAction class, 207

definition of, 197
JDK (Java Development Kit). See also specific APIs

new features in 5.0 release, list of, 1–2
utility libraries in, list of, 26

JFC (Java Foundation Classes), 143–144
JFileChooser class, 209
JFrame class

Annotation Editor example using
AnnotationEditor class, 198–200
ComboListener class, 213–214
ComponentListener class, 202–204
ExcelAction class, 207–209
HighlightPainter class, 204–205
OpenAction class, 209–212
PopupListener class, 201–202
PrintAction class, 205–207
XmlAction class, 207

BorderLayout manager and, 144, 145
definition of, 197

JKS format, 596
JLabel class, 162, 179, 184, 192
JMenuBar class, 204–205
JMeter tool, development scenarios using, 107–109
JMS (Java Message System)

definition of, 543, 544
messages, sending and receiving, 545–548
messages, types of, 552–553
version 1.1 specification, new features in, 558

JMS server, 573–575
JMSException class, JMS, 558
JMX Agent, 563–564, 575, 580
JMX (Java Management Extensions)

definition of, 543, 548–549
MBeans, 548–551

JNDI (Java Naming and Directory Interface)
accessing EJB containers using, 467
accessing RMI registry using, 504

680

JCA (Java Cryptography Architecture)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 680

connecting to JMS with, 556–557
storing data source name using, 286–287

JNI (Java Native Interface)
arrays in, 410–416
data type conversions, 406
e-mail client example using
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

fields, accessing in, 416–419
header file for native code, creating, 403–404
invoking native routines, 405
Java code invoking native routines, creating, 402–403
Java exceptions, handling in native code, 423–424
Java objects, using in C/C++, 416–423, 425–429
Java threading, 429–430
methods, invoking in, 419–423
native methods, registering manually, 430–432
native routine library, creating, 404–405
native routines, using in Java code, 401–405
NIO direct buffers, using in, 430
reflection using, 432–434
strings in, 406–410

JNIMailBridge class, 434, 436–439
JNLP (Java Network Launch Protocol), 647,

648–650, 654
join() function, JSTL, 341
JoinRowSetImpl RowSet implementation, 309
JOptionPane class, 213
JORAM JMS Server, 573–575
JPanel class, 192, 215–216, 218
JRE (Java Runtime Environment)

endorsed directory in, 624
installing JAR files in, 585, 620

JRMP (Java Remote Method Protocol), 503
JSP (Java Server Page) 2.0

benefits of, 351
code reuse support, 335–336
EL (Expression Language) support, 332–335, 339–340
example of, 350–363
forum example using

architecture of, 320
code for, 324–327
database for, 321
file structure for, 321–322
user interface for, 322–323

invocation protocol for, 337–339
page extensions, 336–337
Servlet 2.4 support, 332

JSpinner class, 184, 190
.jspx file extension, 336–337
JSTL (Java Standard Template Library) 1.1

CMT (Contact Management Tool) application, 340
example of, 344–350
Function Tag Library, 341–342
SQL Actions, 342–344

JTextArea class, 184, 190, 199–200
JTextField class
CardLayout manager using, 192
FlowLayout manager using, 162
SpringLayout manager using, 184, 190

JTree class, 202–203
J2EE (Java 2 Enterprise Edition)

architecture of, 87
definition of, 113
middleware and, 504–505
when to use, compared to CORBA, 512

JUnit tool
development scenarios using, 98–101
learning, using patterns for, 113

JWSDP (Java Web Services Development Pack),
263, 534

K
key agreement, 602
Key interface, 592–593
KeyFactory class, JCA, 585, 593–594
KeyGenerator class, JCE, 608
KeyPair class, JCA, 594
KeyPairGenerator class, JCA, 585, 594–596
keys, digital. See also encryption

creating, 592–596
definition of, 588
storing and managing, 596–597

keys() method, Preference class, 65
KeySpec interface, 592
keystore, 596–597, 631–632
KeyStore class, JCA, 585, 596–597
keytool utility, 631–632
King, Gavin (Hibernate), 374
King’s Hibernate example application, 374

681

King’s Hibernate example application

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 681

L
Larman, Craig (Applying UML and Patterns: An Introduc-

tion to Object-Oriented Analysis and Design and the
Unified Process), 83, 111, 661

Last() method, ResultSet class, 300
layout managers
BorderLayout manager, 144–151
BoxLayout manager, 151–161
CardLayout manager, 191–197, 214
FlowLayout manager, 161–166
GridBagLayout manager, 177–183
GridLayout manager, 167–177
list of, 144
SpringLayout manager, 183–191

lazy operators, in regular expressions, 57–58
Leaf class, Composite pattern, 139–140
length() function, JSTL, 341
Level class, 30, 37–38
.level property, 28
libraries, utility. See Java logging; Java preferences; reg-

ular expressions
license, time-based, for applications

definition of, 235–236
implementing license, 236–238
implementing timeserver, 238–239

linefeed, meta-character for, 55
<listener> element, WAR deployment descriptor, 641
Listeners, JMeter, 108
load() method, KeyStore class, 596
loan calculator example of EJBs

definition of, 468
EJB deployment descriptor for, 473–475
LoanBean class, 469–470
LoanClient class, 470–473
LoanHome interface, 468–469
LoanObject interface, 468

local references to objects, 425–427
log() method, Logger class, 33
log4j-1.2.8.jar file, 315
Logger class, 27, 30–34
login() method, LoginContext class, 615, 617
logging. See Java logging
LoggingInterceptor, WebWork framework, 373
<login-config> element, WAR deployment

descriptor, 641
LoginContext class, JAAS, 615, 616–617
LoginModule class, JAAS, 616

LogManager class, 28–30
logout() method, LoginContext class, 617
logp() method, Logger class, 34
logrb() method, Logger class, 34
LogRecord class, 34–37
long-term serialization. See XMLEncoder/Decoder API
lookingAt() method, Matcher class, 60
loose-coupling design principle, 116
low coupling, 114

M
MAC (Message Authentication Code), 583, 602,

611–612
Mac class, JCE, 611–612
manifest file, 625, 628–629
MapMessage, JMS, 552
Marshaller class, 269
marshalling and unmarshalling

in RMI, 501–503
XML data, 269–271, 448

Matcher class, 54, 59–61
matcher() method, Pattern class, 59
matches() method
Matcher class, 60
Pattern class, 58

MatchResult interface, 61
Maven tool, development scenarios using, 95–98
MBeans

definition of, 548
deploying, 550–551
JMX Agent and, 580
naming conventions for, 554
using, 549–550

MBeanServer
adaptors for, 551
definition of, 549
registering MBeans with, 550–551

MD5 message digest algorithm, 584, 586
member variables, accessing in JNI, 416–419
memory, writing log messages to, 43–44
MemoryHandler class, 43–44
MemoryHandler() method, MemoryHandler

class, 44
Message Authentication Code (MAC), 583, 602,

611–612
Message class, JMS, 545, 558
message digests, JCA, 585, 586–588

682

Larman, Craig (Applying UML and Patterns...)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 682

Message Oriented Middleware (MOM), 543
MessageConsumer class, JMS, 545, 558
MessageDigest class, JCA, 585, 586–588
message-driven beans, 466–467
MessageListener class, JMS, 545, 555, 558
MessageProducer class, JMS, 558
MessagePublisher class, JMS, 545
messages (e-mail), e-mail client example
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

messages (JMS)
flow of, in distributed processing, 552
processing, 553–564
routing, 564–566
sending and receiving, 544–548
splitting, 567–570
types of, 552–553

messages (logging)
encapsulating for logging system, 34–37
filtering, 48
formatting, 44–48
levels of, 30, 37–38
logging, 30–34
writing

to external destinations, 38–44
to a file, 42–43
to memory buffer, 43–44
to network, 41–42
to output stream, 40–41
to System.err, 41

Message-Style Web services, 536
messaging, overriding in endorsed directory, 624
messaging systems. See JMS
meta data

for data source, retrieving with JDBC API, 302–308
definition of, 2, 17–18
examples of, 19–20, 22–26
interfaces in doclet API for, 20–22
types of, 18–19

meta-characters in regular expressions, 55–57
META-INF directory

digitally signing entries in, 630
EAR descriptor file in, 644–645
EJB deployment descriptor in, 643
JAR index file in, 635
manifest file in, 625

methodologies for software development, 82–87
methods. See also specific methods

boxing and unboxing conversions in, 12–13
exposing to other applications with JMX, 543, 548–551
generic, 6–7
invoking with JNI, 419–423
native, registering manually, 430–432
static, importing, 13–15
variable arguments for, 2, 9–10

Microsoft .NET platform, CORBA and, 512
middle layer, three-tier model, JDBC API, 284
middleware, 504–505
<mime-mapping> element, WAR deployment

descriptor, 641, 642
Mine, Philip (article about custom persistence

delegates), 255
M-Let descriptor file, 579–581
M-Let Service

benefits of, 578–579
definition of, 578
deploying, 579
deployment descriptor for, 579–581

Model, in MVC, 366–367
Model class, Model-View-Controller pattern, 124–125
Model 1 Architecture

definition of, 329–331
EL features relevant to, 339–340
JSP 2.0 example using, 351–363
JSP 2.0 features relevant to, 331–339
JSTL example using, 344–350
JSTL features relevant to, 340–344
when to use, 330

Model 2 Architecture
benefits of, 367
configuring and deploying applications, 394–397
definition of, 365–367
domain model, defining, 378–384
hanging sessions, preventing, 375–377
Hibernate, extending framework with, 374–377
IoC (Inversion of Control), 369–371
modifying applications, 397–399
use cases, implementing, 384–387
views, developing, 387–394
WebWork framework for, 368–374
when to use, 367–368

ModelDrivenInterceptor, WebWork framework, 373
modeling, 75

683

modeling

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 683

Model-2 pattern (Model-View-Controller pattern)
application data using, 224
definition of, 122
example of

controller, 128–130
Model class, 124–125
scenarios for, 123–124
view component, 125–127

Model-View-Controller (MVC) pattern
application data using, 224
definition of, 122
example of

controller, 128–130
Model class, 124–125
scenarios for, 123–124
view component, 125–127

MOM (Message Oriented Middleware), 543
MonitorEnter() function, 429
MonitorExit() function, 429–430
moveToInsertRow() method, ResultSet class, 301
multithreading, using JNI, 429–430
MVC (Model-View-Controller) pattern

application data using, 224
definition of, 122
example of

controller, 128–130
Model class, 124–125
scenarios for, 123–124
view component, 125–127

Model 2 Architecture and, 365–367

N
name() method, Preference class, 65
NamingComponent class, 517
NamingContext class, 517
Native API/Part Java Driver, 282
native code, using in Java programs with JNI

arrays in, 410–416
data type conversions, 406
e-mail client example using
JNIMailBridge class, 436–439
MAPI routines used in, 439–444
system design for, 434
user interface for, 435

fields, accessing, 416–419
header file for native code, creating, 403–404
invoking native routines, 405

Java code invoking native routines, creating, 402–403
Java exceptions, handling in native code, 423–424
Java objects, using in C/C++, 416–423, 425–429
Java threading, 429–430
methods, invoking in, 419–423
native methods, registering manually, 430–432
native routine library, creating, 404–405
native routines, using in Java code, 401–405
NIO direct buffers, using in, 430
reflection using, 432–434
strings in, 406–410

Native-Protocol Pure Java Driver, 282
navigation in Swing applications

Installation Wizard example of, 215–221
patterns used for, 214–215

network
architecture of, 479–480
failure of, in RMI applications, 447
writing log messages to, 41–42

NewDirectByteBuffer() function, 430
NewGlobalRef() function, 427
newline, meta-character for, 55
NewLocalRef() function, 425
NewObjectArray() function, 411
news reader example, 478
NewString() function, 407
NewStringUTF() function, 407
New[Type]Array() function, 412
NewWeakGlobalRef() function, 427
Next() method, ResultSet class, 300
nextBytes() method, SecureRandom class, 599
NIO classes, sockets and, 482
NIO direct buffers, using in JNI, 430
node() method, Preference class, 64
nodeExists() method, Preference class, 64
nonscrollable result sets, 298

O
Object Graph Navigation Language (OGNL), 373–374
object graphs

definition of, 225
example of, 226–227
serializing with Java Serialization API

classes used in, 229–230
compared to XMLEncoder/Decoder API, 248–249
of configuration data, 230–235, 244–245

684

Model-2 pattern (Model-View-Controller pattern)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 684

customizing, 243–245
definition of, 223, 228
extending, 245
file format used by, 228
omitting fields from, 243
procedure for, 229–230
time-based license example, 235–239
tying into applications, 239–242
versioning and, 245–247
when to use, 247

serializing with XMLEncoder/Decoder API, 248–256
Object Management Group (OMG), 505
Object Request Broker (ORB), 506–507, 509
Object to Relational Mapping (ORM), 312. See also

Hibernate tool
ObjectInputStream class, 229
ObjectMessage, JMS, 552–553
object-oriented concepts, patterns and, 114
ObjectOutputStream class, 229
objects. See also classes

arrays of, in JNI, 411
collections of, treating as one, 138–142
distributed, 445, 504–505
references for, using in C/C++, 425–429
Remote Object Activations, 449–453
sealing, 609–611
using, in C/C++, 416–423

Observer Design pattern, 123
octal values, meta-characters for, 55
ODBC, and JDBC, 282
odmg-3.0.jar file, 315
OGNL (Object Graph Navigation Language), 373–374
OMG (Object Management Group), 505
opaque representations of keys, 592, 593–594,

597–598, 608–609
Open Systems Interconnection (OSI) architecture, 479
OpenAction class, Annotation Editor example,

209–212
OpenSymphony Quality Components, 499
operators, in regular expressions, 57–58
ORB (Object Request Broker), 506–507, 509
orbd command, 521
ORM (Object to Relational Mapping), 312. See also

Hibernate tool
OSI (Open Systems Interconnection) architecture, 479
OUT parameters, CallableStatement interface,

293, 297
Overrides class, 18, 19

P
packaging Java applications. See deploying Java appli-

cations
page extensions in JSP 2.0, 336–337
page-centric approach of Model 1 Architecture, 329
pageContext implicit object, 340
pageScope implicit object, 340
paint() method, in applets, 637
Param implicit object, 340
parameterized types, 3–4
parameters, arbitrary number of (variable arguments),

2, 9–10
ParametersInterceptor, WebWork framework, 373
paramValues implicit object, 340
parent() method, Preference class, 65
parentheses (()), in regular expressions, 58
parse() method, Level class, 38
Password-Based Encryption (PBE), 602
Pattern class, 54, 58–59
pattern matching. See regular expressions
pattern() method
Matcher class, 60
Pattern class, 59

patterns. See also software design and development
Adapter pattern, 119–122
books about, 111
building, with design principles, 115–119
Command pattern, 130–134
Composite pattern, 138–142
definition of, 112
importance of, 112–114
Model-View-Controller (MVC) pattern, 122–130
Observer Design pattern, 123
Strategy pattern, 134–138

PBE (Password-Based Encryption), 602
PBEKey interface, 593
percent sign (%), prefixing filename patterns, 42–43
performance

batch updates and, 294
connection pooling and, 286, 310
of enumerations, 15
of JDBC three-tier model, 284
measuring with JMeter, 107–109
ORM tools and, 375
PreparedStatement interface and, 289
result sets and, 298, 299
of RMI applications, 447, 448
of software development, 80–81
of Web services, 445

685

performance

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 685

period (.), in regular expressions, 55, 56
persistence delegates, 255
persisting applications. See database, persisting appli-

cations with; serialization
Person class, Strategy pattern, 137
PKCS#8 format, 596
PKIX LDAP V2 Schema, certificate store using, 584
Plain Old Java Object (POJO), 370
plus sign (+), in regular expressions, 57, 58
POA class, 517
POJO (Plain Old Java Object), 370
policy file, 617–618
polymorphism, 114
POM (Project Object Model), 95
PopLocalFrame() function, 426, 427
PopupListener class, Annotation Editor example,

201–202
PortableInterceptor API, overriding in endorsed

directory, 624
PortableServer API, overriding in endorsed directory, 624
PortableServer.POA class, 517
portal example, 478
POSIX character classes, 56–57
POST command, HTTP, 489
Post-Processors, JMeter, 108
Preference class

creating/deleting nodes, 63–65
definition of, 63
events, 67
exporting nodes, 67–68
removing nodes or values of nodes, 67–68
retrieving node information, 65
retrieving nodes, 63–65
retrieving values from nodes, 65–66
setting values on nodes, 66

preferences, Java
definition of, 63
examples of, 69–71
exporting to XML, 68–71
Preference class, 63–68

PreparedStatement interface, JDBC API, 289–292,
296–297

Pre-Processors, JMeter, 108
presentation layer, SQL Actions used in, 342
Previous() method, ResultSet class, 300
primitive types

arrays of, 410, 411–412
boxing conversions for, 11
JNI field descriptors for, 417

translating to C++, 406
unboxing conversions for, 12

Principal interface, JAAS, 614
PrintAction class, Annotation Editor example,

205–207
private key, 588
PrivateKey interface, 593
PrivilegedAction interface, JAAS, 613
programs. See applications; software design and devel-

opment
Project Object Model (POM), 95
property file

in Ant build files, 655
delimiter in, 629

proprietary protocols, 498
protected variations, 114
protocol. See also specific protocols

definition of, 479
existing, using, 499
implementing with sockets, 487–498
proprietary, 498
RMI support for, 503

protocol layer, 479–480
prototypes (function signatures), 405
pseudo-random number generation, 599–600
public key, 588
PublicKey interface, 593
publish() method
Handler class, 39
MemoryHandler class, 44
SocketHandler class, 41
StreamHandler class, 41

push() method, MemoryHandler class, 44
PushLocalFrame() function, 426, 427
PUT command, HTTP, 489
put() method, Preference class, 66
putBoolean() method, Preference class, 66
putByteArray() method, Preference class, 66
putDouble() method, Preference class, 66
putFloat() method, Preference class, 66
putInt() method, Preference class, 66
putLong() method, Preference class, 66

Q
query tag, JSTL, 343
question mark (?), in regular expressions, 57, 58
queue, JMS, 544
quote() method, Pattern class, 58
quoteReplacement() method, Matcher class, 59

686

period (.), in regular expressions

19_574868 bindex.qxd 12/21/04 5:55 PM Page 686

R
random number generation, 599–600
raw types, 4–5
RDBMS (Remote Database Management System),

executing stored procedures on, 292–294
readConfiguration() method, LogManager

class, 29
readObject() method, Java Serialization API, 243–245
ReadOnlyIterator interface, 9
refactoring (changing code design), 77
Refactoring (Fowler, Martin), 77, 111, 661
reference types, 11, 12
reflection, using JNI, 432–434
refresh() method, Refreshable interface, 615
Refreshable interface, JAAS, 615
region() method, Matcher class, 61
regionEnd() method, Matcher class, 61
regionStart() method, Matcher class, 61
Register class, 452–453
RegisterNatives() function, 430–431
regular expressions

backreferences in, 58
character classes in, 56–57
definition of, 53
examples of, 53–54, 61–63
groups of matching characters in, 58
Matcher class (compare pattern to string), 59–61
meta-characters for, 55–57
operators for, 57–58
Pattern class (compiling and storing regular

expressions), 58–59
relative() method, ResultSet class, 300
ReleasePrimitiveArrayCritical() function, 413
ReleaseStringChars() function, 408
ReleaseStringCritical() function, 408
ReleaseStringUTFChars() function, 408, 410
Release[Type]ArrayElements() function,

412, 414
reluctant operators, in regular expressions, 57–58
Remote Database Management System (RDBMS),

executing stored procedures on, 292–294
Remote interface, 502
Remote Method Invocation (RMI)

architecture of, 446–447
communication transport protocol for, 447
CORBA compatibility with, 510–512
definition of, 445–446, 465, 500–501
developing applications with, 448–449
distributed objects, 445, 504–505

dynamic class loading, 449
garbage collection by, 447, 449
marshalling and unmarshalling, 501–503
network failure and, 447
performance of, 447
protocols, 503
Remote Object Activations, 449–453
security and, 447
serialization and, 235
stubs, generating, 448
threading, 448

Remote Object Activations
definition of, 449–450
example of, 450–453

Remote Procedure Call (RPC). See also RMI; Web
services

history of, 446
platform independent, Web services as, 526–527
RMI (Remote Method Invocation) and, 500–501

RemoteFileSystemWatcher interface, 513
remove() method, Preference class, 67
removeHandler() method, Logger class, 31
removeNode() method, Preference class, 64
removeNodeChangeListener() method,

Preference class, 67
removePreferenceChangeListener() method,

Preference class, 67
removePropertyChangeListener() method,

LogManager class, 30
replace() function, JSTL, 341
replaceAll() method, Matcher class, 61
replaceFirst() method, Matcher class, 61
Request scope, WebWork framework, 374
requestScope implicit object, 340
requireEnd() method, Matcher class, 60
requirement changes in software development, 75–76
reset() method
LogManager class, 29
Matcher class, 60

<resource-ref> element, WAR deployment
descriptor, 641

ResultSet class
concurrency of, 298
definition of, 298
encapsulated by JdbcRowSetImpl, 309
holdability of, 299
serialization and, 229–230
types of, 298
using, 299–302

687

ResultSet class

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 687

Retention class, 18, 19
RetentionPolicy enumeration, 18
reuse

code, 335–336
framework, 367

reverse containment relationship, 118
reverse engineering for proprietary protocols, 498
RMI (Remote Method Invocation)

architecture of, 446–447
communication transport protocol for, 447
CORBA compatibility with, 510–512
definition of, 445–446, 465, 500–501
developing applications with, 448–449
distributed objects, 445, 504–505
dynamic class loading, 449
garbage collection by, 447, 449
marshalling and unmarshalling, 501–503
network failure and, 447
performance of, 447
protocols, 503
Remote Object Activations, 449–453
security and, 447
serialization and, 235
stubs, generating, 448
threading, 448

RMI registry, 446, 453, 465, 503–504
rmic tool, 448, 464
RMIChat example using RMI
ChatApplet class, 460–464
ChatUser class, 459–460
compiling, 464–465
RMIChat interface, 454–455
RMIChatImpl class, 455–459
running, 465
user interface for, 453–454

rmid activation daemon, 450, 453
RMI-IIOP, 510–512
Role interface, Strategy pattern, 135
rollback() method, Connection class, 311
rolling back transactions, 310–311
rowChanged event, RowSet, 308
rowSetChanged event, RowSet, 308
RowSets, 308–309
RPC (Remote Procedure Call). See also RMI; Web

services
history of, 446
platform independent, Web services as, 526–527
RMI (Remote Method Invocation) and, 500–501

RPC-based Web services, 536
.RSA file extension, 630
RSAMultiplePrimePrivateCrtKeySpec

interface, 592
RSAMultiPrimePrivateCrtKey interface, 593
RSAPrivateCrtKey interface, 593
RSAPrivateCrtKeySpec interface, 592
RSAPrivateKey interface, 593
RSAPrivateKeySpec interface, 592
RSAPublicKey interface, 593
RSAPublicKeySpec interface, 592
run() method, PrivilegedAction interface, 613

S
saveOrUpdate() method, Session class, 319
savepoints for transactions, 311
scalability

of connection pooling, 310
of EJBs, 445, 465
of JDBC three-tier model, 284
of JDBC two-tier model, 283
of JMS processing architecture, 552
of Model 2 Architecture, 367
of RMI, 445
of Web services, 522, 527

scopes of components, WebWork framework, 374
scripting elements in EL, 333
scripting tools

Ant application, 87–95, 113, 496, 654–658
Maven tool, 95–98
XDoclet tool, 101–107, 113

scriptlets in EL, 333
scrollable result sets, 298
SealedObject class, JCE, 609–611
SecretKey interface, 593
SecretKeyFactory class, JCE, 608–609
SecureRandom class, JCA, 585, 599–600
security

of applets, 639
JAAS (Java Authentication and Authorization Service)

authenticating a subject, 615, 616–617
authorization, 617–618
AuthPermission class, 617–618
configurations for authentication, 615–616
credentials, 613, 615
definition of, 612
Destroyable interface, 615

688

Retention class

19_574868 bindex.qxd 12/21/04 5:55 PM Page 688

executing code with security checks, 613–617
LoginContext class, 615
policy file for authorization, 617–618
principals, 614
PrivilegedAction interface, 613
Refreshable interface, 615
Subject class, 612–613
user identification, 612–613

JAR files, digitally signing, 625, 630–634
of Java Web Start application, 650
JCA (Java Cryptography Architecture)

algorithm management, 597–598
certificate management, 600–602
definition of, 583, 584
digital key creation, 592–596
digital key storage and management, 596–597
digital signing and verification, 588–592
engine classes in, 584–585
message digests, calculating and verifying, 586–588
provider packages for, alternatives, 585
random number generation, 599–600
SUN provider package for, 584

JCE (Java Cryptography Extension)
Cipher class, 603–608
converting keys between transparent and opaque,

608–609
definition of, 583, 602
encrypting and decrypting data, 603–604
encrypting serializable classes, 609–611
generating secret keys, 608
KeyGenerator class, 608
message authentication codes, computing, 611–612
SealedObject class, 609–611
SecretKeyFactory class, 608–609
services provided by, 602–603
wrapping and unwrapping keys, 604–608

MAC (Message Authentication Code), 583
of Model 2 Architecture, 367
of RMI applications, 447

<security-constraint> element, WAR deployment
descriptor, 641, 642

<security-role> element, WAR deployment
descriptor, 641

seed value for random number generation, 599
Seller class, Strategy pattern, 136
Semantic Web, Web services and, 522
sendMail() method, 439

sensitive result sets, 298
serializable classes, encrypting, 609–611
Serializable interface, 229–230, 502
serialization. See also database, persisting

applications with
APIs for, list of, 223
of application data, 224–227
of configuration data, with JAXB

generating classes from XML schema, 263–268
sample XML document for, 257–259
XML schema for, 259–263

definition of, 228
with Java Serialization API

classes used in, 229–230
compared to XMLEncoder/Decoder API, 248–249
of configuration data, 230–235, 244–245
customizing, 243–245
definition of, 223, 228
extending, 245
file format used by, 228
omitting fields from, 243
procedure for, 229–230
time-based license example, 235–239
tying into applications, 239–242
versioning and, 245–247
when to use, 247

with JAXB (Java API for XML Binding)
classes used in, 269
of configuration data, 272–278
definition of, 223, 256–257
format for, 257
future direction of, 279
generating classes from XML schema, 263–268
marshalling and unmarshalling XML data, 269–271
tying into applications, 271–278
when to use, 278–279
XML schema for, 259–263

with XMLEncoder/Decoder API
classes used in, 250–251
compared to Java Serialization API, 248–249
of configuration data, 252–254
customizing, 254–255
definition of, 223
format for, 249–250
persistence delegates and, 255
procedure for, 251
when to use, 255–256

689

serialization

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 689

serialver tool, 246–247
serialVersionUID field, 246–247
server layer, two-tier model, JDBC API, 283
ServerSocket class, 481, 482–483
Service Provider Interface (SPI) for engine classes,

584–585
<servlet> element, WAR deployment descriptor,

641, 642
Servlet 2.4 support in JSP 2.0, 332
<servlet-mapping> element, WAR deployment

descriptor, 641
ServletRequest class, 332
session beans, 466
Session class

Hibernate, 319
JMS, 545, 558

Session scope, WebWork framework, 374
<session-config> element, WAR deployment

descriptor, 641
SessionFactory object, Hibernate, 317
sessionScope implicit object, 340
setAutoCommit() method, Connection class, 311
setBoolean() method, PreparedStatement

interface, 290
setCertificateEntry() method, KeyStore

class, 597
setDataSource tag, JSTL, 343
setDate() method, PreparedStatement

interface, 290
setDouble() method, PreparedStatement

interface, 290
setEncoding() method
Handler class, 39
StreamHandler class, 41

setErrorManager() method, Handler class, 39
setFilter() method, Handler class, 39
setFloat() method, PreparedStatement

interface, 290
setFormatter() method, Handler class, 39
setInt() method, PreparedStatement

interface, 290
setKeyEntry() method, KeyStore class, 597
setLevel() method
Handler class, 39
Logger class, 31
LogRecord class, 36

setLoggerName() method, LogRecord class, 36
setLong() method, PreparedStatement

interface, 290

setMessage() method, LogRecord class, 36
setMillis() method, LogRecord class, 37
setObject() method, PreparedStatement

interface, 291–292
SetObjectArrayElement() function, 411
setOutputStream() method, StreamHandler

class, 41
setParameters() method, LogRecord class, 37
setParent() method, Logger class, 31
setPushLevel() method, MemoryHandler class, 44
setReadOnly() method, Subject class, 613
setResourceBundle() method, LogRecord

class, 36
setResourceBundleName() method, LogRecord

class, 36
setSavePoint() method, Connection class, 311
setSeed() method, SecureRandom class, 599
setSequenceNumber() method, LogRecord

class, 37
setSourceClassName() method, LogRecord

class, 36
setSourceMethodName() method, LogRecord

class, 36
SetStatic[Type]Field() function, 418
setString() method, PreparedStatement

interface, 290
setThreadID() method, LogRecord class, 36
setThrown() method, LogRecord class, 36
Set[Type]ArrayRegion() function, 413
Set[Type]Field() function, 418, 419
setUseParentHandlers() method, Logger

class, 31
severe() method, Logger class, 33
.SF file extension, 630
SHA-1 message digest algorithm, 584, 586, 588
SHA1PRNG pseudo-random number generator, 584, 596
sign() method, Signature class, 589
Signature class, JCA, 585, 589–592
signature-related files, 630
signatures, digital

for data, 588–592
for JAR files, 625

Simple Object Access Protocol (SOAP), 445, 529–530,
639

SimpleFormatter class, 45
Singleton pattern, 215
slash (/)

directory separator, 42
in preference nodes, 63

690

serialver tool

19_574868 bindex.qxd 12/21/04 5:55 PM Page 690

SOAP (Simple Object Access Protocol), 445,
529–530, 639

Socket class, 481–482
SocketHandler class, 41–42
sockets

definition of, 480
history of, 446
Java Socket API, 481–487
protocol, implementing, 487–499
types of, 480

software design and development. See also Model 1
Architecture; Model 2 Architecture; performance;
scalability

Ant, development scenarios using, 87–95
bug reporting and tracking, 81
code reuse, in JSP 2.0, 335–336
communication, importance of, 75
configuration management, 78–79
continuous integration, 79
criteria for, 114
discipline required for, 76
estimates for, 80–81
guidelines for, 75–81
JMeter, development scenarios using, 107–109
JUnit, development scenarios using, 98–101
Maven, development scenarios using, 95–98
methodologies for, 82–87
modeling, 75
new technologies, learning, 78
patterns and, 113–114
principles for, building patterns with, 115–119
process for, building, 78
quality of, measuring, 74
refactoring (changing code design), 77
requirement changes, handling, 75–76
short development iterations, 79–80
traceability of code to requirements, 76–77
unit testing, 79
writing code, importance of, 77
XDoclet, development scenarios using, 101–107

source code control, 78–79
SourceForge Web site, XDoclet tool, 101
SPI (Service Provider Interface) for engine classes,

584–585
spiral methodology, 82
split() function, JSTL, 341
split() method, Pattern class, 59

SpringLayout manager
definition of, 183
example of

JAddEventButton class, 189
JButtonSave class, 189–190
running, 190–191
SpringLayoutPanel class, 184–189
SpringLayoutPanel display, 184

SpringLayout() method, SpringLayout class, 183
SQL Actions, JSTL

definition of, 342–344
example of, 344–350

SQL statements
executing with JDBC API

batch updates, 294–297
CallableStatement interface, 292–294, 297
PreparedStatement interface, 289–292, 296–297
ResultSet class, 298–302
Statement interface, 288–289, 295–296

executing with JSTL, 342–344
square brackets ([]), in regular expressions, 56
standard transactions, 311
start() method

in applets, 637
Matcher class, 60
MessageConsumer class, 548

startsWith() function, JSTL, 341
State pattern, 214–215
stateful-session beans, 466
stateless-session beans, 466, 468
Statement interface, JDBC API, 288–289
static data, importing, 2, 13–15
StaticParametersInterceptor, WebWork frame-

work, 373
stop() method, in applets, 637
store() method, KeyStore class, 596
stored procedures, executing on RDBMS, 292–294
Strategy pattern

CardLayout manager using, 192
definition of, 134–135
example of, 135–138

StreamHandler class, 40–41
strings

EL expressions
Function Tag Library extensions to, 341–342
in JSP scripts, 332–335, 339–340

in JNI, 406–410
pattern matching with, 53–63

691

strings

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 691

stubs, 448, 501
Subject class, JAAS, 612–613
substring() function, JSTL, 341
substringAfter() function, JSTL, 341
substringBefore() function, JSTL, 341
subtyping, 135
SUN provider package, 584
super-types, 3
supportResultSetConcurrency() method,

DatabaseMetaData class, 298
supportsBatchUpdates() method,

DatabaseMetaData class, 303
supportsGroupBy() method,

DatabaseMetaData class, 303
supportsSavepoints() method,

DatabaseMetaData class, 303
supportsStoredProcedures() method,

DatabaseMetaData class, 294, 303
supportsTransactions() method,

DatabaseMetaData class, 303
Swing applications

actions, 233–234, 239–242
BorderLayout manager, 144–151
BoxLayout manager, 151–161
CardLayout manager, 191–197, 214
e-mail client example using, 434–435
example of, 122–130
FlowLayout manager, 161–166
GridBagLayout manager, 177–183
GridLayout manager, 167–177
layout managers for, 144
navigation flows, managing, 214–221
serialization and deserialization in, 232–235
SpringLayout manager, 183–191

Swing classes, 143
Swing components, serialization of, 255
sync() method, Preference class, 68
System.err, writing log messages to, 41
systemNodeForPackage() method, Preference

class, 64
systemRoot() method, Preference class, 64

T
tab, meta-character for, 55
.tag file extension, 335–336
<taglib> element, WAR deployment descriptor, 641
.tagx file extension, 335–336

Target class, 18, 19, 120
TCP (Transmission Control Protocol)

monitoring, 496–498
sockets, 480

TCPMon (Apache), 496–498, 534, 539
TestActivationImpl class, 450–451
TestClient class, 451
testing tools

JMeter tool, 107–109
JUnit tool, 98–101, 113

TestRemoteInterface interface, 450
TextMessage, JMS, 552, 558
ThreadGroups, 107
threading

sockets and, 483
using JNI, 429–430
using RMI, 448

three-tier model for JDBC API, 284–285
Throw() function, 424
throwing() method, Logger class, 34
ThrowNew() function, 424
throws clause, type variables in, 7
TicTacToe example of Java Web Start

definition of, 647–648
JNLP file for, 648–650
TTTGui class, 653–654
TTTLogic class, 650–653
TTTMain class, 650

tiers of J2EE architecture, 87
time-based license for applications

definition of, 235–236
implementing license, 236–238
implementing timeserver, 238–239

TimerInterceptor, WebWork framework, 373
toLowerCase() function, JSTL, 341
toMatchResult() method, MatchResult

interface, 61
topic, JMS, 544
ToReflectedField() function, 434
ToReflectedMethod() function, 433
toString() method
AnnotationValue interface, 22
Level class, 38
Preference class, 68
Principal interface, 614

toUpperCase() function, JSTL, 341
traceability of software to requirements, 76–77

692

stubs

19_574868 bindex.qxd 12/21/04 5:55 PM Page 692

transactions
holding result sets open after, 299
managing, 310–312

transient keyword, Java Serialization API, 243
translateKey() method, SecretKeyFactory

class, 609
Transmission Control Protocol (TCP)

monitoring, 496–498
sockets, 480

transparent representations of keys, 592, 593–594,
608–609

transport layer, 479–480
trim() function, JSTL, 341
troubleshooting. See exceptions; Java logging; perfor-

mance
trusted certificate entry, 596
two-tier model for JDBC API, 283–284
type erasure, 4–5
type variables

arrays of, 6
definition of, 3, 5
exceptions and, 7

TYPE_FORWARD_ONLY constant, 298
type-safe classes (generics)

arrays of, 6
boxing and, 13
defining, 5
definition of, 1, 2
exceptions and, 7
instantiating, 5–6
methods, 6–7
parameterized types, 3–4
raw types (type erasure), 4–5

type-safe enumerations, 2, 15–17
TYPE_SCROLL_INSENSITIVE constant, 298
TYPE_SCROLL_SENSITIVE constant, 298

U
UDP (User Datagram Protocol) sockets, 480
UDT (User Defined Types), 292
UML modeling, 75
unboxing (and boxing) conversions, 2, 11–13
Unicode characters, 407–408
Unified Process (UP), 83–85, 86–87
unit testing, 79
Unmarshaller class, 269

unmarshalling
in RMI, 501–503
XML data, 269–271, 448

UnregisterNatives() function, 431
UP (Unified Process), 83–85, 86–87
update() method
Cipher class, 604
Mac class, 611
Session class, 319
Signature class, 589

update tag, JSTL, 343
use cases, 84, 87, 384–387
usePattern() method, Matcher class, 60
User Datagram Protocol (UDP) sockets, 480
User Defined Types (UDT), 292
user identification, in JAAS, 612–613. See also authen-

tication
user interface development. See GUI applications
User Interface Logic, separating from business logic.

See MVC (Model-View-Controller) pattern
user requests, handling. See Command pattern
userNodeForPackage() method, Preference

class, 64
userRoot() method, Preference class, 65
UTF-8 character encoding, 406–408
utility libraries. See Java logging; Java preferences;

regular expressions

V
validate() method, CertPathValidator class, 601
Validator class, 269
value() method
AnnotationDesc.ElementValuePair interface, 21
AnnotationValue interface, 22

ValueStack, WebWork framework, 373
variable arguments, 2, 9–10
velocity, 81
verification of data with digital signature, 588–592
verify() method, Signature class, 590
Verisign, 600
versioning, Java Serialization API and, 245–247
vertical components, 369
View, in MVC, 366–367
View class, Model-View-Controller pattern, 125–127
Visitor pattern, 178, 182
Visual Studio, creating project for JNI, 404–405

693

Visual Studio, creating project for JNI

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 693

W
WAR (Web ARchive File)

in AXIS, for Web services, 533
creating, 104, 658
definition of, 639–640
deploying, 640–643
in EAR (Enterprise Archive), 644–646

warning() method, Logger class, 33
Waterfall methodology, 82–83, 86–87
weak global references to objects, 425, 427–429
weather example

JavaBean for, 531–532
WeatherGetter class, 532–533
without Web services, 523–526
Web services for, 533–540

Web application archive. See WAR
Web applications. See also Model 1 Architecture;

Model 2 Architecture
applets

definition of, 636
in JAR files, 629–630
packaging for execution, 638
RMI for, 446
security of, 639
structure of, 636–638

deploying, 639–643
Java Web Start, 647–654
visualizations

developing with JSP, 350–363
developing with JSTL, 344–350

Web ARchive File (WAR)
in AXIS, for Web services, 533
creating, 104, 658
definition of, 639–640
deploying, 640–643
in EAR (Enterprise Archive), 644–646

Web services
client for, writing with AXIS, 537–539
definition of, 522–523, 639
deploying with AXIS, 535–537
example using, 523–526, 531–540
future of, 540
limitations of, 445, 522, 527
remote procedure calls with, 526–527
SOAP and, 529–530
types of, 536
when to use, 522–523, 540
WSDL and, 528–529

Web Services Description Language (WSDL),
528–529, 537

Web sites
The Apache XML Project, 499
The Eclipse Project, 499
Gaim, 498
IIOP.NET project, 512
The Jakarta Project, 499
JBoss: Professional Open Source, 499
JDBC drivers, 282
JMeter tool, 107–108
JNDI (Java Naming and Directory Interface), 287
King’s Hibernate example application, 374
OMG (Object Management Group), 506
OpenSymphony Quality Components, 499
SourceForge, XDoclet tool, 101
WSDL (Web Services Description Language), 528

Web Start
definition of, 647, 654
TicTacToe example of

definition of, 647–648
JNLP file for, 648–650
TTTGui class, 653–654
TTTLogic class, 650–653
TTTMain class, 650

Web tier, J2EE, 87
WebRowSetImpl RowSet implementation, 309
WebWork framework

architecture of, 371–374
definition of, 368–369
extending with Hibernate, 374–377
Interceptors in, 372–373
IoC (Inversion of Control), 369–371
OGNL (Object Graph Navigation Language) for,

373–374
scopes of components, 374
ValueStack in, 373

weightx variable, GridLayout manager, 178
weighty variable, GridLayout manager, 178
<welcome-file-list> element, WAR deployment

descriptor, 641, 642
World Wide Web, evolution of

description of, 523
example illustrating, 524–526
Web services and, 523, 526

wrap() method, Cipher class, 604–608
writeObject() method, Java Serialization API,

243–245

694

WAR (Web ARchive File)

19_574868 bindex.qxd 12/21/04 5:55 PM Page 694

wrox.pattern library. See patterns
WSDL (Web Services Description Language),

528–529, 537
WSDL2Java toolset, 533, 537–538

X
X.509 Certificate path builder, 584
X.509 format, 596
XDoclet tool

development scenarios using, 101–107
learning, using patterns for, 113

xjc compiler, 263–264
XML

exporting preferences to, 68–71
Hibernate mappings, 315–317
in WAR deployment descriptor, 640–643

XML schema-based serialization. See JAXB
XmlAction class, Annotation Editor example, 207
XMLDecoder class, 250–251

XMLEncoder class, 250–251
XMLEncoder/Decoder API

classes used in, 250–251
compared to Java Serialization API, 248–249
of configuration data, 252–254
customizing, 254–255
definition of, 223
format for, 249–250
persistence delegates and, 255
procedure for, 251
when to use, 255–256

XMLFormatter class, 45–47
X/Open SQL Call Level Interface (CLI), 282
XP (eXtreme Programming), 81, 85–87
XSD (XML Schema Definition), serialization based on.

See JAXB
XWork command framework

definition of, 371
examples using, 384–387, 395–396

695

XWork command framework

In
de

x

19_574868 bindex.qxd 12/21/04 5:55 PM Page 695

19_574868 bindex.qxd 12/21/04 5:55 PM Page 696

19_574868 bindex.qxd 12/21/04 5:55 PM Page 697

19_574868 bindex.qxd 12/21/04 5:55 PM Page 698

19_574868 bindex.qxd 12/21/04 5:55 PM Page 699

19_574868 bindex.qxd 12/21/04 5:55 PM Page 700

Licenses

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

Terms and Conditions for Use, Reproduction, and Distribution
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, “control” means (i) the power, direct or indirect, to cause the direction or man-
agement of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent
(50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions
granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or transla-
tion of a Source form, including but not limited to compiled object code, generated docu-
mentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached to
the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or
by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including but not lim-
ited to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of

20_574868 eula.qxd 12/21/04 5:57 PM Page 701

discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or
by combination of their Contribution(s) with the Work to which such Contribution(s) was sub-
mitted. If You institute patent litigation against any entity (including a cross-claim or counter-
claim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copy-
right, patent, trademark, and attribution notices from the Source form of the Work, excluding
those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wher-
ever such third-party notices normally appear. The contents of the NOTICE file are for informa-
tional purposes only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text
from the Work, provided that such additional attribution notices cannot be construed as modi-
fying the License.

You may add Your own copyright statement to Your modifications and may provide additional
or different license terms and conditions for use, reproduction, or distribution of Your modifica-
tions, or for any such Derivative Works as a whole, provided Your use, reproduction, and distri-
bution of the Work otherwise complies with the conditions stated in this License.

702

20_574868 eula.qxd 12/21/04 5:57 PM Page 702

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intention-
ally submitted for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the tradenames, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITH-
OUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including,
without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MER-
CHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks asso-
ciated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negli-
gence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages,
including any direct, indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the Work (including but not
limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indem-
nity, or other liability obligations and/or rights consistent with this License. However, in accept-
ing such obligations, You may act only on Your own behalf and on Your sole responsibility, not
on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

703

20_574868 eula.qxd 12/21/04 5:57 PM Page 703

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright © 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change
free software — to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages — typically libraries — of the Free Software Foundation and other authors who decide to
use it. You can use it too, but we suggest you first think carefully about whether this license or the
ordinary General Public License is the better strategy to use in any particular case, based on the expla-
nations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipi-
ents all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library and recompiling it. And
you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what
they have is not the original version, so that the original author’s reputation will not be affected by prob-
lems that might be introduced by others.

704

20_574868 eula.qxd 12/21/04 5:57 PM Page 704

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of
the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the user’s free-
dom than the ordinary General Public License. It also provides other free software developers Less of an
advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-
free programs enables many more people to use the whole GNU operating system, as well as its variant,
the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention
to the difference between a “work based on the library” and a “work that uses the library”. The former
contains code derived from the library, whereas the latter must be combined with the library in order
to run.

GNU LESSER GENERAL PUBLIC LICENSE

Terms and Conditions for Copying, Distribution and Modification
0. This License Agreement applies to any software library or other program which contains a

notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called “this License”).

Each licensee is addressed as “you”.

705

20_574868 eula.qxd 12/21/04 5:57 PM Page 705

A “library” means a collection of software functions and/or data prepared so as to be conve-
niently linked with application programs (which use some of those functions and data) to form
executables.

The “Library”, below, refers to any such software library or work that has been distributed
under these terms. A “work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it.
For a library, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installa-
tion of the library. Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a work
based on the Library (independent of the use of the Library in a tool for writing it). Whether
that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and distribute a copy of this License
along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the
files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under
the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does
not supply such function or table, the facility still operates, and performs whatever part of its
purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not
supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Library, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole

706

20_574868 eula.qxd 12/21/04 5:57 PM Page 706

that is a work based on the Library, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or
with a work based on the Library) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2,instead of to
this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change
in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program that
is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for soft-
ware interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a “work that uses the Library”.
Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the
scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a “work that
uses the library”. The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables. When a “work that uses the Library” uses material from a
header file that is part of the Library, the object code for the work may be a derivative work of
the Library even though the source code is not. Whether this is true is especially significant if
the work can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law. If such an object file uses only numerical parame-
ters, data structure layouts and accessors, and small macros and small inline functions (ten lines
or less in length), then the use of the object file is unrestricted, regardless of whether it is legally
a derivative work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the

707

20_574868 eula.qxd 12/21/04 5:57 PM Page 707

object code for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6,whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the
Library” with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such modifications. You
must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the
work during execution displays copyright notices, you must include the copyright notice for the
Library among them, as well as a reference directing the user to the copy of this License. Also,
you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with
the complete machine-readable “work that uses the Library”, as object code and/or source
code, so that the user can modify the Library and then relink to produce a modified executable
containing the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism
is one that (1) uses at run time a copy of the library already present on the user’s computer sys-
tem, rather than copying library functions into the executable, and (2) will operate properly
with a modified version of the library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user
the materials specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above-specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data
and utility programs needed for reproducing the executable from it. However, as a special
exception, the materials to be distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means you
cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

708

20_574868 eula.qxd 12/21/04 5:57 PM Page 708

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on
the Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Library (or any work based on the Library), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient auto-
matically receives a license from the original licensor to copy, distribute, link with or modify the
Library subject to these terms and conditions. You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein. You are not responsible for enforcing com-
pliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not permit royalty-
free redistribution of the Library by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation excluding those countries, so

709

20_574868 eula.qxd 12/21/04 5:57 PM Page 709

that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. Each version is given a dis-
tinguishing version number. If the Library specifies a version number of this License which
applies to it and “any later version,” you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published
by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution con-
ditions are incompatible with these, write to the author to ask for permission. For software that
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU.
SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recom-
mend making it free software that everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the ordinary General Public
License).

710

20_574868 eula.qxd 12/21/04 5:57 PM Page 710

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright © <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library `Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

711

20_574868 eula.qxd 12/21/04 5:57 PM Page 711

The OpenSymphony Software License, Version 1.1
Copyright © 2001-2004 The OpenSymphony Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution, if any, must include the follow-
ing acknowledgment:

“This product includes software developed by the OpenSymphony Group (http://www.
opensymphony.com/).”

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-
party acknowledgments normally appear.

4. The names “OpenSymphony” and “The OpenSymphony Group” must not be used to endorse
or promote products derived from this software without prior written permission. For written
permission, please contact license@opensymphony.com.

5. Products derived from this software may not be called “OpenSymphony” or “OsCore”, nor may
“OpenSymphony” or “OsCore” appear in their name, without prior written permission of the
OpenSymphony Group.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

712

20_574868 eula.qxd 12/21/04 5:57 PM Page 712

	Cover
	Contents
	Introduction
	Key Java Language Features and Libraries
	New Language Features
	Generics
	Enhanced for Loop
	Variable Arguments
	Boxing/Unboxing Conversions
	Static Imports
	Enumerations
	Meta data

	Important Java Utility Libraries
	Java Logging
	Java Preferences

	Summary

	Tools and Techniques for Developing Java Solutions
	Principles of Quality Software Development
	Habits of Effective Software Development
	Communicate
	Model
	Be Agile
	Be Disciplined
	Trace Your Actions to Need
	Don’t Be Afraid to Write Code
	Think of Code as a Design, not a Product
	Read a LOT!
	Build Your Process from the Ground Up
	Manage Your Configuration
	Unit Test Your Code
	Continuously Integrate
	Maintaining Short Iterations
	Measure What You Accomplished— Indirectly
	Track Your Issues

	Development Methodology
	Waterfall Methodology
	Unified Process
	eXtreme Programming
	Observations on Methodology

	Practical Development Scenarios
	Ant
	Maven
	JUnit
	XDoclet
	JMeter

	Summary

	Exploiting Patterns in Java
	Why Patterns Are Important
	Keys to Understanding the Java Programming Language
	Keys to Understanding Tools Used in Java Development
	Keys to Developing Effective Java Solutions

	Building Patterns with Design Principles
	Designing a Single Class
	Creating an Association between Classes
	Creating an Interface
	Creating an Inheritance Loop

	Important Java Patterns
	Adapter
	Model-View-Controller
	Command
	Strategy
	Composite

	Summary

	Developing Effective User Interfaces with JFC
	Layout Managers
	BorderLayout
	BoxLayout
	FlowLayout
	GridLayout
	GridBagLayout
	SpringLayout
	CardLayout

	JFrame and JDialog Components
	Managing Navigation Flows in Swing
	Applications
	Summary

	Persisting Your Application Using Files
	Application Data
	Saving Application Data

	Java Serialization: Persisting Object Graphs
	Key Classes
	Serializing Your Objects
	Giving Your Application a Time-based License Using
	Serialization
	Tying Your Serialization Components into the Application
	Extending and Customizing Serialization
	When to Use Java Serialization

	Java Beans Long-Term Serialization:
	XMLEncoder/Decoder
	Design Differences
	Key Classes
	Serializing Your Java Beans
	Possible Customization
	When to Use XMLEncoder/Decoder

	XML Schema-Based Serialization:
	Java API for XML Binding (JAXB)
	Sample XML Document for Your Configuration Object
	Defining Your XML Format with an XML Schema
	Generating JAXB Java Classes from Your Schema
	JAXB API Key Classes
	Marshalling and Unmarshalling XML Data
	Using JAXB-Generated Classes in Your Application
	When to Use JAXB
	Future Direction of JAXB 2.0

	Summary

	Persisting Your Application Using Databases
	JDBC API Overview
	Setting Up Your Environment
	JDBC API Usage in the Real World
	Understanding the Two-Tier Model
	Understanding the Three-Tier Model

	Grasping JDBC API Concepts
	Managing Connections
	Understanding Statements
	Utilizing Result Sets

	Examining JDBC Advanced Concepts
	Managing Database Meta Data
	Utilizing RowSets
	Connection Pooling
	Managing Transactions

	Object to Relational Mapping
	with Hibernate
	Exploring Hibernate’s Architecture
	Developing with Hibernate

	Summary

	Developing Web Applications Using the Model 1 Architecture
	What Is Model 1? Why Use It?
	JSP 2.0 Overview
	Integrated Expression Language (EL)
	JSTL 1.1 Overview
	Developing Your Web Application Visualizations with JSTL
	Developing Your Web Application Visualizations
	with JSP 2.0

	Summary

	Developing Web Applications Using the Model 2 Architecture
	The Problem
	What Is Model 2?
	Why Use Model 2?
	Developing an Application with WebWork
	What Is Inversion of Control and Why Is It Useful?
	Architecture
	Extending the Framework to Support Hibernate
	Defining Your Domain Model
	Implementing Your Use Cases with Actions
	Developing Your Views
	Configuring Your Application
	Adapting to Changes

	Summary

	Interacting with C/C++ Using Java Native Interface
	A First Look at Java Native Interface
	Creating the Java Code
	Creating the Native Code and Library
	Executing the Code

	Java Native Interface
	Data Types
	Strings in JNI
	Arrays in JNI
	Working with Java Objects in C/C++
	Handling Java Exceptions in Native Code
	Working with Object References in Native Code
	Advanced Programming Using JNI

	Developing an E-Mail Client
	System Design
	User Interface

	Summary

	Communicating between Java Components with RMI and EJB
	Remote Method Invocation
	Exploring RMI’s Architecture
	Developing RMI Applications
	Examining Remote Object Activations
	RMIChat Example

	Enterprise JavaBeans
	EJB Basics
	Types of EJBs
	Examining EJB Containers
	EJB Loan Calculator Example

	Summary

	Communicating between Java Components and Components of Other Platforms
	Component Communication Scenarios
	News Reader: Automated Web Browsing
	A Bank Application: An EJB/J2EE Client
	A Portal: Integrating Heterogeneous Data Sources and
	Services

	Overview of Interprocess Communication
	and Basic Network Architecture
	Sockets
	The Java Socket API
	Implementing a Protocol

	Remote Method Invocation
	Core RPC/RMI Principles
	Distributed Objects

	Common Object Request Broker Architecture
	CORBA Basics
	RMI-IIOP: Making RMI Compatible with CORBA
	When to Use CORBA
	Distributed File System Notifications:
	An Example CORBA System

	Web Services
	Evolution of the World Wide Web
	Platform Independent RPC

	Summary

	Distributed Processing with JMS and JMX
	Basic Concepts
	JMS Fundamentals
	JMX Fundamentals

	Building a Distributed Application
	Deciding on the Message Type
	Understanding the Three-Component Architecture
	Creating a Component to Process JMS Messages
	Creating a Component that Directs Messages through the
	Business Process
	Creating a Component to Divide Large
	Tasks for Parallel Processing

	Deploying the Application
	Basic Deployment
	Advanced Deployment

	Summary

	Java Security
	Java Cryptography Architecture and Java
	Cryptography Extension (JCA/JCE)
	JCA Design and Architecture
	Java Cryptography Extension

	Program Security Using JAAS
	User Identification
	Executing Code with Security Checks
	Authorization

	Summary

	Packaging and Deploying Your Java Applications
	Examining Java CLASSPATHs
	Investigating the Endorsed Directory
	Exploring Java Archives
	Manipulating JAR files
	Examining the Basic Manifest File
	Examining Applets and JARs
	Signing JAR Files
	Examining the JAR Index Option
	Creating an Executable JAR

	Analyzing Applets
	Basic Anatomy of an Applet
	Packaging an Applet for Execution
	Examining Applet Security

	Exploring Web Applications
	Examining the WAR Directory Structure
	Understanding the WAR Deployment Descriptor

	Packaging Enterprise Java Beans
	Inspecting Enterprise Archives
	The EAR Descriptor File
	Deployment Scenario

	Jumping into Java Web Start
	Examining the TicTacToe Example
	Summarizing Java Web Start

	Using ANT with Web Archives
	Installing ANT
	Building Projects with ANT

	Summary

	References
	SYMBOLS
	A
	B Call[Type]MethodA()
	D
	E
	F
	G
	I
	L
	M
	N
	P
	R
	T
	U
	X
	Licenses
	Apache License
	GNU LESSER GENERAL PUBLIC LICENSE
	The OpenSymphony Software License, Version 1.1

	Index

