


jQuery UI 1.6 
The User Interface Library for jQuery

Build highly interactive web applications with  
ready-to-use widgets from the jQuery user  
interface library

Dan Wellman

 
 

 BIRMINGHAM - MUMBAI



jQuery UI 1.6 
The User Interface Library for jQuery

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the author, Packt Publishing, 
nor its dealers or distributors will be held liable for any damages caused or alleged  
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2009

Production Reference: 1200109 

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-12-8

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)



Credits

Author

Dan Wellman

Reviewers

Akash Mehta

David Methvin

Mark Grabanski

Senior Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editor

Dhiraj Bellani

Editorial Team Leader

Akshara Aware

Production Editorial Manager

Abhijeet Deobhakta

Projects Team Leader

Lata Basantani

Project Coordinators

Neelkanth Mehta

Brinell Lewis

Indexer

Hemangini Bari

Proofreaders

Joel Johnson

Camille Guy

Production Coordinator 

Aparna Bhagat

Cover Work

Aparna Bhagat



About the Author

Dan Wellman lives with his wife and children in his home town of Southampton 
on the south coast of England. By day, his mild-mannered alter-ego works for a 
small, yet accomplished, e-commerce production agency. By night, he battles the 
forces of darkness and fights for truth, justice, and less intrusive JavaScript.

Dan has been writing computer-related articles, tutorials, and reviews for around 
five years and is rarely very far from a keyboard of some description.

This is his second book. 

I'd like to say a big, personal thank you to the Packt editorial 
team for their continued support and encouragement, and to the 
jQuery UI development team for producing such an incredible 
library. Special thanks also goes out to Eamon O'Donoghue for his 
invaluable graphic/imagery advice, and to Mike Newth for his 
equally invaluable printing assistance. Finally, I'd like to thank James 
Zabiela, Andrew Herman, Steve Bishop, Aaron Matheson, Dan 
Goodall, Mike Woodford, and John Adams; they contributed in no 
way towards this book, but are nevertheless the greatest bunch of 
dudes a guy could hang out with.



 About the Reviewers

Akash Mehta is a web application developer, technical writer, and business 
consultant based in Brisbane, Australia. His past projects include brochure websites, 
e-learning solutions, and information systems. He has written web development 
articles for several publishers in print and online. He is a regular speaker at local 
conferences, and contributes to prominent PHP blogs.

As a student, Akash maintained PHP web applications and built user interfaces 
using the jQuery toolkit. While pursuing both a commerce and an IT degree, Akash 
develops web applications on PHP and Python platforms. After hours, he organizes 
his local PHP user group.

Akash develops applications on a wide range of open source libraries. His toolbox 
includes a number of application frameworks, including the Zend Framework, 
CakePHP, and Django; Javascript frameworks, including jQuery, Prototype and 
Mootools; platforms such as Adobe Flash/Flex; and the MySQL and SQLite  
database engines.

Currently, Akash provides freelance technical writing and web development 
through his website, http://bitmeta.org.



David Methvin is the Chief Technology Officer at PC Pitstop, and one of the 
founding partners of the company. He provides technical direction for the  
www.pcpitstop.com website, oversees software development, and serves as an 
editor for the site's content. David also serves as the site's chief investigator for new 
spyware and adware threats. Before joining PC Pitstop, David had an extensive 
career in computer journalism. He served as an Executive Editor at both Windows 
Magazine and PC Tech Journal, co-authored a book on Windows NT networking, 
and wrote articles for more than two dozen publications. David continues to write 
a monthly column, "The Well-Tuned PC," for pctoday.com magazine. David holds 
both Bachelor's and Master's Degrees in Computer Science from the University of 
Virginia. After graduation, he spent several years designing and developing  
software for robotics and telecommunications systems with companies such as 
General Electric.

Marc Grabanski runs a consulting company focused on user interface 
development and user experience. He believes firmly that open source is the fuel 
that helps a developer go from mediocre to excellent at what they do. His work with 
jQuery was no exception. By writing jQuery UI Datepicker, he met so many great 
people and is thankful for the experiences gained by doing this project.

I want to thank, of course, John Resig for writing jQuery and  
the whole jQuery UI team for carrying the library to new levels  
each day.





 



This book is dedicated to my supportive and understanding wife Tammy.  
Thanks babe.





Table of Contents
Preface 1
Chapter 1: Introducing jQuery UI 9

Is this book for me? 10
Downloading the library 11
Setting up a development environment 12
The structure of the library 13

Unit testing 14
Widget theming 15
Minified and packed components 15

Theme Roller 16
The simplified API 17
Component categories 18
Browser support 19
Book examples 20
Library licensing 21
Summary 21

Chapter 2: Tabs 23
A basic tab implementation 24
Tab styling 26
Configurable properties 28
Transition effects 31
Tab events 33
Using tab methods 37

Enabling and disabling tabs 37
Adding and removing tabs 39
Simulating clicks 42
Creating a tab carousel 43

AJAX tabs 46



Table of Contents

[ ii ]

Fun with tabs 52
Summary 56

Chapter 3: The Accordion Widget 57
Accordion's structure 58
Styling the accordion 61
Configuring accordion 65
Accordion methodology 72

Destruction 72
Enabling and disabling 74
Drawer activation 78

Accordion animation 79
Accordion events 81
Fun with accordion 83
Summary 87

Chapter 4: The Dialog 89
A basic dialog 90
Custom dialog skins 92
Dialog properties 94

Adding buttons 98
Working with dialog's callbacks 100
Using dialog animations 102
Controlling a dialog programmatically 104
Getting data from the dialog 108
Fun with dialog 111
Summary 116

Chapter 5: Slider 117
Implementing slider 118
Overriding the default theme 119
Configurable properties 122
Using slider's callback functions 125
Slider methods 127
Slider animation 131
Multiple handles 131
Fun with slider 134
Summary 138

Chapter 6: Date Picker 139
The default date picker 140
Skinning the date picker 142
Configurable properties of the picker 144

Changing the date format 148



Table of Contents

[ iii ]

Localization 150
Callback properties 156
Trigger buttons 159
Multiple months 161
Enabling range selection 163
Configuring alternative animations 164
Date picking methods 166

Putting the date picker in a dialog 168
Fun with date picker 175
Summary 182

Chapter 7: Auto-Complete 183
Basic implementation 184
Configurable properties 186

Scrolling 190
Auto-complete styling 192
Multiple selections 197
Advanced formatting 198
Matching properties 205
Remote data 207
Sending additional data to the server 210
Caching 210

Auto-complete methods 211
Fun with auto-complete 214
Summary 218

Chapter 8: Drag and Drop 219
The deal with drag and droppables 220
Draggables 221

A basic drag implementation 221
Configuring draggable properties 223

Resetting dragged elements 227
Drag handles 228
Helper elements 230
Constraining the drag 233
Snapping 236

Draggable event callbacks 238
Using draggable's methods 243
Droppables 244
Configuring droppables 247

Tolerance 251
Droppable event callbacks 254

Greed 257



Table of Contents

[ iv ]

Droppable methods 261
Fun with droppables 261
Summary 267

Chapter 9: Resizing 269
A basic resizable 270
Skinning the resizable 273
Resizable properties 274

Configuring resize handles 275
Defining size limits 279
Resize ghosts 280
Constraining the resize and maintaining ratio 282
Resizable animations 284

Resizable callbacks 286
Resizable methods 289
Fun with resizable 289
Summary 292

Chapter 10: Selecting 293
Basic implementation 294
Selectee class names 297

Configurable properties of the selectable class 298
Filtering selectables 299

Selectable callbacks 301
Selectable methods 304
Fun with selectables 308
Summary 320

Chapter 11: Sorting 321
Basic implementation 321
Configuring sortable properties 325

Placeholders 331
Sortable helpers 334
Sortable items 336
Connected lists 338

Reacting to sortable events 341
Connected callbacks 347
Sortable methods 351
Widget compatibility 354
Fun with sortable 356

The main script 360
Summary 373



Table of Contents

[ v ]

Chapter 12: UI Effects 375
The core effects file 376

Color animations 376
Class transitions 378
Advanced easing 380

Highlighting 381
Additional effect parameters 382

Bouncing 384
Shaking 385
Transference 387
Scaling 390
Element explosion 392
The puff effect 395
Pulsate 397
Drop 399
Slide 402
Clip 405
Blind 407
Fold 409
Summary 411

Index 413





Preface
jQuery has been a phenomenal success, with many newcomers to the world of 
JavaScript frameworks choosing it, and many developers moving to it from other 
frameworks. jQuery UI is tipped to follow suit, and has already seen massive growth 
and take-up, with more success to follow. By learning how to use it now, you can be 
a part of its success.

jQuery UI is a collection of engaging widgets and essential interaction-helpers that 
can help drastically reduce the amount of code you need to write and the amount 
of time you need to spend developing. Each component comes with a wide range 
of easy-to-use configurable properties and methods. The components all share a 
common programming interface that quickly becomes second nature to work with.

Development of the library is ongoing, with highly-skilled developers building it to 
ever greater levels. New components are being added between major releases, and 
bug fixes/updates are constantly being tested and applied. jQuery UI is very much a 
community-driven site, with the team relying on and building upon bug reports and 
feature requests submitted by the wider development community. Additionally, new 
components are often derived from the most useful jQuery plug-ins.

This book will give you a head start in learning jQuery UI; exposing the APIs behind 
the complete range of components as of version 1.5.4, and including much of the 
functionality of version 1.6 of the library. Each component is methodically and 
consistently looked at, with many functional examples. Each chapter ends with a full 
implementational example, looking at ways in which the components can be used in 
real-world scenarios.



Preface

[ 2 ]

What this book covers
Chapter 1 A general overview of jQuery UI. You'll find out exactly what the  
library is, where it can be downloaded from and where resources for it can be 
found. You'll look at the freedom the license gives you to use the library, and how 
the API has been simplified to give the components a consistent and easy-to-use 
programming model.

Chapter 2 We begin our journey through jQuery UI by looking at the high-level user 
interface widgets, focusing on the tabs component; a simple but effective means of 
presenting structured content in an engaging and interactive widget.

Chapter 3 Next, we take a look at the accordion widget. This is another component 
dedicated to the effective display of content. Highly engaging and interactive, the 
accordion makes a valued addition to any web page and its API is exposed in full  
to show exactly how it can be used.

Chapter 4 In this chapter, we focus on the dialog widget. The dialog behaves in the 
same way as a standard browser alert, but it does so in a much less intrusive and 
visitor-friendly manner. We look at how it can be configured and controlled to 
provide maximum benefit and appeal.

Chapter 5 The slider widget provides a less commonly used, but no less valued, 
user interface tool for collecting input from your visitors. We look closely at its API 
throughout this chapter to see the variety of ways in which it can be implemented.

Chapter 6 Next, we look at the date picker. This component packs a huge amount 
of functionality and appeal into an attractive and highly usable tool allowing your 
visitors to effortlessly select dates. We look at the wide range of configurations that 
its API makes possible as well as seeing how easy common tasks, such as skinning 
and localization, are made.

Chapter 7 The last widget we look at is the auto-complete; a highly professional and 
desired addition to any page. We'll look at the different data sources you can provide 
and how to customize the widget, in addition to seeing which properties and 
methods we have at our disposal. At the time of writing, the latest stable version of 
the UI library is 1.5.4, but this widget is part of 1.6 release, a sneak preview of what 
we've got to look forward to.

Chapter 8 We begin looking at the low-level interaction helpers in this chapter, 
tackling first the related draggable and droppable components. We look at how  
they can be implemented individually and how they can be used together for 
maximum effect.



Preface

[ 3 ]

Chapter 9 In this chapter, we look at resizing component and see how it is used with 
the dialog widget. We see how it can be applied to any element on the page to allow 
it to be resized in a smooth and attractive way.

Chapter 10 Next, we look at the selectable component, which allows us to add 
behavior to elements on the page and allow them to be selected individually or as 
a group. We see that this is one component that really brings the desktop and the 
browser together as application platforms.

Chapter 11 We look at the final interaction helper in this chapter – the sortable 
component. This is an especially effective component that allows you to create lists 
on a page that can be reordered by dragging items to a new position on the list. This 
is another component that can really help you to add a high level of professionalism 
and interactivity to your site with a minimum of effort.

Chapter 12 The last chapter of the book is dedicated solely to the special effects that 
are included with the library. We look at an array of different effects that allow you 
to show, hide, move, and jiggle elements in a variety of attractive and appealing 
animations. There is no 'fun with' section at the end of this chapter; the whole 
chapter is a 'fun with' section.

What you need for this book 
Very little is required in order to start using jQuery UI. Specifically, you will need the 
following environment:

A text editor; be it Notepad, or a full-blown development application  
like Dreamweaver
A browser
A copy of jQuery and a copy of jQuery UI
An internet connection for dynamic data retrieval in some of the examples

Who is this book for 
This book is for front-end designers and developers who need to quickly learn how 
to use the jQuery UI User Interface Library. To get the most out of this book, you 
should have a good working knowledge of HTML, CSS, and JavaScript, and will 
need to be comfortable using jQuery, the underlying foundation of jQuery UI.

•

•

•

•



Preface

[ 4 ]

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "It is easy to achieve this by manipulating 
the disabled property of the tabs."

A block of code will be set as follows: 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 3</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //define config object
       var tabOpts = {
         selected: 1
      };
      //create the tabs
      $("#myTabs").tabs(tabOpts);



Preface

[ 5 ]

     });
   </script>
  </body>
</html>

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items will be made bold:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 4</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //define config object
      var tabOpts = {
         selected: 1,
         disabled: [0]
      };
       //create the tabs
       $("#myTabs").tabs(tabOpts);
     });
   </script>
  </body>
</html>



Preface

[ 6 ]

New terms and important words are introduced in a bold-type font. Words that you 
see on the screen, in menus or dialog boxes for example, appear in our text like this: 
"Another problem we have with our test page is that clicking the Enable! button 
while the accordion is already enabled does nothing."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book, what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of. 

To send us general feedback, simply drop an email to feedback@packtpub.com, 
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send  
us a note in the SUGGEST A TITLE form on www.packtpub.com or email  
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5128_Code.zip to directly 
download the example code.

The downloadable files contain instructions on how to use them.



Preface

[ 7 ]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in text or 
code—we would be grateful if you would report this to us. By doing this you can 
save other readers from frustration, and help to improve subsequent versions of 
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering 
the details of your errata. Once your errata are verified, your submission will be 
accepted and the errata added to the list of existing errata. The existing errata can  
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all  
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet,  
please provide the location address or website name immediately so we can  
pursue a remedy. 

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
some aspect of the book, and we will do our best to address it. 





Introducing jQuery UI
Welcome to jQuery UI 1.6: The User Interface Library for jQuery. This resource aims 
to take you from the first steps to an advanced usage of the JavaScript library of UI 
widgets and interaction helpers built on top of the awesome jQuery.

jQuery UI extends the underlying jQuery library to provide a suite of rich and 
interactive widgets, and code-saving interaction helpers, built to enhance the user 
interfaces of your websites and applications.

Because jQuery UI runs on top of jQuery, the syntax used to initialize, configure,  
and manipulate the different components is in the same comfortable, easy-to-use, 
and short-hand style that we've all come to know and love through using jQuery. 
Therefore,  getting used to it is incredibly easy.

You also automatically get all of the great jQuery functionality at your disposal  
when using jQuery UI. So when you implement any particular component, your  
code will usually be a mixture of jQuery and jQuery UI specific code, as well as  
some traditional JavaScript occasionally.

We won't be looking at any code in this chapter. There are just a few points that I 
would like to mention before we break out the text editors and get down to some 
coding. In this chapter, we'll be looking at the following subjects:

Who this book is written for
How to obtain a copy of the library
How to set up a development environment
The structure of the library
Theme Roller
The format of the API
Browser Support
How the library is licensed

•
•
•
•
•
•
•
•



Introducing jQuery UI

[ 10 ]

Is this book for me?
This book is for developers who want to quickly and easily build engaging, highly 
interactive interfaces for their web applications, or less commonly, for embedded 
applications. I mention embedded applications because jQuery UI is suitable for 
other mediums than just the Internet.

Nokia was the first mobile phone company to announce that they were adopting 
jQuery to power parts of their cell phone operating system. I'm sure that by the time 
this book is published there will be more companies adapting the library for their 
own needs, and wherever jQuery goes, jQuery UI can follow.

People that are comfortable with HTML, JavaScript, and CSS, and have at least some 
experience with jQuery itself will get the most benefit from what this book has to 
offer. However, no prior knowledge of the UI library itself is required.

Consider the following code:

$("#myEl").click(function() { 
  $("<p>").attr("id, "new").css({
    color:"#000000"
  }).appendTo("#target");
)};

If you cannot immediately see, and completely understand, what this simple code 
does, you would probably get more from this book after first learning about jQuery 
itself. Consider reading Karl Swedberg and Jonathan Chaffer's excellent Learning 
jQuery, also by Packt, or visit http://www.learningjquery.com and then come 
back to this book.

Each jQuery UI specific method or property that we work with will be fully covered 
in the explanatory text that accompanies each example, and where it is practical, 
some of the standard jQuery code will also be discussed.

Basic concepts of using jQuery itself won't be covered. Therefore, you should already 
be familiar with advanced DOM traversal and manipulation, attribute and style 
getting and setting, and making and handling AJAX calls. You should be comfortable 
with the programming constructs exposed by jQuery such as method chaining and 
using callback functions.



Chapter 1

[ 11 ]

Knowing and understanding how jQuery works is important if you want 
to learn how to leverage the full potential of jQuery UI. Using jQuery 
promotes writing code in a particular style that is easily recognizable. 
Code written for jQuery UI naturally assumes this same style, and you 
should be comfortable enough with it to be able to easily see what is 
going on with different bits of code in the examples.

Downloading the library
There are several different options for downloading the library. You can choose 
to download a personalized package tailored to your individual needs using the 
download builder, download the full development bundle containing all library 
files including full, packed, and minified versions of each script file, or download 
individual files from the online SVN repository.

Once you've mastered jQuery UI, and are regularly using selected widgets in 
different projects that you're involved in, using the download builder to quickly put 
together the files and their dependencies that you require will be an effective way of 
minimizing the library's footprint within your applications.

As we'll be looking at each of the lower-level interaction components and the 
higher-level widgets that make up the library, we'll be working mostly with the 
full development bundle throughout the book. At this point, you should probably 
download a copy of the library, which can be obtained from the jQuery home page  
at http://www.jquery.com.

There are two versions of the full development bundle. The latest version and the 
most stable version. We'll be working with the latest version in our examples to 
make sure we get to see the newest, most cutting-edge features.

There are bugs in the code with a couple of the library components, or certain 
features that we want to use that aren't currently available. This is where the SVN 
nightlies come in, as we can link to or download the latest, most bug-free versions of 
each file. These are the actual working files which developers who build the library 
use, and have brand new fixes and patches in place. 



Introducing jQuery UI

[ 12 ]

In addition to the library itself, the jQuery UI project site is home to an extensive 
range of examples of different library components which are presented in a beautiful 
carousel-type format, with support information as seen here:

Setting up a development environment
We'll need a location to unpack the jQuery UI library in order to easily access the 
different parts of it within our files. We should first create a project folder, into which 
all of our example files, as well as all of the library and other associated resources 
such as stylesheets and images, can be kept.

Create a new directory on your C: drive, or in your home directory, and call it 
jqueryui. This will be the root folder of our project and will be the location where 
we store all of the files that we're going to create. 



Chapter 1

[ 13 ]

To unpack the library, open it in a compression program, such as Winzip, and drag 
the jqueryui1.6rc2 folder into the directory we just created. We also need to create 
img and styles This will give us the correct folder structure to work from. The folder 
structure should be as follows:

jqueryui

jqueryui1.6rc2

_MACOSX

demos

tests

themes

ui

img

styles

The structure of the library
Let's take a moment to look at the structure of the unpacked library. This will give 
us a feel for its composition and where the different resources that we'll be working 
with reside. Open up the jqueryui1.6rc2 folder where we extracted the archived 
library. The contents of this folder should be as follows:

_MACOSX directorydirectory
demos directory
tests directory
themes directory
ui directory
GPL-License file
MIT-License file
the jQuery library
a version file

The _MACOSX folder can safely be ignored, even by Mac users. It exists only because 
the current version of the library was opened by someone using a Mac, and I have 
mentioned it here solely because it exists in the unpacked structure of the library. 
Don't even worry about removing this folder as it's only a couple of bytes in size.

The contents of the demos directory shows you a series of functional, as well as  
real-world examples of how the different UI components can be used. Each of  
the components has its own demo page which is designed to work as is from its 
current location.

•
°

°
°
°
°
°

°
°

•

•

•

•

•

•
•
•
•



Introducing jQuery UI

[ 14 ]

The functional example pages show a basic implementation of each component, as 
well as exposing some of the more common configurations that can be set. These 
pages are an exact mirror of their online-equivalents.

The real-world examples highlight one particular feature of a component, and 
demonstrate this feature by itself on the page with little or no explanatory text.  
While these are the same examples found on the jQuery UI project page, they are 
presented much better online.

Unit testing
The tests folder is similar to the demos folder in that it contains a series of pages 
that highlight different features of the components found in the library. The 
important difference is that components which are still in beta stage, under full 
development, are also included. By taking a look into this folder, you can get a  
very good idea of what is about to be released. These examples can be found in  
the visual folder within the tests folder.

If you're concerned with the size of the library on your web server, or the bandwidth 
that uploading it would take, the demos and tests folders can safely be deleted. 
However, they do only take up a few megabytes of space. 

Several other important resources can also be found in the tests folder. The qunit 
folder contains jQuery's unit testing environment. Some of you may have heard of, 
or used, the popular JUnit. This is a Java-based unit testing environment. QUnit is  
the same, but is tailored specifically for use when writing jQuery plugins or jQuery 
UI widgets.

For those of you who haven't done any unit testing before, this refers to the practice 
of writing tailored code which tests the functionality of the smallest unit available 
for testing within an application. In a language like JavaScript, the unit, or smallest 
possible abstraction of functionality, is typically a single method.

We could argue that a variable is the smallest unit within a JavaScript application, 
but as functions, and therefore methods, can be assigned to a variable, this wouldn't 
always be a viable argument.

We won't be using QUnit in any of our book examples because we won't be creating 
any plugins or widgets of our own. Some excellent documentation of QUnit is 
provided on the jQuery site for those of you who can envisage yourself doing  
this at some point in the future.

The simulate folder contains a plugin written by Eduardo Lundgren and Richard D. 
Worth that is used to assist unit testing with jQuery. It adds a set of methods to your 
toolkit that allows you to simulate common mouse and keyboard events from your 
code. This is useful for checking actions like drag-and-drop when this behavior is 
included in your widgets or plugins.



Chapter 1

[ 15 ]

Widget theming
The library ships with two themes. The default theme is light-grey and neutral 
looking. The flora theme consists of pleasant light-green and orange tones. Both 
provide styling for each of the higher-level widgets and can be used completely  
out-of-the-box without modification if desired.

Some of the CSS found in these themes go beyond mere aesthetics and instead  
relates to how the widget functions. Therefore, if we want to provide a custom skin 
for any particular widget we have two options. First, we can omit the widget's skin 
file completely and use our own CSS file instead of the corresponding theme file.  
Or second, we can simply override the rules that deal specifically with appearance.

The first method, while equally viable, creates much more work for us and 
essentially means we have to reinvent the wheel. By this I mean we would have 
to spend time writing styling code related to functionality which has already been 
written. The second option is much more efficient and allows us to focus on writing 
the barest, minimum styling code, building on the foundation already provided by 
the existing themes.

Minified and packed components
The ui folder contains all of the un-minified versions of the code files for each 
component and effect, several subdirectories containing the minified and packed 
versions of the components, and the i18n folder.

The full-sized versions of each library component and effect are useful for 
development purposes. These can be opened up and read to get a better feel for how 
a particular component works. These files are complete with comments that advise 
us how particular sections of code work.

The minified versions of each component are excellent for production use, where 
downloading and interpretation of the files matters the most. JavaScript can easily  
be minified using a growing number of tools.

Minified files have all comments, whitespace, and line breaks removed from them. 
Most minification tools also obfuscate the code which shortens object, variable, 
and function names to just one character where possible. The code in the file is not 
changed in the way that it works.

The packed versions of each file are the smallest form of each component, but they are 
not actually minified in the above sense. Instead, these files are compressed, which 
is what makes them smaller than the minified files. The code within packed files is 
changed however, and it takes some additional client-side code to uncompress them. 
This means that although smaller, packed files will generally take longer to interpret.



Introducing jQuery UI

[ 16 ]

The i18n directory is where the language packs for the date picker widget 
reside. The date picker (which we'll look at in detail in chapter 6) is very easy to 
internationalize using these plugin language packs.

Theme Roller
Theme Roller is a custom tool written in jQuery that allows us to visually produce 
our own custom jQuery UI theme and package it up in a convenient, downloadable 
archive which we can drop into our project with no further coding (other than using 
the stylesheet in a HTML <link> element of course).

Theme Roller was created by Filament Group Inc and makes use of a number  
of jQuery plugins released into the open-source community. It can be found at 
http://ui.jquery.com/themeroller.

Theme Roller is certainly the most comprehensive tool available for creating your 
own jQuery UI themes. We can very quickly and easily create an entire theme 
comprised of all of the styles needed for targeting elements, including the images 
we'll need, which is compatible with all of the non-beta widgets.



Chapter 1

[ 17 ]

The previous screenshot shows the Theme Roller interface and as you can see, it's 
remarkably simple to use. The top of the page, in the previous screenshot, shows a 
series of select boxes and input fields arranged in a tabular format.

Each column of fields represents an aspect of each widget. We can set the color 
and texture of the background, the border color, text color, and icon color. The icon 
setting refers to elements of each widget, such as the left or down icons shown on 
clickable areas.

Each row of settings corresponds to a state. There is the default state, the hover and 
active states, and the content area. The content area may be the panel of a set of tabs, 
or an accordion, for example. We can also set the global font-family, font-style, 
and the font-size too.

When you interact with the top half of the page, the bottom of the page, which 
contains a selection of example widgets, is automatically updated with your 
selections so you can quickly see how your theme will look.

If you're not feeling particularly inspired when creating a theme, there is also 
a gallery of pre-configured themes that you can instantly use. Aside from this 
convenience, the best thing about these preselected themes is that when you select 
one, it is loaded automatically into the first page of Theme Roller. Therefore, you  
can easily make little tweaks as you see fit.

Without a doubt, this is the best way to create a visually appealing custom theme 
that matches the UI widgets to your existing site. However, we won't be looking at 
this tool again for the remainder of this book. We'll be focusing instead on learning 
the style rules that we need to manually override to generate our desired skins.

The simplified API
The version 1.5 release of jQuery UI was a milestone in the library's history. This was 
the release in which the API for each component was significantly simplified, making 
the library both easier to use and more powerful.

Once you've worked with one of the components from the library, you'll instantly 
feel at home when working with other components since the methods of each 
component are called in exactly the same way.

Methods are consistently called throughout the components by passing the method 
name as a simple string to the component's constructor method, with any arguments 
that the method accepts passed as strings after the method name. For example, to call 
the destroy method of the tabs component, we would simply do this:

$("#someElement").tabs("destroy");



Introducing jQuery UI

[ 18 ]

See how easy that was? Every single method exposed by all of the different 
components is called in this same simple way. Using jQuery UI feels just like using 
jQuery itself and having built up confidence coding with jQuery, moving on to 
jQuery UI is the next logical step to take. 

Many of the components also share a similar method-set of exposed functionality. 
For example, every single component found in the library has destroy, enable, and 
disable methods, and many others expose similar functionality. This again makes 
each component exceptionally easy and intuitive to use.

Component categories
There are two types of components found within the jQuery UI library. Low-level 
interaction helpers that are designed to work, primarily, with mouse events, and 
there are the widgets, which produce visible objects on the page which are designed 
to perform a specific function.

The interaction-helpers category, which forms the underlying core of the library, 
includes the following components:

draggable
droppable
resizable
selectable
sortable

The higher-level widgets, which often build upon the foundation provided by the 
lower level components, include:

accordion
auto complete
date picker
dialog
slider
tabs

The ui.core.js file, which is required by all other library components, comes under 
neither category, but could nevertheless be seen as a component. This file sets up the 
construct that all widgets use to function and adds some core functionality which is 
shared by all of the library components. This file isn't designed to be used on its own, 
and exposes no functionality that can be used outside of another component.

•

•

•

•

•

•

•

•

•

•

•



Chapter 1

[ 19 ]

Apart form these components, there is also a series of UI effects, which was once a 
completely separate sister library called Enchant. These effects produce different 
animations or transitions of targeted elements on the page. These are excellent for 
adding flair and style to your pages, in addition to the rock-solid functionality of  
the components. We'll be looking at these effects in the final chapter of the book.

I'd like to add here that the jQuery UI library is currently undergoing a rapid  
period of expansion and development. It is also constantly growing and evolving 
with bug-fixes and feature enhancements continually being added. It would be 
impossible to keep entirely up-to-date with this aggressive expansion and cover 
components that are literally about to be released.

The great thing about jQuery UI's simplified API is that once you have learned to use 
all of the existing components, as this book will show you, you'll be able to pick up 
any new components very quickly. As this book is being written, there are already  
a number of new components nearing release, with many more in the pipeline.

Due to its success in the development community, jQuery UI is sure to become a 
stalwart of modern web design and is therefore worth investing time and effort in.

Browser support
Like jQuery, jQuery UI supports all of the major browsers in use today including  
the following:

IE6, IE7 and IE8
Firefox 2 and Firefox 3
Opera 9
Safari 3
Chrome

This is by no means a comprehensive list, but I think that it includes the browsers 
that are most likely to be used by any average web surfer. The widgets are built from 
semantically correct HTML generated as needed by the components. Therefore, we 
won't see excessive or unnecessary elements being created or used.

I'm sure I needn't remind you that your own style of coding should follow the lead of 
jQuery UI. You should always strive to maintain an accessible inner core of content 
that has successive layers of presentation and functionality layered on top in the 
manner of progressive enhancement.

•

•

•

•

•



Introducing jQuery UI

[ 20 ]

Book examples
The library is as flexible as standard JavaScript, and by this I mean that there is often 
more than one way of doing the same thing, or achieving the same end. For example, 
the callback properties used in the configuration objects for different components, 
can usually take either references to functions or inline anonymous functions, and 
use them with equal ease and efficiency.

In practice, it is usually advised to keep your code as minimal as possible (which 
jQuery really helps with anyway), but to make the examples more readable and 
understandable, we'll be separating as much of the code as possible into discrete 
modules. Therefore, callback functions and configuration objects will be defined 
separately from the code that calls or uses them.

To reduce the number of files that we have to create and work with, all of the 
JavaScript will go into the host HTML page on which it runs, as opposed to in 
separate files. This isn't necessary, or indeed recommended at all in fact, for 
production websites or applications.

I'd also just like to make it clear that the main aim throughout the course of this 
book is to learn how to use the different components that make up jQuery UI. If an 
example seems a little convoluted, it may simply be that this is the easiest way to 
expose the functionality of a particular method or property, as opposed to a situation 
that we would find ourselves coding for in a regular implementation.

Although the lower-level components provide a foundation which is built upon by 
the high-level widgets, we're going to be approaching the library from the opposite 
direction. First, we're going to look at the widgets, as these, for the most part, have 
smaller APIs and are therefore easier to learn and use. Once we have mastered the 
widgets, we're then going to peel away the outer layers to expose the inner core of 
functionality imparted by the interaction helpers.

At the time of writing the latest version of jQuery UI is 1.6rc2, so this is used 
throughout the examples. Release Candidate 3 is imminent however, and will no 
doubt be shortly followed by the full stable 1.6 release. So, by the time you read  
this, it will probably be available.

Please ensure that when working with the examples in the code download, or 
writing the examples yourself, you point to the correct path for the version of the 
library that you download.



Chapter 1

[ 21 ]

Library licensing
Like jQuery, the jQuery UI library is dual licensed under the MIT and GPL  
open-source licences. These are both very unrestrictive licenses that allow the 
creators of the library to take credit for its production and retain intellectual rights 
over it, without preventing us as developers from using the library in any way  
that we like.

The MIT license explicitly states that users of the software (jQuery UI in this case) are 
free to use, copy, merge, modify publish, distribute, sublicense, and sell. This lets us 
do pretty much whatever we want with the library.

The only requirement imposed by this license is that we must keep the original 
copyright and warranty statements intact.

This is an important point to make. You can take the library and do whatever you 
like with it. Build applications on top of it and then sell those applications, or give 
them away for free. Put the library in embedded systems like cell-phone OSs and sell 
those. But whatever you do, leave the original text file with John Resig's name in it 
present. You may also duplicate it word for word in the help files or documentation 
of your application.

The MIT license is very lenient, but because it is not copyrighted itself, we are free to 
change it. We could therefore demand that users of our software give attribution to 
us instead of the jQuery team, or pass off the code as our own.

The GPL license is copyrighted, and offers an additional layer of protection for the 
library's creators and the users of our software. Because jQuery is provided free  
and open-source, the GPL license ensures that it will always remain free and  
open-source, regardless of the environment it may end up in, and that the original 
creators of the library are given the credit they deserve. Again, the original GPL 
license file must be available within your application.

Summary
jQuery UI removes the difficulty of building engaging and effective user interfaces. 
It provides a range of components that can quickly and easily be used out-of-the-box 
with little configuration. If a more complex configuration is required, they each  
expose a comprehensive set of properties and methods for integration with your  
pages or applications.

Each component is designed to be efficient, light-weight, and semantically correct, 
and makes use of the latest object-oriented features of JavaScript. When combined 
with jQuery, it provides an awesome addition to any web developer's toolkit.



Introducing jQuery UI

[ 22 ]

So far, we've seen how the library can be obtained, how your system can be set up to 
utilize it, and how the library is structured. We've also looked at how the different 
widgets can be themed or customized, how the API simply and consistently exposes 
the library's functionality, and the different categories of component.

We've covered some important topics during the course of this chapter, but now, 
thankfully, we can get on with using the components of jQuery UI and get down  
to some proper coding!



Tabs
Now that we've been formally introduced to the jQuery UI library, we can move 
on to begin looking at the components included in the library. Over the next six 
chapters, we'll be looking at the widgets provided by the library. These widgets are 
a set of visually engaging, highly configurable user interface widgets built on top of 
the foundation provided by the low-level interaction helpers.

The UI tabs widget is used to toggle visibility across a set of different elements; each 
element containing content can be accessed by clicking on its heading which appears 
as an individual tab. Each element, or section of content, has a tab that it is associated 
with and only one of these content sections may be open at a time.

The following image shows the different components of a set of UI tabs:

In this chapter, we will look at the following subjects:

The default implementation of the widget
How to style a set of tabs
Configuring tabs using their properties
Built-in transition effects for content panel changes
Controlling tabs using their methods
Custom events defined by tabs
AJAX tabs

•
•
•
•
•
•
•



Tabs

[ 24 ]

A basic tab implementation
The structure of the underlying HTML elements, on which tabs are based, is fairly 
rigid and widgets require a certain number of elements for them to work.

The tabs themselves must be created from a list element, either ordered or 
unordered, and each list item should contain a <span> element and an <a> element. 
Each link will also need to have a corresponding <div> element that it is associated 
with via its href attribute. We'll clarify the exact structure of these elements after our 
first example.

In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 1</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //create the tabs
       $("#myTabs").tabs();
     });
    </script>
  </body>
</html> 



Chapter 2

[ 25 ]

Save the code as tabs1.html in your jqueryui working folder. Let's review what 
was used. The following script and CSS resources are needed for the default tab 
widget instantiation:

flora.tabs.css, default.all.css, or a custom stylesheet containing the 
relevant selectors
jquery-1.2.6.js

ui.core.js

ui.tabs.js

A set of tabbed panels consists of several standard HTML elements arranged in a 
specific manner (these can be either hardcoded into the page or added dynamically, 
or a mixture of both depending on the requirements of your implementation):

A list element (<ul> or <ol>)
An <a> element
A <span> element
A <div> element

The first three elements make the clickable tab headings which are used to open the 
content section the tab is associated with. Each tab should include a list item containing 
the link, with a <span> element nested inside that link. The href attribute of the 
link should be set as a fragment identifier, prefixed with # and should match the id 
attribute of the <div> that forms the content section it is associated with.

The content sections of each tab are created by the <div> elements. The id attribute 
is required and will be targeted by its corresponding <a> element. The elements 
discussed so far, along with their required attributes, are the minimum that are 
required from the underlying mark-up.

After the three required script files from the library, we can turn to our custom 
<script> element in which we add the code that creates the tabs. We simply use 
the $(function(){}) shortcut to execute our code when the document is ready. We 
then call the tabs() constructor method on the jQuery object representing our tabs 
container element (the <ul> with an id of myTabs). 

•

•

•

•

•

•

•

•



Tabs

[ 26 ]

The following screenshot shows the default appearance of a tab object:

Tab styling
The flora or default stylesheets contain all of the style rules that will make the tabs 
both appear and function correctly. We could also supply our own stylesheet as long 
as we provide all of the required selectors. Or, we could produce our own theme 
using theme roller.

In the following example, we can see how to add basic aesthetic styling. We can 
override any rules used purely for display purposes with our own simple style  
rules for quick and easy customization without changing the rules related to the  
tab functionality.

In a new file in your text editor, create the following very small stylesheet:

.ui-tabs-panel {
  width:300px;
  border:1px solid #0000cc;
}
.ui-tabs-nav a, .ui-tabs-nav a span {
  background:url(../img/tab-sprite.gif) no-repeat;
}
.ui-tabs-nav a { 
  background-position:100% 0%; 
}



Chapter 2

[ 27 ]

This is all we need. Save the file as tabsTheme.css in your styles folder. Several 
class names are automatically added to the elements that make up the tabs and their 
associated content panels by the widget. We can make use of these class names to 
change particular features of the widget, such as the background image used to 
create the tab headings and the borders of the tab content panels.

We've specified a new image with our theme file – tab-sprite.gif. This file is used 
by the widget to give the tab headings the appearance of tab headings. The easiest 
way to create a new image is to open the existing image used by flora in an image 
editor and then change the colors of the various parts of the image. The original flora 
image can be found in the i folder, inside the themes folder, of the unpacked library.

Don't forget to link to the new stylesheet from the <head> of the underlying HTML 
file, and make sure the custom stylesheet appears after the flora.tabs.css file as 
shown here:

<link rel="stylesheet" type="text/css" href="styles/tabsTheme.css">

Once this has been added, save the altered file as tabs2.html and review it in  
a browser. It should look like the following screenshot (with blue instead of  
green styling):

By overriding just three of the rules defined by the flora theme, we can completely 
change the color scheme of the tabs widget, allowing us to easily integrate tabs into 
our existing site style.



Tabs

[ 28 ]

Configurable properties
An object can be passed to the tabs() constructor method to configure different 
properties of the tabbed interface. The following table provides the available 
properties to configure non-default behaviours when using the tabs widget:

Property Default Value Usage
ajaxOptions {} Options for remote AJAX tabs
cache "false" Load remote tab content only once  

(lazy-load)
cookie null Show active tab using cookie data on  

page load
disabled [] Disable specified tabs on pageload
idPrefix "ui-tabs-" Used when a remote tab's link element has no 

title attribute

event "click" Tabs event that triggers display of content
fx null Specify a transition effect when  

changing tabs
panelTemplate <div></div> A string specifying the elements used for the 

content section of a dynamically created tab
selected 0 The tab selected by default when the  

widget renders
spinner "Loading&#B230" Specify the loading spinner for remote tabs
tabTemplate <li><a href="#{href}

"><span>#{label} 
</span></a></li>

A string specifying the elements used when 
creating new tabs dynamically

unselect false Hides an already selected tab when it  
is clicked

In addition to these properties, default values for all of the class names for the 
different elements and states of the tab widget are also defined:

Property Default Value
disabledCLass "ui-tabs-disabled"

hideClass "ui-tabs-hide"

loadingClass "ui-tabs-loading"

navClass "ui-tabs-nav"

panelClass "ui-tabs-panel"

selectedClass "ui-tabs-selected"

unselectClass "ui-tabs-unselect"



Chapter 2

[ 29 ]

We targeted some of these properties when we wrote our custom stylesheet in the 
previous example. These properties make the widget more flexible in the class names 
that are automatically applied to different elements within it.

Let's look at how these configurable properties can be used. For example, if we 
wanted to configure the tabs to initially display the second content panel when the 
widget is rendered, we could use the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 3</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){

       //define config object
       var tabOpts = {
         selected: 1
      };

      //create the tabs
      $("#myTabs").tabs(tabOpts);

     });
   </script>
  </body>
</html>



Tabs

[ 30 ]

Save this as tabs3.html in your jqueryui folder. The different tabs, and their 
associated content panels, are represented by a numerical index starting at zero, 
much like a standard JavaScript array. Specifying a different tab to open by default 
is as easy as supplying its index number as the value for the selected property. You 
can also specify that no tabs should open initially by supplying null as the value for 
this property.

You may want a particular tab to be disabled until a certain condition is met. This is 
easily achieved by manipulating the disabled property of the tabs. This property is 
an empty array by default, but you can disable a tab just by adding its index as an 
item in this array. Change tabs3.html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 4</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div><script type="text/javascript" 
src="jqueryui1.6rc2/jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //define config object
      var tabOpts = {

         selected: 1,

         disabled: [0]



Chapter 2

[ 31 ]

      };
       //create the tabs
       $("#myTabs").tabs(tabOpts);
     });
   </script>
  </body>
</html>

Save this as tabs4.html in your jqueryui folder. In this example, we added the 
index of the first tab to the disabled array. We could add the indices of other tabs to 
this array as well, separated by a comma, to disable multiple tabs by default. When 
the page is loaded in a browser, the first tab will be permanently styled in the hover 
state and will not respond to mouse overs or clicks at all as seen in this example:

Transition effects
We can easily add attractive transition effects, which are displayed when tabs open 
and close, using the fx property. This property is configured using another object 
literal, or an array, inside our configuration object which enables one or more effects. 
Let's enable fading effects using the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 5</title>
  </head>



Tabs

[ 32 ]

  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //define config object
      var tabOpts = {
        fx: { 
          opacity: "toggle",
          duration: "slow"
        }
      };
       //create the tabs
       $("#myTabs").tabs(tabOpts);
     });
   </script>
  </body>
</html>

Save this file as tabs5.html in your jqueryui folder. The fx object we created 
has two properties. The first property is the animation. To use fading, we specify 
opacity as this is what is adjusted, to use opening animations we would specify 
height as the property name. Toggling the opacity simply reverses its current 
setting. If it is currently visible, it is made invisible, and vice-versa.

The second property, duration, specifies the speed at which the animation occurs. 
The values for this property are slow, normal, or fast, with normal being  
the default.

As we can see, when we run the file, the tab content slowly fades out as a tab  
closes and fades in when a new tab opens. Both animations occur during a single  
tab interaction. To only show the animation once, when a tab closes for example, 



Chapter 2

[ 33 ]

we would need to nest the fx object within an array. Change the last <script> block  
in tabs5.html so that it appears as follows:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
    //define config object
    var tabOpts = {

      fx: [{
        opacity: "toggle",
        duration: "slow"
      },
      null]    

    };
    //create the tabs
    $("#myTabs").tabs(tabOpts);
  });
</script>

The closing effect is contained within an object in the first item of the array, and 
the opening animation is the second. By specifying null as the second item, we 
effectively turn off opening animations.

We can also specify different animations and speeds for opening and closing 
animations by adding another object as the second array item if we wish instead  
of null. Save this as tabs6.html and view the results in your browser.

Tab events
The tab widget defines a series of useful properties that allow you to add callback 
functions to easily perform different actions when certain events exposed by the 
widget are detected. The following table lists the configuration properties that are 
able to accept executable functions on an event:

Property Usage
add Execute a function when a new tab is added
disable Execute a function when a tab is disabled
enable Execute a function when a tab is enabled
load Execute a function when a tab's remote data has loaded
remove Execute a function when a tab is removed
select Execute a function when a tab is selected
show Execute a function when the content section of a tab is shown



Tabs

[ 34 ]

Each component of the library has callback properties, such as those in the previous 
table, which are tuned to look for key moments in any visitor interaction. These 
properties make it very easy to add code that reacts to different situations. Any 
functions we use with these callbacks are usually executed before the change 
happens. Therefore, you can return false from your callback and prevent the action 
from occurring.

The previous technique is the standard means of working with events in the  
jQuery UI world. There is also a less common way that may become necessary in  
certain situations.

We can also use the standard jQuery bind() method to bind an event handler to 
a custom event fired by the tabs widget in the same way that we could bind to a 
standard DOM event, such as a click.

The reason this is possible is that apart from internally invoking any callback 
function specified in one of the properties listed above, custom events are also  
fired when different things occur.

The following table lists the tab's custom binding events and their triggers:

Event Trigger
tabsselect A tab is selected
tabsload A remote tab has loaded
tabsshow A tab is shown
tabsadd A tab has been added to the interface
tabsremove A tab has been removed from the interface
tabsdisable A tab has been disabled
tabsenable A tab has been enabled

The first three events are fired in succession in the order in which they appear in 
the table. If no tabs are remote, tabsselect and tabsshow are fired in that order. 
These events are all fired after the action has occurred. So, the tabsadd event will fire 
after the new tab has been added. In our next example, we can look at how easy it 
is to react to a particular tab being selected using the standard non-bind technique. 
Change the tabs6.html file so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">



Chapter 2

[ 35 ]

    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 7</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
         //define function to be executed on document ready
         $(function(){
            //alert the id of the tab that was selected
            function handleSelect(event, tab) {
               alert("The tab at index " + tab.index + " was 
selected");
            }
            //define config object
            var tabOpts = {
               select:handleSelect
            };
            //create the tabs
            $("#myTabs").tabs(tabOpts);
         });
      </script>
  </body>
</html>

Save this file as tabs7.html in your jqueryui folder. We made use of the select 
callback in this example, although the principal is the same for any of the other 
custom events fired by tabs. The name of our callback function is provided as the 
value of the select property in our configuration object.



Tabs

[ 36 ]

Two arguments will automatically be passed to the function we define by the  
widget when it is executed. These are the original event object, and a custom  
object containing useful properties from the tab which is in the function's scope.

Scope can be a tricky subject, and I'm assuming here that you already have some 
knowledge of scope in JavaScript. If you don't, the simple explanation for this 
example is that whichever tab is clicked will be in the scope chain in the context  
of our callback function.

To tell which of the tabs was clicked, we can look at the index property of the second 
object (remember these are zero-based indices). This is added, along with a little 
explanatory text, to a standard JavaScript alert.

In this example, the callback function was defined outside of the configuration object, 
and was instead referenced by the object. We can also define these callback functions 
inside of our configuration object to make our code more efficient. For example, 
our function and configuration object from the previous example could have been 
defined like this:

var tabOpts = {
  add: function(event, tab) {
    alert("The tab at index " + tab.index + " was selected");
  }
}

See tabs7inline.html in the code download for this chapter for further clarification 
on this way of using event callbacks. Whenever a tab is selected, you should see the 
alert before the change occurs as seen below:



Chapter 2

[ 37 ]

Using tab methods
The tabs widget contains many different methods, which means it has a rich set of 
behaviours and also supports the implementation of advanced functionality that 
allows us to work with it programmatically. Let's take a look at these methods which 
are listed in the following table:

Method Usage
add Add a new tab programmatically, specifying the URL of the tab's content, a 

label, and optionally its index number as arguments
remove Remove a tab programmatically, specifying the index of the tab  

to remove
enable Enable a disabled tab based on index number
disable Disable a tab based on index number
select Select a tab programmatically, which has the same effect as when a visitor 

clicks a tab, based on index number
load Reload an AJAX tab's content, specifying the index number of the tab
url Change the URL of content given to an AJAX tab; the method expects the 

index number of the tab and the new URL
destroy Completely remove the tabs widget
length Return the number of tabs in the widget
rotate Automatically changes the active tab after a specified number of 

milliseconds have passed either once or repeatedly

I mentioned jQuery UI's simplified API in Chapter 1, and in the next few examples, 
we'll get to see just how simple using it is.

Enabling and disabling tabs
We can make use of the enable or disable methods to programmatically enable 
or disable specific tabs. This will effectively switch on any tabs that were initially 
disabled. Let's use the enable method to switch on the first tab, which we disabled 
by default in an earlier example. Change the tabs4.html file as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme.css">



Tabs

[ 38 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 8</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>

    <button id="enable">Enable!</button> <button id="disable">Disable! 
</button>

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
         //define config object
      var tabOpts = {
         selected: 1,
         disabled: [0]
      };
       //create the tabs
       $("#myTabs").tabs(tabOpts);

      //set click hander for the enable button
      $("#enable").click(function() {
        //enable the first tab
        $("#myTabs").tabs("enable", 0);
      });
      //set click handler for the disable button
      $("#disable").click(function() {
        //disbale the second tab
        $("#myTabs").tabs("disable", 1);
      });

     });
   </script>
  </body>
</html>



Chapter 2

[ 39 ]

Save the changed file as tabs8.html in your jqueryui folder. We use the click 
event of the enable button to call the tabs constructor once more. This passes in  
the string "enable" which specifies the enable method and the index number of  
the tab we want to enable. The disable method is used in exactly the same way. 
You'll see that the second tab cannot be disabled until the first tab has been enabled 
and selected.

All methods exposed by each component are used in this same easy way which 
you'll see more of as we progress through the book.

Adding and removing tabs
As well as enabling and disabling tabs programmatically, we can also remove or add 
completely new tabs dynamically just as easily. Change tabs8.html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">

    <link rel="stylesheet" type="text/css" href="styles/tabsTheme2.css">

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 9</title>
  </head>
  <body>

    <div>

      <ul id="myTabs">
        <li><a href="#0"><span>Tab 1</span></a></li>
        <li><a href="#1"><span>Tab 2</span></a></li>
      </ul>
      <div id="0">This is the content panel linked to the first tab, 
it is shown by default.</div>
      <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>

    </div>

    <label>Enter a tab to remove:</label><input id="indexNum"><button 
id="remove">Remove!</button><br><br>

    <button id="add">Add a new tab!</button><br><br>

    <div id="newTab">This content will become part of the tabs when the 
above button is clicked!</div>

    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>



Tabs

[ 40 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
       //create the tabs
       $("#myTabs").tabs();

      //add click handler for 'remove' button

      $("#remove").click(function() {

        //get the index to remove

        var indexNumber = $("#indexNum").val() - 1;
        

        //remove the tab

        $("#myTabs").tabs("remove", indexNumber);

      });

      //add click handler for 'add' button

      $("#add").click(function() {

        //define tab label

        var newLabel = "A New Tab!"

        //add the new tab

        $("#myTabs").tabs("add", "#newTab", newLabel);

       });

     });
   </script>
  </body>
</html>

Save this as tabs9.html in your jqueryui folder. The first change is that we're 
now linking to a new stylesheet called tabsTheme2.css. This is identical to the first 
custom theme we used, but with the following selectors and rules:

label { float:left; width:140px; }
input, button {
  float:left; display:block; width:90px; margin-right:10px;
}
button { width:79px; }
#add { width:134px; }

Apart from some new JavaScript which is required to invoke the add method, we 
also need to encase our tabs and their associated content within a container <div>. 
Without this, the new tab will be added as the last element in the <body> instead of 
the last element in the tabs widget.



Chapter 2

[ 41 ]

The first of our new functions handles removing a tab using the remove method. This 
method requires one additional argument which is the index number of the tab to be 
removed. In this example, we get the value entered into the text box and pass it as 
the argument.

The add method, which adds a new tab to the widget, can be made to work in several 
different ways. In this example, we've specified that existing content already on 
the page (the <div> with an id of newTab) should be added to the tabs widget. In 
addition to passing the string "add", and specifying a reference to the element we 
wish to add to the tabs, we also specify a label for the new tab.

Optionally, we can also specify the index number where the new tab should be 
inserted. If the index is not supplied, the new tab will be added as the last tab. When 
you run the page in a browser, you should see that although the <div> we have 
specified is added to the tabs interface, it doesn't automatically pick up the styling of 
the rest of the widget. It is initially visible before it is added to the widget, as shown 
in the following screenshot:

There are several easy ways in which this can be fixed. If the tab content does not 
need to be visible initially, we can simply add the appropriate class names to the 
content's container element:

<div id="newTab" class="ui-tabs-panel ui-tabs-hide">This content will be 
part of the tabs when the above button is clicked!</div>



Tabs

[ 42 ]

Now when the page loads, this content will not be visible, and will remain hidden 
until it has been added to the tabs and its tab has been selected as seen below:

If the content does need to be shown when the page initially loads, or if it is not 
known which elements on the page will be added to the tabs, it is simple enough  
to add these classes to the tab content <div> when the button is clicked.

Simulating clicks
There may be times when you want to programmatically select a particular tab  
and show its content. This could happen as the result of some other interaction by 
the visitor. To do this, we can use the select method, which is completely analogous 
with the action of clicking a tab. Alter the final <script> block in tabs9.html so that 
it appears as follows:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
    //create the tabs
    $("#myTabs").tabs();
    //add click handler for 'remove' button
    $("#remove").click(function() {
      //get the index to remove
      var indexNumber = $("#indexNum").val() - 1;
      //remove the tab



Chapter 2

[ 43 ]

      $("#myTabs").tabs("remove", indexNumber);
   });
    //add click handler for 'add' button
    $("#add").click(function() {
      //define tab label
     var newLabel = "A New Tab!"
      //add the new tab
      $("#myTabs").tabs("add", "#newTab", newLabel);
        

      //new tab will be at end, get index

      var newIndex = $("#myTabs").tabs("length") - 1;
        

      //select the new tab

      $("#myTabs").tabs("select", newIndex);
      

    });
  });
</script>

Save this as tabs10.html in your jqueryui folder. Now when a new tab is added, it 
is automatically selected. The select method requires just one additional parameter 
which is the index number of the tab to select.

As any tab we add will be the last tab in the interface, and as the tab indices are zero 
based, all we have to do is use the length method to return the number of tabs and 
then subtract 1 from this figure. The result is passed to the select method.

Creating a tab carousel
The last method that we'll look at in this chapter is the rotate method. The rotate 
method will make all of the tabs, and their associated content panels, display one 
after the other automatically. It's a great visual effect and is useful for ensuring that 
all of the tab content gets seen by the visitor. For an example of this kind of effect in 
action, see the homepage of http://www.cnet.com.

Like the other methods we've seen, the rotate method is extremely easy to use. In a 
new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme2.css">



Tabs

[ 44 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 11</title>
  </head>
  <body>
    <div>
      <ul id="myTabs">
        <li><a href="#0"><span>Tab 1</span></a></li>
        <li><a href="#1"><span>Tab 2</span></a></li>
      </ul>
      <div id="0">This is the content panel linked to the first tab, 
it is shown by default.</div>
      <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
         //define function to be executed on document ready
         $(function(){
              

            //create the tabs and make them rotate
            $("#myTabs").tabs().tabs("rotate", 1000, true);
         });
      </script>
  </body>
</html>

Save this file as tabs11.html in your jqueryui folder. Although we can't call the 
rotate method directly using the initial tabs constructor method, we can chain it to 
the end like we would methods from the standard jQuery library.

The rotate method is used with two additional parameters. The first parameter is 
an integer which specifies the number of milliseconds each tab should be displayed 
before the next tab is shown. The second parameter is a boolean which indicates 
whether the cycle through the tabs should occur once or continuously.

Chaining Widgets
Chaining widget methods is possible because like the methods found in 
the underlying jQuery library, they always return the jQuery object.



Chapter 2

[ 45 ]

The tab widget also contains a destroy method. This is a method that is common 
to all of the widgets found in jQuery UI. Let's see how it works. Create another new 
page and add to it the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 12</title>
  </head>
  <body>
    <div>
      <ul id="myTabs">
        <li><a href="#0"><span>Tab 1</span></a></li>
        <li><a href="#1"><span>Tab 2</span></a></li>
      </ul>
      <div id="0">This is the content panel linked to the first tab, 
it is shown by default.</div>
      <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    </div>
      <button id="destroy">Destroy the tabs!</button>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
         //define function to be executed on document ready
         $(function(){
              

            //create the tabs
            $("#myTabs").tabs();
            

            //add click handler for button
            $("#destroy").click(function() {
            

               //destroy the tabss
               $("#myTabs").tabs("destroy");
            });



Tabs

[ 46 ]

         });
      </script>
  </body>
</html>

Save this file as tabs12.html in your jqueryui folder. The destroy method, 
which we invoke with a click on the <button>, completely removes the tab widget, 
returning the underlying HTML to its original state. After the button has been 
clicked, you should see a standard HTML list element and the text from each tab,  
just like in the following screenshot:

AJAX tabs
We've looked at adding new tabs from existing content already on the page,  
in addition to this, we can also create AJAX tabs that load content from remote files 
or URLs. Let's extend our example of adding tabs from earlier so that the new tab 
content is loaded from an external file. In a new page in your text editor, create the 
following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 13</title>
  </head>
  <body>
    <div>
      <ul id="myTabs">



Chapter 2

[ 47 ]

     <li><a href="#0"><span>Tab 1</span></a></li>   <li><a href="#0"><span>Tab 1</span></a></li>
        <li><a href="#1"><span>Tab 2</span></a></li>
      </ul>
      <div id="0">This is the content panel linked to the first tab, 
it is shown by default.</div>
      <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    </div>
    <button id="add">Add a new tab!</button>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
          

       //create the tabs
       $("#myTabs").tabs();
          

    //add click handler for 'add' button   //add click handler for 'add' button
       $("#add").click(function() {
          

         //define tab label
         var newLabel = "A New Tab!"
          

         //add the new tab
         $("#myTabs").tabs("add", "tabContent.html", newLabel);
       });
     });
   </script>
  </body>
</html>

Save this as tabs13.html in your jqueryui folder. This time, instead of specifying 
an element selector as the second argument of the add method, we supply a relative 
file path. Instead of generating an in-page tab from the specified element, the tab 
becomes an AJAX tab and loads the contents of the remote file.

You probably won't notice it when running this file locally, but when your page is 
up online, you'll see that while the tab is loading its remote content the configured 
spinner will be displayed. By default, this appears as loading....



Tabs

[ 48 ]

The file used as the remote content in this example is extremely basic and consists of 
just the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>Content Page</title>
  </head>
  <body>
    <div>This is some new content!</div>
  </body>
</html>

Save this as tabContent.html in your jqueryui folder. Instead of using JavaScript 
to add the new tab in this way, we can use plain HTML to specify an AJAX tab as 
well. In this example, we want the tab which will display the remote content to be 
available all the time, not just after clicking a button. In a new page in your text 
editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 14</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
      <li><a href="tabContent.html"><span>AJAX Tab</span></a></li>
   </ul> </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



Chapter 2

[ 49 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
          

       //create the tabs
       $("#myTabs").tabs();
     });
   </script>
  </body>
</html>

Save this as tabs14.html in your jqueryui folder. All we do is specify the path to 
the remote file (the same one we created in the previous example) using the href 
attribute of a link element in the mark-up from which the tabs are created.

Unlike static tabs, we don't need a corresponding <div> element with an id that 
matches the href of the link. The additional elements required for the tab content 
will be generated automatically by the widget. We also don't need to wrap our tabs 
in an outer container <div>. Here's what the widget will look like:



Tabs

[ 50 ]

I've included the Firebug console in the previous screenshot so you can see where in 
the DOM of the page the new tab content is added.

You should note that there is no inherent cross-domain support built into the  
AJAX functionality of the tabs widget. So, unless additional PHP, or some other 
server-scripting language, is employed as a proxy, or you wish to make use of  
JSON structured data, files and URLs should be under the same domain as the  
page running the widget.

As well as loading data from external files, it can also be loaded from URLs. This is 
great when retrieving content from a database using query strings. Methods related 
to AJAX tabs include the load and url methods. The load method is used to load 
and reload the contents of an AJAX tab, which could come in handy for refreshing 
content that changes very frequently.

The url method is used to change the URL where the AJAX tab retrieves its content. 
Let's look at a brief example of these two methods in action. Change tabs13.html so 
that it matches the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
tabsTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Tabs Example 15</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
      <li><a href="tabContent.html"><span>AJAX Tab</span></a></li>
    </ul>
    <div id="0">This is the content panel linked to the first tab, it 
is shown by default.</div>
    <div id="1">This content is linked to the second tab and will be 
shown when its tab is clicked.</div>

    <select id="fileChooser">

      <option>tabContent.html</option> 

      <option>tabContent2.html</option>

    </select>



Chapter 2

[ 51 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
          

       //create the tabs
       $("#myTabs").tabs();
          

      //define handler for change event on select element
      $("#fileChooser").change(function() {

          

        //load either file 1 or file 2
        this.selectedIndex == 0 ? loadFile1() : loadFile2();

          

        //load the new file
        function loadFile1() {
         $("#myTabs").tabs("url", 2, "tabContent.html").tabs("load", 2);
        }
        function loadFile2() {
         $("#myTabs").tabs("url", 2, "tabContent2.html").tabs("load", 2);

          

        }
          

      });
     });
   </script>
  </body>
</html>

Save the new file as tabs15.html in your jqueryui folder. We've added a simple 
<select> element to the page that lets you choose the content to display in the AJAX 
tab. In the JavaScript, we set a change handler for the <select> and specified an 
anonymous function to be executed each time the event is detected.

This function checks the selectedIndex of the <select> element and calls either 
the loadFile1 or loadFile2 function. The <select> element is in the execution 
scope of the function so we can refer to it using the this keyword.

These functions are where things gets interesting. We first call the url method, 
specifying two additional arguments which are the index of the tab whose URL we 
want to change followed by the new URL. We then call the load method, which is 
chained to the url method, specifying the index of the tab whose content we want  
to load. 



Tabs

[ 52 ]

You can run the new file in your browser and select the AJAX tab. Then use the 
<select> to choose the second file and watch as the content of the tab is changed  
as seen here:

You'll also see that the tab content will be reloaded even if the AJAX tab isn't selected 
when you use the select element.

Fun with tabs
Let's pull in some external content for our final tabs example. If we use the tabs 
widget, in conjunction with the standard jQuery library getJSON method, we can  
by-pass the cross-domain exclusion policy and pull in a feed from another domain  
to display in a tab. In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/
flickrTabTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI AJAX Tabs Example</title>
  </head>
  <body>
    <div>
      <ul id="myTabs">
        <li><a href="#0"><span>Nebula Information</span></a></li>



Chapter 2

[ 53 ]

        <li><a href="#flickr"><span>Images</span></a></li>
      </ul>
      <div id="0">
        <p>A nebulae...</p>
      </div>
      <div id="flickr"></div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
  </body>
</html>

The HTML seen here is nothing new. It's basically the same as the previous examples 
so I won't describe it in any detail. The only point worthy noting is that unlike the 
previous AJAX tab examples, we have specified an empty <div> element which 
will be used for the AJAX tab's content. Now, just before the </body> tag, add the 
following script block:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
            

    //create config object
    var tabOpts = {
      select: function(event, ui) {
            

      //see if flickr tab selected
      ui.tab.toString().indexOf("flickr") != -1 ? getData() : null ;
            

        //define getData function
        function getData() {
            

          //get rid of any previous images
          $("#flickr").empty();
            

          //get JSON feed from flickr
                       $.getJSON("http://api.flickr.com/services/
feeds/photos_public.gne?tags=nebula&format=json&jsoncallback=?", 
function(data) {
            

            //iterate over each object in JSON feed
            $.each(data.items, function(i,item){
            

              //create and format new image



Tabs

[ 54 ]

              $("<img/>").attr("src", item.media.
m).appendTo("#flickr").height(100).width(100).css({
                marginRight:"5px",
                marginBottom:"5px",
                borderColor:"#000000",
                borderStyle:"solid",
                borderWidth:"1px"
              });
            

              //stop after 6 images
              if (i == 5) return false;
            }); 
          });
        }
      }
    }
            

    //create the tabs
    $("#myTabs").tabs(tabOpts);
  });
</script>

Every time a tab is selected, our select callback will check to see if it was the tab 
with an id of flickr that was clicked. If it is, then the getData() function is invoked 
which uses the standard jQuery getJSON method to retrieve an image feed from 
http://www.flickr.com.

Once the data is returned, the anonymous callback function iterates over each  
object within the feed and creates a new image. We also remove any pre-existing 
images from the content panel to prevent a build-up of images following multiple 
tab selections.

Each new image has its src attribute set using the information from the current feed 
object. It then has its dimensions and various other CSS properties set. Lastly, it is 
added to the empty Flickr tab. Once iteration over six of the objects in the feed has 
occured, we exit the iteration. It's that simple. Save the file as flickrTab.html in 
your jqueryui folder.

We're also using a different stylesheet, in addition to the flora theme for the tabs 
widget, in this example. Again, this is similar to other stylesheets we've used in  
this section:

.ui-tabs-panel {
  width:321px;
  border:2px solid #3399ff;
}
.ui-tabs-nav a, .ui-tabs-nav a span {



Chapter 2

[ 55 ]

  background:url(../img/flickr-tab/headerSprite.gif) no-repeat;
}
.ui-tabs-nav a {
  background-position:100% 0%;
}

Save this as flickrTabTheme.css in your styles folder. When you view the page 
and select the Images tab, after a short delay you should see six new images, as seen 
in the following screenshot:



Tabs

[ 56 ]

Summary
The tabs widget is an excellent way of saving space on your page by organizing 
related, or even completely unrelated) sections of content that can be shown, or 
hidden, with simple click-input from your visitors. It also lends an air of interactivity 
to your site that can help improve the overall functionality and appeal of the page on 
which it is used.

Let's review what was covered in this chapter. We first looked at how, with just a 
little underlying HTML and a single line of jQuery-flavoured JavaScript code, we  
can implement that default tabs widget.

We then saw how easy it is to add our very own basic styling for the tabs widget  
so that its appearance, but not its behaviour, is completely altered. We already  
know that in addition to this there are two stylesheets from jQuery UI we can  
use (flora and default), or that we can create a completely new theme using 
Theme Roller.

We then moved on to look at the set of configurable properties exposed by the tabs 
API. With these, we can enable or disable different options that the widget supports, 
such as whether tabs are selected by clicks or another event, whether certain tabs are 
disabled when the widget is rendered, etc.

We took some time to look at how we can use a range of predefined callback 
properties that allow us to execute arbitrary code when different events are detected. 
We also saw that the jQuery bind() method can listen for the same events if it 
becomes necessary.

Following the configurable properties, we looked at the range of methods that 
we can use to programmatically make the tabs perform different actions, such as 
simulating a click on a tab, enabling or disabling a tab, and adding or removing tabs.

We briefly looked at some of the more advanced functionality supported by the 
tabs widget such as AJAX tabs and the tab carousel. Both of these techniques are 
incredibly easy to use and can add value to any implementation.



The Accordion Widget
The accordion widget is another UI widget made up of a series of containers for your 
content, all of which are closed except for one. Therefore, most of its content is initially 
hidden from view, much like the tabs widget that we looked at in the previous chapter.

Each container has a heading element associated with it, which is used to open 
the container and display the content. When you click on a heading, its content 
is displayed. When you click on another heading, the currently visible content is 
hidden while the new content is shown.

The accordion widget is a robust and highly configurable widget that allows you to 
save space on your web pages by only displaying a certain section of related content 
at any one time. This is like a tabbed interface but positioned vertically instead  
of horizontally.

It's easy for your visitors to use and it's easy for us to implement. It has a range of 
configurable properties that can be used to customize its appearance and behaviour. 
It also has a series of methods that allow you to control it programmatically.

You should note that the height of the accordion's container element will 
automatically be set so that there is room to show the tallest content panel in 
addition to the headers. This will vary, of course, depending on the width that  
you set on the widget's container.

In this chapter, we are going to cover the following topics:

The structure of an accordion widget
A default implementation of an accordion
Adding custom styling
The configurable properties
Built-in methods for working with the accordion
Built-in types of animation
Custom accordion events

•
•
•
•
•
•
•



The Accordion Widget

[ 58 ]

Accordion's structure
Let's take a moment to familiarize ourselves with what an accordion is made of. 
Within the outer container is a series of links. These links are the headings within 
the accordion and each heading will have a corresponding content panel, or drawer 
as they are sometimes referred to, which opens when the heading is clicked. The 
following screenshot shows these elements as they may appear in an accordion:

It's worth remembering that when using the accordion widget, only one content 
panel can be open at any one time. Let's implement a basic accordion now. In a  
blank page in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 1</title>
  </head>
  <body>
    <ul id="myAccordion">
      <li>
        <a href="#">Header 1</a>
        <div>Wow, look at all this content that can be shown or hidden 
with a simple click!</div>
      </li>
      <li>
        <a href="#">Header 2</a>
        <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. </div>



Chapter 3

[ 59 ]

      </li>
      <li>
        <a href="#">Header 3</a>
        <div>Donec at dolor ac metus pharetra aliquam. Suspendisse 
purus. Fusce tempor ultrices libero. Sed quis nunc. Pellentesque 
tincidunt viverra felis. Integer elit mauris, egestas ultricies, 
gravida vitae, feugiat a, tellus.</div>
      </li>
    </ul>
    
<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     
       //turn specified element into an accordion
       $("#myAccordion").accordion();
     });
   </script>
  </body>
</html>

Save the file as accordion1.html in your jqueryui folder and try it out in a 
browser. We haven't specified any styling at all at this stage, but as you can see  
from the following screenshot, it still functions exactly as intended:



The Accordion Widget

[ 60 ]

Little code is required for a basic working version of the accordion widget. A simple 
unordered list element is the mark-up foundation which is transformed by the 
library into the accordion object.

The following three separate external script files are required for an accordion:

The jQuery library itself (jquery-1.2.6.js)
The UI base file (ui.core.js)
The accordion source file (ui.accordion.js)

The first two files are mandatory requirements of all components of the UI library. 
They should be linked to in the order shown here. Each widget also has its own 
source file, and may depend on other components as well.

The order in which these files appear is important. The jQuery library must always 
appear first, followed by the UI base file. After these files, any other files that the 
widget depends upon should appear before the widget's own script file. The library 
components will not function as expected if files are not loaded in the correct order.

Finally, we use a custom <script> block to turn our <ul> element into the 
accordion. We can use the jQuery object shortcut $ to specify an anonymous function 
which will be executed as soon as the document is ready. This is analogous to using 
$(document).ready(function(){}) and helps to cut down on the amount of code 
we have to type.

Following this, we use the simple ID selector $("#myAccordion") to specify 
the element on the page we want to transform. We then use the accordion() 
constructor method to create the accordion.

Other elements can be turned into accordions as well. All list element variants are 
supported including ordered lists and definition lists. You don't even need to base 
the accordion on a list element at all. You can build a perfectly functional accordion 
using just nested <div> and <a> elements, although additional configuration will  
be required. 

In this example, we used an empty fragment (#) as the value of the href attribute. 
You should note that any URLs supplied for accordion headers will not be  
followed when the header is clicked within the accordion when using the  
default implementation.

•

•

•



Chapter 3

[ 61 ]

Styling the accordion
With no styling, the accordion will take up 100% of the width of its container. Like 
with other widgets, we have several options for styling the accordion. We can create 
our own custom stylesheet to control the appearance of the accordion and its content, 
we can use the default or flora themes that come with the library, or we can use 
Theme Roller to create an extensive skin for the whole library. Let's see how using 
the flora theme for the accordion will cause it to render. In accordion1.html, add 
the following <link> tag to the <head> of the page:

<link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/themes/
flora/flora.accordion.css">

Save the new file as accordion2.html, also in the jqueryui folder, and view it again 
in a browser. It should appear something like this: 

The accordion theme file assumes that an unordered list is being used as the basis of  
the widget and specifically targets <li> elements with certain style rules. We can 
easily create our own custom theme to style the accordion for situations where we 
want to use a non list-based accordion widget, or if we simply want different colors 
or font styles.

You can use the excellent Firebug plugin for Firefox, or another DOM viewer, to see 
the class names that are automatically added to certain elements when the accordion 
is generated. You can also read through an un-minified version of the source file if 
you really feel like it. These will be the class names that we'll be targeting with our 
custom CSS. 



The Accordion Widget

[ 62 ]

The following screenshot shows Firebug in action:

Change accordion2.html so that it appears as follows (new code is shown in bold):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 3</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum...</div></div>



Chapter 3

[ 63 ]

      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus.</div></div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //turn specified element into an accordion
       $("#myAccordion").accordion();
     });
    </script>
  </body>
</html>

Save this version as accordion3.html in the jqueryui folder. The class name  
ui-accordion is automatically added to the accordion's container element. 
Therefore, we can use this as a starting point for most of our CSS selectors. The links 
that form our drawer headers are given the class ui-accordion-header so we can 
also target this class name. In a new file, create the following stylesheet:

#myAccordion { 
  width:200px;
  border:2px solid #000000;
  position:relative;
  list-style-type:none;
  padding-left:0;
}
.ui-accordion-header {
  text-decoration:none;
  font-weight:bold;
  color:#000000;
  display:block;
  width:100%;
  text-align:center;
}
.ui-accordion div div {
  font-size:90%;
}



The Accordion Widget

[ 64 ]

.ui-accordion a {
  color:#ffffff;
  background:url(../img/accordion/header-sprite.gif) repeat-x 0px 0px;
}
.ui-accordion a.selected {   
  background:url(../img/accordion/header-sprite.gif)  
repeat-x 0px -22px;
}
.ui-accordion a:hover {
  background:url(../img/accordion/header-sprite.gif)  
repeat-x 0px -44px;
}
     

/* container rounded corners */
.corner { 
  position:absolute;
  width:12px; height:13px;
  background:url(../img/accordion/corner-sprite.gif) no-repeat;
}
.topLeft { 
  top:-2px; left:-2px;
  background-position:0px 0px;
}
.topRight {
  top:-2px; right:-2px;
  background-position:0px -13px;
}
.bottomRight {
  bottom:-2px; right:-2px;
  background-position:0px -26px;
}
.bottomLeft {
  bottom:-2px; left:-2px;
  background-position:0px -39px;
}

Save this file as accordionTheme.css in your styles folder and preview 
accordion3.html in a browser. We will need a new folder for the images we use in 
this and subsequent examples. Create a new folder inside the img folder and name 
it accordion. With just two images, and a few simple style rules, we can drastically 
change the default appearance of the accordion with our own custom skin as shown 
in the following screenshot:



Chapter 3

[ 65 ]

Configuring accordion
The accordion has a range of configurable properties which allow us to easily change 
the default behaviour of the widget. The following table lists the available properties, 
their default value, and gives a brief description of their usage:

Property Default 
Value

Usage

active first child Selector for the initially open drawer
alwaysOpen true Ensure that one drawer is open at all times
animated "slide" Animate the opening of drawers
autoHeight true Automatically set height according to the  

biggest drawer
clearStyle false Clear styles after an animation
event "click" Event on headers that trigger drawers to open
fillSpace false Accordion completely fills height of its container
header "a" Selector for header elements
navigation false Enable navigation for accordion
navigationFilter location.href By default, this property opens the drawer whose 

heading's href matches location.href
selectedClass "selected" Class name applied to headers with open drawers



The Accordion Widget

[ 66 ]

Configurable properties
The configurable properties for all of the different components of jQuery 
UI are constantly evolving with each new release of the library. You can 
keep track of the latest properties by looking through the online jQuery 
UI API pages. Each component has its own page and can be accessed 
from http://docs.jquery.com/UI/.

Most of the properties are self-explanatory, and the values they accept are usually 
booleans, strings, or element references. Let's put some of them to use so  
we can explore their functionality. Alter accordion3.html so that it appears  
as follows: 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 4</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple mouseover!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus.</div></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>



Chapter 3

[ 67 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //set the event property

      var accOpts = {

        event:"mouseover"

      }
       

      //turn specified element into an accordion
       $("#myAccordion").accordion(accOpts);    
       

     });
   </script>
  </body>
</html>

First, we create a new object literal called accOpts which contains one property 
key and a value. We then pass this object into the accordion() constructor as 
an argument, and it overrides the default properties of the widget. The string we 
specified for the value of the event property becomes the event that triggers the 
activation of the drawers, making this a very useful property. Save the changes  
as accordion4.html.

You should note that you can also set properties using an inline object  
within the widget's constructor method without creating a separate object  
(see accordion4Inline.html). Using the following code would be equally  
as effective, and would often be the preferred way for coding:

<script type="text/javascript">
  //function to execute when doc ready
  $(function() {
      

    //turn specified element into an accordion
    $("#myAccordion").accordion({

      event:"mouseover"

    });    

  });
</script>



The Accordion Widget

[ 68 ]

We can set other properties at the same time as well. If we want to change which 
drawer is open by default when the accordion is rendered, as well as change the 
trigger event, we would supply both properties and the required values, with each  
pair separated by a comma. Update accordion4.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 5</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a id="header1" href="#">Header 1</a><div>Wow, look at all 
this content that can be shown or hidden with a simple mouseover! 
</div></div>
      <div><a id="header2" href="#">Header 2</a><div>Lorem ipsum dolor 
sit amet, consectetuer adipiscing elit. Aenean sollicitudin. Sed 
interdum pulvinar justo. Nam iaculis volutpat ligula. Integer vitae 
felis quis diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut 
posuere, mauris at sodales rutrum, turpis tellus fermentum metus, ut 
bibendum velit enim eu lectus. Suspendisse potenti.</div> 
</div>
      <div><a id="header3" href="#">Header 3</a><div>Donec at dolor 
ac metus pharetra aliquam. Suspendisse purus. Fusce tempor ultrices 
libero. Sed quis nunc. Pellentesque tincidunt viverra felis. Integer 
elit mauris, egestas ultricies, gravida vitae, feugiat a, tellus. 
</div></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //configure accordion



Chapter 3

[ 69 ]

      var accOpts = {
        event:"mouseover",

        active:"#header3"

      }
     

      //turn specified element into an accordion
       $("#myAccordion").accordion(accOpts);    
     

     });
   </script>
  </body>
</html>

The first change is to give our header elements id attributes in the underlying HTML 
in order to target them with the active property. In our object literal, we then 
specify the selector for the header we would like to open by default. Save the file as 
accordion5.html. When the page is opened, the third drawer should be displayed 
by default.

The other properties listed in the table at the start of this section are equally as easy 
to configure. Change the object literal so that it appears as follows:

//configure accordion
var accOpts = {
  event:"mouseover",
  active:"#header3",
  alwaysOpen:false,
  autoHeight:false
}

Save these changes as accordion6.html and view the results in a browser. First, you 
should find that when you first roll over a heading the drawer opens as normal, but 
the accordion grows or shrinks depending on how much content is in the drawer. It 
no longer stays at a fixed height. This can be seen in the following example:



The Accordion Widget

[ 70 ]

You should also find that if you roll over a heading whose drawer is already open, 
the drawer will close and the accordion will shrink so that only the headers are 
displayed with no open drawers. Note that when using false with the alwaysOpen 
property, the accordion will shrink in this way regardless of whether the autoHeight 
property is set to true or false.

The fillSpace property, if set, will override autoHeight. You should also be aware 
that the clearStyle property will not work with autoHeight. One final property 
we should look at is the navigation property. This property is used to enable 
navigating to new pages from accordion headings. Change accordion6.html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 7</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a id="header1" href="#1">Header 1</a><div>Wow, look at all 
this content that can be shown or hidden with a simple mouseover! 
</div></div>

      <div><a id="header2" href="#2">Header 2</a><div>Lorem ipsum 
dolor sit amet, consectetuer adipiscing elit. Aenean sollicitudin. Sed 
interdum pulvinar justo. Nam iaculis volutpat ligula. Integer vitae 
felis quis diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut 



Chapter 3

[ 71 ]

posuere, mauris at sodales rutrum, turpis tellus fermentum metus, ut 
bibendum velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a id="header3" href="#3">Header 3</a><div>Donec at dolor 
ac metus pharetra aliquam. Suspendisse purus. Fusce tempor ultrices 
libero. Sed quis nunc. Pellentesque tincidunt viverra felis. Integer 
elit mauris, egestas ultricies, gravida vitae, feugiat a, tellus. 
</div></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //configure accordion
      var accOpts = {
        event:"mouseover",
        active:"#header3",
        alwaysOpen:false,
        autoHeight:false,

        navigation:true

      }
    

      //turn specified element into an accordion
       $("#myAccordion").accordion(accOpts);
    

     });
   </script>
  </body>
</html>

Save the changes as accordion7.html. When you roll over one of the headings, they 
will still open as normal, but if you click on one of the headings, the URL specified as 
the header's href attribute will be followed.

With navigation enabled, the widget will check for a fragment identifier at the end 
of the URL when the page loads. If there is a fragment identifier, the accordion will 
open the drawer whose heading's href attribute matches the fragment. So, if the 
second heading is clicked in this example, and then the page is refreshed, the second 
drawer of the accordion will be opened automatically. Therefore, it is important to 
ensure that the href attributes for each accordion header is unique to avoid conflicts 
in this situation.



The Accordion Widget

[ 72 ]

Accordion methodology
The accordion includes a selection of methods that allow you to control and 
manipulate the behavior of the widget programmatically. Some of the methods are 
common to each component of the library, such as the destroy method, which is 
used by every widget. We'll look at each of these methods in turn.

Destruction
One method provided by the accordion is the destroy method. This method 
removes the accordion widget and returns the underlying mark-up to its original 
state. We'll use the default properties associated with accordion instead of the ones 
we configured for the last few examples. In a new page in your text editor, add the 
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 8</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus.</div></div>
    </div>
    <button id="accordionKiller">Kill it!</button>
    



Chapter 3

[ 73 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //turn specified element into an accordion
       $("#myAccordion").accordion();
     

      //attach click hander to button  
      $("#accordionKiller").click(function() {
     

        //destroy the accordion
        $("#myAccordion").accordion("destroy");
       }); 
     });
   </script>
  </body>
</html>

The <body> of the page contains a new <button> element, which can be used to 
destroy the accordion. The final <script> block also contains a new anonymous 
function. We use the standard jQuery library's click() method to execute some 
code when the targeted <button> element is clicked.

We use the same accordian() constructor method to destroy it as we did to create 
it. But this time, we supply the string "destroy" as an argument. This causes the 
class names added by the library to be removed, the opening and closing behavior of 
the headers to no longer be effective, and all of the previously hidden content will be 
made visible.

Because we used an ID selector in our theme file to style the accordion container,  
this element will retain its size and borders. The roll-over effects were added by 
targeting the class names created by the library. As these are removed, along with 
the rest of the accordion's functionality, the rollovers do not activate. Save this file  
as accordion8.html.



The Accordion Widget

[ 74 ]

Enabling and disabling
Two very simple methods to use are enable and disable. These are just as easy to 
use as destroy, although they do have some subtle behavioral aspects that should  
be catered for in any implementation as you'll see. Change accordion8.html to  
the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 9</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus.</div></div>
    </div>
    <button id="enable">Enable!</button> 
<button id="disable">Disable!</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     



Chapter 3

[ 75 ]

       //turn specified element into an accordion
       $("#myAccordion").accordion();
     

      //add click handler for enable button
      $("#enable").click(function() {
     

        //enable the accordion
        $("#myAccordion").accordion("enable");
      });
     

      //add click handler for disable button
      $("#disable").click(function() {
     

        //disable the accordion
        $("#myAccordion").accordion("disable");
      });  
     });
   </script>
  </body>
</html>

We use these two methods in exactly the same way as the destroy method. Simply 
call accordion() with either enable or disable supplied as a string parameter. 
Save this file as accordion9.html and try it out.

One thing I'm sure you'll quickly notice is that when the accordion has been 
disabled, the rollover and selected effects are still apparent. This could be misleading 
as there is no visual cue that the widget has been disabled. This behavior is sure to be 
fixed in a later revision of the library. But for now, we can easily fix this with a little 
standard jQuery goodness and apply disabled states ourselves.

Another problem we have with our test page is that clicking the Enable! button while 
the accordion is already enabled does nothing. There is, of course, nothing for it to do. 
Some kind of indication that the widget is already enabled would be helpful. Let's see 
how easy it is to fix these minor issues. Update the current page to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 10</title>
  </head>
  <body>
    <div id="myAccordion">



The Accordion Widget

[ 76 ]

      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus.</div></div>
    </div>
    <button id="enable">Enable!</button> 
<button id="disable">Disable!</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //turn specified element into an accordion
       $("#myAccordion").accordion().addClass("enabled");
    

      //add click handler for enable button
      $("#enable").click(function() {
    
    

         //alert if already enabled, enable and change classes if not
         ($("#myAccordion").hasClass("enabled")) ? alert("Accordion 
already enabled!") : $("#myAccordion").accordion("enable").
addClass("enabled").removeClass("disabled") ;  });
    

      //add click handler for disable button
      $("#disable").click(function() {
    
    

        //alert if already disabled, disable and change classes if not
        ($("#myAccordion").hasClass("disabled")) ? alert("Accordion 
already disabled!") : $("#myAccordion").accordion("disable").
addClass("disabled").removeClass("enabled") ;  });
     });
   </script>
  </body>
</html>



Chapter 3

[ 77 ]

The new code takes care of notifying the visitor if they click the Enable! button 
while the accordion is already enabled, or if the Disable! button is clicked while it  
is already disabled, through simply adding two additional class names; enabled  
and disabled.

We use the standard jQuery addClass() method to initially set an additional class 
name of enabled on the accordion's container. A simple JavaScript ternary then 
looks for the presence of this class and invokes the alert if it is detected. This is 
done using the jQuery hasClass() method.

If the accordion is changed from enabled to disabled, the addClass(), and also the 
removeClass() methods are used to swap our class names appropriately. A less 
intrusive way for us to do this, without the need for alerts, would be to actually 
disable the Enable! button while the accordion is enabled and vice-versa. I'll leave 
you to try this on your own.

Save this as accordion10.html. Now we can add some new styles to our stylesheet 
to address our new disabled class. Open accordionTheme.css in your text editor 
and add the following new selectors and rules after the existing ones:

/* disabled state */
.disabled a { 
  background:url(../img/accordion/disabled.gif) repeat-x 0px 0px;     
  cursor:default;
}
.disabled a.selected { 
  background:url(../img/accordion/disabled.gif) repeat-x 0px 0px;
  cursor:default;
}
.disabled a:hover {
  background:url(../img/accordion/disabled.gif) repeat-x 0px 0px;
  cursor:default;
}

Save this as accordionTheme2.css (don't forget to update the link to the stylesheet 
in the <head>). Now, when the Disable! button is clicked, the new class name will 
pick up our grayed out headings. As we've specified the same background image for 
the selected and hover states, the accordion will not appear to respond in any way 
to clicks or mouse overs while disabled.



The Accordion Widget

[ 78 ]

Drawer activation
The final method exposed by accordion is the activate method. This can be used 
to programmatically show or hide different drawers. We can easily test this method 
using a text box and a new button. Change acordion10.html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 11</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti. </div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus. </div></div>
    </div>
    <p>Choose a drawer to open</p>

    <input id="choice" type="text"><button id="activate">Activate 
</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    



Chapter 3

[ 79 ]

      //turn specified element into an accordion
       $("#myAccordion").accordion();
    

      //add click handler for activate button

      $("#activate").click(function() {
    

        //get the value from the text box

        var choice = $("#choice").val();
    

        //open the chosen drawer

        $("#myAccordion").accordion("activate", choice - 1);
    

      });

     });
   </script>
  </body>
</html>

Save this file as accordion11.html. The activate method is used in the same way 
as the destroy method. It is passed to the accordion() constructor as an argument. 
Apart from supplying the string "activate", we also need to tell the accordion 
which drawer to activate using a number representing the drawer's index.

Like standard JavaScript arrays, the index numbers for the accordion drawer 
headings begin with zero. Therefore, to open the correct drawer, we subtract 1  
from the figure entered into the text box when we call the activate method.

Accordion animation
You may have noticed the default slide animation built into the accordion. Apart 
from this, there are two other built-in animations that we can easily make use of. 
We can also switch off animations entirely by supplying false as the value of the 
animated property, although this doesn't look too good!

The other values we can supply are bounceslide and easeslide. However, these 
aren't actually unique animations as such. These are different easing styles which 
don't change the animation itself but instead, alter the way it runs. You should note 
at this stage that additional jQuery plugins are required for these easing methods.



The Accordion Widget

[ 80 ]

For example, the bounceslide easing method causes the opening drawer to appear 
to bounce up and down slightly as it reaches the end of the animation. On the other 
hand, easeslide makes the animation begin slowly and then builds up to its normal 
speed. Let's take a moment to look at these different easing methods now. Change 
accordion11.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme2.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 12</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div>Wow, look at all this content 
that can be shown or hidden with a simple click!</div></div>
      <div><a href="#">Header 2</a><div>Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit. Aenean sollicitudin. Sed interdum 
pulvinar justo. Nam iaculis volutpat ligula. Integer vitae felis quis 
diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut posuere, 
mauris at sodales rutrum, turpis tellus fermentum metus, ut bibendum 
velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div>Donec at dolor ac metus 
pharetra aliquam. Suspendisse purus. Fusce tempor ultrices libero. Sed 
quis nunc. Pellentesque tincidunt viverra felis. Integer elit mauris, 
egestas ultricies, gravida vitae, feugiat a, tellus. </div></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery.easing.1.3.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery.easing.compatibility.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    



Chapter 3

[ 81 ]

       //set custom easing
      var accOpts = {
        animated: "bounceslide"   
      }
    

      //turn specified element into an accordion
       $("#myAccordion").accordion(accOpts); 
    

     });
   </script>
  </body>
</html>

Save this file as accordion12.html We've used a couple of new script files in the 
source code. The jquery.easing.1.3.js file is the latest version of the easing 
plugin, and the jquery.easing.compatibility.js plugin which enables the latest 
version of the easing file to work without any further modifications. The easing 
type names were renamed in version 1.2 of the easing plugin. Both of these files are 
included in the downloadable code for this chapter, and they can also be found on 
the jQuery site.

The built-in easing effects, based on a series of equations created by Robert Penner in 
2006, are very easy to use and create a great effect which can help build individuality 
into accordion implementations.

Plugins
There are many jQuery plugins available. These are often developed by 
the open-source community instead of the library's authors and can be 
used with jQuery and jQuery UI. A good place to find plugins is on the 
jQuery site itself at http://plugins.jquery.com/
Some of these plugins, such as the easing plugin, work with the library 
components, while other plugins, such as the compatibility plugin, assist 
other plugins. We will look at more plugins throughout the course of  
this book.

Accordion events
The accordion defines the custom change event which is fired after a drawer on the 
accordion opens or closes. To react to this event, we can use the change configuration 
property to specify a function to be executed every time the event occurs. In a new 
file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">



The Accordion Widget

[ 82 ]

  <head>
    <link rel="stylesheet" type="text/css" href="styles/
accordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Widget Example 13</title>
  </head>
  <body>
    <div id="myAccordion">
      <span class="corner topLeft"></span><span class="corner 
topRight"></span><span class="corner bottomLeft"></span> 
<span class="corner bottomRight"></span>
      <div><a href="#">Header 1</a><div id="panel1">Wow, look at all 
this content that can be shown or hidden with a simple click!</div> 
</div>
      <div><a href="#">Header 2</a><div id="panel2">Lorem ipsum dolor 
sit amet, consectetuer adipiscing elit. Aenean sollicitudin. Sed 
interdum pulvinar justo. Nam iaculis volutpat ligula. Integer vitae 
felis quis diam laoreet ullamcorper. Etiam tincidunt est vitae est. Ut 
posuere, mauris at sodales rutrum, turpis tellus fermentum metus, ut 
bibendum velit enim eu lectus. Suspendisse potenti.</div></div>
      <div><a href="#">Header 3</a><div id="panel3">Donec at dolor 
ac metus pharetra aliquam. Suspendisse purus. Fusce tempor ultrices 
libero. Sed quis nunc. Pellentesque tincidunt viverra felis. Integer 
elit mauris, egestas ultricies, gravida vitae, feugiat a, tellus. 
</div></div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {

      //define config object
      var accOpts = {

      //add change event callback
          change: function(e, ui) {
            alert($(ui.newContent).attr("id") + " was opened, " + 
$(ui.oldContent).attr("id") + " was closed");
          } 
        };

        $("#myAccordion").accordion(accOpts);
      });
    </script>
  </body>
</html>



Chapter 3

[ 83 ]

Save this as accordion13.html. In this example, we use the change configuration 
property to specify an anonymous callback function which is executed every time the 
event is triggered. This function will automatically receive two objects as arguments. 
The first object is the event object which contains information about the event. The 
second object is an object containing useful information about the accordion widget, 
such as the content drawer that just opened or closed.

In the mark-up for the accordion, we have given each of the content drawer <div> 
elements an id attribute which can be used in the alert generated by the change 
callback. We can use the ui.newContent and ui.oldContent properties to obtain 
the relevant content drawer and display its id in the alert.

The accordion widget also defines the accordion change event which is fired after 
a drawer on the accordion opens or closes. To react to this event, we can use the 
standard jQuery bind() method to specify a callback function, just like with the  
tabs widget from the last chapter.

Fun with accordion
Let's put a sample together that will make the most of the accordion widget and  
uses some of the properties and methods that we've looked at so far in this chapter. 
A popular implementation of accordion is as a navigation menu. Let's build  
one of these based on the accordion widget. The following screenshot shows the 
finished page:



The Accordion Widget

[ 84 ]

In a new page in your text editor, create the following HTML file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.accordion.css">
    <link rel="stylesheet" type="text/css" href="styles/
navAccordionTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Accordion Navigation Example</title>
  </head>
  <body>
      <div id="container">
        <div id="navCol">
          <ul id="navAccordion">
            <li>
              <a class="heading" href="#me" title="About Me">About 
Me</a>
              <div>
                <a href="bio.html#me" title="Bio">My Bio</a>
                <a href="contact.html#me" title="Contact Me">Contact 
Me</a>
                <a href="resume.html#me" title="Resume">My Resume</a>
              </div>
            </li>
            <li>
              <a class="heading" href="#js" title="JavaScript"> 
JavaScript</a>
              <div>
                <a href="tutorials.html#js" title="JavaScript 
Tutorials">JavaScript Tutorials</a>
                <a href="ajax.html#js" title="AJAX">AJAX</a>
                <a href="apps.html#js" title="JavaScript 
Apps">JavaScript Apps</a> 
              </div>
            </li>
            <li>
              <a class="heading" href="#css" title="CSS">CSS</a>
              <div>
                <a href="layouts.html#css" title="Layouts">Layouts</a>
                <a href="themes.html#css" title="Themes">Themes</a>
                <a href="hacks.html#css" title="Hacks">Hacks</a> 



Chapter 3

[ 85 ]

              </div>
            </li>
          </ul>
        </div>
        <div id="contentCol">
          <h1>A jQuery UI Accordion Navigation Example!</h1>
          <p>This is the starting page for this example, when you 
click on either of the accordion headings at the left, an accordion 
drawer containing a set of links will open. Clicking on a link will 
take you to a new page, which will look exactly like this one but will 
have different text on it.</p>
        </div>
        <div id="clear"></div>
      </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.accordion.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
            

         //turn specified element into an accordion
       $("#navAccordion").accordion({
            header: ".heading",
            event: "mouseover",
            autoHeight: false,
            alwaysOpen: false,
            active:false,
            navigation: true  
         });
      });
   </script>
  </body>
</html>

Save this as navAccordion.html. To see the full effects of the navigation property, 
the other pages that the main page links to should be available. Don't worry about 
creating these yourself, they are all in the code download for this chapter.

We use a selection of configurable properties in this example. The header property 
allows us to target only the links that have the class name heading. This prevents the 
links in the content sections from picking up any header attributes. We make use of 
the event property again to specify mouse over as the trigger event.



The Accordion Widget

[ 86 ]

Switching off the autoHeight property prevents unnecessary whitespace in the 
menu from showing if there is one content section with much more content in it than 
other sections. The alwaysOpen property allows all headings to be closed. Disabling 
the active property also allows the page to load with all headings closed which is 
helpful if someone is visiting the application for the first time.

In order to make the most of the navigation property in this example, we make 
sure that each of the links that lead to new pages also include a fragment identifier 
matching the href of their heading element. Therefore, when a new page opens the 
state of the menu is maintained.

We'll also need some CSS for this example, just to make the page and the  
accordion look as we want them to. In a new file in your text editor, add the 
following stylesheet:

/* page */
#clear { clear:both; }
#container { border:1px solid #4e82b4; width:601px; }
#navCol {
  width:230px; height:287px; float:left; background-color:#a1d2f6;
}
#contentCol {
  width:310px; height:227px; float:left; background-color:#ffffff;
  padding:30px; border-left:1px solid #4e82b4;
}
h1 { margin:0px; font:bold 14px Verdana; }
#contentCol p { margin:20px 0 0 0; font:normal 11px Verdana; }

/* accordion  */
#navAccordion {
  list-style-type:none; padding-left:0; text-align:right;
  margin:20px 0 0 0; width:231px; position:relative; left:0;
}
#navAccordion a {
  display:block; text-decoration:none; font:bold 11px Verdana;
  color:#000000; padding:0 40px 0 0; padding-bottom:5px;
}
#navAccordion a:hover { text-decoration:underline; }
#navAccordion a.heading {
  font:bold 24px Verdana; color:#ffffff;
  border-bottom:1px dashed #4e82b4; padding:0 30px 10px 0;
}
#navAccordion a.heading:hover { text-decoration:none; }
.selected, #navAccordion .selected a.heading {
  background-color:#ffffff; color:#000000; border-top:0;



Chapter 3

[ 87 ]

  border-bottom:1px solid #4e82b4; border-right:1px solid #ffffff;
  border-left:1px solid #ffffff;
}
#navAccordion .selected a.heading { border:0; }
#navAccordion li { margin:0; }
#navAccordion li span, #navAccordion li a { background-image:none; }
#navAccordion li span { display:none; }

Save this as navAccordionTheme.css in the styles folder. I've tried to keep the 
page and CSS code as minimal as possible, although a certain minimum amount of 
coding is going to be required in any practical example.

If you run navAccordion.html in your browser now, and then click on any of 
the links within each content section, you'll navigate to a new page. Thanks to thea new page. Thanks to the page. Thanks to the 
navigation:true name:value pair, the relevant section of the accordion will be  
open when the new page loads as seen below:

Summary
The accordion widget allows us to easily implement an object on the page which  
will show and hide different blocks of content. This is a popular, and much sought  
after, effect which is implemented by big players on the web today like Apple.

We first saw that the accordion widget doesn't require any CSS at all in order to 
function as the behaviour without styling still works perfectly. We also looked at  
the flora styling, as well as the ease in which custom styles can be added.



The Accordion Widget

[ 88 ]

We then moved on to look at the configurable properties that can be used with 
accordion. We saw that we can use these properties to change the behaviour of the 
widget, such as specifying an alternative heading to be open by default, whether the 
widget should expand to fill the height of its container, or the event that triggers the 
opening of a content drawer.

In addition to looking at these properties, we also saw that there are a range of 
methods which can be called on the accordion to make it do things programmatically. 
For example, we can easily specify a drawer to open, enable and disable any drawers, 
or even completely remove the widget and return the mark-up to its original state.

Finally, we looked at accordian's default animation and how we can add simple 
transition effects to the opening of content drawers. Like tabs, this is a flexible and 
robust widget that provides essential functionality and interaction in an aesthetically 
pleasing way.



The Dialog
Traditionally, the way to display a brief message or ask a visitor a question would be 
to use one of JavaScript's native dialog boxes, such as alert or confirm, or to open a 
new web page with a predefined size, styled to look like a dialog box.

Unfortunately, as I'm sure you're aware, neither of these methods is particularly 
flexible or engaging. For each problem they solve, several new problems are  
usually introduced.

Thankfully, the days of resorting to either of the aforementioned techniques are over. 
We can now make use of the advanced functionality and rich features of the jQuery 
UI dialog widget.

The dialog widget lets us display a message, supplemental content (like images or 
text), or even interactive content (like forms). It's also very easy to add buttons, such 
as simple ok and cancel buttons, to the dialog and define callback functions for them 
in order to react to their being clicked.

The following screenshot shows a dialog widget and the different elements that it is 
made of:



The Dialog

[ 90 ]

In this chapter, we will complete the following tasks:

Create a basic dialog
Create a custom dialog skin
Work with dialog's properties
Enable modality and see an overlay
Add buttons to the dialog
Work with dialog's callbacks
Enable animations for the dialog
Control the dialog programmatically

A basic dialog
A dialog has a lot of default behavior built-in, but few methods are needed to  
control it programmatically, making this a very easy widget to use that is also  
highly configurable. 

Generating it on the page is very simple and requires a minimal underlying  
mark-up structure. The following page contains the minimum mark-up that's 
required to implement the dialog widget:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 1</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title">Lorem 
    ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
    sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat  
    ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam  
    tincidunt est vitae est. Ut posuere, mauris at sodales rutrum,  
    turpis tellus fermentum metus, ut bibendum velit enim eu lectus.  
    Suspendisse potenti. Donec at dolor ac metus pharetra aliquam.  
    Suspendisse purus. Fusce tempor ultrices libero. Sed quis nunc.  

•

•

•

•

•

•

•

•



Chapter 4

[ 91 ]

    Pellentesque tincidunt viverra felis. Integer elit mauris,  
    egestas ultricies, gravida vitae, feugiat a, tellus.</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //create the dialog
        $("#myDialog").dialog();
    

      });
    </script>
  </body>
</html>

Save this as dialog1.html in the jqueryui folder. A few more source files are 
required that we haven't used before, specifically the ui.resizable.js and 
ui.draggable.js files and the flora.resizable.css stylesheet.

The JavaScript files are low-level interaction helpers, which we'll be covering in more 
detail later on in the book, and are only required if the dialog is going to be resizable 
and draggable. The widget will still function without them. The dialog flora theme 
file is a mandatory requirement for this component, although the resizable one isn't.

Other than that, the widget is initialized in the same way as other widgets we have 
already looked at. When you run this page in your browser, you should see the 
default dialog widget shown in the previous screenshot, complete with draggable 
and resizable behaviors.

One more feature that I think deserves mentioning here is modality. The dialog comes 
with modality built-in, although it is disabled by default. When modality is enabled,  
a modal overlay element, which covers the underlying page, will be applied. The 
dialog will sit above the overlay while the rest of the page will be below it.

The benefit of this feature is that it ensures the dialog is closed before the underlying 
page becomes interactive again, and gives a clear visual indicator that the dialog 
must be closed before the visitor can proceed.



The Dialog

[ 92 ]

Custom dialog skins
The dialog's appearance is easy to change from the flora theme used in the first 
example. Like some of the other widgets we have looked at, certain aspects of 
the default or flora themes are required to make the widget function correctly. 
Therefore, when overriding styles, we need to be careful to just override the rules 
related to the dialog's display.

When creating a new skin for the default implementation, including resizable 
behavior, we have a lot of new files that will need to be created. Apart from new 
images for the different components of the dialog, we also have to create new  
images for the resizing handles. The following files need to be replaced when 
skinning a dialog:

dialog-e.gif

dialog-n.gif

dialog-ne.gif

dialog-nw.gif

dialog-s.gif

dialog-se.gif

dialog-sw.gif

dialog-title.gif

dialog-titlebar-close.png

dialog-titlebar-close-hover.png

To make it easier to remember which image corresponds to which part of the  
dialog, these images are named after the compass points at which they appear.  
The following image illustrates this:

•
•
•
•
•
•
•
•
•
•



Chapter 4

[ 93 ]

Note that these are file names as opposed to class names. The class names given to 
each of the different elements that make up the dialog, including resizable elements, 
are similar, but are prefixed with ui- as we'll see in the next example code.

Let's replace these images with some of our own (the necessary files can be found in 
the code download). In a new file in your text editor, create the following stylesheet:

.flora .ui-dialog, .flora.ui-dialog { 
  background-color:#99ccff; 
}
.flora .ui-dialog .ui-dialog-titlebar, .flora.ui-dialog  
.ui-dialog-titlebar {
  background:url(../img/dialog/my-title.gif) repeat-x;   
  background-color:#003399; 
}
.flora .ui-dialog .ui-dialog-titlebar-close, .flora.ui-dialog  
.ui-dialog-titlebar-close {
  background:url(../img/dialog/my-title-close.gif) no-repeat; }
.flora .ui-dialog .ui-dialog-titlebar-close-hover, .flora.ui-dialog 
.ui-dialog-titlebar-close-hover {   
  background:url(../img/dialog/my-title-close-hover.gif) no-  
  repeat;
}
.flora .ui-dialog .ui-resizable-n, .flora.ui-dialog .ui-resizable-n {
  background:url(../img/dialog/my-n.gif) repeat center top;
}
.flora .ui-dialog .ui-resizable-s, .flora.ui-dialog .ui-resizable-s { 
  background:url(../img/dialog/my-s.gif) repeat center top;
}
.flora .ui-dialog .ui-resizable-e, .flora.ui-dialog .ui-resizable-e {
  background:url(../img/dialog/my-e.gif) repeat right center; }
.flora .ui-dialog .ui-resizable-w, .flora.ui-dialog .ui-resizable-w {
  background:url(../img/dialog/my-w.gif) repeat left center;
}
.flora .ui-dialog .ui-resizable-ne, .flora.ui-dialog .ui-resizable-ne 
{
  background:url(../img/dialog/my-ne.gif) repeat; 
}
.flora .ui-dialog .ui-resizable-se, .flora.ui-dialog .ui-resizable-se 
{
  background:url(../img/dialog/my-se.gif) repeat;
}
.flora .ui-dialog .ui-resizable-sw, .flora.ui-dialog .ui-resizable-sw 
{
  background:url(../img/dialog/my-sw.gif) repeat;
}
.flora .ui-dialog .ui-resizable-nw, .flora.ui-dialog .ui-resizable-nw 
{
  background:url(../img/dialog/my-nw.gif) repeat;
}



The Dialog

[ 94 ]

Save this as dialogTheme.css in the styles folder. We should also create a new 
folder within our img folder called dialog. This folder will be used to store all of  
our dialog-specific images.

All we need to do is specify new images to replace the existing ones used by flora. 
All other rules can stay the same. In dialog1.html, link to the new file with the 
following code, which should appear directly after the link to the resizable stylesheet:

<link rel="stylesheet" type="text/css" href="styles/dialogTheme.css">

Save the change as dialog2.html. These changes will result in a dialog that should 
appear similar to the following screenshot:

So you can see that skinning the dialog to make it fit in with your existing content is 
very easy. The existing image files used by the default theme give you something to 
start with, and it's really just a case of playing around with colors in an image editor 
until you get the desired effect.

Dialog properties
An options object can be used in a dialog's constructor method to configure various 
dialog properties. Let's look at the available properties:



Chapter 4

[ 95 ]

Property Default 
Value

Usage

autoOpen true Shows the dialog as soon as the dialog method is called
bgiframe true Creates an <iframe> shim to prevent <select> 

elements showing through the dialog in IE6 - at present, 
the bgiframe plugin is required, although this may not 
be the case in future versions of this widget

buttons {} Supplies an object containing buttons to be used with  
the dialog

dialogClass ui-dialog Sets additional class names on the dialog for  
theming purposes

draggable true Makes the dialog draggable (use ui.draggable.js)
height 200(px) Sets the starting height of the dialog
hide none Sets an effect to be used when the dialog is closed
maxHeight none Sets a maximum height for the dialog
maxWidth none Sets a maximum width for the dialog
minHeight 100(px) Sets a minimum height for the dialog
minWidth 150(px) Sets a minimum width for the dialog
modal false Enables modality while the dialog is open
overlay {} Object with CSS properties for the modal overlay
position center Sets the starting position of the dialog in the viewport
resizable true Makes the dialog resizable (also requires 

ui.resizable.js)
show none Sets an effect to be used when the dialog is opened
stack true Causes the focused dialog to move to the front when 

several dialogs are open
title none Alternative to specifying title on source element
width 300(px) Sets the original width of the dialog

As you can see, we have a range of configurable properties to work with in our 
dialog implementations. Many of these properties are boolean or numerical, and 
string-based, making them extremely easy to set and work with.

In our examples so far, the dialog has opened as soon as the page has loaded, or 
as soon as the dialog constructor method is called, which is as soon as the page is 
ready in this case. We can change this so that the dialog is opened when something 
else occurs. For example, a <button> being clicked, say, by adjusting the autoOpen 
property. We'll come back to this property when we look at the open method a little 
later on.



The Dialog

[ 96 ]

The position property controls where the dialog is rendered in the viewport when 
it is opened and accepts either a string or an array value. The strings may be one of 
the following values:

bottom

center

left

right

top

An array is used when you want to specify the exact coordinates of the top-left 
corner where the dialog should appear. The coordinates are specified as an offset 
from the top-left corner of the viewport.

The previous table shows a title property. Although the title for the dialog can 
be set using the title attribute of the underlying HTML element, using the title 
property is preferred. This will stop the dialog from displaying the title when the 
body of the dialog widget is hovered over.

One of the dialog's greatest assets is modality. This feature creates an overlay when 
the widget is opened that sits above the page content but below the dialog. The 
overlay is removed as soon as the dialog is closed. But while the dialog is open,  
none of the underlying page content can be interacted with in any way.

When using the modal feature of the dialog widget, we also need to configure the 
overlay property too. Change dialog2.html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 3</title>
  </head>
  <body>

•

•

•

•

•



Chapter 4

[ 97 ]

    <div id="myDialog" class="flora" title="This is the title">Lorem 
ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define config object
        var dialogOpts = {
          modal: true,
          overlay: {
            background: "url(img/modal.png) repeat" 
          }
        };
    

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
    

      });
    </script>
  </body>
</html>

This file can be saved as dialog3.html. When you view the page in a browser, you'll 
see the modal effect immediately.

We've used a repeated, semi-transparent PNG image for the overlay in this example 
for simplicity, but other CSS properties such as background colors and opacity 
are also acceptable. The path to the PNG is specified as the value of the overlay 
property, so you can see how this property and the modal property should be  
used together.



The Dialog

[ 98 ]

The PNG used in this example is a simple square one pixel high by one pixel wide. 
The image is made of the color #999999 set to approx 25% transparency. This file is 
included with the code download, but is also very easy to make.

Adding buttons
One of the properties we saw a moment ago was the button property. This property 
accepts a literal object and is used to specify the <button> elements that should be 
present on the dialog. Let's add an ok! <button> to our dialog. Alter dialog3.html 
so that it appears like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 4</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title">Lorem 
ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus.</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){



Chapter 4

[ 99 ]

        //define doOk function
        var doOk = function() {
    

        }
    

        //define config object
        var dialogOpts = {
          modal: true,
          overlay: {
            background: "url(img/modal.png) repeat", 
          },
          buttons: {
            "Ok!": doOk
          },
          height: "250px"
        };
    

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
    

      });
    </script>
  </body>
</html>

Save the file as dialog4.html. The key for each property in the buttons object is 
the text that will form the <button> label, and the value is the name of the callback 
function to execute when the <button> is clicked.

We've added the doOk function as the behavior for our new <button>. Although it 
won't do anything at this stage, the page won't work without it. We can come back  
to this function in a little while when we look at a dialog's methods.

We also configured the height property in this example. The buttons that we create 
are absolutely positioned at the bottom of the dialog. Therefore, we need to increase 
the height of the widget so that the <button> does not obscure the text.

We can also style the <button> itself by using the following selector. We need to do 
this in order to move the <button> up from the bottom edge of the widget slightly. 
Add the following code to dialogTheme.css:

.flora .ui-dialog .ui-dialog-buttonpane button, .flora.ui-dialog  

.ui-dialog-buttonpane button { margin-bottom:10px; }



The Dialog

[ 100 ]

View the new file in your browser. It should appear something like the  
following screenshot:

Working with dialog's callbacks
The dialog widget gives us a wide range of callback properties that we can use to 
execute arbitrary code at different points in any dialog interaction. The following 
table lists the properties available to us:

Property Fired When
close The dialog is closed
drag The dialog is being dragged
dragStart The dialog starts being dragged
dragStop The dialog stops being dragged
focus The dialog receives focus
open The dialog is opened
resize The dialog is being resized
resizeStart The dialog starts to be resized
resizeStop The dialog stops being resized



Chapter 4

[ 101 ]

Some of these callbacks are only available in certain situations, such as the drag and 
resize callbacks, while others such as the open, close, and focus callbacks, will 
be available in any implementation. Let's look at an example in which we can make 
use of some of these callback properties. In a new page in your text editor, add the 
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 5</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title">Lorem 
ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</div>
    <p id="status">The dialog is closed</p>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
        

        //define config object



The Dialog

[ 102 ]

        var dialogOpts = {
          open: function() {

            //change status
            $("#status").text("The dialog is open");
          },
          close: function() {
        

            //change status
            $("#status").text("The dialog is closed");
          }
        };
        

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
        

        

      });
    </script>
  </body>
</html>

Save this as dialog5.html. Our configuration object uses the open and close 
properties to specify simple callback functions. These change the text of the status 
message depending on the state of the dialog.

When the dialog is opened, the text will be changed to reflect this, and likewise, 
when it is closed, the text will be changed. It's a simple page, but it highlights the 
points at which the open and close events are fired and shows how easy these 
properties are to use.

Using dialog animations
The dialog provides us with built-in effect abilities and also allows us to specify 
effects to use when the dialog is opened or closed. Using these effects is extremely 
easy and gives a great visual flair. Let's look at how these effects can be enabled. 
Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">



Chapter 4

[ 103 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 6</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title">Lorem 
ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){

       //define config object
       var dialogOpts = {
         hide: true
       };

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
      });
    </script>
  </body>
</html>

Save this as dialog6.html. In this example, our configuration object contains just 
one property—the hide property. The hide property accepts the boolean true as its 
value. This enables the built-in hide effect, which gradually reduces the dialog's size 
and opacity until it gracefully disappears.



The Dialog

[ 104 ]

We can also enable the show effect, which is the opposite of the hide animation. 
However, at this stage in the component's development, this causes a slight issue 
with its display. The following screenshot shows the hide effect in progress:

Controlling a dialog programmatically
The dialog requires few methods in order to function. As implementers, we can 
easily open, close, or destroy the dialog at will. The full list of methods we can call  
on a dialog instance are as follows:

Method Used to
close Closes or hides the dialog
destroy Permanently disables the dialog
isOpen Determines whether a dialog is open or not
moveToTop Moves the specified dialog to the top of the stack
open Opens the dialog



Chapter 4

[ 105 ]

Let's look at opening and closing the widget, which can be achieved with the  
simple use of the open and close methods. Create the following new page in your 
text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 7</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title"> 
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</div>
    <button id="openDialog">Open the Dialog!</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define doOk function
        var doOk = function() {



The Dialog

[ 106 ]

          //close the dialog
          $("#myDialog").dialog("close");
    

        }
    

        //define config object
        var dialogOpts = {
          modal: true,
          overlay: {
            background: "url(img/modal.png) repeat"
          },
          buttons: {
            "Ok!": doOk
          },
          height: "400px",
          autoOpen: false
        };
    

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
    

        //define click handler for the button
        $("#openDialog").click(function() {
    

          //open the dialog
          $("#myDialog").dialog("open");
    

        });
      });
    </script>
  </body>
</html>

The open and close methods require no additional arguments and do exactly as 
they say, pure and simple. Save the file as dialog7.html.

The destroy method for a dialog works in a slightly different way than it does for 
the other widgets we've seen so far. Instead of returning the underlying HTML to its 
original state, the dialog's destroy method completely disables the widget, hiding its 
content in the process. Change dialog7.html to make use of the destroy method:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">



Chapter 4

[ 107 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 8</title>
  </head>
  <body>
    <div id="myDialog" class="flora" title="This is the title"> 
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</div>
    <button id="openDialog">Open the Dialog!</button>
    <button id="destroy">Destroy the dialog!</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define doOk function
        var doOk = function() {
    

          //close the dialog
          $("#myDialog").dialog("close");
    

        }
    

        //define config object
        var dialogOpts = {
          modal: true,
          overlay: {
            background:"url(img/modal.png) repeat"



The Dialog

[ 108 ]

          },
          buttons: {
           "Ok!": doOk
          },
          height: "400px",
          autoOpen: false
        };
    

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
    

        //define click handler for the button
        $("#openDialog").click(function() {
    

          //open the dialog
          $("#myDialog").dialog("open");
    

        }); 
    

        //define click handler for destroy

        $("#destroy").click(function() {
    

          //destroy dialog

          $("#myDialog").dialog("destroy");
    

        });

      });
    </script>
  </body>
</html>

Save the changes as dialog8.html and try out the new file. You'll find that you can 
open and close the dialog as many times as you want until the destroy button is 
clicked. After this, the dialog will no longer appear (although it will still exist in the 
DOM). To fully remove the dialog mark-up from the page, we can simply chain the 
remove jQuery method onto the end of the destroy method call.

Getting data from the dialog
Because the widget is a part of the underlying page, passing data to and from it is 
extremely simple. The dialog can be treated as any other standard element on the 
page. Let's look at a basic example. Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Chapter 4

[ 109 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
dialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Dialog Example 9</title>
  </head>
  <body>
    <p>Answer the opinion poll:</p>
    <button id="poll">Poll</button>
    <div id="myDialog" class="flora" title="This is the title">
      <p>Is jQuery UI the greatest JavaScript extensions library in 
the universe?</p>
      <label for="yes">Yes!</label><input type="radio" id="yes" 
value="yes" name="question"><br>
      <label for="no">No!</label><input type="radio" id="no" 
value="no" name="question">
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){

        //define cancel button function
        var cancel = function() {
    

          //close the dialog
          $("#myDialog").dialog("close");
    

        }
    

        //define done button function
        var getResponse = function(){
    

          var answer;
          $("input").each(function(){



The Dialog

[ 110 ]

            (this.checked == true) ? answer = $(this).val() : null;
    

          });
    

          $("<p>").text("Thanks for selecting " + answer) 
.insertAfter($("#poll"));
          $("#myDialog").dialog("close");
    

        }
    

        //define config object
        var dialogOpts = {
          modal: true,
          overlay: {
            background: "url(img/modal.png) repeat"
          },
          buttons: {
            "Done": getResponse,
            "Cancel": cancel
          },
          autoOpen: false
    

        };

        //create the dialog
        $("#myDialog").dialog(dialogOpts);
    

        //define click handler for poll button
        $("#poll").click(function() {
    

          //open the dialog
          $("#myDialog").dialog("open");
    

        });
      });
    </script>
  </body>
</html>

Save this as dialog9.html. Our dialog contains a set of radio buttons, <label> 
elements, and some text. The purpose of the example is to get the result of which 
radio is selected, and then do something with it when the dialog closes.

We start the <script> off by creating the cancel function, which will be attached 
as the value of the cancel property in the buttons object later in the script. It will 
therefore be executed each time the Cancel <button> is clicked.



Chapter 4

[ 111 ]

Next, we define the getResponse function, which again will be attached to a 
<button> on the dialog using the buttons configuration object. In this function,  
we determine which radio is selected, then create and append to the page a new  
<p> element with a brief message and the value of the radio that was selected.

Once these two functions have been defined, we create a configuration object as 
before. The dialog is initially hidden from view, and we use the open method to 
show the dialog when the Poll <button> is clicked.

The following screenshot shows how the page should appear once a radio button has 
been selected:

Fun with dialog
The class behind the dialog widget is compact and is catered to a small range of 
specialised behavior, much of which we have already looked at. We can still have 
some fun with the dialog widget however, and could, for example, easily create an 
AJAX dialog which gets its content from a remote file when it is opened. In a new 
page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.dialog.css">
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/
ajaxDialogTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI AJAX Dialog Example</title>



The Dialog

[ 112 ]

  </head>
  <body>
    <div id="ajaxDialog" class="flora"></div>
    <div class="content">
      <h3>Section 1</h3>
      <p> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat 
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam 
tincidunt est vitae est. Ut posuere, mauris at sodales rutrum, turpis 
tellus fermentum metus, ut bibendum velit enim eu lectus. Suspendisse 
potenti. Donec at dolor ac metus pharetra aliquam. Suspendisse purus. 
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt 
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae, 
feugiat a, tellus.</p>
      <p class="helpLabel">For help about this section, click here: 
</p><span id="help1" class="helpIcon"></span>
    </div>
  <div class="content">
    <h3>Section 2</h3>
    <p>Lorem ipsum...</p>
    <p class="helpLabel">For help about this section, click here: 
</p><span id="help2" class="helpIcon"></span>
  </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.dialog.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
  </body>
</html>

Now add the following <script> block directly before the closing </body> tag:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
     

    //control variable
    var help = 0;
     

    //define doOk function
    var doOk = function() {



Chapter 4

[ 113 ]

      //close the dialog
      $("#ajaxDialog").dialog("close");
    

    }
    

    //define config object
    var dialogOpts = {
      title: "Help!",
      modal: true,
      overlay: {
        background: "url(img/modal.png) repeat"
      },
      buttons: {
        "Ok!": doOk
      },
      height: "110px",
      autoOpen: false,
      open: function() {
    

        //display correct dialog content
        $("#ajaxDialog").load("helpContents" + (help == 1 ? 1 : 2) + 
".html");    }
    };
    

    //create the dialog
    $("#ajaxDialog").dialog(dialogOpts);
    

    //define click handler for helpIcons
    $(".helpIcon").click(function(event) {
    

      //which icons was clicked?
      event.target.id == "help1" ? help = 1 : help = 2;
    

      //call open method
      $("#ajaxDialog").dialog("open");
    

    });
  });
</script>

Save this as ajaxDialog.html. The dialog is similar to that of previous examples, 
but the main differences are the open event handler defined within the dialog's 
configuration object, and the click handler for the helpIcon elements.

When either of the helpIcon elements are clicked, the handler will determine which 
icon it was, and set our control variable accordingly. The open method of the dialog 
is then called.



The Dialog

[ 114 ]

This will invoke the open event handler which reads the control variable and then 
loads the appropriate external file into the dialog using the standard jQuery load 
method. We'll need a new stylesheet for this example. In a new page in your text 
editor, add the following code:

* page styles */
h3 { margin-top:0px; }
.content {
  border:1px solid #7eb8f8; 
  margin-bottom:10px; padding:10px;
  position:relative;
}
.helpIcon {
  position:absolute; right:5px; bottom:5px;
  background:url(../img/QuestionMark.png) no-repeat;   
  cursor:pointer;
  display:block; width:25px; height:25px;
}
.helpLabel {
  width:100%; margin:0px;
  position:relative; right:25px; top:-2px;
  font:bold 60% Verdana, Arial; text-align:right;
}

/* dialog styles */
.flora .ui-dialog, .flora.ui-dialog {
  background-color:#ffffff;
}
.flora .ui-dialog .ui-dialog-titlebar, .flora.ui-dialog  
.ui-dialog-titlebar {
  background:url(../img/dialog/my-title.gif) repeat-x;  
background-color:#003399;
}
.flora .ui-dialog .ui-dialog-titlebar-close, .flora.ui-dialog  
.ui-dialog-titlebar-close {
  background:url(../img/dialog/my-title-close.gif) no-repeat;
}
.flora .ui-dialog .ui-dialog-titlebar-close-hover, .flora.ui-dialog 
.ui-dialog-titlebar-close-hover {
  background:url(../img/dialog/my-title-close-hover.gif) no-repeat;
}
.flora .ui-dialog .ui-resizable-n, .flora.ui-dialog .ui-resizable-n {
  background:url(../img/dialog/my-n.gif) repeat center top;
}
.flora .ui-dialog .ui-resizable-s, .flora.ui-dialog .ui-resizable-s {
  background:url(../img/dialog/my-s.gif) repeat center top;
}
.flora .ui-dialog .ui-resizable-e, .flora.ui-dialog .ui-resizable-e {
  background:url(../img/dialog/my-e.gif) repeat right center;



Chapter 4

[ 115 ]

}
.flora .ui-dialog .ui-resizable-w, .flora.ui-dialog .ui-resizable-w {
  background:url(../img/dialog/my-w.gif) repeat left center;
}
.flora .ui-dialog .ui-resizable-ne, .flora.ui-dialog .ui-resizable-ne 
{
  background:url(../img/dialog/my-ne.gif) repeat;
}
.flora .ui-dialog .ui-resizable-se, .flora.ui-dialog .ui-resizable-se 
{
  background:url(../img/dialog/my-se.gif) repeat;
}
.flora .ui-dialog .ui-resizable-sw, .flora.ui-dialog .ui-resizable-sw 
{
  background:url(../img/dialog/my-sw.gif) repeat;
}
.flora .ui-dialog .ui-resizable-nw, .flora.ui-dialog .ui-resizable-nw 
{
  background:url(../img/dialog/my-nw.gif) repeat;
}

Many of these styles have been used in previous examples, but adding some new 
rules for the other page elements lets us see the dialog in real-world context. Save 
this as ajaxDialogTheme.css in the styles folder. Open the page and click the help 
icon in the second section. The dialog, with its correct content, should be displayed:



The Dialog

[ 116 ]

Help Icon
The icons used as help icons in this example were taken from the 
ColorCons icon package by Ken Saunders, and can be found at http://
mouserunner.com/Spheres_ColoCons1_Free_Icons.html.

Summary
The dialog widget is extremely specialized and is catered to the display of a 
message or question in a floating panel that sits above the page content. Advanced 
functionality, such as draggability and resizability, are directly built in, and features 
such as the excellent modality and overlay are easy to configure.

We started out by looking at the default implementation, which is as simple as it  
is with the other widgets we have looked at so far. However, there are several 
optional components that can also be used in conjunction with the dialog, such as  
the draggables and resizable components.

We then moved on to look at the different styling options available for use with the 
dialog, including the default or flora themes, and how easy it is to override some 
of these styles to create our own custom theme.

We also examined the range of configurable properties exposed by the dialog's  
API. We can easily make use of the properties to enable or disable built-in behavior 
such as modality, or set the dimensions of the widget, as well as giving us a wide 
range of callbacks that allow us to hook into custom events fired by the widget 
during an interaction.

We then took a brief look at the built-in opening and closing effects that can be used 
with the dialog, before moving on to see the basic methods we can invoke in order to 
make the dialog do things, such as open or close.



Slider
The slider component allows us to implement an engaging and easy-to-use widget 
that our visitors should find attractive and intuitive to use. Its basic function is 
simple. The slider background represents a series of values which are selected by 
dragging the thumb along the background.

Before we roll up our sleeves and begin creating a slider, let's look at the different 
elements that it is made from. The following is an example of a slider:

It's a simple widget, as you can see, comprised of just two main elements. The  
slider handle, also called the thumb, and the slider background, also called the track. 
The only HTML elements created by the control are an <a> tag with a <div> element 
inside it, nothing else is dynamically generated.

In this section, we will cover the following topics:

The default slider implementation
Giving the slider a new appearance
Creating a vertical slider
Working with slider properties
The slider's built-in event callbacks
Making things happen with slider methods
Sliders with multiple handles
Working with slider ranges

•

•

•

•

•

•

•

•



Slider

[ 118 ]

Implementing slider
Creating the default, basic slider takes no more code than any of the other widgets we 
have looked at so far. The underlying HTML mark-up required is also minimal. Let's 
create a basic one now. In a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 1</title>
  </head>
  <body>
    <div id="mySlider"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //create the slider
        $("#mySlider").slider();
    

      });
   </script>
  </body>
</html>

Save this file as slider1.html and view it in your browser. You should see 
something similar to the previous screenshot. We've used several library resources 
here, including the following files:

flora.slider.css

jquery-1.6.2.js

ui.core.js

ui.slider.js

•

•

•

•



Chapter 5

[ 119 ]

Our container element is automatically given the class name ui-slider. This class 
name is targeted by the skin file and provides the background image that makes up 
the slider background, or track, as well as its positional and dimensional properties.

The default behavior of a basic slider is simple but effective. The thumb can be 
moved horizontally along any pixel of the track on the x axis, making allowances  
for the buffer and thumb width of course.

Clicking anywhere on the track, with the left or right mouse button, will instantly 
move the handle to that position. Once the handle has been selected, it is also 
possible to move it using the left and right arrow keys of the keyboard.

Overriding the default theme
Altering the appearance of the slider is as easy as overriding the selectors that 
target the slider background and handle. To give the slider a completely different 
appearance, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
sliderTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 2</title>
  </head>
  <body>
    <div class="background-div">
      <div id="mySlider"></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //create the slider



Slider

[ 120 ]

      $("#mySlider").slider();
    

     });
   </script>
  </body>
</html>

Save this as slider2.html. The only difference is that we've linked to a custom 
stylesheet. We also enclosed the slider within a container <div> which will be used 
for an additional background image to complete the appearance of our new slider. 
Now for that stylesheet, in a new file, add the code found below:

.background-div {
  background:url(../img/slider/slider_outerbg.gif) no-repeat;   
  height:50px; width:217px; padding:36px 0 0 24px;
}
.ui-slider, .ui-slider-1 {
  background:url(../img/slider/slider_bg.gif) no-repeat; width:184px;   
  height:23px; position:relative; left:4px; top:4px;
}
.ui-slider-handle {
  background:url(../img/slider/slider_handle.gif) no-repeat; 
  width:14px; height:30px; top:-4px;
}

Save the file as sliderTheme.css in your styles folder. Create a new folder 
inside the img folder and name it slider. You should put the images from the 
code download for this chapter into the new folder. Make sure you link to the new 
stylesheet in slider1.html and save the new file as slider2.html. When you view 
the new file in your browser, the slider should look completely different, as shown in 
the following screenshot:



Chapter 5

[ 121 ]

This new slider won't do anything interesting at this stage because it hasn't been 
configured. But you can see how easy it is to override the default styling to create 
your own unique slider implementation.

The slider widget has a handy feature built into it. The slider will automatically 
detect whether you wish to implement it horizontally or vertically. To make a 
vertical slider, all we need to do is use some custom images and change a couple  
of CSS rules. The widget will do the rest.

In slider2.html, remove the background <div> that we added for our custom 
background image and change the stylesheet link from sliderTheme.css to 
verticalSlider.css. Save these changes as slider3.html. The selectors and  
style rules in verticalSlider.css will need to be as follows:

.ui-slider, .ui-slider-1 {
  background:url(../img/slider/slider-bg-vert.png) no-repeat 6px 0px;
}
.ui-slider {
  height:200px; width:23px;
}
.ui-slider-handle {
  background:url(../img/slider/slider-handle-vert.gif) no-repeat;   
  height:12px; width:23px;
}

When you launch the page, you'll see that the slider operates exactly as it did  
before, except that it now moves along the y axis . You can see this in the  
following screenshot:



Slider

[ 122 ]

Configurable properties
Additional functionality, such as vertical sliders, multiple handles, and stepping, can 
also be configured using a literal object passed into the constructor method when the 
slider is initialized. The complete range of properties that can be used in conjunction 
with the slider widget are listed below:

Property Default Value Usage
animate false Enables a smooth animation of the slider 

handle when the track is clicked
axis Sets the orientation of the slider if  

auto-detect fails
handle "ui-slider-handle" Sets the class name of the slider handle
handles {} Sets the boundaries for the slider handle(s)
max 100 Sets the maximum value of the slider
min 0 Sets the minimum value of the slider
range false Creates a styleable range between two  

slider handles
startValue 0 Sets the value the slider handle will start on
stepping Sets the distance between steps
steps Sets the number of steps

The stepping and steps properties are very similar in usage but should not be 
confused. stepping is the distance between steps that the handle must move during 
each jump. steps refers to the number of steps, not the distance between them. 
These two properties should not be used together in the same implementation.

Let's put some of these properties to work. Apart from the default slider background 
used by the flora theme, a second background with defined step marks is also 
provided. We can use this in conjunction with the stepping and steps properties.  
In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
steppedSlider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">



Chapter 5

[ 123 ]

    <title>jQuery UI Slider Example 4</title>
  </head>
  <body>
    <div id="mySlider"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //create config object
        var sliderOpts = {
         steps: 10
        };
    

        //create the slider
       $("#mySlider").slider(sliderOpts);
    

      });
    </script>
  </body>
</html>

Save this as slider4.html. We're linking to a custom stylesheet for this example, 
which we'll need to create next. In another new page in your text editor, add the 
following rule:

.ui-slider, .ui-slider-1 {
  background-image:url(../jqueryui1.6rc2/themes/flora/i/ 
slider-bg-2.png);
}

Make sure this is saved in the styles folder as steppedSlider.css. When you 
run the example in a browser, you'll see that the slider background has ten visible 
step marks since we set the steps property to 10. Now when you move the slider, 
it jumps from step mark to step mark, making the slider digital instead of analogue. 
The next screenshot shows how this example looks:



Slider

[ 124 ]

The stepping property achieves the same result as the steps property, but it does 
it in a different way. Let's see how this is done. Change the last <script> block in 
slider4.html so that it appears as follows:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
     

    //create config object
    var sliderOpts = {
     stepping: 10

    };
     

    //create the slider
    $("#mySlider").slider(sliderOpts);
  });
</script>

Save this as slider5.html. We still provide 10 as the value even though we are now 
using the stepping property. We do this because the current maximum value for the 
slider is 100 (the default) and there are 10 step marks. So, 100 divided by 10 is 10. If 
we were to set the maximum value to 200 but still used the same image for the slider 
background, we would set stepping to 20 instead. The steps property would stay 
at 10 regardless of the maximum value.

The startValue property is just as easy to use. Depending on what we want the 
slider to represent, the starting value of the handle may not be 0. If we wanted the 
handle to say, start at half way across the track instead of at the beginning, we could 
use the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
steppedSlider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 6</title>
  </head>
  <body>
    <div id="mySlider"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



Chapter 5

[ 125 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //create config object
        var sliderOpts = {
          startValue: 50
        };
    

        //create the slider
        $("#mySlider").slider(sliderOpts);
    

     });
    </script>
  </body>
</html>

Save this file as slider6.html. When the file is loaded in a browser, you'll see that 
the handle starts with a value of 50 instead of 0.

Using slider's callback functions
In addition to the properties we saw earlier, there are an additional four that can 
be used to define functions which are executed at different times during any slider 
interaction. This allows us to react to the events fired by the widget. These function 
properties are listed below:

Function Usage
change Called when the slider handle stops and its value has changed
slide Called every time the slider handle moves
start Called when the slider handle starts moving
stop Called when the slider handle stops

Hooking into these built-in callback functions is extremely easy. Let's put a basic 
example together that utilizes them all. In a new file in your text editor, create the 
following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Slider

[ 126 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 7</title>
  </head>
  <body>
    <div id="mySlider"></div><br>
    <div id="messageBox"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
     

        //create config object
        var sliderOpts = {
          change: function() {
            var message = "The slider's value has changed";
            $("#messageBox").text(message);
          },
          slide: function() {
            var message = "The slider is sliding";
            $("#messageBox").text(message);
          },
          start: function() {
            var message = "The slider has started";
            $("#messageBox").text(message);
          },
          stop: function() {
            var message = "The slider has stopped";
         $("#messageBox").text(message);
          }  
        };
    

        //create the slider
        $("#mySlider").slider(sliderOpts);
      });
    </script>
  </body>
</html>



Chapter 5

[ 127 ]

Save this as slider7.html. It's a very basic page. We have a simple container 
<div> below the slider which will be used to hold a message. In the <script>, 
we define our callback functions within the configuration object. Then pass it into 
the constructor method as normal. Each time the state of the slider changes, the 
appropriate message will be written to the message box. The following screenshot 
shows a message:

You'll only see either the slide message or the change message because the start 
and stop messages get overwritten straight away, but they do occur. This example 
also shows us the order in which these functions will be executed:

start

slide

stop

change

Instead of simply writing a message to the page, these functions allow us to react 
appropriately to visitor interactions with the slider. We'll look at a more beneficial 
use of these properties later in the chapter.

Slider methods
The slider is intuitive and easy to use, but to get any kind of workable result out of it, 
beyond what we've looked at so far, we'll need to make use of the methods that are 
built into it. The methods we can use are shown in the following table:

Method Used For/To
moveTo Move the thumb to the specified value on the track
value Retrieve the current value of the thumb
disable Disable the functionality of the slider
enable Enable the functionality of the slider
destroy Return the underlying mark-up to its original state

•
•
•
•



Slider

[ 128 ]

The first two methods, moveTo and value, are the most specific to the slider and  
are essential for working with it in any sensible way. To be able to use the slider 
widget effectively, you'll need to at least use the value method to obtain the position 
of the thumb following an interaction. Let's look at using this method next. Open 
slider7.html and change the final <script> block so that it appears as follows:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){
     

   //create config object
   var sliderOpts = {
     

     change: function() {
     

       //get the new value
       var val = $(this).slider("value");
     

       var message = "The slider's value has changed and is now " + 
val;
       $("#messageBox").text(message);
     },
     slide: function() {
       var message = "The slider is sliding";
       $("#messageBox").text(message);
     },
     start: function() {
       var message = "The slider has started";
       $("#messageBox").text(message);
     },
     stop: function() {
       var message = "The slider has stopped";
       $("#messageBox").text(message);
     },
     steps: 100
    };
     

    //create the slider
    $("#mySlider").slider(sliderOpts);
  });
</script>



Chapter 5

[ 129 ]

Save this file as slider8.html. This time when we move the slider, the new value  
is returned from the value method and is written to the message <div>. We set  
the steps property to 100, or equal to the current maximum value, to avoid  
having a number with many decimal places returned by the method. Here's how  
it should look:

Using the moveTo method is just as quick and easy. If we add a <button> to the page, 
we can set it up so that clicking it moves the slider handle to a predefined point on 
the track. Change slider8.html so that it is the same as the following page:

!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 9</title>
  </head>
  <body>
    <button id="move">Set to 50</button><br>

    <div id="mySlider"></div><br>
    <div id="messageBox"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready



Slider

[ 130 ]

     $(function(){
     

       //create config object
       var sliderOpts = {
        change: function() {
     

         //get the new value
         var val = $(this).slider("value");
     

          var message = "The slider's value has changed and is now " + 
val;
        $("#messageBox").text(message);
        },
       steps: 100 
      };
     

       //create the slider
      $("#mySlider").slider(sliderOpts);
     

     //define click handler for button
      $("#move").click(function(e, ui){
     

        //set slider value
        $("#mySlider").slider("moveTo", 50);
     

      });
     });
   </script>
  </body>
</html>

Save this as slider9.html. To use the moveTo method, all we do is pass in an 
additional argument specifying the new value. We've removed all of the event 
callbacks except for one, as using them all together in conjunction with this method 
can cause problems. Using the change event on its own is fine, however, as shown in 
the following screenshot:



Chapter 5

[ 131 ]

Slider animation
The slider widget comes with a built-in animation that moves the slider handle 
smoothly to a new position when the slider track is clicked. This animation is switched 
off by default. However, we can easily enable it by setting the animate property to 
true. Change the final <script> in slider9.html so that it is as follows:

<script type="text/javascript">
  //define function to be executed on document ready
  $(function(){

    //define config object
    var sliderOpts = {
      animate: true
    };

    //create the slider
    $("#mySlider").slider(sliderOpts);

  });
</script>

Save this version as slider10.html. The difference this property makes to the 
overall effect of the widget is extraordinary. Instead of the slider handle just moving 
instantly to a new position when the track is clicked, it smoothly slides there.

Multiple handles
I mentioned earlier that a slider may have multiple handles. Implementing  
this feature couldn't be any easier thanks to another of the slider's built-in  
auto-detection features.

There are two ways you can implement multiple handles. First, you can supply the 
required number of child <div> elements within the element that is to be made a 
slider and give them all the class name ui-slider-handle. The second way is to 
give each of the child <div> elements their own collective class name and use the 
handle property to specify your class name as the class that should be applied to  
all handles.

The first method is probably the easiest as you don't need to worry about supplying 
new images for the handles. Let's take a look at a brief example. In a new page in 
your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Slider

[ 132 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 11</title>
  </head>
  <body>
    <div id="mySlider">
      <div class="ui-slider-handle"></div>
      <div class="ui-slider-handle"></div>
    </div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //create the slider
      $("#mySlider").slider();
    

     });
   </script>
  </body>
</html>

Save this as slider11.html. All we've done is insert two new <div> elements 
within our slider container element. The widget has created both new handles for us 
and, as you'll see, they both function exactly as a single handle does. The following 
screenshot shows our dual-handled slider:



Chapter 5

[ 133 ]

When working with multiple handles, we can set the range property to true. This 
adds a styled range element between two handles. When the range property is true, 
we can also return the amount of range between the two handles using the second 
object (ui) which is automatically passed to our callback functions. In slider10.
html, add the following additional code (shown in bold):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slider Example 12</title>
  </head>
  <body>
    <div id="mySlider">
      <div class="ui-slider-handle"></div>
      <div class="ui-slider-handle"></div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
         

       //define config object
      var sliderOpts = {
        range: true,
        change: function(e, ui) {
          alert("The range is " + ui.range);
       }  
      };
         

       //create the slider
      $("#mySlider").slider(sliderOpts);
         

     });
   </script>
  </body>
</html>



Slider

[ 134 ]

Save this as slider12.html. Now when you move one of the handles, you should 
see a semi-opaque overlay between the two handles. Also, when you drop the 
handle, you'll get a lovely intrusive alert telling you the range. The alert is just for 
the purpose of this example and should not be used in the wild! The next screenshot 
shows both the range element and the alert:

Unfortunately, setting the steps property to 100 to return an integer for our alert 
does not work when the range property is enabled.

Fun with slider
A fun implementation of the slider widget, which could be very useful in certain 
applications, is the color slider. Let's put what we've learned of this widget so far 
together to produce a versatile and easily created color choosing tool. The following 
screenshot shows what we'll be making:



Chapter 5

[ 135 ]

In a new file in your text editor, begin with the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.slider.css">
    <link rel="stylesheet" type="text/css" href="styles/
ColorSliderTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Color Slider Example</title>
  </head>
  <body>
    <div id="container">
              

      <div id="rSlider"></div><br>
      <div id="gSlider"></div><br>
      <div id="bSlider"></div>
      <input id="output" type="text">
    </div>
    <div id="colorBox"></div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.slider.js"></script>
<script type="text/javascript">
    //define function to be executed on document ready
      $(function(){
              

        //initialize values
        var r = 0;
        var g = 0;
        var b = 0;
              

        //create config obj
       var sliderOpts = {
          max: 255,
          steps: 255,
          slide: function(e, ui) {
            var val = $(this).slider("value");
            var id = $(this).attr("id");
              

            if (id == "rSlider") {



Slider

[ 136 ]

              r = val;
            } else if (id == "gSlider") {
              g = val;
            } else {
              b = val;
            }
              

            var rgbString = "rgb(" +r+ "," +g+ "," +b+ ")";
              

            $("#colorBox").css({
                backgroundColor:rgbString
              });
              

            $("#output").val(rgbString);  
         }  
              

       };
              

       //create the dialog
       $("#rSlider, #gSlider, #bSlider").slider(sliderOpts);
              

      });
   </script>
  </body>
</html>

Save this as colorSlider.html. The page itself is simple enough. We've got  
some elements used primarily for displaying the different components of the color 
slider, as well as the individual container elements which will be transformed into 
slider widgets.

The JavaScript is just as simple. We set the initial RGB values of each slider to 0  
using the first three variables. 0,0,0 is black in RGB of course. However, if we don't 
set these variables initially, the colorBox won't change color until all three sliders 
have been moved. 

As RGB color values range from 0 to 255, we set the max property to 255 in our 
configuration object. We also set the steps property to 255 as well to make sure  
we get whole numbers only.

The change callback is where it all happens. Every time a handle is dropped we 
update the appropriate variable and then construct an RGB string from the values of 
our variables. This is necessary as we can't pass the variables directly into jQuery's 
css method.



Chapter 5

[ 137 ]

We'll need some CSS as well to complete the overall appearance of the control. In a 
new page in your text editor, create the following stylesheet:

#container {
  width:426px; height:156px;
  background:url(../img/color-slider/colorSlider_bg.gif) no-repeat;
  position:relative;
  z-index:1;
}
.ui-slider {
  width:240px; height:11px;
  background:url(../img/color-slider/colorSlider_track.gif) no-repeat;
  position:relative; top:18px; left:38px;
  margin-bottom:8px;
}
.ui-slider-handle {
  width:15px; height:27px;
  background:url(../img/color-slider/colorSlider_handle.png)  
  no-repeat;
  margin-top:-9px;
}
#colorBox { 
  width:104px; height:94px;
  background:#ffffff url(../img/color-slider/color_box.gif) no-repeat;
  position:absolute; left:306px; top:24px;
  z-index:2;
}
#output {
  position:absolute; bottom:16px; right:27px; width:92px;
}

Save this as colorSliderTheme.css in the styles folder. When we run the 
example, we should find that everything works as expected. As soon as we start 
moving any of the sliders, the color box color channel we are changing is reflected by 
the color of the box. We can also write the value to a text box to see the actual RGB 
value of the color we have selected.



Slider

[ 138 ]

Summary
In this chapter, we looked at the slider widget and saw how quickly and easily it can 
be put on the page. It requires minimal underlying mark-up and just a single line of 
code to initialize. We also saw how it intelligently detects whether to implement as a 
horizontal or vertical slider.

We looked at properties that can be used to control how the slider behaves and 
how it can be fine-tuned to suit a range of implementations. There are properties to 
configure whether the slider should move smoothly across the track, or jump along a 
series of predefined steps, and to configure a non-zero starting value for the handle.

Configured as properties of the widget, we also saw the rich event model that can 
easily be hooked into, and reacted to, with up to four separate callback functions . 
This allows us to execute code at important times during an interaction.

Finally, we looked at the range of methods that can be used to programmatically 
interact with the slider. Moving the handle to a specified point on the track,  
for example. 

These properties and methods turn the widget into a useful and highly functional 
interface tool that adds an excellent level of interactivity to any page.



Date Picker
The UI date picker widget is probably the most refined and documented widget 
found in the jQuery UI library. It should be no surprise to learn that it's highly 
configurable and extremely easy to implement and customize. It was written by 
Marc Grabanski and Keith Wood in 2005. The current version at the time of  
writing is 3.4.3.

Quite simply, the date picker widget provides an interface which allows visitors 
to your site or application to select dates. Wherever a form field is required which 
asks for a date to be entered, the date picker widget can be added. This means your 
visitors get to use an attractive, engaging widget and you get dates in the format in 
which you expect them.

Additional functionality built into the date picker includes automatic opening and 
closing animations and the ability to navigate the interface of the widget using the 
keyboard. While holding the down Ctrl key (or Apple key on the Mac), the arrows on 
the keyboard can be used to choose a new day cell, which can then be selected using 
the Return key.

While easy to create and configure, the date picker is a complex widget made up of a 
wide range of underlying elements, as the following screenshot shows:



Date Picker

[ 140 ]

Despite this complexity, we can implement the default date picker with just a single 
line of code, much like the other widgets in the library that we have covered so far. 
During this section, we will look at the following subjects:

A default date picker implementation
Changing the date picker's appearance
Exploring the configurable properties
The new and improved dateFormat property
Easy internationalization
Implementing a trigger button
Multiple month date pickers
Enabling range selection
Configuring alternative animations
Making things happen with date picker's methods
Using AJAX with the date picker

The default date picker
To create a default date picker, the following code meets the minimum requirements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 1</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">    
<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
   

•

•

•

•

•

•

•

•

•

•

•



Chapter 6

[ 141 ]

         //create the date picker
         $("#date").datepicker();
   

      });
    </script>
  </body>
</html>

Save this as datepicker1.html. On the page, all we have is a <label> and a 
standard text <input> element. We don't need to specify any empty container 
elements for the date picker widget to be rendered into. All of the required mark-up 
to produce the widget is added automatically by the library.

The JavaScript is equally as simple. We use the $(function() { }); construct to 
execute some code when the page loads. The code that we execute is the datepicker 
constructor method, which is called on a jQuery object representing our  
<input> field.

When you run the page in your browser and focus the <input> element, the default 
date picker should appear below the input and should look like the screenshot at the 
start of the chapter.

Apart from great looks, the default date picker also comes with a lot of built-in 
functionality. When the calendar opens, it is smoothly animated from zero to 
full size, it will automatically be set to the present date, and selecting a date will 
automatically add the date to the <input> and close the calendar (again with a  
nice animation). 

With no additional configuration, and a single line of code, we now have a perfectly 
usable and attractive widget making date selection easy. If all you want to do is let 
people pick a date, this is all you need to do.

The source files required for the default date picker implementation are:

The latest version of jQuery (1.2.6 at the time of writing)
The UI library core file ui.core.js
The date picker source file ui.datepicker.js

•

•

•



Date Picker

[ 142 ]

Skinning the date picker
The date picker comes with two themes. The first is the flora theme, which is shown 
in the screenshot at the start of this chapter, and the default theme, which is shown 
in the following screenshot:

Both of these themes not only control how the widget looks, but also ensure that it 
displays correctly. We can easily override specific selectors with our own stylesheet 
to easily change how the widget looks but not how it works. Let's do this next. In a 
new file in your text editor, add the following stylesheet:

#ui-datepicker-div { border:1px solid #3399ff; }
#ui-datepicker-div a, .ui-datepicker-inline a {
  color:#ffffff !important;
}
#ui-datepicker-div a:hover, .ui-datepicker-inline a:hover {
  color:#000000 !important;
  background-color:#ffffff !important;
}
.ui-datepicker-header { background:#000000; }
.ui-datepicker-header select {
  background-color:#3399ff; font-size:70%; width:72px;
  color:#ffffff;
}



Chapter 6

[ 143 ]

.ui-datepicker-control { background-color:#3399ff; }

.ui-datepicker-control, .ui-datepicker-links {
  font-size:70%;
}
.ui-datepicker-control a, .ui-datepicker-links a {
  color:#ffffff !important;
}
.ui-datepicker-control a:hover { color:#000000 !important; }
.ui-datepicker-links {
  background-color:#000000; color:#ffffff;!important;
}
.ui-datepicker .ui-datepicker-title-row {
  background-color:#000000; color:#ffffff; font-size:90%;
}
.ui-datepicker .ui-datepicker-title-row td {
  border-bottom:1px solid #3399ff;
}
.ui-datepicker .ui-datepicker-week-end-cell {
  background-color:#000000;
}
.ui-datepicker .ui-datepicker-days-row {
  background-color:#000000;
}
.ui-datepicker .ui-datepicker-days-cell {
  border:0; border-right:1px solid #3399ff;
  border-bottom:1px solid #3399ff; color:#ffffff !important;
}
.ui-datepicker-today, .ui-datepicker .ui-datepicker-days-cell-over {
  background-color:#99ccff !important;
  color:#ff0000 !important;
}
.ui-datepicker-one-month { width:145px !important; }
table.ui-datepicker { font-size:80%; }

Save this file as datePickerTheme.css in your styles folder. Create a new folder 
inside the img folder and name it date-picker. Also, unpack the images from the 
code download for the chapter into the new folder. These selectors use the same 
specificity as the original selectors in the theme file to target particular elements with 
pin-point precision. Because our stylesheet will be added after the skin file, our new 
rules will take precedence. We need the !important rule occasionally to override 
styles added as element attributes by the widget.

This is probably the minimum amount of code that is needed to change the 
aesthetical appearance of the widget, and it's quite a basic change in style. There is 
much more that could be done to really make the different elements stand out.



Date Picker

[ 144 ]

Don't forget to link to the new stylesheet in the <head> of the page, directly after the 
skin file, with the following code:

<link rel="stylesheet" type="text/css" href="styles/ 
datePickerTheme.css">

Save this as datepicker2.html. Once this is done, you should have something 
similar to that shown in the following screenshot:

Don't forget that in addition to creating our own stylesheet which overrides specific 
style rules, we can also use Theme Roller to produce a comprehensive custom theme 
for the widget in no time at all.

Configurable properties of the picker
The date picker has a large range of configurable properties, currently sixty six 
to be exact, which is more than twice the number that any of the other UI library 
components have. The following table lists the basic properties, their default values, 
and gives a brief description of their usage:



Chapter 6

[ 145 ]

Property Default 
Value

Usage

altField "" Specify a selector for an alternative 
<input> field which the selected date is 
also added to

altFormat "" Specify an alternative format for the date 
added to the alternative <input>

appendText "" Add text after the date picker <input> to 
show the format the selected date will have

buttonImage "" Specify a path to the image to use for the 
trigger <button>

buttonImageOnly false Set to true to use an image instead of a 
trigger button

buttonText "..." Text to display on a trigger <button>  
(if present)

changeFirstDay true Reorder the calendar when a day heading  
is clicked

changeMonth true Show the month change drop-down
changeYear true Show the year change drop-down
closeAtTop true Show the close button at the top of  

the calendar
constrainInput true Constrain the <input> to the format of  

the date
defaultDate null Set the date that is initially highlighted
duration normal Set the speed at which the date picker opens
goToCurrent false Set the current day link to move the date 

picker to currently selected date instead  
of today

hideIfNoPrevNext false Hide the Prev/Next links when not needed
highlightWeek false Set the date picker to highlight the entire 

row when a day is hovered over
isRTL false Set the calendar to right-to-left format
mandatory false Enforce date selection
maxDate null Set the maximum date that can be selected
minDate null Set the minimum date that can be selected
navigationAsDateFormat false Allows us to specify month names as the 

Prev, Next, and Current links
numberOfMonths 1 Set the number of months shown on a single 

date picker



Date Picker

[ 146 ]

Property Default 
Value

Usage

rangeSelect false Enable the selection of date ranges
rangeSeparator "-" Set the separator between dates when  

using ranges
shortYearCutoff "+10" This is used to determine the current 

century when using the y year 
representation and numbers less are 
deemed to be in the current century

showOn "focus" Set the event on which to show the  
date picker

showOtherMonths false Show the last and first days of the previous 
and next months

showStatus false Show a status bar within the date picker
showWeeks false Show the week number column
showAnim show Set the animation that is performed when 

the date picker is opened or closed
showOptions {} Set additional animation configuration 

options
stepMonths 1 Set how many months are navigated with 

the prev and next links
yearRange "-10+10" Specify the range of years in the  

year drop-down

A number of examples will be needed to look at just some of the available properties. 
Once we've got the hang of using a few of them, the rest will become just as easy to 
make use of. In a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 3</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



Chapter 6

[ 147 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define config object
        var pickerOpts = {
          appendText: " MM/DD/YYYY",
          changeFirstDay: false,
          changeMonth: false,
          changeYear: false,
          closeAtTop: false,
          showOtherMonths: true,
          showStatus: true,
          showWeeks: true,
          duration: "fast"
        };
    

        //create the date picker
        $("#date").datepicker(pickerOpts);
    

      });
    </script>
  </body>
</html>

Save this as datePicker3.html. We've reverted back to the flora theme so we can 
clearly see how the changes we've made affect the widget. The following image 
shows how the widget will look after configuring these properties:



Date Picker

[ 148 ]

We've used a number of properties in this example. The appearance of the initial 
page has been changed using the appendText property, which has added the 
specified text string directly after the <input> field the picker is associated with.  
This helps visitors to clarify the format of the date that is expected.

For styling purposes, we can target this new string using the ui-datepicker-append 
selector in a stylesheet if necessary, as this is the class name given automatically to the 
specified text.

When one of the day headings is clicked, the date picker columns will no longer 
rearrange themselves, thanks to setting the changeFirstDay property to false. The 
month and year drop-downs have been removed by setting the changeMonth and 
changeYear properties to false.

Setting the closeAtTop property to false has of course moved the Close button 
to the bottom of the date picker, but it's also taken the Clear button with it. The 
functionality of these remain the same, all that has changed is their position. 

By setting the showOtherMonths property to true, we've added greyed-out  
(non-selectable) dates from the next month to the empty squares that sit at the 
bottom of the date picker after the current month ends.

The addition of the status bar, configured using showStatus, above the bottom row, 
is a great way of providing usage information to visitors in a non-intrusive manner. 
But remember that this can bring much more additional configuration when working 
with non-standard locales.

We've also added a new column to the body of the date picker using the showWeeks 
property. Now the first row of the date picker shows the corresponding week 
number in each week's row.

The speed at which the widget opens and closes is visibly quicker thanks to the use 
of the duration property. This property requires a simple string and can take values 
of either slow, normal, or fast, with the default being normal.

Changing the date format
The dateFormat property is one of the localization properties at our disposal for 
advanced date picker locale configuration. Setting this property allows you to 
quickly and easily set the format of dates using a variety of short-hand references. 
The format of dates can be any combination of any of the following references  
(they are case-sensitive):

d – day of month (single digit where applicable)
dd – day of month (two digits)

•

•



Chapter 6

[ 149 ]

m – month of year (single digit where applicable)
mm – month of year (two digits)
y – year (two digits)
yy – year (four digits)
D – short day name
DD – full day name
M – short month name
MM – long month name
'' – any literal text string

We can use these to quickly configure our preferred date format, as in the  
following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 4</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    <script type="text/javascript" src="jquery.ui-1.5b4/ 
jquery-1.2.4b.js"></script>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define config object
        var pickerOpts = {
          dateFormat: "d MM yy"
        };
    

        //create the date picker

•

•

•

•

•

•

•

•

•



Date Picker

[ 150 ]

        $("#date").datepicker(pickerOpts);
    

      });
    </script>
  </body>
</html>

Save this as datepicker4.html. We use the dateFormat property to specify a string 
containing the short-hand date codes for the selected date. The format we set shows 
the day of the month (using a single digit if possible) with d, the full name of the 
month with MM, and the full four-digit year with yy.

When dates are selected and added to the associated <input>, they will be in the 
format specified in the configuration object, as in the following screenshot:

When using the literal text option to configure dates, any letters used as  
short-hand for the different formats will need to be 'escaped' using single quotes. For 
example, to add the string Selected: to the start of the date, you would need to use 
the string Selecte'd': to avoid having the lowercase d picked up as the short day 
of month format.

Localization
In addition to the properties already listed, there is also a range of regionalization 
properties used to provide locale support in order to easily display date pickers with 
all of the text shown in an alternative, non-standard language.

Those properties that are used specifically for the localization of textual elements of 
the widget are listed below:

Property Usage
clearText Text to display on the Clear button
clearStatus Text to display in the status bar for the Clear link on hover
closeText Text to display on the Close link
closeStatus Text to display in the status bar for the Close link on hover



Chapter 6

[ 151 ]

Property Usage
currentText Text to display on the Current link
currentStatus Text to display in the status bar for the Current link on hover
dateFormat The format selected dates should appear in <input>
dateStatus Text to display in the status bar for date links on hover
dayNames An array of day names
dayNamesShort An array of abbreviated day names
dayNamesMin An array of 2-letter day names
dayStatus Text to display in the status bar for the day of the week link  

on hover
firstDay Specify the first column of days in the date picker
initStatus Text to display in the status bar when date picker opens
monthNames An array of month names
monthNamesShort An array of abbreviated month names
monthStatus Text to display in the status bar for the month drop down  

on hover
nextStatus Text to display in the status bar for the Next link on hover
nextText Text to display on the Next link

prevStatus Text to display in the status bar for the Prev link on hover
prevText Text to display on the Prev link
weekHeader Text to display in the column header for the week of the year
weekStatus Text to display in the status bar for the week of the year column 

header on hover
yearStatus Text to display in the status bar for the year drop-down  

on hover

Localization is very easy to configure using a standard configuration object 
containing the required properties from the table above and the values that you 
would like to use. In this way, any alternative language can be implemented. For 
example, to implement a French date picker, we could use the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">



Date Picker

[ 152 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 5</title>
  </head>
  <body>
    <div class="row"><label>Enter a date: </label><input id="date"> 
</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //define config object for localisation
      var frenchOpts = {
        clearText: "vide",
        closeText: "Fin",
        currentText: "Courant",
        dayNamesMin: [ "Lu", "Ma", "Me", "Je", "Ve", "Sa", "Di" ],
        firstDay:1,
        monthNames: [ "Janvier", "Février", "Marche", "Avril", 
"Pouvez", "Juin", "Juillet", "Août", "Septembre", "Octobre", 
"Novembre", "Décembre" ],
        nextText: "Après",
        prevText: "Préc",      
     };
    

      //create the date picker
      $("#date").datepicker(frenchOpts); 
     });
   </script>
  </body>
</html>

Save this file as datePicker5.html. Most of the properties are used to provide 
simple string substitutions. However, the dayNamesMin and monthNames properties 
require arrays. Notice that the dayNamesMin, and other day-name related arrays, 
should begin with Sunday (or the localized equivalent). Now when you run the page 
in your browser, all of the default text on the date picker should be in French, as in 
the following screenshot:



Chapter 6

[ 153 ]

The translations used in this example were provided by the Yahoo! Babel 
Fish service at http://uk.babelfish.yahoo.com/.

Only eight properties are required to internationalize the default date picker. 
However, when using additional non-default UI elements, like the status bar, an 
additional fourteen properties are required, making the required object literal look 
like this:

//define config object for localisation
var frenchOpts = {
  clearText: "Vide",
  clearStatus: "Effacez la date du jour",
  closeText: "Fin",
  closeStatus: "Fermez-vous sans changement",
  currentText: "Courant",
  currentStatus: "Montrez le mois courant",
  dateStatus: "Choisi DD, d M",
  dayStatus: "Commencez semaine avec DD",
  dayNames: [ "Dimanche", "Lundi", "Mardi", "Mercredi", "Jeudi", 
"Vendredi", "Samedi" ],
  dayNamesMin: [ "Di", "Lu", "Ma", "Me", "Je", "Ve", "Sa" ],
  firstDay: 1,
  initStatus: "Choisissez une date",
  monthNames: [ "Janvier", "Février", "Marche", "Avril", "Pouvez", 
"Juin", "Juillet", "Août", "Septembre", "Octobre", "Novembre", 
"Décembre" ],



Date Picker

[ 154 ]

  monthNamesShort: [ "Jan", "Fév", "Mar", "Avr", "Pou", "Jui", "Jui", 
"Aoû", "Sep", "Oct", "Nov", "Déc" ],
  monthStatus: "Montrez un mois différent",
  nextText: "Après",
  nextStatus: "Montrez le mois prochain",
  prevText: "Préc",
  prevStatus: "Montrez le mois précédent",
  weekStatus: "",
  showStatus: true,
  yearStatus: "Montrez une année différente"
};

This code change can be saved as datePicker6.html. Apart from the visible 
elements in the initial date picker, the addition of the status bar and the additional 
object properties (mostly those ending in Status) gives us the internationalized 
status bar messages when hovering over different date picker elements.

We've also used the short-hand dateFormat properties in this example. For the value 
of the dateStatus property in the above code, we supplied some normal text data 
within the string, as well as the short-hand properties DD, d M.

The following screenshot shows one of our internationalized messages:

To make implementing internationalization easier, the creators of the date picker 
widget also provide a wide range of preconfigured locale packages, which are all 
included with the current release of the library. These language packs can be found 
in the i18n folder, within the ui folder in the library's directory hierarchy.



Chapter 6

[ 155 ]

Let's see how easy it is to implement the date picker using an alternative language 
pack. In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 7</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/i18n/
ui.datepicker-fr.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){

        //create the date picker
        $("#date").datepicker();
      });
    </script>
  </body>
</html>

Save this as datePicker7.html. We have still implemented a French date picker 
in this example, although we did so with considerably less code and much more 
accurate translations! All we do is include the <script> element linking to the 
language pack that we want to use, and then create the date picker using the 
standard constructor method.



Date Picker

[ 156 ]

That's it. The widget will automatically use the specified language with no additional 
configuration. Now, our French date picker will appear as follows:

Callback properties
The final set of configurable properties relates to the event model exposed by the 
widget. It consists of a series of callback functions we can use to specify code to be 
executed at different points during an interaction with the date picker. These are 
listed below:

Property Usage
beforeShow Accepts a configuration object that can be used to customize the 

date picker
beforeShowDay Used to preselect specific days
calculateWeek Change the calculation that is used to calculate the week of  

the year
onSelect Set a callback function for the select event
onChangeMonthYear Set a callback function to be executed when the current month 

or year changes
onClose Set a callback function for the close event
statusForDate The function to call to determine the status bar text for the date



Chapter 6

[ 157 ]

To highlight how useful these callback properties are, we can extend the previous 
internationalization examples to allow visitors to choose any available language of 
the date picker. In a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jquery.ui-1.5b4/
themes/flora/flora.datepicker.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
intlPicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 8</title>
  </head>
  <body>
    <a id="uk" href="#" title="English"></a><a id="france" href="#" 
title="Français"></a>
    <div class="row"><label>Enter a date: </label><input id="date"> 
</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/i18n/
ui.datepicker-fr.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //flag variable
       var locale = "en";
    

      $("a").click(function() {
        (this.id != "france") ? locale = "en" : locale = "fr";
      });
   

       function setLocale() {
         return (locale == "fr") ? $.datepicker.regional['fr'] : 
$.datepicker.regional[''];
       }
    

       //create the date picker
       $("#date").datepicker({ beforeShow:setLocale }); 
     });
   </script>
  </body>
</html>



Date Picker

[ 158 ]

This can be saved as datePicker8.html. We have wrapped the <label> and 
<input> elements from the previous examples for styling purposes. We also added 
two new link elements which will be used as buttons to select the language of the 
date picker. We've also linked to the French language pack as we did before.

The first thing we do in the code in this example is set the locale variable that will 
be used to tell the date picker which language it should display. We set it to en as the 
default value.

Next, we set a click handler which will react to either of the buttons being clicked. 
The anonymous function looks at the id attribute of the anchor that was clicked and 
updates the value of the locale variable accordingly.

Following the click handler, we set a callback function called setLocale, which is 
used to return new settings for the date picker. When the date picker is initialized, 
the $.datepicker manager object is created with various properties to control how 
the date picker functions. We can use this manager object to update the locale of the 
date picker, which is exactly what we do in this example.

We've configured the beforeShow property of the date picker within the constructor 
function and specified our callback function as its value. The beforeShow event is 
fired just before the date picker is shown. When this happens, our callback function 
checks the value of the locale variable and shows the appropriate language by 
setting the regional property of the manager object. Note that only languages that 
have their language pack included in the page will work.

We also use a custom stylesheet for this example. It's relatively simple, consisting of 
the following selectors and rules:

#uk {
  background:url(../img/Uk.png) no-repeat;
  width:32px; height:32px; display:block; float:left;
  margin-right:5px;
}
#france {
  background:url(../img/France.png) no-repeat;
  width:32px; height:32px; display:block; float:left;
}
.row { clear:both; }



Chapter 6

[ 159 ]

Save this in the styles folder as intlPicker.css. When you run this page in your 
browser, you should be able to set the locale, to either French or English, by clicking 
the corresponding flag. Here's how the page should look:

Trigger buttons
By default, the date picker is opened when the <input> element it is associated with 
receives focus. However, we can change this very easily so the date picker opens 
when a <button> is clicked instead. The most basic type of <button> can be enabled 
with just the showOn property, which we can use with the next example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 9</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>



Date Picker

[ 160 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
     

       //create config object
      var pickerOpts = {
        showOn: "button"
      };
     

      //create the date picker
      $("#date").datepicker(pickerOpts); 
     });
   </script>
  </body>
</html>

Save this as datePicker9.html. Setting the showOn property to true in our 
configuration object will automatically add a simple <button> element directly 
after the associated <input> element. The date picker will now only open when the 
<button> is clicked, rather than when the <input> is focused. The new <button> is 
shown in the following screenshot:

The text shown on the <button> (… in this example) can easily be changed by 
providing a new string as the value of the buttonText property. We can just 
as easily add an image to the <button> as well. Using either the buttonImage 
or buttonImageOnly properties, an image will be used instead of a traditional 
<button>. Change the configuration object so that it appears as follows:

var pickerOpts = {
  showOn: "button",
  buttonImage: 'img/date-picker/cal.png',date-picker/cal.png',cal.png',
  buttonImageOnly: true
};



Chapter 6

[ 161 ]

Save this as datePicker10.html. This should give you a nice image-only button. 
The buttonImage property allows us to specify the relative path of the image to use, 
and the buttonImageOnly property ensures that only the image is shown, not the 
image on top of the <button>. This is illustrated in the following screenshot:

You should note that when an image is used instead of a <button>, the value of the 
buttonText property is used as the title and alt attributes of the image.

The calendar icon used in this example was taken, with thanks,  
from the Silk Icon Pack by Mark James and is available at  
http://www.famfamfam.com.

Multiple months
The date picker need not only display a single month. Instead, it can be configured 
to show multiple months. It takes just two properties to implement multiple months, 
although I prefer to use four properties. Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8"> 
    <title>jQuery UI Date Picker Example 11</title>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>



Date Picker

[ 162 ]

    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //create config object
      var pickerOpts = {
        numberOfMonths: 2,
        stepMonths: 2,
        changeMonth: false,
        changeYear: false
      };
    

      //create the date picker
      $("#date").datepicker(pickerOpts); 
     });
   </script>
  </body>
</html>

Save this as datePicker11.html. The numberOfMonths property takes an  
integer representing, of all things, the number of months you would like displayed 
at once. The stepMonths property controls how many months are changed 
when the Prev or Next links are used. This should be set to the same value as the 
numberOfMonths property.

By default, the changeMonth and changeYear drop-downs will be shown above 
the first month. Personally, I think the date picker looks better without these when 
using multiple months. So, we've removed them by setting the changeMonth and 
changeYear properties to false.

The date picker in this configuration will appear like this:



Chapter 6

[ 163 ]

Enabling range selection
In some situations, you may want your visitors to be able to select a range of 
dates instead of a single date. Like everything else, the date picker widget makes 
configuring selectable ranges easy as we only need to work with two configuration 
properties. In a new file, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 12</title>
    <style type="text/css">
      input { width:180px; }
    </style>
  </head>
  <body>
    <label>Enter a date: </label><input id="date">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
     //define function to be executed on document ready
     $(function(){
    

       //create config object
       var pickerOpts = {
         rangeSelect: true,
         rangeSeparator: " to "
      };
    

        //create the date picker
        $("#date").datepicker(pickerOpts); 
      });
    </script>
  </body>
</html>



Date Picker

[ 164 ]

Save this as datePicker12.html. Enabling selectable ranges of dates, instead of 
single days, simply requires setting the rangeSelect property to true. Optionally, 
we can also change the text that is used as the separator between the two dates once 
they have been added to the <input> field. The default is a – character, but we have 
substituted this for the string to (with a space on either side).

We've also had to increase the width of the <input> element slightly so that it is 
wide enough to show all of the selected range. This has been done using a simple 
style rule added to the <head> of the page, which is purely for the purposes of this 
example. All style rules should normally go into their own stylesheet.

Once a date has been selected, the <input> element should appear as in the 
following screenshot:

The behavior of the widget changes slightly when range selection is enabled. Now, 
after a date is selected, the widget doesn't close instantly, it stays open and all dates 
prior to the selected date become unselectable.

The date picker closes once a second date has been selected and both the starting  
and ending dates are added to the <input> field along with the separator. If the  
date picker is opened a second time, the range that was selected is highlighted.

Configuring alternative animations
The date picker API exposes two properties related to animations. These are the  
showAnim and showOptions properties. By default, the date picker uses the show 
effect to display the widget. This shows the date picker smoothly increasing in size 
and opacity.

However, we can change this, so that it uses any of the other effects included with 
the library (see chapter 12), which we'll do in the next example. In a new page in 
your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">



Chapter 6

[ 165 ]

  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 13</title>
  </head>
  <body>
    <div class="row"><label>Enter a date: </label><input id="date"> 
</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.drop.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){

        //define config object
        var pickerOpts = {
          showAnim: "drop",
          showOptions: { direction: "up" }
        };

        //create the date picker
        $("#date").datepicker(pickerOpts);
      });
    </script>
  </body>
</html>

Save this as datepicker13.html. To use alternative effects, we need to use two new 
<script> resources. These are the effects.core.js and the source file of the effect 
we wish to use in this example, effects.drop.js. We'll look at both of these effects 
in more detail in the last chapter, but they are essential for this example to work.

Our simple configuration object configures the animation to drop using the showAnim 
property, and sets the direction property of the effect using showOptions. When 
you run this example now, the date picker should slide down into position instead of 
opening. Other effects can be implemented in the same way.



Date Picker

[ 166 ]

Date picking methods
Apart from the enormous number of properties at our disposal, there are also a 
number of useful methods defined that make programmatically working with the 
date picker a breeze. The date picker class defines the following methods:

Method Usage
change Use a configuration object to change a pre-existing (attached) date picker
destroy Disconnect and remove an attached date picker
dialog Open the date picker in a dialog widget
disable Disable an <input> field (and therefore the attached date picker)
enable Enable a disabled <input> field (and date picker)
getDate Get the currently selected date
hide Programmatically close a date picker
isDisabled Determine whether a date picker is disabled
setDate Programmatically select a date
show Programmatically show a date picker

The change method produces a similar result to the beforeShow property that we 
looked at earlier. However, the method is called in a different way of course. We can 
rework the internationalized date picker example we looked at to make use of the 
change method instead of the beforeShow property. In a new file in your text editing 
tool, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
intlPicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 14</title>
  </head>
  <body>
    <a id="uk" href="#" title="English"></a><a id="france" href="#" 
title="Français"></a>
    <div class="row"><label>Enter a date: </label><input id="date"> 
</div>
    



Chapter 6

[ 167 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/i18n/
ui.datepicker-fr.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
   

        //create default english date picker
        $("#date").datepicker($.datepicker.regional['']);
    

        //define click handler for uk flag
        $("#uk").click(function() {
    

          //change date picker using default language as config object
          $("#date").datepicker("change", $.datepicker.regional['']);
    

        });
    

       //define click handler for french flag
        $("#france").click(function() {
    

          //change date picker using french config object
         $("#date").datepicker("change", $.datepicker.regional['fr']);
        });
     });
    </script>
  </body>
</html>

Save this as datePicker14.html. This file differs from example 8 in that each of 
the flag buttons have their own click handler. Within each click handler we use the 
change method to set the regional property of the manager object.

To make the date picker English by default, we set the regional property of the 
manager object within the constructor method. We could also make it French by 
default by simply not setting the regional property and letting the widget pick  
up the language pack automatically.

As you can see, using the change method is extremely easy. Whenever one of the 
flag icons is clicked, the change method is called and the appropriate method is 
passed into the constructor method as an argument.

It works exactly as intended, although once the date picker has been opened the first 
time, clicking an icon will instantly open the date picker. Perhaps we could do with a 
suppressDisplay property to prevent this happening!



Date Picker

[ 168 ]

Putting the date picker in a dialog
The dialog method produces the same highly usable and effective date picker 
widget, but displays it in a floating dialog box. The method is easy to use, but makes 
some aspects of using the widget non-autonomous, as we shall see. In a new file in 
your editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <link rel="stylesheet" type="text/css" href="styles/
dialogDatePicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 15</title>
  </head>
  <body>
    <div id="row"><label>Enter a date: </label><input id="date"> 
<a id="invoke" title="Click to open Date Picker Dialog" href="#"> 
</a></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define click handler for date picker link
        $("#invoke").click(function() {  
    

          //create the date picker in a dialog
          $("#date").datepicker("dialog", "", updateDate);    
    

          //write chosen date to input
          function updateDate(date) {
    

            $("#date").val(date);
          }
        });
      });
    </script>
  </body>
</html>



Chapter 6

[ 169 ]

Save this as datePicker15.html. We still use the datePicker constructor method, 
but this time it is wrapped in a click-handler for the link we are using as the trigger 
button. The dialog method takes two arguments. The first argument can accept a 
string which is used to set the initial date of the date picker. In this example, we've 
supplied an empty string so the date picker defaults to the current date. The second 
argument is a callback function to execute when a date is selected.

This function automatically receives the selected date as an argument so it is easy 
to update the value of the input field using the callback. Updating the text field is 
something that we need to do manually following the use of the dialog method.

The reason we need to wrap the constructor method in the click handler, and use a 
button to open the date picker, is that if we don't do this, the dialog will automatically 
be displayed when the page loads and not when the <input> is focused.

A basic stylesheet is used to position the button, which is as follows:

#row { width:249px; }
#invoke {
  background:url(../img/date-picker/cal.png) no-repeat;
  width:16px; height:16px;
  display:block; float:right;
  margin-top:-18px;
}

This can be saved as dialogDatePicker.css in the styles folder.

Now when the date picker is opened, it will appear at the center of the page, floating 
above any existing content. The date picker has some additional styling, but essentially 
functions in the same way as before. The following screenshot shows how it appears:



Date Picker

[ 170 ]

The destroy method is used in the same way here as it is with the other widgets we  
have looked at, and the enable, disable, isDisabled, show, and hide methods  
are all intuitive and easy to use. Let's just quickly take a look at a generalized 
example that covers all of them. Create a new file in your text editor and add to it  
the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <link rel="stylesheet" type="text/css" href="styles/
dialogDatePicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Date Picker Example 16</title>
  </head>
  <body>
    <h2>Would you like to select a date using the date picker?</h2>
    <label for="yes">Yes</label><input type="radio" name="pickerGroup" 
id="yes"><label for="notNow">Not now</label><input type="radio" 
name="pickerGroup" id="notNow"><label for="notEver">Not ever 
</label><input type="radio" name="pickerGroup" id="notEver"><br>
    <label>Enter a date: </label><input id="date">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //define config object
        var pickerOpts = {
          onSelect: handleSelect,
          beforeShow: handleShow
        };
    

        //create basic date picker
        $("#date").datepicker(pickerOpts);
    

        //add click handler for yes radio
        $("#yes").click(function(){
    



Chapter 6

[ 171 ]

          //enable date picker and input if they are currently 
disabled
          ($("#date").datepicker("isDisabled") == true) ? $("#date") 
.datepicker("enable") : null;
        });
    

        //add click handler for not now radio
        $("#notNow").click(function(){
    

         //disable date picker and input if they are not currently 
disabled
         ($("#date").datepicker("isDisabled") == false) ? $("#date") 
.datepicker("disable") : null;
       });
    

      //add click handler for not ever radio
       $("#notEver").click(function() {
    

         //destroy date picker
         $("#date").datepicker("destroy");
    

         (!$("#date").attr("disabled")) ? null : $("#date") 
.removeAttr("disabled") ;
    

         //add prompt text after input
         $("<p>").text("You will need to enter a date manually") 
.insertAfter("#date");
       });
    

       //define handleSelect function
       function handleSelect(date) {
    

         //add prompt text after input
         $("<p>").text("You chose " + date + " is this correct?") 
.attr("id", "prompt").insertAfter("#date");
    

         //add buttons
         $("<button>").text("Yes").attr("id", "btnYes") 
.insertAfter("#prompt");
         $("<button>").text("No").attr("id", "btnNo") 
.insertAfter("#btnYes");
    

         //add click handler for yes button
         $("#btnYes").click(function() {
    

           //change prompt text
            $("#prompt").text("Thanks for choosing a date!");
            $("button").remove();
          });
    

          //add click handler for no button
          $("#btnNo").click(function() {
    

            //reopen date picker



Date Picker

[ 172 ]

            $("#date").datepicker("show", "fast");
           $("#prompt").remove();
            $("button").remove();
          });
        }
    

        //define handleShow function
        function handleShow() {
    

          //add a close rollover
          $("<a>").text("rollover to close date picker").attr({
            id: "rollClose", 
            href: "#" 
          }).css({ 
            marginTop: "200px",
            display: "block"
          }).insertAfter("#date");
    

          //add rollover handler
          $("#rollClose").mouseover(function() {
    

            //close date picker
            $("#date").datepicker("hide", "fast");
    

            //remove rollover link
            $("#rollClose").remove();
             }); 
        }
      });
    </script>
  </body>
</html>

Save this as datePicker16.html. It's a huge page, for which I apologize, but it 
exposes a great deal of the method functionality that the widget has within it. The 
page is simple enough. We have a heading, some radio buttons, and the required 
<input> element. The final <script> block however is another story. Let's break 
down what each part does.

We first define the pickerOpts literal object and add function names as the values of 
the onSelect and beforeShow properties. As you know, these properties are called 
at different points during a date picker interaction. They are called when a date is 
selected and directly before the date picker is shown. We also associate the date 
picker with the <input> element in the usual way:

//define config object
var pickerOpts = {
  onSelect: handleSelect,



Chapter 6

[ 173 ]

  beforeShow: handleShow
};

//create basic date picker
$("#date").datepicker(pickerOpts);

Next, we add the functionality for our radio buttons which allows us to make use 
of the isDisabled, enable, and disable methods. When the yes radio button 
is selected, we check whether the input or date picker are disabled and if so, call 
the enable method. If the no radio is selected, we do the opposite, after checking 
whether the input or date picker is enabled:

//add click handler for yes radio
$("#yes").click(function(){

  //enable date picker and input if they are currently disabled
  ($("#date").datepicker("isDisabled") == true) ? $("#date").
datepicker("enable") : null;
});

//add click handler for not now radio
$("#notNow").click(function(){

  //disable date picker and input if they are not currently disabled
  ($("#date").datepicker("isDisabled") == false) ? $("#date").
datepicker("disable") : null;
});

If the final radio button is selected, we use the destroy method to completely 
remove the date picker. We check whether the <input> element is disabled and if it 
is, we remove the disabled attribute so that a date can be entered manually. We also 
add some text to say that a date will now need to be entered manually. 

//add click handler for not ever radio
$("#notEver").click(function() {

  //destroy date picker
  $("#date").datepicker("destroy");

  (!$("#date").attr("disabled")) ? null : $("#date").
removeAttr("disabled") ;

  //add prompt text after input
  $("<p>").text("You will need to enter a date manually").
insertAfter("#date");
});



Date Picker

[ 174 ]

Next, we need to add the callback functions which were supplied as values for the 
two properties in our configuration object. The handleSelect function, which will 
be executed every time a date is selected, adds some text to the page verifying that 
the selected date is correct. If the no button is clicked, we use the show method to 
reopen the date picker. We can also control the speed at which the date picker is 
displayed by supplying a second argument (the string fast in this case):

//define handleSelect function
function handleSelect(date) {
  

  //add prompt text after input
  $("<p>").text("You chose " + date + " is this correct?").attr("id", 
"prompt").insertAfter("#date");
  

  //add buttons
  $("<button>").text("Yes").attr("id", "btnYes").
insertAfter("#prompt");
  $("<button>").text("No").attr("id", "btnNo").insertAfter("#btnYes");
  

  //add click handler for yes button
  $("#btnYes").click(function() {
  

    //change prompt text
    $("#prompt").text("Thanks for choosing a date!");
    $("button").remove();
  });
  

  //add click handler for no button
  $("#btnNo").click(function() {
  

    //reopen date picker
    $("#date").datepicker("show", "fast");
    $("#prompt").remove();
    $("button").remove();
  });
}

Finally, we add the callback function for the beforeShow property. With this 
function we add a link to the page which, calls the hide method to close the  
date picker without selecting a date when rolled over:

//define handleShow function
function handleShow() {

  //add a close rollover
  $("<a>").text("rollover to close date picker").attr({
    id: "rollClose", 
    href: "#" 
  }).css({ 
    marginTop: "200px",



Chapter 6

[ 175 ]

    display: "block"
  }).insertAfter("#date");

  //add rollover handler
  $("#rollClose").mouseover(function() {

    //close date picker
    $("#date").datepicker("hide", "fast");

    //remove rollover link
    $("#rollClose").remove();
  });
}

Using a rollover in this example is necessary as clicking outside of the date picker 
while it is open closes it automatically. Here's a screenshot of how the page should 
look after a date has been selected:

Fun with date picker
We've nearly looked at all of the inherent functionality of the date picker. I'm not 
saying we've covered everything that can be done with it of course, but we've looked 
at enough now to have a very good understanding of the properties and methods 
that it exposes. However, I've saved a couple of properties and methods for us to 
have some fun with in our last date picker example.



Date Picker

[ 176 ]

For this example, we'll work a little AJAX magic into the mix and create a date  
picker, which prior to opening, will communicate with the server to see if there are 
any dates that cannot be selected. It could be a date picker that a freelance consultant 
uses to accept bookings from clients. In a new page in your text editor, add the 
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.datepicker.css">
    <link rel="stylesheet" type="text/css" href="styles/
ajaxDatepicker.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI AJAX Date Picker</title>
  </head>
  <body>
    <div class="container">
      <p>Use the date picker to request a consultation period</p>
      <label>Book period:</label><input id="date">
      <div class="key"></div><label class="keyLabel"> = Already 
Booked</label>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.datepicker.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){
    

        //arrays to hold ajax dates
        var months = [];
        var days = [];
    

        //get pre-booked dates from server
        function getDates() {  
    

   $.getJSON("http://www.danwellman.co.uk/ 
bookedDates.php?jsoncallback=?",
    

          function(data) {
    

            //process results



Chapter 6

[ 177 ]

            for (x = 0; x < data.dates.length; x++) {
              //put results into arrays
              months.push(data.dates[x].month);
              days.push(data.dates[x].day);
            }  
          });
        };
        getDates();
    

        //define config object
        var pickerOpts = {
         beforeShowDay: addDates,
         minDate: +1
        };
    

        //create date picker
       $("#date").datepicker(pickerOpts);
    

        //add pre-booked dates to datepicker
        function addDates(date){ 
    

          //filter out weekends
          if (date.getDay() == 0 || date.getDay() == 6) {
            return [false, "weekend_class"];    
          }
    

          //check each day in arrays
          for (x = 0; x < days.length; x++) {
            //if date is same as current day...
            if (date.getMonth() == months[x] - 1 && date.getDate() == 
days[x]) {
              //make day unselectable
              return [false, "preBooked_class"];
            }
          }
    

          //other dates are selectable
          return [true, '']; 
        }    });
    </script>
  </body>
</html>

Save this as AJAXdatepicker.html. The first part of our script initially declares 
two empty arrays, and then creates a new function called getDates. This function 
performs an AJAX request and obtains the JSON object from the PHP file.



Date Picker

[ 178 ]

The format of the JSON is an object called dates which contains an array of objects. 
Each object contains a month and a day property representing one date that should 
be made unselectable. The function pushes the value of each property into either the 
months or days array for a later function's use. We immediately call this function so 
the results can already be processed for the date picker to use.

//arrays to hold ajax dates
var months = [];
var days = [];

//get pre-booked dates from server
function getDates() {

      $.getJSON("http://www.danwellman.co.uk/ 
bookedDates.php?jsoncallback=?",

  function(data) {

    //process results
    for (x = 0; x < data.dates.length; x++) {

      //put results into arrays
      months.push(data.dates[x].month);
      days.push(data.dates[x].day);
    }  
  });
};
getDates();

Next, we define a configuration object for the date picker. The properties of the 
object are simply the callback function to make the dates specified in the JSON object 
unselectable, and the minDate property will be set to the relative value +1 as we 
don't want people to book dates in the past, or on the current day:

//define config object
var pickerOpts = {
  beforeShowDay: addDates,
  minDate: +1,
};

Finally, we define the addDates callback function which is invoked on the 
beforeShowDay event. This event occurs once for each of the 35 individual day 
squares in the date picker. Even the empty squares.

Our function is passed the current date and must return an array containing two 
items. The first is a boolean indicating whether the day is selectable, and optionally  
a class name to give the date.



Chapter 6

[ 179 ]

Our function first checks to see whether the day portion of the current date is equal 
to either 0 (for Sunday) or 6 (for Saturday). If it is, we return false as the first item in 
the array, and specify the class name weekend_class as the second item.

There is a built-in function of the manager object, $.datepicker.
noWeekends, which automatically makes weekends unselectable. This  
is specified as the value of the beforeShowDay property when used,  
but we cannot use it in this example as we are providing our own  
callback function.

We then loop through each item in our months and days arrays to see if any of the 
dates passed to the callback function match the items in the arrays. If both the month 
and day items match a date, the array returns with false and a custom class name as 
its items. If the date does not match, we return an array containing true to indicate 
that the day is selectable. This allows us to specify any number of dates that cannot 
be selected in the date picker:

//add pre-booked dates to datepicker
function addDates(date){ 
  

  //filter out weekends
  if (date.getDay() == 0 || date.getDay() == 6) {
    return [false, "weekend_class"];    
  }
  

  //check each day in arrays
  for (x = 0; x < days.length; x++) {
    //if date is same as current day...
    if (date.getMonth() == months[x] - 1 && date.getDate() == days[x]) 
{
      //make day unselectable
      return [false, "preBooked_class"];
    }
  }
  

  //other dates are selectable
  return [true, '']; 
}

In addition to the HTML page, we'll also need a little styling. In a new page in your 
editor, create the following stylesheet:

.container {
  border:1px solid #3399cc; width:380px;
  height:250px; padding:0 0 0 10px;
}
p {



Date Picker

[ 180 ]

  font-family:Verdana; font-size:90%;
  margin-top:10px;
}
label {
  margin-right:98px; float:left;
  font-family:Verdana; font-size:80%;
}
.keyLabel {
  font-size:70%;
}
.key {
  width:16px; height:16px;
  background-color:#FF0000;
  float:left; margin-right:3px;
}
.divider {
  background:url(../date-picker/img/divider.gif) repeat-x;
  width:160px; height:2px; clear:both;
  position:relative; top:10px;
}
#date {
  width:183px; text-align:center;
} 
.datepicker .weekend_class {
  background:url(../img/date-picker/weekendRepeat.gif) repeat-x;
}
.datepicker .preBooked_class {
  color:#fff; background-color:#FF3300;
}
#confirmation {
  font-size:70%; width:150px;
  line-height:2em; position:relative;
  top:10px;
}
#request {
  margin:10px 0 0 10px;
}
#thanks {
  font-size:70%; margin-top:15px;
}



Chapter 6

[ 181 ]

Save this as AJAXdatepicker.css in your styles folder. I used PHP to provide the 
JSON object in response to the AJAX request made by our page. If you don't want to 
install and configure PHP on your web server, you can use the file that I have placed 
at the URL specified in the example. For anyone that is interested, the PHP used is  
as follows:

<?php

  header('Content-type: application/json');

  //define booked dates as JSON
  $dates = "({
    'dates':[
      {'month':12,'day':2},
      {'month':12,'day':3},
      etc...
  ]})";

  $response = $_GET["jsoncallback"] . $dates; 

  echo $response;

?>

The pre-booked dates are just hard-coded into the PHP file. Again, in a proper 
implementation, you'd probably need a more robust way of storing these dates,  
such as a database. 

When you run the page in your browser and open the date picker, the dates specified 
by the PHP file should be styled according to our class name and should also be 
completely non-responsive, as in the following screenshot:



Date Picker

[ 182 ]

Summary
We looked at the date picker widget in this chapter, which is supported by one of the 
biggest APIs in the jQuery UI library. This gives us a huge number of properties to 
work with and methods to receive data from.

We looked at the default implementation and how much behavior is added to the 
widget automatically. We then moved on to look at the different ways in which a 
new theme for the widget can be created.

We also looked at how easy the widget makes implementing internationalization. 
We saw that there are thirty four additional languages the widget has been translated 
into, each of these are packed into a module that is easy to use in conjunction with 
the date picker for adding support for alternative languages. We also saw how we 
create our own custom language configuration.

We covered some of the events that are fired during a date picker interaction, and 
looked at the range of methods available for working with and controlling the date 
picker from our code. It's been a long chapter because of the amount of functionality 
that is wrapped up in this fantastic component.



Auto-Complete
The auto-complete text field is a popular Web 2.0 function that is being seen on more 
and more sites thanks to its inclusion in some of the best JavaScript libraries around. 
A recent addition to jQuery UI, it exposes an API that is richly populated with useful 
methods and properties to make this widget work in the best possible way.

For anyone that hasn't experienced an auto-complete, its basic functionality is simple. 
It is attached to a standard text <input> field and when a visitor begins typing in 
the text field, a menu drops down showing suggestions starting with the letters that 
have been typed in the field. The following image illustrates this:

Throughout this chapter, we'll be investigating the following aspects of the widget:

Basic implementation
Auto-complete styling
Configuring auto-complete properties
Local and remote data
Reacting to change with auto-complete callbacks
Working with auto-complete's methods

The underlying structure of the auto-complete menu is based on a simple and 
semantic unordered list element, where each suggestion within the menu is added  
as a single <li> element.

•

•

•

•

•

•



Auto-Complete

[ 184 ]

Basic implementation
Let's put the widget into practice so we can see just how easy it is to use it on the 
page in a fully functional, default implementation. Let's start off with the following 
new HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
    charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 1</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
    jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
    ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
    ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"
        ];
     

        //create config object  
        var autocompOpts = {
          data: suggestions



Chapter 7

[ 185 ]

        }
     

        //turn specified element into an auto complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html>

Save the page as autocomplete1.html. The page consists of just a simple <label> 
and the text <input> that our auto-complete is to be associated with. The <script> 
is almost as simple too. We define a literal array of the values we want to appear in 
the suggestion menu, and a configuration object with a single key, the data property. 
This property is given the name of the local data source, and the object is then passed 
to the constructor method as an argument.

The autocomplete constructor method is called using a jQuery object representing 
the associated <input>. It really is that simple. When you run this page in your 
browser and begin typing in the text field, you should see the suggestion menu 
shown in the screenshot at the start of this chapter.

Because auto-complete is such a new component, at the time of writing it doesn't yet 
have its own flora theming. It does have some basic styles applied to it using the 
default.all.css stylesheet however, so we can use this instead of flora. Our  
auto-complete example will look the same as the first screenshot of this chapter.

As I mentioned, we used an array literal in this example for our suggestion entries. 
We could also supply an array generated by the return of another function, such as 
the result of JavaScript's native split() method. Several library files are required for 
the auto-complete widget to function:

ui.all.css

jquery-1.2.6.js

ui.core.js

ui.autocomplete.js

•

•

•

•



Auto-Complete

[ 186 ]

Configurable properties
The auto-complete widget includes a wide range of configurable properties that 
can expose different behaviours depending on your specific requirements. These 
properties are laid out in the following table:

Property Default Usage
autoFill false Adds the first suggestion to the text 

<input> automatically when the Enter or 
Tab key is pressed

cacheLength 10 Configures the number of entries stored 
in the local cache when using a remote 
data source and can be disabled by setting 
cacheLength to 1

data Links the widget to the local data source
delay 10 (400 for 

remote)
Specifies the number of milliseconds after 
the visitor begins typing in the text field 
before the suggestion menu is displayed

extraParams Specifies extra parameters that are 
appended to the request URL and passed 
to the server when a query to the remote 
data source is made

formatItem Defines a function which is used to  
format how each item in the suggestion 
menu appears

formatMatch Defines a function which provides 
additional data that is added to the text 
field but not returned from the data source

formatResult Plain text Defines a function which provides 
formatting for the result that is placed in 
the text field

highlight true Defines a function which provides custom 
formatting of the highlight

matchCase false Enables case sensitivity on the auto-
complete and should only be used 
with remote data in certain cache 
configurations

matchContains false Enables matching within each result string 
instead of just at the start of it

matchSubset true Enables the local cache for more specific 
queries of previously returned results



Chapter 7

[ 187 ]

Property Default Usage
max 100 Sets the maximum number of suggestions 

in the drop-down menu
minChars 1 Sets the number of characters that must 

be entered into the <input> before the 
suggestion menu appears

multiple false Enables the selection of multiple 
suggestions

multipleSeperator "," Defines the separator for selected 
suggestions that are placed in <input>, 
or <textarea>

mustMatch false Specifies that a suggestion from the menu 
must be selected

scroll true Automatically scrolls the suggestion menu 
when there are too many results to fit into 
the menu

scrollHeight 180 Sets the height of the suggestion menu 
when scroll is set to true

selectFirst true Automatically selects the first item in the 
suggestion list when the Tab or return key 
is hit

width width of the 
<input>

Sets the width of the suggestion menu

url Specifies the URL of the remote data store

Let's look at what effect some of these properties have on our auto-complete 
instance. In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/ 
    themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
    charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 2</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ui/jqueryui1.6rc2/ui// 
    jquery-1.2.6.js"></script>



Auto-Complete

[ 188 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ui.core.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"
    ];
     

       //create config object
       var autocompOpts = {
         data: suggestions,
         autoFill: true
       };
     

       //turn specified element into an auto-complete
       $("#suggest").autocomplete(autocompOpts);
     });
   </script>
  </body>
</html>

Save this as autocomplete2.html. We use a literal object to configure the autoFill 
property. This configuration object is then passed to the auto-complete constructor 
function as the first (and in this example, the only) argument.

The autoFill property automatically inserts the first suggestion into the associated 
text field. It selects the text that has been added so that it gets removed if the visitor 
continues typing or selects another value. The following screenshot shows this 
feature in action:



Chapter 7

[ 189 ]

Next, we can put some of the other properties to work. Change the configuration 
object used in autocomplete2.html so that it appears as follows:

//create config object
var autocompOpts = {
  data: suggestions,
  selectFirst: false,
  minChars: 0    
};

Save this variant as autocomplete3.html. By default, when the auto-complete 
suggestion menu opens, the first suggestion, or match, is selected in the menu. 
Pressing the Enter or Tab key on the keyboard will copy the suggestion to the  
text field.

Setting the selectFirst property to false disables this behavior. Therefore, when 
the suggestion menu initially opens, none of the matches are selected and pressing 
Enter or Tab does nothing. The next screenshot shows the suggestion menu as it 
appears when it initially opens with nothing selected:



Auto-Complete

[ 190 ]

Setting the minChars property to 0 also adds an additional feature. When you start 
typing in the text field, the suggestion menu appears with the matching data as 
expected. But if you remove what you've typed in the text field, the menu remains 
and displays all of the data (up to the number configured in the max property, which 
is 100 by default) from the data source. This is illustrated in the following screenshot:

Scrolling
In the last example, we saw that the height of the suggestion menu had a fixed 
maximum size. When there were just three or four results shown in the menu, it 
accommodated all of them quite easily, but when all of the data was returned, the 
menu did not endlessly increase in height to show them all at once.

This maximum size is controlled via the scrollHeight property, which is used in 
conjunction with the scroll property. The scrollHeight property takes an integer, 
which represents the maximum number of pixels that the menu should grow, before 
a vertical scroll bar is added.

The scroll property is a boolean which enables or disables scrolling, and therefore 
nullifies the scrollHeight property. With scroll set to false, the menu will grow 
indefinitely until it is showing the configured maximum number of results.



Chapter 7

[ 191 ]

If you're working with a large data set, and there are likely to be many results to 
display, increasing the height of the suggestion menu can allow you to display more 
results at once, without letting the menu get too large. To see this property at work, 
change the configuration object in autocomplete3.html to the following:

//create config object
var autocompOpts = {
  data: suggestions,
  minChars: 0,
  scrollHeight: 300
};

This revision can be saved as autocomplete4.html. We still specified 0 for the value 
of the minChars property because our dataset only has a maximum of about 4 results 
for any one character. We would need to generate a lot of results for the scroll 
feature to become noticeable. By setting the value of the scrollHeight property to 
300, we double the height of the default auto-complete menu, as shown in the  
following screenshot:



Auto-Complete

[ 192 ]

Auto-complete styling
The default styling of auto-complete provides a serious and professional, if 
somewhat basic, appearance for the widget. Changing any of the different elements' 
style is as easy as overriding any style rules that you choose. To make things a little 
easier for you, several properties are provided that deal with aspects of the widget's 
visual appearance. Let's look at these next. Change autocomplete4.html so that it 
resembles the following:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <link rel="stylesheet" type="text/css" href="styles/
myAutocomplete.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 5</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"



Chapter 7

[ 193 ]

        ];
   

        //create config object
        var autocompOpts = {
          data: suggestions,
          width: 150     
        };
           

        //turn specified element into an auto complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html>

Save this as autocomplete5.html. An additional, and very basic, stylesheet is 
required for this example. All that is needed is to do is set the width of the <input> 
to 200px:

#suggest { width:200px; }

By default, the width of the auto-complete drop-down suggestion menu is the same 
as the width of the <input> element it is associated with. The <input> will always 
appear slightly longer, however, due to padding and borders, which can be altered  
if required.

So, if we set the width of the <input> to 200px, as we did in this example, by  
default, the suggestion menu will also appear this long. However, the width 
property of auto-complete, specified as an integer representing a pixel value, will 
override this. In this example, the menu will appear substantially thinner than the 
text field.

Now the example page should appear as in the following screenshot:



Auto-Complete

[ 194 ]

Another property related to the visual appearance and the structural format of the 
suggestion menu is the highlight property. We can supply a function as the value of 
this property which can be used to customize the appearance of the highlight effect.

This is the effect that makes the matched search term in each suggestion appear 
in bold, in the previous screenshot, the first letter of each word was highlighted. 
The default highlight function wraps the search term in <strong> tags to give it 
a bold appearance. Let's change this so that it displays an image instead. Change 
autocomplete5.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <link rel="stylesheet" type="text/css" href="styles/
customHighlight.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 6</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>

    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",



Chapter 7

[ 195 ]

          "Scope", "Typeof", "Undefined", "Variables", "XHR"
     ];

        //function to provide custom highlighting 
        var customHighlight = function(val, term) {

          //replace search term with image    
          return val.replace(new RegExp("(?![^&;]+;)(?!<[^<>]*)(" + 
term.replace(/([\^\$\(\)\[\]\{\}\*\.\+\?\|\\])/gi, "\\$1") + ")(?![^<>
]*>)(?![^&;]+;)", "gi"), "<img src='img/letters/$1.png' alt='$1' />");

          //return "<img src='img/letters/$1.png' alt='$1' />"
         }; 

        //create config object
        var autocompOpts = {
          data: suggestions,
          highlight: customHighlight    
        };

        //turn specified element into an auto-complete
        $("#suggest").autocomplete(suggestions, autocompOpts);
      });
    </script>
  </body>
</html>

Save this as autocomplete6.html. We've provided the name of a callback function 
as the value of the highlight property. We also defined the function in a separate 
code block preceding the configuration object. The function itself is relatively simple  
and accepts each value returned from the data source, and the actual search term,  
as arguments.

The function will be executed for each matching value from the data source (up to 
the configured maximum number of results), and will receive a new result in the 
value argument each time it is called.

Inside the function is a regular expression that looks decidedly unfriendly. Even for 
those of us that have worked with regular expressions before, it looks considerably 
advanced. This line of code has been copied out of the library into our function for 
the simple fact that it works well and efficiently.

We cannot code values directly into our highlight function. Even for a small data set, 
such as ours, it would still be a massive duplication of code. A regular expression is 
the only way to look for, and respond to, particular patterns of characters without 
hard-coding anything.



Auto-Complete

[ 196 ]

We could choose to write our own regular expression that matched the search term 
and replaced it with arbitrary HTML. This would undoubtedly look similar to the 
original expression used by the widget so we may as well just use the same code 
used in the widget and be done with it.

What we have done, however, is change the second argument of the outer replace 
method. So instead of wrapping the search term in <strong> tags, it instead creates 
an image, using the search term as the image filename and its alt text.

We need some more styling to make our images sit within each list item correctly. In 
a new stylesheet, add the following selectors and rules:

.ui-autocomplete-results li img {
  position:relative; top:4px; left:3px; margin-left:-8px;
}

This file can be saved as customHighlight.css in the styles folder. Now, provided 
we have the necessary images (one for each letter of the alphabet that our data  
source contains results for), the function will work as expected, as shown in the 
following screenshot:

Highlighting can also be switched off altogether by supplying false as the value of 
the highlight property.

Apart from changing the appearance of the highlighted search term within each 
suggestion, we can also very easily change the hover and selected state used in the 
menu by overriding a single simple style rule.



Chapter 7

[ 197 ]

The class name ui-autocomplete-over is automatically appended to whichever 
<li> element is currently selected. By default, this class provides a slight darkening 
of the border, text, and background image styling the element. If we wish to change 
this, we can simply provide our own style rules for the ui-autocomplete-over class 
name. Create a new file and add the following code to it:

.ui-autocomplete-results li.ui-autocomplete-over {
  background:url(../img/autoCompSlice.gif) repeat-x;
  color:#ffffff !important;
}

Save this stylesheet as myAutocomplete2.css. You'll also need to update the 
link in autocomplete6.html to point to this new CSS file and get rid of all the 
customHighlight code. Save the change as autocomplete7.html. The hover  
and selected states should now appear like this:

Multiple selections
Apart from selecting single suggestions from the auto-complete menu, we can also 
configure the widget so that it allows multiple selections to occur. This will allow 
users of the widget to select several suggestions from the menu. There are two 
properties related to multiple selections:

multiple

multipleSeparator

•

•



Auto-Complete

[ 198 ]

Their usage is simple. The multiple property takes a boolean indicating whether 
or not to enable multiple selections, multipleSeparator allows us to specify an 
alternative character from the default comma to be used to separate the selected 
results. Change our configuration object to this:

//create config object
var autocompOpts = {
  data: suggestions,
  multiple: true,
  multipleSeparator: " + "
};

This variant can be saved as autocomplete8.html. Now when we view the page, 
we see that once we have made an initial selection from the suggestion menu, we can 
continue typing in the <input> to invoke another comparison of the data source and 
make another selection:

Advanced formatting
Apart from altering the appearance of the search term highlight and the hover and 
selected states, several properties are provided by the auto-complete API that lets us 
provide advanced formatting for several other aspects of the widget. The items that 
can be changed are:

Individual items that appear as <li> elements in the menu
The selected item that is added to the associated <input>
New items to be added to the <input> when a match is selected that hasn't 
come from the data source

•

•

•



Chapter 7

[ 199 ]

Like the highlight property that we looked at earlier, these aspects of the widget 
are configured using properties and take functions that should return the new  
mark-up that is to be used. The properties used for this advanced formatting are:

formatItem

formatResult

formatMatch

Let's first look at configuring advanced formatting of the individual items in the list. 
Let's say, for example, that we wanted to include a link next to each suggestion in the 
drop-down menu. Change autocomplete8.html to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 9</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
<script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     
        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",

•

•

•



Auto-Complete

[ 200 ]

          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"
        ];
   

        //provide additional markup for each result  
        function customItem(data, i, max) {
   

          //add the link
          return data[0] + " (<a href='" + data[0] + "'.html' title='" 
+ data[0] + "'>" + data[0] + "</a>)"
        }
   

        //create config object
        var autocompOpts = {
          formatItem: customItem
        };
   

        //turn specified element into an auto-complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html>

Save this file as autocomplete9.html. In this example, all we do is provide the 
additional mark-up, the <a> element within a literal string concatenated with the 
result from the data source for the href and title attributes.

Never mind that clicking on the link will cause the suggestion to be added to the  
text field instead of the link being followed, as we could easily add an additional 
click handler for this event and move the browser to the new page manually. Or, 
perhaps the links could be triggers for some kind of tooltip. The example is about 
adding additional formatting in the form of new mark-up, and that is exactly what 
we've done.

The formatItem property is useful as it allows us to specify an alternative format 
for the results presented in the suggestion menu. The premise is similar to that of the 
highlight function, although in the case of formatItem, a regular expression is not 
needed to achieve the custom formatting.

The function we specify as the value of formatItem receives four arguments when it 
is called. It receives the result, the row (or number) of the result, the total number of 
results, and the search term that was typed into the <input> field.



Chapter 7

[ 201 ]

The result, is the data (the word returned as a result), and the row corresponds to 
the number of the result. What is meant by this is that the first result will have a row 
number of 1, the second result will have a row number of 2, etc. The total and term 
values should not need further explanation. The additional formatting provided by 
this example is shown in the following screenshot:

You should be aware of the fact that if the formatItem property is changed, the 
result that is added to the text field having been selected will automatically assume 
the formatting returned by formatItem.

This may not be the desired behavior as we may want just the result, not arbitrary 
data that we supply with formatItem, to appear in the text field. The next screenshot 
shows our text field when an item in the previous example has been selected:



Auto-Complete

[ 202 ]

Thankfully, the auto-complete API provides the formatResult property which 
allows us to change the format of the data that is added to the text field following  
a selection. This can be most useful when working with custom formatting  
provided by formatItem. Following on from the previous example, change 
autocomplete9.html so that it appears thus:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 10</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"
        ];
     

        //provide additional markup for each result
        function customItem(data, i, max) {
     

          //add the link



Chapter 7

[ 203 ]

          return data[0] + "( <a href='" + data[0] + "'.html' title='" 
+ data[0] + "'>" + data[0] + "</a> )"
        }
     

        //customize data added to text field   
        function customResult(data, i, max) {
     

          //return just the data
          return data[0];
        }
     

        //create config object
        var autocompOpts = {
          data: suggestions,
          formatItem: customItem,
          formatResult: customResult
        };
     

        //turn specified element into an auto-complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html>

Save this version as autocomplete10.html. The function specified as the value of 
formatResult receives the same arguments as formatItem. To negate the custom 
formatting provided by the formatItem function, our formatResult function 
returns only the actual result. This removes the additional mark-up 'inherited' from 
the formatItem function.

The <input> field will now receive only the selected result, exactly as it did before 
we altered the formatting of the data within each <li> element in the suggestion 
menu, as shown in the following screenshot:

The formatMatch property allows us to add additional information to each result 
when it is added to the associated <input>.



Auto-Complete

[ 204 ]

This additional data isn't part of the initial search of the data source, so it will not 
influence the returned matches in any way. It's similar in structure to the other 
format properties that we've looked at so far and receives the same arguments.

Change autocomplete10.html to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 11</title>
  </head>
  <body>
    <label>Search our JavaScript Reference:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
        

        //create local data
        var suggestions = [
          "AJAX", "Anonymous functions", "Array",
       "Assignment", "Boolean", "BOM",
          "Callback functions", "Closures", "Comparison",
          "Conditionals", "Deep Copy", "Design Patterns",
          "DOM", "Events", "Functions", "Global Variables",
          "HTML Output", "Inheritance", "JSON", "Keywords",
          "Logical Operators", "Loops", "Math", "Namespacing",
          "Null", "Objects", "Operators", "Properties",
          "Prototype", "Regular Expressions", "Strings",
          "Scope", "Typeof", "Undefined", "Variables", "XHR"
        ];
        

        //provide additional information to the selection that doesn't 
get searched   
        function customMatch(data, i, max) {
          return data + " (result number " + i + ")";
        }
        

        //define config object



Chapter 7

[ 205 ]

        var autocompOpts = {
          data: suggestions,
          formatMatch: customMatch
        }
        

        //turn specified element into an auto-complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html>

Save this as autocomplete11.html. All we do in this example is append some 
additional text to each selection when it is added to the text field. We use the data 
argument to return the actual selection, and the i argument to add which number 
the result is. After making a selection from the suggestion menu, the page should 
look like this:

We've been working with a flat data structure in our examples so far and have 
provided a simple array containing the data items to match search terms against.  
We can also use more complex objects within our data structure, with additional 
data supplied using arbitrary keys and values.

The keys will still be available to the functions for advanced formatting that we 
have just looked at. This will give us the ability to provide additional information 
alongside the matched results.

Matching properties
There are several properties which are used to configure how matching occurs with 
the auto-complete search term and results. The mustMatch property, for example, 
configures the auto-complete so that the text field may only contain results supplied 
by the widget. Let's look at a basic example. Change the configuration object used 
with our auto-complete in autocomplete12.html to the following:

//create config object
var autocompOpts = {
  data: suggestions,
  mustMatch: true
};



Auto-Complete

[ 206 ]

Save the change as autocomplete12.html. When we run this file in our browser, we 
see that as we start typing in the <input> with a letter that is a match for one of the 
results in our data set, the widget behaves as it has done so far.

If we start typing a letter in the <input> that isn't a match for our data (like a z for 
example) and then type another letter, the value of the <input> is cleared as a result 
of the mustMatch property.

Now let's look at a property that allows us to match not only the start of results in 
our data set, but to find matches within the strings which make up the data. Change 
the configuration object, used in the previous example, to this instead:

//create config object
var autocompOpts = {
  data: suggestions,
  matchContains: true
};

Save this variation as autocomplete13.html. Again, the premise with this property 
is simple. When a letter is entered into the text field, not just the results that start 
with the match are returned, but all results containing the match are returned as 
well, as you can see in the following screenshot:



Chapter 7

[ 207 ]

Remote data
We have used local data in all our examples so far, which is perfect for smaller data 
sets. The data will be cached once it has been loaded, and continue to be available to 
the text field while the page is open. It's efficient and easy to code.

However, when working with larger stores of data, it is more efficient to process  
the suggestions on the server and return only those suggestions that are required. 
Auto-complete makes working with remote data just as easy as working with local 
data, provided you have the back-end code to support it. 

There are a series of properties that are used solely with remote data sets. These 
properties include the following:

cacheLength

extraParams

matchCase

matchSubset

url

As we'll be working with remote data for the next few examples, we can use a 
slightly larger dataset. For this example, I've created a new MySQL database called 
data with a new table inside it called countries.

We'll be using the auto-complete widget to provide a list of countries of birth on 
what could be part of an account creation form. The data source we'll use for this 
example contains 128 records, which is still small enough to run locally with great 
efficiency, but is much larger than what we have worked with so far.

I usually use PHP where necessary because I'm somewhat used to and like its syntax. 
That's not to say that it's the only back-end language that could be used, or indeed 
the most practical, or most suited to the task at hand. Nevertheless, let's get started 
with the next example. In a new file in your text editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 14</title>
  </head>

•

•

•

•

•



Auto-Complete

[ 208 ]

  <body>
    <label>Please enter your country of birth:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
           

        //create config object
        var autocompOpts = {
          url: "countries.php"
        }
           

        //turn specified element into an auto-complete
        $("#suggest").autocomplete(autocompOpts);
      });
    </script>
  </body>
</html> 

Save this file as autocomplete14.html. Instead of using the data property to point 
to a local data source, we instead use the url property to point to the URL from 
which the data can be obtained. No additional configuration is required for this 
simple implementation, although we do, of course, need a backend.

For reference, the backend that I used for this example consists of the database I 
already mentioned and the following PHP file:

<?php

  /* connection information */
  $host = "localhost";
  $user = "root";
  $password = "your password here";
  $database = "autoComp";

  /* make connection */
  $server = mysql_connect($host, $user, $password);
  $connection = mysql_select_db($database, $server);

  /* get querystring parameter */
  $param = $_GET['q'];

  /* protect against sql injection */



Chapter 7

[ 209 ]

  mysql_real_escape_string($param, $server);

  /* query the database */
  $query = mysql_query("SELECT * FROM countries WHERE country LIKE 
'$param%'");

  /* loop through and return matching entries */
  for ($x = 0; $x < mysql_num_rows($query); $x++) {
    $row = mysql_fetch_assoc($query);
    $output = $row['country']."\n";
    echo $output;
  }

  mysql_close($server);
?>

I don't want to go into too much explanation here as this backend is just one of many 
possibilities and has been provided in supplementary information. I do want to 
mention the search term, which is passed to the backend as part of the GET request, 
and is available to our PHP file under the q super global variable.

We also included the limit request variable, which will be set to the same value as 
the configured max property. This property has the value of 100 by default with local 
data sources, but is set to 10 by the widget when using a remote data source.

The following screenshot shows the remote auto-complete in action. It looks exactly 
as it did before, but we know that our slightly larger data set is actually remote:



Auto-Complete

[ 210 ]

Sending additional data to the server
The only remote configuration property not related to caching is the extraParams 
property. This can be used to send additional, arbitrary data to the server. Using this 
property is easy. All we need to do is provide a nested object literal as the value of 
the property. Change the configuration object used with autocomplete14.html to 
the following:

//create config object
var autocompOpts = {
  url: "countries.php",
  extraParams: {testParam:"test"}
};

Save this as autocomplete15.html. We're not actually going to do anything with  
the data, but using Firebug, we can easily see that our test data has been added to  
the query and sent with the rest of the request:

Caching
The remaining remote properties are all related to the caching services provided by 
auto-complete, and they can all be used together for optimal cache performance. I 
mentioned earlier that a GET request is performed on every keystroke. That's not 
quite the whole truth and is where the local cache comes in.

Every time a keystroke is detected in the associated text field, the local cache is 
checked first for matching results, and then a GET request to the remote data source 
is made if nothing in the local cache matches.



Chapter 7

[ 211 ]

The cacheLength property simply tells the widget how many items, if any, should 
be stored in the local cache. Caching can be disabled completely by setting this 
property to 1.

The matchCase property configures the widget exactly the way that it implies. When 
this is set to true, the auto-complete widget becomes case sensitive, so the term a 
will not be a match for A.

Finally matchSubset, which by default is set to true, makes subsets of the items in 
the cache match, so when a second letter is typed into the input, only the subset of 
results from the cache will be shown.

Auto-complete methods
Now that we've looked at the configurable properties supplied by the auto-complete 
API, let's move on to look at the methods it exposes. The following table lists the 
methods available when working with auto-complete:

Method Usage
destroy Removes auto-complete functionality from the <input>
flushCache Empties the cache
result A function specified as the second argument to this method can be used 

to handle the selection of a result
search Programmatically triggers the search event
setData Supplies a new configuration object as the second argument of this 

method to update the configuration of the matched <input> element's 
auto-complete

Like each of the other widgets, auto-complete has a method for removing  
auto-complete functionality programmatically. This is, of course, the destroy 
method that we have seen many times before. When called, the <input> element  
will no longer be associated with the auto-complete engine, and typing into it will  
not invoke the suggestion menu.

The search and result methods are closely linked. The result method allows us to 
specify a callback function that is triggered when the search event fires. This occurs 
either when a visitor selects a result from the suggestion menu, or when the search 
method is used to invoke the search event programmatically.



Auto-Complete

[ 212 ]

Let's look at the result method in our next example. Change autocomplete15.html 
to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Widget Example 16</title>
  </head>
  <body>
    <label>Please enter your country of birth:</label>
    <input type="text" id="suggest">
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
   

        //create greets object
        var greets = {
          Albania: "Allo",
          Andorra: "Hola",
          Argentina: "Mari mari",
          Australia: "G'day Mate"     
        }
   

        //create config object
        var autocompOpts = {
          url: "countries.php"
        }
   

        //turn specified elements into an auto-complete
        $("#suggest").autocomplete(autocompOpts);
   

        //set handler for selection of a result
        $("#suggest").autocomplete("result", function(event, data, 
formatted) {
          (!$("#greeting")) ? null : $("#greeting").remove();
          $("<p>").text("You selected: " + formatted + ", " + 
greets[data]).insertAfter("#suggest"); 



Chapter 7

[ 213 ]

        });
       });
     </script>
  </body>
</html>

Save this file as autocomplete16.html. We set up a little greets object that holds 
localized greetings for all of the countries that begin with A. We should, of course, 
provide these for all of the countries in our table, but this would make the example 
far larger than it needs to be. We then create our configuration object and initialise 
the widget as normal.

Finally, we add an inline handler for the result event, and use it to retrieve the 
appropriate greeting from our greets object. It is then appended to the page 
whenever a suggestion from the menu is selected (after removing any previous 
messages if they exist):

We looked at the local caching of back-end results that is handled by auto-complete 
and saw how this can be fine-tuned to suit an individual implementation. Apart 
from configuring the cache, the auto-complete API also gives us the means to empty 
the cache at any given point by calling the flushCache method.

Flushing the cache may be required during the execution of your application if there 
is a change to the data set that the auto-complete is tied to at the backend, and hence 
the URL used to query it.

Changing things like the URL that the widget gets its data from, or any of the other 
configuration properties, is made easy with the setData method. This method 
updates the configuration options of the auto-complete instance and takes as its 
second argument the new configuration object.



Auto-Complete

[ 214 ]

Fun with auto-complete
For our last auto-complete example, we can create a simple email system front-end 
that features an auto-complete attached to an <textarea> that is used to enter the 
address(es) that the email will be sent to. It can be connected to a back-end data 
source containing the visitor's email contacts. The following screenshot shows the 
kind of result we're aiming for:

While we won't be using every property and method exposed by the API, we  
can certainly put a range of them to good use with this example to reinforce what 
we've learned over this the course of this chapter. Start off with the following basic 
web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/default/ui.all.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
mailAddress.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Auto Complete Email Field Example with JSON! 
</title>



Chapter 7

[ 215 ]

  </head>
  <body>
    <div id="mailContainer">
    <label>To:</label><textarea id="address" cols="10" rows="1"> 
</textarea>
    <label>Subject:</label><input type="text">
    <label>Message:</label><textarea cols="10" rows="10"></textarea>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.autocomplete.js"></script>
    <script type="text/javascript">
    </script>
  </body>
</html>

Save what we have so far as mailAddress.html. We're keeping the page  
simple for our final auto-complete example, using only the elements necessary to 
illustrate things. The first <textarea> will be the one that is associated with our  
auto-complete.

We'll need some basic CSS also while trying to keep this as simple as possible. Add 
the following rules to a new file:

#mailContainer { width:700px; margin:0 auto; }
label {
  display:block; width:700px;
  font:bold 14px Verdana, Arial, Helvetica, sans-serif;
  margin:10px 0;
}
input, textarea { display:block; width:700px; }

Save this as mailAddress.css in the styles folder. Now let's move swiftly on 
to the most important, and unquestionably the most fun part of the example, the 
JavaScript. In the empty <script> element in mailAddress.html, add the  
following code:

//function to execute when doc ready
$(function() {
   

  //get JSON
  $.getJSON("http://localhost/jqueryui/contacts.php
?jsoncallback =?", function(data) {
   



Auto-Complete

[ 216 ]

    //create arrays for data
 var names = [];
    var mails = [];
   

    //populate arrays
    for (var x = 0; x < data.contacts.length; x++) {
   

      names.push(data.contacts[x].name);
      mails.push(data.contacts[x].mail);
    }
   

    //add mail address to selected name
    function mailMatch(data, i, max) {
   

      return data + " (" + mails[i - 1] + ")"
    }
   

    //create config
    var autocompOpts = {
      data: names,
      width: 706,
      multiple: true,
      multipleSeparator: "; ",
      formatMatch: mailMatch
    };
   

    //turn specified element into auto-complete
    $("#address").autocomplete(autocompOpts);
  });
});

We're using a combination of both remote and local data in this example. First, we use 
jQuery's getJSON method to retrieve a JSON object outputted by a PHP file. We use a 
JSONP callback that processes the returned JSON following a successful request.

The JSON object will be structured in exactly the same way as the object we used 
in the AJAX date picker earlier in the book, and will be an array where each item in 
the array is an object containing name and mail keys where the contact's name is the 
value of name and their email address is the value of mail.

The data from the JSON object is used to populate two arrays. The first array will 
consist of each of the name values from each item, and the mails array will contain 
the mail addresses. Because every value in the database that is pulled has two 
properties, the items in each array will always be in sync, so names[1] will always 
match mails[1].



Chapter 7

[ 217 ]

We then add a custom function to format the data that is added to the <textarea>. 
The auto-complete will use the local names array as the data source. Therefore, each 
time a name is selected from the auto-complete suggestion menu, the matching email 
address is added.

After this, we create the configuration object used to make auto-complete do the 
things we want, such as adding support for multiple selections, and then initialize 
the widget as normal. We obviously need a PHP file as well to get the data out of the 
database in order to pass it back to our JSONP callback. Again, this is being provided 
in a supplementary manner:

<?php

  header('Content-type: application/json');

   //connection information
  $host = "localhost";
  $user = "root";
  $password = "your password here";
  $database = "autoComp";

  //make connection
  $server = mysql_connect($host, $user, $password);
  $connection = mysql_select_db($database, $server);

  //protect against sql injection
  mysql_real_escape_string($param, $server);

  //query the database
  $query = mysql_query("SELECT * FROM contacts");

   //start JSON object
   $contacts = "({ 'contacts':["; 

  //loop through and return matching entries
  for ($x = 0; $x < mysql_num_rows($query); $x++) {
    $row = mysql_fetch_assoc($query);
      $contacts .= "{'name':'" . $row["name"] . "','mail':'" . 
$row["mail"] . "'}";

  //add comma if not last row, closing brackets if is
  if ($x < mysql_num_rows($query) -1)
    $contacts .= ",";
  else
    $contacts .= "]})";
  }

  //return JSON with GET for JSONP callback
  $response = $_GET["jsoncallback"] . $contacts;
  echo $response;

  mysql_close($server);
?>



Auto-Complete

[ 218 ]

I understand that you may not have the setup to run this file, or have any interest  
in learning or using PHP, and that's fine. Partly, the reason for using dynamic data 
locally via JSON and a JSONP callback is that you can still use this example without 
having your own local web server. To this end, I have placed a copy of this file on 
my own web server. To use it, simply change the URL in the getJSON method to 
http://www.danwellman.co.uk/jqueryui/contacts.php.

Summary
The auto-complete is a fantastic and very fresh addition to the jQuery UI library. 
It's intelligent, attractive, and intuitive to use. As we've seen with the other library 
components, it's also easy to use from a developer's perspective and flexible enough 
to be tailored to many individual situations.

Your visitors will love it because it makes arduous tasks, like the completion of 
forms, easier and quicker. It also improves the appearance and overall functionality 
of your site while lending an air of quiet professionalism.

We saw that this component brings to the table an impressive number of 
configurable properties that allows us to fine-tune the user-experience with high 
precision. We can use advanced formatting and matching properties to control the 
data that is outputted and how matching is performed, customize the appearance  
of the drop-down suggestion menu, and much more.

We also looked at the methods exposed by this component, including the usual 
destroy method for removing functionality. We can also programmatically flush  
the local cache and provide a new configuration object.

Unlike most of the other components we have seen so far, the auto-complete event 
model is method-based instead of property-based. However, it is equally as effective 
at allowing us to react to important events fired during an interaction.



Drag and Drop
So far in this book, we've covered the complete range of fully released interface 
widgets, as well as one still (at the time of writing) in its beta phase. Over the next 
four chapters, we're going to shift our focus to the core interaction helpers. These 
components of the library differ from those that we've already looked at in that they 
are not physical objects that exist on the page.

Instead, they give an object a set of generic behaviors to suit common 
implementational requirements. You don't actually see them on the page, but the 
effects that they add to different elements, and how they cause them to behave,  
can easily be seen. These are low-level components as opposed to the high-level 
widgets. There are currently five different interaction helpers, each catering for a 
specific interaction.

They help the elements used on your pages to be more engaging and interactive 
for your visitors, which adds value to your site and can help make your web 
applications appear more professional. They also help to blur the distinction  
between the browser and the desktop as application platforms.

In this chapter, we'll be covering two very closely related components— draggables 
and droppables. The draggables API transforms any specified element into 
something that your visitors can pick up with the mouse pointer and drag 
around the page. Methods are exposed which allow you to restrict the draggables 
movement, make it return to its starting point after being dropped, and much more.

The droppables API allows you to define a region of the page, or a container of 
some kind, for people to drop the draggables on to in order to make something else 
happen. For example, to define a choice that is made, or add a product to a shopping 
basket. A rich set of events are fired by the droppable that lets us react to the most 
interesting moments of any drag interaction.



Drag and Drop

[ 220 ]

The full range of subjects we'll be covering in this chapter are:

How to make elements draggable
How to determine the new position of an element that has been dragged
The properties that are available for configuring draggable objects
How to make an element return to its starting point once the drag ends
How to use event callbacks at different points in an interaction
The role of a drag helper
Containing draggables
How to control draggability with the component's methods
Turning an element into a drop target
Defining accepted draggables
Working with droppable class names
Defining drop tolerance
Reacting to interactions between draggables and droppables

The deal with drag and droppables
We'll be devoting ourselves to these two components for the duration of this chapter 
because of how closely related they are. Dragging and dropping, as behaviors, go 
hand-in-hand with each other. Where one is found, the other is invariably close by. 
It's all very well dragging an element around a web page, but if there's nowhere for 
that element to be dragged to, or on top of, then the whole exercise is pointless.

You can use the draggable class completely independent of the droppable class as 
pure dragging, for the sake of dragging, can have its uses, such as with the dialog. 
However, you can't use the droppable class with the draggable. You don't need to 
make use of any of draggables methods of course, but using droppables without 
having anything to drop onto them is of no value.

These two components aren't designed to be used beyond simple drag and drop 
scenarios (which in themselves are complex pieces of web mechanics). If you have a 
more advanced requirement, like reordering list-based elements for example, you'll 
need to turn to a more specialized class, like the sortables component that we'll be 
looking at in the next chapter.

•

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 8

[ 221 ]

Draggables
The draggables component is used to make any specified element, or collection of 
elements, draggable, so that they can be 'picked up' and moved around the page by 
a visitor. Draggability is a great effect, and is a feature that can be used in numerous 
ways to improve the interface of our web pages.

Using jQuery UI means that we don't have to worry about all the tricky differences 
between browsers that originally made draggable elements on web pages a 
nightmare to implement and maintain. 

A basic drag implementation
Let's look at the default implementation by first making a simple image draggable. 
We won't do any additional configuration. Therefore, all this code will allow you to 
do is 'pick up' the image with the mouse pointer and drag it around the viewport. 

The element is made to appear draggable by having its left and top style properties 
manipulated in line with the mouse pointer. We don't need to worry about how this 
is achieved by the library, thanks to the object-oriented concept of encapsulation.

In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
draggable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 1</title>
  </head>
  <body>
    <div id="drag"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready



Drag and Drop

[ 222 ]

     $(function() {
     

       //make the specified element draggable
       $("#drag").draggable();
     });
   </script>
  </body>
</html>

Save this as draggable1.html in your jqueryui folder. As with the widget-based 
components of jQuery UI, the draggables component can be enabled using a single 
line of code. This invokes the draggables constructor method draggable and turns 
the specified element into a draggable object

We need the following files from the library to enable draggability:

jquery-1.2.6.js

ui.core.js

ui.draggable.js

Encapsulation
Encapsulation is an object-oriented term that simply means we don't need 
to know how any particular module of code works internally. All we need 
to know is how to use the API that it exposes.

We're using a plain <div> with a background image specified in the CSS file  
we're linking to in the <head> of the page. Use the following stylesheet for the 
draggable element:

#drag {
  background:url(../img/draggable.png) no-repeat;
  width:114px;
  height:114px;
  cursor:move;
}

Save this as draggable.css in your styles folder. When you view the page in a 
browser, you'll see that the image can be moved around to your heart's content, as 
shown in the following screenshot:

•

•

•



Chapter 8

[ 223 ]

Configuring draggable properties
The draggables extension has a wide range of configurable properties, giving  
you a very fine degree of control over the behavior that it adds. The following  
table lists the properties that we can manipulate to configure and control our 
draggable elements:

Property Usage
appendTo Specifies a container element for draggables with a  

helper attached
axis Constrains draggables to one axis of motion and can take the 

strings x and y as values
cancel Prevents certain elements from being dragged if they match  

the selector
containment Prevents draggables from being dragged out of the bounds of its 

parent element
cursor Specifies a CSS cursor to be used with the draggable
cursorAt Specifies a default position at which the cursor appears relative 

to the draggable while it is being dragged
delay Specifies a time in milliseconds for the start of the drag to  

be delayed
distance Specifies the distance in pixels that the pointer should move  

with the mouse button held down on the draggable before  
drag begins

grid Makes the draggable snap to an imaginary grid on the page



Drag and Drop

[ 224 ]

Property Usage
handle Defines a specific part of the draggable which is used to hold the 

pointer on in order to drag.
helper Defines a pseudo-drag element which is dragged in place of  

the draggable
opacity Sets the opacity of the helper element
revert Makes the draggable return to its start position once  

dragging ends
scroll Makes the draggables container automatically scroll
scrollSensitivity Defines how close the draggable should get to the edge of the 

viewport before it begins to scroll
scrollSpeed Sets the speed at which the viewport scrolls
snap Causes drag objects to snap to the edges of specified elements
snapMode Can be set to either inside, outside, or or both, with both 

being the default
snapTolerance The distance from snapping elements that draggables should 

reach before snapping occurs
refreshPositions Calculates all draggable positions on every mouse move
zIndex Sets the z-index of the helper element

Let's put some of these properties to use. They can be configured in exactly the 
same way as the properties of the widgets that we looked at in previous chapters. 
This is done by creating a literal object with the chosen properties and their values 
configured, and passing this object into the draggable constructor method.

In the first example a moment ago, we used CSS to specify that the move cursor 
should be used when the pointer hovers over our draggable <div>. Let's change  
this and use the cursor property of the draggables component instead. Remove 
cursor:move from draggable.css and change draggable1.html to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableNoCursor.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 2</title>
  </head>
  <body>
    <div id="drag"></div>
    



Chapter 8

[ 225 ]

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //define config object
      var dragOpts = {
        cursor: "move"
      };
     

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable2.html and try it out in your browser. An important point  
to note about this property is that the move cursor we have specified is not applied 
until we actually start the drag. When using this property in place of simple CSS, 
we should perhaps provide some other visual cue that the element is draggable on 
mouse-over.

Let's look at a few more of draggable's many properties. Change draggable2.html 
to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableNoCursor.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 3</title>
  </head>
  <body>
    <div id="drag"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>



Drag and Drop

[ 226 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //define config object
      var dragOpts = {
        cursor: "move",
        axis: "y",
        distance: "30",
        cursorAt: {
          top:0,
          left:0
          }
      };
     

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

This can be saved as draggable3.html. The first new property that we've configured 
is the axis property, which has restricted the draggable to moving only up or down 
the page, but not side-to-side.

Next, we've specified 30 as the value of the distance property. This means that the 
cursor will have to travel 30 pixels across the draggable, with the mouse button held 
down, before the drag will begin.

The final property, cursorAt, is configured using an object whose properties can be 
top, right, bottom, or left. The values supplied to the properties we choose to use 
are the values relative to the draggable object that the cursor will assume when a 
drag occurs.

You'll notice in this example however, that the value for the left property seems 
to be ignored. The reason is that we have configured the axis property. When we 
begin the drag, the draggable will automatically move so that the cursor is at 0 pixels 
from the top of the element, but it will not move so that the cursor is 0 pixels from 
the left edge as we have specified. If we comment out the axis property, the cursor 
will then behave as expected.



Chapter 8

[ 227 ]

Let's look at some more of draggable's properties in action. Change  
draggable3.html so that the configuration object appears as follows:

//define config object
var dragOpts = {
  delay: "500",
  grid: [100,100]
};

Save the file as draggable4.html. The delay property, which takes a value in 
milliseconds, configures the time that the mouse button must be held down with  
the cursor over the draggable object before the drag will begin.

The grid property, which is similar in usage to the steps property of the slider 
widget, is configured using an array of two values representing the number of pixels 
along each axis the drag element should jump when it is dragged. This property can 
be used safely in conjunction with the axis property.

Resetting dragged elements
It is very easy to configure draggables to return to their original starting position on 
the page when the draggable has been dropped. Let's look at this behavior in action. 
Change draggable4.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableNoCursor.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 5</title>
  </head>
  <body>
    <div id="drag"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    



Drag and Drop

[ 228 ]

       //define config object
      var dragOpts = {
        revert: true
      };
    

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable5.html. By supplying true as the value of the revert 
property, we've caused the draggable to return to its starting position at the end of 
any drag interaction. You'll notice, however, that the drag element doesn't just pop 
back to its starting position instantly. Rather, it's smoothly animated back with no 
additional configuration required.

Drag handles
The handle property allows us to define a region of the draggable object which can 
be used to drag the object. All other parts of the draggable cannot be used to drag the 
object. A simple analogy is the dialog widget. You can drag the dialog around only if 
you click and hold on the title bar. The title bar is the drag handle.

In the following example, we'll add a simple drag handle to our draggable. In a new 
page in your text editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
dragHandle.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 6</title>
  </head>
  <body>
    <div id="drag"><div id="handle"></div></div>
    



Chapter 8

[ 229 ]

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //define config object
      var dragOpts = {
        handle:  "#handle"
      };
    

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable6.html. We've added another <div> element within our 
draggable in the mark-up, and used a jQuery selector as the value of the handle 
property to target the new element. The handle is styled with a few simple style 
rules. Create a new stylesheet and add to it the following code:

#drag {
  background:url(../img/draggable.png) no-repeat;
  width:114px; height:114px;
}
#handle {
  border-bottom:2px solid #ff0000;
  border-left:2px solid #ff0000;
  position:absolute;
  right:10px; top:10px;
  width:30px; height:30px;
  cursor:move;
}



Drag and Drop

[ 230 ]

Save this as dragHandle.css in the styles folder. When we run the page in a 
browser, we see that the original drag object is still draggable, but only when the 
handle is selected with the pointer as seen here:

Helper elements
Several configuration properties are directly related to drag helpers or draggable  
objects used with helpers. A helper is a substitute element that is used to show  
where the object is on screen while the drag is in progress, instead of moving the 
actual draggable.

A helper can be used with a very simple object in place of the actual draggable. This 
prevents the client computer from needing to maintain the position of a memory 
heavy, complex object, which can consume a high number of CPU cycles. Once the 
drag has completed, the actual element can be moved to the new location.

Let's look at how they are used with the help of the following example. In a new 
page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableNoCursor.css">



Chapter 8

[ 231 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 7</title>
  </head>
  <body>
    <div id="drag"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var dragOpts = {
          helper: "clone"
        };
    

        //make the specified element draggable
        $("#drag").draggable(dragOpts);
      });
    </script>
  </body>
</html>

The value clone for the helper property causes an exact copy of the original 
draggable to be created and used as the draggable. Therefore, the original object 
stays in its starting position at all times. This also causes the clone object to revert 
back to its starting position, an effect which cannot be changed, even by supplying 
false as the value of the revert property. The following screenshot shows the 
clone property in action:



Drag and Drop

[ 232 ]

Save this change as draggable7.html. In addition to the clone string, and the 
default string value of original, we can also use a function as the value of this 
property. This allows us to specify our own custom element to use as the helper. 
Change draggable7.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
draggable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 8</title>
  </head>
  <body>
    <div id="drag"></div>
    
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery.ui-1.5b4"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //define config object
      var dragOpts = { 
        helper:helperMaker
      };
     

      //define function that returns helper element
      function helperMaker() {
        return $("<div>").css({
          border: "4px solid #cccccc",
          opacity: "0.5",
          height: "110px",
          width: "120px"
        });
      }
     

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>



Chapter 8

[ 233 ]

Save this as draggable8.html. Our helperMaker() function creates a new <div> 
element using standard jQuery functionality, and then sets some CSS properties on 
it to define its physical appearance. It then, importantly, returns the new element. 
When supplying a function as the value of the helper property, the function must 
return an element.

Now, when the drag begins, it is our custom helper that becomes the draggable. 
Because our custom element is much simpler than the original drag object, it can 
help improve the responsiveness and performance of an application it is used in.

We used the css jQuery method in this example during the creation  
of the custom helper. However, we can also use the opacity  
property of the draggable to set the opacity of helper elements as a  
cross-platform solution.

We used an older version of the library in the above example. This is due to a bug  
in 1.6rc2 version of the library. By the time you read the book, this bug will hopefully 
have been eradicated and the example will work with the latest stable release of  
the library.

Constraining the drag
Another aspect of drag scenarios is that of containment. In our examples so far, the 
<body> of the page has been the container of the draggable. There are also properties 
that we can configure to specify how the draggable works with regard to another 
container element. We'll look at these in the following examples, starting with the 
container property which allows us to specify a container element for the draggable.



Drag and Drop

[ 234 ]

Add the following code to a new page in your text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableContainer.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 9</title>
  </head>
  <body>
    <div id="container"><div id="drag"></div></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //define config object
       var dragOpts = { 
         containment: "parent"
       };
    

    

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable9.html. On the page, we've added a new <div> element as 
the parent of the existing draggable. In the code, we've used the value parent for the 
containment property.



Chapter 8

[ 235 ]

The parent <div> has been given some basic styling to give it dimensions and so it 
can be seen. Add the following line of code to draggable.css and resave the file as 
draggableContainer.css:

#container {
  height:250px; width:250px;
  border:2px solid #ff0000;
}

When you run the page in your browser, you'll see that the draggable cannot exceed 
the boundary of its container:

There are three additional properties related to draggables within containers which 
are related to scrolling. However, you should note that these are only applicable 
when the document is the container.

The default value of the scroll property is true, but when we drag the <div> 
to the edge of the container, it does not scroll. You may have noticed in previous 
examples, where the draggable was not within a specified container, the viewport 
does automatically scroll.



Drag and Drop

[ 236 ]

You will also note that the previous example, at the time of writing, seems to have 
problems when run in Safari or Chrome. Using the container property constrains 
the draggable to the y axis in these browsers.

Snapping
Draggable elements can be given an almost magnetic quality by configuring 
snapping. This feature causes dragged elements to snap to specified elements  
while they are being dragged. There are three properties related to snapping:

snap

snapMode

snapTolerance

In the next example, we'll look at the effects that these properties have on the 
behavior of the draggable when they are configured. In a new file in your text  
editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
draggableSnap.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 10</title>
  </head>
  <body>
    <div id="drag"></div>
    <div id="snapper"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //define config object
      var dragOpts = { 
        snap: "#snapper",
        snapMode: "inner",

•

•

•



Chapter 8

[ 237 ]

        snapTolerance: 50
      };
    

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable10.html. We've supplied the selector #snapper as the value 
of the snap property. Therefore, our draggable will snap to this element on the page 
while the object is being dragged. We also set the snapMode property to inner  
(the other possible values are outer and both), so snapping will occur on the inside 
edges of our snapper element.

Finally, we've set the snapTolerance to 50, which is the maximum distance  
(in pixels) the draggable will need to get to the snapper element before snapping  
will occur. Now, when you drag the image within 50 pixels of an edge of the 
snapper element, the draggable will automatically align itself to that edge, as  
shown in the following screenshot:



Drag and Drop

[ 238 ]

Draggable event callbacks
In addition to the properties that we have already looked at, there are three more 
properties that can be used as callback functions to execute code after specific custom 
events, defined by the draggables component, occur. These events are listed below:

Property Triggered 
drag When the mouse is moved while dragging
start When dragging starts
stop When dragging stops

When defining callback functions to make use of these events, the functions will 
always automatically receive two arguments. The original event object as the first 
argument and a second object containing the following properties:

Property Usage
options The configuration object used with the draggable
helper A jQuery object representing the helper element
position A nested object with properties top and left of the 

helper element relative to the original drag element
absolutePosition A nested object with properties top and left of the 

helper element relative to the page

Using the callbacks, and the two objects they are passed as arguments, is extremely 
easy. We can look at a brief example to highlight their usage. In a new page in your 
text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
draggable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 11</title>
  </head>
  <body>



Chapter 8

[ 239 ]

    <div id="drag"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //define config object
      var dragOpts = { 
        start: setShadow,
        stop: unsetShadow
      };
     

      //swap image to add drop shadow
      function setShadow() {
        $("#drag").css({ background:"url(img/draggable_on.png)", 
width:"120px", height:"121px" });
      }
     

      //swap image back to original
      function unsetShadow() {
        $("#drag").css({ background:"url(img/draggable.png)", 
width:"114px", height:"114px" });
      }
     

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable11.html. In this example, our configuration object contains 
just two properties—the start and stop callbacks. We set these values to our 
callback function names. 



Drag and Drop

[ 240 ]

All the functions do in this example are simple image swaps. When the start 
callback is invoked, the background image of the draggable is switched for  
one containing a drop shadow. When the stop callback is invoked, the image is 
swapped back to the original image with no shadow. The following screenshot 
shows the shadow:

Using the callbacks in this way is just one example of how the usability of the  
drag object is improved with a visual cue that indicates the object is currently in  
a draggable state.

Let's move on to a slightly more complex example where we can make use of the 
second object passed to our callbacks. Create a new page in your text editor and add 
to it the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
draggableIndented.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 12</title>
  </head>
  <body>
    <div id="container">
      <div id="drag"></div>
    </div>
    <div id="results"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>



Chapter 8

[ 241 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
     

       //define config object
      var dragOpts = {
        helper: "clone", 
        stop: getNewPos
      };
     

      //get the new position
      function getNewPos(e, ui) {
     

        var relativeP = $("<p>").attr("id", "test").text("The 
helper was moved to " + ui.position.top + "px from the top, and " + 
ui.position.left + "px to the left of the original object.");
        var absoluteP = $("<p>").attr("id", "test").text("The helper 
was moved to " + ui.absolutePosition.top + "px from the top, and " + 
ui.absolutePosition.left + "px to the left relative to the page.");
        $("#results").empty().append(relativeP).append(absoluteP);
       }
     

       //make the specified element draggable
       $("#drag").draggable(dragOpts);
     });
   </script>
  </body>
</html>

Save this as draggable12.html. We're now using a helper with our draggable, 
which is necessary in this implementation, as I'll explain in a moment. We've defined 
the getNewPos callback function as the value of the stop property, so it will be 
executed each time a drag interaction stops.

Our callback function receives the object as e for the event object (which we don't 
need but must specify in order to get to the second object), and ui for the jQuery UI 
object containing useful information about the draggable and its helper.

All our callback function does is create two new paragraphs, concatenating in 
the values found in the object passed to the function as the second argument-
ui.position.top,  ui.position.left, ui.absolutePosition.top, and 
ui.absolutePosition.left. It then inserts the new <p> elements into the results 
<div>. For reference, these positional properties are only available when using a 
helper object. A brief stylesheet has been also been used, which should be as follows:

#container {
  width:450px; height:250px;
  border:1px solid #ff0000;



Drag and Drop

[ 242 ]

}
#drag { background:url(../img/draggable.png) no-repeat;
  width:114px; height:114px;
  margin-left:50px; margin-top:50px;
  cursor:move;
}
p { font-size:80%; }

This should be saved as draggableIndented.css in the styles folder. It is 
necessary to give the drag element margins in this example, so the differences 
between the position and absolutePosition properties are shown. If we didn't  
do this, the new <p> elements would both contain the same text. Here's how it 
should look after dragging to the bounds of the container:



Chapter 8

[ 243 ]

Using draggable's methods
Three methods (not including the constructor) are defined for draggables:

destroy

enable

disable

These methods are used in the same way as the methods for the widgets that we've 
already used, but we'll look at a brief example for the sake of completeness. In a new 
page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
draggable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Example 13</title>
  </head>
  <body>
    

    <button id="disable">Disable</button>
    <button id="enable">Enable</button>
    <button id="destroy">Destroy</button>
    <div id="drag"></div>
<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

    

      //make the specified element draggable
      $("#drag").draggable();
    

      //define function to toggle draggability
      function toggle(action) {
        (action == "destroy") ? $("#drag").draggable(action) 
.removeClass("drag") : $("#drag").draggable(action);   
      }     
    

•

•

•



Drag and Drop

[ 244 ]

      //define click handler for buttons
      $("button").click(function() {
        toggle($(this).attr("id"));
      });
    

     });
   </script>
  </body>
</html>

Save this as draggable13.html. The page contains three buttons, in addition to the 
draggable, which will be used to drive the method functionality in this example.

The script is also very straightforward. Whenever a button is clicked, we simply 
get the id of the button and call the toggle() function, passing in the id we just 
obtained from the button as an argument.

The toggle() function then calls the method specifying the string it received as an 
argument. This way, it doesn't matter which button gets clicked, the appropriate 
method will be called.

There is also an additional layer of checking that is done with the JavaScript ternary. 
Unfortunately, the functionality of the destroy method is, for all intents and 
purposes, synonymous with that of the disable method.

If the Destroy button is clicked, the function will remove the class name drag from 
the draggable so the object loses all of its style properties and vanishes from the page 
(although it still exists in the DOM).

There won't be a 'fun with' section that focuses solely on the use of the draggable 
component alone. Because draggable and droppable work so well together, we'll 
have a combined 'fun with' section involving both components at the end of the 
chapter. Let's continue by moving on to the droppable component.

Droppables
Making elements draggable adds a level of interactivity and versatility to your  
web pages unmatched by almost any other DHTML technique. Being able to define 
valid targets for draggable objects, by using the droppables component, throws  
logic into the mix as well. For a draggable to have some semblance of practicality,  
it should have somewhere that it can be dragged to which causes something else  
to happen.



Chapter 8

[ 245 ]

In a nutshell, this is what the droppables component of jQuery UI achieves. It gives 
you a place for draggable elements to be dropped. A region of the page is defined 
as a droppable, and when a draggable is dropped onto that region, something else 
is triggered. You can react to drops on a valid target very easily using the extensive 
event model.

Let's start with the default droppable implementation. In a new file in your text 
editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
droppable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Droppable Example 1</title>
  </head>
  <body>
    <div id="drag"></div>
    <div id="target"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //make the specified element draggable
       $("#drag").draggable();
    

      //make the target droppable
      $("#target").droppable();
     });
   </script>
  </body>
</html>



Drag and Drop

[ 246 ]

Save this as droppable1.html. The extremely basic stylesheet that is linked to in this 
example is simply an updated version of draggable.css and appears as follows:

#drag {
  background:url(../img/draggable.png) no-repeat;
  width:114px; height:114px;
  cursor:move; margin-bottom:5px;
  z-index:2;
}
#target {
  width:200px; height:200px;
  border:3px solid #000;
  position:absolute;
  right:20px; top:20px;
  z-index:1;
}

Save this as droppable.css in the styles folder. When run in a browser, the page 
should look like the following screenshot:

The default droppable implementation literally does nothing. In this example, the 
droppable is created (we can see this with the class name target ui-droppable 
which is added to the specified element at run time), but other than this, nothing 
happens at all, even when a draggable is dropped onto it.

When I say that nothing happens, I mean that we haven't added any code which will 
allow us to see things happen. Events are still firing throughout the interaction on 
both the draggable and the droppable. A little later in the chapter we'll look at these 
events in more detail.



Chapter 8

[ 247 ]

The files we used for this basic droppable implementation are:

jquery-1.2.6.js

ui.core.js

ui.draggable.js

ui.droppable.js

As you can see, the droppables component is an extension of draggables, rather than 
a completely independent component. Therefore, it requires the ui.draggable.js 
file in addition to its own source file. The reason our droppable does nothing is that 
we haven't configured it, so let's get on and do that next.

Configuring droppables
The droppable class is considerably smaller than the draggables class and there 
are less configurable properties for us to play with. The following table lists those 
properties available to us:

Property Usage
accept Sets the element(s) that the droppable will accept 
activeClass The class that is applied to the droppable while an accepted 

draggable is being dragged
greedy Used to stop drop events from bubbling when a draggable is 

dropped onto nested droppables
hoverClass The class that is applied to the droppable while an accepted 

draggable is hovering over the droppable
tolerance Sets the mode that triggers an accepted draggable being considered 

over a droppable.

In order to get a visible result from configuring the droppable, we're going to use a 
couple of these properties together in the following example that will highlight the 
droppable that accepts the draggable. Change droppable1.html so that it appears  
as follows (new code is shown in bold):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
droppable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">

•

•

•

•



Drag and Drop

[ 248 ]

    <title>jQuery UI Droppable Example 2</title>
  </head>
  <body>
    <div class="drag" id="drop1"></div>
    <div class="drag" id="drop2"></div>
    <div id="target"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

       //make the specified element draggable
       $(".drag").draggable();
    

       //define config object
       var dropOpts = {
         accept: "#drop1",
         activeClass: "activated"
       };
    

       //make the target droppable
       $("#target").droppable(dropOpts);
    

     });
   </script>
  </body>
</html>

Save this as droppable2.html. The accept property takes a string that can be used 
as a jQuery selector. In this case, we've specified that only the draggable with an id 
of drag1 should be accepted.

We've also specified the class name activated as the value of the activeClass 
property. This class name will be applied to the droppable when the draggable starts 
to be dragged. The hoverClass property can be used in exactly the same way to add 
styles when a draggable is over a droppable. The style rules that our activated class 
will pick up can be added to droppables.css:

.activated {
  border:3px solid #339900;
  background-color:#ccffcc;
}



Chapter 8

[ 249 ]

We should also add a class selector to the rule that gives the drag elements the 
background image and size styles. Change the first line of code to this:

#drag, .drag {

When we view this page in a browser, we find that as we move the top draggable, 
which has been accepted, the droppable picks up the activated class and turns 
green. However, when the second draggable is moved, the dropper does not 
respond. The following screenshot shows how the page should look:

In addition to a string value, the accept property can also take the name of a 
function as its value. This function will be executed one time for every draggable  
that is on the page when the page load. It must return either true, to indicate that  
the draggable is accepted, or false to indicate that it's not. To see the function value 
of the accept property in action, change droppable2.html to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
droppable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Droppable Example 3</title>
  </head>
  <body>



Drag and Drop

[ 250 ]

    <div class="drag" id="drop1"></div>
    <div class="drag" id="drop2"></div>
    <div id="target"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //make the specified element draggable
        $(".drag").draggable();
     

       //define config object
       var dropOpts = {
         accept: dragEnrol,

         activeClass: "activated"
       };
     

       //set drop1 as acceptable

       function dragEnrol(el) {

         return (el.attr("id") == "drop1") ? true : false;

       }
     

       //make the target droppable
       $("#target").droppable(dropOpts);
     

     });
   </script>
  </body>
</html>

Save this as droppable3.html. On the surface, the page works exactly the same  
as it did in the previous example. But this time, acceptability is being determined  
by the JavaScript ternary statement within the dragEnrol function, instead of a 
simple selector.

Note that the function is automatically passed an object containing useful data about 
the draggable element as an argument. This makes it is easy to obtain information 
about the draggable, like its id in this example. This callback can be extremely useful 
when advanced filtering, beyond a simple selector, is required.



Chapter 8

[ 251 ]

Tolerance
Drop tolerance refers to the way a droppable detects whether a draggable is over it 
or not. The default value is intersect. The following table lists the modes that this 
property may be configured with:

Mode Implementation
fit The draggable must be completely within the boundary of the 

droppable for it to be considered over it
intersect At least 25% of the draggable must be within the boundary of the 

droppable before it is considered over it
pointer The mouse pointer must touch the droppable boundary before the 

draggable is considered over the droppable
touch The draggable is over the droppable as soon as an edge of the 

draggable touches an edge of the droppable

So far, all of our droppable examples have used intersect, the default value of 
the tolerance property. Let's see what difference the other values for this property 
make to an implementation of the component. In a new page in your text editor, add 
the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
droppable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Droppable Example 4</title>
  </head>
  <body>
    <div id="drag"></div>
    <div id="target"></div>
     

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     



Drag and Drop

[ 252 ]

        //make the specified element draggable
        $("#drag").draggable();
     

        //define config object
       var dropOpts = {
         accept: "#drag",
         hoverClass: "over",
         tolerance: "pointer"
       };
     

       //make the target droppable
       $("#target").droppable(dropOpts);
     

     });
   </script>
  </body>
</html>

Save this as droppable4.html. We've specified the acceptable draggable for our 
droppable as any element with an id of drag. This property must be configured 
for the hoverClass property to have any effect. The hoverClass is necessary in 
this example so we can easily see when the draggable is considered to be over the 
droppable. It will be at this point that the styles specified in the over class are  
picked up.

The part of the draggable that is over the droppable is irrespective in this example.  
It is the mouse pointer that must cross the boundary of the droppable while a drag is 
in progress.

Note that the draggable must be active for our class to be applied. Now, with 
pointer specified as the value of the tolerance property, the mouse pointer, not 
just part of the draggable, must cross the droppable before our over class is applied:



Chapter 8

[ 253 ]

If you comment out the tolerance property and run the example, you'll see that 
with the default value, at least a quarter of the area of the draggable must be within 
the boundary of the droppable for our over class to be applied:

For good measure, the following screenshot shows how the touch mode works. 
Here, the draggable need only to touch the edge of the droppable before triggering 
our over class:

You should note that neither Safari nor Chrome currently implements the 
hoverClass property correctly so these style changes will not be visible 
in these browsers.



Drag and Drop

[ 254 ]

Droppable event callbacks
The properties that we've looked at so far configure various operational features of 
the droppable. In addition to these, there are almost as many callback properties 
so that we can define functions which react to different things occurring to the 
droppable and its accepted draggables. These properties are listed below:

Callback Property Invoked 
activate When an accepted draggable begins dragging
deactivate When an accepted draggable stops being dragged
drop When an accepted draggable is dropped onto a droppable
out When an accepted draggable is moved out of the bounds (including 

the tolerance) of the droppable
over When an accepted draggable is moved within the bounds (including 

the tolerance) of the droppable

Let's put together a basic example that makes use of these callback properties. We'll 
add a status bar to our droppable that reports the status of different interactions 
between the draggable and the droppable. In a new file in your text editor, create  
the following page:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
droppableCallbacks.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Droppable Example 5</title>
  </head>
  <body>
    <div id="drag"></div>
    <div id="target"></div>
    <div id="status"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>



Chapter 8

[ 255 ]

    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make the specified element draggable
        $("#drag").draggable();
    

        //define array of messages
        var dropOpts = {
          accept: "#drag",
          activate: eventCallback,
          deactivate: eventCallback,
          drop: eventCallback,
           out: eventCallback,
           over: eventCallback
        };
    

        //define object of status messages
        var eventMessages = {
          dropactivate: "A draggable is active",
          dropdeactivate: "A draggable is no longer active",
          drop: "An accepted draggable was dropped on the droppable",
          dropout: "An accepted draggable has been moved out of the 
droppable",
          dropover: "An accepted draggable is over the droppable"
        };
    

    

        //determine event and write status message
        function eventCallback(e) {
          var message = $("<p>").attr("id", "message").
text(eventMessages[e.type]);
          $("#status").empty().append(message)
        }
    

        //make the target droppable
        $("#target").droppable(dropOpts);
      });
    </script>
  </body>
</html>

Save this file as droppable5.html. The body of the page contains our new status bar, 
which in this case is a simple <div> element. Our configuration now has all of the 
callback properties defined, and for efficiency, they all point to the same function. 
Like the class name properties, the callbacks must be configured along with an 
accept value.



Drag and Drop

[ 256 ]

Following the configuration object, we define an object literal in which the name of 
each property is set to one of the event types that may be triggered. The value of each 
proptery is the message that we want to display for any given event.

Finally, we define our callback function. Like other components, the callback 
functions used in the droppables component are automatically passed two objects, 
the event object and an object representing the draggable. We use the type property 
of the event object to retrieve the appropriate message from the object. This is the 
same way we would access an associative array, and then use standard jQuery 
element creation and manipulation methods to add the message to the status bar. 

We also use a new stylesheet for this example. Create a new stylesheet in your text 
editor and add the following selectors and rules:

#drag {
  background:url(../img/draggable.png) no-repeat;
  width:114px; height:114px;
  cursor:move;
  margin-bottom:5px;
  z-index:2;
}
#target {
  width:250px; height:200px;
  border:3px solid #000; 
  position:absolute;
  right:20px; top:20px;
  z-index:1;
}
#status {
  width:230px;
  border:3px solid #000;
  position:absolute;
  top:223px; right:20px;
  color:#000;
  padding:10px;
}
#message {
  margin:0px;
  font-size:80%;
}



Chapter 8

[ 257 ]

Here's how the status bar should look like following an interaction:

After playing around with the page for some time, we see that one of our messages 
does not appear to be working. When the draggable is dropped onto the droppable, 
our drop message does not appear.

Actually, the message does appear, but because the deactivate event is fired 
immediately after the drop event, the drop message is overwritten right away.  
There are a number of ways we could work around this, the simplest would be  
not to define the deactivate property.

Greed
The final property that we are going to look at in connection with the droppable 
component is the greedy property. This property can be useful in situations where 
there is a droppable nested within another droppable. If we don't use this property, 
both droppables will fire events during certain interactions.



Drag and Drop

[ 258 ]

This is a situation faced at one point or another by most developers when working 
with traditional event models. It is a result of the way browsers propagate events 
(either event-bubbling or event-capturing, depending on the browser). The greedy 
property is an easy way to avoid event-bubbling problems in an efficient and  
cross-browser manner. Let's take a closer look at this property with an example. 
Create a new page in your text editor and add the following code to it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
droppableNesting.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Droppable Example 6</title>
  </head>
  <body>
    <div id="drag"></div>
    <div class="target" id="outer">
      <div class="target" id="inner"></div>
    </div>
    <div class="status"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //set opacity of targets
        $(".target").css({ opacity:"0.5" });
    

        //make the specified element draggable
        $("#drag").draggable();
    

        //define config object
        var dropOpts = {
         accept: "#drag",
         drop: dropCallback,
         greedy: true



Chapter 8

[ 259 ]

        };
    

        //determine event and write status message
        function dropCallback(e) {
          var message = $("<p>").attr("id", "message").text("The 
firing droppable was " + e.target.id);
          $("#status").append(message);
        }
    

        //make the target droppable
        $(".target").droppable(dropOpts);
      });
    </script>
  </body>
</html>

Save this example as droppable6.html. In this example, we have a smaller 
droppable nested in the center of a larger droppable. Their opacity is set using the 
standard jQuery library's css() method. In this example, this is neccesary because if 
we alter the z-index of the elements, so that the draggable appears above the nested 
droppables, the target element is not reported correctly.

Our configuration object sets the accept and drop properties, in addition to the 
greedy property, which makes the droppables keep all of the event activity for 
themselves. Our callback function is then used to add a simple message to the  
status bar notifying us which droppable was the target of the drop.

The CSS for this example is simple and builds on the CSS of previous examples:

#drag {
  background:url(../img/draggable.png) no-repeat;
  width:114px; height:114px;
  cursor:move;
  margin-bottom:5px;
}
#outer {
  width:300px; height:300px;
  border:3px solid #000;
  position:absolute;
  right:20px; top:20px;
  background-color:#99FF99;
}
#inner {
  width:100px; height:100px;
  border:3px solid #000;
  position:relative;



Drag and Drop

[ 260 ]

  top:100px; left:100px;
  background-color:#FFFF99;
}
#status {
  width:280px;
  border:3px solid #000;
  position:absolute;
  top:323px; right:20px;
  color:#000;
  padding:10px;
}
#message {
  margin:0px;
  font-size:80%;
}

Save this as droppableNesting.css in the styles folder. If you run the page, and 
drop the draggable onto one of the droppables, you should see something like this:



Chapter 8

[ 261 ]

The net effect of setting the greedy property to true is that the inner droppable 
prevents the event from escaping into the outer droppable and firing again. If 
you comment out the greedy property, and drop the draggable onto the center 
droppable, the status message will be inserted twice, once by the inner droppable 
and once by the outer droppable.

Droppable methods
Like the draggable component, droppable has only a few simple methods that we 
can make use of. This is another component that is primarily property-driven. The 
methods we have available are the same ones exposed by draggable:

destroy

enable

disable

They function, and are used in exactly the same way as draggable. We can 
temporarily disable the droppable using the disable method, re-enable the 
droppable with enable, and permanently remove (at least for the duration of  
the session) functionality with destroy.

Fun with droppables
We've now reached the point where we can have a little fun by putting what we've 
learned about these two components into a fully working example.

In our final drag and drop example, we're going to combine both of these 
components to create a simple maze game. It will be somewhat limited however. 
We're not going to have randomly generated maps and we won't be including AI 
enemies (the code payload would skyrocket were these to be a consideration).

The game will consist of a draggable marker which will need to be navigated 
through a simple maze to a specified droppable at the other end of the maze. We can 
make things a little more challenging so that if any of the maze walls are touched by 
the marker it will return to the starting position. 

•

•

•



Drag and Drop

[ 262 ]

The following screenshot shows what we're going to build:

Let's start with the mark-up. In a new page in your text editor, add the  
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/dragMaze.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Draggable Maze Game</title>
  </head>
  <body>
    <div id="maze">
      <div id="drag"></div>
      <div id="start"></div>
      <div id="end"></div>



Chapter 8

[ 263 ]

    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.draggable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.droppable.js"></script>
    <script type="text/javascript">
    

    </script>
  </body>
</html>

On the page we have our outer container, which we've given an id of maze. We  
have <div> elements for the starting and ending positions as well as for the drag 
marker. Our map will need walls. Rather than hand-coding the 46 required walls for 
the map pattern that we're going to use, I thought we could use jQuery to do this for 
us instead.

We left an empty <script> element at the bottom of our page. Let's fill that up next 
with the following code:

//function to execute when doc ready
$(function() {
    

  //add map walls
  for (var x = 1; x < 47; x++) {
    $("<div>").attr({
      id: "a" + x,
      class: "wall"
    }).appendTo("#maze");
  }
    

  //define drag config object
  var dragOpts = {
    containment: "#maze"
  };
    

  //make the specified element draggable
  $("#drag").draggable(dragOpts);
    

  //define drop config object
  var dropOpts = {
    accept: "#drag",
    tolerance: "touch",
    over: function(e, ui) {
    



Drag and Drop

[ 264 ]

      //remove drag object from page
      $("#drag").draggable("destroy").remove();
    

      //create new draggable at start
      $("<div>").attr("id", "drag").css({ left:0, top:0 
}).appendTo("#maze");
    

      //make the new element draggable
      $("#drag").draggable(dragOpts);
    }
  };
    

  //define end config object
  var endOpts = {
    accept: "#drag",
    over: function(e, ui) {
    

      //remove drag object from page
      $("#drag").draggable("destroy").remove();
    

      //congratulations
      alert("Wooot, you did it!");
    }
  };
    

  //make specified elements droppable
  $(".wall").droppable(dropOpts);
    

  //make end droppable
  $("#end").droppable(endOpts);
    

});

Let's review what the new code does. First, we use a simple for loop to add the walls 
to our maze. We use the plain-vanilla for loop in conjunction with standard jQuery 
to create 46 <div> elements and add id and class attributes to each one before 
appending them to the maze container.

We then define a simple configuration object for the draggable element. The only 
property we need to configure is the container property which constrains the 
draggable marker element within the maze. We can then go ahead and create the 
draggable behavior with the draggable constructor method.

Next, we can define the configuration object for the walls. Each wall is treated as a 
droppable that can accept the draggable marker element. We specify touch as the 
value of the tolerance property and add a callback function to the over property.  
Therefore, whenever the draggable touches a wall, the function will be executed.



Chapter 8

[ 265 ]

All we do in this function is destroy the current draggable and remove it from the 
page. We then create a new draggable back at the starting position and make it 
draggable once more. There is no cancelDrag method which causes the draggable  
to act as if it had been dropped, but we can easily replicate this behavior ourselves.

We then add another droppable configuration object which configures the ending 
point of the maze. All we configure for this droppable is the element it accepts, 
which again is the draggable marker, and specify a function to execute when the 
draggable is over the end droppable. In this function, we remove the draggable  
again and present the user with an alert.

Finally, we make the walls and the end target droppables. So far, this is probably  
the simplest JavaScript game ever written, but we also need to add some CSS for  
the maze, the draggable, and the starting and ending points.

We also need to style up the walls of the maze, but we can't use any simple 
JavaScript pattern for this. Unfortunately, we have to hard-code them. In another 
new file in your text editor, add the following selectors and rules:

#maze {
  width:441px; height:441px; border:10px solid #000000;
  background-color:#ffffff; position:relative;
}
#drag {
  width:10px; height:10px;
  background-color:#0000FF; z-index:1;
}
#start {
  width:44px; height:10px; background-color:#00CC00;
  position:absolute; top:0; left:0; z-index:0;
}
#end {
  width:44px; height:10px; background-color:#FF0000;
  position:absolute; top:0; right:130px;
}
.wall { background-color:#000000; position:absolute; }
#a1 { width:10px; height:133px; left:44px; top:0; }
#a2 { width:44px; height:10px; left:0; top:167px; }
#a3 { width:44px; height:10px; left:44px; top:220px; }
#a4 { width:89px; height:10px; left:0; bottom:176px; }
#a5 { width:94px; height:10px; left:0; bottom:88px; }
#a6 { width:10px; height:41px; left:40px; bottom:0; }
#a7 { width:10px; height:48px; left:88px; top:44px; }
#a8 { width:78px; height:10px; left:54px; top:123px; }
#a9 { width:10px; height:97px; left:88px; top:133px }



Drag and Drop

[ 266 ]

#a10 { width:10px; height:45px; left:40px; bottom:98px; }
#a11 { width:88px; height:10px; left:89px; bottom:132px; }
#a12 { width:10px; height:97px; left:132px; bottom:35px; }
#a13 { width:10px; height:44px; left:89px; bottom:142px; }
#a14 { width:92px; height:10px; left:40px; bottom:35px; }
#a15 { width:89px; height:10px; left:88px; top:34px; }
#a16 { width:10px; height:145px; left:132px; top:76px; }
#a17 { width:44px; height:10px; left:132px; top:220px; }
#a18 { width:133px; height:10px; left:132px; bottom:175px; }
#a19 { width:10px; height:107px; left:176px; bottom:35px; }
#a20 { width:10px; height:150px; left:176px; top:34px; }
#a21 { width:35px; height:10px; left:186px; top:174px }
#a22 { width:35px; height:10px; left:186px; bottom:88px; }
#a23 { width:122px; height:10px; left:186px; top:88px; }
#a24 { width:10px; height:44px; left:220px; top:0px; }
#a25 { width:10px; height:55px; left:220px; top:174px; }
#a26 { width:10px; height:45px; left:220px; bottom:130px; }
#a27 { width:133px; height:10px; right:88px; top:44px; }
#a28 { width:10px; height:168px; right:166px; top:98px; }
#a29 { width:44px; height:10px; right:176px; top:130px; }
#a30 { width:10px; height:98px; right:166px; bottom:35px; }
#a31 { width:133px; height:10px; right:88px; bottom:35px; }
#a32 { width:10px; height:133px; right:78px; top:44px; }
#a33 { width:44px; height:10px; right:88px; top:128px; }
#a34 { width:131px; height:10px; right:35px; top:171px; }
#a35 { width:43px; height:10px; right:123px; top:220px; }
#a36 { width:10px; height:91px; right:123px; bottom:85px; }
#a37 { width:131px; height:10px; right:35px; bottom:123px; }
#a38 { width:10px; height:55px; right:79px; top:220px; }
#a39 { width:44px; height:10px; right:0; top:122px; }
#a40 { width:10px; height:54px; right:79px; bottom:35px; }
#a41 { width:79px; height:10px; right:0; bottom:79px; }
#a42 { width:10px; height:45px; right:35px; top:44px; }
#a43 { width:43px; height:10px; right:35px; top:88px; }
#a44 { width:79px; height:10px; right:0; top:220px; }
#a45 { width:10px; height:44px; right:35px; bottom:132px; }; }
#a46 { width:10px; height:50px; right:35px; bottom:0; }



Chapter 8

[ 267 ]

Save this file as dragMaze.css in the styles folder. These two new files now 
form our simple game. It's limited, but you can see how well the drag and drop 
components work in this particular scenario.

We can now attempt to navigate the marker from the starting point to the finish by 
dragging it through the maze walls. If any wall is touched, the marker will return 
to the starting point. We could make it harder (by adding additional obstacles to 
navigate, etc), but for the purpose of having fun with jQuery UI draggables and 
droppables, our work here is complete.

Summary
We looked at two very useful library components in this chapter—the draggable  
and droppable components. Draggables and droppables, as we saw, are very  
closely related and have been designed to be used with each other. Each  
supporting and building upon the other enables us to create advanced and highly 
interactive interfaces.

We've covered a lot of material in this chapter, so let's recap on what we learned.  
We saw that the draggable behavior can be added to any elment on the page 
with zero configuration. There may be implementations where this is acceptable, 
but usually we'll want to use one or more of the component's extensive range of 
configurable properties. 

In the second part of this chapter, we saw that the droppables class allows us to 
easily define areas on the page that draggables can be dropped onto, and can react 
to things being dropped on them. We can also make use of a smaller range of 
configurable droppable properties to implement more advanced droppable behavior.

Both components feature an effective event model for hooking into the interesting 
moments of any drag and drop interaction. We also saw that each component  
has a simple set of methods for enabling or disabling drag or drop, and also a 
destroy method for removing the functionality (but not the underlying elements) 
from the page.





Resizing
In this chapter, we continue our journey through the low-level interaction helpers  
by paying a visit to the resizable component. We have already seen it in action  
when we looked at the dialog widget earlier in the book. This time, we're going  
to focus directly on this utility instead of looking at it incidentally. The dialog 
however is a perfect example of how useful the resizable component can be in  
a real-world implementation.

This is an interesting component because it's an interaction component as opposed 
to a full widget, and yet it still automatically adds DOM elements to the page. This 
bridges the gap between high-level widget and low-level interaction helper nicely. 

The resizable is a flexible component that can be used with a wide range of different 
elements. For example, <textarea> elements that may have different amounts of 
user-entered text in them could styled so the <textarea> would be quite small 
initially. Users could then resize it as they saw fit depending on how much text they 
entered into it.

Throughout the examples in this chapter, we'll mostly be using simple <div> 
elements so that the focus remains on the component and not on the underlying 
HTML. We will also look at some brief examples using <img> and <textarea> 
elements towards the end of the chapter.

In this chapter, we'll be looking at the following aspects of the component:

Implementing basic resizability
Skinning the resizable
The configurable properties available for use
Specifying which resize handles to add
Managing the resizable's minimum and maximum sizes
The role of resize helpers and ghosts
A look at the built-in resize animations
How to react to resize events

•
•
•
•
•
•
•
•



Resizing

[ 270 ]

The resizables component works well with other components and is very often used 
in conjunction with draggables. However, while you can easily make draggable 
components resizable (think dialog), the two classes are in no way related.

A basic resizable
Let's implement the basic resizable so we can see just how easy making elements 
resizable is when you use jQuery UI as the driving force behind your pages. In a  
new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/resize.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 1</title>
  </head>
  <body>
    <div class="resize"></div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make specified element resizable
        $(".resize").resizable();
      });
    </script>
  </body>
</html>



Chapter 9

[ 271 ]

Save this as resizable1.html. The basic constructor method, used with no 
arguments for the default implementation, uses the same simplified syntax as the 
rest of the library. This requires just one line of specific code for the example to 
work. Apart from the flora skin file, we also use a custom stylesheet to add basic 
dimension and borders to our <div>. Use the following CSS in a new stylesheet:

.resize {
  width:200px; height:200px;
  margin:30px 0 0 30px; border:1px solid #66cc00;
}

Save this file as resize.css in the styles folder. We've set the dimension properties 
because without them the <div> will stretch the width of the screen. We've also 
specified a border that matches the flora theme because the default implementation 
only adds resize handles to the right and bottom sides of the targeted element. The 
following screenshot shows how our basic page should look after the <div> has  
been resized:

The library files we use in this example are as follows:

flora.resizable.css

jquery-1.2.6.js

ui.core.js

ui.resizable.js

The component automatically adds the three required elements for the drag handles. 
It even takes care of adding the resize pointers for us when the mouse hovers over 
one of the sides of the element.

The element can be resized along each axis independently using the side handles. Or, 
it can be resized along both axis simultaneously using the corner handle. Once again, 
the library takes care of everything for us.

•

•

•

•



Resizing

[ 272 ]

I also want to mention that although flora provides an attractive set of resize 
handles for us, using the theme is not a mandatory requirement. If an element is 
made resizable, and the flora theme is not specified, the element will automatically 
be given a light-grey border that can be used to resize the element. If you comment 
out the link to the flora stylesheet in the previous example, you should see the faint 
grey borders, as in the following screenshot:

Please note that I've darkened the grey borders slightly so that they are clearer in  
the screenshot. The automatic resize borders are fainter than this when viewed  
in a browser.

The default theme can also be used with the resizable component. With the 
default theme, no borders are added to the resizable element. However, it does get 
a little corner image added to it to highlight the fact that it is resizable. The image 
used for the corner is exactly like the image used in the Safari browser, as shown  
in the following screenshot:



Chapter 9

[ 273 ]

Skinning the resizable
We looked at creating new images for resize handles earlier in the book when we 
played with the dialog widget. Let's briefly look at how this can be done once more 
in this next example. Change resize.css so that it appears as follows:

.resize {
  width:200px; height:200px;
  margin:30px 0 0 30px;
  border:1px solid #3fa0ff;
}
.ui-resizable-e {
  background:url(../img/resizable/resizable-e.gif) repeat right 
center;
}
.ui-resizable-s {
  background:url(../img/resizable/resizable-s.gif) repeat center top;
}
.ui-resizable-se {
  background:url(../img/resizable/resizable-se.gif) repeat;
}

Save this as resizeSkin.css in the styles folder. Link to this new page in 
resizable1.html and resave the file as resizable2.html. When we view the new 
file in a browser, we see that the green theme has been replaced with our blue theme. 
All it took was three new images and three overriding style rules as you can see here:



Resizing

[ 274 ]

The previous screenshot shows the class names of the elements we are targeting  
with our stylesheet. It also has the names of the images we are using (in brackets)  
to clarify how we are using the CSS to override style rules for specific elements.

Of course, in this example we are only using three handles. We can choose to use 
more than three, in which case we would need additional images and style rules  
to complete the new skin.

Resizable properties
The following table lists the configurable properties we have at our disposal when 
working with the resizable component:

Property Default 
Value

Usage

animate false Animates the resizable element to its new size
animateDuration slow Sets the speed of the animation; values 

can be integers specifying the number of 
milliseconds, or one of the string values slow, 
normal, or fast

animateEasing swing Adds easing effects to the resize animation
alsoResize false Use with a jQuery selector to resize another 

element when the resizable element  
is resized

aspectRatio false Makes all edges of the resizable the same 
length at all times, maintaining the aspect ratio 
of the element.

autoHide false Hides the resize handles until the resizable is 
hovered over with the mouse pointer

cancel input Stops specified elements from being resized
containment false Constrains the resizable within the boundary 

of the specified container element
delay 0 Sets a delay in milliseconds from when the 

pointer is clicked on a resizable handle to 
when the resizing begins

disableSelection true Stops handles and resize helper elements from 
being selected

distance 1 Sets the number of pixels the mouse pointer 
must move with the mouse button held down 
before resizing begins



Chapter 9

[ 275 ]

Property Default 
Value

Usage

ghost false Shows a substitute element while the resizing 
is taking place

grid false Accepts an object specifying x and y 
coordinates to snap the resize to while resizing 
is taking place

handles { e, se, 
s }

Defines which handles to use for resizing and 
uses an object specifying the handle names (n, 
s, e, w, etc) as the keys and jQuery selectors or 
DOM nodes as the values

helper null Enables a helper element which shows the 
resize while it is in progress and is very similar 
to, but simpler than, the ghost property

knobHandles false Uses simple handles instead of image-based 
handles

maxHeight Sets the maximum height the resizable may be 
changed to

maxWidth Sets the maximum width the resizable may be 
set to

minHeight Sets the minimum height the resizable may be 
changed to

minWidth Sets the minimum width the resizable may be 
set to

preserveCursor true Shows the resizing mouse pointer while 
hovering over a resize handle

preventDefault true Prevents Safari's automatic <textarea> 
resizing feature

proportionallyResize false Accepts an array of jQuery selectors or DOM 
nodes that should be proportionally resized 
when the resizable is resized

transparent false No resize handles are shown either before, 
during, or after an interaction

Configuring resize handles
Thanks to the handles configuration property, specifying which handles we 
would like displayed is exceptionally easy. In a new file in your text editor, add the 
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Resizing

[ 276 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/resize.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 3</title>
  </head>
  <body>
    <div class="resize">
      <div class="ui-resizable-handle ui-resizable-w"></div>
      <div class="ui-resizable-handle ui-resizable-n"></div>
      <div class="ui-resizable-handle ui-resizable-nw"></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //create config object
        var resizeOpts = {
          handles:{
            w: ".ui-resizable-w",
            n: ".ui-resizable-n",
            nw: ".ui-resizable-nw"
          }
        }
    

        //make specified element resizable
        $(".resize").resizable(resizeOpts);
      });
    </script>
  </body>
</html>

Save this as resizable3.html. The underlying HTML for this example has changed 
with the use of the handles property. When using this property, it is essential to 
supply elements to be used as the drag handles. We cannot just leave this up to the 
component to sort out.

Within our resize <div>, we have therefore added three new we have therefore added three new <div> elements whichelements which 
will be transformed by the component into the resize handles. Each has been given a 
class of ui-resize-handle and the appropriate compass-point class name.



Chapter 9

[ 277 ]

The value that each of these properties takes in this example is a jQuery class 
selector. This will match class name of the element that is to be used as the handle, 
although they can also accept DOM nodes. The following screenshot shows how  
the resizable should now appear:

We've used the same class names as those used by the component, so our handles 
will automatically pick up the flora styling. The handles property itself expects a 
literal object consisting of one or more of the compass-point properties. These are 
very similar to the compass-point properties we used with the dialog widget back  
in chapter 4.

The value of each property should match the class name of the element which is to 
become a handle. The following image shows which part of the resizable matches 
each compass-point property. The class names used to pick up the flora styling  
are also shown in brackets:



Resizing

[ 278 ]

The all Property
Apart from an object of compass-points and class names, we can  
also supply the string all to the handles property. This will add  
resize handles to all edges of the resizable element. Note that you  
don't need to use underlying HTML elements in your markup when 
using the all property in conjunction with the flora stylesheet  
(see resizable3allHandles.html for clarification).

There are a couple of additional properties that relate to resize handles and how 
they are displayed. We'll look at these two properties next. Remove the three handle 
<div> elements from the resizable <div> and change the configuration object in 
resizable3.html so that it appears as follows:

//create config object
var resizeOpts = {
  knobHandles: true,
  autoHide: true
};

Save this version as resizable4.html. We simply set both the knobHandles and 
autoHide properties to true in this example. Let's explore what each property does. 
Setting knobHandles to true enables the use of simple square resize handles instead 
of the more complex flora handles. Setting autoHide to true hides the resize 
handles until the mouse pointer moves onto the resizable element.

The following screenshot shows the small square resize handles given to the 
component by the knobHandles property:



Chapter 9

[ 279 ]

Defining size limits
So far, our resizable has been devoid of any content of its own. In the following 
example, we can add some simple layout text to enhance our learning experience. 
Change resizable4.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/resize.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 5</title>
  </head>
  <body>
    <div class="resize">
      <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Suspendisse auctor ligula vel odio. Nam et sem vitae nibh convallis 
euismod. Aenean vitae urna quis augue adipiscing hendrerit. Nam 
faucibus. Phasellus eros. Ut bibendum eros at nibh. Sed erat. Aenean 
id enim vitae leo aliquet rutrum. Mauris fringilla euismod orci. 
Morbi tempus purus eget felis. Sed dui eros, tempor id, iaculis vel, 
pretium eget, nunc. Pellentesque vehicula tincidunt arcu. Ut a velit. 
In dapibus, lacus vitae lobortis dictum, libero pede venenatis magna, 
eu sagittis nunc erat sed ante. Pellentesque habitant morbi tristique 
senectus et netus et malesuada fames ac turpis egestas. Phasellus est 
dolor, mollis congue, ullamcorper eu, auctor ut, augue.</p>
    </div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
     //function to execute when doc ready
     $(function() {
    

       //create config object
       var resizeOpts = {
        maxWidth: 500,

        maxHeight: 500,

        minWidth: 100,

        minHeight: 100



Resizing

[ 280 ]

      }
    

       //make specified element resizable
       $(".resize").resizable(resizeOpts);
     });
   </script>
  </body>
</html>

Save this as resizable5.html. This time, the configuration object uses the 
dimension boundary properties to specify minimum and maximum heights and 
widths that the resizable may be adjusted to. These properties take simple integers  
as their values, which are then converted to pixels by the component.

There is one thing you may notice now that our resizable has content in it. If you 
shrink the resizable element so that it is smaller than the content it contains, the content 
itself is still visible and simply overlaps the boundaries of the resizable. We can fix this 
easily enough by adding the style rule overflow:hidden to our stylesheet.

This is really the only sensible value to give the overflow style attribute when we 
use the resizable component. Setting overflow to none or automatic does nothing 
in this example, and setting it to scroll adds the highly unattractive standard OS 
scrollbars to the resizable element.

You should note however that Internet Explorer will break the resizable if we use 
overflow:hidden and there is overflow content. We could reduce the amount of 
content within the resizable or make the resizable bigger by default to overcome this 
difficulty. Try the page out and you should notice the resizable will now keep the 
dimensional properties that we specified in our configuration object.

Resize ghosts
Ghost elements are very similar to the proxy element we used when we looked at  
the draggable and droppable components in the previous chapter. They can also play 
a part in the resizables component as well. A ghost element can be enabled with the 
configuration of just one property. Let's see how this is done. Change resizable5.
html to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/resize.css">



Chapter 9

[ 281 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 6</title>
  </head>
  <body>
    <div class="resize">
      <p> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Suspendisse auctor ligula vel odio. Nam et sem vitae nibh convallis 
euismod. Aenean vitae urna quis augue adipiscing hendrerit. Nam 
faucibus. Phasellus eros. Ut bibendum eros at nibh. Sed erat. Aenean 
id enim vitae leo aliquet rutrum. Mauris fringilla euismod orci. 
Morbi tempus purus eget felis. Sed dui eros, tempor id, iaculis vel, 
pretium eget, nunc. Pellentesque vehicula tincidunt arcu. Ut a velit. 
In dapibus, lacus vitae lobortis dictum, libero pede venenatis magna, 
eu sagittis nunc erat sed ante. Pellentesque habitant morbi tristique 
senectus et netus et malesuada fames ac turpis egestas. Phasellus est 
dolor, mollis congue, ullamcorper eu, auctor ut, augue.</p>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

         //create config object
        var resizeOpts = {
          ghost: "true"
                }
    

        //make specified element resizable
        $(".resize").resizable(resizeOpts);
      });
    </script>
  </body>
</html>

Save this file as resizable6.html. All that is needed to enable a resize ghost is to set 
the ghost property to true. No additional underlying HTML or styling is required. 
Everything is handled by the component for us.



Resizing

[ 282 ]

The next screenshot shows how the resizable ghost will appear while it is visible:

Constraining the resize and maintaining ratio
The component makes it easy to ensure that a resized element is constrained to its 
container element. This is great if we have other content on the page that we don't 
want moving around all over the page during a resize interaction.

We can also ensure that the specified element is resized symmetrically along both the 
x and y axis. This is known as maintaining its aspect ratio and makes the component 
very useful when resizing images. We can make use of both properties in our next 
example. Change resizable6.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/
resizeContainer.css">



Chapter 9

[ 283 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 7</title>
  </head>
  <body>
    <div class="container">
      <img id="resize" src="img/resizable/moon.jpg" alt="Moon 
Landing">
    </div>
    

<script type="text/javascript" src="jqueryui1.6rc2/jquery-1.2.6.js"> 
</script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //create config object
        var resizeOpts = {
          containment:".container",
          aspectRatio: true
        }
    

        //make specified element resizable
        $("#resize").resizable(resizeOpts);
      });
    </script>
  </body>
</html>

Save this as, you've guessed it, resizable7.html. Before we look at the properties 
used in this example, I should point out that we also use some different CSS for this 
example. In a new file in your text editor, add the following code:

.container {
  width:600px; height:600px; border:1px solid #66cc00;
  padding:10px;
}
#resize { width:300px; height:300px; }

Save this as resizeContainer.css in the styles folder. Now, about those 
configuration properties. The containment property allows us to specify a container 
for the resizable which will limit how large the resizable can be made, forcing it to 
stay within its boundaries. We specify a jQuery selector as the value of this property.



Resizing

[ 284 ]

The other property that we've used in this example is aspectRatio, which makes 
each side of the resizable stay the same size. This ensures our resizable element 
will always be a square as opposed to a rectangle. When you run this page in your 
browser, you should see that the original aspect ratio of the image is preserved, and 
that the image cannot be made bigger than its container:

Resizable animations
The resizable API exposes three properties related to animations, which are the 
animate, animateDuration, and animateEasing properties. By default, animations 
are switched off. However, we can easily enable them to see how they enhance the 
component. Create the following new page in your text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Chapter 9

[ 285 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
resizeAnimate.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 8</title>
  </head>
  <body>
    <textarea id="resize"></textarea>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {

        //define config object
        var resizeOpts = {
          helper: "proxy",
          knobHandles: true,
          animate: true,
          animateDuration: "fast"  
        };

        //make specified element resizable
        $("#resize").resizable(resizeOpts);
      });
    </script>
  </body>
</html>

Save this as resizable8.html. This example is based on a <textarea> as this can be 
a useful element to make resizable. The configuration object we use in this example 
starts with the helper property. When using animations, the resizable element is not 
resized until after the resize interaction has ended.

The helper property is useful to show the user the new size of the resizable while 
the resize is taking place. The value we give to the helper property becomes the 
class name that is applied to the helper element, which we can use to target with 
some minimal styles. In principle, the resizable helper is very similar to the ghost, 
but it does not show the inner content of the resizable.



Resizing

[ 286 ]

We use the knobHandles property again, simply for the purpose in this example that 
it looks better than the flora resize handles. We'll also need some custom styling for 
them, which we'll add in a moment.

All we need to do to enable animation is set the animate property to true. That's it, 
no further configuration is required. Another option we have is to set the speed of the 
animation, which we have done in this example, by supplying the animateDuration 
property. This can either be an integer to represent the number of milliseconds the 
animation can last for, or using one of the strings slow, normal, or fast.

Resizable callbacks
Like other components of the library, resizable defines a selection of custom events 
and allows us to easily execute functions when these events occur. This makes the 
most of interactions between your visitors and the elements on your pages. Resizable 
defines the following callback properties:

Property Triggered 
resize When the resizable is in the process of being resized
start When the resize interaction begins
stop When the resize interaction ends

Hooking into these custom methods is just as easy for resizables as it has been for the 
other components of the library we have looked at. Let's explore a basic example to 
highlight this fact. Create the following new page in your text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">
    <link rel="stylesheet" type="text/css" href="styles/resize.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Example 9</title>
  </head>
  <body>
    <div class="resize">
      <p> Lorem ipsum dolor sit amet, consectetuer adipiscing elit.  
      Suspendisse auctor ligula vel odio. Nam et sem vitae nibh  
      convallis euismod.</p>
    </div>
    



Chapter 9

[ 287 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var resizeOpts = {
          stop: reportNewSize  
        }
    

        //display new size of resizable
        function reportNewSize() {
          //create and display the tip
    

          $("<div>").addClass("tip").text("The resizable is now " + 
$(this).height() + " pixels high, and " + $(this).width() + " pixels 
wide").css({
            border: "2px solid #66cc00",
            fontSize: "80%",
            fontWeight: "bold",
            position: "absolute",
            display: "none",
            left: 38,
            marginTop: 5,
            width: $(this).width() - 2
          }).appendTo("body").fadeIn("slow", goAway);    
          //hide the tip
          function goAway() {
            setTimeout("$('.tip').fadeOut('slow')", 2000);
          }
        }
        //make specified element resizable
        $(".resize").resizable(resizeOpts);
      });
    </script>
  </body>
</html>



Resizing

[ 288 ]

Save this as resizable9.html. We use the stop property to specify a callback 
function that will be executed as soon as the resize interaction stops. Our callback 
simply creates a new <div> element and adds a string of text to it. It then sets  
some of the new element's CSS properties before appending it to the page after  
the resizable and calling the standard jQuery fadeIn() method.

We can also easily use a second callback function, called at the end of the fadeIn 
effect, which hides the new <div> after a specified length of time. The following 
screenshot shows how our page looks before the <div> fades away:

Like the other library components, these callbacks can automatically receive up  
to two arguments which are the event object, and an object containing useful 
properties of the resizable.

The second object has two properties we can make use of. The options property, 
which gives you access to the options used to initialize the resizable, and the axis 
property, which tells us which handle was dragged. We didn't need to use either  
of these properties in the last example however, so referred to the $(this)  
object instead.



Chapter 9

[ 289 ]

Resizable methods
This component comes with the three basic methods found with all of the interaction 
components of the library, namely the destroy, disable, and enable methods. 
These work and are used in the same way as the methods by the same names that 
come with the other interaction components. Therefore, we won't be looking at these 
in any great detail in this chapter.

Fun with resizable
For our final resizable example, let's look at combining this component with one 
of the widgets that we looked at in a previous chapter. This will help us see how 
compatible this component is with the rest of the library. We'll be working with the 
tabs component in the following example. The following screenshot shows the page 
we will end up with:

In your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.resizable.css">



Resizing

[ 290 ]

    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/
resizableTabsTheme.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Resizable Tabs Example</title>
  </head>
  <body>
    <ul id="myTabs">
      <li><a href="#0"><span>Tab 1</span></a></li>
      <li><a href="#1"><span>Tab 2</span></a></li>
    </ul>
    <div class="tab" id="0">This is the content panel linked to the 
first tab, it is shown by default.</div>
    <div class="tab" id="1">This content is linked to the second tab 
and will be shown when its tab is clicked.</div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.resizable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
      //define function to be executed on document ready
      $(function(){

        //set initial tab size
        var newHeight = 100;
        var newWidth = 300;

        var tabOpts = {
          show: setSize
        }

        function setSize(e, ui) {
          //set the dimensions of the tab
          var panel = ui.panel;
          $(panel).height(newHeight).width(newWidth);  
        }

        //create the tabs
        var tabs = $("#myTabs").tabs(tabOpts);

        //define config object for resizeable
        var resizeOpts = {
          autoHide: true,
          stop: resizeSibling
        };

        //resize the other tab at the same time



Chapter 9

[ 291 ]

        function resizeSibling() {

          //get the new dimensions
          newHeight = $(this).height(); 
          newWidth = $(this).width();
        }

        //make tabs resizable
        $(".tab").resizable(resizeOpts);
      });
    </script>
  </body>
</html>

Save this as resizableTabs.html. We also link to a new stylesheet for this example. 
It's similar to those used in previous tab and resizable examples and contains the 
following code:

.ui-tabs-panel {
  border:1px solid #0000cc;
  background:#d8d8f7;
}
.ui-tabs-nav a, .ui-tabs-nav a span {
  background:url(../img/tab-sprite.gif) no-repeat;
}
.ui-tabs-nav a {
  background-position:100% 0%;
}
.ui-resizable-e {
  background:url(../img/resizable/tabResizable-e.gif) repeat right 
center;
  width:7px;
}
.ui-resizable-s {
  background:url(../img/resizable/tabResizable-s.gif) repeat center 
top; height:7px;
}
.ui-resizable-se {
  background:url(../img/resizable/tabResizable-se.gif) repeat 0%;
}

This can be saved as resizableTabsTheme.css in the styles folder. Making the 
tabs widget resizable is extremely easy and only requires calling the resizable 
method on tab's underlying <ul>.



Resizing

[ 292 ]

We're using two configuration objects in this example. One object for each 
component. Apart from setting the autoHide property for the resizable in our 
configuration object, we also define a function that should be called when the stop 
event occurs. The function executed whenever a tab is shown is to set the dimensions 
of the tab panel that has just been shown.

Because this function will be called when the page loads, as well as on each 
subsequent tab display, we also specify initial values that are passed to the  
width and height jQuery methods.

The second function, which is executed whenever a resize occurs, simply gets the 
new size of the tab that has been resized and saves the new width and height values 
to our two variables for later use (such as whenever a tab is shown). Together, these 
functions allow you to resize a tab, and have all tabs assume the new size.

Summary
In this chapter we covered resizables. This is a component which allows us to easily 
resize any on-screen element. It dynamically adds resize handles to the specified 
sides of the target element and handles all of the tricky DHTML resizing for us, 
neatly encapsulating the behaviour into a compact, easy-to-use class.

We first looked at the different theming options available when using resizable, and 
how easy it is to create our own theme by overriding the original styling of the flora 
or default themes.

We then looked at some of the configurable properties we can use with the widget, 
such as how to specify which handles to add to the resizable, and how the minimum 
and maximum sizes of the element can be limited.

We briefly looked at how to maintain an image's aspect ratio while it is being  
resized. We also explored how to use ghosts, helpers, and animations to improve  
the usability and appearance of the resizable component.

We looked at the event model exposed by the component's API and how we can 
react to elements being resized in an easy and effective way. Our final example 
explored resizable's compatibility with other widgets in the library.



Selecting
The selectables component allows you to define a series of elements that can be 
'chosen' by dragging a selection square around them or by clicking them, as if they 
were files in Windows Explorer (or Finder on the Mac). In this way, elements on the 
page can be treated as file-like objects, allowing either single or groups of elements to 
be selected.

A selection square has been a standard part of modern operating systems for a long 
time. For example, if you wanted to select some of the icons on your desktop, you 
could hold the mouse button down on a blank part of the desktop and drag a square 
around the icons you wanted to select.

The selectables interaction helper adds this same functionality to our web pages, 
which could be very useful in a variety of situations. This is yet another example 
of how the web is increasingly becoming less distinct from the desktop as an 
application platform.

Topics that will be covered in this section include:

Creating the default implementation
How selectable class names reflect the state of selectables
Filtering selectable elements
Working with selectable's built-in callback functions
A look at selectable's methods

•

•

•

•

•



Selecting

[ 294 ]

Basic implementation
A demonstration that you can play with will tell you more about the functionality 
provided by this library component than merely reading about it. The first thing we 
should do is invoke the default implementation to get a glimpse at the effects of this 
component. In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Selectable Example 1</title>
  </head>
  <body>
    <ul id="selectables">
      <li>This list item can be selected</li>
      <li>This list item can be selected</li>
      <li>This list item can be selected</li>
      <li>This list item can be selected</li>
      <li>This list item can be selected</li>
    </ul>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make specified elements selectable
        $("#selectables").selectable();
      });
    </script>
  </body>
</html>

Save this as selectable1.html and run it in a browser. You should observe 
that you can drag a selection square around one or more of the list items. The list 
items don't do anything once they are selected of course, as this is only the default 
implementation. We simply call the selectable constructor method on the parent 
list element and then all of its child <li> elements are made selectable.



Chapter 10

[ 295 ]

Note that there is no default or flora styling associated with the selectables 
component. Other default behavior includes clicking on individual elements causes 
only them to be selected and clicking outside of the selected elements will deselect 
them. Holding down the Ctrl key while clicking will enable multi-select. The 
following screenshot shows the selected square enclosing the list items:

The minimum set of library files we need for a selectable implementation is:

jquery-1.2.6.js

ui.core.js

ui.selectable.js

Apart from building selectables from list items, we can also build them from other 
elements, such as a collection of <div> elements:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
selectable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Selectable Example 2</title>
  </head>
  <body>

•

•

•



Selecting

[ 296 ]

    <div id="selectables">
      <div>This div can be selected</div>
      <div>This div can be selected</div>
      <div>This div can be selected</div>
      <div>This div can be selected</div>
      <div>This div can be selected</div>
      <div>This div can be selected</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make specified elements selectable
        $("#selectables").selectable();
      });
    </script>
  </body>
</html>

Save this as selectable2.html. Everything is essentially the same as before. 
We're just basing the example on different elements, using <div> instead of <li>. 
However, due to the nature of these elements, we should add a little basic styling  
so that we can see what we're working with.

In a new file in your text editor, add the following code:

#selectables div {
  width:160px; height:25px;
  padding:5px 0 0 10px; margin:10px 0 0 10px;
  border:1px solid #000;
}



Chapter 10

[ 297 ]

Save this as selectable.css in your styles folder. It's not much, but it  
helps to clarify the individual selectables in the example, as shown in the  
following screenshot:

Selectee class names
The elements which are made selectable are all initially given the class ui-selectee. 
While the selecting square is actually around selectable elements, they are given the 
class ui-selecting. Once the select interaction ends, any selectables that have been 
selected are given the class ui-selected. A previously selected element that is not 
part of the current selection is given the class ui-unselecting.

The component also makes it very easy to add custom styling to show when 
elements are either in the process of being selected or have been selected. Let's  
add some additional styling now to reflect the selecting and selected states. Add  
the following new selectors and rules to selectable.css:

#selectables div.ui-selecting {
  border:1px solid #66CC00;
}
#selectables div.ui-selected {
  background:#66CC00;
}



Selecting

[ 298 ]

With the addition of this simple CSS, we can add visual cues to elements which are 
part of the current selection, both during and following a select interaction. The 
following screenshot shows that some elements have been selected:

Configurable properties of the selectable 
class
The selectable class is quite compact, with relatively few configurable properties 
compared to the other interaction helpers. The following properties are available  
for configuration:

Property Default Value Usage
autoRefresh true Automatically refreshes the size and position of each 

selectable at the start of a select interaction
filter "*" Used to specify child elements to make selectable



Chapter 10

[ 299 ]

Filtering selectables
There may be situations when we don't want to allow all of the elements within the 
targeted container selectable. In this situation, we can easily make use of the filter 
property to nominate specific elements, based on a CSS selector, that we want 
selecting to be enabled on. Change selectable2.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
selectableFiltered.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Selectable Example 3</title>
  </head>
  <body>
    <div id="selectables">
      <div class="unselectable">This div can't be selected</div>
      <div class="selectable">This div can be selected</div>
      <div class="selectable">This div can be selected</div>
      <div class="selectable">This div can be selected</div>
      <div class="selectable">This div can be selected</div>
      <div class="selectable">This div can be selected</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var selectableObj = {
           filter: ".selectable"
        }
    

        //make specified elements selectable
        $("#selectables").selectable(selectableObj);
      });
    </script>
  </body>
</html>



Selecting

[ 300 ]

Save this version as selectable3.html. In the underlying mark-up, we have given 
different class names to different elements. This is based on whether we want them 
to be selectable or not. In the JavaScript, we define a configuration object containing 
the filter property. The value of this property is the class selector of the elements 
that we want to be selectable.

We also used a new stylesheet in this example to give the unselectable elements  
their own styling. This new stylesheet is the same as the previous stylesheet with  
the addition of the following selector and rules:

.unselectable { background-color:#999999; color:#666666; }

The new stylesheet can be saved as selectableFiltered.css. The following 
screenshot shows how the page should look:



Chapter 10

[ 301 ]

Selectable callbacks
In addition to the two standard properties of the selectable API, there are also a 
series of properties that can be used to specify executable callback functions at 
specific points during a select interaction. These properties are as follows:

Property Triggered When
selected The select interaction ends and each element added to the selection 

triggers the callback
selecting Each selected element triggers the callback during the select interaction
start A select interaction begins
stop This is fired once regardless of the number of items selected as the select 

interaction ends
unselected Any elements that are part of the selectable but are not selected during 

the interaction will fire this callback
unselecting Unselected elements will fire this during the select interaction

Like the draggable and droppable components that we looked at earlier, selecting 
really only becomes useful when something happens to the elements once they have 
been selected. Let's put some of these callbacks to work so that we can appreciate 
their use. Change selectable3.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
selectable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Selectable Example 4</title>
  </head>
  <body>
    <div id="selectables">
      <div id="selectabl1" class="selectable">This div can be 
selected</div>
      <div id="selectabl2" class="selectable">This div can be 
selected</div>
      <div id="selectabl3" class="selectable">This div can be 
selected</div>
      <div id="selectabl4" class="selectable">This div can be 
selected</div>
      <div id="selectabl5" class="selectable">This div can be 
selected</div>



Selecting

[ 302 ]

      <div id="selectabl6" class="selectable">This div can be 
selected</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var selectableObj = {
          selected: function(e, ui) {
            $("#" + ui.selected.id).text("I have been selected!");
          },
          unselected: function(e, ui) {
            $("#" + ui.unselected.id).text("This div can be 
selected");
          },
          start: function(e) {
            $("<div>").attr("id", "tip").text("Drag the lasso around 
elements, or click to select").css({
              position:"absolute", backgroundColor:"#ffffcc",
              border:"1px solid #3366ff", width:"310px",
              height:"20px", textAlign:"center",
              left:e.pageX, top:e.pageY – 30
            }).appendTo($("body"));
          },
          stop: function() {
            $("#tip").fadeOut();  
          }
        }
    

        //make specified elements selectable
        $("#selectables").selectable(selectableObj);
      });
    </script>
  </body>
</html>

Save this as selectable4.html. To the HTML elements, we've added id attributes 
so that we can easily target specific elements. In the <script>, we've added 
anonymous functions to the selected, unselected, start, and stop properties. 
These will be executed at the appropriate times during an interaction.



Chapter 10

[ 303 ]

As with other components, these functions are automatically passed two objects. 
The first is the original browser event object and the other represents the selectable 
element. However, not all callbacks can successfully work with the second  
object – start and stop for example.

When a <div> is selected, we change its inner text to reflect the selection using 
the selected anonymous function. We are able to get the id of the element that 
has been selected using the selected.id property of the second object that is 
automatically passed to our function. When an element is unselected, we set the  
text back to its original value using the same technique.

We can also alter the inner text of any selectable that hasn't  been selected using the 
unselected function. This could be useful for letting our visitors know that the 
element could be selected if they wanted to include it in the selection.

At the start of any interaction, we create a little tool tip that is appended to the 
<body> of the page, slightly offset from the mouse pointer, using the start 
anonymous function. We can get the pointer coordinates using the e (event) object, 
which is passed as the first argument to our callbacks. At the end of the selection,  
we then remove the tool tip using the stop property..

The selecting and unselecting callback properties work in exactly the same way. 
For an example of how they work, we could use the following <script> block:

<script type="text/javascript">
  //function to execute when doc ready
  $(function() {
     

    //define config object
    var selectableObj = {
      selecting: function(e, ui) {
        $("#" + ui.selecting.id).text("I am part of the selection");
      },
      unselecting: function(e, ui) {
        $("#" + ui.unselecting.id).text("I was part of the 
selection");
        }
    }
     

    //make specified elements selectable
    $("#selectables").selectable(selectableObj);
  });
</script>

Save this as selectable5.html. This time we use the selecting and unselecting 
properties to specify anonymous functions, which again, change the inner text of the 
elements at certain times during an interaction. 



Selecting

[ 304 ]

We do the same type of thing as before using the same techniques. This time, we're 
just using different callbacks and different properties of the objects passed to them. 
The effects of these callbacks are shown in the following screenshot:

The second object passed to any of the selectable callbacks contains a property 
relating to the type of custom event. For example, the selected callback receives an 
object with a selected property which can be used to gain information about the 
element that was added to the selection. All callbacks have a matching property that 
can be used in this way.

Selectable methods
The methods that we can use to control the selectables component from our code  
are similar to the methods found in the other interaction components and follow  
the same pattern of usage. These are listed in the following table:

Method Usage
disable Disables selectable functionality
enable Re-enables selectable functionality
refresh Manually refreshes the positions and sizes of selectables and is used 

when autoRefresh is set to false.
toggle Toggles the enabled and disabled states of selectables
destroy Permanently removes selectable functionality



Chapter 10

[ 305 ]

Two new methods that are unique to this component are the toggle and refresh 
methods. When the autoRefresh property is set to false, the refresh method can 
be used to manually perform a refresh at certain times.

Setting the autoRefresh property to false can yield performance gains when there 
are many selectables on the page. However, there will still be times when you will 
need to refresh the size and positions of the selectables, which is exactly what the 
refresh method does.

The toggle method allows you to easily switch between enabled and disabled states, 
without having to have separate code routines for the two states, and without having 
to do any kind of state detection.

If the selectables are currently enabled, toggle will disable them. If they are 
currently disabled, toggle will enable them. Using this method is child's play, but 
we haven't come across it in any of the other components. So, let's take a quick look 
at it in the wild. Create the following new page in your text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
selectable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Selectable Example 6</title>
  </head>
  <body>
    <div id="selectables">
      <div id="selectabl1" class="selectable">This div can be 
selected</div>
      <div id="selectabl2" class="selectable">This div can be 
selected</div>
      <div id="selectabl3" class="selectable">This div can be 
selected</div>
      <div id="selectabl4" class="selectable">This div can be 
selected</div>
      <div id="selectabl5" class="selectable">This div can be 
selected</div>
      <div id="selectabl6" class="selectable">This div can be 
selected</div>
    </div>
    <button id="toggle">Toggle Selectability</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



Selecting

[ 306 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make specified elements selectable
        $("#selectables").selectable();
    

        //define click handler for button
        $("#toggle").click(function() {
    

          //toggle selectability
          $("#selectables").selectable("toggle");
        });
      });
    </script>
  </body>
</html>

Save this as selectable6.html. The page contains a new <button> element, which 
enables or disables selectability depending on its current state. After making the 
parent <div> selectable in the normal way, we then define a click handler for the 
<button>. Within this click handler, we simply call the toggle method.

At this stage, there will be no visual indication that anything has happened when 
we click the <button>. Although if you use Firebug, you can see that the class name 
attached to the outer parent of the selectables changes depending on its state.

When the <button> is clicked for the first time, the <div> is given the  
additional class name called ui-selectable-disabled. You can see this  
in the following screenshot:



Chapter 10

[ 307 ]

If the <button> is clicked a second time, the extra class name is removed. To make 
it more obvious that the selectables have been disabled (or enabled again), we can 
use this additional class name to add some alternative styling to identify when 
selectability is disabled. In a new file in your text editor, add the following selector 
and rules:

.ui-selectable-disabled .selectable {
  border:1px solid #666666; background-color:#cccccc;
  color:#999999;
}

Save this as selectableToggle.css in the styles folder. In selectable6.html, 
add our new stylesheet to the <head> of the page:

<link rel="stylesheet" type="text/css" href="styles/selectableToggle.
css">



Selecting

[ 308 ]

Resave the page as selectable7.html. Now when the <button> is clicked, our new 
style rules are applied and it becomes easier to see that something has happened, as 
in the following screenshot:

We could also very easily use the callback properties again to specify a function that 
changes the inner text of the disabled elements like we did in a previous example.

Fun with selectables
In our final selectable example, we're going to make a basic image viewer. Images 
can be chosen for viewing by selecting the appropriate thumbnail.

Although this sounds like a relatively easy achievement, in addition to the actual 
mechanics of displaying the selected image, we'll also need to consider how to 
handle multiple selections. The following screenshot shows an example of what  
we'll end up with:



Chapter 10

[ 309 ]

The images used in this example are provided in the code download because they 
need to be the correct size for this example to look right. There should be eight of 
both the large and thumbnail versions of each image, and the sizes of each are 100  
by 100 pixels for the thumbnails and 400 by 400 pixels for the large versions.

We need to create two new folders called large and thumbs within our img 
directory. Then you should place the thumbnail images from the code download,  
or an equivalent number of equivalently sized images, in the thumbs folder and 
the full-sized images from the code download, or larger versions of your own 
thumbnails, into the large folder.



Selecting

[ 310 ]

Let's get started with the code. In a fresh page in your text editor, add the  
following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jquery.ui-1.5b4/
themes/flora/flora.tabs.css">
    <link rel="stylesheet" type="text/css" href="styles/ 
imageSelector.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Image Selection Example</title>
  </head>
  <body>
    <div id="imageSelector">
      <div id="status"></div>
      <div id="viewer"><span class="top"></span><span 
class="bottom"></span></div>
      <div id="thumbs">
        <span class="top"></span>
        <img id="Matt_Boat" src="img/thumbs/a.jpg">
        <img id="Matt_and_James" src="img/thumbs/b.jpg">
        <img id="James" src="img/thumbs/c.jpg">
        <img id="Matt_and_James_2" src="img/thumbs/d.jpg">
        <img id="Matt_Beach" src="img/thumbs/e.jpg">
        <img id="Matt_Beach_2" src="img/thumbs/f.jpg">
        <img id="Beth" src="img/thumbs/g.jpg">
        <img id="Matt_Swing" src="img/thumbs/h.jpg">
        <span class="bottom"></span>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/
ui.selectable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
        var x = 0;



Chapter 10

[ 311 ]

        //define config object
        var selectOpts = {
          stop: function(e, ui) {
            ($(".ui-selected").length == 1) ? singleSelect() : 
multiSelect();
          } 
        };
    

        //make specified elements selectable
        $("#thumbs").selectable(selectOpts);
    

        function singleSelect() {
    

          //remove tabs if they already exist
          ($("#tabs").length != 0) ? $("#tabs").remove() : null;
    

          //add status bar if not present
          ($("#status").length == 0) ? $("<div>").attr("id", 
"status").insertBefore($("#viewer")) : null;
    

          //add selected image to viewer
          $("#viewer").children().not("span").remove();
          $("<img>").attr("src", "img/large/" + $(".ui-selected") 
.attr("src").substr($(".ui-selected").attr("src").length - 5,5)) 
.appendTo($("#viewer"));
    

          //clean file id and add to status bar
          $("#status").empty();
          var name = $(".ui-selected").attr("id");
          var matchIndex = name.indexOf("_");
          while(matchIndex != -1) {
            name = name.replace("_", " ")
            matchIndex = name.indexOf("_");
          }
          $("<p>").text(name).appendTo($("#status"));
        }
    

        function multiSelect() {
    

          //remove pre-existing clutter
          ($("#tabs").length != 0) ? $("#tabs").remove() : null;
          ($("#status").length != 0) ? $("#status").remove() : null;
          $("#viewer").children().not("span").remove();
          var x = 0;          
    

          //create tab parent
          var tabList = $("<ul>").attr("id", "tabs").insertBefore 
($("#viewer"));
    

    

          $(".ui-selected").each(function() {
    

              //add tabs



Selecting

[ 312 ]

            var tabItem = $("<li>").appendTo(tabList);
    

            if ($(".ui-selected").length == 8) {
              var tabLink = $("<a />").attr("href", "#" + 
x).css({paddingRight:4}).appendTo(tabItem);
            } else if ($(".ui-selected").length == 7) {
              var tabLink = $("<a />").attr("href", "#" + 
x).css({paddingRight:6}).appendTo(tabItem);
            } else if ($(".ui-selected").length == 6) {
              var tabLink = $("<a />").attr("href", "#" + 
x).css({paddingRight:8}).appendTo(tabItem);
            } else if ($(".ui-selected").length == 5) {
              var tabLink = $("<a />").attr("href", "#" + x) 
.css({paddingRight:10}).appendTo(tabItem);
            } else {
              var tabLink = $("<a />").attr("href", "#" + 
x).appendTo(tabItem);
          }
    

          //clean file id and add span
          var name = $(this).attr("id");
          var matchIndex = name.indexOf("_");
          while(matchIndex != -1) {
            name = name.replace("_", " ")
            matchIndex = name.indexOf("_");
          }
         (name.indexOf("and") != -1) ? name = name.replace("and", "&") 
: null;
    

         if ($(".ui-selected").length == 8) {
           $("<span />").text(name).css({paddingLeft:4}) 
.appendTo(tabLink);
         } else if ($(".ui-selected").length == 7) { 
           $("<span />").text(name).css({paddingLeft:6}) 
.appendTo(tabLink);
         } else if ($(".ui-selected").length == 6) { 
           $("<span />").text(name).css({paddingLeft:8}) 
.appendTo(tabLink);
         } else if ($(".ui-selected").length == 5) { 
           $("<span />").text(name).css({paddingLeft:10}) 
.appendTo(tabLink);
         } else {
           $("<span />").text(name).appendTo(tabLink);
        }
    

         //add tab panels
         var panel = $("<div>").attr("id", x).appendTo($("#viewer"));



Chapter 10

[ 313 ]

         $("<img>").attr("src", "img/large/" + $(this).attr("src") 
.substr($(this).attr("src").length - 5,5)).appendTo(panel);
    

          x++;
        });
    

        //make the tab set and select first tab
        tabList.tabs();
     }
      });
    </script>
  </body>
</html>

Save this as imageSelector.html. It's a fairly large page so let's look at each part of 
it in turn. We'll start with the basic mark-up that the example is built on. We have a 
parent <div> with an id of imageSelector into which all of our other elements go.

Within the parent, we have a <div> that will act as a status bar and display the 
names of individually selected images, and a  <div> which will act as the viewing 
panel and will display the full-sized version of the image.

Finally, we have our thumbnail images, which will be made selectable. The viewer 
and thumbs containers both have <span> elements nested inside them. These 
elements will be targeted by some CSS later to add the top and bottom borders  
of these two elements. Here is the code we just examined:

<div id="imageSelector">
  <div id="status"></div>
  <div id="viewer"><span class="top"></span><span class="bottom"> 
</span></div>
  <div id="thumbs">
    <span class="top"></span>
    <img id="Matt_Boat" src="img/thumbs/a.jpg">
    <img id="Matt_and_James" src="img/thumbs/b.jpg">
    <img id="James" src="img/thumbs/c.jpg">
    <img id="Matt_and_James_2" src="img/thumbs/d.jpg">
    <img id="Matt_Beach" src="img/thumbs/e.jpg">
    <img id="Matt_Beach_2" src="img/thumbs/f.jpg">
    <img id="Beth" src="img/thumbs/g.jpg">
    <img id="Matt_Swing" src="img/thumbs/h.jpg">
    <span class="bottom"></span>
  </div>
</div>



Selecting

[ 314 ]

Following this mark-up, are the library files which are needed for this example and 
the final <script> block turning this into a working example. This is where the fun 
is. Again, we can look at what each part of the script does.

The first thing we do is create the selectOpts configuration object that our 
selectables will use. This object contains just one property which is the stop 
property. This property specifies a simple anonymous callback function. When this 
function is executed, it will either call the singleSelect or multiSelect function 
depending on the length of the jQuery object representing the selected selectables:

//function to execute when doc ready
$(function() {
    

  //define config object
  var selectOpts = {
    stop: function(e, ui) {
      ($(".ui-selected").length == 1) ? singleSelect() : 
multiSelect();
    } 
  };

We then initialize the selectables using our configuration object as an argument to 
the selectables constructor function:

  //make specified elements selectable
  $("#thumbs").selectable(selectOpts);

Following this, we can define our single and multiple selection handling functions. 
The singleSelect function begins by checking whether there is an element with an 
id of tabs. If there is, it removes it, and if there isn't, it does nothing. This is achieved 
using JavaScript's ternary expression:

  function singleSelect() {
    

    //remove tabs if they already exist
    ($("#tabs").length != 0) ? $("#tabs").remove() : null;

Next, the function checks whether there is a status element present. If it is not, then 
one is added so that the name of the image that has been selected can be displayed. If 
this element already exists (such as when the page initially loads), nothing is done:

    //add status bar if not present
    ($("#status").length == 0) ? $("<div>").attr("id", "status").inser
tBefore($("#viewer")) : null;



Chapter 10

[ 315 ]

At this stage, we're almost ready to actually display the full-sized version of the 
image that has been selected. But before that is done, the next line of code clears  
out any residual elements from previous selections that are still in the viewer:

    $("#viewer").children().not("span").remove();

Adding the full-sized image is extremely easy. First, we create a new image element, 
then we give it the src attribute that points to the large version of the thumbnail 
image by defining the path to the file as a string. We then add the file name extracted 
from the src attribute of the selected thumbnail:

    //add selected image to viewer
    $("<img>").attr("src", "img/large/" + $(".ui-selected").
attr("src").substr($(".ui-selected").attr("src").length - 5,5)).
appendTo($("#viewer"));

We could simply add the original image name to the status bar in its original form. 
However, the id of each image thumbnail has underscores in it, which looks untidy. 
It is simple enough to loop through the id of the selected thumbnail and replace 
any underscores with spaces. This 'clean' version of the name can then be added 
to a <p> element and inserted into the status bar. This brings us to the end of the 
singleSelect function:

    //clean file id and add to status bar
    $("#status").empty();
    var name = $(".ui-selected").attr("id");
    var matchIndex = name.indexOf("_");
    while(matchIndex != -1) {
      name = name.replace("_", " ")
      matchIndex = name.indexOf("_");
    }
    $("<p>").text(name).appendTo($("#status"));
  }

Next up is the multiSelect function, which is slightly larger but not much more 
complicated. We start off in the same way and check for the presence of tabs. If any 
are detected they will be removed.

We then check for the status element once again. This time, instead of creating it if it 
doesn't exist, we remove it if it does exist. We also empty the viewer as we did before. 
We initialize the x variable which will be used to give unique ids to the elements we 
are about to create:

  function multiSelect() {
    

    //remove pre-existing clutter
    ($("#tabs").length != 0) ? $("#tabs").remove() : null;



Selecting

[ 316 ]

    ($("#status").length != 0) ? $("#status").remove() : null;
    $("#viewer").children().not("span").remove();
    var x = 0;

To handle displaying multiple images in the viewer following a multiple selection, 
we will dynamically create a tab set. This allows us to use the same-sized element to 
display any number (well, eight anyway) of images.

First, we create and add the unordered list to the page that will hold the individual 
tabs. Then for each selected image, we create an <li> element and an <a> element. 
The creation of the link is rather convoluted and is necessary to make each tab 
thinner when there are more than four selected images. We basically loop through 
each possibility greater than four and give it the necessary padding:

    //create tab parent
    var tabList = $("<ul>").attr("id", "tabs").insertBefore($("#viewe
r"));
        

    $(".ui-selected").each(function() {
        

      //add tabs
      var tabItem = $("<li>").appendTo(tabList);
        

      if ($(".ui-selected").length == 8) {
        var tabLink = $("<a />").attr("href", "#" + 
x).css({paddingRight:4}).appendTo(tabItem);
      } else if ($(".ui-selected").length == 7) {
        var tabLink = $("<a />").attr("href", "#" +   
x).css({paddingRight:6}).appendTo(tabItem);
      } else if ($(".ui-selected").length == 6) {
        var tabLink = $("<a />").attr("href", "#" + 
x).css({paddingRight:8}).appendTo(tabItem);
      } else if ($(".ui-selected").length == 5) {
        var tabLink = $("<a />").attr("href", "#" + x) 
.css({paddingRight:10}).appendTo(tabItem);
      } else {
        var tabLink = $("<a />").attr("href", "#" + 
x).appendTo(tabItem);
    }

Once we have created the list items and links, we clean the file ids as we did before. 
Additionally, we can replace any occurrences of the word and with an ampersand to 
save additional space in each tab:

    //clean file id and add span
    var name = $(this).attr("id");
    var matchIndex = name.indexOf("_");
    while(matchIndex != -1) {



Chapter 10

[ 317 ]

      name = name.replace("_", " ")
      matchIndex = name.indexOf("_");
    }
    (name.indexOf("and") != -1) ? name = name.replace("and", "&") : 
null;

We then use a similar conditional block to create a <span> element which will be 
added to each tab. Remember from the Tabs chapter that the <span> forms the label 
of the tab. The cleaned name is then added as the text of the <span>:

    if ($(".ui-selected").length == 8) {
$("<span />").text(name).css({paddingLeft:4}).appendTo(tabLink);
   } else if ($(".ui-selected").length == 7) {  $("<span />") 
.text(name).css({paddingLeft:6}).appendTo(tabLink);
   } else if ($(".ui-selected").length == 6) {
$("<span />").text(name).css({paddingLeft:8}).appendTo(tabLink);
      } else if ($(".ui-selected").length == 5) {  $("<span />") 
.text(name).css({paddingLeft:10}).appendTo(tabLink);
      } else {
        $("<span />").text(name).appendTo(tabLink);
      }

Once the required tabs have been created, we can then create the tab panels which 
will be used to hold the full-sized images. Each panel is given an id attribute using 
the x variable so that it matches the href of its tab heading. The tab panel is then 
added to the viewer and an image is created in the same way as before and then 
added to the panel. We also increment our x variable at this point:

      //add tab panels
      var panel = $("<div>").attr("id", x).appendTo($("#viewer"));
      $("<img>").attr("src", "img/large/" + $(this).attr("src") 
.substr($(this).attr("src").length - 5,5)).appendTo(panel);
        

      x++;
    });

Finally, we use the tabs constructor method to turn our collection of list items and 
panels into a tab set:

    //make the tab set and select first tab
    tabList.tabs();  }
});



Selecting

[ 318 ]

Save this as imageSelector.html. Our example is also heavily reliant on CSS  
to provide its overall appearance. In a new file in your text editor, create the  
following stylesheet:

#imageSelector {
  width:690px; height:500px; padding:5px;
  background:url(../img/image-selector/imageSelectorBG.gif) no-repeat;
  position:relative; margin:0 auto;
}
#status {
  width:408px; height:24px; position:absolute;
  top:17px; left:26px;
  background:url(../img/image-selector/imageStatus.gif) no-repeat;
  padding:3px 0 0 8px; font-family:"Trebuchet MS",Trebuchet,Verdana, 
Helvetica,Arial,sans-serif;
  font-size:12px;
}
#viewer span, #thumbs span {
  height:4px; position:absolute; display:block;
}
#viewer {
  width:408px; height:408px;
  margin:-4px 10px 5px 0;
  background:url(../img/image-selector/imageTabsViewer.gif) repeat-y;
  position:absolute; left:26px; bottom:53px;
}
#viewer .top {
  width:408px;
  background:url(../img/image-selector/imageTabsTop.gif) no-repeat;
}
#viewer .bottom {
  width:408px;
  background:url(../img/image-selector/imageTabsBottom.gif) no-repeat;
  bottom:0;
}
#viewer img {
  position:absolute; left:4px; top:4px;
}
#thumbs {
  width:220px; height:428px;
  background:url(../img/imageThumbs.gif) repeat-y;
  position:absolute; top:20px; right:40px;
}
#thumbs img {



Chapter 10

[ 319 ]

  border:1px solid #000; float:left;
  margin:0 4px 7px 4px; cursor:pointer;
}
#thumbs .top {
  width:220px;
  background:url(../img/image-selector/imageThumbsTob.gif) no-repeat;
  top:-4px; left:0px;
}
#thumbs .bottom {
  width:220px;
  background:url(../img/image-selector/imageThumbsBottom.gif)  
no-repeat;
  bottom:-4px; left:0px;
}
#thumbs img.ui-selected { border:1px solid #99ff99; }

p { margin:0px; padding:0px; }
#tabs { position:absolute; top:25px; left:26px; }
.ui-tabs-panel {
  padding:0; border:0; background:transparent;
}
.ui-tabs-nav .ui-tabs-selected a {
  background-position:100% -26px;
}
.ui-tabs-nav .ui-tabs-selected a span {
  background-position:0% -26px; height:27px; font-size:11px;
}
.ui-tabs-nav a, .ui-tabs-nav a span {
background:url(../img/image-selector/imageTabsSprite.gif) no-repeat;
}
.ui-tabs-nav a span { height:25px; }
.ui-tabs-nav a:link, .ui-tabs-nav a:visited {
  color:#000; font-size:8px;
}
.ui-tabs-nav a {
  background-position:100% 0%; margin:2px 0 0 -2px;
}
.ui-tabs-nav li { position:relative; top:0px; }
.ui-tabs-nav li.ui-tabs-selected { top:-5px; }

Save this in the styles folder as imageSelector.css. We also need to create a 
new folder within our img folder to store some of the images used for this example. 
Create a new folder in img called image-selector and place the relevant images 
from the code download inside it.



Selecting

[ 320 ]

When you run the example in a browser, you should see something like what is 
shown in the previous example. When multiple images have been selected, you 
should see tabs at the top of the viewer as in the following screenshot:

Summary
The selectables component provides a powerful set of behaviors for related  
items. This enables us to easily provide users with a better means of selecting  
and manipulating sets of objects.

We first looked at the default implementation and then moved on to look at the two 
standard properties, along with the numerous callback properties, which can be used 
to perform different actions at different points in an interaction.

Finally, we looked at the methods exposed by this component's API. We saw that it 
had the usual range of methods for enabling, disabling, and removing functionality, 
and it also contains a toggle method, which reduces the amount of code by allowing 
us to do one of two things based on the current state of the component.



Sorting
The final interaction helper that we're going to look at is the sortables component.

This component allows us to define one or more lists of elements (not necessarily 
actual <ul> or <ol> elements) where the individual items in the list(s) can  
be reordered. 

The sortables component is like a specialized implementation of drag-and-drop, 
with a very specific role. It has an extensive API which caters for a wide range of 
behaviors and will be the focus of this chapter. We'll be looking at the following 
aspects of the component:

A default sortable implementation
The basic configurable properties
The definition of a placeholder
Sortable helpers
Sortable items
Connected Sortables
Sortable's wide range of built-in event handlers
A look at sortable's methods
Submitting the sorted result to a server

Basic implementation
A basic sortable list can be enabled with no additional configuration. Let's do this 
first so you can get an idea of the behavior enabled by this component. In a new file 
in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">

•
•
•
•
•
•
•
•
•



Sorting

[ 322 ]

  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 1</title>
  </head>
  <body>
    <p>Put these DJ's in order of your preference:</p>
    <ul id="sortables">
      <li>BT</li>
      <li>Sasha</li>
      <li>John Digweed</li>
      <li>Pete Tong</li>
      <li>James Zabiela</li>
    </ul>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make specified element sortable
        $("#sortables").sortable();
      });
    </script>
  </body>
</html>

Save this as sortable1.html. On the page, we have a simple unordered list with 
five list items. There is no flora or default styling associated with this component 
so we don't need to link to any stylesheets in this basic example.

Code-wise, the default implementation is the same as it has been for each of the other 
components. We simply call the sortable constructor method on the parent <ul> 
element of the list items we want to make sortable.



Chapter 11

[ 323 ]

Thanks to the sortables component, we should find that the individual list items can 
be dragged to different positions in the list, as in the following screenshot:

A lot of behaviors are added to the page. As we drag one of the list items up or down 
in the list, the other items automatically move out of the way creating a slot for the 
item that is currently being sorted to be dropped into. Additionally, when a sortable 
item is dropped, it will slide quickly but smoothly into its new position in the list. 
The library files that were needed for the basic implementation are as follows:

jquery-1.2.6.js

ui.core.js

ui.sortable.js

As I mentioned earlier, the sortables component is a flexible addition to the library 
that can be applied to many different types of elements. For example, instead of 
using a list, we could use a series of <div> elements as the sortable list items:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 2</title>
  </head>
  <body>
    <div id="container">

•

•

•



Sorting

[ 324 ]

      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div>BT</div>
        <div>Sasha</div>
        <div>John Digweed</div>
        <div>Pete Tong</div>
        <div>James Zabiela</div>
      </div>
    </div>    
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
      //function to execute when doc ready
      $(function() {
     

        //make specified element sortable
        $("#sortables").sortable();
      });
    </script>
  </body>
</html>

This can be saved as sortable2.html. As you can see, the behavior exhibited by 
this version is exactly the same as it was before. All that's changed is the underlying 
mark-up. Due to its simple base, we can also easily improve its appearance with 
some basic CSS. In a new file in your text editor, add the following code:

#container {
  width:272px; height:322px;
  background:url(../img/sortable_bg.gif) no-repeat;
  position:relative;
}
#container p {
  font-family:Arial; font-size:11px; position:absolute;
  width:100%; text-align:center; margin-top:20px;
}
#sortables { position:relative; top:45px; height:255px; }
#sortables div {
  height:35px; left:80px; position:relative; width:120px;
  padding-top:16px;
}



Chapter 11

[ 325 ]

Save this in the styles folder as sortable.css. Link to the CSS file in  
sortable2.html, then save the change as sortable3.html. The underlying HTML 
and the JavaScript that drives it are identical, but with just a few CSS selectors and 
rules we can dramatically change the appearance of our example, as shown in the 
following screenshot:

Configuring sortable properties
The sortables component has a huge range of configurable properties, many more 
than any of the other interaction components (but not as many as the date picker 
widget). The table below illustrates the range of properties at our disposal:

Property Default Value Usage
appendTo parent Sets the element that helpers are 

appended to during a sort
axis none Constrains sortables to one axis of drag. 

Possible values are either x or y
cancel ':input' Specifies elements that cannot be sorted
connectWith [] Specifies an array of separate lists of 

sortables so that sort items can be moved 
between each list



Sorting

[ 326 ]

Property Default Value Usage
containment parent Constrains sortables to their container 

while they are being dragged. Values 
can be the strings parent, window, or 
document, or can be a jQuery selector

cursor none Defines the CSS cursor to apply while 
dragging a sortable

delay 0 Sets the time delay in milliseconds before 
the sort begins once a sortable item has 
been clicked (with the mouse button  
held down)

distance 1 Sets how far in pixels the mouse pointer 
should move while the left button is held 
down before the sort should begin

dropOnEmpty true Allows linked items to be dropped onto 
empty slots 

forcePlaceholderSize false Forces the placeholder to have a size. 
The placeholder is the empty space that a 
sortable can be dropped on to

grid [] Sets sortables to snap to a grid while 
being dragged. Value should be an 
array with 2 items; the x and y distances 
between gridlines

handle none Specifies an element to be used as the 
drag handle on sortable items

helper original Specifies a helper element that will 
be used as a proxy element while the 
sortable is being dragged. Can accept a 
function that returns an element

items '>*' Specifies the items that should be  
made sortable. The default makes all 
children sortable

opacity 1 Specifies the CSS opacity of the element 
being sorted

placeholder none Specifies a CSS class to be added to  
empty slots

revert true Enables animation when moving 
sortables into their new slots

scroll true Enables page scrolling when a sortable is 
moved to the edge of the viewport



Chapter 11

[ 327 ]

Property Default Value Usage
scrollSensitivity 20 Sets how close a sortable must get, in 

pixels, to the edge of the viewport before 
scrolling should begin

scrollSpeed 20 Sets the distance in pixels that the 
viewport should scroll when a sortable is 
dragged within the sensitivity range

zIndex 1000 The CSS z-index of the sortable/helper 
while being dragged

Let's work some of these properties into our previous example to get a feel for the 
effect they have on the behavior of the component. Change sortable3.html so that 
it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/sortable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 4</title>
  </head>
  <body>
    <div id="container">
      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div>BT</div>
        <div>Sasha</div>
        <div>John Digweed</div>
        <div>Pete Tong</div>
        <div>James Zabiela</div>
      </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //define config object
        var sortOpts = {



Sorting

[ 328 ]

          axis: "y",
          containment: "#container",
          cursor: "move",
          distance: 30
        };
     

        //make specified element sortable
        $("#sortables").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable4.html. We use four properties in our configuration object; the 
axis property, the value of which we have specified as y to restrain the motion of the 
sortable currently being dragged to just up and down.

We use the containment property, specifying a jQuery selector for the element that 
the sortables should be contained within. Care should be taken with this property; if 
we had specified #sortables as the container, we would have not been able to move 
items into the top or bottom positions. 

We also specify the cursor property which automatically adds the CSS move icon. 
Like the draggable, the CSS move icon is not actually displayed until the sort begins. 

Finally, we configure the distance property with a value of 30 which specifies 
that the mouse pointer should move 30 pixels before the sort begins. The distance 
property works in the same way with sortables as it did with draggables earlier in 
the book and is great for preventing unwanted sorts, but in practice we'd probably 
use a much lower threshold than 30 pixels.



Chapter 11

[ 329 ]

The effects of these properties can easily be seen when the page is run in a browser:

Let's look at some more properties. Change sortable4.html so that it appears as 
follows instead:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableHandle.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 5</title>
  </head>
  <body>
    <div id="container">
      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div>BT<div class="handle"></div></div>
        <div>Sasha<div class="handle"></div></div>
        <div>John Digweed<div class="handle"></div></div>
        <div>Pete Tong<div class="handle"></div></div>



Sorting

[ 330 ]

        <div>James Zabiela<div class="handle"></div></div>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          revert: "slow",
          handle: ".handle",
          delay: 1000,
          opacity: 0.5
        };
    

        //make specified element sortable
        $("#sortables").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable5.html. The revert property has a default value of true, but 
can also take one of the speed string values (slow, normal, or fast) that we've seen 
in other animation properties.

The delay property accepts a value in milliseconds that the component should 
wait before allowing the sort to begin. This property won't prevent the sort from 
occurring, even if the mouse button is let go of, or the pointer is moved away from 
the sortable. It will still get 'picked up' after the specified time has elapsed.

The value of the opacity property is used to specify the CSS opacity of the element 
that is being sorted while the sort takes place. The value should be a floating-point 
number between 0 and 1, with 1 corresponding to no opacity and 0 specifying full 
opacity. Note that the opacity property can affect the way that IE renders text.

One of the properties we've used is the handle property which allows us to define a 
region within the sortable which must be used to initiate the sort. Dragging on other 
parts of the sortable will not cause the sortable to be dragged.



Chapter 11

[ 331 ]

The handles have been styled with some CSS, so we'll need to update sortable.css 
as well. There is no need to look at the whole file again. Just add the following new 
selector and rules to the end of the file:

#sortables div.handle {
  border:1px solid #003399; position:absolute; top:20px;
  margin-left:20px; width:7px; height:7px; background-color:#66FF66;
}

Save the changes as sortableHandle.css. You can see how the handle will appear 
in the following screenshot:

Placeholders
A placeholder defines the empty space, or slot, that is left while one of the sortables is 
en sort to its new position. The placeholder isn't rigidly positioned, it will dynamically 
move to whichever sortable has been displaced by the movement of the sortable that 
is being sorted.

There are two properties that are specifically concerned with placeholders; the very 
aptly named placeholder property and the forcePlaceholderSize property.



Sorting

[ 332 ]

The placeholder property allows you to define a CSS class that should be added to 
the placeholder while it is empty. This is a useful property that we can use often in 
our implementations.

The forcePlaceholderSize property, set to false by default, is a property that 
we'll probably use less often. The placeholder will automatically assume the size of 
the sortable item, which in most cases is fine.

In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortablePlaceholder.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 6</title>
  </head>
  <body>
    <div id="container">
      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div>BT</div>
        <div>Sasha</div>
        <div>John Digweed</div>
        <div>Pete Tong</div>
        <div>James Zabiela</div>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          placeholder: "empty"
        };
    



Chapter 11

[ 333 ]

        //make specified element sortable
        $("#sortables").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable6.html. We've specified the name of the class that we want 
to add to the placeholder. Remember this is a class name not a class selector, so no 
period is used at the start of the string. Next, we should add the selector and rules to 
our CSS file. The CSS file we use is exactly the same as our base CSS file (not the one 
from the previous example) with the following code added to the end:

.empty { background-color:#cdfdcd; }

Save this as sortablePlaceholder.css in the styles folder. When we run the new 
HTML file in a browser, we should be able to see the specified styles applied to the 
placeholder while the sort is taking place:



Sorting

[ 334 ]

Sortable helpers
We looked at helper/proxy elements back when we looked at the draggables 
component in the last chapter. Helpers can also be defined for sortables which 
function in a similar way to those of the draggable component, although there  
are some subtle differences in this implementation.

With sortables, the original sortable is hidden when the sort interaction begins and 
a clone of the original element is dragged instead. So with sortables, helpers are an 
inherent feature.

Like with draggables, the helper property of sortables may take a function as its 
value. The function, when used, will automatically receive the event object and 
original sortable element as arguments and should return the element to use as the 
helper. Although it's very similar to the draggable helper example, let's take a quick 
look at it when used in conjunction with sortables. In a new file in your text editor, 
add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/sortable.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 7</title>
  </head>
  <body>
    <div id="container">
      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div>BT</div>
        <div>Sasha</div>
        <div>John Digweed</div>
        <div>Pete Tong</div>
        <div>James Zabiela</div>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //define config object



Chapter 11

[ 335 ]

        var sortOpts = {
          helper: helperMaker
        };
     

        //define function that returns helper element
          function helperMaker(e, ui) {
                  return $("<div>").css({
                     border:"4px solid #cccccc",
                     opacity:"0.5"
                   });
        }
     
     

        //make specified element sortable
        $("#sortables").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this file as sortable7.html. We have our helperMaker function which creates 
and returns the element that is to be used as the helper while the sort is in progress. 
We can set some basic CSS properties on the new element so that we don't need to 
provide additional rules in the stylesheet.

The following screenshot shows how the helper will appear while in motion:



Sorting

[ 336 ]

Sortable items
By default, all children of the element that the sortable method is called on are 
turned into sortables (except those specified in the cancel property). While this is a 
useful feature of the component, there may be times when we don't necessarily want 
all child elements to become sortable.

The items property controls which child elements of the specified element should 
be made sortable. It makes all child elements sortable using >* as its default value, 
but we can alter this to only specify the elements we want. In a new file in your text 
editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
sortableItems.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 8</title>
  </head>
  <body>
    <div id="container">
      <p>Put these DJ's in order of your preference:</p>
      <div id="sortables">
        <div class="sortee">BT</div>
        <div class="sortee">Sasha</div>
        <div class="sortee">John Digweed</div>
        <div class="sortee">Pete Tong</div>
        <div class=" unsortable ">James Zabiela</div>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          items: ".sortee"



Chapter 11

[ 337 ]

        };
    

        //make specified element sortable
        $("#sortables").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable8.html. We've added a class name of sortee to the most of the 
original <div> elements within our sortable container, and have also added the class 
name unsortable to the last item.

In our <script>, we've specified sortee as the value of the items property, so all 
of our <div> elements with the class name sortee will be sortable, while the <div> 
with the class name unsortable will not.

The new CSS used to style the unsortable element can be as simple as the following 
selector and rules, which should be added to sortable.css:

#sortables div.unsortable {
  border:1px solid #000; background-color:#CCCCCC;
  height:26px; padding:4px 0 0 5px; top:11px; color:#adabab;
}

Save this as sortableItems.css in the styles folder. Try the new page out, the 
following screenshot shows what you should see:



Sorting

[ 338 ]

Connected lists
So far, the examples that we have looked at have all centered around a single list of 
sortable items. What happens when we want to have two lists of sortable items, and 
more importantly, can we move items from one list to another?

Having two sortable lists is of course extremely easy and involves simply defining 
two containers and their child elements, and then independently passing each 
container to the sortable constructor method.

Allowing separate lists of sortables to exchange and share sortables is also extremely 
easy thanks to the connectWith property, which allows us to define an array of 
sortable containers whose sortables can move between them. Let's look at this in 
action. In a new file in your text editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableConnected.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 9</title>
  </head>
  <body>
    <p>Tell us what music you like and don't like:</p>
    <div id="likes">
      <p>Likes</p>
      <div>House</div>
      <div>Hip Hop</div>
      <div>Breaks</div>
      <div>Drum & Bass</div>
      <div>Rock</div>
    </div>
    <div id="dislikes">
      <p>Dislikes</p>
      <div>Folk</div>
      <div>Country</div>
      <div>Pop</div>
      <div>Classical</div>
      <div>Opera</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



Chapter 11

[ 339 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
     

        //define config object
        var sortOpts = {
          items: "div",
          connectWith: ["#likes", "#dislikes"]
        };
     

        //make specified elements sortable
        $("#likes").sortable(sortOpts);
        $("#dislikes").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable9.html. Everything on the page is pretty similar to what we 
have worked with before. There are just simple collections of nested <div> elements 
with some explanatory text. Within our final <script> tag however, we have some 
unfamiliar, although still very simple, code.

We still define a single configuration object which is shared between both sortable 
elements. We're using the items property once again to ensure that the <p> elements 
that form the box headings within our sortable containers aren't sortable themselves.

The connectWith property takes an array containing the jQuery id selectors for both 
of the sortable containers and it is this that allows us to share individual sortables 
between the two elements.

We saw a moment ago that both sortable elements share the same configuration 
object, this is important to understanding how the connectWith property functions. 
This property only provides a one-way transmission of sortables, so if we were to 
only use the configuration object in the likes sortable and specify just the id of the 
dislikes sortable, we would only be able to move items from likes to dislikes, 
not the other way.



Sorting

[ 340 ]

Specifying both sortables' ids and using the configuration objects in both constructor 
functions allows us to move items between both elements, and allows us to cut  
down on coding. We could also use the following <script> tag (although it would 
be less efficient):

<script type="text/javascript">
  //function to execute when doc ready
  $(function() {
     

    //define config objects
    var sortOpts = {
      items: "div",
      connectWith: ["#dislikes"]
    };
    var sortOpts2 = {
      items: "div",
      connectWith: ["#likes"]
    };
     

    //make specified elements sortable
    $("#likes").sortable(sortOpts);
    $("#dislikes").sortable(sortOpts2);
  });
</script>

This code will work completely as is with no styling whatsoever, but for aesthetic 
purposes, we may use any arbitrary CSS to make things look as we wish. The 
following CSS for example is more than adequate in giving an impression of how  
the page could look:

p { position:relative; left:10px; }
#likes, #dislikes {
  width:180px;
  border:1px solid #000; 
  float:left;
  margin-left:10px; padding-bottom:5px;
}
#likes p, #dislikes p {
  margin:0px 0 5px;
  text-align:center; font-weight:bold;
  border-bottom:1px solid #000;
  color:#fff;
  left:0px;
}
#likes p { background-color:#66CC66; }
#dislikes p { background-color:#FF0000; }
#likes div, #dislikes div { margin-left:10px; }



Chapter 11

[ 341 ]

Save this as sortableConnected.css in your styles folder. When you run the page 
in your browser, you should find that not only can the individual items be sorted 
in their respective elements, but that items can also be moved between elements, as 
shown in the following screenshot:

Reacting to sortable events
In addition to the already large list of configurable properties defined in the sortables 
class, there are a whole load more in the form of callback properties which can be 
passed functions to execute at different points during a sortable interaction. These 
are listed in the following table:

Callback Fired 
activate When sorting starts on a connected list
beforeStop When the sort has stopped but the original slot is still available
change During a sort, when the DOM position of the sortable has changed
deactivate When sorting stops on a connected list
out When a sortable is moved away from a connected list
over When a sortable is over a connected list
receive When a sortable is received from a connected list
remove When a sortable is moved from a connected list



Sorting

[ 342 ]

Callback Fired 
sort When a sort is taking place
start When the sort starts
stop When the sort ends
update When the sort has ended and the DOM position has changed

Event handlers such as these are important because they allow us as the 
programmers to react to specific things occurring. Each of the components that we've 
looked at in the preceding chapters have defined their own suite of custom events 
and the sortables component is certainly no exception.

Many of these events will fire during any single sort interaction. The following list 
shows the order in which they will fire:

start

sort

change

beforeStop

stop

update

As soon as one of the sortables is 'picked up', the start event is triggered. Following 
this, on every single mouse move the sort event will fire, making this event very 
intensive. As soon as another item is displaced by the current sortable, the change 
event is fired. Once the sortable is 'dropped', the beforeStop and stop events fire 
and if the sortable is now at a different position, the update event is fired last of all.

For the next few examples, we'll work some of these event handling properties  
into the previous example, starting with the start and stop events. Change 
sortable9.html so that it appears as follows (new code is shown in bold):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableConnected.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 10</title>
  </head>
  <body>
    <p>Tell us what music you like and don't like:</p>

•

•

•

•

•

•



Chapter 11

[ 343 ]

    <div id="likes">
      <p>Likes</p>
      <div>House</div>
      <div>Hip Hop</div>
      <div>Breaks</div>
      <div>Drum & Bass</div>
      <div>Rock</div>
    </div>
    <div id="dislikes">
      <p>Dislikes</p>
      <div>Folk</div>
      <div>Country</div>
      <div>Pop</div>
      <div>Classical</div>
      <div>Opera</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          items: "div",
          connectWith: ["#likes", "#dislikes"],
          start: function(e, ui) {
            $("<p>").text("The active sort item is " + ui.helper.
text()).css({clear:"both"}).attr("id", "message").appendTo("body");
          },
          stop: function() {
            $("#message").remove();
          } 
        };
    

        //make specified elements sortable
        $("#likes").sortable(sortOpts);
        $("#dislikes").sortable(sortOpts);
      });
    </script>
  </body>
</html>



Sorting

[ 344 ]

Save this as sortable10.html. Our event usage in this example is minimal. When 
the sort starts, we simply create a new paragraph element and add some text to 
it, including the text content of the element that is being sorted. The text message 
is then duly appended to the <body> of the page. When the sort stops, we simply 
remove the text.

Using the second object passed to the callback function is very easy as you can see. 
The object itself refers to the parent sortables container, and the helper property 
refers to the actual item being sorted (or its helper). As this is a jQuery object, we  
can call jQuery methods, like text, on it.

When you run the page, the message should appear briefly until the sort ends, at 
which point it's removed:

Let's look at a couple more of these simple callbacks before we move on to look at  
the additional callbacks used with connected sortables. Change sortable10.html  
to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableConnected.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">



Chapter 11

[ 345 ]

    <title>jQuery UI Sortable Example 11</title>
  </head>
  <body>
    <p>Tell us what music you like and don't like:</p>
    <div id="likes">
      <p>Likes</p>
      <div>House</div>
      <div>Hip Hop</div>
      <div>Breaks</div>
      <div>Drum & Bass</div>
      <div>Rock</div>
    </div>
    <div id="dislikes">
      <p>Dislikes</p>
      <div>Folk</div>
      <div>Country</div>
      <div>Pop</div>
      <div>Classical</div>
      <div>Opera</div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {

        //define object to hold start and end lists
        var list = {
          start: "",
          end: ""
        };

        //define config object
        var sortOpts = {
          items: "div",
          connectWith: ["#likes", "#dislikes"],
          start: function(e, ui) {
            list.start = ui.helper.parent().attr("id");
          },
          change: function(e, ui) {
            ($("#message")) ? $("#message").remove() : null;
            var pos = ui.absolutePosition.top;



Sorting

[ 346 ]

            (pos < 90) ? pos = "First" : null;
            (pos < 110) ? pos = "Second" : null;
            (pos < 130) ? pos = "Third" : null;
            (pos < 150) ? pos = "Fourth" : null;
            (pos < 170) ? pos = "Fifth" : null;
            (pos < 190) ? pos = "Sixth" : null;
            $("<p>").text(ui.helper.text() + " is now at " + pos + " 
place").css({clear:"both"}).attr("id", "message").appendTo("body");
          },
          update: function(e, ui) {
            list.end = $(this).attr("id");
            ($("#message")) ? $("#message").remove() : null;
            $("<p>").text(ui.helper.text() + " started in " + list.
start + " and now belongs to " + list.end).css({clear:"both"}).
attr("id", "message").appendTo("body");
          }
        };

        //make specified elements sortable
        $("#likes").sortable(sortOpts);
        $("#dislikes").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable11.html. In this example, we work with the start,  
change, and update callbacks and also with the ui.absolutePosition.top  
and ui.helper properties.

We first create an object that will be used to store the ids of the list that the sortable 
begins in and the list that it ends up in. The values for the properties in the object are 
set later in the <script>.

Our first anonymous callback function, triggered when the sort begins, simply gets 
the id of the sort element's parent, which will be the list that it starts in. This is 
written to our list object as the value of the start property.

The next function, triggered every time the current sort item pushes another item 
out of its placeholder, determines how far the current sort item is from the top of the 
page using the top property of the ui.absolutePosition object, and uses this to 
add a message to the page indicating its new 'rank' in the list.



Chapter 11

[ 347 ]

At the end of the sort interaction (provided the sort item has displaced at least one 
other item), the update callback first gets the id of the current list using $(this), 
and sets this as the value of the end property in the list object. Finally, it adds a 
message indicating the list that the item started in and the list that it ended up in 
using the properties that we set in our list object. Note that the displayed message 
will not work correctly sometimes for lists with more than five items.

The following screenshot shows how the page should look following a  
sort interaction:

Connected callbacks
Six of the available callback properties exposed by sortables can be used in 
conjunction with connected sortables. These events fire at different times during an 
interaction alongside the events that we have already looked at.

Like the standard unconnected events, not all of the connected events will fire in 
any interaction. Some events, like over, off, remove, and receive for example, will 
only fire if a sort item moves to a new list. Other events, such as the activate and 
deactivate events, will fire in all executions, whether any sort items change lists or 
not. Additionally, some connected events, such as activate and deactivate, will 
fire for each connected list.



Sorting

[ 348 ]

Provided at least one item is moved between lists, events will fire in the  
following order:

start

activate

sort

change

beforeStop

stop

remove

update

receive

deactivate

Let's now see some of these connected events in action. Change sortable11.html to 
the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableConnected.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 12</title>
  </head>
  <body>
    <p>Tell us what music you like and don't like:</p>
    <div id="likes">
      <p>Likes</p>
      <div>House</div>
      <div>Hip Hop</div>
      <div>Breaks</div>
      <div>Drum & Bass</div>
      <div>Rock</div>
    </div>
    <div id="dislikes">
      <p>Dislikes</p>
      <div>Folk</div>
      <div>Country</div>
      <div>Pop</div>
      <div>Classical</div>

•

•

•

•

•

•

•

•

•

•



Chapter 11

[ 349 ]

      <div>Opera</div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          items: "div",
          connectWith: ["#likes", "#dislikes"],
          activate: function() {
            $("<p>").text($(this).attr("id") + " has been activated") 
.css({clear:"both"}).attr("id", "message").appendTo("body");
          },
          deactivate: function() {
            $("<p>").text($(this).attr("id") + " has been 
deactivated").css({clear:"both"}).attr("id", "message") 
.appendTo("body");
          },
          receive: function(e, ui) {
            $("<p>").text(ui.helper.text() + " has joined a new 
list").css({clear:"both"}).attr("id", "message").appendTo("body");
          },
          remove: function(e, ui) {
            $("<p>").text(ui.helper.text() + " has left its original 
list").css({clear:"both"}).attr("id", "message").appendTo("body");
          }
        };
    

        //make specified elements sortable
        $("#likes").sortable(sortOpts);
        $("#dislikes").sortable(sortOpts);
      });
    </script>
  </body>
</html>

Save this as sortable12.html. The activate and deactivate events are fired for 
each connected list at the start of any sort interaction. As these events are executed in 
the context of each sortable, we can use $(this) to refer to each sortable instead of 
using the second object that is automatically passed to each of our functions.



Sorting

[ 350 ]

The remove and receive events are fired once each time a sort item moves from one 
list to another, and as with previous examples, we can easily make use of the objects 
passed to our functions.

When we run this example in a browser however, we notice that something unusual 
is happening. Everything works as it should, events fire and the information that we 
want to get is readily available. But, our activate and deactivate methods each 
seem to be firing an additional time.

This behavior can be 'fixed' by providing a separate configuration object for each 
of the sortable constructor functions. When we do this, the events fire once only for 
each list as is expected.

This unexpected behavior is not necessarily a problem however, because if you 
notice, the additional event that is fired changes depending on which of the sortables 
is interacted with. So it can be used to easily refer to the original sortable.

The following screenshot shows how the page should appear when an item is moved 
between sortables:



Chapter 11

[ 351 ]

Sortable methods
The sortables component exposes the usual set of methods for making the 
component 'do things', and like the selectables component that we looked at before, 
it also defines a couple of unique methods not seen in any of the other components. 
The following table lists sortable's full range of methods:

Method Use
destroy Completely removes sortable functionality
disable Temporarily removes sortable functionality
enable Restores sortable functionality
refresh Triggers the reloading of the set of sortables
refreshPositions Triggers the cached refresh of the set of sortables
serialize Constructs a URL-appendable string for sending 

new sort order to the server
toArray Serializes the sortables into an array of strings

Most of these methods we've seen before in various forms under the other 
components that we have used. Methods that we have not seen before however  
are refreshPositions, serialize, and toArray.

The refreshPositions method is similar to the refresh method except that it 
refreshes the cached positions of the sortables. This method is called automatically 
by the component at the appropriate time, but is also available for us to make use of 
if need be, although its use should be limited where possible because of its intensity.

The serialize method is an important one for doing something useful with the 
resulting post sort sortables. It's specially formulated for turning the on-page 
elements into a simple string format that is easy to pass across the network to a 
waiting server-side application. Let's see this in action. In a new file in your text 
editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/
sortableConnected.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Example 13</title>
  </head>
  <body>



Sorting

[ 352 ]

    <p>Put these in ascending order of your preference</p>
    <div id="likes">
      <p>Likes</p>
      <div id="likes_house">House</div>
      <div id="likes_hiphop">Hip Hop</div>
      <div id="likes_breaks">Breaks</div>
      <div id="likes_drumandbass">Drum & Bass</div>
      <div id="likes_rock">Rock</div>
    </div>
    <button id="serialize">Serialize it!</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //define config object
        var sortOpts = {
          items: "div",
        };
      

        //make specified element sortable
        $("#likes").sortable(sortOpts);
    

        //handler for button click
        $("#serialize").click(function() {
          var serialized = $("#likes").sortable("serialize", { 
key:"likes"});
          (!$("#string")) ? null : $("#string").remove();
          $("<p>").attr("id", "string").text(serialized).
appendTo("body");
        });
      });
    </script>
  </body>
</html>

Save this as sortable13.html. We've dropped the second set of sortables for this 
example and added a button to the page which triggers the serialization. We've also 
added id attributes to each of the sortable items in the format of the name of the 
parent sortable (likes) and the individual items separated by an underscore.



Chapter 11

[ 353 ]

The click handling function simply serializes the sortable elements by calling the 
serialize method and then checks for the presence of a previous message on the 
page. If the message exists (if the button has already been clicked), it is removed and 
the serialized string is added to the page for us to see. We use the key configuration 
property of the serialize method to set the list id as the first part of each item in the 
serialized string.

The following screenshot shows what you should see when you run the page in your 
browser and click the Serialize it! button (and, optionally, perform an actual sort):

As you can see, the format of the serialized string is quite straight-forward. The 
sortable items appear in the order that the items appear on the page and are 
separated by an ampersand. Each serialized item is made up of two parts; the name 
of the sortable to which they belong and the individual item, separated (by default, 
but can be changed) by the = character.

If serialization is a term you've never come across before, and as no native 
serialization methods exist within JavaScript, this would be no surprise. Don't worry 
as you've probably used it before (or at least its opposite deserialization) without 
even realizing.

When data is converted into JSON so that you can download it and process it 
directly in the browser, it is serialized into a format suitable for transportation across 
the Internet. When you process the JSON object on the client-side to extract the data 
within it, you are in effect deserializing, or parsing it.



Sorting

[ 354 ]

You might be wondering why the method doesn't serialize the sortable into a JSON 
object to pass back to the server. The main reason is because the output of the 
serialize method is in the format that backend code, such as PHP will automatically 
be expecting.

In the previous example, all we do is display the serialized string on the page, but 
the string is in the perfect format for use with jQuery's ajax method, or to appending 
to a URL, to pass the resulting string to a server for further processing.

The component uses a regular expression to read the ids of each sortable item and 
split them into the set name and item name format found in the outputted string. 
It is possible to supply an alternative expression using a literal configuration object 
passed to the serialize method. It is also possible to use an alternative attribute 
than id to build the serialized string.

The properties available for use with this method are listed in the following table:

Property Default Value Usage
attribute id Specifies the id to use as the item name in the 

parsed string
connected false If set to true serialization, will include all 

connected lists
expression "(.+)[-=_](.+)" The expression used to parse the specified 

attribute of each sortable item
key The first result of 

expression
Specifies the key to be used as the property of 
each item in the serialized output

The toArray method works in a similar way to serialize, except that with toArray, 
the output is not a string but an array of strings. This gives us an object that can 
easily be passed to other widgets.

Widget compatibility
In the previous chapter, we saw that both the resizables and the selectables 
component worked well with the tabs widget (and we already know how well the 
dialog and resizables components go together). The sortable component is also 
highly compatible with other widgets. Let's look at a basic example. In a new page  
in your text editor, add the following code:



Chapter 11

[ 355 ]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="jqueryui1.6rc2/
themes/flora/flora.tabs.css">    
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Sortable Tabs Example</title>
  </head>
  <body>
    <ul id="tabs">
      <li><a href="#0"><span>Sort Tab 1</span></a></li>
      <li><a href="#1"><span>Sort Tab 2</span></a></li>
      <li><a href="#2"><span>Sort Tab 3</span></a></li>
    </ul>
    <div id="0">The first tab panel</div>
    <div id="1">The second tab panel</div>
    <div id="2">The third tab panel</div>    
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.tabs.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        $("#tabs").tabs();
    

        //define config object
        var sortOpts = {
          axis: "x",
          items: "li"  
        };
    

        //make specified elements sortable
        $("#tabs").sortable(sortOpts);
      });
    </script>
  </body>
</html>



Sorting

[ 356 ]

Save this page as sortableTabs.html. There is nothing in the code that we haven't 
seen before so we won't go into any great detail about it. When you run the page in 
your browser, you should see that the components work in exactly the way that we 
want them to. The tabs can be sorted horizontally to any order, but as the tabs are 
linked to their panel by href, they will still refer to the correct panel.

Sorting the tabs works on the mousedown event and selecting the tabs works on the 
mouseup event, so there are no event collisions and no situations arising where you 
want to select a tab but end up sorting it. The next screenshot shows how the tabs 
may appear after a sorting:

Unfortunately, IE has difficulties with this example. Although the tabs are sortable, 
any tab that is moved becomes unselectable, although by making use of tab callback 
functions, we could probably code around this.

Fun with sortable
It's time for our final sortable example. We're going to put the component to good 
use by creating a page with content boxes on it that can be sorted into various 
positions to suit the visitors personal preference, a little like iGoogle. The following 
screenshot shows what we're aiming for:



Chapter 11

[ 357 ]

The mark-up for the page is minimal as most of the content will be added 
dynamically from various remote sources. You don't need to worry about having a 
full web-server setup to complete this example. Most of the code uses JSON, which 
as you know can be interpreted directly in the browser. We'll also be making use of 
cookies, which again can be used purely with JavaScript.

To begin, create the following basic HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/jPage.css">



Sorting

[ 358 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Customizable Home Page Example</title>
  </head>
  <body>
    <div class="page">
      <h1>Customizable Home Page Example</h1>
      <p>Move the boxes around or close them completely. Your choices 
will be saved and the page will appear as it was when you left it.<p>
         <a id="restore" href="#" title="Restore Deleted 
Boxes">Restore Deleted Boxes</a>
      <div id="sortGrid">
        <div id="col1" class="col"></div>
        <div id="col2" class="col"></div>
        <div id="col3" class="col"></div>
        <div id="hidden"></div>
        <div class="clear"></div>
      </div>
    </div>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
ui.sortable.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery.cookie.js"></script>
  </body>
</html>

Save this as jPage.html. I said it would be simple, but let's just look at what the 
page contains. At the top, we've got a header, some explanatory text, and a link 
which will be used to reopen boxes that have been closed.

The main part of the page contains three <div> elements that will be styled to float 
next to each other to represent columns, plus a hidden column that will be used to 
store closed boxes. That's it, the rest of the elements are the <script> resources that 
we'll be using for this example.

The jQuery cookie plug-in by Klaus Hartl really helps us to avoid relying 
on back-end PHP (or other generic server-side environment) to process 
the desired state of the boxes. It also makes working with cookies much 
less cumbersome and saves us a good deal of code.



Chapter 11

[ 359 ]

Next, we can add the CSS that is needed to make the page work. Some of the 
selectors in our stylesheet will be matching elements that don't yet exist, but we'll 
add the styling for them now anyway to save ourselves time later on. In a new page 
in your text editor, add the following code:

body { font-family:Arial, Helvetica, sans-serif; }
.page {
  width:960px; margin:auto; text-align:center;
  position:relative;
}
#sortGrid { width:960px; padding:20px 0; }
a#restore {
  font-family:Arial, Helvetica, sans-serif;
  position:absolute; right:44px; font-size:10px;
  color:#000000;
}
.col {
  float:left; width:312px; min-height:700px;
  height:auto !important; height:700px;
}
.box {
  width:290px; margin:0 0 10px 10px; position:relative;
  border:1px solid #999999; text-align:left;
  padding:25px 5px 5px 5px; font-size:10px;
  background-color:#ffffff;
}
.title {
  width:295px; height:20px; position:absolute; top:0; left:0;
  padding:3px 0 0 5px; font-size:12px; font-weight:bold;
  cursor:move;
  background:url(../img/jPage/titleBG.gif) repeat-x;
}
.close {
  width:15px; height:15px; position:absolute; right:3px;
  top:3px; background:url(../img/jPage/close.gif) no-repeat;
  cursor:pointer;
}
#hidden { display:none; }
.clear { clear:both; }
.box a {
  text-decoration:none; font-weight:bold; color:#3300ff;
}
#col2_youtube a { padding-left:0px; }
#video { overflow:hidden; }
.box p { margin:0 0 5px 0; padding:0; }padding:0; }
.box img { border:1px solid #000; margin:5px auto 2px auto; }



Sorting

[ 360 ]

Save this as jPage.css in the styles folder. We'll just skim over the CSS as there are 
only a couple of points worth raising here.

One of the most salient points is the fact that we're using min-height on our 
columns. The reason for this is that if we don't set some kind of height on our 
columns they will collapse to nothing if all of the content boxes are moved out of 
them. Using min-height prevents this from happening and allows the columns to 
grow if a large box is moved into them. IE6 of course doesn't support min-height, 
hence the crafty hack.

We're using Dustin Diaz's celebrated Min-Height Fast Hack in our  
CSS for this example to improve the quality of the resulting page. For 
more information, see Dustin's blog at http://www.dustindiaz.com/
min-height-fast-hack/

Other than this, the CSS merely lays out the page in the way we want. Near the end 
of the file, there are some rules that are used to specifically style the content that 
will be added to the individual boxes. The format of this content varies considerably 
depending on its source, so we have to use a couple of very specific rules to create 
the desired effect.

The main script
To bring the page to life, we now need to focus on the JavaScript required to turn this 
collection of elements into a usable interface. Here's the code required in its entirety. 
Take a moment to look through it, or have the file from the code download at hand. 
We'll break it down into bite-sized pieces directly:

<script type="text/javascript">
  //function to execute when doc ready
  $(function() {
         

    //object of title names
    var titles = {};
    titles.twitter = "Recent Friend Tweets";
    titles.flickr = "Latest Flickr Image";
    titles.youtube = "Today's Most Viewed YouTube Video";
    titles.jquery = "Latest Stories on Learning jQuery";
    titles.worldNews = "Current World Headlines from BBC News";
    titles.weather = "Today's Weather for Southampton, UK";
         

    //check for cookie
    if (!$.cookie("columnOrder")) {
         

      //arrange default box layout



Chapter 11

[ 361 ]

      $("<div>").addClass("box").attr("id", "col1_twitter") 
.appendTo("#col1");
      $("<div>").addClass("title").attr("id", "twitterTitle") 
.text(titles["twitter"]).appendTo("#col1_twitter");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#twitterTitle");
      $("<div>").addClass("box").attr("id", "col1_flickr") 
.appendTo("#col1");
      $("<div>").addClass("title").attr("id", "flickrTitle") 
.text(titles["flickr"]).appendTo("#col1_flickr");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#flickrTitle");
         

      $("<div>").addClass("box").attr("id", "col2_youtube") 
.appendTo("#col2");
      $("<div>").addClass("title").attr("id", "youtubeTitle") 
.text(titles["youtube"]).appendTo("#col2_youtube");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#youtubeTitle");
      $("<div>").addClass("box").attr("id", "col2_jquery") 
.appendTo("#col2");
      $("<div>").addClass("title").attr("id", "jqueryTitle") 
.text(titles["jquery"]).appendTo("#col2_jquery");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#jqueryTitle");
         

      $("<div>").addClass("box").attr("id", "col3_worldNews") 
.appendTo("#col3");
      $("<div>").addClass("title").attr("id", "worldNewsTitle") 
.text(titles["worldNews"]).appendTo("#col3_worldNews");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#worldNewsTitle");
      $("<div>").addClass("box").attr("id", "col3_weather") 
.appendTo("#col3");
      $("<div>").addClass("title").attr("id", "weatherTitle") 
.text(titles["weather"]).appendTo("#col3_weather");
      $("<div>").attr("title", "Close").addClass("close") 
.appendTo("#weatherTitle");  
         

      $("#hidden").empty();
    } else {
         

      //split serialized string
      var cols = $.cookie("columnOrder").split("&");
         

      for (var x = 0; x < cols.length; x++) {
         

        if(cols[x] != "") {
        

          //split the data string
          var col = cols[x].split("=")[0];



Sorting

[ 362 ]

          var box = cols[x].split("=")[1];
         

           //build current box
          $("<div>").addClass("box").attr("id", col + "_" + box).
appendTo("#" + col);
          $("<div>").addClass("title").attr("id", box + "Title").
text(titles[box]).appendTo("#" + col + "_" + box);
                    
$("<div>").attr("title","Close").addClass("close").appendTo("#" + box 
+"Title");
          } 
       }
     }
         

    //get twitter feed
    $.getJSON("http://pipes.yahoo.com/pipes/Sj5Zqa1q3RGsKtdWQBJ3AQ/
run?&_render=JSON&_callback=?", function(data) {
    for (var x = 0; x < 5; x++) {
      $("<a />").attr("href", "http://twitter.com/" + data.value.
items[x].description.split(":")[0]).text(data.value.items[x].
description.split(":")[0]).appendTo("#col1_twitter"); 
$("<p>").text(data.value.items[x].description.split(":")[1]).appendTo(
$("#twitterTitle").parent());
      }
    });
         

    //get most recent flickr image 
 $.getJSON("http://api.flickr.com/services/feeds/photos_public.gne?for
mat=json&jsoncallback=?", function(data){
         

    $("<a />").attr({"href":data.items[0].link,"id":"imgLink"}).append
To($("#flickrTitle").parent());
    $("<img />").attr("src", data.items[0].media.
m).appendTo("#imgLink");
    $("<p>").text("Image name: " + data.items[0].title).appendTo($("#f
lickrTitle").parent());
    $("<p>").text("Author: " + data.items[0].author.split("(")[1].
replace(")", "")).appendTo($("#flickrTitle").parent());
    });
         

    //get youtube vid
            $.getJSON("http://pipes.yahoo.com/pipes/Lt4yB_
hq3RGqImvDrLQIDg/run?&_render=JSON&_callback=?", function(data) {
      $("<div>").attr("id", "video").html("<div " + data.value.
items[0].description).appendTo($("#youtubeTitle").parent());
      $("#video div:first").css({width:290,paddingTop:5});
      $("#video div div:first").css({width:290});
      $("#video div table tbody tr:last").remove().prev().
css({width:300});
      $("#video div table tbody tr td:last").remove();



Chapter 11

[ 363 ]

      $("#video div table tbody tr td:last").css({width:153});
      $("#video div table tbody tr td:last div a").css({fontSize:10});
      $("#video div table tbody tr td:last div:last").
css({fontSize:10});
      $("#video div table tbody tr:first td div").css({width:130,padd
ingTop:0});
    });
         

    //get learning jquery feed
             $.getJSON("http://pipes.yahoo.com/pipes/NjM4mhpr3RGN1_
VPPxJ3AQ/run?&_render=JSON&_callback=?", function(data) {
      for (var y = 0; y < 5; y++) {
        $("<a />").attr({"id":"articleLink","href":data.value.
items[y].link}).text(data.value.items[y].title).appendTo($("#jqueryTit
le").parent()); 
            $("<p>").text(data.value.items[y].description.
split("<")[0]).appendTo($("#jqueryTitle").parent());
       }
     });
         

     //get bbc news headlines
             $.getJSON("http://pipes.yahoo.com/pipes/Cm_
wLtdq3RGI5r2iBR50VA/run?&_render=JSON&_callback=?", function(data) {
      for (var x = 0; x < 5; x++) {
        $("<div>").addClass("headline").attr("id", "headline" + x).app
endTo($("#worldNewsTitle").parent());
        $("<a />").attr("href", data.value.items[x].link).text(data.
value.items[x].title).appendTo("#headline" + x);
                         $("<p>").text(data.value.items[x].
description).appendTo("#headline" + x);
       }
     });
      //get weather feed
             $.getJSON("http://pipes.yahoo.com/pipes/ZlCztwxr3RGvr976_
g6H4A/run?&_render=JSON&_callback=?", function(data) {
        $("<div>").attr("id", "weatherData").html(data.value.items[0].
description).appendTo($("#weatherTitle").parent());
        $("#weatherData img").remove();
        $("#weatherData br:first").remove();
      });
         

      //define config object
      var sortOpts = {
        handle: ".title",
        containment: "#sortGrid",
        dropOnEmpty: true,
        connectWith: ["#col1", "#col2", "#col3"],



Sorting

[ 364 ]

        stop: function() {
         

          //serialze columns to get latest order
             var colOrders = $("#col1").sortable("serialize", 
{key:"col1"}) + "&" + $("#col2").sortable("serialize", {key:"col2"}) 
+ "&" + $("#col3").sortable("serialize", {key:"col3"}) + "&" + 
$("#hidden").sortable("serialize", {key:"hidden"});
         

          //write column order to cookie
          $.cookie("columnOrder", colOrders, { path:"/", expires:365 
});
        }
      };
         

      //make columns sortable
      $("#col1").sortable(sortOpts);
      $("#col2").sortable(sortOpts);
      $("#col3").sortable(sortOpts);
      $("#hidden").sortable();
            
      //add closed item to hidden col and write new cookie
      $(".close").click(function() {
      $(this).parent().parent().appendTo("#hidden");
         

      //serialize columns to get latest order
      var colOrders = $("#col1").sortable("serialize", {key:"col1"}) 
+ "&" + $("#col2").sortable("serialize", {key:"col2"}) + "&" + 
$("#col3").sortable("serialize", {key:"col3"}) + "&" + $("#hidden").
sortable("serialize", {key:"hidden"});
         

      //write column order to cookie
      $.cookie("columnOrder", colOrders, { path:"/", expires:365 });
    });
         

    //restore closed boxes
    $("#restore").click(function() {
               
      $("#hidden").children().each(function() {
         

        var col = "";
         

        //look for col with space
        $(".col").each(function() {
        ($(this).children().length < 2) ? col = $(this).attr("id") : 
null ;
      });
         

        //get id and split to get box name
        var boxId = $(this).attr("id").split("_")[1];
         

        //add box to col



Chapter 11

[ 365 ]

        $(this).appendTo("#" + col).attr("id", col + "_" + boxId);
         

        //serialze columns to get latest order
        var colOrders = $("#col1").sortable("serialize", {key:"col1"}) 
+ "&" + $("#col2").sortable("serialize", {key:"col2"}) + "&" + 
$("#col3").sortable("serialize", {key:"col3"}) + "&" + $("#hidden").
sortable("serialize", {key:"hidden"});
         

        //write column order to cookie
        $.cookie("columnOrder", colOrders, { path:"/", expires:365 });
      });
    });
  });
</script>

I appreciate that sections of the above may have been a little unreadable. You may 
find it easier to look at the complete file in your text editor while reading this section. 
As I said, we'll break it down into its component parts now to see what each bit does.

One of the first things we do is create an object called titles which contains a series 
of strings that will form the title text of each box. This object is essential when we 
create the boxes according to the visitor's cookie instead of using the default layout, 
but we can also use it when creating the default layout too:

//object of title names
var titles = {};
titles.twitter = "Recent Friend Tweets";
titles.flickr = "Latest Flickr Image";
titles.youtube = "Today's Most Viewed YouTube Video";
titles.jquery = "Latest Stories on Learning jQuery";
titles.worldNews = "Current World Headlines from BBC News";
titles.weather = "Today's Weather for Southampton, UK";

Next, we have to see if the cookie indicating that the visitor has been to the page 
before and changed the box layout exists. If it doesn't exist, we go ahead and create 
the default boxes. There is a good deal of repetition in this section, but it would be 
more complicated if we tried to make some kind of factory function to produce the 
boxes because each box has a unique id and title:

//check for cookie
if (!$.cookie("columnOrder")) {
         

  //arrange default box layout
  $("<div>").addClass("box").attr("id", "col1_twitter").
appendTo("#col1");
  $("<div>").addClass("title").attr("id", "twitterTitle").
text(titles["twitter"]).appendTo("#col1_twitter");



Sorting

[ 366 ]

  $("<div>").attr("title", "Close").addClass("close").appendTo("#twit
terTitle");
         

  $("<div>").addClass("box").attr("id", "col1_flickr") 
.appendTo("#col1");
  $("<div>").addClass("title").attr("id", "flickrTitle") 
.text(titles["flickr"]).appendTo("#col1_flickr");
  $("<div>").attr("title", "Close").addClass("close").appendTo("#flic
krTitle");
         

  $("<div>").addClass("box").attr("id", "col2_youtube") 
.appendTo("#col2");
  $("<div>").addClass("title").attr("id", "youtubeTitle") 
.text(titles["youtube"]).appendTo("#col2_youtube");
  $("<div>").attr("title", "Close").addClass("close").appendTo("#yout
ubeTitle");
         

  $("<div>").addClass("box").attr("id", "col2_jquery") 
.appendTo("#col2");
  $("<div>").addClass("title").attr("id", "jqueryTitle") 
.text(titles["jquery"]).appendTo("#col2_jquery");
  $("<div>").attr("title", "Close").addClass("close").appendTo("#jque
ryTitle");
         

  $("<div>").addClass("box").attr("id", "col3_worldNews") 
.appendTo("#col3");
  $("<div>").addClass("title").attr("id", "worldNewsTitle").text(title
s["worldNews"]).appendTo("#col3_worldNews");
  $("<div>").attr("title", "Close").addClass("close").appendTo("#worl
dNewsTitle");
         

  $("<div>").addClass("box").attr("id", "col3_weather") 
.appendTo("#col3");
  $("<div>").addClass("title").attr("id", "weatherTitle") 
.text(titles["weather"]).appendTo("#col3_weather");
  $("<div>").attr("title", "Close").addClass("close").appendTo("#weath
erTitle");  
         

  $("#hidden").empty();
} else {

The next part of the if statement is executed if the visitor has used the page  
before and this time we do have a function that churns out the boxes. We can do  
this because all of the dynamic information that we need can be extracted from  
the cookie:

//split serialized string
var cols = $.cookie("columnOrder").split("&");
               

  for (var x = 0; x < cols.length; x++) {
               

    if(cols[x] != "") {
               



Chapter 11

[ 367 ]

      //split the data string
      var col = cols[x].split("=")[0];
      var box = cols[x].split("=")[1];
               

      //build current box
      $("<div>").addClass("box").attr("id", col + "_" + box).
appendTo("#" + col);
      $("<div>").addClass("title").attr("id", box + "Title").
text(titles[box]).appendTo("#" + col + "_" + box);
     $("<div>").attr("title","Close").addClass("close").appendTo("#" + 
box +"Title");
    } 
  }
}

Thanks to the serialize method which we use later in the script, the data that the 
cookie contains will be delimited, or separated, with ampersands so the above bit of 
code first creates a collection by splitting the string on & characters.

We then use a for loop to iterate through this collection and for each item we 
perform another split. The format of each item will be columnName=sortableName, so 
this time the split is on the = character to separate the column and box id for each 
box. We then build the box, in a very similar way as the default boxes, but this time 
using either the column or box name to generate the required ids.

Our titles object comes in handy here, thanks to the fact that objects in JavaScript 
can use dot notation and bracket notation, allowing us to use a variable to extract 
the correct title text. Once constructed, each box is appended to the column it was 
placed in by the visitor.

In the next part of the script, we obtain all of our JSON data from each of the 
different sources. We do this using jQuery's getJSON method, which I'm hoping 
you'll already be familiar with:

//get twitter feed
$.getJSON("http://pipes.yahoo.com/pipes/Sj5Zqa1q3RGsKtdWQBJ3AQ/ 
run?&_render=JSON&_callback=?", function(data) {
  for (var x = 0; x < 5; x++) {
    $("<a />").attr("href", "http://twitter.com/" + data.value.
items[x].description.split(":")[0]).text(data.value.items[x].
description.split(":")[0]).appendTo("#col1_twitter");$("<p>").
text(data.value.items[x].description.split(":")[1]).appendTo($("#twitt
erTitle").parent());
  }
});
    

//get most recent flickr image



Sorting

[ 368 ]

$.getJSON("http://api.flickr.com/services/feeds/photos_public.gne?form
at=json&jsoncallback=?", function(data){
  $("<a />").attr({"href":data.items[0].link,"id":"imgLink"}).appendTo
($("#flickrTitle").parent());
  $("<img />").attr("src", data.items[0].media.
m).appendTo("#imgLink");
  $("<p>").text("Image name: " + data.items[0].title).appendTo($("#fli
ckrTitle").parent());
  $("<p>").text("Author: " + data.items[0].author.split("(")[1] 
.replace(")", "")).appendTo($("flickrTitle").parent());
});
    

//get youtube vid
$.getJSON("http://pipes.yahoo.com/pipes/Lt4yB_hq3RGqImvDrLQIDg/run?&_
render=JSON&_callback=?", function(data) {
  $("<div>").attr("id", "video").html("<div " + data.value.items[0] 
.description).appendTo($("#youtubeTitle").parent());
  $("#video div:first").css({width:290,paddingTop:5});
  $("#video div div:first").css({width:290});
  $("#video div table tbody tr:last").remove().prev() 
.css({width:300});
  $("#video div table tbody tr td:last").remove();
  $("#video div table tbody tr td:last").css({width:153});
  $("#video div table tbody tr td:last div a").css({fontSize:10});
  $("#video div table tbody tr td:last div:last").css({fontSize:10});
  $("#video div table tbody tr:first td div").css({width:130, 
paddingTop:0});
});
    

//get learning jquery feed
$.getJSON("http://pipes.yahoo.com/pipes/NjM4mhpr3RGN1_VPPxJ3AQ/run?&_
render=JSON&_callback=?", function(data) {
  for (var y = 0; y < 5; y++) {
    $("<a />").attr({"id":"articleLink","href":data.value.items[y] 
.link}).text(data.value.items[y].title).appendTo($("#jqueryTitle") 
.parent()); 
      $("<p>").text(data.value.items[y].description.split("<")[0]) 
.appendTo($("#jqueryTitle").parent());
  }
});
    

//get bbc news headlines
$.getJSON("http://pipes.yahoo.com/pipes/Cm_wLtdq3RGI5r2iBR50VA/ 
run?&_render=JSON&_callback=?", function(data) {
  for (var x = 0; x < 5; x++) {
    $("<div>").addClass("headline").attr("id", "headline" + x) 
.appendTo($("#worldNewsTitle").parent());



Chapter 11

[ 369 ]

    $("<a />").attr("href", data.value.items[x].link).text(data.value.
items[x].title).appendTo("#headline" + x); 
      $("<p>").text(data.value.items[x].description) 
.appendTo("#headline" + x);
  }
});
    

//get weather feed
$.getJSON("http://pipes.yahoo.com/pipes/ZlCztwxr3RGvr976_g6H4A/ 
run?&_render=JSON&_callback=?", function(data) {
  $("<div>").attr("id", "weatherData").html(data.value.items[0] 
.description).appendTo($("#weatherTitle").parent());
  $("#weatherData img").remove();
  $("#weatherData br:first").remove();
});

Most of the code in this section deals with getting the data we want from the JSON 
objects and constructing the necessary elements used to display the data. These 
elements are usually <div>, <p>, <img>, or <a> elements. 

Again, because the format of each data object is different, there's no simple way of 
reducing this large block of code. Not all of the remote data sources we're working 
with return data in JSON format so we pipe that data in via Yahoo! Pipes instead.

Sometimes we strip out the data we want and create our own elements to hold the 
data. At other times, we use existing mark-up within the returned data structure. 
Some of the mark-up returned in each JSON object is, frankly, shocking, hence why 
we sometimes have to strip out images, breaks, or table cells.

We've used Yahoo Pipes in this example to convert standard RSS feeds 
into JSON. This is because although JSON is an efficient and lightweight 
method of data interchange, which when combined with AJAX negates 
the need for server-side processing, it has yet to proliferate in the way that 
RSS has.

Next, we define the configuration object used to make the sortables interaction helper 
work in the way we want it to:

//define config object
var sortOpts = {
  handle: ".title",
  containment: "#sortGrid",
  dropOnEmpty: true,
  connectWith: ["#col1", "#col2", "#col3"],
  stop: function() {
                     

    //serialze columns to get latest order



Sorting

[ 370 ]

    var colOrders = $("#col1").sortable("serialize", {key:"col1"}) 
+ "&" + $("#col2").sortable("serialize", {key:"col2"}) + "&" + 
$("#col3").sortable("serialize", {key:"col3"}) + "&" + $("#hidden") 
.sortable("serialize", {key:"hidden"});
                     

    //write column order to cookie
    $.cookie("columnOrder", colOrders, { path:"/", expires:365 });
  }
};

Most of these properties we've looked at before. The most important one is the stop 
custom event handler which serializes the column order following a sort interaction 
and writes a new cookie containing the layout of the boxes. We also make sure that 
each of the columns (except the hidden column) is connected so that the boxes can 
move freely between them.

To make the boxes sortable, we simply call the sortable method passing in the 
configuration object we just created:

//make columns sortable
$("#col1").sortable(sortOpts);
$("#col2").sortable(sortOpts);
$("#col3").sortable(sortOpts);
$("#hidden").sortable();

Next we add the function that closes boxes and moves them to the hidden column:

//add closed item to hidden col and write new cookie
$(".close").click(function() {
  $(this).parent().parent().appendTo("#hidden");
     

  //serialze columns to get latest order
  var colOrders = $("#col1").sortable("serialize", {key:"col1"})  
+ "&" + $("#col2").sortable("serialize", {key:"col2"}) + "&" + 
$("#col3").sortable("serialize", {key:"col3"}) + "&" + $("#hidden") 
.sortable("serialize", {key:"hidden"});
     

  //write column order to cookie
  $.cookie("columnOrder", colOrders, { path:"/", expires:365     });
});

First, the box that has been closed by clicking the close icon is appended to the 
hidden column and then the new sortable order is serialized and written to the 
cookie again. We have to do this because the stop event handler is not triggered  
as nothing is actually sorted.



Chapter 11

[ 371 ]

Our final function deals with restoring the closed boxes when the restore link at the 
top of the page is clicked:

//restore closed boxes
$("#restore").click(function() {
 

  $("#hidden").children().each(function() {
 

    var col = "";
 

    //look for col with space
    $(".col").each(function() {
    ($(this).children().length < 2) ? col = $(this).attr("id") : null 
;
  });
 

  //get id and split to get box name
  var boxId = $(this).attr("id").split("_")[1];
 

  //add box to col
  $(this).appendTo("#" + col).attr("id", col + "_" + boxId);
 

  //serialze columns to get latest order
   var colOrders = $("#col1").sortable("serialize", {key:"col1"}) 
+ "&" + $("#col2").sortable("serialize", {key:"col2"}) + "&" + 
$("#col3").sortable("serialize", {key:"col3"}) + "&" + $("#hidden") 
.sortable("serialize", {key:"hidden"});
 

   //write column order to cookie
   $.cookie("columnOrder", colOrders, { path:"/", expires:365 });  
 

});

The first part of the function cycles through each column to see which ones have 
space for another box. The number of boxes in each column will depend on what 
the visitor has moved or closed previously so we can't make any assumptions about 
where to put the box.

Boxes moved to the hidden column will automatically be renamed when the page 
loads so that they have the id hidden_sortableName. We need to change this so that 
the boxes id is columnName_sortableName instead.

We then add the box to a column that has space, setting its id in the process before 
finally serializing the new column order and writing a new cookie once more, which 
brings us to the end of the example.



Sorting

[ 372 ]

You should find when you run the page that you can move the boxes around,  
close your browser, run the page again, and see the boxes retain the order that  
you gave them:

Please note that that example does not run correctly in Opera and exhibits the same 
unusual placement of sorted items that occurred in some of the earlier connected-list 
examples in the chapter.



Chapter 11

[ 373 ]

Summary
We've finished off our tour of the interaction components of the library by looking 
at the sortables component. Like the other modules that we looked at before, it has 
a wide range of properties and methods that allow us to configure and control its 
behavior and appearance in both simple and more complex implementations.

We started the chapter off with a look at a simple, default implementation with no 
configuration to see the most basic level of functionality added by the component. 
We looked at some of the different elements that can be made sortable and added 
some basic styling to the page.

Following this, we looked at the range of configurable properties that are exposed by 
the sortable API. The list is extensive and provides a wide range of functionality that 
can be enabled or disabled with ease.

We moved on to look at the extensive event model used by this component which 
gives us the ability to react to different events as they occur in any sort operation 
initiated by the visitor.

Connected lists offer the ability to be able to exchange sortable items, giving our 
visitors the ability to move items between separate lists. We saw the additional 
properties and events that are used specifically with connected sortable lists.

In the last part of the chapter, we looked at the methods available for use with the 
sortables component and focused on the highly useful serialize method, and also 
had a quick look at its compatibility with other members of the jQuery UI library in 
the form of the sortable tabs example.





UI Effects
So far, we've looked at a range of incredibly useful widgets and extension helpers. 
All are easy to use, but some have had their subtle nuances which have required 
consideration and thought during their use. Some of the components' APIs that we 
have looked at have been huge. The effects of the library on the other hand are for 
the most part, extremely compact, with very few properties to learn and no methods 
at all. Using the effects is as simple as calling the effect's constructor and including 
maybe one or two properties if required.

Each of the previous chapters has finished on a fun with section in which the API that 
the chapter focuses on has been put to use in a functional, potentially useful, and 
above all fun scenario. This chapter isn't going to end with a fun with example – the 
whole chapter is instead going to be written from a 'fun' perspective, so we can sit 
back, relax a little, and enjoy the show that the UI effect components can put on for us.

The effects that we'll be looking at in this chapter are as follows:

blind
bounce
clip
drop
explode
fold
highlight
pulsate
puff
scale
shake
slide
transfer

•
•
•
•
•
•
•
•
•
•
•
•
•



UI Effects

[ 376 ]

The core effects file
Like the individual components themselves, the effects require the services of a 
separate core file which provides essential services to the effects, such as creating 
wrapper elements, and controlling the animations. Most, but not all, of the effects 
have their own source file.

All we need to do to use an effect is include the core file (effects.core.js) in the 
page before the effect's source file, and then forget about it. Unlike the ui.core.
js file however, the effects.core.js file has been designed to be used, in part, 
completely standalone.

When using the core effect file on its own we can take advantage of color animations, 
such as smoothly changing the background color of an element into another color 
(and not just a snap change but a smooth morphing of one color into another), class 
transitions, and advanced easing animations.

Color animations
Let's look at color animations first. These are very easy to implement and give an 
attractive result quickly. Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
colorAnim.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Color Animation Example</title>
  </head>
  <body>
    <div><label>Name: </label><input type="text"></div>
    <div><label>Age: </label><input type="text"></div>
    <div><label>Email: </label><input type="text"></div>
    <button id="submit">Submit</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    



Chapter 12

[ 377 ]

       $("#submit").click(function() {
    

         //check fields not empty
         $("input").each(function() {
           //color red if they are
           ($(this).val().length == 0) ? $(this).animate({
             backgroundColor:"#ff9999",
             borderTopColor:"#ff0000",
             borderRightColor:"#ff0000",
             borderBottomColor:"#ff0000",
             borderLeftColor:"#ff0000"
           }) : $(this).animate({ //color green if not
             backgroundColor:"#ccffcc",
             borderTopColor:"#00ff00",
             borderRightColor:"#00ff00",
             borderBottomColor:"#00ff00",
             borderLeftColor:"#00ff00"
           });
          });
        });
      });
    </script>
  </body>
</html>

Save the page as colorAnim.html. As you can see, all we need are jQuery and 
the effects.core.js file. When I said the effects.core.js file could be used 
standalone, I actually meant on top of the normal jQuery library, although it is still 
standalone as far as the UI effects are concerned.

The animate method, as I'm sure you're aware, is part of jQuery rather than jQuery 
UI, but the effects.core.js file extends the animate method by allowing it to 
specifically work with colors and classes.

When the Submit <button> is clicked in this example, we simply use the animate 
method to apply a series of new CSS properties to the target elements. These style 
properties are supplied to the method as the properties and values of a literal object. 

We also use a basic stylesheet in this example. In another new page, add  
the following;

div { margin-bottom:5px; }
label { display:block; width:100px; float:left; }
input { border:1px solid #000000; }



UI Effects

[ 378 ]

Save this as colorAnim.css in the styles folder. When we view this page in our 
browser, we should see that any fields left blank smoothly turn red when the Submit 
<button> is clicked, while fields that are not empty smoothly turn green. The most 
attractive however are when a field changes from red to green.

The following screenshot shows the page once the Submit <button> has  
been clicked:

The style attributes that color animations can be used on are:

backgroundColor

any borderColor
color

outlineColor

Colors may be specified using either RGB or HEX, or even standard color names.

Class transitions
In addition to animating individual color attributes, effects.core.js also gives us 
the powerful ability to animate between entire classes, allowing us to switch styles 
smoothly and seamlessly without sudden, jarring changes. Let's look at this aspect  
of the file's use in the following example. Create the following new file in your  
text editor:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/ 
classAnim.css">

•

•
•

•



Chapter 12

[ 379 ]

    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Class Animation Example</title>
  </head>
  <body>
    <div><label>Name: </label><input type="text"></div>
    <div><label>Age: </label><input type="text"></div>
    <div><label>Email: </label><input type="text"></div>
    <button id="submit">Submit</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>    
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

      //add click handler for button
      $("#submit").click(function() {
    

        //check fields
        $("input").each(function() {
    

        //if input already has error class
        if ($(this).hasClass("error")) {
    

          //do nothing if empty or add pass class 
          ($(this).val().length == 0) ? null : $(this).
switchClass("error", "pass", 2000);
    

          //if input already has pass class
          } else if ($(this).hasClass("pass")) {
    

            //do nothing if not empty or add error class 
            ($(this).val().length != 0) ? null : $(this).
switchClass("pass", "error", 2000);
    

          //if has neither class
          } else {
    

            //add error class if empty, pass if not
            ($(this).val().length == 0) ? $(this).addClass("error", 
2000) : $(this).addClass("pass", 2000);
          }
          });
        });
      });
    </script>
  </body>
</html>



UI Effects

[ 380 ]

Save this as classAnim.html. The effects.core.js extends the jQuery addClass 
method by allowing us to specify a duration over which the new class name should 
be applied instead of just switching it instantly. We also use the switchClass 
method of the effects.core.js file when the fields already have one of the  
class names.

Essentially, the page functions as it did before, although using this type of class 
transition allows us to use non-color-based style rules as well, so we could adjust 
widths, heights, or anything else controlled by CSS. As in the previous example, we 
have a stylesheet attached. This is essentially the same as in the previous example 
except with some styles for our two new classes. Add the following selectors and 
rules to colorAnim.css:

.error { border:1px solid #ff0000; background-color:#ff9999; }

.pass { border:1px solid #00ff00; background-color:#ccffcc; }

Save the updated file as classAnim.css in the styles folder. In the next screenshot, 
we see the page after it has been interacted with:

Please note that at the time of writing, this example only works in Firefox.

Advanced easing
The animate method found in standard jQuery has some basic easing capabilities 
built in, but for more advanced easing, you had to include an additional easing  
plug-in (ported to jQuery by GSGD).



Chapter 12

[ 381 ]

The effect.core.js file however has all of these advanced easing options built 
right in so there is no need to include additional plugins. We won't be looking at 
them in any real detail in this section, however, as we'll be using them in some of  
the examples later on in the chapter.

Highlighting
The highlight effect temporarily applies a light yellow coloring to any element that 
it's called on. Let's put a simple example together so we can see the effect in action.  
In a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Highlight Effect</title>
  </head>
  <body>
    <button id="a">Next</button>
    <button id="b">Next</button>
    <button id="c">Next</button>
    <button id="d">Next</button>
    <p>Only one of these buttons will take you to the next page, 
choose wisely (click the hint button for help).
    <button id="Hint">Hint</button>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.highlight.js"></script>    
<script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        $("#hint").click(function() {
    

          //highlight specified element
          $("#c").effect("highlight");
        });
      });
    </script>
  </body>
</html>



UI Effects

[ 382 ]

Save this as highlight.html. The code which invokes the highlight effect takes the 
same familiar form as other library components. The effect constructor is called 
and the actual effect is specified as a string argument in the constructor. View the 
example and click the Hint button. The third button should briefly be highlighted:

The library files we needed for this example are listed below:

jquery-1.2.6.js

effects.core.js

effects.highlight.js

While our example may seem a little contrived, it is easy to see the potential for this 
effect as an assistance tool on the front-end. Whenever there is a sequence of actions 
that needs to be completed in a specific order, the highlight effect can instantly give 
the visitor a visual cue as to the step that needs to be completed next. Similarly, it 
could be used in a tutorial or electronic manual to draw attention to a particular  
part of the screen.

Additional effect parameters
Each of the effect constructors, as well as the parameter which dictates which effect 
is actually applied, can take up three additional parameters which control how the 
effect functions. All are optional, and consist of the following (in the listed order):

An object containing additional configuration properties
An integer representing in milliseconds the duration of the effect, or a string 
specifying one of slow, normal, or fast.
A callback function that is executed when the effect ends

•

•

•

•

•

•



Chapter 12

[ 383 ]

Let's add these additional parameters into our highlight example to clarify their 
usage. Change the final <script> element in highlight.html so that it appears  
as follows:

<script type="text/javascript">
  //function to execute when doc ready
  $(function() {
    

    $("#hint").click(function() {
    

      //highlight specified element
      $("#c").effect("highlight", {}, 2000, function() {
        $("<p>").text("That was the highlight").appendTo("body");      
});
    });
  });
</script>

Save this as highlightParameter.html. Perhaps the most striking feature of our 
new code is the empty object passed as the second argument. In this example, we 
don't need any additional configurable properties, but we still need to pass in the 
empty object in order to access the third and fourth arguments.

The highlight effect has only one configurable property that can be used in the 
configuration object passed and that is the highlight color.

The animation should now proceed much slower as we have set the duration to 
2000 milliseconds (2 seconds). Note that this third parameter may also take a string 
representing the speed of the animation. Our callback function, passed as the fourth 
and final argument, is perhaps the least useful callback in the history of JavaScript, 
but it does serve to illustrate how easy it is to arrange additional post-animation code 
execution. Here's how the page should look after the Hint button has been clicked:



UI Effects

[ 384 ]

Bouncing
Another simple effect we can use with little configuration is the bounce effect. To see 
this effect in action create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/bounce.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Bounce Effect</title>
  </head>
  <body>
    <div id="menu">
      <a href="#">Home</a><a href="#">About</a><a href="#">Help</a> 
<a href="#">Products</a><a href="#">Services</a>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.bounce.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //bounce the link on mouseover
        $("#menu a").mouseover(function() {
          $(this).effect("bounce");
        });
      });
    </script>
  </body>
</html>

Save this as bounce.html. Using the bounce effect in this example shows how 
easy it is to add this simple but attractive effect. We didn't use any of the effect's 
configuration properties in this example, but the bounce effect does have three  
that may be useful in other situations:

Property Default Usage
direction up Sets the direction of the bounce
distance 20 (pixels) Sets the distance of the first bounce
times 5 Sets the number of times the element should bounce



Chapter 12

[ 385 ]

You'll notice when you run the example that the bounce effect has an ease-out easing 
feature built into it, so the distance of the bounce will automatically decrease as the 
animation transpires. We also need a little CSS for this example. Add the following 
styles in a new page:

#menu {
  position:relative; top:100px; width:275px; margin:0 auto;
}
#menu a {
  float:left; height:20px; padding:2px 5px;
  text-decoration:none;
}

Save this as bounce.css in the styles folder. Here's how the page should look:

Shaking
The shake effect is similar to the bounce effect but with the crucial difference of not 
having any built-in easing, so the targeted element will shake the same distance for 
the specified number of times instead of lessening each time (although it will come  
to a smooth stop at the end of the animation).



UI Effects

[ 386 ]

Let's change the previous example so that it uses the shake effect instead of the 
bounce effect. Change bounce.html so that it appears as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/bounce.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Shake Effect</title>
  </head>
  <body>
    <div id="menu">
      <a href="#">Home</a><a href="#">About</a><a href="#">Help</a> 
<a href="#">Products</a><a href="#">Services</a>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.shake.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //shake the link on mouseover
        $("#menu a").mouseover(function() {
          $(this).effect("shake", {direction:"up"}, "fast" );
        });
      });
    </script>
  </body>
</html>

Save this as shake.html. This time as well as changing the effect we've also made 
use of one of the configuration properties, the direction property, which controls 
the direction of the shake. This is to override the default setting for this property 
which is left.



Chapter 12

[ 387 ]

This effect shares the same properties as the bounce effect, although the defaults are 
set slightly differently. The properties are listed in the following table:

Property Default Usage
direction left Sets the direction of the shake
distance 20 (pixels)(pixels) Sets the distance of the shake
times 3 Sets the number of times the element should shake

Transference
The transfer effect is different from the others in that it doesn't directly affect the 
targeted element. Instead, it transfers the outline of a specified element to another 
specified element. To see this effect in action, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/transfer.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Transfer Effect</title>
  </head>
  <body>
    <div id="container">
      <div id="productContainer">
        <img alt="GTX 280" src="img/gcard.jpg"></img><p>BFG GTX 280 OC 
1GB GDDR3 Dual DVI HDTV Out PCI-E Graphics Card</p><p id="price">Cost: 
$350</p><div id="purchase"><button id="buy">Buy</button></div>
      </div>
      <div id="basketContainer">
        <div id="basket"></div>
        <p>Basket total: <span id="total">0</span></p>
      </div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.transfer.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready



UI Effects

[ 388 ]

      $(function() {
    

        $("#buy").click(function() {
          $("#productContainer img").effect("transfer", { to:"#basket" 
}, 750, function() {
            var currentTotal = $("#total").text();
            numeric = parseInt(currentTotal);
            $("#total").text(numeric + 1);
          });
        });
      });
    </script>
  </body>
</html>

Save this as transfer.html. We've created a basic product listing for an imaginary 
hardware retailer. When the Buy <button> is clicked, the transfer effect will give the 
impression of the product being moved into the basket.

Of course, a proper shopping cart application would be exponentially more  
complex than this, but we do get to see the transfer effect and get to use the built-in 
callback function to do a little post-animation processing, so the exercise should still 
be beneficial.

We also need some CSS for this example, so create the following new stylesheet:

#container { width:607px; margin:0 auto; }
#productContainer img {
  width:92px; height:60px;
  border:2px solid #000000;
  float:left; position:relative;
}
#productContainer p {
  width:340px; height:50px;
  font-family:Verdana; font-size:11px; font-weight:bold;
  float:left;
  margin:0; padding:5px;
  border-top:2px solid #000000;
  border-right:2px solid #000000;
  border-bottom:2px solid #000000;
}
p#price {
  height:35px; width:70px;
  padding-top:20px; float:left;
}
#purchase {



Chapter 12

[ 389 ]

  height:44px; width:75px;
  border-top:2px solid #000000;
  border-right:2px solid #000000;
  border-bottom:2px solid #000000;
  padding-top:16px; float:left;
  text-align:center;
}
#basketContainer {
  float:right; width:90px; margin-top:100px;
}
#basket {
  width:65px; height:31px;
  position:relative; left:13px;
  background:url(../img/basket.gif) no-repeat;
}
.ui-effects-transfer { border:2px solid #66ff66; }

Save this as transfer.css in the styles folder. The key rule in our stylesheet is  
the one which targets the element that has a class of ui-effects-transfer.  
This element is created by the control and together with our styling produces the 
actual effect.

Run the file in your browser. I think you'll agree that it's a nice effect which would 
add value to any page that it was used on. Here's how it should look while the 
transfer is occurring:



UI Effects

[ 390 ]

The transfer effect has just two configurable properties, one of which is required and 
that we have already seen. For reference, both are listed in the following table:

Property Default Usage
className ui-effects-transfer A new class to apply to the element the 

transfer originates from
to none Sets the element the effect will be 

transferred to. This property is mandatory

The four effects that we've looked at so far all have one thing in common—they can 
only be used with the effect method. The remaining effects can be used not only 
with the effect method, but also with the toggle, and the show/hide methods. 
Let's take a look. 

Scaling
The next effect that we'll look at is scaling, which allows us to shrink or grow any 
specified element. At the end of the last chapter, we created a page that had a series 
of boxes on it which could be reordered or closed. When they were closed, they 
simply vanished instantly from the page.

Let's use the scale effect to make them gracefully shrink to nothing instead. Change 
the anonymous click function attached to the .close button in jPage.html so that it 
appears as follows:

//close the box on close icon click
$(".close").click(function() {
    
  //shrink the box to nothing then append to closed list
  $(this).parent().parent().effect("scale", { percent:0 }, "slow", 
function() {
    $(this).appendTo("#hidden");
  });
});



Chapter 12

[ 391 ]

Save this file as scaling.html. The percent property indicates the ending size  
of the element the effect is applied to. Here's how one of our boxes should look  
in mid-scale:



UI Effects

[ 392 ]

There are several more properties that can be used with scale, which are as follows:

Property Default Usage
direction both Sets the direction to scale the element in. May 

be a string specifying either both, vertical, 
or horizontal

from {} Sets the starting height and width of the 
element to be scaled

origin ["middle","center"] Sets the vanishing point, used with  
show/hide animations

percent 0 Sets the end size of the scaled element

I mentioned a little while ago that the effects that we're looking at now can be used 
with other methods. The file in our previous example could be reconstructed to use 
the hide method instead:

//close the box on close icon click
$(".close").click(function() {
    
  //shrink the box to nothing then append to closed list
  $(this).parent().parent().hide("scale", { }, "slow", function() {
    $(this).appendTo("#hidden");
  });
});

Save this variation as scalingHide.html. We've gotten away with a slightly lighter 
method as we don't have to supply the percent property in our configuration 
object, but other than this, the effects are very similar code-wise. Visually, the only 
difference in the execution of this version of the file is that the boxes now vanish to 
the center instead of the top-left.

Element explosion
The explosion effect is truly awesome. The targeted element is literally exploded 
into a specified number of pieces before disappearing completely. It's an easy effect 
to use and has few configuration properties but the visual impact of this effect is 
huge, giving you a lot of effect in return for very little code. Let's see a basic example. 
Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>



Chapter 12

[ 393 ]

    <link rel="stylesheet" type="text/css" href="styles/explode.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Explode Effect</title>
  </head>
  <body>
    <button id="detonate">Pull the Pin!</button>
    <div id="theBomb"></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.explode.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        $("#detonate").click(function() {
          $("#theBomb").effect("explode");
        });
      });
    </script>
  </body>
</html>

Save this as explode.html. We also need a little CSS. Create the following stylesheet:

#theBomb {
  width:69px; height:100px;
  background:url(../img/nade.jpg) no-repeat;
  position:absolute;
  top:50px; left:50px;
}

Save this as explode.css in the styles folder. As you can see, the code is extremely 
simple and can be used completely out of the box with no additional configuration. 
This effect has only one configurable property, which is the pieces property and 
determines how many pieces the element is exploded into. The default is 9.



UI Effects

[ 394 ]

As our example shows, the effect can be used with either simple CSS properties like 
coloured backgrounds and borders, or more complex implementations involving 
proper images:

Physicists sometimes speculate as to why the arrow of time seems to only point 
forwards. They invariably ask themselves philosophical questions like 'why do we 
not see grenades spontaneously forming from a large cloud of debris?' (actually, the 
object is usually an egg but I don't think an egg-based example would have had the 
same impact!)

jQuery UI cannot help our understanding of entropy, but it can show us what a 
grenade spontaneously reassembling might look like. Change the click handler in  
the previous function so that it appears as follows: 

//show the image
$("#detonate").click(function() {
  $("#theBomb").show("explode");
});

Save this variant as explodeShow.html. The animation is the same except that it 
is shown in reverse. Like the other effects, explode can also make use of specific 
timings and callback functions.



Chapter 12

[ 395 ]

The puff effect
Similar to the explode effect but slightly more subtle is the puff effect which  
causes an element to grow slightly before fading away. Like explode there are  
few configuration options to concern ourselves with.

Consider a page that has AJAX operations occurring on it. It's useful to provide a 
loading image that shows the visitor that something is happening. Instead of just 
hiding an image like this when the operation has completed, we can puff it out of 
existence instead. Create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/puff.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Puff Effect</title>
  </head>
  <body>
    <img id="loading" alt="Loading" src="img/loading.gif">
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.scale.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //puff the image
        $("#loading").click(function() {
          $(this).hide("puff");
        });
      });
    </script>
  </body>
</html>

Save this as puff.html. The stylesheet used in this example is purely to position the 
image slightly so that we can see the full effect of the, well, the effect. For reference, it 
is comprised of the following styles:

#loading { position:relative; top:100px; left:100px; }



UI Effects

[ 396 ]

Save this as puff.css in the styles folder. In this example, the effect is produced on 
the click event of the image. However, in reality, we would probably work it into the 
success AJAX event instead.

You'll notice that we used the effect.scale.js source file for this effect. The puff 
effect is the only effect that does not have its own source file and is instead part of the 
very closely related scaling effect's source file.

Like the explode effect that we looked at in the last section, this effect has just one 
configuration property that can be passed in an object as the second argument of the 
effect constructor. This is the percent property and controls how big the image is 
scaled up to. The default value is 150%.

The effect stretches the targeted element (and its children), while at the same time 
reducing its opacity. It works well on proper images, background colours, and borders, 
but you should note that it does not work so well with background images specified by 
CSS. Nevertheless, it's a great effect. The following screenshot shows it in action:



Chapter 12

[ 397 ]

Pulsate
The pulsate effect is another effect which works with the opacity of a specified 
element. This effect reduces the opacity temporarily a specified number of times, 
making the element appear to pulsate.

In the following basic example, we'll create a simple countdown time that counts 
down from 15. When the display reaches 10 seconds, it will begin to flash red. In a 
new file, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/pulsate.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Pulsate Effect</title>
  </head>
  <body>
    <div id="countdown">15</div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.pulsate.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //set countdown start
        var age = 15;
    

        //global adjustAge function
        adjustAge = function() {
    

          //change text of countdown display
          $("#countdown").text(age - 1);
    

          //start pulsating when 10 is reached
          (age < 11) ? $("#countdown").css({backgroundColor:"#ff0000"}
).effect("pulsate", { times:1 }) : null ; 
    

          //clearInterval when 0 displayed
          (age == 1) ? clearInterval(timer) : age -= 1;
        }
      



UI Effects

[ 398 ]

        //start counting down
        timer = setInterval("adjustAge()", 1000);
      });
    </script>
  </body>
</html>

Save this as pulsate.html. Both the page and the script for this example are simple, 
but the goal is to show off the effect after all. The page itself contains just a simple 
<div> element with the number (as a text string) 15 inside it.

The code first sets a variable equal to the text within the <div>. It then defines the 
global adjustAge() function. Unfortunately, this function must be global so that it is 
visible to the setInterval method, which is automatically executed in the context of 
the window.

This function first changes the text content of the specified element to one less than 
the current age variable. It then checks whether age has reached 10 yet and if so, 
applies a background color of red to the element and starts the pulsate effect. It then 
checks whether the age variable has reached 1 yet. If it has, it clears the interval so 
that it doesn't keep counting down past 0.

We use the times property to specify how many times the element should pulsate. 
As we'll be executing the method once every second, we can set this to just pulsate 
once on each call.

After our adjustAge function, we then start the interval using JavaScript's 
setInterval function. This function will repetitively execute the specified function 
after the specified interval, which in this example is 1000 milliseconds, or 1 second.

So every second the number in the countdown <div> will decrement by 1 until it 
gets to 10 when the pulsate effect kicks in. Once the timer reaches 0, the pulsating 
stops. The following screenshot shows how the page should appear once the 
countdown has crossed the 10 second barrier:



Chapter 12

[ 399 ]

Drop
The drop effect is simple. Elements it is applied to appear to drop off of (or onto) the 
page, which is simulated by adjusting the element's height and opacity. There are 
many situations in which this would be useful but one that instantly springs to mind 
is when creating custom tooltips.

We can easily create a tooltip that appears when an element is hovered over, but 
instead of just showing the tooltip after a specified period of time has elapsed, we 
can drop it on to the page instead. Add the following code to a new file in your  
text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/drop.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Drop Effect</title>
  </head>
  <body>
    <div id="container">
      <p>Lorem <a id="link1" href="#" title="This is a link">ipsum</
a> dolor sit amet, consectetuer adipiscing elit. Sed dapibus 
libero non lacus. Morbi <a id="link2" href="#" title="This is 
another link">sagittis</a> ante vitae tortor. Quisque quis neque 
vel augue laoreet consectetuer. Vestibulum tempor. Morbi non <a 
id="link3" href="#" title="This is the third link">justo</a>. Aliquam 
ullamcorper, enim sed ultricies accumsan, ipsum mauris eleifend urna, 
in ullamcorper nisl urna at erat.</p>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.drop.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //make tooltip on mouseover
        $("#container a").mouseover(function(e) {
    

          //create tooltip



UI Effects

[ 400 ]

       $("<div>").text($(this).attr("title")).addClass("tooltip").
css({left:e.pageX, top:(e.pageY - 40)}).appendTo($("body"));
    

          //set timeout to show tooltip
          tip = setTimeout("$('.tooltip').show('drop', { 
direction:'up' }); ", 750);
    

            //supress title
            $(this).attr("title", "");
    

        });
    

        //make tip track with pointer
        $("#container a").mousemove(function(e) {
          $(".tooltip").css({'left':e.pageX, 'top':e.pageY - 35});
        });
    

        //remove tooltip on mouseout
        $("#container a").mouseout(function(e) {
    

            clearTimeout(tip);
    

          //put title text back
          $("#" + e.target.id).attr("title", $(".tooltip").text());
    

          //hide and remove tooltip
          $(".tooltip").remove();
          $("#fxWrapper").remove();
        });
      });
    </script>
  </body>
</html>

Save this as drop.html. The page itself is simple. We've got a container <div> and  
a paragraph with three links inside it. The links are the elements that will trigger  
our tooltips.

Within our outer document-ready function, we have three distinct anonymous 
functions. The first is executed when one of the trigger elements fires the  
mouseover event, another is executed on mousemove, and the last works with  
the mouseout event.

In the first function, a new <div> element is created and its contents are set to the 
contents of the title attribute of the element that fired the mouseover event. The 
new element is given a class of tooltip and has its left and top style properties set  
to 35 pixels above the mouse pointer at the time of the event.



Chapter 12

[ 401 ]

Next, a timer is started using JavaScript's setTimeout method which will show the 
new tooltip using the drop effect after 750 milliseconds have passed. The title 
attribute of the element that was hovered over is then set to an empty string to 
prevent the OS default tooltip from appearing.

Our next anonymous function is attached to the mousemove event of whichever 
element fired the initial mouseover. Every time the mouse pointer moves our tooltip 
<div> will be repositioned. This means that if the pointer is moved before the tooltip 
is shown, the tooltip will still appear in the correct location, and while the tooltip is 
open, it will follow the mouse pointer:

//make tip track with pointer
$("#container a").mousemove(function(e) {
  $(".tooltip").css({'left':e.pageX, 'top':e.pageY - 35});
});

The final function basically tidies up after the tooltip. It clears the timeout (if it is 
still present) and retrieves the text content of the tooltip to put back on the element's 
title attribute. Finally, it removes the tooltip and the effect wrapper from the DOM, 
putting everything back as it was:

//remove tooltip on mouseout
$("#container a").mouseout(function(e) {
    

  clearTimeout(tip);
    

  //put title text back
  $("#" + e.target.id).attr("title", $(".tooltip").text());
    

  //remove tooltip
  $(".tooltip").remove();
  $("#fxWrapper").remove();
});

There is also some minimal CSS required for this example, mostly to style the new 
tooltip. Create the following stylesheet:

#container {
  width:500px; margin:20px auto; border:1px solid #000000;
}

.tooltip {
  background-color:#cccccc; border:1px solid #3333ff;
  color:#ffffff;
  font-family:Verdana; font-weight:bold; font-size:12px;
  position:absolute;
  padding:2px 5px 3px; display:none; z-index:1000;x 5px 3px; display:none; z-index:1000;
}



UI Effects

[ 402 ]

Save this in the styles folder as drop.css. When you run the file in your browser, 
you should see how the drop effect shows our tooltip, as in the following screenshot:

Slide
The remaining effects of the jQuery UI library all work by showing and hiding 
elements in different ways rather than using opacity like most of the effects we have 
already looked at. 

The slide effect is no exception and shows (or hides) an element by sliding it into  
(or out of) view. It is similar to the drop effect that we just looked. Its main difference 
is that it does not use opacity.

For our next example, we can create a simple block of text that is initially hidden by 
an image. The full text can be revealed by sliding the image out of view. In a new 
page in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/slide.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Slide Effect</title>
  </head>
  <body>
    <div id="text"><a id="viewAll" href="#" title="View All">view 
all</a><span id="ellipse">...</span><p>In Japanese history, a ninja 
is an elite warrior, highly trained in all aspects of combat martial 



Chapter 12

[ 403 ]

arts, and specializing in a variety of unorthodox arts of war 
</p><p>The methods used by ninja included assassination, espionage, 
stealth, camouflage, unconventional warfare, specialized weapons, 
and a vast array of martial arts. Their exact origins are still 
unknown. Their roles may have included sabotage, espionage, scouting 
and assassination missions as a way to destabilize and cause social 
chaos in enemy territory or against an opposing ruler, perhaps in the 
service of their feudal rulers (daimyo, shogun), or an underground 
ninja organization waging guerilla warfare. </p><div id="image"> 
</div></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.slide.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //slide div down
        $("#viewAll").click(function() {
            $("#image").toggle("slide", { direction:"down" }, 1000, 
function() {
    

            //change trigger text
            ($("#viewAll").text() == "view all") ? $("#viewAll") 
.text("hide").css({color:"#000000"}) : $("#viewAll").text("view all") 
.css({color:"#ffffff"}) ;
    

    

            //show or hide ellipsis
            ($("#ellipse").css("display") == "block") ? $("#ellipse") 
.css({display:"none"}) : $("#ellipse").css({display:"block"}) ;
          });
        });
      });
    </script>
  </body>
</html>

Save this as slide.html. The page contains a <div> element with some other 
elements nested within it. One of the elements is a <div> that hides most of the 
text with an image, and another is a <div> containing three periods to give the 
impression of an ellipsis. There's also a link used to trigger our effect.

The code is also remarkably simple. When the link is clicked, the image is  
toggled using the slide effect. If the image is currently being shown, it is hidden  
and vice-versa. The text of the link is changed to reflect the new state and the  
ellipsis <div> is either shown or hidden.



UI Effects

[ 404 ]

The default direction of the slide effect is set to left so we need to use the 
configuration object to specify that it should be set to down. We also supply  
1000 milliseconds as the duration of the effect and make use of the callback  
function to change the link text and ellipsis.

We also use a little CSS in this example. Create the following stylesheet:

#text {
  width:400px; border:1px solid #000000; margin:0 auto;
  overflow:hidden; position:relative;
}
#text p { padding:10px; margin:0; }
#viewAll {
  position:absolute; bottom:0px; right:0px;
  z-index:100; color:#ffffff; font-weight:bold;
  text-decoration:none; padding:1px 3px;
}
#ellipsis {
  background-color:ffffff; position:absolute; left:164px;
  top:50px; display:block;
}
#image {
  width:402px; height:208px; background:#000000;
  position:absolute; top:80px;
}

Save this as slide.css in the styles folder.  The effect in progress should appear as 
in the following screenshot:



Chapter 12

[ 405 ]

I said earlier that the effects.core.js file had the built-in ability to seamlessly 
use easing with the effects. Let's see how easy this is to achieve. Change the last 
<script> element in slide.html so that it appears as follows (new code shown  
in bold):

//function to execute when doc ready
$(function() {
     
  //slide div down
  $("#viewAll").click(function() {
    $("#image").toggle("slide", { direction:"down", 
easing:($("#viewAll").text() == "view all") ? "easeOutBounce" : 
"easeOutBack" }, 1000, function() {
   ($("#viewAll").text() == "view all") ? $("#viewAll").
text("hide").css({color:"#000000"}) : $("#viewAll").text("view all").
css({color:"#ffffff"}) ;
   ($("#ellipsis").css("display") == "block") ? $("#ellipsis").
css({display:"none"}) : $("#ellipsis").css({display:"block"}) ;
    });
  });
});

Save this as slideEasing.html. See how easy that was. All we need to do is add 
the easing property within our configuration object and define one of the easing 
methods specified in the easing plug-in by GSGD. Note that we don't actually need 
to use the separate easing plug-in.

In this example, we specify a different easing method for each toggle state. When the 
image slides down, it bounce slightly at the end of the animation. When the image 
slides back up, it will drag the bottom up a little further than it should and then drop 
it back down.

Clip
The clip effect is very similar to the slide effect. The main difference is that instead of 
moving one edge of the targeted element towards the other, to give the effect of the 
element sliding out of view, the clip effect moves both edges of the targeted element 
in towards the center.



UI Effects

[ 406 ]

At the end of chapter 2, we created an AJAX dialog example which showed a small 
dialog box when one of the help icons was clicked. The dialog could be closed using 
an ok button, which when pressed simply removed the dialog from the page. We 
could easily use the clip effect to close our dialog instead. In ajaxDialog.html, 
change the doOk function so that it appears as follows:

//define doOk function
var doOk = function() {
  

  //close the dialog
  $("#ajaxDialog").parent().parent().hide("clip", {}, "normal", 
function() {
    $("#ajaxDialog").dialog("close");
  });
}

Save this as clip.html. In this simple addition to the existing file, we use the clip 
effect to hide the dialog from view instead of simply calling the dialog's close 
method. We use the callback built into the hide method to call the dialog's close 
method after the effect has finished. This way the dialog still gets closed properly 
and the modal element gets removed automatically.

When calling the hide method, we need to specify all of the arguments, but as we 
are happy with the default configuration and the normal speed, we simply supply  
an empty object as the second argument and the string normal as the third argument. 
The next screenshot shows the dialog being clipped:



Chapter 12

[ 407 ]

The clip effect also has just a single native configuration property. This is the 
direction property that we already saw in the drop and slide effects, but this time 
the property may take just one of two values instead of four. The values that the clip 
effect's direction property accepts are horizontal or vertical, with vertical 
being the default.

Blind
The blind effect is practically the same as the slide effect that we looked at earlier. 
Visually, the element appears to do the same thing, and the two effects' code files are 
also extremely similar. The main difference between the two effects that we need to 
worry about is that with this effect we can only specify the axis of the effect, not the 
actual direction.

Like the clip effect that we looked at in the last section, the direction property that 
this effect uses for configuration only accepts the values horizontal or vertical. 
For example, when we used the slide effect earlier, we were able to slide the top of 
a <div> element down to the bottom to reveal the text. If we used the blind effect 
instead, the bottom of the <div> would slide up to the top to reveal the text. Try it 
out. Change slide.html to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/slide.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Blind Effect</title>
  </head>
  <body>
    <div id="text"><a id="viewAll" href="#" title="View All">view 
all</a><span id="ellipsis">...</span><p>In Japanese history, a ninja 
is an elite warrior, highly trained in all aspects of combat martial 
arts, and specializing in a variety of unorthodox arts of war 
</p><p>The methods used by ninja included assassination, espionage, 
stealth, camouflage, unconventional warfare, specialized weapons, 
and a vast array of martial arts. Their exact origins are still 
unknown. Their roles may have included sabotage, espionage, scouting 
and assassination missions as a way to destabilize and cause social 
chaos in enemy territory or against an opposing ruler, perhaps in the 
service of their feudal rulers (daimyo, shogun), or an underground 
ninja organization waging guerilla warfare.</p><div id="image"></
div></div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>



UI Effects

[ 408 ]

    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.blind.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
       

        //blind div up
        $("#viewAll").click(function() {
            $("#image").toggle("blind", { direction:"vertical" }, 
1000, function() {
            ($("#viewAll").text() == "view all") ? $("#viewAll") 
.text("hide").css({color:"#000000"}) : $("#viewAll").text("view all") 
.css({color:"#ffffff"}) ;
            ($("#ellipsis").css("display") == "block") ? 
$("#ellipsis").css({display:"none"}) : $("#ellipsis") 
.css({display:"block"}) ;
          });
        });
      });
    </script>
  </body>
</html>

Save this as blind.html. Literally, all we've changed is the string specifying the effect, 
in this case to blind, and the value of the direction property from down to vertical. 
When you run the file however, you should notice the difference instantly.

The effect does indeed look very much like your typical window blind, either rolling 
up or rolling back down:



Chapter 12

[ 409 ]

Fold
Folding is a neat effect that gives the appearance that the element it's applied to is 
being folded up like a piece of paper. It achieves this by moving the bottom edge 
of the specified element up to 15 pixels from the top, then moving the right edge 
completely over towards the left edge.

The distance from the top that the element is shrunk to in the first part of this effect 
is exposed as a configurable property by the API. So, this is something that we can 
adjust to suit the needs of our implementation. This property is an integer. The best 
way to judge the effect for ourselves is to put it to work. Create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
  <head>
    <link rel="stylesheet" type="text/css" href="styles/fold.css">
    <meta http-equiv="Content-Type" content="text/html;  
charset=utf-8">
    <title>jQuery UI Fold Effect</title>
  </head>
  <body>
    <div class="container">
      <div class="image"><img src="img/sunset1.jpg" alt="Sunset"> 
</div>
      <div class="ui"><a class="close" href="#"></a></div>
    </div>
    

    <script type="text/javascript" src="jqueryui1.6rc2/ 
jquery-1.2.6.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.core.js"></script>
    <script type="text/javascript" src="jqueryui1.6rc2/ui/ 
effects.fold.js"></script>
    <script type="text/javascript">
      //function to execute when doc ready
      $(function() {
    

        //fold image when close clicked
        $(".close").click(function() {
          $(this).parent().parent().hide("fold", { size:"50" });
        });
      });
    </script>
  </body>ody>
</html>



UI Effects

[ 410 ]

Save this as fold.html. The page features a single image, with a simple placeholder 
and a close button. When the button is clicked, our anonymous function traverses up 
the DOM to its grandparent and then applies the fold effect to it.

We make use of the size configuration property to make the effect stop the first fold 
50 pixels before the top of the element. We also need some CSS for this example. 
Create the following stylesheet:

.container {
  width:234px; height:211px;
  position:relative;
  background:url(../img/placeholder.png) no-repeat;
}
.image {
  position:relative; top:11px; left:11px;
  margin-bottom:10px;
}
.ui {
  width:200px;
  position:relative; left:11px;
  border:2px solid #666666;
}
.close {
  width:60px; height:20px;
  font-family:verdana; font-size:80%; font-weight:bold;
  text-align:center; text-decoration:none;
  background:url(../img/close.gif) no-repeat;
  position:relative; left:135px; top:2px;
  display:block;
}
.close:hover {
  background:url(../img/close_over.gif) no-repeat;
}
img { border:2px solid #666666; }



Chapter 12

[ 411 ]

Save this file as fold.css in the styles folder. The effect in progress should appear 
as in the following screenshot:

Summary
In this chapter, we've covered the complete range of UI effects available in the jQuery 
UI library. We've seen how easy it is to use the effects.core.js base component to 
construct attractive color animations and smooth class transitions.

We also saw that the following effects can be used in conjunction with the simple 
effect API:

bounce
highlight
shake
transfer

•

•

•

•



UI Effects

[ 412 ]

An important point is that most of the individual effects can be used not only  
with the effect API but can also make use of show/hide and toggle logic, making 
them incredibly flexible and robust. The following effects can be used with this 
advanced API:

blind
clip
drop
explode
fold
puff
pulsate
scale
slide

This now brings us to not only the end of this chapter, but also the end of the book. 
There is a saying, I'm sure that you've all heard it before; it's the "give a man a fish..." 
saying. I hope that during the course of this book, I've taught you how to fish instead 
of just giving you a fish.

The aim of the examples that we've worked through over the chapters has not been 
just to show you how to use the library but also to show you that it is powerful 
enough and flexible enough to be limited only by your imagination. The world  
class interfaces of tomorrow are made possible today with jQuery UI.

•

•

•

•

•

•

•

•

•



Index
A
accordion methodology

about  72
accordion widget, removing  72, 73
activate method  78, 79
activate method, testing  78
destroy method  72, 73
disable method  74-77
enable method  74-77

accordion widget
about  57
accordion methodology  72
animation  79
configurable properties  65, 66
configurable properties, using  66-68
configuring  65
custom styling  61-65
elements  58
events  81, 83
implementing  58, 59
jQuery UI accordion navigation example  

83-87
navigation menu, building  83
script file, required  60
structure  58

accordion widget, styling
custom stylesheet, creating  61
custom theme, creating  61
Firebug plugin, used  61
flora theme, used  61

AJAX
date picker widget, modifying  175

AJAX tabs, UI tabs widget
about  46
creating  46-50

animation, accordion widget
easing methods  80
slide animation  79

auto complete widget
about  183
additional data, sending to server  210
advanced formatting  198-205
basic implementation  184, 185
caching  210
configurable properties  186, 187
email field example with JSON  214-218
matching properties  205
methods  211
multiple sections  197
remote data  207, 208
styling  185-197

B
browser support, jQuery UI

Chrome  19
Firefox 2  19
Firefox 3  19
IE 6  19
IE 7  19
IE 8  19
Opera 9  19
Safari 3  19

C
callback properties, date picker widget

about  156
beforeShow  156
beforeShowDay  156
calculateWeek  156
onChangeMonthYear  156



[ 414 ]

onClose  156
onSelect  156
statusForDate  156
using  157, 158

callback properties, dialog widget
about  100
close  100
drag  100
dragStart  100
dragStop  100
focus  100
open  100
resize  100
resizeStart  100
resizeStop  100
uses  101, 102

callback properties, draggables
about  238
absolutePosition property  238
drag property  238
functions  238-242
helper property  238
options property  238
position property  238
start property  238
stop property  238

callback properties, droppables
about  254
activate property  254
deactivate property  254
drop property  254
functions  254-257
out property  254
over property  254

callback properties, resizable
resize  286
start  286
stop  286

callbacks properties, selectables
selected  301
selecting  301
start  301
stop  301
unselected  301
unselecting  301
working  301-304

component categories, jQuery UI
higher-level widgets  18
low-level interaction helpers  18

configurable properties, accordion widget
active property  69
alwaysOpen property  70
animated property  79
autoHeight property  70
clearStyle property  70
event property  67
fillSpace property  70
navigation property  70

configurable properties, auto complete 
widget

autoFill property  188
formatItem property  199, 200
formatMatch property  204
formatResult property  203, 205
highlight property  194
minChars property  190
multiple property  197
multipleSeparator property  198
mustMatch property  205
scrollHeight property  190
scroll property  190
selectFirst property   189
width property  193

configurable properties, date picker widget
about  144
appendText property  148
buttonImage property  160
callback properties  156
changeFirstDay property  148
changeMonth property  148
changeYear property  148
closeAtTop property  148
dateFormat property  148, 150
duration property  148
numberOfMonths property  162
rangeSelect property  164
regionalization properties  150, 151, 152, 154
showAnim property  164
showOn property  159
showOption property  164
showOtherMonths property  148
showWeeks property  148



[ 415 ]

configurable properties, selectables
autofresh  298
filter  298

connected sortables  347
core effects file

about  376
advanced easing  380
class transitions  378, 380
color animations  376
color animations, implemeting  376, 377
style attributes, color animations  378

D
date picker widget

about  139
AJAX magic  176
alternative animations, configuring  164, 

165
configurable properties  144-148
default date picker, creating  140, 141
elements  139
internationalizing  153-155
localizing  150
methods  166
modifying  175-181
multiple months, implementing  161, 162
putting in a dialog  168-174
range selection, enabling  163, 164
skinning  142, 143
trigger buttons  159, 160

dialog widget
about  89
AJAX dialog, creating  111-115
animations  102, 103
basic dialog, creating  90, 91
callback properties  100
custom skins  92
data, getting from  108-111
elements  89
jQuery UI AJAX dialog example  111-116
methods  104, 105
properties  94
skinning  92-94

drag and drop example  261-267
draggables

about  219-221

basic implementation  221, 222
callback functions  238
drag, constraining  233-235
dragged elements, resetting  227, 228
handles, dragging  228, 229
helper elements, dragging  230-233
methods  243
properties  223, 224
properties, configuring  223
properties, using  224-227
snapping, configuring  236, 237

draggables API  219
droppables

about  219, 220, 244
callback properties  254
default implementation  245, 246
methods  261
properties, configuring  247

droppables API  219

E
encapsulation  222
event handlers, sortables

about  341
activate  341
beforeStop  341
change  341
deactivate  341
functions  342-346
out  341
over  341
receive  341
remove  341
sort  342
start  342
stop  342
update  342

F
Fun with UI widgets

accordion  83
auto-complete  214
date picker  175
dialog  111
droppables  261
resizables  289



[ 416 ]

selectables  308
sortables  356
tabs  52

G
greed property, droppables

about  257
example  258-260

H
helpers, sortables  334

I
implementation, UI tabs widget

<href>element, HTML elements  25
HTML elements, used  24
list element, HTML elements  25

J
jQuery UI

about  9
book examples  20
browser support  19
component categories  18
draggables  219
droppables  219
library licensing  21
simplified API  17
theme roller  16, 17
ui.core.js file  18
UI effects  375

jqueryui1.6rc2 folder, jQuery UI library 
structure

_MACOSX directory  13
demo directory  13
qunit folder, test directory  14
test folder  14
theme directory  14
ui folder  15

jQuery UI library
accordion widget  57
auto complete widget  183
date picker widget  139

development environment,  
setting up  12, 13

dialog widget  89
downloading  11
selectables  293
slider widget  117
sortables  321
structure  13
UI tabs widget  23

jQuery UI library licensing
GPL lincense  21
MIT lincense  21

L
library files

jquery-1.2.6.js  185
ui.all.css  185
ui.autocomplete.js  186
ui.core.js  185

library files, draggables
jquery-1.2.6.js  222
ui.core.js  222
ui.draggable.js  222

library files, droppables
jquery-1.2.6.js  247
ui.core.js  247
ui.draggable.js  247
ui.droppable.js  247

library files, sortables
jquery-1.2.6.js  323
ui.core.js  323
ui.sortable.js  323

M
methods, auto complete widget

destroy  211
flushCache  211, 213
result  211
search  211
setData  211, 213

methods, date picker widget
change  166, 167
destroy  166
dialog  166, 168
disable  166



[ 417 ]

enable  166
getDate  166
hide  166
isDisabled  166
setDate  166
show  166

methods, dialog widget
close  104
destroy  104
isOpen  104
moveToTop  104
open  104
uses  105-108

methods, draggables
destroy method XE   243
enable method  243
functions  243, 244
toggle() function, calling  244

methods, droppables
destroy method  261
disable method  261
function  261

methods, slider widget
moveTo  128
value  128

methods, sortables
destroy method  351
disable method  351
enable method  351
functions  351-354
in action  351
properties, used  354
refresh method  351
refreshPositions method  351
serialize method  351
toArray method  351

methods, UI tabs widget
add method  37, 39
destroy method  37, 45
disable method  37
enable method  37
length method  37, 43
load method  37
remove method  37, 39
rotate method  37, 43
select method  37, 42
url method  37

P
placeholders

about  331
properties, dialog widget

autoOpen property  95
button property  98, 99
height property  99
modal property  97
overlay property  97
position property  96
title property  96

properties, draggables
axis property  227
clone property  231
container property  233
containment property  235
cursorAt property  226
cursor property  224
delay property  227
distance property  226
grid property  227
handle property  228
helper property  231
left property  226
opacity property  233
revert property  231
scroll property  235
snapMode property  236
snap property  236
snapTolerance property  236
steps property  227

properties, droppables
accept property  247, 248
activeClass property  247
greedy property  247
hoverClass property  247, 248
modes, tolerance property  251
tolerance property  247, 251
uses  247-250

properties, resizable
all property  278
animateDuration property  284
animateEasing property  284
animate property  284
autoHide property  278
containment property  283



[ 418 ]

ghost property  281
handles property  275
helper property  285
knobHandles property  278

properties, sortables
configuring  325, 327
connectWith property  338-341
containment property  328
cursor property  328
delay property  330
distance property  328
forcePlaceholderSize property  332
functions  327-330
handle property  330
helper property  334
items property  336, 337
opacity property  330
placeholder property  331, 333
revert property  330

properties used with remote data,  
auto complete widget

cacheLength  207
extraParams  207
matchCase  207
matchSubset  207
url  207

R
regionalization properties, date picker 

widget
clearStatus  150
clearText  150
closeStatus  150
closeText  150
currentStatus  151
currentText  151
dateFormat  151
dateNames  151
dateNamesMin  151
dateNamesShort  151
dateStatus  151
dayStatus  151
firstDay  151
iniStatus  151
monthNames  151
monthNamesShort  151

monthStatus  151
nextStatus  151
nextText  151
prevStatus  151
prevText  151
weekHeader  151
weekStatus  151
yearStatus  151

resizable
about  269, 270
animations  284, 285
basic resizable, implementing  270-272
callback properties  286, 288
default flora theme  272
ghost elements, resizing  280, 281
jQuery UI resizable tabs example  289-292
methods  289
properties  274, 275
resized element ratio, maintaining  282
resized elements, constraining  282, 283
resize handles, configuring  275-278
size limits, defining  279, 280
skinning  273, 274

S
script files, accordion widget

accordion source file  60
jQuery library  60
UI base file  60

selectable class
about  297
configurable properties  298

selectable methods
about  304
destroy  304
disable  304
enable  304
refresh  304
toggle  304

selectables
about  293
basic image viewer, creating  308-319
basic implementation  294
callbacks properties  301
default implementation, creating  294-296
filtering  299, 300



[ 419 ]

jQuery UI selection example  308-319
methods  304-308
selectee class names  297

selectee class names  297
slider widget

about  117
animation  131
appearance, changing  119
callback functions, using  125-127
color slider example  134-137
configurable properties  122
creating  118, 119
default theme, overriding  119-121
elements  117
implementing  118, 119
methods  127
moveTo method, using  128-130
multiple handles  131
multiple handles, implementing  131-134
slider background, elements  117
slider handle, elements  117
stepping property  122-125
steps property  122-125
vertical slider, creating  121

sortables
about  321
basic implementation  321-324
callback properties  341
connected events  347
connected events, in action  348-350
connected lists  338-341
event handlers  341
helpers  334, 335
items  336
JavaScript, jQuery UI customisable home 

page example  360-371
jQuery UI customisable home page exam-

ple  356-360
library files  323
methods  351
placeholders  331
properties  325-327
properties, configuring  325
widget compatibility  354, 356

sortables helpers  334
sortables items  336

structure, jQuery UI library
i18n folder  15
jqueryui1.6rc2 folder  13
minified components  15
packed components  15
unit testing  14
widget theming  15

T
theme roller

about  16, 17
preview  17

tolerance property, droppables
about  251
fit mode  251
intersect mode  251
pointer mode  251, 252
touch mode  251, 253

U
UI effects

about  375
additional effect parameters,  

highlight effect  382, 383
blind effect  407, 408
bounce effect  384, 385
clip effect  405, 406
core effects file  376
drop effect  399-401
explosion effect  392-394
fold effect  409, 410, 411
highlight effect  381, 382
properties, bounce effect  384
properties, scale effect  392
properties, shake effect  386
properties, transfer effect  390
puff effect  395, 396
pulsate effect  397, 398
scale effect  390
shake effect  385, 386
slide effect  402-405
transfer effect  387-389

UI tabs widget
about  23
AJAX tabs  46



[ 420 ]

components  23
configured properties, using  29, 30
custom events  34
event handler, binding with custom  

event  34
in conjunction with, jQuery library  

getJSON method  52, 54
jQuerybind() mehod  34
methods  37
properties  33
tab, implementing  24
tab, styling  26, 27
tab carousel, creating  43-45

tab events  33
tab implementation  24
tab implementation, underlying HTML  

elements used  24
tab implementation example  24
tab properties, configuring  28, 29
tabs, adding  39-42
tabs, configuring  28
tabs, disabling  37, 38
tabs, enabling  37, 38
tabs, removing  39-42
tabs methods, using  37
transition effects, enabling  31-33


	Cover
	Table of Contents
	Preface
	Chapter 1: Introducing jQuery UI
	Is this book for me?
	Downloading the library
	Setting up a development environment
	The structure of the library
	Unit testing
	Widget theming
	Minified and packed components

	Theme Roller
	The simplified API
	Component categories
	Browser support
	Book examples
	Library licensing
	Summary

	Chapter 2: Tabs
	A basic tab implementation
	Tab styling
	Configurable properties
	Transition effects
	Tab events
	Using tab methods
	Enabling and disabling tabs
	Adding and removing tabs
	Simulating clicks
	Creating a tab carousel

	AJAX tabs
	Fun with tabs
	Summary

	Chapter 3: The Accordion Widget
	Accordion's structure
	Styling the accordion
	Configuring accordion
	Accordion methodology
	Destruction
	Enabling and disabling
	Drawer activation

	Accordion animation
	Accordion events
	Fun with accordion
	Summary

	Chapter 4: The Dialog
	A basic dialog
	Custom dialog skins
	Dialog properties
	Adding buttons

	Working with dialog's callbacks
	Using dialog animations
	Controlling a dialog programmatically
	Getting data from the dialog
	Fun with dialog
	Summary

	Chapter 5: Slider
	Implementing slider
	Overriding the default theme
	Configurable properties
	Using slider's callback functions
	Slider methods
	Slider animation
	Multiple handles
	Fun with slider
	Summary

	Chapter 6: Date Picker
	The default date picker
	Skinning the date picker
	Configurable properties of the picker
	Changing the date format
	Localization
	Callback properties
	Trigger buttons
	Multiple months
	Enabling range selection
	Configuring alternative animations
	Date picking methods
	Putting the date picker in a dialog


	Fun with date picker
	Summary

	Chapter 7: Auto-Complete
	Basic implementation
	Configurable properties
	Scrolling
	Auto-complete styling
	Multiple selections
	Advanced formatting
	Matching properties
	Remote data
	Sending additional data to the server
	Caching

	Auto-complete methods
	Fun with auto-complete
	Summary

	Chapter 8: Drag and Drop
	The deal with drag and droppables
	Draggables
	A basic drag implementation

	Configuring draggable properties
	Resetting dragged elements
	Drag handles
	Helper elements
	Constraining the drag
	Snapping

	Draggable event callbacks
	Using draggable's methods
	Droppables
	Configuring droppables
	Tolerance

	Droppable event callbacks
	Greed

	Droppable methods
	Fun with droppables
	Summary

	Chapter 9: Resizing
	A basic resizable
	Skinning the resizable
	Resizable properties
	Configuring resize handles
	Defining size limits
	Resize ghosts
	Constraining the resize and maintaining ratio
	Resizable animations

	Resizable callbacks
	Resizable methods
	Fun with resizable
	Summary

	Chapter 10: Selecting
	Basic implementation
	Selectee class names
	Configurable properties of the selectable class
	Filtering selectables

	Selectable callbacks
	Selectable methods
	Fun with selectables
	Summary

	Chapter 11: Sorting
	Basic implementation
	Configuring sortable properties
	Placeholders
	Sortable helpers
	Sortable items
	Connected lists

	Reacting to sortable events
	Connected callbacks
	Sortable methods
	Widget compatibility
	Fun with sortable
	The main script

	Summary

	Chapter 12: UI Effects
	The core effects file
	Color animations
	Class transitions
	Advanced easing

	Highlighting
	Additional effect parameters

	Bouncing
	Shaking
	Transference
	Scaling
	Element explosion
	The puff effect
	Pulsate
	Drop
	Slide
	Clip
	Blind
	Fold
	Summary

	Index



