Pageii

Writing GNU Emacs Extensions
Bob Glickstein

OREILLYO

Cambridge - Koln - Paris- Sebastopol - Tokyo

Pageiv

Writing GNU Emacs Extensions
by Bob Glickstein

Copyright © 1997 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editor: Andy Oram
Production Editors: Kismet McDonough-Chan and Ellie Fountain Maden
Printing History:

April 1997: First Edition.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks and The Java
Seriesisatrademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of atrademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

&3

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
ORellly & Associatesis committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-261-1 [8/97]

Pagev

For Mom and Dad, without whom. . .
well, I'd just rather not think about it.

Page vii
Table of Contents
Preface Xi
1. Customizing Emacs 1
Backspace and Delete 1
Lisp 2
Keysand Strings 4
To What Is C-h Bound? 7
To What Should C-h Be Bound? 8
Evaluating Lisp Expressions 8
Apropos 10
2. Simple New Commands 13
Traversing Windows 13
Line-at-a-Time Scrolling 21
Other Cursor and Text Motion Commands 23
Clobbering Symbolic Links 24
Advised Buffer Switching 30
Addendum: Raw Prefix Argument 33
3. Cooperating Commands A4
The Symptom A
A Cure 35
Generdizing the Solution 40

4. Searching and Modifying Buffers 47

Inserting the Current Time 47
Page viii
Writestamps 50
M odifystamps 65
5. Lisp Files 71
Creating aLisp File 71
Loading the File 72
Compiling the File 76
eval-after-load a4
Local VariablesLists 78
Addendum: Security Consideration 80
6. Lists 81
The Smple View of Lists 81
List Details 83
Recursive List Functions 85
lterative List Functions 87
Other Useful List Functions 87
Destructive List Operations 89
Circular Lists?! 93
7. Minor Mode 3]
Paragraph Filling 95
Modes 96
Defining aMinor Mode 97

Mode Meat 99

8. Evaluation and Error Recovery 110

limited-save-excursion 110
eval 111
Macro Functions 112
Backquote and Unquote 113
Return Vaue 116
Failing Gracefully 119
Point Marker 120
9. A Mgjor Mode 122
My Quips File 122
Major Mode Skeleton 123
Changing the Definition of a Paragraph 125
Quip Commands 126
Pageix
Keymaps 127
Narrowing 130
Derived Modes 131
10. A Comprehensive Example 133
New York Times Rules 133
Data Representation 134
User Interface 141
Setting Up the Mode 148
Tracking Unauthorized Changes 157

Parsing the Buffer 162

Word Finder 163

Last Word 181
Conclusion 183
A. Lisp Quick Reference 185

Basics 185

Data Types 186

Control Structure 190

Code Objects 193
B. Debugging and Profiling 195

Evaluation 195

The Debugger 195

Edebug 197

The Profiler 198
C. Sharing Y our Code 200

Preparing Source Files 200

Documentation 201

Copyright 201

Posting 202
D. Obtaining and Building Emacs 203

Availability of Packages 203

Unpacking, Building, and Installing Emacs 205
Index 207

Page Xi

Preface

Before you even begin to extend Emacs, it's already the highest-function text editor thereis. Not
only can it do everything you'd normally expect (formatting paragraphs, centering lines,
searching for patterns, putting a block in upper case), not only does it have advanced features
(matching braces in source code, employing color to highlight syntactic elementsin your files,
giving online help on every keystroke and other commands), but it also performs a host of
functions you'd never dream of finding in atext editor. Y ou can use Emacs to read and compose
email and to browse the World Wide Web; you can have it run FTP for you, transparently
making remote files editable as if they were local; you can ask it to remind you about upcoming
meetings, appointmernts, and anniversaries. Asif that weren't enough, Emacs can aso play you
in agame of Go-Moku (and win, more than likely); it can tell you today's date in the ancient
Mayan calendar; and it can decompose a number into its prime factors.

With al that functionality, it may seem crazy that Emacs users often spend a significant portion
of their time extending Emacs. After all, most programmers view their editors as tools for
creating other software; why spend so much energy modifying the toal itself? A carpenter
doesn't tinker with his hammer; a plumber doesn't tinker with his wrench; they use their tools to
accomplish the job at hand. So why are Emacs users different?

The answer isthat the carpenter and the plumber would tinker with their tools to make them
better, if they knew how. Who knows exactly what they need better than they do? But they're not
toolsmiths. On the other hand, Emacsis a specia kind of tool: it's software, which means the
tool isthe same stuff as what Emacs users use it on. The user of Emacs s often a programmer,
and programming Emacs s, after al, just programming. Emacs users are in the happy position
of being their own toolsmiths.

Page xii

This book teaches Emacs Lisp programming using a series of real-life examples progressing
from trivial to sophisticated. Welll start with simple configuration tweaks that you can put in
your Emacs startup file, and by the end we'll be writing "major modes' and modifying Emacs's
own "command loop." Along the way welll learn about variables, keymaps, interactive
commands, buffers, windows, process I/O, and more. When | refer to Emacs in this book, |
specifically mean GNU Emacs. There are many editors that call themselves Emacs. Here's a bit
of the history of the name according to the authoritative On-line Hacker Jargon File, version
4.0.0, 24-Jul-1996:

[Emacs] was originally written by Richard Stallman in TECO under ITS at the MIT Al lab; Al Memo
554 described it as "an advanced, self-documenting, customizable, extensible real-time display
editor." It has since been re-implemented any number of times, by various hackers, and versions exist
that run under most major operating systems. Perhaps the most widely used version, also written by
Stallman and now called "GNU EMACS' or GNUMACS, runs principally under UNIX. It includes
facilities to run compilation subprocesses and send and receive mail; many hackers spend up to 80%
of their tube time inside it. Other variantsinclude GOSMACS, CCA EMACS, UniPressEMACS,
Montgomery EMACS, jove, epsilon, and MicroEMACS.

The examplesin this book were all devel oped and tested in GNU Emacs version 19.34 and a

pre-release version of Emacs 20.1 under various flavors of UNIX. See Appendix D, Obtaining
and Building Emacs, for information on where to find the Emacs distribution.

I've let my own progression as an Emacs user be my guide in selecting instructive examples.
The sequence of examplesin this book essentially retells the story of how my own Emacs
usage matured. For instance, from the very first moment | started using Emacs | knew | had to
do something about getting that damn BACK SPACE key not to invoke the online help! Maybe
you have that problem, too. Solving that problem is the first example we'll cover in the next
chapter.

After I'd been using Emacs for a short while, | found mysalf wanting a number of cursor-motion
shortcuts. As| learned, they were easily written in terms of Emacs's existing motion primitives.
WEe'll see several examples of those in Chapter 2, Smple New Commands. Later | needed to
have some way of undoing one of my most common and maddening typing errors. pressing
CONTROL-v severa times, when | meant to press CONTROL -b. Instead of moving the
cursor afew spacesto the left, 1'd scroll the whole window afew times and lose my place.
Fixing thiswas easily done, too, as you'll see in Chapter 3, Cooperating Commands. When |
began to manage files full of clever quotations, | needed specia tools to handle the specially
formatted files. We'll see some of those in Chapter 9, A Major Mode. Except for the first
handful of examples, which are smple one- and two-liners, each example has its own chapter.
Each chapter illustrates some problem needing

Page xiii
an Emacs Lisp solution, then presents a function or set of functions that solves the problem.

Then, just as real-life customizations tend to evolve to become more useful and more generd,
we'll revise the solution once or twice before going on to the next subject.

Each exampl e builds on the concepts of prior examples and introduces a few new ones of its
own. By the end of the book, we will have covered most major topicsin Emacs Lisp
programming and discussed the techniques for quickly finding out how to do anything you might
need to do in Emacs Lisp, using online documentation and other information. To borrow an old
saying: Give aman anew Emacs command and he can hack for a night; teach a man to make
new Emacs commands and he can hack for alifetime.

This book presumes that you're familiar with programming and with Emacs use. It would help
if you were acquainted with some variant of the Lisp programming language (of which Emacs
Lisp isone dialect), but that's not strictly necessary. The essentials of Lisp programming are
pretty simple and should quickly become clear through the examples we'll be using. There's
also Appendix A, Lisp Quick Reference, which briefly recaps Lisp fundamentals.

If you aren't familiar with the basic concepts in Emacs, refer to Learning GNU Emacs, 2nd
edition by Debra Cameron, Bill Rosenblatt, and Eric Raymond. Also useful is Emacss own
online documentation, especially the Emacs "info" manual, which is also available in book
form as The GNU Emacs Manual. If you'd like a more complete understanding of Lisp
programming, | recommend Common Lisp: A Gentle Introduction to Symbolic Computation
by David Touretzky.

This book is not areference manual for Emacs Lisp; nor, in fact, isit particularly thorough in
its coverage of the language. It's atutorial, covering topics chosen more for good instructional

flow than for exhaustiveness. For best effect it should be read from beginning to end. The Free
Software Foundation publishes The GNU Emacs Lisp Reference Manual, the definitive
reference manual on which it would be difficult to improve. It's available in printed and
electronic forms from several sources; see Appendix D.

What |s Emacs?

It's missing the point to say that Emacsis just a programmable text editor. It's also, for instance,
a C code editor. That may seem like nitpicking, but editing C code and editing text are two very
different activities, and Emacs accommodates the differences by being two different editors.
When editing code, you don't care

Page xiv

about paragraph structure. When editing text, you don't care about indenting each line according
to its syntax.

Emacsisalso aLisp code editor. It's also a hexadecimal binary file editor. It'salso a
structured outline editor. It's aso adirectory editor, atar file editor, an email editor, and a
hundred others. Each kind of editor is an Emacs mode, a chunk of Lisp code that combines
Emacs's primitive types and operations in some new way. Each mode is therefore an extension
of Emacs, which means that when you strip away al those modes—when you remove the
extensions and you're left with just the core of Emacs—you don't have any editors at all; you
have the raw materials for making editors. Y ou have an editor-builder.

What can you build with an editor-builder? Editors, of course, but what's an editor? An editor
isaprogram for viewing and altering a representation of data of some kind. By
"representation” | mean a set of rules for showing the data's structure and content, and for
indicating naturally how interactions with the data are supposed to proceed. When editing a
text file, the rules are pretty smple: each printable byte gets displayed in sequence, with
newline characters causing line breaks; and a cursor indicates where in the byte sequence the
next user-invoked operation will occur. When editing a directory, the metaphor is alittle less
straightforward—data in the directory file must first be trandlated into a human-readable
form—but the resulting interactions still seem natural.

This definition of editor covers nearly the whole range of interactive applications, and that's no
accident. Interactive applications are ailmost always editors for some kind of data or another.
Emacsthereforeis, in the end, a genera-purpose, interactive application builder. It's a user
interface toolkit! Like any good toolkit, Emacs supplies a set of user-interface widgets, a set of
operations on them, an event loop, a sophisticated /O regime, and alanguage for putting them
all together. The widget set may not be fancy and graphical like X11, Windows, or Macintosh
toolkits are, but as Emacs programmers discover, afull-blown graphical toolkit is often
overkill. 99% of most applicationsis textual, whether it's rows and columns of numbers, lists
of menu items, or lettersin a crossword puzzle diagram (as in our culminating example in
Chapter 10, A Comprehensive Example). For such applications, Emacs surpasses other toolkits
in power, sophistication, ssmplicity, and performance.

The real answer to "Why are Emacs users different?’ isn't merely that they spend time tinkering
with the tools they use. They're using Emacs for its intended purpose: to create a universe of
new tools.

Page xv

Conventions Used in This Book

The following conventions are used in this book.
Typographic Conventions

Constant WIIlison
Used for Emacs commands and all e ements of code.

[talic
Used to introduce new terms. Used for filenames, commands entered from a UNIX shdll,
newsgroups, and
Internet addresses.

Bold
Used for keystrokes.

Emacs Commands

This book follows the standard Emacs documentation when referring to keys. When you hold
down the CONTROL (CTRL) key, the syntax C- is used. When you hold downthe META or
ALT key (or use the ESCAPE key for the same effect), the syntax M- is used. We also refer to
RET for the RETURN or ENTER key, TAB for the TAB key, ESC for the ESCAPE key, and
SPC for the space bar.

Examples

Whenyouseex P vy, it meansthat the result of computing the expression on the left yields
the value on the right.

Organization of This Book

Each chapter in this book builds on the chapters before it. | recommend that you read the
chaptersin order; that way everything should make sense.

Chapter 1, Customizing Emacs
Introduces some basic changes you can make to Emacs. It will familiarize you with Emacs
Lisp, how to
evauate Lisp expressions, and how that alters Emacs's behavior.

Chapter 2, Smple New Commands
Continues the tutorial by teaching you how to write Lisp functions and install them so
they're invoked at the
right time. Hooks and the feature called advice are introduced.

Page xvi

Chapter 3, Cooperating Commands

Teaches techniques for saving information between separate function calls and helping
groups of functions work together—the first step in writing systems instead of mere
commands. Symbol properties and markers are among the topics introduced along the way.

Chapter 4, Searching and Modifying Buffers
Shows some of the most common techniques you'll need: those that affect the current buffer
and strings within it. Regular expressions are introduced.

Chapter 5, Lisp Files
Discusses loading, autoloading, and packages, which are features you'll need when you
start creating large groups of related functions.

Chapter 6, Lists
Fillsin some background on this fundamental feature of Lisp.

Chapter 7, Minor Mode
Shows how to assemble related functions and variables into an editing package called a
"minor mode." The central example in this chapter deals with making paragraph formatting
in Emacs work more like paragraph formatting in a word processor.

Chapter 8, Evaluation and Error Recovery
Shows the flexibility of the Emacs Lisp interpreter, how to control what gets evaluated
when, and how to write code that isimpervious to run-time errors.

Chapter 9, A Major Mode
Explains the differences between minor and major modes, and offers a ssimple example of
the latter: amode for treating afile of quotationsin a more structured manner than ordinary
text.

Chapter 10, A Comprehensive Example
Defines amajor mode that drastically alters Emacs's normal behavior. It's a crossword
puzzle editor and an illustration of how flexible an environment Emacsis for developing
text-oriented applications.

Appendix A, Lisp Quick Reference
Provides ahandy guide to Lisp's syntax, data types, and control structures.

Appendix B, Debugging and Profiling
Describes tools you can use to track down problemsin your Emacs Lisp code.

Appendix C, Sharing Your Code
Explains the steps you should take when you want to distribute your creations to other
people.
Page xvii

Appendix D, Obtaining and Building Emacs
Outlines the steps necessary to get aworking version of Emacs running on your system.

Obtaining the Example Programs

If you're using aWeb browser, you can get the examples from

ftp://ftp.oreilly.com/published/oreilly/nutshell/emacs_extensions.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should type in boldface.

%ftp ftp.oreilly.com

Connected to ftp.oreilly.com

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com yournamnme): anonynous

331 Guest login ok, send domain style e-nmail address as password.
Passwor d: your naneayour host. conm (use your user nanme and host here)
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/enmacsextensi ons

250 OWD command successf ul

ftp> binary (Very inportant! You nust specify binary transfer for
gzi pped files.)

200 Type set to |

ftp> get exanples.tar.gz

200 PORT command successful

150 Openi ng BI NARY node data connection for exanples.tar.gz.

226 Transfer conplete.

ftp> quit

221 CGoodbye.

Thefileisagzipped tar archive; extract the files from the archive by typing:
% gzip -dc exanples.tar.gz é tar -xvf -

System V systems require the following tar command instead:
% gzip -dc exanples.tar.gz €& tar -xvof -

If gzip is not available on your system, use separate uncompress and tar commands.

% unconpress exanples.tar.gz
% tar xvf exanples.tar

Page xvii
Acknowledgments

Thanksto Nathaniel Borenstein, who helped to dispel my chauvinism about C and taught me an
appreciation for the world's amazing variety of programming languages.

Thanks to Richard Stallman for writing Emacs—twice—and who was right about an amazing
phenomenon: hackers write better code when it's for their own satisfaction instead of for pay.

Thanks to Mike Mclnerny, whose stubborn persistence got me started using GNU Emacs—even
after several false starts convinced me it wasn't worth my time.

Thanks to Ben Liblit for ideas, code, and bug hunting in my Defer package (which was going to
be a chapter in this book until Emacs evolved parallel functionality: the timer package.)
Additional help was provided by Simon Marshall, who used and improved on many of the
ideasin hisdef er - | ock. Hi, Si.

Thanks to Linda Branagan for showing me it's possible for an ordinary person like me to write
abook. (Not that she's ordinary; not even close.)

Thanks to Emily Cox and Henry Rathvon for some insider information about crossword
puzzles.

Thanksto al the folks who reviewed and commented on early drafts of this book: Julie
Epelboim, Greg Fox, David Hartmann, Bart Schaefer, Ellen Siever, and Steve Webster.

Thanksto my partners at Zanshin Inc. and the Internet Movie Database for alowing meto
divide my energies between those projects and this book.

Thanks to my editor, Andy Oram, for coping flexibly with the aforementioned divided energies.
Thanksto Alex, my dog, for curling happily by my feet for much of the writing of this book.

Mogt of al, to Andrea Dougherty, who encouraged me, supported me, made innumerable
sacrifices, performed uncountabl e services, provided companionship when | needed it and
solitude when | needed that (never the other way around), and who in all other respects was
good for me and for this book: it must be love.

Page 1

1

Customizing Emacs
In this chapter

* Backspace and Delete

eLisp

» Keys and Strings

* To What IsC-h
Bound

*» To What Should C-h
be bound

e Evaluating Lisp
Expressions

* Apropos

This chapter introduces basic Emacs customizations, and teaches some Emacs Lisp along the
way. One of the simplest and most common customizationsis to move commands from one key
to another. Perhaps you don't like Emacs's two-key sequence for saving files (C-x C-s)
because you've been using some other editor where save isssimply C-s. Or perhaps you
sometimes accidentally type C-x C-c, which exits Emacs, when you mean to pressonly C-x,
and you'd like accidental presses of C-x C-c to have aless drastic effect. Or perhaps, asin the
example that follows, you need to work around an unusual expectation that Emacs has about
your keyboard.

Backspace and Delete

Imagine you're typing the word "Lisp" and you accidentally type "List." To correct your typo,
do you pressthe BACK SPACE key or the DELETE key?

The answer depends on your keyboard, but it's not merely a question of how the key is labeled.
Sometimes the key is labeled "Backspace,” sometimesit's labeled "Delete,” sometimes
"Erase," and sometimesit's not labeled with aword but has aleft-pointing arrow or some other
graphic. To Emacs, what mattersisn't the label but the numeric character code that the key
generates when pressed. Regardless of the label on the key, the "move |eft and erase the
previous character” key may generate an ASCII "backspace" code (decimal 8, usually denoted
BS) or an ASCII "delete” code (decimal 127, usualy denoted DEL).

In its default configuration, Emacs believes only DEL is the code meaning "move left and erase
the previous character.” If you have aBACK SPACE/DEL ETE/ERASE key that generates a
BS, it won't do what you expect when you pressit.

Page 2

What's worse iswhat your BACK SPACE/DELETE/ERASE key will do when you pressit, if
it's a BS-generating key. Emacs presumes that since BS isn't used for moving left and erasing
the previous character, it's available to perform another function. Asit happens, BS isaso the
code sent when you press C-h. If you're among those who don't need C-h to mean "move left
and erase the previous character,” then C-h isapretty natural choice for aHelp key, and in fact
that's what Emacs uses it for by default. Unfortunately, this means that if you have a
BS-generating BACK SPACE/DELETE/ERASE key, then pressing it won't backspace or
delete or erase; it will invoke Emacs's online help.

More than one tentative first-time Emacs user has been put off by the surprise that greets them
the first time they try to erase atypo. Suddenly a new Emacs window—the Help
window—jpops up, prompting the hapless user to choose some Help subcommand. The Help
window is so verbose and unexpected that it merely exacerbates the user's astonishment. The
natural panic reaction—nhit C-g ("abort the current operation") a bunch of times—is
accompanied by a cacophonous ringing of the terminal bell. It's no wonder that intelligent,
well-meaning users who might otherwise have helped swell the ranks of fervent Emacs
evangelists instead choose to continue struggling with safe, inoffensive vi. It pains me to think
of it, especially when the situation is so easily remedied. When Emacs starts, it reads and
executes the contents of the .emacs file in your home directory. Emacs Lisp is the language of
thisfile, and as we will discover in the course of this book, there's almost nothing you can't
customize in Emacs by writing some Emacs Lisp and putting it in .emacs. The first thing well
look at is adding some code to .emacs to make BS and DEL both do "back up and erase a
character,” moving the Help command to some other key. First we'll need to take alook at
Lisp, the language of the .emacs file.

Lisp
Various forms of Lisp have been around since the 1950s. It is traditionally associated with
artificia intelligence applications, for which Lisp is well-suited because it permits symbolic

computation, can treat code as data, and simplifies building very complicated data structures.
But Lisp is much more than just an Al language. It is applicable to a wide range of problems, a
fact that is frequently overlooked by computer scientists but which iswell known to Emacs
users. Among the features that distinguish Lisp from other programming languages are:

Page 3
Fully-parenthesized prefix notation

All expressions and function callsin Lisp are surrounded by parentheses,” and the function
name aways precedes the arguments to the function. So whereas in other languages you
may be able to write:

X +y
to apply the + function to the arguments x and y, in Lisp you write
(+xy)

"Prefix notation” means that the operator precedes the operands. When the operator is
between the operands, it's called "infix notation."

Though unfamiliar, prefix notation has some benefits over infix notation. In infix languages,
to write the sum of five variables you need four plus signs:

atb+ c +d+e

Lisp ismore concise:

(+abcde

Also, questions of operator precedence do not arise. For example, is the value of
3+4*5

35 or 23?1t depends on whether * has higher precedence than +. But in Lisp, the confusion
vanishes.

(+ 3 (* 45)) ‘result is 23
(* (+ 34) 5 ‘result is 35

(Commentsin Lisp are introduced with a semicolon and continue to the end of theline.)
Finally, while infix languages need commas to separate the arguments to a function:

foo(3 + 4, 5 + 6)
Lisp doesn't need that extra bit of syntax:
(foo (+ 3 4) (+5 6))

List data type

Lisp has abuilt-in data type called alist. A list isaLisp object containing zero or more
other Lisp objects, surrounded by parentheses. Here are some lists:

(hell o there) ; list containing two "synbol s"

(12 xyz") ; two nunbers and a string
(a (b c)) ; a synbol and a sublist (containing two !

() ; the enpty list

" The proliferation of parenthesesin Lisp is afeature that Lisp critics cheerfully decry as asure sign
of itsinferiority. According to them, Lisp standsfor "L ots of Infernal Stupid Parentheses." (In fact,
Lisp standsfor "List Processing.") In my view, the much simpler syntax renders Lisp code more
readable, not less, than code in other languages, as | hope you will agree.

Page 4

Lists can be assigned to variables, passed as arguments to functions and returned from
them, constructed with such functionsascons and append, and taken apart with such
functionsascar and cdr . Well be covering al that in plenty of detail later.

Garbage collection

Lisp is agarbage-collected language, which means that Lisp itself automatically reclaims
the memory used by your program's data structures. By contrast, with languages such as C,
one must explicitly allocate memory with mal | oc when it's needed, then explicitly release
itwithf r ee. (Themal | oc/ f r ee approach and otherslike it in non-garbage-collecting
languages are prone to abuse. Prematurely releasing allocated memory is one of the world's
greatest sources of program errors, and forgetting to release allocated memory can cause
programs to "bloat" until all available memory is used up.)

For al the convenience that garbage collection affords the programmer, it also has a
drawback: periodically, Emacs stops everything it's doing and displays the message
"Garbage collecting. . . " to the user. The user cannot use Emacs until garbage collection is
finished.” This usually takes only a second or less, but it may happen very often. Later on
well learn some programming practices that help to reduce the amount of garbage
collection that takes place.

The word expression usually means any piece of Lisp code or any Lisp data structure. All Lisp
expressions, whether code or data, can be evaluated by the Lisp interpreter built into Emacsto
make them yield some computational result. The effect of evaluating avariable isto access the
Lisp object previoudly stored in the variable. Evaluating alist isthe way to invoke Lisp
functions, as we'll see below. Since the invention of Lisp, there have been many Lisp diaects,
some of which barely resemble the others. MacLisp, Scheme, and Common Lisp are some of
the better-known ones. Emacs Lisp is different from all of these. This book focuses only on
Emacs Lisp.

Keysand Strings

The goal of this chapter isto make any BS-generating key work the same as any
DEL -generating key. Unfortunately, C-h will no longer invoke the Help command.

* Emacs uses a mark-and-sweep garbage collection scheme, which is one of the easiest waysto
implement garbage collection. There are other approaches to implementing garbage collection that
would not be so intrusive from the user's point of view; for instence, so-called "incremental" garbage
collection can take place without bringing Emacs to a halt. Unfortunately, Emacs does not employ

one of these more advanced approaches.

Page 5

You'll need to choose some other key to invoke Help; my own choice for the new Help key is
META-question-mark.

The META Key

The META key works like the CONTROL key and the SHIFT key, which means that you hold
it down while pressing some other key. Such keys are called modifiers. Not all keyboards have
aMETA key, though. Sometimesthe ALT key will serve the same purpose, but not all
keyboards have an ALT key, either. In any case, you don't need to usethe META key or the
ALT key. The single keystroke M ET A-x can always be replaced with the two-key sequence
ESC x. (Notethat ESC is not amodifier—you pressit and release it like a normal key before
pressing x.)

Binding Keystrokes to Commands

In Emacs, every keystroke invokes acommand or is part of a multiple-key sequence that
invokes a command. Commands are specia kinds of Lisp functions, as we will see. Making a
keystroke invoke a command such as Help is known as binding the keysequence to the
command. WEe'll need to execute some Lisp code to bind keys to commands. One Lisp function
for doing thisisgl obal - set - key.

Hereswhat acall to gl obal - set - key looks like. Remember that afunction call inLispis
smply aparenthesized list. The first element of the list is the name of the function, and any
remaining elements are the arguments. The function gl obal - set - key takes two arguments:
the keysequence to bind, and the command to bind it to.

(gl obal - set - key keysequence command)
One important thing to note about Emacs Lisp isthat it is case-sensitive.
The keysegquence we've chosen is M ETA-question-mark. How is this denoted in Emacs Lisp?
Denoting Keysin Strings

There are afew different ways to write a keysequence in Emacs Lisp notation. The smplest is
to writethe keysasastring. In Lisp, astring is a sequence of characters surrounded with
double quotes.

"xyz " ; three-character string

Page 6
To get adouble quote in the string itself, precede it with abackslash (\):
"l said, \"Look out!\""
This represents the string containing these characters:

| said, "Look out!"

To include a backslash in the string, precede it with another backs ash.

An ordinary key is denoted by writing the character in a string. For instance, the keystroke q is
denoted in Lisp by the string "g". The keystroke \ would be written as "\ \".

Special characters such as META-question-mark are denoted in strings using a special
gyntax: "\M-?". Even though there are four characters inside the double quotes, Emacs reads
this as a string containing the single character called META question-mark.”

In Emacsjargon, M- x is shorthand for META- X, and "\M-x" is the string version.
CONTROL-x is abbreviated C- x in Emacs documentation, and in strings is written as: "\C- x
". You can combine the CONTROL and META keys, too. CONTROL META-x is denoted
C-M- x and iswritten as "\C-\M- x " in strings. "\C-\M- x ", incidentally, is interchangeable
with "\M-\C- x " (META-CONTROL - x).

(CONTROL- x is also sometimes abbreviated ~x in documentation, corresponding to this
aternative string syntax: "\"x".)

Now we know how to fill in the first argument to our gl obal - set - key exanpl e:

(gl obal -set-key "\M?" comrand)

(One other way to write the keysequence "\M-?" is"\e?". The string "\e" denotes the escape
character, and M- x isthe same as ESC x.)

Next we must figure out what belongs in place of command. This argument should be the name
of the Help function that we want M -? to invoke-i.e., the function that C-h now invokes. In
Lisp, functions are named with symbols. Symbols are like function names or variable namesin
other languages, although Lisp alows awider variety of charactersin symbols than most
languages alow in their variable names. For instance, legal Lisp symbolsincludel et * and
up&down- p.

* You can use thel engt h function, which returns the length of astring, to confirm this. If you
evauate (length" \M-? "), theresult is 1. How to "evaluate" is covered later in this chapter.

Page 7

ToWhat |s C-h Bound?

In order to find the symbol that names the Help command, we can use C-h b, which invokes
another command called descr i be- bi ndi ngs. Thisisone of the Help system's many
subcommands. It presents awindow listing al the keybindingsin effect. Looking through it for
the C-h binding, we find thisline:

Ch hel p- command
Thistellsusthat hel p- conmand isthe symbol that names the function that invokes Help.

Our Lisp exampleis amost complete, but we can't just write

(gl obal -set-key "\M?" hel p-command) ; al nost right!

Thisiswrong because of the way symbols are interpreted when they appear in Lisp
expressions. If asymbol appearsin the first position of alist, it's the name of afunction to
execute. If it appears elsewhere, it's a variable whose value needs to be retrieved. But when
werun gl obal - set - key as shown, we don't want the value contained in

hel p- conmand, whatever that may be. The value we want is the symbol hel p- command
itself. In short, we wish to prevent the symbol from being evaluated before it's passed to

gl obal - set - key. After all, asfar aswe know, hel p- command doesn't have avalueasa
variable.

The way to prevent asymbol (or any Lisp expression) from being evaluated is to quote it by
preceding it with asingle quote (). It looks like this:

(gl obal -set-key * \M?" 'hel p- comrand)

Our Lisp example is now complete. If you place thisline in your .emacsfile, then M-? will
invoke hel p- command the next time you run Emacs, and in all future Emacs sessions. (Soon
we'll learn how to make Lisp expressions take effect immediately.) M-? b will invoke
descri be- bi ndi ngs theway C-h b did before (and still does—at this point, both M-?
and C-h are bound to hel p- command).

Incidentally, to illustrate the difference between quoting and not quoting, the same effect could
be achieved with

(setq x ' hel p- commrand) ; setq assigns a variable
(gl obal -set-key "\M?" x) ; usex's val ue

Thefirst line sets the variable x to hold the symbol hel p- command. The second uses x's
value-the symbol hel p- conmand—asthe binding for M-?. The only difference between this
and the first exampleis that now you end up with aleftover variable named x that didn't exist
before.

Page 8

Symbols aren't the only things that may follow a' character; any Lisp expression can be quoted,
including lists, numbers, strings, and other kinds of expressions we'll learn about later. Writing
‘expr is shorthand for

(quot e expr)

which, when evaluated, yields expr. Y ou might have noticed that a quote is required before the
symbol hel p- conmmand but not before the string argument, "\M-?". Thisis because in Lisp,
strings are self-evaluating, which means that when the string is evaluated, the result isthe
string itself. So quoting it, while harmless, is redundant. Numbers, characters, and vectors are
other types of self-evaluating Lisp expressions.

To What Should C-h Be Bound?

Now that we've bound hel p- command to M-?, the next thing to do isto change the binding
for C-h. Using exactly the same process just described-that is, running

descri be- bi ndi ngs (with either C-h b or M-? b at this point)-we find that the command
invoked by DEL isdel et e- backwar d- char .

So we can write
(gl obal -set-key "\ G h" del et e-backwar d- char)

Now DEL and C-h do the same thing. If you put these linesinto your .emacsfile:

(gl obal -set-key "\M?" ' hel p- conmand)
(gl obal -set-key "\ G h" del et e- backwar d- char)

then in your future Emacs sessions, your BACK SPACE/DEL ETE/ERASE key will do the
right thing, whether it sends a BS code or a DEL code. But how can we cause these changesto
take effect in the current session? This requires explicit evaluation of these two Lisp
expressions.

Evaluating Lisp Expressions
There are several waysto explicitly evaluate Lisp expressions.

1. You can put the Lisp expressionsin afile, then load the file. Suppose you place the
expressionsin afile named rebind.el. (Emacs Lisp filenames customarily endin .el.) You
could then type M -x load-file RET rebind.el RET to cause Emacsto evaluate the contents
of that file.

If you placed those expressions into your .emacs file, you could load .emacs in the same
way. But after you've been using Emacs for awhile, your .emacs tendsto grow, and if it's
very large, loading it could be Slow. In that case, you wouldn't want to load the entire file
just to get the effect of a couple of small changes. That brings us to our next option.

Page 9

2. You can usethe command eval - | ast - sexp, whichisboundto” C-x C-e. (Sexp+ isan
abbreviation for S-expression, which in turn is short for symbolic expression, which is
another name for "Lisp expression.”) This command evaluates the Lisp expression to the | eft
of the cursor. So what you'd do is position the cursor at the end of thefirst line;

(gl obal -set-key "\M?" ' hel p- conimand) j
(gl obal -set-key "\ G h" 'del et e-backwar d-char)

and press C-x C-e; then move to the end of the second line:

(gl obal -set-key "\M?" ' hel p- conmand
(gl obal -set-key "\ G h" 'del et e-backward-char) j

and press C-x C-e again. Note that each time you press C-x C-e, the result of evaluating
gl obal - set - key-the special symbol ni | (which we'll see again later)—is shownin
Emacs's message area at the bottom of the screen.

3. You can use the command eval - expr essi on, which isbound to M-;. This command
prompts you in the minibuffer (the area at the bottom of the screen) for aLisp expression,
then evaluates it and shows the resullt.

eval - expr essi on isone of afew commands considered by the makers of Emacs to be
dangerous for novice usersto try. Hogwash, | say; nevertheless, the command isinitially

disabled, so when you try to use it, Emacs tells you "Y ou have typed M-:, invoking disabled
command eval - expr essi on." Thenit displays adescription of eval - expr essi on
and prompts you as follows:

You can now type
Space to try the command just this once,
but |l eave it disabl ed,
Ytotry it and enable it (no questions if you use it again),
N to do nothing (comand renai ns di sabl ed).

If you choose Y, Emacs adds the following Lisp expression to your .emacs.
(put 'eval -expression 'disabled nil)

(The put function relates to property lists, which well seein the section on " Symbol
Properties’ in Chapter 3.) My adviceisto put thisin your .emacs yourself before you ever
get this message from Emacs, so you'll never have to bother with the "disabled command”
warning. As soon as you put the put

*Technically, one should only speak of keysequences being bound to commands, not commands being
bound to keysequences. (To say that a keysequenceis "bound" to acommand correctly signifiesthat
there's just one thing it can do-invoke that command. To say that acommand is"bound” to a
keysequence would mean that only one keysequence can invoke the command, but that's never the
case.) But this misuse of "bound to" is as common as the correct use, and rarely causes confusion.

+ Pronounced "sex pee." Unfortunately.

4 Thiskeybinding is new in Emacs 19.29. In prior versions, eval - expr essi on was bound to
M-ESC by defaullt.

Page 10

function in .emacs, of course, it'sagood ideato evaluate it so it takes effect in the present
session, using eval - | ast - sexp as described above.

4.Youcanusethe*scr at ch* buffer. This buffer isautomatically created when Emacs
starts. The buffer isin Lisp Interaction mode. In thismode, pressing C-j invokes
eval - print -1 ast - sexp,whichislikeeval - | ast sexp except that the result of
the evaluation isinserted into the buffer at the location of the cursor. Another feature of
Lisp Interaction mode isits ability to complete a partially typed Lisp symbol when you
press M-TAB (which invokes| i sp- conpl et e- synbol). Lisp Interaction modeis
particularly useful for testing and debugging Lisp expressions that are too long to type into
the minibuffer, or that yield complicated data structures when evaluated.

Whichever method you use, evaluating the gl obal - set - key expression results in the new
bindings being used.

Apropos

Before wrapping up thisfirst example, let's discuss Emacs's most important online help
facility, apr opos. Suppose you're one of those who have both BS and DEL keys and think
it'sagood ideafor BS to erase the character preceding the cursor and DEL to erase the
character following the cursor. Y ou know that del et e- backwar d- char isthe command
that accomplishes the former, but you don't know which command achieves the latter. You

strongly suspect that Emacs must have such a command. How do you find it?

The answer isto usethe apr opos command, which allows you to search all known variables
and functions for a pattern you specify. Try this

M x apropos RET del ete RET

Theresult isabuffer listing al the matches for "delete” among Emacs's variables and
functions. If we search that buffer for occurrences of the word "character," we narrow the field
down to

backwar d- del et e- char

Command: Del ete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy

Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char

Command: Del ete the previous N characters (following if Nis negative).
del et e-char

Command: Delete the following N characters (previous if Nis negative).

* All Emacs commands, regardless of which keys (if any) they're bound to, can be invoked with M -x command-

binding for acommand, execut e- ext ended- commrand, which prompts for the name of a command to exe

Page 11
Thefunction del et e- char isthe one we want.

(gl obal -set-key "\ G ?" 'del ete-char)
(For historical reasons, the way to write the DEL character is CONTROL -question-mark.)

You may invoke apr opos with a prefix argument. In Emacs, pressing C-u before executing a
command is away to pass extrainformation to the command. Frequently, C-u isfollowed by a
number; for instance, C-u 5 C-b means "move the cursor left 5 characters.” Sometimesthe
extrainformation isjust the fact that you pressed C-u.

When apr oposisinvoked with a prefix argument, it not only reports Emacs functions and
variables that match the search pattern, it aso reports any existing keybindings for each
command in thelist. (Thisisn't the default because finding the keybindings can be slow.) Using
C-uM-x apropos RET delete RET and picking out occurrences of "character” as before, we
come up with:

backwar d- del et e- char (not bound to any keys)

Command: Delete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy (not bound to any keys)

Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char C h, DEL

Command: Delete the previous N characters (following if Nis negative).
del et e-char Cd

Command: Delete the following N characters (previous if Nis negative).

This confirmsthat both C-h and DEL now invoke del et e- backwar d- char , and also
informsusthat del et e- char aready hasabinding: C-d. After we execute

(gl obal -set-key "\ G ?" 'del ete-char)

if werun apr opos again, wefind

backwar d- del et e- char (not bound to any keys)
Command: Delete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy (not bound to any keys)
Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char Ch

Command: Delete the previous N characters (following if Nis negative).
del et e-char Cd, DEL

Command: Delete the following N characters (previous if Nis negative).

Page 12

When we know that the target of our search is an Emacs command, as opposed to a variable or
function, we can further limit the scope of the search by using command- apr opos (M-? a)
instead of apr opos. The difference between acommand and other Lisp functionsis that
commands have been written specialy to be invoked interactively, i.e., from a keybinding or
with M-x. Functions that aren't commands can only be invoked as function calls from other
Lisp code or by such commandsaseval - expr essi on andeval - | ast - sexp. Well
look at the roles of functions and commands more in the next chapter.

Page 13

2

Simple New Commands
In this chapter:

* Traversing Windows

* Line-at-a-Time
Scrolling

* Other Cursor and
Text Motion
Commands

* Clobbering Symbolic
Links

¢ Advised Buffer
Switching

¢ Addendum Raw
Prefix Argument

In this chapter we'll develop severa very small Lisp functions and commands, introducing a
wealth of concepts that will serve us when we tackle larger tasks in the chaptersto follow.

Traversing Windows

When | started using Emacs, | was dissatisfied with the keybinding C-x o, ot her - wi ndow. It
moves the cursor from one Emacs window into the next. If | wanted to move the cursor to the
previous window instead, | had to invoke ot her - wi ndow with -1 as an argument by typing
C-u - 1 C-x 0, which is cumbersome. Just as cumbersome was pressing C-x o repeatedly until

| cycled through al the windows and came back around to what had been the "previous' one.

What | really wanted was one keybinding meaning "next window" and a different keybinding
meaning "previous window." | knew | could do this by writing some new Emacs Lisp code and
binding my new functions to new keybindings. First | had to choose those keybindings. "Next"
and "previous' naturally suggested C-n and C-p, but those keys are bound to next - | i ne and
previ ous- | i ne and I didn't want to change them. The next best option was to use some
prefix key, followed by C-n and C-p. Emacs aready uses C-x as a prefix for many
two-keystroke commands (such as C-x o itself), so | chose C-x C-n for "next window" and
C-x C-p for "previous window."

| used the Help subcommand descr i be- key™ to see whether C-x C-n and C-x C-p were
aready bound to other commands. | learned that C-x C-n was the keybinding

* The keybinding for descr i be- key isM-? k if you've changed thehel p- command binding as
described in Chapter 1, Customizing Emacs; otherwise it's C-h k.

Page 14

for set - goal - col umm, and C-x C-p was the keybinding for mar k- page. Binding them to
commands for "next window" and "previous window" would override their default bindings.
But since those aren't commands | use very often, | didn't mind losing the keybindings for them.
| can always execute them usng M-x.

Once I'd decided to use C-x C-n for "next window," | had to bind some command to it that
would cause "next window" to happen. | wanted a "next window" function that would move the
cursor into the next window by default-just like C-x o, which invokes ot her - wi ndow. So
creating the keybinding for C-x C-n was a smple matter of putting

(gl obal -set-key "\ G x\CGn" 'other-w ndow)

into my .emacs. Defining acommand to bind to C-x C-p was trickier. There was no existing
Emacs command meaning "move the cursor to the previous window." Time to define one!

Defining other-window-backward

Knowing that ot her - wi ndow can move the cursor to the previous window when given an
argument of - 1, we can define a new command, ot her - wi ndow-backward, as follows:

(defun ot her-w ndow backward ()
"Sel ect the previ ous wi ndow. "
(interactive)

(ot her-wi ndow -1))

Let'slook at the parts of this function definition.
1. A Lisp function definition begins with def un.

2. Next comes the name of the function being defined; in this case, I've chosen
ot her - wi ndow backwar d.

3. Next comes the function's parameter list.” This function has no parameters, so we specify an
empty parameter list.

4. The string " Select the previous window." is the new function's documentation string, or
docstring. Any Lisp function definition may have a docstring. Emacs displays the docstring
when showing online help about the function, as with the commands
descri be-function (M-?f) or apr opos.

5. The next line of the function definition, (i nt er act i ve), isspecial. It distinguishes this
function as an interactive command.

* What's the difference between a " parameter” and an "argument”? The terms are usually used
interchangeably, hut technically speaking, "parameter” refersto the variable in the function definition,
while "argument” isthe value that gets passed in when the function is called. The value of the argument
is assigned to the parameter.

Page 15

A command, in Emacs, isaLisp function that can be invoked interactively, which means it
can be invoked from a keybinding or by typing M -x command-name. Not all Lisp
functions are commands, but all commands are Lisp functions.

Any Lisp function, including interactive commands, can be invoked from within other Lisp
code using the (function arg . . .) syntax.

A function is turned into an interactive command by using the specia (i nt er acti ve)
expression at the beginning of the function definition (after the optional docstring). More
about this "interactive declaration” below.

6. Following the name of the function, the parameter list, the docstring, and the
i nteracti ve declaration isthe body of the function, which is smply a sequence of Lisp
expressions. This function's body is the sole expression (ot her - wi ndow -1), which
invokes the function ot her - wi ndow with an argument of - 1.

Evaluating the def un expression defines the function. It's now possibleto call itin Lisp
programs by writing (ot her - wi ndow backwar d); toinvoke it by typing M -x

other -window-backward RET; even to get help on it by typing M-? f
other-window-backward RET. Now all that's needed is the keybinding:

(gl obal -set-key "\ G x\C p" ' other-w ndow backwar d)
Parameterizing other-window-backward

This keybinding does what we need, but we can improve on it abit. When using C-x o (or,
now, C-x C-n) toinvoke ot her - wi ndow, you can specify a numeric prefix argument n to
changeitsbehavior. If nisgiven, ot her - wi ndow skips forward that many windows. For
instance, C-u 2 C-x C-n means "move to the second window following thisone." Aswe've
seen, n may be negative to skip backward some number of windows. It would be natural to

giveot her - wi ndow backwar d the ability to skip backward some number of windows
when aprefix argument nis given-skipping forward if nisnegative. Asitis,
ot her - w ndow backwar d can only move backward one window at atime.

In order to change it, we must parameterize the function to take one argument: the number of
windows to skip. Here's how we do that:

(defun ot her -w ndow backward (n)
"Sel ect Nth previ ous w ndow. '
(interactive "p")

(ot her-wi ndow (- n)))

* Again, it'sonly M-? f if you've changed the keybinding for hel p- command to M-?. From here on,
I'll assume that you have, or if you haven't you at least know what | mean.

Page 16

Weve given our function a single parameter named n. We've aso changed thei nt er acti ve
declarationto (i nt eracti ve "p"), and weve changed the argument we pass to

ot her - wi ndowfrom-1to(- n).Let'slook at these changes, starting with the

i nteracti ve declaration.

An interactive command is, as we have observed, akind of Lisp function. That means that the
command may take arguments. Passing arguments to afunction from Lisp is easy; they smply
get written down in the function call, asin (ot her - wi ndow - 1). But what if the function is
invoked as an interactive command? Where do the arguments come from then? Answering this
guestion isthe purpose of thei nt er act i ve declaration.

Theargumenttoi nt er act i ve describes how to obtain arguments for the command that
contains it. When the command takes no arguments, theni i nt er act i ve has no arguments,
asinour first draft of ot her - w ndow backwar d. When the command does take
arguments, theni nt er act i ve takes one argument: a string of code |etters, one code letter
per argument being described. The code letter p used in this example means, "if thereis a
prefix argument, interpret it as a number, and if thereis no prefix argument, interpret that as the
number 1."* The parameter n receives the result of this interpretation when the command is
invoked. So if the user invokes ot her - wi ndow backwar d by typing C-u 7 Cx C-p, nwill
be 7. If the user smply types C-x C-p, n will be 1. Meanwhile,

ot her - wi ndow backwar d can also be called non-interactively from other Lisp codein
the normal way: (ot her - w ndow backwar d 4), for example.

The new version of ot her - wi ndow backwar d callsot her - wi ndow with the argument
(- n). Thiscomputes the negative of n by passing it to the function -. (Note the space between
the - and the n.) The function - normally performs subtraction-for instance, (- 5 2) yields
3—but when given only one argument, it negatesit.

In the default case, wherenis1, (- n)is-1 andthecall to ot her - wi ndow becomes

(ot her - wi ndow - 1)—precisely asin thefirst version of this function. If the user specifies
anumeric prefix argument-C-u 3 C-x C-p, say—then we call (ot her - wi ndow - 3), moving
three windows backward, which is exactly what we want.

It's important to understand the difference between the two expressions (- n) and - 1. Thefirst

isafunction cal. There must be a space between the function name and the argument. The
second expression is an integer constant. There may not be a space between the minus sign and
the 1. It is certainly possible to write (- 1) (though there's no reason to incur the cost of a
function call when you

* Toseeadescription of i nt er act i ve' scodeletters, typeM-?fi nt eracti ve RET.

Page 17

can aternatively write- 1) . It isnot possible to write - n, because n is not a constant.

Making the Argument Optional

There's one more improvement we can make to ot her - wi ndow backwar d, and that'sto
make the argument n optional when invoked from Lisp code, just as giving a prefix argument is
optiona when invoking ot her - wi ndow backwar d interactively. It should be possible to
pass zero arguments (like this: (ot her - wi ndow backwar d)) and get the default behavior
(asif calling this: (ot her - wi ndow backwar d 1)). Here's how that's done:

(def un ot her-w ndow backward (&optional n)
"Sel ect Nth previous wi ndow. "
(interactive "p")
(ifn
(ot her-wi ndow (- n)) ;ifn s non-nil
(ot her-wi ndow -1))) ;ifn osnil

The keyword &opt i onal appearing in a parameter list meansthat al subsequent parameters
are optional. The function may be called with or without a value for an optional parameter. If
no value is given, the optional parameter gets the specia valueni | .

The symbol ni | isspecial in Lisp for three reasons:

It designates falsehood. In the Lisp structures that test a true/false condition—i f , cond,
whi | e,and, or, andnot-avaueof ni | means"fadse" and any other value means
"true." Thus, in the expression
(if n
(ot her-wi ndow (- n))
(ot her -wi ndow - 1))

(which isLisp's version of an if-then-else statement), first nis evaluated. If the value of n
istrue (non-ni |), then

(ot her-wi ndow (- n))
is evaluated, otherwise
(ot her -wi ndow - 1)

is evaluated.

There is another symbol, t , that designates truth, but it islessimportant than ni | . See
below.

It isindistinguishable from the empty list. Inside the Lisp interpreter, the symbol ni | and

the empty list () are the same object. If you call | i st p, which tests whether its argument
isalist, onthe symbol ni | , you'll get the result t, which means truth. Likewise, if you call
synbol p, which tests whether its

Page 18

argument isasymbol, on the empty list, you'll get t again. However, if you call synbol p
on any other ligt, or | i st p on any other symbol, you'll get ni 1—falsehood.

It isits own vaue. When you evaluate the symbol ni | , theresult isni | . For this reason,
unlike other symbols, ni | doesn't need to be quoted when you want its name instead of its
value, because its name is the same asits value. So you can write

(setg x nil) ;assign ni | tovariable x
instead of writing
(setg x "nil)

although both will work. For the same reason, you should never ever assign anew value to
ni | *," even though it looks like a valid variable name.

Another function of ni | isto distinguish between proper and improper lists. Thisuseis
discussed in Chapter 6, Lists.

Thereisasymbol, t , for designating truth. Likeni | , t isits own value and doesn't need to be
quoted. Unlikeni | , t isn't mysteriously the same object as something else. And also unlike

ni | , which isthe only way to denote falsehood, all other Lisp values denote truth just like t
does. However, t isuseful when al you mean istruth (asin the result of synbol p) and you
don't want to choose some arbitrary other Lisp value, like 17 or "pl ugh", to stand for truth.

Condensing the Code
As mentioned before, the expression
(if n ; if this.
(other-window (- n)) ;. . . then this
(ot her-wi ndow -1)) ;. . . else this

isthe Lisp version of an if-then-else statement. Thefirst argumenttoi f isatest. It is evaluated
to see whether it yields truth (any expression except ni |) or falsehood (ni |). If it'struth, the
second argument-the "then” clause-is evaluated. If it's falsehood, the third argument—the "else”
clause (whichis optional)—is evaluated. Theresult of i f isawaysthe result of the last thing
it evaluates. See Appendix A, Lisp Quick Reference, for asummary of i f and of Lisp's other
flow-control functions, such ascond andwhi | e.

In this case, we can makethei f expression more concise by factoring out the common
subexpressions. Observe that ot her - wi ndow is called in both branches (the "then" and the
"else" clauses) of thei f . The only thing that varies,

" Actually, Emacswon't let you assign avalueto ni | .

Page 19

depending on n, is the argument that gets passed to ot her - wi ndow. We can therefore
rewrite this expression as.

(other-window (if n (- n) -1))
In generd,

(if test
(a b)
(ac))

can be shortened to (a (i f test b)).

We can factor out common subexpressions again by observing that in both branches of thei f ,
we're looking for the negative of something—either the negative of n or the negative of 1. So

(if n(-n) -1)
canbecome(- (if n n 1)).
Logical Expressions
An old Lisp programmers trick can now be used to make this expression even
more Conci se:
(if nn1) z (or nl

Thefunction or workslike thelogical "or" in most languages. if all of its arguments are false,
it returns falsehood, otherwise it returns truth. But Lisp'sor has an extra bit of usefulness: it
evaluates each of its argumentsin order until it finds one that's non-ni | , then it returns that
value. If it doesn't find one, it returns ni | . So the return value from or isn't merely false or
true, it'sfalse or the first true value in the list. This means that generally speaking,

(if aab)
can be replaced by
(or a b)

In fact, it often should be written that way because if aistrue, then (i f aab) will evaluate it
twice whereas (or a b) won't. (On the other hand, if you specifically want a evaluated twice,
then of course you should usei f.) In fact,

(if aa ; ifaistrue returna
(if bb ; elseifbistrue, returnb
(if yy2)) ; elseify istrue, returny, elsez

(which might look artificial here but is actually a pretty common pattern in actual programs)
can be changed to the following form.

Page 20

(or ab . . . vy2

subject to the warning about evaluating expressions multiple times.
Similarly,
(if a
(if b
(it y 2)))
(note that none of thei f sin thisexample hasan "else" clause) can also be written as
(and ab . . . y2

because and works by evaluating each of its arguments in order until it findsonethat'sni | . If
it findsone, it returnsni | , and if it doesn't find one, it returns the value of the last argument.

One other shorthand to watch out for: some programmers like to turn
(if (and ab . . . vy) 2
into
(and ab . . . vy2
but not me because, while they're functionally identical, the former has shades of meaning—"do

zif athroughy are all true"—that the latter doesn't, which could make it easier for a human
reader to understand.

The Best other-window-backward

Back to ot her - wi ndow backwar d. Using our factored-out version of the call to
ot her - wi ndow, the function definition now looks like this:

(def un ot her-w ndow backward (&optional n)
"Sel ect Nth previous w ndow. "
(interactive "p")

(ot her-wi ndow (- (or n 1))))

But the best definition of all—the most Emacs-Lisp-like—turns out to be:

(def un ot her-w ndow backward (&optional n)
"Sel ect Nth previous wi ndow. "
(interactive "P")
(ot her-wi ndow (- (prefix-nuneric-value n))))

In this version, the code letter inthei nt er act i ve declaration is no longer lowercase p, it's
capital P; and the argument to ot her - wi ndowis (- (pr ef i x- nuneri c- val ue n))
insteadof (- (or n 1)).

Page 21

The capital P means "when called interactively, leave the prefix argument in raw form and
assignitton." Theraw form of a prefix argument is a data structure used internally by Emacs
to record the prefix information the user gave before invoking a command. (See the section
called "Addendum: Raw Prefix Argument” for the details of the raw prefix argument data

structure.) Thefunction pr ef i X- nuneri c- val ue caninterpret that data structure as a
number in exactly theway (i nt eracti ve "p") did. What's more, if

ot her - w ndow backwar d is called non-interactively (and n is therefore not a prefix
argument in raw form), pr ef i x- nuneri c- val ue doestheright thing—namely, return n
unchanged if it'sanumber, and return 1 if it'sni | .

Arguably, this definition isno more or less functional than the version of

ot her - wi ndow backwar d we had before. But this version is more "Emacs-Lisp-like"
because it achieves better code reuse. It uses the built-in function

prefi x- nuneri c- val uerather than duplicating that function's behavior.

Now let'slook at another example.

Line-at-a-Time Scrolling

Before | became an Emacs user, | grew accustomed to some functionsin other editors that
weren't present in Emacs. Naturally | missed having those functions and decided to replace
them. One example is the ability to scroll text up and down oneline at atime with asingle
keystroke.

Emacs has two scrolling functions, scr ol | - up andscr ol | - down, which are bound to
C-v and M-v. Each function takes an optional argument telling it how many linesto scroll. By
default, they each scroll the text one windowful at atime. (Don't confuse scrolling up and down
with moving the cursor up and down as with C-n and C-p. Cursor motion moves the cursor and
scrolls the text only if necessary. Scrolling moves the text in the window and moves the cursor
only if necessary.)

Though | could scroll up and down oneline at atime with C-u 1 C-v and C-u 1 M-v, | wanted
to be able to do it with asingle keystroke. Using the techniques from the previous section, it is
easy to write two new commands for scrolling with one keystroke.

First things first, though. | can never remember which function doeswhat. Doesscr ol | - up
mean that the text moves up, revealing parts of the file that are farther down? Or doesit mean
that we reveal parts of the file that are farther up, moving the text down? I'd prefer that these
functions had less confusing names, likescr ol | - ahead andscr ol | - behi nd.

Page 22
We canusedef al i as torefer to any Lisp function by a different name.

(defalias 'scroll-ahead 'scroll-up)
(defalias 'scroll-behind scroll-down)

There. Now well never have to deal with those ambiguous hames again (although the original
names remain in addition to the new aliases).

Now to define two new commandsthat call scr ol | - ahead andscr ol | - behi nd with
the right arguments. We proceed exactly aswe did with ot her - wi ndow backwar d:

(defun scroll-one-1ine-ahead ()
"“Scroll ahead one line."
(interactive)

(scroll-ahead 1))

(defun scroll-one-1ine-behind ()
"Scroll behind one line."
(interactive)

(scroll-behind 1))

As before, we can make the functions more genera by giving them an optional argument:

(defun scroll-n-Iines-ahead (&optional n)
"Scroll ahead N lines (1 by default).”
(interactive "P")

(scroll-ahead (prefix-numeric-value n)))

(defun scroll-n-lines-behind (&optional n)
"Scroll behind Nlines (1 by default)."
(interactive "P")

(scrol |l -behind (prefix-numeric-value n)))

Finally, we choose keysto bind to the new commands. | like C-q for
scroll-n-lines-behindandC-zfor scroll-n-1ines-ahead:

(gl obal -set-key "\CGq" 'scroll-n-1ines-behind)
(gl obal -set-key "\ G z" 'scroll-n-1ines-ahead)

By default, C-q isbound to quot ed- i nsert . | move that infrequently used function to C-x
C-q:

(gl obal -set-key "\CGx\Cq" 'quoted-insert)
The default binding of C-x C-qisvc-t oggl e-r ead- onl y, which | don't mind losing.

C-z hasadefault binding of i coni fy-or-dei coni fy-franme whenrunning under X,
and suspend- emacs when running in a character terminal. In both cases, the function is also
bound to C-x C-z, so there's no need to rebind them.

Page 23
Other Cursor and Text Motion Commands

Here are afew more easy commands with their suggested keybindings.

(defun point-to-top ()
"Put point on top line of w ndow "
(interactive)
(rmove-to-w ndow-line O)

(gl obal -set-key "\M," 'point-to-top)

"Point" refers to the position of the cursor. This command makes the cursor jump to the top left
of the window it'sin. The suggested keybinding replacest ags- | oop- cont i nue, which |
liketo put on C-x,:

(gl obal -set-key "\CGx," 'tags-loop-continue)
The next function makes the cursor jump to the bottom left of the window it'sin.

(def un point-to-bottom ()
"Put point at beginning of last visible line."

(interactive)
(rmove-to-wi ndowline -1))

(gl obal -set-key "\M." 'point-to-bottom

The suggested keybinding in this casereplacesf i nd- t ag. | put that on C-x which in turn
replacesset -fil | - prefi x,which| don't mind losing.

(defun line-to-top ()
"Move current line to top of wi ndow "
(interactive)
(recenter Q)

(gl obal -set-key "\M!" 'line-to-top)

This command scrolls the window so that whichever line the cursor is on becomes the top line
in the window. The keybinding replacesshel | - conmmand.

There is one drawback to changing the bindings for keysin Emacs. If you become accustomed
to a highly customized Emacs and then try to use an uncustomized Emacs (e.g., on a different
computer or using afriend's login account), you'll keep pressing the wrong keys. This happens
to me all thetime. I've essentially trained myself to be unable to use an uncustomized Emacs
without alot of frustration. But | rarely use an uncustomized Emacs, so the convenience of
customizing it the way | like outweighs the occasional drawbacks. Before you move commands
from one key to another with wild abandon like | do, you should weigh the costs and benefits of
doing so.

Page 24
Clobbering Symbolic Links

So far, the functions we've written have been very simple. Essentialy, they al just rearrange
their arguments and then call a single other function to do the real work. Let'slook at an
example now where more programming is required.

In UNIX, asymbolic link, or symlink, isafile that refersto another file by name. When you ask
for the contents of a symlink, you actually get the contents of the red file named by the symlink.

Suppose you vidit afilein Emacsthat isredly asymlink to some other file. Y ou make some
changes and press C-x C-s to save the buffer. What should Emacs do?

1. Replace the symboalic link with the edited version of the file, breaking the link but
leaving the original link target alone.

2. Overwrite the file pointed to by the symbolic link.
3. Prompt you to choose one of the above actions.
4. Something el se atogether.

Different editors handle the symlink situation in different ways, so a user who has grown
accustomed to one editor's behavior may be unpleasantly surprised by another's. Plus, | believe
that the right answer changes depending on the situation, and that the user should be forced to
think about what's right each time this comes up.

Hereswhat | do: when | visit afile that's really asymlink, | have Emacs automatically make
the buffer read-only. This causes a "Buffer is read-only" error as soon as| try to change
anything in the buffer. The error acts as areminder, alerting me to the possibility that I'm
visiting asymlink. Then | choose how to proceed using one of two special commands I've
designed.

Hooks

For Emacs to make the buffer read-only when | first visit thefile, | have to somehow tell
Emacs, "execute a certain piece of Lisp code whenever | visit afile." The action of visiting a
file should trigger afunction | write. Thisis where hooks comein.

A hook isan ordinary Lisp variable whose value isalist of functions that get executed under
specific conditions. For instance, thevariablewr i t e-f i | e- hooks isalist of functions that
Emacs executes whenever a buffer is saved, and post - command- hook isalist of functions
to run after every interactive command. The hook that interests us most for thisexampleis
find-fil e-hooks, which Emacsrunsevery time anew fileisvisited. (There are many
more

Page 25

hooks, some of which we'll be looking at later in the book. To discover what hooks are
available, try M-x apropos RET hook RET.)

Thefunction add- hook adds a function to a hook variable. Here's afunction to add to
find-fil e-hooks:

(defun read-only-if-symink ()
(if (file-symink-p buffer-file-nane)

(progn
(setq buffer-read-only t)
(rmessage "File is a symink"))))

This function tests whether current buffer'sfileisasymlink. If it is, the buffer is made
read-only and the message "Fileisasymlink” isdisplayed. Let'slook alittle closer at some
parts of this function.

First, notice that the parameter list is empty. Functions that appear in hook variables take no
arguments.

Thefunctionfi | e- sym i nk- p testswhether its argument, which isa string naming a
file, refersto asymbolic link. It's a Boolean predicate, meaning it returnstrue or false. In
Lisp, predicates traditionally have names ending in p or -p.

Theargumenttofi | e-sym i nk-pisbuffer-fil e-name. Thispredefined variable
has a different value in every buffer, and is therefore known as a buffer-local variable. It
always refers to the name of the file in the current buffer. The "current buffer,” when
find-fil e-hooks getsexecuted, isthe newly found file.

If buf f er-fil e- nanme doesrefer to asymlink, there are two things we want to do:
make the buffer read-only, and display a message. However, Lisp only alows one

expression in the "then" part of an if-then-else. If we wereto write:

(if (file-symink-p buffer-file-nane)
(setq buffer-read-only t)
(rmessage "File is a symink"))

it would mean, "if buffer-file-name is a symlink, then make the buffer readonly, else print

the message, 'Fileisasymlink'." To get both the call to set g and the call to nessage
into the "then" part of thei f , wewrap them inapr ogn, asin the following example.

(progn
(setq buffer-read-only t)
(rmessage "File is a symink"))

A pr ogn expression evaluates each of its subexpressionsin order and returns the value
of the last one.

Page 26

Thevariable buf f er - r ead- onl y isaso buffer-local and controls whether the current
buffer is read-only.

Now that we've defined r ead- onl y-i f - syml i nk, we can call

(add- hook 'find-file-hooks 'read-only-if-symink)
to add it to the list of functions that are called whenever anew fileis visited.
Anonymous Functions

When you use def un to define afunction, you give it a name by which the function can be
called from anywhere. But what if the function won't ever be called from anywhere el se? What
if it needsto be availablein only one place? Arguably, read-only-if-syminkis
needed only inthef i nd-fi | e- hooks list; infact, it might even be harmful for it to be
caledoutsideof fi nd-fi |l e- hooks.

It's possible to define a function without giving it aname. Such functions are appropriately

known as anonymous functions. They're created with the Lisp keyword | anbda,” which
works exactly likedef un except that the name of the function isleft out:

(lanbda ()
(if (file-symink-p buffer-file-nane)

(progn
(setq buffer-read-only t)
(rmessage "File is a symink"))))

The empty parentheses after the | anbda are where the anonymous function's parameters
would be listed. This function has no parameters. An anonymous function definition can be
used wherever you might use the name of afunction:

(add- hook 'find-file-hooks
"(lanmbda ()
(if (file-symink-p buffer-file-nane)
(progn
(setq buffer-read-only t)

(message "File is a symlink")))))

Now only f i nd-fi | e- hooks hasaccessto the function; no other codeisableto call it. ;

" The"Lambdacaculus’ isamathematical formalism having to do with the way functions instantiate
their arguments. To some extent it is the theoretical basisfor Lisp (and plenty of other computer
languages). Theword "lambda" has no significance other than being the name of a Greek |etter.

t+ That's not exactly true. It is possible for another piece of code to search the contents of the
find-fil e-hooks list, pick out any function it finds, and execute it. The point is that the function
is hidden, not exposed aswith def un.

Page 27

There's one reason not to use anonymous functions in hooks. If you ever wish to remove a
function from a hook, you need to refer to it by nameinacal tor enove- hook, like so:

(renove-hook 'find-file-hooks 'read-only-if-symink)
Thisis much harder if the function is anonymous.
Handling the Symlink

When Emacs derts me that I'm editing asymlink, | may wish to replace the buffer with one
visiting the target of the link instead; or | may wish to "clobber” the symlink (replacing the link
itself with an actual copy of the rea file) and visit that. Here are two commands for these
purposes:

(defun visit-target-instead ()

"Replace this buffer with a buffer visiting the link target."
(interactive)

(if buffer-file-nane

(let ((target (file-symink-p buffer-file-name)))
(if target
(find-alternate-file target)
(error "Not visiting a symink")))
(error "Not visiting a file")))

(defun cl obber-symink ()
"Repl ace symink with a copy of the file."
(interactive)
(if buffer-file-name
(let ((target (file-symink-p buffer-file-nane)))
(if target
(if (yes-or-no-p (format "Replace % with %7
buffer-fil e-nane
target))
(progn
(delete-file buffer-file-nane)
(wite-file buffer-file-nane)))
(error "Not visiting a symink")))
(error "Not visiting a file")))

Both functions begin with

(if buffer-file-name

(error "Not visiting a file"))

(I've abbreviated the meat of the function as. . . to illustrate the surrounding structure.) This
test is necessary because buffer-fil e-name maybenil (inthecasethat the current
buffer isn't visiting any file---e.g., it might bethe* scr at ch* buffer), and passing ni | to
file-synml i nk-p would generate the error, "Wrong type argument: stringp, nil * The error
message means that some

* Try it yourself: M -: (file-symlink-p nil) RET.

Page 28

function was called expecting a string—an object satisfying the predicate st r i ngp—but got
nil instead. Theuser of vi sit-target-instead orcl obber-symn i nk would be
baffled by this error message, so we detect ourselves whether buf fer-fi |l e- nanmeisni | .
If itis, theninthe"else" clause of thei f weissue a more informative error message—"Not
visiting afile"—using er r or . When er r or iscalled, the current command aborts and Emacs
returns to its top-level to await the user's next action.

Why wasn't it necessary totest buf fer-fi |l e-naneinread-onl y-i fsym i nk?
Because that function only getscalled from f i nd-fi | e- hooks,andfi nd-fi | e- hooks
only gets executed when visiting afile.

Inthe"then" part of the buf f er-fi | e- name test, both functions next have
(let ((target (file-symink-p buffer-file-nanme))) . . .)

Most languages have away to create temporary variables (also called local variables) that
exist only in acertain region of code, called the variabl€'s scope. In Lisp, temporary variables
are created with let, whose syntax is

(let ((varqvaluey)
(var, valuey)

(var, value,))
body, bodys, . .. body,)

This gives var, the value valug, , var, the value value,, and so on; and var,; and var, can be
used only within the body, expressions. Among other things, using temporary variables helpsto
avoid conflicts between regions of code that happen to use identical variable names.

S0 the expression
(let ((target (file-symink-p buffer-file-name))) . . .)
creates atemporary variable named t ar get whose value is the result of calling
(file-symink-p buffer-file-nane)

Asmentioned earlier, fi | e- syml i nk- p isapredicate, which meansit returns truth or
falsehood. But because "truth" in Lisp can be represented by any expression except ni | ,
file-symink-pisn'tconstrainedto returningt if itsargument redly isasymlink. In fact,
it returns the name of the file to which the symlink refers. Soif buf f er - fi | e- nane isthe

name of asymlink, t ar get will be the name of the symlink's target.

With the temporary variablet ar get in effect, the body of thel et lookslike thisin both
functions:

(if target

(error "Not visiting a symink"))

Page 29
After executing the body of thel et , thevariablet ar get no longer exists.

Withinthel et , if t arget isni | (becausefil e-sym i nk-p returned ni | , because
buf fer-fil e-name must not be the name of asymlink), then in the "else” clause weissue
an informative error message, "Not visiting asymlink.” Otherwise we do something el se that
depends on which function we're talking about. Finally we reach a point where the two
functions differ.

At thispoint, vi sit-target-i nstead does
(find-alternate-file target)

which replaces the current buffer with onevisiting t ar get , prompting the user first in case
there are unsaved changesin the origina buffer. It even rerunsthef i nd-fi | e- hooks when
the new fileisvisited, which is good because it, too, may be a symlink!

At the point wherevi sit-target-i nsteadcalsfind-alternate-file,
cl obber - sym i nk doesthisinstead:

(if (yes-or-no-p . . .) . . .)

Thefunction yes- or - no- p asksthe user ayesor no question and returns true if the answer
was "yes," false otherwise. The question, in thiscase, is:

(format "Replace % with %7
buffer-fil e-nane
target)

This constructs astring in afashion similar to C'spr i nt f . Thefirst argument is a pattern.
Each % gets replaced with the string representation of a subsequent argument. The first %s
getsreplaced with the value of buf f er - fi | e- nanme and the second gets replaced with the
valueof t ar get . Soif buf fer-fi |l e- name isthe string "foo" andt ar get is"bar", the
prompt will read, "Replace foo with bar?' (Thef or mat function understands other
%-sequences in the pattern string. For instance, % prints a single character if the
corresponding argument is an ASCII value. See the online help for f or mat —by typing M-? f
format RET—for acompletelist.)

After testing the return value of yes- or - no- p to make sure the user answered
"yes," ¢l obber - synml i nk doesthis:
(progn

(delete-file buffer-fil e-nane)
(wite-file buffer-file-nane))

Aswe've seen, the pr ogn isfor grouping two or more Lisp expressions where only oneis
expected. Thecall todel et e-fi | e deletesthefile (whichisreally just asymlink), and the
caltowite-fil e savesthe contents of the current buffer right back to the same filename,
but thistime asaplainfile.

Page 30

| like to put these functionson C-x t for vi si t -t arget -i nst ead (unused by default) and
C-x 1forcl obber-sym i nk (by default boundto count - | i nespage) .

Advised Buffer Switching

L et's conclude this chapter with an example that introduces a very useful Lisp tool called
advice.

It frequently happens that I'm editing many similarly named files at the same time; for instance,
foobar.c and foobar.h. When | want to switch from one buffer to the other, | use C-x b,

swi t ch-t o- buf f er, which prompts me for a buffer name. Since |l like to kegp my
keystrokes to aminimum, | depend on TAB completion of the buffer name. I'll type

CGx b fo TAB

expecting that the TAB will complete "fo" to "foobar.c”, then I'll press RET to accept the
completed input. Ninety percent of the time, this works great. Other times, such asin this
example, pressing fo TAB will only expand as far as "foobar.", requiring me to disambiguate
between "foobar.c" and "foobar.h". Out of habit, though, | often press RET and accept the
buffer name "foobar.".

At this point, Emacs creates a brand-new empty buffer named foobar., which of course isn't
what | wanted at all. Now I've got to kill the brand-new buffer (with C-x k, ki | | - buf f er)
and start all over again. Though | do occasionally need the ability to switch to a nonexistent
buffer, that need is very rare compared with the number of times| commit this error. What I'd
likeisfor Emacsto catch my error before letting me commit it, by only accepting the names of
existing buffers when it prompts me for one.

To achievethis, welll use advice. A piece of advice attached to a Lisp function is code that
gets executed before or after the function each time the function isinvoked. Before advice can
affect the arguments before they're passed to the advised function. After advice can affect the
return value that comes out of the advised function. Adviceisalittle bit like hook variables,
but whereas Emacs defines only afew dozen hook variables for very particular circumstances,
you get to choose which functions get "advised.”

Heresafirsttry at advisingswi t ch-t o- buf fer:

(def advi ce switch-to-buffer (before existing-buffer
activate conpile)
"When interactive, switch to existing buffers only."
(interactive "b"))

Page 31

Let'slook at thisclosaly. The function def advi ce creates anew piece of advice. Itsfirst
argument is the (unquoted) name of the existing function being advised— in this case,

swi t ch-t o- buf f er . Next comes a specially formatted list. Itsfirst element—in this case,
bef or e—tellswhether thisis "before" or "after" advice. (Another type of advice, called
"around," lets you embed a call to the advised function inside the advice code.) Next comes the
name of this piece of advice; | named it exi st i ng- buf f er . The name can be used later if
you want to remove or modify the advice. Next come some keywords: act i vat e means that
this advice should be active as soon asit's defined (it's possible to define advice but leave it
inactive); and conpi | e meansthat the advice code should be "byte-compiled” for speed (see
Chapter 5, Lisp Files).

After the specially formatted list, a piece of advice has an optional docstring.

The only thing in the body of thisadviceisitsown i nt er act i ve declaration, which
replacesthei nt er act i ve declaration of swi t ch-t o- buf f er . Whereas

swi t ch-t o- buf f er accepts any string as the buffer-name argument, the code letter b in an
i nt eract i ve declaration means "accept only names of existing buffers.” By using the

i nteractive declaration to make this change, we've managed to not affect any Lisp code
that wantsto call swi t ch-t o- buf f er noninteractively. So thistiny piece of advice
effectively doesthe whole job: it changesswi t ch-t o- buf f er to accept only the names of
existing buffers.

Unfortunately, that's too restrictive. It should still be possible to switch to nonexistent buffers,

but only when some specia indication is given that the restriction should be lifted—say, when
aprefix argument is given. Thus, C-x b should refuse to switch to nonexistent buffers, but C-u

C-x b should permit it.

Here's how thisis done;

(def advi ce switch-to-buffer (before existing-buffer
activate conpile)
"When interactive, switch to existing buffers only,
unl ess given a prefix argunent."
(interactive
(list (read-buffer "Switch to buffer:
(ot her-buffer)
(null current-prefix-arg)))))

Once again, we're overriding the 1 nt er act i ve declaration of swi t ch-t o- buf f er
using "before" advice. But thistime, wereusing i nt er act i ve in away we haven't seen
before: we're passing alist asits argument, rather than a string of code letters.

Whentheargumenttoi nt er act i ve is some expression other than a string, that expression
isevaluated to get alist of arguments that should be passed to the

Page 32

function. Sointhiscasewecall | i st , which constructs alist out of its arguments, with the
result of

(read-buffer "Switch to buffer:
(ot her-buffer)

(nul'l current-prefix-arg))

Thefunctionr ead- buf f er isthe low-level Lisp function that prompts the user for a buffer
name. It's "low-level" in the sense that all other functions that prompt for buffer names
ultimately call r ead- buf f er. It's called with a prompt string and two optiona arguments: a
default buffer to switch to, and a Boolean stating whether input should be restricted to existing
buffers only.

For the default buffer, we pass the result of calling ot her - buf f er , which computes a useful
default buffer for this very purpose. (Usually it chooses the most recently used buffer that isn't
presently visible in awindow.) For the Boolean stating whether to restrict input, we use

(null current-prefix-arg)

Thistestswhether current - prefi x-argisni |l . Ifitis, theresult will bet ; if it's not,
theresult will beni | . Thus, if thereisno prefix argument (i.e., current - prefi x-argis
ni |), then we call

(read-buffer "Switch to buffer
(ot her-buffer)

t)

meaning "read a buffer name, restricting input to existing buffersonly.” If thereis a prefix
argument, then we call

(read-buffer "Switch to buffer
(ot her-buffer)
nil)

meaning "read a buffer name with no restrictions" (allowing non-existent buffer names to be
entered). Theresult of r ead- buf f er isthenpassedtol i st , and the resulting list
(containing one element, the buffer name) is used as the argument list for

SwWi tch-to-buffer.

Withswi t ch-t o- buf f er thusadvised, Emacs won't let me respond to the prompt with a
nonexistent buffer name unless | asked for that ability by pressing C-u first.

For completeness, you should similarly advise the functions
swi t ch-t o-buffer-other-w ndowandsw t ch-to-buffer-other-frane.

Page 33

Addendum: Raw Prefix Argument

Thevariable current - prefi x-ar g aways containsthe latest "raw" prefix argument,
which is the same thing you get from

(interactive ' P")

Thefunction pr ef i x- nuneri c- val ue can be applied to a"raw" prefix argument to get its
numeric value, which is the same thing you get from

(interactive "p")

What does araw prefix argument look like? Table 2-1 shows possible raw values along with

thelr corresponding numeric values.
Table 2-1: Prefix arguments

If the User Types Raw Value Numeric Value
C-ufollowed by a (possibly negative) | The number itself The number
number itself
C-u - (with no following number) The symbol - -1
C-untimesinarow (with no A list containing the number 4" 4N itsalf
following number or minussign)
No prefix argument nil 1
Page 34

3
Cooperating Commands
In this chapter:
- The Symptom
- ACure
- Generalizing the

Solution

This chapter shows how to get different commands to work together by saving information in
one command and retrieving it in another. The smplest way to share information isto create a
variable and store avaluein it. Well certainly do that in this chapter. For instance, we'll store
the current buffer position and reuse it in alater command. But we'll also learn some more
sophisticated ways to preserve state, notably markers and symbol properties. We'll combine
these techniques with information about buffers and windows to write a set of functions that
allow you to "undo" scrolling.

The Symptom

Y ou're deep into editing some complicated Lisp code. Y ou're concentrating, juggling the
tenuous connections between the conceptua structures in your brain and the glyphs that
represent them on the screen. You'rein aparticularly tricky part when you notice atypo afew
charactersto the left. Y ou mean to press C-b C-b C-b to back up and correct it, but
instead—nhorrorsl—you press C-v C-v C-v, paging the Emacs window three times, ending up
light years away from the code you were editing. Y our mental context is ruined asyou try to
figure out where the cursor was before your mistake, and why, and what you were doing there.
Asyou scroll, or search, or cycle through the mark-ring or the undo-list trying to get back to
where you were, you forget about that original typo you were trying to correct, and much later
it turnsinto a bug in your code that takes hoursto find.

Emacs hasn't helped in thisinstance, it has hindered. It has made it too easy to get lost in your
document and too hard to find your way back. Although Emacs has an extensive undo facility, it

only allows you to undo changes. Y ou can't undo simple navigation.

Page 35

A Cure

Suppose we could alter C-v (thescr ol | - up command *) in such away that when you press
it, Emacs thinks, "Maybe the user ispressing C-v in error, so I'll record some 'undo’
information in case it's needed.” Then we could write another function, unscr ol | , which
undoes the effects of the latest scroll. Getting lost should therefore cause no more disruption to
your mental context than it takes to remember the keybinding for unscr ol | .

Actually, that's not quite good enough. If you press severa C-vsinarow, onecall to

unscr ol | should undo them al, not only the last one. This meansthat only thefirst C-vina
sequence should memorize the starting location. How can we arrange for this to happen?
Somewhere in our C-v code, before we memorize the starting location, we have to test either
(@) that the next command will beacall toscr ol | - up, or (b) that the previous command
wasntacall toscr ol | - up. Obviously, (a) isimpossible: we can't know the future.
Fortunately, (b) is easy: Emacs maintains a variable for this purpose called | ast - conmand.
Thisvariableisthe first mechanism well use to communicate information from one command
to alater one.

Now the only question remaining is. how can we attach this extracodeto thescrol | - up
command? The advice facility isideal for this purpose. Recall that a piece of advice can run
before or after the advised function. In this case, we'll need before advice, becauseit's only
beforescr ol | - up runsthat we know the starting location.

Declaring Variables

Well start by setting up aglobal variable, unscr ol | - t o, which will hold the "undo"
information, which is smply the position in the buffer to which unscr ol | should move the
cursor. Welll usedef var to declare the variable.

(defvar unscroll-to nil
"Text position for next call to 'unscroll'.")”

Global variables don't need to be declared. But there are some advantages to declaring
variableswith def var :

- Udng def var alows adocstring to be associated with the variable, in the same way that
def un allows a docstring to be associated with afunction.

" Although in Chapter 2. Simple ewu Commands, we used def al i as to make scroll-ahead and
scroll-behind synonyms for scrol | - up andscr ol | - down, in this chapter welll refer to
scrol | -upandscrol | - down by their original names.

Page 36

- A default value for the variable can be given. In this case, the default value for
unscroll-toisnil.

Setting avariable's default value with def var isdifferent from setting a variable's value
with set q. Instead of unconditionally assigning the value to the variable like set q does,
def var assignsthe vaue only if the variable does not yet have any value.

Why is thisimportant? Suppose your .emacs file contains the line
(setq mail-signature t)

meaning that when you send a mail message from within Emacs, you wish to append your
signature fileto it. When you start Emacs, mai | - si gnat ur e getssettot, buttheLisp
file that defines the mail-sending code, sendmail, has not yet been loaded. It's loaded on
demand when you first invoke the mai | command. When you do, Emacs executesthisline
from the sendmail Lisp file:

(defvar mail-signature nil . . .)

Thissaysthat ni | isadefault initial value for mai | - si gnat ur e. But you've already
givenmai | - si gnat ur e avaue, and you wouldn't want loading sendmail to override
your setting. On the other hand, if your .emacs didn't specify any value for

mai | - si gnat ur e, you would want this vaue to be in effect.

- A variable declaration using def var can be found by the various tag-related commands.
Tags are away to quickly find variable and function definitions in a programming project.
Emacs's tag facilities, such asthef i nd- t ag command, can find anything crested with the
def ... functions(def un, defalias, defmacro, defvar, defsubst,
def const, defadvice).

- When you byte-compile the code (see Chapter 5, Lisp Files), the byte-compiler emits a
warning for each variable it encounters that hasn't been declared with def var . If al your
variables are declared, then you can use the warnings to find places where you've mistyped
the name of avariable.

Saving and Restoring Point

Let'sdefinethevalue of unscr ol | - t o to be the position in the text where the cursor was
before the latest sequence of scr ol | - ups. The position of the cursor in the text isthe
number of characters from the beginning of the buffer (counting from 1) and i< called point or
the point. The value of point at any moment is given by the function poi nt .

(def advi ce scroll-up (before renenber-for-unscroll
activate conpile)
"Remenber where we started from for 'unscroll'."

Page 37

(if (not (eq last-comrand 'scroll-up))
(setq unscroll-to (point))))

The body of this advice works as follows:

1. Thefunction eq takes two arguments and tells whether they are identical. In this case, the
arguments are the value of the |l ast - conmmand variable, and the literal symbol
scrol | -up. Thevaueof | ast - command isthe symbol namingthel ast command

that the user invoked (usually-see the sectionon "Using t hi s- conmand” later in this
chapter).

2. Theresult of the call to eq is passed to not , which inverts the truth value of its argument. If
ni | ispassedtonot ,theresultist . If anything elseispassed to not , theresultisni | .

3. If theresult of the call to not istrue-i.e., if | ast - conmmand is not the symbol
scrol | - up-thenthevariableunscr ol | - t o isset to the current value of point by
caling the function poi nt with no arguments.

Now it should be easy to defineunscr ol | :

(defun unscroll ()
"Junmp to location specified by 'unscroll-to'."
(interactive)
(goto-char unscroll-to))

*

Thefunction got o- char moves the cursor to the given position.
Window Appearance

There's something unsatisfactory about this solution. After an unscr ol | , the cursor is
restored to its correct location, true, but the screen may look very different from the way it
appeared before the C-v excursion. For example, | may be editing aline of code that is near the
bottom of the Emacs window when | mistakenly press C-v C-v C-v. I'll immediately invoke
unscr ol |, but even though the cursor goes back where it belongs, the line in question may
now appear in the middle of the window.

Since our goal isto minimize the disruption caused by unintended scrolling, we'd redlly like to
restore not only the location of the cursor, but also the appearance of the window with respect
to which lines are visible where.

Saving the value of point is no longer sufficient, therefore. We must also save avalue
representing what's visible in the current window. Emacs provides several functions
describing what's visible in awindow, such aswi ndow- edges,

" If you think theway not works sounds like theway nul | works, you're right—they're exactly the
same function. Oneis simply an aliasfor the other. Which one you use is areadability issue. Use
nul | when testing to see whether an object isthe empty list. Use not when inverting truth values.

Page 38

wi ndow hei ght,andcur r ent - wi ndow conf i gurati on. For now well only use
wi ndow- st ar t which, for a given window, yields the buffer position that isthe first visible
character (i.e., the upper-left corner) in the window. We're just adding alittle more information
to be preserved between commands.

Updating our example is straightforward. First we replace our declaration of the variable
unscrol | -t o with two new variables: one containing the saved value of point, and one
containing the saved position of the first visible character in the window.

(def var unscroll-point nil
"Qursor position for next call to 'unscroll'.")

(def var unscroll-w ndow start ni
"Wndow start for next call to "unscroll'.")

Next we update the adviceon scr ol | - up andunscr ol | to set and use these two values.

(def advi ce scroll-up (before renenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (eq last-comand 'scroll-up))
(progn
(setqg unscroll-point (point))
(setq unscrol | -w ndowstart (w ndowstart)))))

(defun unscroll ()
"Revert to 'unscroll-point' and 'unscroll-w ndowstart'."
(interactive)
(got o-char unscroll -point)
(set-wi ndowstart nil unscroll-w ndowstart))

Sincethe adviceis still named r emenber - f or - unscr ol |, thisadvice replaces the
previous advice, which was identically named.

Thefunction set - Wi ndow- st art setsthe window-start position in the same way that
got o- char sets the position of the cursor. However, set - wi ndow st art takestwo
arguments. The first argument is the window whose start position is being set. If nil is passed
asthefirst argument (asin thisexample), set - W ndow- st art defaultsto the currently
selected window. (Window objectsfor passingto set - wi ndow- st art can be obtained
from such functionsasget - buf f er - wi ndow and pr evi ous- w ndow.)

There's one more piece of information we might like to save for unscrolling purposes, and
that's the window's hscroll, the number of columns by which the window is scrolled
horizontally, normally zero. We'll add yet another variable for storing it:

(defvar unscroll-hscroll ni
"Hscroll for next call to '"unscroll’

Page 39

then we'll updateunscrol | andthescr ol | - up advice again to include callsto
w ndow hscrol | (which reports the window's current hscroll) and
set -w ndow hscrol | (which setsit):

(def advi ce scroll-up (before renenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.’
(if (not (eq last-command 'scroll-up))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(defun unscroll ()
"Revert to 'unscroll-point' and 'unscroll-w ndowstart'."
(interactive)
(got o-char unscroll -point)
(set-wi ndowstart nil unscroll-w ndow start)
(set-w ndow hscroll nil unscroll-hscroll))

Notice that in this version of the scroll-up advice, the pr ogn call:

(progn
(setg . . .)
(setg . . .))

has been turned into asingle set q call with multiple variable-value pairs. For conciseness,
set g can set any number of variables.

Detecting Errors

What happensif the user invokesunscr ol | beforeany call toscr ol | - up? The variables
unscrol | - point,unscrol | -w ndow start, andunscrol | -scrol | will al
contain their default value, nil. Thisvalueis unsuitable for passing to the functions
goto-char, set-w ndow start, andset-w ndow scrol | . Assoon asthe call
to got o- char isreached, execution of theunscr ol | command will abort with this error:
"Wrong type argument: integer-or-marker-p, nil." This means afunction expecting an integer or
amarker (to satisfy the predicatei nt eger - or - mar ker - p) was passed nil instead.
(Markers are explained in an earlier section of this chapter.)

To keep the user from being baffled by this cryptic error message, it's a good idea to precede
the call to got o- char with asimple check and a more informative error message:

(if (not unscroll-point) ;i.e., ifunscroll-point is nil
(error "Cannot unscroll yet"))

When er r or isinvoked, execution of unscr ol | aborts and the message " Cannot unscroll
yet" isdisplayed.

Page 40

Generalizing the Solution

It's easy to press C-v when meaning to press C-b. That's what led usto devisetheunscr ol |
function. Now observe that it'sjust as easy to pressM-v (scr ol | down) when meaning to
press M-b (backwar d- wor d) . It's the same problem, but in the other direction, sort of. It
would be niceif we could generalizeunscr ol | to undo scrolling in any direction.

The obvious way to generdlizeunscr ol | isto advisescr ol | - down in the same way that
we advised scr ol | - up:

(def advi ce scroll-down (before remenber-for-unscroll
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (eq last-conmand 'scroll-down))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(Note that two functions, suchasscr ol | - up andscr ol | - down, may have identically
named pieces of advice, such asr enenber - f or - unscr ol | , without conflict.)

Now we must decide how wewant unscr ol | to behave in the case where we mingle

erroneous C-vs with erroneous M -vs. In other words, suppose you mistakenly press C-v C-v
M -v. Should unscroll revert to the position before the M -v, or should it revert all the way back

to the position before the first C-v?

| prefer the latter behavior. But this means that in the advice for scr ol | - up, where we now

test whether the last command was scroll-up, we must now test whether it was either
scrol |l -uporscrol | -down, anddothesameinscr ol | - down.

(def advi ce scroll-up (before renenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (or (eq last-comand 'scroll-up)
(eq last-command 'scroll-down)))
(setq unscroll-point (point)

unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(def advi ce scroll-down (before renmenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.’
(if (not (or (eq last-command 'scroll-up)
(eq last-command 'scroll-down)))
(setq unscroll-point (point)

unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

Take amoment to make sure you understand the expression

(if (not (or (eq last-commuand 'scroll-up)
(eq Il ast-command 'scroll-down)))

Page 41

(setg . . .))
It's best to read such expressions by moving inward one level of subexpression at atime. Start
with
(if (not . . .)
(setg . . .))

"If something's not true, set some variable(s)." Next, peer alittle deeper:

(if (not (or . . .))
(setg . . .))

"If none of aset of conditionsistrue, set some variable(s)." Finaly,

(if (not (or (eq last-command 'scroll-up)
(eq |l ast-command 'scroll-down)))
(setg . . .))

means, "If neither 'l ast - command isscrol | -up' nor'l ast - conmand is
scrol | - down'istrue, set some variable(s)."

Suppose somewhere down the line, you come up with more commands you'd like to advise this

way; let'ssay scrol | -1 eft andscrol | -right:

(def advi ce scroll-up (before renenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll’
(if (not (or (eq last-command 'scroll-up)
(eq I ast-conmand ' scrol | -down)
(eq last-conmand 'scroll-left) ; new
(eq last-command 'scroll-right))) ; new
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(def advi ce scroll-down (before renmenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (or (eq last-conmand 'scroll-up)
(eq I ast-conmand ' scrol | -down)
(eq last-conmand 'scroll-left) ; heu
(eq last-command 'scroll-right))) ; heuw
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(def advi ce scroll-left (before renmenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (or (eq last-command 'scroll-up)
(eq I ast-conmand ' scrol | -down)

Page 42

(eq last-conmand 'scroll-left)
(eq last-command scroll-right)))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow-hscroll))))

(def advi ce scroll-right (before remenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(if (not (or (eq last-command 'scroll-up)
(eq Il ast-conmand scroll-down)
(eq last-command scroll-left)
(eq last-command 'scroll-right)))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

Not only isthis very repetitive and error-prone, but for each new command that we wish to
make "unscrollable," the advice for each existing unscrollable command must have its
| ast - conmand test modified to include the new one.

Using this-command

Two things can be done to improve this situation. First, since the advice isidentical in each
case, it can be factored out into a shared function:

(def un unscrol | - maybe-remenber ()
(if (not (or (eq last-command 'scroll-up)
(eq I ast-command scrol | -down)
(eq Il ast-command scroll-left)
(eq last-command scroll-right)))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

(def advi ce scroll-up (before renenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(unscrol | - maybe-renenber))

(def advi ce scroll-down (before renmenber-for-unscrol
activate conpile)
' Remenber where we started from for 'unscroll'.”
(unscrol | - maybe-renenber))

(def advi ce scroll-left (before renmenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(unscrol | - maybe-renenber))

(def advi ce scroll-right (before remenber-for-unscrol
activate conpile)
"Remenber where we started from for 'unscroll'.”
(unscrol | - maybe-renenber))

Page 43

Second, instead of having to test for n possible values of | ast - command, al meaning "the
last command was unscrollable,” it would be niceif there were a single such value, and if all
the unscrollable commands could somehow set | ast - command to that value.

Enter this-command, the variable that contains the name of the current command invoked by the
user. Infact, theway | ast - command gets set isthis: while Emacsis executing a command,

t hi s- command contains the name of the command; then when it is finished, Emacs puts the
valueof t hi s- conmand into | ast - conmand.

While acommand is executing, it can changethe value of t hi s- command. When the next
command runs, the value will be availablein | ast - command.

Let's choose a symbol to represent all unscrollable commands: say, unscrollable. Now we can
changeunscrol | - maybe-r enenber asfollows:

(def un unscrol | - maybe-remenber ()
(setq this-command 'unscroll able)
(if (not (eq last-command 'unscrollable))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

Any command that calls unscroll-maybe-remember now causes thiscommand to contain
unscrollable. And instead of checking last-command for four different values (more if we add

new unscrollable commands), we only need to check for one value (even if we define new
unscrollable commands).

Symbol Properties

Our improved unscr ol | - maybe- r enenber works great, but (as perhaps you've come to
expect by now) there are still some refinements we can make. Thefirst isto address this
problem: the variablest hi s- conmand and | ast - command aren't exclusively oursto do
with aswe please. They're central to the Emacs Lisp interpreter, and other components of
Emacs depend on them, too. For all we know, there exists an Emacs component that depends on
the various scroll functions not overriding the settings of t hi s- command and

| ast - conmand. Still, we would like asingle, distinguished value in last-command to
identify al unscrollable commands.

Here's where symbol properties come in handy. In addition to having a variable value and/or a
function definition, every Emacs Lisp symbol may also have associated with it a property list.
A property list isamapping from names to values. Each name is yet another Lisp symbol,
while each value may be any Lisp expression.

Page 44

Properties are stored with the put function and retrieved with the get function. Thus, if we
give the value 17 to the property named sone- pr oper t y belonging to the symbol
a- synbol :

(put 'a-synbol 'sone-property 17)
then
(get 'a-synbol 'sone-property)

returns 17. If we try to get a property from a symbol that doesn't have that property, the result is
nil.

Instead of using unscr ol | abl e asavauefort hi s- commandand| ast - command, we
can instead use an unscrollable property. We'l set it up so that commands that are
unscrol | abl e havetheunscr ol | abl e property of their namessettot, like so:

(put "scroll-up unscrollable t)

(put "scroll-down 'unscrollable t)
(put "scroll-left '"unscrollable t)
(put "scroll-right '"unscrollable t)

This only hasto be done once, before any callstounscr ol | - maybe-r enenber .

Now (get x unscrol | abl e) will betrue only when x is one of the symbols
scrol |l -up, scroll-down, scroll-left, andscroll-right.Forall other
symbols, since the unscrollable property is (presumably) undefined, the result will beni | .

We can now change

(if (not (eq last-command wunscrollable)) . . .)

inunscrol | - maybe-r enenber to

(if (not (get last-command 'unscrollable)) . . .)
and we can also stop assigning unscrol | abl e to thi s- command:

(def un unscrol | - maybe-remenber ()
(if (not (get last-command 'unscrollable))
(setq unscroll-point (point)
unscrol | -wi ndow start (wi ndow start)
unscrol | -hscroll (w ndow hscroll))))

Markers

How can we make this code even better? Suppose you inadvertently scr ol | - down afew
times and you want tounscr ol | . But before you do, you happen

Page 45

to see abit of text you'd like to change, and you change it. Then you unscr ol | . The screen
hasn't been correctly restored!

The reason is that editing text earlier in the buffer changes al the subsequent buffer positions.
An edit involving a net addition or removal of n characters adds or subtracts n to or from all
subsequent positions. Therefore the saved buffer positionsin the variables

unscrol | - poi nt andunscr ol | - w ndow- st art will be off by n. (If niszero, you

got lucky.)

Instead of using absolute positions asthe valuesof unscrol | - poi nt and

unscrol | -w ndow- st art , it would be agood ideato use markers. A marker is a special
object that specifies a buffer position just like an integer does. But if the buffer position moves
because of insertions or deletions, the marker "moves’ too so that it keeps pointing to the same
spot in the text.

Sincewe're changing unscr ol | - poi ntandunscr ol | - w ndow- st art to be markers,
we no longer initialize them with ni |. We instead initialize them as new, empty marker objects
using the function make- mar ker :

(def var unscroll-point (nake-marker)
"Qursor position for next call to 'unscroll'.")
(def var unscroll-w ndow start (nmake-narker)
"Wndow start for next call to "unscroll'.")

The function set-marker is used to set the position of a marker.

(def un unscrol | - maybe-remenber ()
(if (not (get last-command 'unscrollable))
(progn
(set-marker unscroll-point (point))
(set-marker unscroll-w ndow start (w ndowstart))
(setq unscroll-hscroll (w ndow hscroll)))))

The call to pr ogn isback because the single call to set g has been split up into several
function calls. We don't use amarker for unscr ol | - hscrol | becauseitsvalueisn't a
buffer position.

We don't need to rewriteunscr ol | , because got o- char andset - wi ndow st art can
both handle arguments that are markers as well as arguments that are integers. So the previous
definition (reprinted here for convenience) will continue to work:

(defun unscroll ()
"Revert to 'unscroll-point' and 'unscroll-w ndowstart'."
(interactive)
(got o-char unscroll -point)
(set-wi ndowstart nil unscroll-w ndow start)
(set-wi ndow hscroll nil unscroll-hscroll))

Page 46
Addendum: Efficiency Consideration

When we declareunscr ol | - poi nt andunscr ol | - mar ker , we create "empty" marker
objects and reuse them in each call tounscr ol | - r emenber , rather than creating new
marker objectsin each call tounscr ol | - r emenber and discarding the old objects. Thisis
an optimization. Not only isit better, in general, to avoid very prolific object creation when
possible, but markers happen to be more expensive than other objects to create. Each marker
that points into some buffer somewhere has to be updated every time text i< inserted or deleted
in that buffer. A discarded marker object will eventually be reclaimed by the garbage
collector, but until itis, it'll Slow down editing in its buffer.

In general, when you intend to discard a marker object m (meaning that you no longer intend to
refer toitsvalue), it'sagood ideato first make it point "nowhere" by doing this:

(set-marker m nil)

Page 47

4
Sear ching and Modifying Buffers

In this chapter:

- Inserting the Current
Time

- Writestamps

- Modifystamps

There will be lots of times when you want to search through a buffer for a string, perhaps
replacing it with something else. In this chapter we'll show alot of powerful ways to do this.
Well cover the functions that perform searches and also show you how to form regular
expressions, which add great flexibility to the kinds of searches you can do.

Inserting the Current Time

It is sometimes useful to insert the current date or time into afile as you edit it. For instance,
right now, as I'm writing this, it's 10:30pm on Friday, 18 August, 1996. A few days ago, | was
editing afile of Emacs Lisp code and | changed a comment that read

Each el enent of ENTRIES has the form
(NAVE (VALUE-H GH . VALUE-LOW)

to

Each el enent of ENTRIES has the form

(NAVE (VALUE-H GH . VALUE-LOW)

[14 Aug 96] | changed this so NAME can now be a synbol,
a string, or alist of the form (NAME . PREFIX) [bg]

| placed atimestamp in the comment because it could be useful when editing that code in the
future to look back and see when this change was made.

A command that merely inserts the current time is ssmple, once you know that the function
current -time-string yiedstoday's date and time asastring.”

* How do you find this out in the first place? Using M -x apr opos RET time RET, of course.

Page 48

(defun insert-current-time ()
"Insert the current tine"
(interactive "*")

(insert (current-tinme-string)))

The section "More Asterisk Magic" later in this chapter explains the meaning of
(interactive "*")andinsert.

The simple function above is pretty inflexible, asit aways resultsin inserting a string of the
form "Sun Aug 18 22:34:53 1996" (in the style of the standard C library functionsct i ne and
ascti ne). That'scumbersomeif all you want isthe date, or just the time, or if you prefer
12-hour time instead of 24-hour time, or datesin the form “18 Aug 1996" or "8/18/96" or
"18/8/96".

Happily, we can get finer control if we're willing to do alittle extrawork. Emacs includes a
few other time-related functions, notably cur r ent - t i me, which yieldsthe current timein a
raw form, and f or mat - t i me- st ri ng, which can take such atime and format it in awide
variety of ways (in the styleof C'sst r f t i ne). For instance,

(format-time-string "%. %M %" (current-tine))

returns "10.38 PM". (The format codes used here are %1, "hour from 1-12," %M, "minute from
00-59," and %p, "the string 'AM' or 'PM"." For a complete list of format codes, use
descri be-function onformat-tinme-string.)

From hereit's a short leap to providing two commands, one for inserting the current time and
one for inserting the current date. We can aso easily permit the format used by each to be
user-configurable, based on a configuration variable the user can set. Let's call the two
functionsi nsert-tinme and i nsert-dat e. The corresponding configuration variables

will bei nsert-ti me-format andi nsert-date-formt.

User Options and Docstrings

First we'll define the variables.

(defvar insert-tinme-format "%X'
"*Format for \\[insert-tinme] (c.f. format-time-string').")

(defvar insert-date-format "%"
"*Format for \\[insert-date] (c.f. 'format-time-string').")

There are two new things to note about these docstrings.

First, each begins with an asterisk (*). A leading asterisk has special meaningin def var
docstrings. It means that the variable in question is a user option. A user option isjust like
any other Lisp variable except that it's treated specially in two cases:

Page 49

— User options can be set interactively using set - var i abl e, which prompts the user
for avariable name (with completion of partially typed names) and avalue. In some
cases, the value can be entered in an intuitive way without having to dressit up in Lisp
syntax; e.g., strings can be entered without their surrounding double-quotes.

To set variables interactively when they aren't user options, you must do something like
M: (setq variable value) RET
(using Lisp syntax for value).

— User options, but not other variables, can be edited en masse using the option-editing
mode available as M -x edit-options RET.”

The second new thing about these docstringsis that each contains the specia construct \
[command]. (Yes, it's\[...], but sinceit's written inside a Lisp string, the backslash hasto
be doubled: \\[. . .].) This syntax is magic. When the docstring is displayed to the user-such
as when the user uses apropos or descri be- vari abl e—\[command)] is replaced
with arepresentation of akeybinding that invokes command. For example, if C-x t invokes
i nsert-time, thenthedocstring

"*Format for \\[insert-tinme] (c.f. 'format-tinme-string')."
isdisplayed as
*Format for Gx t (c.f. '"format-tine-string').

If thereisno keybinding fori nsert - ti me, then M-x insert-timeis used. If there are two
or more keybindingsfori nsert-ti me, Emacschoosesone.

Suppose you want the string \ [i nsert - t i me] to appear literaly in a docstring. How
could you prevent its keybinding being substituted? For this purpose there is a special
escape sequence: \=. When \= precedes\ [. .. , the magic replacement of \ [. . .] doesn't

happen. Of course, Lisp string syntax dictates that thisbewrittenas™ .. . \\=\\[... ...

\=isalso useful for escaping the asterisk at the beginning of adef var docstring, if you
don't want the variable to be a user option but you absolutely must have a docstring that
begins with an asterisk.

All variablesthat are shared between two or more functions should be declared with def var .
Which of those should be user options? A rule of thumb isthat if the variable directly controls
auser-visible feature that a user might want to change, and if setting that variableis
straightforward (i.e., no complex data structures or specially coded values), then it should be a
user option.

" Emacs 20.1, which was not yet released when this book went to press, will introduce amajor new
system for editing user options called "customize." Hooking user optionsinto the "customize" system
requires using special functions called def gr oup anddef cust om

Page 50
More Asterisk Magic

Now that we've defined the variables that control i nsert-ti meandinsert - dat e, here
are the definitions of those simple functions.

(defun insert-time ()
"Insert the current tine according to insert-tine-format."
(interactive "*")
(insert (format-time-string insert-time-format
(current-tine))))

(defun insert-date ()
"Insert the current date according to insert-date-format.
(interactive "*")
(insert (format-time-string insert-date-format
(current-tine))))

The two functions are identical except that oneusesi nsert-ti me-f or nat wherethe
other usesi nsert - dat e-format . Thei nsert function takes any number of arguments
(which must al be strings or characters) and inserts them one after another in the current buffer
at the present location of point, moving point forward.

The main thing to notice about these functions is that each begins with

(interactive "*")

By now you know that i nt er act i ve turnsafunction into acommand and specifies how to
obtain the function's arguments when invoked interactively. But we haven't seen * in the
argument of i nt er act i ve before, and besides, these functions take no arguments, so why
doesi nt er act i ve have one?

The asterisk, when it isthe first character inan i nt er act i ve argument, means "abort this
function if the current buffer is read-only." It is better to detect a read-only buffer before a
function beginsits work than to let it get halfway through then die from a"Buffer is read-only"
error. In this case, if we omitted to check for read-onlyness, the call to insert would trigger its

own "Buffer is read-only" error amost right away and no harm done. A more complicated
function, though, might cause irreversible side effects (such as changing global variables),
expecting to be able to finish, before discovering that it can't.

Writestamps

Inserting the current date and time automatically and in such a configurable format is pretty neat
and probably beyond the ken of most text editors, but its usefulnessis limited. Undoubtedly
more useful would be the ability to store awritestamp in afile; that is, the date and/or time the
file waslast written to disk. A writestamp updates itself each time thefile is saved anew.

Page 51
Updating Writestamps

Thefirst thing we'll need isaway to run our writestamp-updating code each time thefileis
saved. Aswe discovered in the section "Hooks' in Chapter 2, the best way to associate some
code with acommon action (such as saving afile) is by adding afunction to a hook variable,
provided that a suitable hook variable exists. Using M -x apropos RET hook RET, we
discover four promising hook variables: af t er - save- hook,

| ocal -write-file-hooks, wite-contents-hooks,and
wite-file-hooks.

We candiscard af t er - save- hook right away. We don't want our code executed,
modifying writestamps, after the file is saved, because then it will be impossible to save an
up-to-date version of thefile!

The differences between the remaining candidates are subtle:

wite-file-hooks
Code to execute for any buffer each timeit is saved.

| ocal -wite-fil e-hooks
A buffer-local versionof wi te-fil e- hooks. Recal from the "Hooks" section of
Chapter 2 that a buffer-local variableis one that can have different values in different
buffers. Whereaswr i t e- f i | e- hooks pertainsto every buffer,
| ocal -write-file-hooks canpertaintoindividual buffers. Thus, if you want to run
one function while saving a Lisp file and another one when saving atext file,
| ocal -write-file-hooks istheonetouse.

wr it e-cont ent s- hooks
Likel ocal -write-fil e-hooks inthatit'sbuffer-local and it contains functionsto
execute each time the buffer is saved to afile. However—and | warned you thiswas
subtle—thefunctionsinwr i t e- cont ent s- hooks pertain to the buffer's contents,
while the functions in the other two hooks pertain to the files being edited. In practice, this
means that if you change the mgjor mode of the buffer, you're changing the way the contents
should be considered, and thereforewr i t e- cont ent s- hooks revertsto nil but
| ocal -write-file-hooks doesn't. Onthe other hand, if you change Emacs's idea of
which fileisbeing edited, e.g. by invoking set - vi si t ed-fi | e- nane, then
| ocal -wite-fil e-hooks revertstoni| andwite-contents-hooks
doesnt.

WEell ruleout w i t e-fi | e- hooks because well want to invoke our writestampupdater
only in buffers that have writestamps, not every time any buffer is saved. And, hair-splitting
semantics aside, well ruleout wr i t e- cont ent s- hooks because we want our chosen
hook variable to be immune to changes in the buffer's mgjor mode. That leaves

| ocal -write-file-hooks.

Page 52

Now, what should the writestamp updater that we'll putin| ocal -write-fil e- hooks
do? It must locate each writestamp, delete it, and replace it with an updated one. The most
straightforward approach is to surround each writestamp with a distinguishing string of
characters that we can search for. Let's say that each writestamp is surrounded by the strings
"WRITESTAMP((" on the left and ™))" on theright, so that in afileit looks something like this:

went into the castle and lived happily ever after.
The end. WRI TESTAMP((12: 19pm 7 Jul 96))

Let's say that the stuff insdethe WRITESTAMP ((...)) isput thereby | nsert - dat e
(which we defined earlier) and so its format can be controlled with
i nsert-date-format.

Now, supposing we have some writestamps in the file to begin with,” we can update it at
file-writing time like so:

(add-hook 'local -wite-file-hooks 'update-witestanps)

(defun update-witestanps ()
"Find witestanps and replace themw th the current tine."
(save- excursion
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(while (search-forward "WRI TESTAMP((" nil t)
(let ((start (point)))
(search-forward "))")
(del ete-region start (- (point) 2))
(goto-char start)
(insert-date))))))
nil)

Theresalot here that's new. Let's go through thisfunction aline at atime.

First we notice that the body of the function iswrapped inside acall to save- excur si on.
What save- excur si on doesis memorize the position of the cursor, execute the
subexpressions it's given as arguments, then restore the cursor to its original position. It's useful
in this case because the body of the function is going to move the cursor all over the buffer, but
by the time the function finishes we'd like the caller of this function to perceive no cursor
motion. Therell be much more about save- excur si on in Chapter 8, Evaluation and Error
Recovery.

* |nserting writestamps is similar to inserting the date or the time. A function for doing so is left as

an exercise for the reader.

Page 53

Nextisacal tosave-restriction. Thisislikesave- excur si on inthat it
memorizes some information, then executes its arguments, then restores the information. The
information in this case is the buffer'srestriction, which isthe result of narrowing. Narrowing
is covered in Chapter 9. For now let's just say that narrowing refers to Emacs's ability to show
only aportion of abuffer. Sinceupdat e- wri t est anps isgoingto call wi den, which
undoes the effect of any narrowing, weneed save-restri cti on inorder to clean up after
ourselves.

Nextisacal to save- mat ch- dat a that, likesave- excur si on and

save-restri cti on, memorizes some information, executes its arguments, then restores the
information. This time the information in question is the result of the latest search. Each time a
search occurs, information about the result of the search is stored in some global variables (as
we will see shortly). Each search wipes out the result of the previous search. Our function will
perform a search, but for the sake of other functions that might be calling ours, we don't want to
disrupt the global match data.

Nextisacall tow den. Asprevioudy mentioned, this undoes any narrowing in effect. It
makes the entire buffer accessible, which is necessary if every writestamp is to be found and
updated.

Next we move the cursor to the beginning of the buffer with (Qot o- char (poi nt - m n))
in preparation for the function's main loop, which is going to search for each successive
writestamp and rewrite it in place. The function poi nt - m n returns the minimum value for
point, normally 1. (The only time (poi nt - m n) might not be 1 is when there's narrowing in
effect. Since we've called wi den, we know narrowing is not in effect, so we could write
(got ochar 1) instead. But it's good practice to use poi nt - m n where appropriate.)

The main loop looks like this:

(while (search-forward "WRITESTAMP((" nil t)
..

Thisisawhi | e loop, which works very much like while loops in other languages. Its first
argument is an expression that is tested each time around the loop. If the expression evaluates
to true, the remaining arguments are executed and the whole cycle repeats.

The expression (sear ch- f or war d "WRITESTAMP((" nil t) searches for the first
occurrence of the given string, starting from the current location of point. The nil means the
search is not bounded except by the end of the buffer. Thisis explained in more detail later.
Thet meansthat if no matchisfound, sear ch- f or war d should smply return ni | .
(Without thet, search-forward signals an error, aborting the current command, if no match is
found.) If the search is successful, point is moved to the first character after the matched text,
and

Page 54

sear ch-f or war d returns that position. (It's possible to find where the match began using

mat ch- begi nni ng, whichisshown in Figure 4-1.)

Figure 4-1.
After searchingfor the string WRITESTAMP((

The body of thewhi | e loop is
(let ((start (point)))

This creates atemporary variable, st ar t , that holds the location of point, which isthe
beginning of the date string inside the WRI TESTAMP ((. . .) deimiters.

With st art defined, the body of thel et contains:

(search-forward "))")

(del ete-region start (- (point) 2))
(goto-char start)

(i nsert-date)

Thiscall tosear ch- f or war d places point after the two closing parentheses. We still know
the beginning of the timestamp, because thislocationisin st ar t , as shown in Figure 4-2.

Figure 4-2.
After searchingfor ")) "

Thistime, only the first argument to sear ch- f or war d, the search string, is given. Earlier
we saw two additional arguments: the search bound, and whether to signal an error. When
omitted, they defaultto ni | (unbounded search) and ni | (signal an error if the search fails).

After sear ch-f orwar d succeeds—and if it fails, an error is signaled and execution of the
function never gets past sear ch- f or war d—del et e-r egi on deletes the text region that
isthe date in the writestamp, starting at position

Page 55

st art and ending before position (- (poi nt) 2) (two charactersto the left of point),
leaving the results shown in Figure 4-3.

The end. WRITESTAMP(())
LI]

starl |
point

Figure 4-3.
After deleting the region between start and (- (point) 2)

Next, (got o- char st art) positionsthe cursor inside the writestamp delimiters and,
finaly, (i nsert - dat e) insertsthe current date.

Thewhi | e loop executes as many times as there are matches for the search string. It's
important that each time a match is found, the cursor remains "to the right" of the place where
the match began. Otherwise, the next iteration of the loop will find the same match for the
search string!

When thewhi | e loop isdone, save- mat ch- dat a returns, restoring the match data; then
save-restricti on returns, restoring any narrowing that was in effect; then
save- excur si on returns, restoring point to its original location.

Thefinal expression of updat e- wr i t est anps, after thecall to save- excur si on, is
nil

Thisisthe function's return value. The return value of a Lisp function is simply the value of the
last expression in the function's body. (All Lisp functions return avalue, but so far every
function we've written has done its job via"side effects" instead of by returning meaningful
values.) In this case we force it to be nil. The reason isthat functionsin

| ocal -wite-fil e-hooks aretreated specially. Normally, the return value of afunction
in ahook variable doesn't matter. But for functionsin | ocal -write-fil e- hooks (also
inwrite-fil e-hooks and write-contents-hooks), a non-nil return value means, "This hook
function has taken over the job of writing the buffer to afile." If the hook function returns a
non-nil value, the remaining functions in the hook variables are not called, and Emacs does not
write the buffer to afileitself after the hook functionsrun. Sinceupdat e- wri t est anps is
not taking over the job of writing the buffer to afile, we want to be sure it returns nil.

Page 56
Generalizing Writestamps

This approach to implementing writestamps works, but there are afew problems. First, by
hardwiring the strings "WRITESTAMP((" and "))" we've doomed the user to an unaesthetic
and inflexible way to distinguish writestamps in text. Second, the user's preference might not be
tousei nsert - dat e for writestamps.

These problems are simple to fix. We can introduce three new variables: one that, like
i nsert-date-format andinsert-ti me-format, describesatime format to use; and
two that describe the delimiters surrounding a writestamp.

(defvar writestanp-format "o

"*Format for witestanps (c.f. 'format-time-string').")

(defvar writestanp-prefix "WRl TESTAMP(("
"*Uni que string identifying start of witestanp.")

(defvar witestanp-suffix "))"
"*String that termnates a witestanp.")

Now we can modify updat e- wri t est anps to be more configurable.

(def un update-witestanps ()
"Find witestanps and replace themw th the current tine."
(save- excursion
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(while (search-forward witestanp-prefix nil t)
(let ((start (point)))
(search-forward witestanp-suffix)
(del ete-region start (match-beginning 0))
(goto-char start)
(insert (format-time-string witestanp-format
(current-tine))))))))
nil)

Inthisversion of updat e- wri t est anps, we've replaced occurrences of
"WRITESTAMP((" and"))" with wri t est anp-prefi x and
writestanp-suffix, andwevereplacedi nsert - dat e with

(insert (format-time-string witestanp-format
(current-tine)))

We also changed the call to del et e-r egi on. Previoudly it looked like this:
(del ete-region start (- (point) 2))

That was when we had the writestamp suffix hardwired to be "))", which is two characters
long. But now that the writestamp suffix is stored in a variable, we don't know in advance how
many characterslong it is. We could certainly find out, by caling | engt h:

Page 57

(del ete-region start (- (point)
(length witestanp-suffix)))

but a better solutionisto use mat ch- begi nni ng. Remember that before the call to
del ete-region is

(search-forward writestanp-suffix)

No matter what wr i t est anp- suf fi x is, sear ch-f or war d finds the first occurrence of
it, if one exists, and returnsthe first position after the match. But extra data about the match,
notably the position where the match begins, is stored in Emacs's globa match-data variables.
The way to access this datais with the functions mat ch- begi nni ng and match-end. For
reasons that will become clear shortly, mat ch- begi nni ng needs an argument of O to tell

you the position of the beginning of the match for the latest search. In this case, that happens to
be the beginning of the writestamp suffix, which aso happens to be the end of the date inside
the writestamp, and therefore the end of the region to delete:

(del ete-region start (match-beginning O)
Regular Expressions

Suppose the user chooses "Written: " and "." asthewr i t est anp- prefi x and

writ est anp- suf fi x, sothat writestamps appear like so: "Written: 19 Aug 1996." Thisis
a perfectly reasonable preference, but the string "Written: " isless likely than
"WRITESTAMP((" to be completely unique. In other words, the file may contain occurrences
of "Written: " that aren't writestamps. When updat ewr i t est anps searchesfor

wri t est anp- prefi x, it might find one of these occurrences, then search for the next
occurrence of a period and delete everything in between. Worse, this unwanted deletion takes
place almost undetectably, just asthefileis being saved, with the cursor location and other
appearances preserved.

One way to solve this problem isto impose tighter constraints on how the writestamp may
appear, making mismatches less likely. One natural restriction might be to require writestamps
to appear alone on aline: in other words, a string is awritestamp only if

wri t est anp- prefi xisthefirst thingonthelineandwr i t est anp- suf fi x isthelast
thing on the line.

Now it won't suffice to use
(search-forward witestanp-prefix . . .)

to find writestamps, because this search isn't constrained to find matches only at the beginnings
of lines.

Thisiswhereregular expressions comein handy. A regular expression—called aregexp or
regex for short—is a search pattern just like the first argument to

Page 58

sear ch-f orwar d. Unlikeanormal search pattern, regular expressions have certain
syntactic rules that allow more powerful kinds of searches. For example, in the regular
expression "W it t en:’, thecaret (") isaspecia character that means, "this pattern must
match at the beginning of aline." The remaining charactersin theregexp Wi t t en: ' don't
have any specia meaning in regexp syntax, so they match the same way ordinary search
patterns do. Special characters are sometimes called metacharacters or (more poetically)
magic.

Many UNIX programs use regular expressions, among them sed, grep, awk, and pert. The
syntax of regular expressions tendsto vary dightly from one application to another,
unfortunately; but in all cases, most characters are non-"magic" (particularly letters and
numbers) and can be used to search for occurrences of themselves; and longer regexps can be
built up from shorter ones smply by stringing them together. Here is the syntax of regular
expressions in Emacs.

1. Period (.) matches any single character except newline.

2. Backdlash, followed by a magic character, matches that character literally. So, for example,
\. matches a period. Since backslash itself is magic, \\ matches\ itself.

3. A set of charactersinside square brackets matches any one of the enclosed characters. So
[aeiou] matches any occurrence of aor e or i or 0 or u. There are some exceptions to this
rule—the syntax of square bracketsin regular expressions hasits own "subsyntax," as
follows:

(a) A range of consecutive characters, such as abed, can be abbreviated a-d. Any number of
such ranges can be included, and ranges can be intermixed with single characters. So
[a-dmx-z] matchesany a, b, ¢, d, m, X, y, or z.

(b) If thefirst character is acaret ("), then the expression matches any character not
appearing inside the square brackets. So [*a-d] matches any character except &, b, ¢, or d.

(c) To include aright-square-bracket, it must be the first character in the set. So []4]
matches] or a. Similarly, [*]a] matches any character except | and a.

(d) To include a hyphen, it must appear where it can't be interpreted as part of arange; for
example, asthefirst or last character in the set, or following the end of arange. So [a-e-Z]
matchesa, b, c, d, e, -, or z.

(e) Toinclude a caret, it must appear someplace other than as the first character in the set.

(f) Other charactersthat are normally "magic" in regexps, such as* and. are not magic
inside square brackets.

4. A regexp x may have one of the following suffixes:

Page 59
(&) An asterisk, matching zero or more occurrences of x
(b) A plus sign, matching one or more occurrences of x

(©) A question mark, matching zero or one occurrence of x

So a* matches a, ag, aza, and even an empty string (zero as);” a+ matches a, aa, aaa, but not
an empty string; and a? matches an empty string and a. Note that x+ is equivalent to xx*.

5. The regexp "x matches whatever x matches, but only at the beginning of aline. The regexp
x$ matches whatever x matches, but only at the end of aline. This means that x$ matches
aline containing nothing but a match for x. In this case, you could leave out x atogether;
~$ matches a line containing no characters.

6. Two regular expressions x and y separated by \ | match whatever x matches orwhatever
ymatches. So hello\ | goodbye matcheshel | o or goodbye.

7. A regular expression x enclosed in escaped parentheses— \ (and \)—matches whatever x
matches. This can be used for grouping complicated expressions. So \ (ab\)+ matches ab,
abab, ababab, and so on. Also, \ (ab\ I cd\) ef matches abef or cdef.

As adide effect, any text matched by a parenthesized subexpression is called a submatch

and is memorized in a numbered register. Submatches are numbered from 1 through 9 by
counting occurrences of \ (in aregexp from left to right. So if the regexp ab\ (cd*e\)
matches the text abcddde, then the one and only submatch is the string cddde. If the regexp
ab\ (cd\ lef\ (g+h\)V)j\(k*\) matches the text abefgghjkk, then the first submatch is efggh, the
second submatch is ggh, and the third submatch is kk.

8. Backdash followed by adigit n matches the same text matched by the nth parenthesized
subexpression from earlier in the same regexp. So the expression \(a+b\)\l matches abab,
aabaab, and aaabaaab, but not abaab (because ab isn't the same as aab).

9. The empty string can be matched in awide variety of ways.

(@) \' matches the empty string that's at the beginning of the buffer. So\ 'hel | o matchesthe
string hel | o at the beginning of the buffer, but no other occurrence of hel | o.

(b) \ " matches the empty string that's at the end of the buffer.

The regular expression operator is known among computer scientists asa"Kleene closure.”

Page 60
(c) \= matches the empty string that's at the current location of point.

(d) \b matches the empty string that's at the beginning or end of aword. So\bgnu\ b
matches the word "gnu" but not the occurrence of "gnu" inside the word "interregnum”.

(e) \B matches the empty string that's anywhere but at the beginning or end of aword. So
\Bword matches the occurrence of "word" in "sword" but not in "words".

(f) \< matches the empty string at the beginning of aword only.
(9) \> matches the empty string at the end of aword only.

Asyou can see, regular expression syntax uses backslashes for many purposes. So does Emacs
Lisp string syntax. Since regexps are written as Lisp strings when programming Emacs, the two
sets of rules for using backslashes can cause some confusing results. For example, the regexp
ab\) cd, when expressed as a Lisp string, must be written as "ab\\ Icd". Even stranger is when
you want to match asingle\ using the regexp \\ : you must write the string "\ \ \ \". Emacs
commands that prompt for regular expressions (such asapr opos and keepl i nes) allow
you to type them as regular expressions (not Lisp strings) when used interactively.

Regexp Quoting

Now that we know how to assemble regular expressions, it might seem obvious that the way to
search for wr i t est anp- pr ef i x at the beginning of alineisto prepend a caret onto
wri t est anp- prefi x and append adollar signontowr i t est anp- suf fi x, like so:

(re-search-forward (concat """
witestanp-prefix) . ..) ; wr ong!

(re-search-forward (concat witestanp-suffix
"$) .. L) ; Wrong!

Thefunction concat concatenates its string arguments into a single string. The function
re-search-forward istheregular expression version of sear ch-f or war d.

Thisisamost right. However, it contains a common and subtle error: either
writestanp-prefixorwitestanp-suffix maycontan"magic' characters. In fact,
wri t est anp- suf fi x does, in our example: it's".". Since matches any character (except
newline), this expression:

(re-search-forward (concat witestanp-suffix
"$) ..)

which is equivalent to this expression:

Page 61
(re-search-forward ".$" . . .)
matches any character at the end of aline, whereas we only want to match aperiod (.).

When building up aregular expression as in this example, using pieces such as

wr i t est anp- pr ef i x whose content is beyond the programmer's contral, it is necessary to
"remove the magic" from strings that are meant to be taken literally. Emacs provides a function
for this purpose called r egexp- quot e, which understands regexp syntax and can turn a
possibly-magic string into the corresponding non-magic one. For example, (r egexp- quot e

M) yidds"\\." asastring. Y ou should always user egexp- quot e to remove the magic from
variable strings that are used to build up regular expressions.

We now know how to begin anew version of updat e- wri t est anps:

(def un update-witestanps ()
"Find witestanps and replace themw th the current tine."
(save- excursion
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(while (re-search-forward
(concat "~
(regexp-quote witestanp-prefix))
nil t)
))))
nil)

Limited Searching

Let'sfinish our new version of updat e- wr i t est anps by filling in the body of thewhi | e
loop. Just after r e- sear ch- f or war d succeeds, we need to know whether the current line
endswithwr i t est anp- suf fi x. But we can't smply write

(re-search-forward (concat (regexp-quote witestanp-suffix)
"$"))

because that could find a match severa lines away. We're only interested in knowing whether

the match is on the current line.

One solution isto limit the search to the current line. The optional second argument to

sear ch-f orward andre- sear ch-f orwar d, if non-nil, is abuffer position beyond
which the search may not go. If we plug in the buffer position corresponding to the end of the
current line like so:

(re-search-forward (concat (regexp-quote witestanp-suffix)
$nn)
end- of -1 i ne- posi tion)

Page 62

then the search is limited to the current line, and we'll have the answer we need. So how do we
come up with end-of-line-position? We smply put the cursor at the end of the current line
usng end- of - | i ne, then query the value of point. But after we do that and before
re-search-forward begins, we must make sure to return the cursor to its original
location since the search must start from there. Moving the cursor then restoring it is exactly
what save- excur si on isdesigned to do. So we could write:

(let ((end-of-line-position (save-excursion
(end-of -1ine)

(point))))
(re-search-forward (concat (regexp-quote witestanp-suffix)
n$,,)

end- of -1 i ne-position))

which creates atemporary variable, end- of - | i ne- posi ti on, that isused to limit
re- sear ch-forwar d; but it'ssimpler not to use atemporary variable if we don't really
need it:

(re-search-forward (concat (regexp-quote witestanp-suffix)

(save- excursi on
(end-of -1ine)
(point)))

Observe that the value of thesave- excur si on expression is, like so many other Lisp
constructs, the value of its last subexpression (poi nt) .

Soupdat e- wi t est anps can be written like this:

(def un update-witestanps ()
"Find witestanps and replace themwith the current tine."
(save- excursi on
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(while (re-search-forward
(concat "~
(regexp-quote witestanp-prefix))
nil t)
(let ((start (point)))
(if (re-search-forward (concat (regexp-quote

writestanp-suffix)

(save- excursion
(end-of -1ine)
(point))

t)
(progn
(del ete-region start (match-beginning 0))
(goto-char start)
(insert (format-time-string witestanp-format

(current-tine))))))))))

nil)

Page 63

Noticethat both callstor e- sear ch- f or war d havet asthe optiona third argument,
meaning "if the search fails, return nil (as opposed to signaling an error)."

More Regexp Power

We have created a more or less straightforward trandation of updat ewr i t est anps fromr
itsoriginal form to use regular expressions, but it doesn't really exploit the power of regexps.
In particular, the entire sequence of finding a writestamp prefix, checking for a matching
writestamp suffix on the same line, and replacing the text in between can be reduced to just
these two expressions:

(re-search-forward (concat """
(regexp-quote witestanp-prefix)
"\\ (L))
(regexp-quote witestanp-suffix)
'$"))
(replace-match (format-time-string witestanp-format
(current-tine))
tt nil 1)

Thefirst expression, thecall tor e- sear ch- f or war d, constructs aregexp that looks like
this:

Aprefix\ (. * \) suffix$

where prefix and suffix arer egexp- quot ed versionsof wri t est anp- prefi x ad

wr i t est anp- suf fi x. Thisregexp matches one entire line, beginning with the writestamp
prefix, followed by any string (which is made a submatch by theuseof \ (. . .\)), and ending
with the writestamp suffix.

The second expressionisacall to r epl ace- mat ch, which replaces some or all of the
matched text from a previous search. It's used like this:

(repl ace-match newstring
pr eserve-case
literal
base-string
subexpr essi on)

The first argument is the new string to insert, which in this exampleis the result of

format-ti me-string. Theremaining arguments, which are all optional, have the
following meanings.

preserve-case
Weset thistot , which tells r epl ace- mat ch to preserve aphabetic casein
new-string. If it'snil, r epl ace- mat ch triesto intelligently match the case of the text
being replaced.

Page 64

literal
We uset, which means "treat new-string literally.” If it'snil, then r epl acemat ch
interpretsnew- st ri ng according to some special syntax rules (for which see
describe-functionon r epl ace- mat ch).

base-string
We use nil, which means "Modify the current buffer." If this were a string, then
replace-match would perform the replacement in the string instead of in a buffer.

subexpression
We use 1, which means "Replace submatch 1, not the entire matched string” (which would
include the prefix and the suffix).

So after finding the writestamp with r e- sear ch- f or war d and "submatching" the text
between the delimiters, our call tor epl ace- mat ch snips out the text between the delimiters
and inserts afresh new string formatted accordingtowr i t est anp- f or mat .

Asafina improvement toupdat e- wr i t est anps, we can observethat if we write

(while (re-search-forward (concat . . .) . . .)
(replace-match . . .))

then the concat function is called each time through the loop, constructing a new string each
time even though its arguments never change. Thisisinefficient. It would be better to compute
the desired string once, before the loop, and store it in atemporary variable. The best way to
writeupdat e- wr i t est anps istherefore:

(def un update-witestanps ()
"Find witestanps and replace themw th the current tine."
(save- excursion
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(let ((regexp (concat """
(regexp-quote witestanp-prefix)
WL (LR
(regexp-quote witestanp-suffix)
"$")))
(while (re-search-forward regexp nil t)
(replace-match (format-tine-string witestanp-fornat
(current-tine))

ttonil 1))))))
nil)

Page 65

M odifystamps

Well, timestamps were marginally useful, and writestamps were somewhat more so, but
modifystamps may be even better. A modifystamp is a writestamp that records the time the file
was last modified, which may not be the same as the last time it was saved to disk. For
instance, if you visit afile and save it under a new name without making any changesto it, you
shouldn't cause the modifystamp to change.

In this section we'll briefly explore two very simple approaches to implementing
modifystamps, and one clever one.

Simple Approach #1

Emacs has ahook variable called f i r st - change- hook. Whenever abuffer is changed
for thefirst time since it was last saved, the functionsin f i r st - change- hook get
executed. Implementing modifystamps by using this hook merely entails moving our old
updat e-wri t est anps functionfrom| ocal -write-fil e-hooks to
first-change- hook. Of course, well aso want to change its name to

updat e- nodi f yst anps, and introduce new variables—nodi f yst anp- f or mat ,
nodi f yst anp- prefi x, andnodi fyst anp- suf f i x-that work like their writestamp
counterparts without overloading the writestamp variables. Then updat e- nodi f yst anps
should be changed to use the new variables.

Before any of this happens, f i r st - change- hook, whichisnormally global, should be
made buffer-local. If we add updat e- nodi f yst anps tofi r st - change- hook while
itisdtill global, updat e- nodi f yst anps will be called every time any buffer is saved.
Making it buffer-local in the current buffer causes changes to the variable to beinvisible
outside that buffer. Other buffers continue to use the default global value.

(make-1 ocal - hook 'first-change-hook)

Although ordinary variables are made buffer-local with either make-localvariable or
make-variable-buffer-local (see below), hook variables must be made buffer-local with
make-local-hook.

(def var nodi fystanp-format "%
"*Format for nodifystanps (c.f. '"format-tine-string).")

(def var nodi fystanp-prefix "MDI FYSTAMP (("
"*String identifying start of nodifystanp.")

(def var nodi fystanmp-suffix "))"
"*String that terminates a nodifystanp.")

Page 66

(def un updat e- nodi f yst anps ()
"Find nodi fystanps and replace themw th the current tinme."
(save- excursi on

(save-restriction
(save- mat ch-dat a

(wi den)

(goto-char (point-mn))

(let ((regexp (concat "A"
(regexp-quot e nodi fyst anp- prefix)
AV
(regexp-quot e nodi fyst anp-suffi x)
"$")))

(while (re-search-forward regexp nil t)
(replace-match (format-tinme-string nodifystanp-format

(current-tine))

ttnil 1))))))
nil)
\ (add- hook ' first-change-hook 'update-nodifystanps nil t)

Theni | argument to add- hook isjust aplace holder. We care only about the last argument,
t, which means "change only the buffer-local copy of fi r st - changehook."

The problem with this approach is that if you make ten changes to the file before saving it, the
modifystamps will contain the time of the first change, not the last change. Close enough for
some purposes, but we can do better.

Simple Approach #2

Thistimewell gobacktousing | ocal -write-fil e-hooks, but well call
updat e- nodi f yst anps fromitonly if buf f er - nodi fi ed- p returnstrue, which tells
us that the current buffer has been modified since it was last saved:

(def un maybe- updat e- nodi fyst anps ()
"Call 'update-nodifystanps' if the buffer has been nodified."
(if (buffer-nodified-p)
(updat e- nodi fyst anps)))

(add-hook 'local -wite-file-hooks maybe-updat e- nodi f yst anps)

Now we have the opposite problem from simple approach #1.: the last-modified time isn't
computed until the file is saved, which may be much later than the actua time of the last
modification. If you make a change to the file at 2:00 and save at 3:00, the modifystamps will
record 3:00 as the last-modified time. Thisis a closer approximation, but it's still not perfect.

Clever Approach

Theoretically, we could call updat e- nodi f yst anps after every change to the buffer, but
in practice it's prohibitively expensive to scan through the whole file and rewrite parts of it
after every keystroke. But it's not too expensive to memo-

Page 67

rize the current time after each buffer change. Then, when the buffer is saved to afile, the
memorized time can be used for computing the time in the modifystamps.

The hook variable af t er - change- f unct i ons contains functionsto cal after each buffer

change. First let's make it buffer-local:
(make-1 ocal - hook ' after-change-functions)
Now we define a buffer-local variable to hold this buffer's latest modification time:

(defvar | ast-change-tinme nil
"Time of last buffer nodification.")
(make-vari abl e-buffer-1local 'last-change-tine)

Thefunction make- vari abl e- buf f er -1 ocal causesthe named variableto have a
separate, buffer-local valuein every buffer. Thisis subtly different from

make- | ocal - vari abl e, which makes a variable have a buffer-local value in the current
buffer while allowing other buffersto share the same global value. In this case, we use
make- vari abl e- buf f er -1 ocal because thereisno meaningful global vaue of

| ast - change-ti e for other buffers to share.

Now we need afunctionto set | ast - change- t i me each time the buffer changes. Let's call
itremenber - change-ti me andaddittoaf t er - change-functi ons:

(add- hook 'after-change-functions renenber-change-tinme nil t)

Functionsin af t er - change- f unct i ons are passed three arguments describing the
change that just took place (see the section called "Mode Meat" in Chapter 7). But

r emenber - change- t i me doesn't care what the change was; only that there was a change.
So we'll allow remember-change-time to take arguments, but well ignore them.

(def un renenber-change-tine (& est unused)
"Store the current tine in 'last-change-tine'."
(setq last-change-tine (current-tine)))

The keyword &r est , followed by a parameter name, must appear last in afunction's
parameter list. It means "collect up any remaining argumentsinto alist and assign it to the last
parameter” (unused inthiscase). The function may have other parameters, including

&opt i onal ones, but these must precede the & est parameter. After all the other
parameters are assigned in the normal fashion, the & est parameter gets alist of whatever's
left. Soif afunction is defined as

(defun foo (a b &rest c)
)
and is called with (foo 1 2 3 4), then awill be 1, b will be 2, and c will bethelist (3 4).

Page 68

In some situations, & est isvery useful, even necessary; but right now we're only using it out
of laziness (or economy, if you prefer), to avoid having to name three separate parameters that
we don't plan to use.

Now we must revise updat e- nodi f yst anps: it must use the time stored in

| ast - change-ti nme instead of using (cur r ent - t i me). For efficiency, it should also
reset | ast - change-tinetonil whenitisdone, soif thefileis subsequently saved
without being modified, we can avoid the overhead of calling updat e- nodi f yst anps.

(def un updat e- nodi f yst anps ()
"Find nodi fystanps and replace themw th the saved tine."
(save- excursi on
(save-restriction
(save-mat ch-dat a
(wi den)
(goto-char (point-mn))
(let ((regexp (concat "~"
(regexp-quote nodi fystanp-prefix)
AN CRANY I
(regexp-quote nodi fystanp-suffix)
"$")))

(while (re-search-forward regexp nil t)
(replace-match (format-tinme-string nodifystanp-format
| ast - change-ti ne)

ttnil 1))))))
(setq last-change-tine nil)
nil)

Finally, we wish not to call updat e- nodi f yst anps when| ast - change-tineis
nil:
(def un maybe- updat e- nodi fyst anps ()

"Call 'update-nodifystanps' if the buffer has been nodified."
(if last-change-tine ; instead of testing (buffer-nodified-p)

(updat e- nodi f yst anps)))

There's ill one important thing missing from maybe- updat e- nodi f yst anps. Before
reading ahead to the next section, can you figure out what it iS?

A Subtle Bug

The problem isthat every time a modifystamp gets rewritten by updat e- nodi f yst anps,
the buffer changes, causing | ast - change-t i me to change! Only the first modifystamp will
be correctly rewritten. Subsequent ones will contain atime much closer to when the file was
saved than when the last modification was made.

One way around this problem is to temporarily set the value of
af t er - change- f unct i ons to nil while executing updat e- nodi f yst anps as shown
below.

Page 69

(add- hook 'local -wite-file-hooks
(1 anbda ()
(if last-change-time
(let ((after-change-functions nil))
(updat e- nodi fystanps)))))

Thisuseof | et creates atemporary variable, af t er - change- f unct i ons, that
supersedesthe global af t er - change- f unct i ons during the cal to

updat e- nodi f yst anps inthe body of the let. After thel et exits, the temporary
af t er- change-functi ons disappearsand the global oneisagain in effect.

This solution has a drawback: if there are other functionsin af t er - change- f uncti ons,
they'll also be disabled during the call to updat e- nodi f yst anps, though you might not
intend for them to be.

A better solution would beto "capture” thevaueof | ast - change-ti ne before any
modifystamps are updated. That way, when updating the first modifystamp causes

| ast - change-ti e to change, the new value of | ast - change-ti me won't affect any
remaining modifystamps because updat e- nodi f yst anps won't be referring to

| ast - change-ti ne.

The simplest way to "capture” thevalue of | ast - change- ti nme isto passit as an argument
toupdat e- nodi f yst anps:

(add- hook 'local -wite-file-hooks
(1 anbda ()
(if last-change-time
(updat e- nodi fyst anps | ast-change-tine))))

Thisrequires changing updat e- nodi f yst anps to take one argument and useiit in the call
toformat-ti me-string:

(def un updat e- nodi fystanps (tine)
"Find nodi fystanps and replace themwith the given tine."
(save- excursion
(save-restriction
(save- mat ch-dat a
(wi den)
(goto-char (point-mn))
(let ((regexp (concat """
(regexp-quot e nodi fyst anp- prefix)

AT CRANY
(regexp-quot e nodi fyst anp-suffix)

'$")))

(while (re-search-forward regexp nil t)
(replace-match (format-tinme-string nodifystanp-format

tine)
ttnil 1))))))
(setqg | ast-change-tine nil)
nil)

Page 70

Y ou might be thinking that setting up a buffer to use modifystamps involves evaluating alot of
expressions and setting up alot of variables, and that it seems hard to keep track of what's
needed to make modifystamps work. If so, you'reright. So in the next chapter, we'll ook at
how you can encapsulate a collection of related functions and variablesin aLisp file.

Page 71

5
Lisp Files
In this chapter
- Creating a Lisp File
- Loading the File
- Compiling the File
- eval-after-load
- Local Variables Lists

- Addendum: Security
Consideration

Up to now, most of the Emacs Lisp we've written has been suitable for inclusion in your
.emacsfile. The aternative isto put Emacs Lisp code into files separated by functionality. This
requires alittle more effort to set up, but has some benefits over putting everything into .emacs:

Codein .emacs is always executed when Emacs starts up, even if it isnever needed in a
given session. This makes startup time longer and consumes memory. By contrast, a
separate file of Lisp code can be loaded only when and if needed.

Codein .emacstypically isn't byte-compiled. Byte-compiling is the process of turning
Emacs Lisp into amore efficient form that loads faster, runs faster, and uses less memory
(but which, like compiled programs in other languages, contains unreadable codes that are
not meant for human eyes). Bytecompiled Lisp files usualy have namesending in .elc
("Emacs Lisp, compiled"), while their non-compiled counterparts usually have names
endingin .el ("EmacsLisp").

Putting everything into .emacs can cause that file to balloon over time into an
impossi ble-to-manage jumble.

The previous chapter is agood example of a set of related functions and variables that can be
encapsulated in a separate Lisp file that should only be loaded when and if needed, and that
callsfor byte-compilation for very efficient execution.

CreatingaLisp File

Emacs Lisp files have names ending in .el, so to begin, let's create timestamp.el and put in it
the finished forms of the last chapter's code, as shown below.

Page 72
(defvar insert-time-format . . .)
(defvar insert-date-format . . .)
(defun insert-tine () . . .)
(defun insert-date () . . .)

(defvar witestanp-format . . .)

(defvar witestanp-prefix . . .)
(defvar witestanp-suffix . . .)
(defun update-writestanmps () . . .)

(defvar |ast-change-tine . . .)
(make-vari abl e-buffer-local 'last-change-tine)
(defun renenber-change-tine . . .)

(defvar nodifystanp-format .)
(defvar nodifystamp-prefix . . .)
(defvar nodi fystanp-suffix .)
(defun nmaybe-updat e-nodi fystanmps () . . .)
(def un updat e-nodi fystanps (tinme) . . .)

Don't include the callsto add- hook or make- | ocal - hook yet. Well get to those |ater.
For now, observe that Lisp files should be written such that they can be loaded at any time,
even multiple times, without unwanted side-effects. One such side-effect would be including
(make-1 ocal - hook 'after-change-functions)intimestamp.el, then loading
timestamp.el while the current buffer is not the onewhose af t er - change- f uncti ons
you want to make local.

L oading the File

Oncethe codeisin timestamp.el, we must arrange for its definitions to be available when we
need them. Thisis done by loading the file, which causes Emacs to read and execute its
contents. There are many waysto load Lisp filesin Emacs: interactively, non-interactively,
explicitly, implicitly, and with and without pathsearching.

Finding Lisp Files

Emacs can load files based on full path names such as/usr/local/share/emacs site-lisp/foo.el,
but it is usually more convenient to use only afile's base name, bo.el, and let Emacsfind it
among the directoriesin the loadpath. The load path is ssimply alist of directories that Emacs
searches for filesto load, very much like the way the UNIX shell uses the environment variable
PATH to find programs to execute. Emacs's|oad path is stored as alist of stringsin the Lisp
variable| oad- pat h.

When Emacs starts, | oad- pat h hasan initial setting that |looks something like the following
example.

Page 73

("/usr/local/share/emacs/19. 34/site-1isp"
"/usr/local /share/ emacs/site-1isp"
“/usr/local /share/ emacs/ 19. 34/ 1isp")

Directoriesin | oad- pat h are searched in the order they appear. To add a directory to
the beginning of load-path, use

(setq | oad- path
(cons "/your/directory/ here"
| oad- pat h))
in your .emacs file. To add a directory to the end, use

(setq | oad- path

(append | oad- path
("/your/directory/here")))

Noticethat in the first example, "/your/directory/here" appears as an ordinary string, but in the
second example, it appearsinside a quoted list. Chapter 6, Lists, explains these and other ways
to manipulate listsin Lisp.

If you ask Emacsto find aLisp filein the load path and you omit the suffix of the file for which
you're looking-e.g., you specify foo instead of foo.e/-Emacs first looks for foo.€elc, the
byte-compiled form of foo.el. If that's not found in the load path, then foo.el istried, followed
by plain foo. It's usualy best to omit the suffix when specifying afile to load. Not only does it
get you that useful search behavior, but it helpseval - af t er - | oad to work properly (see
the section about eval - af t er - | oad later in this chapter).

I nteractive Loading

Two Emacs commands exist for interactively loading aLisp file: | oad-fi | e and

| oad- | i brary.Whenyoutype M-x load-file RET, Emacs prompts you for the full
pathname of aLisp file (e.g., /home/bobg/emacs/foo.el) and does not search | oad- pat h. It
uses the normal filename-prompting mechanisms, so filename completion is available. On the
other hand, when you type M-x load-library RET, Emacs prompts you for just the base name
of thelibrary (e.g, foo) and attemptstofinditin | oad- pat h. It does not use
filename-prompting and completion is not available.

Programmatic Loading

When loading files from Lisp code, you may choose explicit loading, conditional loading, or
autoloading.

Page 74
Explicit loading

Files are loaded explicitly by calling load (which works like the interactive load-library) or
load-file.

(load "l azy-1ock")
searches |oad-path for lazy-lock.elc, lazy-lock.el, or lazy-lock.
(1l oad-file "/honel/ bobg/ emacs/ | azy-1 ock.elc")
doesn't usel oad- pat h.

Explicit loading should be used when you definitely need the file to be loaded immediately,
and you either know that the file hasn't aready been loaded or you don't care. Asit turns out,
given the alternatives below, it israrely the case that you need to explicitly load aLisp file.

Conditional loading

When n different pieces of Lisp code want to load a particular file, two Emacs Lisp functions,
requi re andprovi de, give away to make sure it only gets loaded once instead of n times.

A Lisp file usualy contains a collection of related functions. The collection can be thought of
abstractly as asingle feature. Loading the file makes available the feature it contains.

Emacs makes the feature concept explicit. Features are named by Lisp symbols, declared with
provide, and requested by r equi r e.

Here's how it works. First, we'll choose a symbol to stand for the feature provided by thefile
timestamp.el. Let's use the obviousone, t i mest anp. We indicate that timestamp.el provides
thefeaturet i mest anp by writing

(provide 'tinmestanp)

in timestamp.el. Normally this appears at the very end of thefile, so that the feature isn't
"provided" unless everything preceding it worked correctly. (If something fails, then loading of
the file aborts before reaching the call to pr ovi de.)

Now suppose that somewhere, there's some code that needs the timestamp functionality. Using
requi r e likethis:

(require '"timestanp "tinestanp")

means, "if thet i mest anp featureis not yet present, load timestamp™ (using load, which
searches| oad- pat h). If thet i mest anp feature has aready been provided (presumably
because timestamp has already been loaded), nothing happens.

Page 75

Usually, al the necessary callsto require are collected together at the beginning of aLisp
file—something like the way C programs usually begin with lots of #i ncl udes. But some
programmers like to placer equi r e calls deep in the code that actually depends on the
required feature. There may be many such places, and if each such place actually caused the
fileto load, the program would slow to a crawl, loading Lisp files possibly dozens of times
each. Using "features’ to make sure files only get loaded once can be areal timesaver!

Inthecal tor equi r e, if thefilenameisthe "string equivaent” of the feature name, then the
filename can be omitted and will be inferred from the feature name. The "string equivalent” of
asymbol is simply the symbol's name as a string. The string equivalent of the feature symbol
timestampis"t i mest anp", so we can write

(require 'tinmestanp)

instead of (require 'tinmestanp "tinmestanp"). (Thefunction synbol - nane
called on asymbol yieldsits string equivalent.)

If r equi r e causesthe associated file to be loaded (because the feature hasn't yet been
provided), that file should pr ovi de the requested feature. Otherwise, r equi r e reports that
loading the requested file failed to provide the desired feature.

Autoloading

With autoloading, you can arrange to defer loading afile until it's needed-that is, until you call
one of its functions. Setting up autoloadsis very inexpensive, and therefore is usually done in

the .emacsfile.

Thefunction aut ol oad connects a function name with the file that defines it. When Emacs
tries to invoke a function that is not yet defined, it loads the file that, according to aut ol oad,
supposedly definesit. Without an aut ol oad, attempting to invoke an undefined function isan

error.

Here's how it's used:

(autoload '"insert-tine "timestanp")
(autoload '"insert-date "timestanp")

(autol oad 'update-witestanps "tinmestanp")
(aut ol oad ' updat e-nodi fystanps "ti mestanp")

Thefirgt timeany of thefunctions i nsert-tine, insert-date,

updat ewr i t est anps, or updat e- nodi f yst anps iscalled, Emacs |oads
timestamp. Not only will this cause the invoked function to get defined, but it will define
the other three as well, so subsequent calls to these functions won't reload timestamp.

Page 76

Theaut ol oad function has several optional parameters. The first oneis adocstring for the
not-yet-defined function. Including a docstring allows the user to get help on the function (via
descri be-function and apropos) even beforeitsdefinition has been loaded fromr

thefile.

(autoload '"insert-tine "timestanp"

"Insert the current tine according to insert-tine-format.")
(autol oad '"insert-date "timestanp"

"I nsert the current date according to insert-date-format.")
(aut ol oad 'update-witestanps "tinmestanp"

"Find witestanps and replace themwith the current tine.")

(aut ol oad ' updat e- nodi fystanps "ti nmest anp”
"Find nodi fystanps and replace themwith the given tine.")

The next optional parameter describes whether the function, once loaded, will be an
interactive command or amere function. If omitted or ni | , the function is expected to be
non-interactive; otherwise it's expected to be a command. When this information exists
prior to loading the actual function definition, it can be used by such functions as
comrand- apr opos that need to distinguish interactive from non-interactive functions.

(autoload '"insert-tine "timestanp"
"Insert the current tine according to insert-tine-format."

t)
(autol oad '"insert-date "timestanp"
"I nsert the current date according to insert-date-format."

t)
(aut ol oad 'update-witestanps "tinmestanp"
"Find witestanps and replace themwith the current tine."
nil)
(aut ol oad ' updat e- nodi fystanps "ti mest anp”
"Find nodi fystanps and replace themw th the given tine."

nil)
If you mistakenly label a non-interactive function interactive or vice versain the

aut ol oad cadl, it won't matter once the rea definition isloaded. The real definition
replaces all information givenintheaut ol oad call.

The last optional parameter is one we won't cover for now. It specifies the type of the
autoloadable object, if not afunction. Asit turns out, keymaps and macros (which well cover
in coming chapters) may also be autol oaded.

Compiling theFile

As mentioned at the beginning of this chapter, once we have our Lisp codein afile of its own,
we can byte-compile it. Byte-compiling converts Emacs Lisp into a more compact,
faster-running format. Like compilation in other programming languages, the result of
byte-compilation is essentially unreadable to humans. Unlike other kinds of compilation, the
result of byte-compilation is still portable

Page 77

among different hardware platforms and operating systems (but may not be portable to older
versions of Emacs).

Byte-compiled Lisp code executes substantially faster than uncompiled Lisp code.

Byte-compiled Emacs Lisp files have names ending in .elc. As mentioned earlier, | oad and
| oad- i brary, whengiven no filesuffix, will preferentialy load a.elc file over a.el
file.

There are several ways to byte-compile files. The most straightforward ways are
Fromwithin Emacs: Execute M -x byte-compile-file RET file.el RET.
Fromthe UNIX shell: Run emacs -batch -f batch-byte-compilefile.el.

Y ou can byte-compile an entire directory full of Lisp fileswith
byte-reconpile-directory.

When Emacs loads a .elc file, it compares the date of the file with the date of the corresponding
€l file. If the .elc is out of date with respect to the .el, Emacs will still load it but it will issue a
warning.

eval-after-load

If you'd like to defer the execution of some code until a particular file has been loaded,

eval - aft er - | oad istheway to do it. For example, suppose you came up with a better
definition for di r ed- sort -t oggl e thantheonethat'sin dired (Emacs's directory-editing
module). Y ou couldn't Ssmply put your version into your .emacs, because the first time you edit
adirectory, dired will be autoloaded, complete with its definition for

di red-sort-toggl e, which will wipe out your definition.

What you could do instead is:

(eval -after-Ioad
"dired"
(defun dired-sort-toggle ()

Thiswill execute the defun immediately after dired isloaded, clobbering dired's version of

di red-sort -t oggl e instead of the other way around. Note, however, that this will work
only if dired isloaded under precisely the name dired. It won't work if dired isloaded under
the name dired.elc or /usr/local/share/emacs/19.34/ lisp/dired. Thel oad or aut ol oad or
requir e that causesdired to be loaded must refer to it by exactly the same name used in
eval - after -1 oad. Thisiswhy, asmentioned earlier, it's best alwaysto load files by just
their base name.

Page 78

Another usefor eval - af t er - | oad iswhen you need to refer to avariable, function, or
keymap in a package that's not |oaded yet, and you don't want to force the package to be
loaded:

(eval -after-Ioad
“font-| ock"
"(setq lisp-font-1ock-keywords |isp-font-I|ock-keywords-2))

Thisreferstothevalueof | i sp-f ont -1 ock- keywor ds-2, avariable defined in
font-lock. If youtry torefertol i sp-f ont - | ock- keywor ds-2 before fontlock is loaded,
you'll get a"Symbol's value as variable isvoid" error. But there's no hurry to load font-1ock,
because this setq only uses lisp-font-lock keywor ds- 2 in order to set

i sp-font-I|ock-keywords, another font-lock variable that's not needed until font-lock
gets loaded for some other reason. So we useeval - af t er - | oad to make sure that the setq
doesn't happen too early and cause an error.

What happensif you call eval - af t er - | oad and the named file has already been loaded?
Then the given Lisp expression is executed immediately. What if there's more than one

eval - af t er - | oad for the samefile? They all execute, one after another, when thefileis
finaly loaded.

You may have observed that eval - af t er - | oad works very much like hook variables. It's
true, they do, but one important difference is that hooks only execute Lisp functions (frequently
inthe form of anonymous| anbda expressions), whereaseval - af t er -1 oad can execute
any Lisp expression.

Local VariablesLists

What we've described in this chapter so far is enough to set up afile of Lisp code and have it
loaded on demand. But in the case of timestamp, things are alittle different. We've already
arranged for calling updat e- w i t est anps to autoload timestamp, but who or what is
goingtocal updat e- w i t est anps and force timestamp to load? Recall that

updat e- wri t est anps issupposed to get called from | ocal -wite-fil e-hooks.
So how doesupdat e-wi t est anps getintolocal -wite-fil e-hooks?Loading
the file mustn't do that for the reasons mentioned in the section called "Creating a Lisp File"
earlier in this chapter.

What we need isaway to get updat e-wri t est anps intol ocal -witefil e-hooks
in buffersthat need it, so that the first invocation of | ocal - wri t e-fi | e-hooks can cause
the autoloading of timestamp.

Page 79

A good way to accomplish thisis by using the local variables list that may appear near the end
of any file. Whenever Emacs visits anew file, it scans near the end * for ablock of text that
looks like this:

Local vari abl es:
var, @ valueq

var,: val ue,
End:

When Emacs finds such a block, it assigns each value to the corresponding var, which is
automatically made buffer-local. Emacs can recognize this block even if each line beginswith
aprefix, aslong asthey al begin with the same prefix. Thisis necessary in afile of Lisp code,
for example, to comment out the lines so they're not interpreted as Lisp:

Local vari abl es:
var q: val ueq

; var,: val ue,
End:

The values are treated as if quoted; they are not evaluated before being assigned to their
respective vars. So in afile that has

Local vari abl es:
foo: (+ 3 5)
End:

the buffer-local variablef oo hasthevalue(+ 3 5), not 8.

Any filethat needsupdat e- wri t est anps initsl ocal -wite-fil e-hooks could
therefore specify:

Local vari abl es:
local -write-file-hooks: (update-witestanps)
End:

In fact, afile could set up all of the unique values it needs:

Local vari abl es:

local -write-file-hooks: (update-witestanps)
witestanp-prefix: "Witten:"
writestanp-suffix:

witestanp-format: "%®

End:

One problemwith setting | ocal -write-fil e- hooks thisway isthat it's preferable to
add updat e- wri t est anps to whatever value may already bein
| ocal -write-file-hooks, ratherthanreplacel ocal -write-fil e-hooks

* "Near the end" means: within the final 3000 bytes of the file—yes, it's arbitrary—and following the
last line, if any, that begins witha CONTROL-L.

Page 80

with anew list asin the example above. Doing so would require evaluating Lisp code, though.
Specifically, you'd need to execute the expression

(add-hook 'local -wite-file-hooks 'update-witestanps)

To alow this, Emacs recognizes a"pseudovariable” in the local variableslist called eval .
When

eval : val ue

appearsin alocal variableslist, value is evaluated. The result of evaluating it is discarded; it
is not stored in abuffer-local variable named eval . So acomplete solution isto include:

eval : (add-hook 'local-wite-file-hooks 'update-witestanps)

among the local variables.

Actuadly, theright way toset up | ocal -write-fil e-hooks for this purposeisto write a
minor mode, which is the subject of Chapter 7.

Addendum: Security Consideration

Thelocal variableslist is a potential security hole, exposing the user to "Trojan horse"
attacks. Imagine a variable setting that causes Emacs to behave in an unexpected way; or an
eval that has unexpected side-effects, like deleting files or forging email in your name. All an
attacker hasto do is entice you to visit afile with such asetting in itslocal variableslist. As
soon as you visit the file, the code is executed.

The way to protect yourself isto put
(setqg enabl e-1ocal -variabl es ' query)

inyour .emacs. This causes Emacs to present any local variables list to you for inspection
before executing it. Theresalso enabl e- | ocal - eval , specificaly controlling the eva
pseudovariable.

Page 81

Lists

In this chapter
- The Smple View
of Lists
- List Details
- Recursive List
Functions
- |terative List
Functions
- Other Useful List
Functions
- Destructive List
Operations
- Circular Lists?!

So far, we've seen listsin afew contexts, but we haven't really explored how they work and
why they're useful. Since lists are central to Lisp, this chapter provides a thorough look at this
data structure.

The Smple View of Lists

Aswe've aready seen, alistin Lisp is a sequence of zero or more Lisp expressions enclosed
in parentheses. Lists may be nested; that is, the enclosed subexpressions may include one or
more lists. Here are afew examples:

(a b c) ; list of three synbols
(7 "foo") ; list of nunber and string
((4.12 31178)) ; list of one elenment: a sublist of two nunbers

The empty list () is synonymous with the symbol nil.

Thefunctionscar and cdr " are used to access parts of alist: car yieldsthefirst element in
alist, and cdr yieldsthe remainder of the list (everything but the first element).

(car '"(abc)) P a

(cdr "(abc))) b (bec)

(car (cdr "(abc))) P b
(Recall that quoting an expression—even a complete list—means to use that
expression literaly. So'(a b c¢) meansthelist containing a, b, and ¢, not the

result of calling function a on argumentsb and c.)

* Pronounced "could-er." These names are historical holdovers from the computer architecture on
which Lisp wasfirst designed.
Page 82
Thecdr of aone-element listisni | :

(cdr ' (x)) P nil

Thecar and cdr of theempty list are both ni | :

(car '"()) b nil
(cdr "()) P nil

Note that thisis also true of thelist containing ni | :

(car "(nil)) b nil
(cdr "(nil)) b nil

This does not mean that () isthe same as (nil).

Y ou don't have to take my word for any of this. Just gointothe* scr at ch* buffer and, as
explained in the section on "Evaluating Lisp Expressions’ in Chapter 1, try any of these
examples for yourself.

Lists are constructed with the functions| i st, cons, andappend. Thefunctionl i st
makes alist out of any number of arguments:

(list "a"b" 7) b (a"b" 7)
(list (xyz) 3 b ((xy z) 3)

Thefunction cons takes an arbitrary Lisp expression and an existing list. It makes anew list
by prepending the arbitrary expression to the old list:

(cons 'a '(345)) b (a 3405
(cons "hello" '"()) P ("hell 0")
(cons "(ab) "(cd) b ((a b) c d)

Notethat consing onto alist creates a new list without affecting the old list:

(setg x "(a b ¢)) ;assign (a b c) tovari abl ex

(setqg y (cons 17 x)) ;cons 17 onto it andput it iny
y b (17 a b ¢) ;as expect ed

x b (a b c) ;no change in x

Thefunction append takes any number of lists and makes anew list by concatenating the
top-level elements of al the lists. It effectively strips off the outer parentheses of each lit,
sticks al the resulting elements together, and surrounds them with a new pair of parentheses:

(append "(a b) ' (cd)) P (abc d
(append "(a (b c) d) "(e (f))) P (a (bc) de (f))
Page 83
Thefunctionr ever se takesalist and makes anew list by reversing its top-level elements.

(reverse (a bc)) (c b a)
(reverse (12(34) 56)) = (65(34) 21

Notethat r ever se does not reverse elementsin sublists.

List Details

This section explains the inner workings of Lisp lists. Since most Lisp programs employ lists

to some degree or other, it is beneficial to understand why they work the way they do. Thiswill
help you to understand what Lisp lists are and aren't good at.

Lists are composed of smaller data structures called cons cells. A cons cell isastructure that
contains two Lisp expressions, referred to, you may not be surprised to learn, as the cell's car
and cdr.

The function cons creates a new cons cell from its two arguments. Contrary to the implication
in the preceding section, both arguments to cons may be arbitrary Lisp expressions. The second
one need not be an existing list.

(cons "a 'b) > acons cell uitb car a and cdr b
(car (cons 'a 'b)) a
(cdr (cons 'a 'b)) b

The resulting cons cell isusually depicted asin Figure 6-1.

Figure 6-1.
Theresult of (cons'a'b)

When you cons something onto alist, asin
(cons "a '(b ¢c))

theresult is (ab c), which is merely a cons cell whose car isaand whose cdr is (b ¢). More
about this below.

There's a special syntax for cons cells whose cdrs aren't lists. It's called dotted pair notation,
and cons cells themselves are sometimes referred to as dotted pairs.

(cons a b) = (a. b
(cons "(12) 3) = ((12 . 3
Page 84

When the cdr of aconscell isnil, asin Figure 6-2, the dotted pair notation can be abbreviated
to omit thedot and theni | .

Figure 6-2.
A single-element list: (a)

Another abbreviation rule saysthat if the cdr of acons cell is another cons cell, then the dot

can be discarded aong with the parentheses surrounding the cdr. See Figure 6-3.

Figure 6-3.
One cons cell points to another

When combined with the abbreviation rule about ni | cdrs, we recognize the lists with which
we're already familiar:

(a. (b. nil)y) (ab. nil) - (ab)

Generally speaking, aLisp list isachain of cons cells where each cdr is another cons cell and
the last cdr isnil. It doesn't matter what the cars of the cons cells are. Figure 6-4 shows alist
as part of another list.

Figure 6-4.
A list containing asublist

Page 85
When you write
(setg x "(a b c))
you make x point to the first cons cell in athree-cons-cell chain. If you then write
(setq y (cdr x)) ; nowy is (b c)

you makey point to the second cons cell in the same chain. A list isreally only a pointer to a
conscell.

A list where the last cdr is not nil is sometimes called an improper list. Frequently, the entries
inan association list (see below) are improper lists.

There are several functions for testing whether a Lisp object isalist or alist component.

consp tests whether its argument isacons cell. (consp x) istruewhen x isany list
except the empty list, and false for all other objects.

at orr tests whether its argument is atomic. (at om x) is the opposite of (consp

X)—everything that's not acons cell, including ni | , numbers, strings, and symbols, is an
atom.

| i st p testswhether itsargument isalist. (I i st p x) istruefor al cons cells and for nil,
falsefor everything else.

nul | testswhether itsargumentisni | .

Now that you know about cons cells, you might find it odd that (car ni |)and (cdr ni l)
are both defined tobeni | ,when ni | isn't even acons cell and therefore has no car or cdr.
Indeed, afew dialects of Lisp makeit an error to call car andcdronni | . Most Lisps
behave like Emacs Lisp in this regard, however, mainly for convenience—but this special case
does have the bizarre side effect (previously noted) of making () and (ni |) behave the same
way with respect to car and cdr .

Recursive List Functions

Traditional Lisp textbooks use avariety of short programming exercisesto illustrate the
behavior of listsand cons cells. Let'sjust take a moment now to look at two of the
better-known examples, then move on.

Our godl inthisexerciseisto defineafunction called f | at t en that, given alist, undoes any
nesting of sublists, causing all elementsto be at the top level. For example:

(flatten '"(a ((b) ¢) d)) = (abc d

Page 86

The solution calls for recursion, flattening the car and the cdr separately, then recombining
them in away that preserves flatness. Supposetheinputtof | at t en isthelist
((a (b)) (c d))

The caris(a (b)) which when flattened yields (ab). The cdr is ((c d)) which when flattened
becomes (c d). The function append can be used to combine (ab) with (c d) and preserve
flatness, yielding (ab c d). So at the heart of f | at t en isthis code:

(append (flatten (car Ist))
(flatten (cdr 1st)))

(I'vechosen 1st asthenameforfl att en' s parameter. | prefer nottousel i st, whichis
the name of aLisp function.) Now, f | at t en isonly meant to work onlists, so (f | att en
(car Ist))isanerrorif (car | st)isnotalist. We must therefore elaborate as follows:

(if (listp (car Ist))

(append (flatten (car Ist))
(flatten (cdr Ist))))

Thisi f hasno"else" clause. What if (car | st)isnot alist? For example, suppose 1st were
(a ((b) c))

Thecar, a isnot alist. In this case, we will simply need to flatten the cdr, (((b) ¢)), to get (b
c); then cons the car back onto it.

(if (listp (car 1st))
(append (flatten (car Ist))
(flatten (cdr 1st)))
(cons (car 1st)
(flatten (cdr Ist))))

Finally, we need away to terminate the recursion. In recursive functions that work on smaller
and smaller pieces of lists, the smallest piece you can wind up withisni | ,andni | isamost
always used as the "basis case" for such functions. In this case, the result of flattening ni | is
simply ni | , so our complete functionis

(defun flatten (1st)
(if (null 1st) ; Islstnil?
ni ; Ifso, return nil
(if (listp (car Ist))
(append (flatten (car Ist))
(flatten (cdr 1st)))
(cons (car 1st)
(flatten (cdr 1st))))))

Page 87

Try running this function on afew samplelistsin the* scr at ch* buffer, and try following the
logic of the function by hand on afew examples. Remember that the return value of afunction
in Lisp isthe value of the last expression to execute.

Iterative List Functions

Recursion isn't always the right solution for a list-related programming problem. Sometimes
plain old iteration is needed. In this example, well demonstrate the Emacs Lisp idiom for
operating on alist of elements one at atime, sometimes called "cdr-ing down™ alist (because
in each iteration, the list is shortened by taking its cdr).

Suppose we need a function that counts the number of symbolsin alist, skipping over other
kinds of list elements like numbers, strings, and sublists. A recursive solution iswrong:

(defun count-syns (1st)
(if (null Ist)
0
(if (synbolp (car Ist))
(+ 1 (count-syms (cdr Ist)))
(count-syms (cdr Ist)))))

Recursion—rparticularly deep recursion—introduces afair amount of overhead in terms of
keeping track of many nested function calls and return values, and should be avoided when
possible. Furthermore, this problem naturally suggests an iterative solution, and code should
usually reflect the natural approach to solving a problem, rather than obfuscating the solution
by being too clever.

(defun count-syns (1st)
(let ((result 0))
(while 1st
(if (synbolp (car Ist))
(setqg result (+ 1 result)))

(setq 1st (cdr Ist)))
result))

Other Useful List Functions
Here are some more list-related Lisp functions that Emacs defines.

| engt h returnsthe length of alist. It does not work on "improper” lists.

(length nil) b O

(length "(xy z)) b 3
(length "((xy z))) P 1
(length "(a b . c)) P error

nt hcdr calscdr onalist ntimes.

(nthedr 2 "(a bc)) P (c)

Page 88

nt h returns the nth element of alist (where the first element is numbered zero). Thisisthe
sameasthecar of thent hcdr .

(nth 2 (abc))b c
(nth 1 '((ab) (cd) (ef))) P (c d

mapcar takesafunction and alist as arguments. It calls the function once for each element
of thelist, passing that element as an argument to the function. Theresult of mapcar isa
list of the results of calling the function on each element. So if you have alist of strings and
want to capitalize each one, you could write:

(mapcar ' (lanbda (x)
(capitalize x))
("l'isp"™ "is"™ "cool")) P ("Lisp" "Is" "Cool")

equal testswhether its two arguments are equal. Thisisadifferent kind of equality
test from eq, which we first encountered in the section called " Saving and Restoring Point,” in
Chapter 3. Whereas eq tests whether its arguments are the same object, equal tests whether
two objects have the same structure and contents.

Thisdistinction is important. In the following example:

(setg x (list 1 2 3))
(setqgy (list 1 2 3))

x and y are two different objects. That is, thefirst call to list creates a chain of three cons
cells, and the second call to list creates a chain of three more cons cells. So (eq x y)is
nil, even though the two lists have the same structure and contents. But since they do have
the same structure and contents, (equal x y) istrue.

In Lisp programming, any time you wish to compare two objects for equality, you must be
alert to whether eq or equal isappropriate. Another consideration isthat eqisan
instantaneous operation, whereasequal may have to recursively compare the structure of
its two arguments.

Note that when you write
(setg x (list 1 2 3))

(setq y x)
(eq x y) becones true.

assoc isafunction that helps you use lists as lookup tables. When alist has the form

((key;. valuep)
(key, . valuey)

(key, . valueny)

Page 89

itiscalled an association list, or assoc list for short.” The function assoc finds the first
sublist of an assoc list whose car (the key; "field") matches the argument you give. So:

(assoc green
((red . "ff0000)
(green . "00ff00")
(blue . "0000ff"))) P (green . "O0O0ffO00")

If no matching sublist isfound, assoc returnsni | .

Thisfunction usesequal to test whether each key, matches the argument you give. Another
function, assq, islikeassoc but useseq instead.

Some programmers do not like dotted pairs, so instead of setting up alookup table in this
form:

((red . "ff000")
(green . "00ffO00")
(blue . "000ff"))

they'll do this instead:

((red "ff0000")
(green "00ff000')
(bl ue "000ff"))

Thisisfine, because as far asassoc isconcerned, each e ement of thelist is still adotted
pair:

((red . ("ff0000"))
(green . ("00ff00"))
(blue . ("0000ff")))

The only differenceisthat in the earlier example, each entry in the assoc list can be stored
inasingle cons cell, but now each entry requires two cons cells. And retrieving the value
associated with a key could previously be done like this:

(cdr (assoc 'green . . .)) b "O0O0ffO00"

but now must be done like this;

(car (cdr (assoc 'green . . .))) b "00ffO00O"

Destructive List Operations

So far, al the list operations we've looked at have been non-destructive. For instance, when
you cons an object onto an existing list, the result is abrand new cons cell whose cdr points to
the unaltered old list. Any other objects or variables that refer to the old list are unaffected.
Similarly, append works by making a

* |'ve never found consensus on whether this should be pronounced aSOAK, aSOASH, or aSOCK
list. I've heard al three. Some avoid the problem by caling it an "alist."

Page 90

brand new list, creating as many new cons cells as necessary to hold the elements of thelistsin
its arguments. It cannot make the last cdr of x point directly toy, or the last cdr of y point
directly to z, because the nil pointer at the end would be changed. x and y could no longer be
used in their original forms. Instead append makes an unnamed copy of those lists as shown
in Figure 6-5. Note that the value of z need not be copied; append aways usesits last
argument directly.

Figure 6-5:
The append function does not alter its arguments.

Here'swhat the non-destructiveness of append meansin Lisp code:

(setg x "(a b ¢))
(setqgy '(d e f))
(setq z "(g hi))
(append x y z) P (abcdef ghi)

Because append does not destructively modify its arguments, these three variables continue
to have their old values:

x P (abc)
y b (d ef)
z b > (g hi)

But if destructive modification were used, then each variable would refer to some part of a

single, long cons chain made when the three shorter cons chains are strung together as shown in
Figure 6-6. The function that performs a destructive append is called nconc.

(nconc x y z) p (abcdef ghi)

x b (abcdef ghi)
y b (def ghi)
z b (g hi)

*Because it's pointed to directly, the last argument to append doesn't even haveto bealist! Try it
and see.

Page 91

Figure 6-6
unlikeappend, nconc altersits arguments

Usualy its unwise to destructively modify lists. Many other variables and data structures may
be using the same copies of the lists you modify, so it's best not to change them in ways that
would have unpredictable effects.

On the other hand, sometimes you do want to destructively modify alist. Perhaps you need the
efficiency of nconc and you know that no other code depends on the data structure remaining
unchanged.

One of the most common uses of destructive list operations is when changing values inan assoc
list. For example, suppose you have an assoc list that maps people's name's to their email
address:

(setg-addrs
"(("robin" . "rl@herwood. uk")
("marian" . "nf @herwood. uk")

Now suppose someone's email address changes. Y ou could update the list like this:

setq e-addrs
(alist-replace e-addrs "john" "johnl @xile.fr"))

whereal i st - r epl ace issome hideously expensive recursive operation that basically
recopies the whole list:

(defun alist-replace (alist key newval ue)
(if (null alist)
ni |
(if (and (listp (car alist)
key))
(cons (cons key new- val ue)

(cdr alist))
(cons (car alist)
(alist-replce (cdr alist) key newvalue)))))

Not only isthis slow (especidly if the input islarge), But thisis acase wher you probably do
want to effect any other objects or variables referring to this data structure. Unfortunately,
al i st-repl ace doesn't actually change the data struc-

Page 92

ture. It makes a brand-new copy, and anything referring to the old copy does not see the update.
In code, this means:

(setq alist '((a . b) (c . d))) ;alist is an assoc |ist.
(setq alist-2 alist) ;alist-2 refers to the sam
(setq alist (alist-replace alist ¢ q)) ;alist is a newist.
alist b ((a. b) (c. q)) ;alist reflects the change.
alist-2 b ((a. b) (c . d)) ;alist-2 still refers to tt

Enter set car andset cdr.” Given acons cell and a new value, these functions replace the
cell's car or cdr with the new value. Examples:

(setg x (cons '"a 'b)) b (a . b)
(setcar x «c)

X P (c . b)
(setcdr x d)
Xx P (c . d)

We can now easily write adestructive version of al i st - r epl ace like so:

(defun alist-replace (alist key newval ue)
(let ((sublist (assoc key alist)))
(if sublist
(setcdr sublist newvalue))))

Thisfinds the sublist of alist whose car is the sought-for key—e.g., the sublist (* j ohn"

"] 1 @ottingham co. uk")—and replaces the cdr with new val ue. Since this changes
the data structure in place—that is, since it doesn't work by making a new copy of
anything—all variables and other objects that refer to the cons cell, particularly the assoc list
containing it, reflect the change.

Thereis one other important destructive list operation: nr ever se, anon-copying version of
reverse.

(setg x "(a b ¢))
(nreverse x) b (c b a)
x b (a)

Why does x equal (a) after the last example? It's because x continues to refer to the same cons
cell, which has gotten shuffled around. Consider: thelist (ab c) consists of three cons cells,
one whose car is a, one whose car is b, and one whose car is c. At first, x refersto the list by
referring to the first cons—cell-the one whose car is aand whose cdr refers to the next cons
cell in the chain (which isthe one containing b). But after nr ever se, the cdrs of all the cons
cells are changed. Now the cons cell whose car is cisthefirst in the chain, and itscdr is

"Also calledr pl aca andr pl acd, for the same historical reasons that gave uscar and cdr .

Page 93

the cons cdll containing b. Meanwhile, x's value hasn't changed: it till refersto the origina
cons cell, whose car isa. But now that cell'scdr isni | becauseit's at the end of the chain, so
X is(a).

If you need x to reflect the change in the list, you'd have to write

(setq x (nreverse x)) b (c b a)

Circular Lists?!

Because we can destructively modify lists after they're created, we're not limited to building
listsonly out of pre-existing parts. A list can be made to refer to part of itself! Consider:

(setg x "(a b ¢))
(nthedr 2 x) P ()
(setcdr (nthcdr 2 x) x) ;don't try this yet.!

What's happening in this example? First we create a three-element list and place it in x. Next,
we find the last cons cell with nt hcdr . Finaly, we replace that cell's cdr with x-which isthe
first conscell inthelist. Thelist isnow circular: the former end of the list now points back to

the beginning.
What doesthislist look like? Well, it starts out like this:

(abcabcabcabcabcabcabcabc.

and it never stops. The reason | wrote don't try this yet! above isthat if you executed the

set cdr inthe*scr at ch* buffer, Emacswould try to display the result—and would never
finish. It would get caught in an infinite loop, albeit one that you can interrupt with C-g. Go
ahead and try it now, but press C-g as soon as Emacs locks up. The longer you wait, the more
itfillsupthe*scr at ch* buffer with repetitions of ab c.

Obvioudly, printing isn't the only thing you can do to a circular data structure that can make
Emacs loop forever. Any operation that iterates over al the elementsin alist will never
terminate. Here's an important illustration:

(eq x (nthedr 3 x)) b t ;3rd cdr issanmeobjectas x
(equal x (nthcdr 3 x)) P never term nates!

If circular lists throw Emacs for aloop (pun intended), what good are they? One doesn't
normally think of lists as being circular, but if you stop thinking of them as lists and start

thinking of them as connected cons cdlls, you can build any kind of linked data structure, from
treesto lattices. Some data structures are self-referential, i.e., circular. If you ever find

yoursalf needing to build such a data structure, you should not be daunted by the fact that Emacs
loops forever trying

Page 94

to display it. Simply don't evaluate it in a context where the result needs to be displayed. For
instance, if we changed theset cdr aboveto

(setg x (a b c))

(progn
(setcdr (nthcdr 2 x) x)
nil)

then Emacs would not try to display the result of theset cdr , and now x isacircular data
structure that we can manipulate without trying to display the whole thing.

(nth 0 x) b a
(nth 1 x) b b
(nth 412 x) b b

Page 95

7
Minor Mode

In this chapter:

- Paragraph Filling
- Modes

- Defining a Minor
Mode

- Mode Meat

In this chapter we'll ratchet our Emacs programming dexterity up a notch by considering times
when we don't want extensions to apply to all buffers, but just to a particular type of buffer. For
instance, when you'rein Lisp mode it's nice to press C-M-a and have Emacs jump backwards
to the beginning of the nearest function definition, but you don't want or need that ability when
you're editing atextual document. The Emacs "mode" mechanism arranges things so that C-M-a
doesits magic only when you'rein Li sp mode.

The subject of modesin Emacsis a complex one. We'll easeinto it by first studying so-called
minor modes. A minor mode coexists with a magjor mode in a buffer, adding atypically small
amount of new editing behavior. Every Emacs user is familiar with major modes like Lisp and
C and Text, but they may not be aware of little strings that appear on the "mode line" saying
things like Fill when you're also in Auto Fill minor mode.

WE!I create a minor mode that builds on Emacs'sidea of filling paragraphs. Our minor mode,

Refill, dynamically fills paragraphs as you edit them.

Paragraph Filling

Filling a paragraph is the process of making all the lines in the paragraph the right length.
Every line should be more or less equally long without extending past the right margin. Long
lines should be split up at the spaces between words. Short lines should be lengthened with text
from subsequent lines. Filling optionally includes justification, which is the process of adding
whitespace throughout each line to make both margins come out even.

Most modern word processors keep paragraphs filled at all times. After every change, the text
in the paragraph "flows" to keep the layout correct. Some detrac-

Page 96

tors of Emacs point out that Emacsisn't as good as these other applications when it comes to
filling paragraphs. Emacs does provideaut o-f i | | - node, but that only wraps the current
line, and only when you insert whitespace beyond the "right margin.” It doesn't keep paragraphs
filled after deletions; it doesn't fill any lines besides the current one; and it does nothing when
insertions that occur near the left margin push other text past the right margin.

As an Emacs enthusiast, you can give one of three responses to the detractor who holds up
some other program as the neplus ultra of text editing:

1. Glitzy features like on-the-fly filling of paragraphs are needed only to hide the program's
many inadequacies compared to Emacs (which you may feel freeto list).

2. You value content over form so don't need to see a paragraph continually refilled, but when
you do fedl the need, it's assmple matter of pressing M-qtoinvokefi | | - par agr aph.

3. Given alittle Lisp hacking, Emacs can do on-the-fly paragraph filling just like the other
program (and you may ask whether the other program can likewise be made to emulate
Emacs).

This chapter is about option 3.

In order to make sure that the current paragraph is correctly filled at all times, we'll need to
recheck it after each insertion and each deletion. This may be computationally expensive, so
well want to be able to turn it on or off at will; and when we turn it on, we'll want the behavior
only in the current buffer, since it may not be suitable behavior for al buffers.

M odes

Emacs uses the concept of a mode to encapsulate a set of editing behaviors. In other words,
Emacs behaves differently in buffers with different modes. To take a small example, while the
TAB key inserts an ASCI| tab character in Text mode, in Emacs Lisp mode it inserts or deletes
enough whitespace to indent a line of code to the correct column. As another example, when
you invoke the command i ndent - f or - conment in an Emacs Lisp mode buffer, you get an
empty comment beginning with the Lisp comment character, ;. When you invoke it in aC mode
buffer, you get an empty comment usng C comment syntax: /* */.

Every buffer in Emacsis aways in exactly one major mode. A major mode specializes a

buffer for a particular kind of editing such as Text, Lisp, or C. A major mode called
Fundamental isn't specialized for anything in particular and can be thought of as sort of a null
mode. Usually the major mode for a buffer is chosen automatically by the name of the file you
visit, or by some cuesin the buffer

Page 97

itself. Y ou can change mgjor modes by invoking a mode's command, such ast ext - node,
enmacs- | i sp-node, or c-node.” When you do o, the buffer isin the new major mode
and is no longer in the old major mode.

A minor mode, by contrast, adds to a buffer a package of functionality that doesn't
fundamentally change the way editing in the buffer is performed. Minor modes can be turned on
and off independently of the major mode and of each other. A buffer can bein zero, one, two,
three, or more minor modes in addition to the major mode. Examples of minor modes are:

aut o- save- node, which causes a buffer to be periodically saved to a specially-named file
during editing (which can prevent lossesin case of asystem crash); f ont - | ock- node,
which (on capable displays) colors the text in a buffer according to its syntactic meaning; and

I i ne- nunber - node, which shows the current line number in the buffer's mode line (see
below).

Generally speaking, a package should be implemented as a minor mode if one should be able to
turn it off and on separately in individual buffers, regardless of the mgjor mode. Thisis exactly
how we defined the requirements for our paragraph filling mechanism in the last section, so we
now know that our paragraph filling project calls for aminor mode. We'll take the plunge into
implementing major modes in Chapter 9, A Major Mode.

Defining a Minor Mode
These are the stepsinvolved in defining a minor mode.
1. Choose aname. The name for our mode is refill.

2. Define avariable named name-mode. Make it buffer-local. The minor modeis"on" in a
buffer if that buffer's value of name-mode is non-nil, "off" otherwise.

(defvar refill-node nil
"Mode variable for refill mnor node.")
(make-vari abl e-buffer-local 'refill-node)

3. Define acommand called name-node.** The command should take one optional argument.
With no arguments, it should toggle the mode on or off. With an argument, it should turn the
mode on if thepr ef i x- nuner i c- val ue of the argument is greater than zero, off
otherwise. Thus, C-u M-x name-mode RET aways turnsit on, and C-u - M-x name-mode
RET aways

" There are many other major modes than the few I'm using as examples here. There are modes for
editing HTML files, LATEX files, ASCII art files, troff files, files of binary data, directories, and on
and on. Also, mgjor modes are used to implement many non-editing features such as newsreading and
Web browsing. Try M -x finder-by-keyword RET to browse Emacs's many modes and other
extensions.

** Y ou can use the same name for afunction and avariable; they won't conflict.

Page 98

turnsit off (refer to the section entitled "Addendum: Raw Prefix Argument” in Chapter 2).
Here's the command for toggling Refill mode:

(defun refill-node (&optional arg)
"Refill mnor node."
(interactive "P")
(setq refill-node
(if (null arg)
(not refill-node)
(> (prefix-nuneric-value arg) 0)))
(if refill-node
code for turning on refill-node
code for turning offrefill-node))

That set g isalittle hairy, but it'sa common idiom in minor mode definitions. If ar g is

ni | (because no prefix argument was given), it setsr ef i | | - node to (not
refill-node)—i.e,theoppositeof refill - node' spreviousvalue, t or nil.
Otherwise, it setsrefi | | - node to the truth value of

(> (prefix-numeric-value arg) 0)
whichist if ar g hasanumeric value greater than O, ni | otherwise.

4. Add anentry tom nor - node- al i st, avariable whose valueis an assoc list (refer to the
section entitled "Other Useful List Functions' in Chapter 6) of the form:

((rmodel stringl)
(node2 string2)

-)

The new entry maps name-node to a short string to use in the buffer's mode line. The
mode line is the informative banner that appears at the bottom of every Emacs window and
that includes, among other things, the names of the buffer's major mode and all active minor
modes. The short string describing this minor mode should begin with aspace, sinceitis

appended to the other strings that appear in the mode portion of the mode line. Here's how
to do thisfor Refill mode:

(if (not (assq 'refill-node mnor-node-alist))

(setqg mnor-node-ali st

(cons '(refill-node " Refill™")

m nor - nmode-alist)))
(Thesurrounding i f prevents(refill-nmode " Refill™) beingadded asecond time
if it'salready in m nor - node- al i st, such asif refill.el isloaded twice.) This makes
the mode line of buffersthat user ef i | | - node look something like this:

--**_FEmacs: foo.txt (Text Refill) --L1--Top---

Page 99

There are other stepsinvolved in defining some minor modes that don't apply in this example.

For instance, the minor mode may have a keymap, a syntax table, or an abbrev table
associated with it, but sincer ef i | | - mode won't, let's skip them for now.

Mode M eat
With the basic structure in place, let's start defining the guts of Refill mode.

We've already identified the basic feature of r ef i | | - nbde: each insertion and deletion must
ensure that the current paragraph is correctly filled. The correct way to execute code when the
buffer is changed, as you may recall from Chapter 4, is by adding a function to the hook
variableaf t er - change-functi ons whenrefil | - node isturned on (and removing it
when it isturned off). We'll add afunctioncalledr ef i | | (which does not yet exist) that will
do al the work of making sure the current paragraph remains correctly filled.

(defun refill-nmode (&optional arg)
"Refill mnor node."
(interactive "P")

(setq refill-npde
(if (null arg)
(not refill-node)

(> (prefix-nuneric-value arg) 0)))
(make-1 ocal - hook ' after-change-functions)

(if refill-node
(add-hook 'after-change-functions '"refill nil t)
(renove- hook 'after-change-functions "refill t)))

The extraargumentsto add- hook and r enove- hook ensure that only the bufferlocal
copies of after-change-functions are atered. Whether refill-mode is being turned on or off
when this function is called, we call make- | ocal - hook on

af t er - change- f unct i ons to makeit buffer-local. Thisis becausein both
cases—turningr ef i | | - node on or turning it off—we need to manipulate

af t er - change- f unct i ons separately in each buffer. Unconditionally calling
make-local-hook first isthe simplest way to do this, especialy since make- | ocal - hook
has no effect if the named hook variable is already buffer-local in the current buffer.

Now all that remainsisto definethe functionrefi |l | .

Naive First Try

As mentioned in Chapter 4, the hook variableaf t er - change- f unct i ons is specia
because the functions in it take three arguments (whereas normal hook functions take no
arguments). The three arguments refer to the change that took place in the buffer before

af t er - change- f unct i ons was executed.

Page 100
The position where the change began, which welll call start

The position where the change ended, which well call end

The length of the affected text, which we'll call len

The numbers start and end refer to positionsin the buffer after the change. Thelength len

refersto the text before the change. After an insertion, len is zero (because no previously
existing text in the buffer was affected), and the newly inserted text lies between start and end.
After adeletion, len isthe length of the deleted text, now gone, and start and end are the same
number, since deleting the text closed the gap, so to speak, between the two ends of the
deletion.

Now that we know what the parameterstor ef i | | haveto be, we can make an artlessfirst
attempt at defining it:
(defun refill (start end |en)

"After a text change, refill the current paragraph *"

(fill-paragraph nil))
Thisisatotally inadequate solution becausef i | | - par agr aph isfar too expensive a
function to invoke on every keystroke! It aso has the problem that each time you try to add a
spacetotheend of aline fi | | - paragr aph immediately deletesit—it cleans up trailing

whitespace when it fills a paragraph—and since, while you're typing, the cursor spends most of
itstime at the end of aline, the only way to get a space between words is to type the two words
together, like this, then go back and put a space between them. But thisfirst try does prove the
concept, and gives us a starting point for refinement.”

Congtraining refill

Tooptimizer ef i | |, let'sanalyze the problem abit. First of all, does the entire paragraph
have to befilled every time?

No. When text isinserted or deleted, only the affected line and subsequent lines in the
paragraph need to be refilled. Prior lines needn't be. If text isinserted, the line may become too
long, which may cause some text to spill over onto the next line (which may become too long in
turn, at which point the processis repeated). If text is deleted, the line may become too short,
which may call for some text being durped up from the following line (which may become too
short in turn, and the process is repeated). So changes can't affect any lines prior to the onein
which they occur.

* Sharp-eyed readers might object that the call tof i | | - par agr aph could ater the buffer, causing
af t er - change- f unct i ons to execute again, invoking r ef i | | recursively and perhapsleading
to aninfinite loop, or rather an infinite recursion. Good call, but to avoid this very problem Emacs
unsetsaf t er - change- f unct i ons whilethe functionsin it are executing.

Page 101

Actually, there's one case where changes can affect at most one prior line. Consider the
following paragraph:

Qitzy features like on-the-fly filling of paragraphs are
needed only to hide the programi s many i nadequaci es
conpared to Enmacs

Suppose we delete the word "compared” from the beginning of the third line:

Qitzy features like on-the-fly filling of paragraphs are
needed only to hide the programi s many i nadequaci es
to Enacs

The word "to" can now be filled onto the end of the prior line, like so:

Qitzy features like on-the-fly filling of paragraphs are
needed only to hide the programis many i nadequacies to
Emacs

A moment's reflection should convince you that at most one prior line needs to be refilled—and
then only when the first word on the current line is shortened or removed.

So we can constrain the paragraph-filling operation to the affected line, perhaps the line before
it, and the subsequent linesin the current paragraph. Instead of using fi | | - par agr aph,
which determines the paragraph boundaries itself, we'll choose our owr " paragraph
boundaries* andusefi | | -regi on.

The boundaries we choosefor fi | | - r egi on should enclose the entire affected portion of
the paragraph. For an insertion, the "left" boundary isssmply start, the point of insertion, and
the "right" boundary is the end of the current paragraph. For a deletion, the left boundary is the
beginning of the previous line (that is, the line prior to the one containing start), and the right
boundary is again the end of the paragraph. So here's the outline of thenewrefil | :

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if this is an insertion
start

begi nning of previous line))
(right end of paragraph))
(fill-region left right . . .)))

Fillingin thisisaninsertion iseasy. Recall that whenr ef i | | iscalled, azero valuefor len
means insertion and a non-zero len means deletion.

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (zerop len) ;is len zero?
start
begi nning of previous line))
(right end of paragraph))
(fill-region left right . . .)))

Page 102

To compute beginning of previous line, we first move the cursor to start, then move the cursor
to the end of the previous line (oddly, this can be done with (begi nni ng- of -1 i ne 0)),
then take the value of (poi nt), all inside a save-excursion:

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (zerop len)
start
(save- excursi on
(goto-char start)
(begi nni ng-of -1ine 0)
(point)))
(right end of paragraph))
(fill-region left right . . .)))

We could do something similar for end of paragraph, but instead we'll use a convenient
featureof fi || - regi on:itll find the end of the paragraph for us. The fifth argument to
fill-region (therearetwo mandatory arguments and three optional ones), if nor-ni | ,
tellsfi | | - regi on to keep filling through the end of the region until the next paragraph
boundary. So there's no need to computer i ght .

Our new version of refill is not complete. We must first solve the problem of fill-region
positioning the cursor at the end of the affected region. Naturaly, it is unacceptable for the
cursor to jump to the end of the paragraph on every keystroke! Wrapping the call to fill-region
in acall to save-excursion solves the problem.

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (zerop len)
start

(save- excursi on
(goto-char start)
(begi nning-of-line O
(point))))

(save- excursi on
(fill-region left end nil nil t)))))

(The second argumenttofi | | - r egi on isignored because we're using the feature that finds
the end of the paragraph. We passin end just because it's handy and not entirely meaningless
to a human reader.)

Minor Adjustments

Well, that's the basic idea, but there's still plenty to do. For one thing, when computing | ef t
we shouldn't back up to the previous line if the previouslineis not in the same paragraph. So
we should locate the beginning of the paragraph and the beginning of the previous line, then use
whichever position is greater.

Page 103
(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (zerop len)
start

(max (save-excursion
(goto-char start)
(begi nni ng-of -1i ne 0)
(point))
(save- excursion
(goto-char start)
(backwar d- par agraph 1)

(point))))))
(save- excursion
(fill-region left end nil nil t))))

(Thefunction max returns the larger of its arguments.)

We now havethree callsto save- excur si on, which isamoderately expensive function. It
might be better to combine two of them into one and compute both valuesinside it.

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (zerop len)
start
(save- excursi on
(max (progn
(goto-char start)
(begi nni ng-of -1ine 0)
(point))
(progn
(goto-char start)
(backwar d- par agraph 1)

(point)))))))
(save- excursi on
.(fill-region left end nil nil t))))

Next, recall our earlier observation about filling the prior line: "at most one prior line needs to
be refilled—and then only when the first word on the current line is shortened or removed.”

But in the code we've written, we're backing up to the previous line on every deletion. Let's see
if we can avoid that in the case where the deletion occurred in or beyond the second word of a
line.

WEell do this by changing this

(if (zerop len)
start
find previous |line)

to
(if (or (zerop len)
(not (before-2nd-word-p start)))

Page 104

start
find previous |ine)

where bef or e- 2nd- wor d-p isafunction that tells whether its argument, a buffer position,
lies before the second word on aline.

Now we must write bef or e- 2nd- wor d- p. It should locate the second word on the line,
then compare its position with its argument.

How shall we locate the second word on aline?

We could go to the beginning of the line, then call f or war d- wor d to skip over the first
word. The problem with that solution is that it puts us at the end of the first word, not at the
beginning of the second word, which may follow after much whitespace.

We could go to the beginning of the line, then call f or war d- wor d twice (actually, we'd call
f or war d- wor d once, with an argument of 2), then call backwar d- wor d, which will put
us at the beginning of the second word. That's fine, but now we realize that the way

f or war d- wor d and backwar d- wor d definea"word" isn't the same as the definition we
need. According to those functions, punctuation (such as a hyphen) separates words, so that (for

example) "forward-word" is actually two words. That's bad for us, because our function needs
to count words as separate only when they're separated by whitespace.

We could go to the beginning of the line, then skip over al non-whitespace characters (the first
word), then skip over all whitespace characters (the whitespace after the first word), which
will leave us positioned at the second word. That sounds promising; let's giveit atry.

(defun before-2nd-word-p (pos)
"Does PCS lie before the second word on the |ine?"
(save- excursi on
(got o- char pos)
(begi nni ng-of -1i ne)
(skip-chars-forward "~ ")
(skip-chars-forward " ")

(< pos (point))))

Thefunction ski p- char s- f or war d isvery useful. It moves the cursor forward until
encountering a character either in or not in a set of characters you specify. The set of characters
works exactly like the inside of a square-bracketed regular expression (see regular expression
rule 3in the section "Regular Expressions' in Chapter 4). So

(ski p-chars-forward "~ "

Page 105
means "skip over characters that aren't a space," while
(ski p-chars-forward ")
means "skip over spaces.”
One problem with this approach is that if the line has no spaces,
(skip-chars-forward "~ ")

will skip right on to the next line! We don't want that. So let's make sure we don't skip too far
by adding a newline (written "\n" in strings) to the first skipchars-forward:

(ski p-chars-forward "~ \n") ; skip tofirst space or newine

The next problem is that atab character ("\t" in strings) may be used to separate words just like
spaces. So we must modify our two skip-chars-forward calls like so:

(skip-chars-forward "~ \t\n")
(skip-chars-forward" \t")

Are there other characters like space and tab that are considered whitespace? Possibly. The
formfeed character (ASCII 12) isusually considered to be whitespace. And if the buffer is
using some character set other than ASCII, there may be other characters that are
word-separating whitespace. For example, in the 8-bit character set known as Latin-1,
character numbers 32 and 160 are both spaces—though 160 is a " non-breaking space" which
means lines should not be broken there.

Rather than worry about these details, why not let Emacs worry about them? Thisis where
syntax tables come in handy. A syntax table is a mode-specific mapping from charactersto

"syntax classes." Classesinclude "word constituent” (usually letters and apostrophes and
sometimes digits), "balanced brackets" (usually pairslike (), [], (), and sometimes < >),
"comment delimiters’ (which are ; and newline for Lisp mode, /* and */ for C mode),
"punctuation,” and of course, "whitespace."

The syntax table is used by commands likef or war d- wor d and backwar d- wor d to figure
out just what aword is. Because different buffers can have different syntax tables, the
definition of aword can vary from one buffer to another. We're going to use the syntax table to
figure out which characters are to be considered whitespace in the current buffer.

All we need to do is replace our two callsto ski p- char s- f or war d with two callsto
ski p- synt ax- f or war d like so:

(ski p-syntax-forward "~ ")
(ski p-syntax-forward" ")

Page 106

For each syntax class, there's acode letter *. Space is the code letter meaning "whitespace," so
the two lines above mean "skip all non-whitespace” and "skip all whitespace.”

Unfortunately, we again have the problem that our first call to ski p- synt ax-f or war d
might traverse to the next line. Worse, thistime we can't smply add \n to

ski p- synt ax- f or war d's argument, because \n isn't the code letter for the syntax of
newline characters. In fact, the code letter for the syntax of newline characters will be different
in different buffers.

What we can do is ask Emacsto tell usthe code letter for the syntax of newline characters,
then use that result to construct the argument to ski p- synt ax- f or war d:

(ski p-syntax-forward (concat”™ "
(char-to-string
(char-syntax ?2\n))))

The function char-syntax returns a character's syntax code as another character. That's then
converted to a string with char-to-string and appended to "~ "

Here'sthefina form of bef or e- 2nd- wor d- p:

(def un bef ore-2nd-word-p (pos)
"Does PCS lie before the second word on the |ine?"
(save- excursi on
(got o- char pos)
(begi nni ng- of - 1i ne)
(ski p-syntax-forward (concat "~
(char-to-string
(char-syntax ?2\n))))
(ski p-syntax-forward ")
(< pos (point))))

Bear in mind that the cost of computing bef or e- 2nd- wor d- p might outweigh the benefit
it's meant to provide (i.e., avoiding the calsto end- of - | i ne and

backwar d- paragraph in refill).If youreinterested, you can try using the profiler
(see Appendix B, Debugging and Profiling) to seewhich versionof r ef i | | isfaster, the

onewith acall to bef or e- 2nd- wor d- p or the one without.
Eliminating Unwanted Filling

We needn't refill the paragraph every time an insertion occurs. A small insertion that doesn't
push any text beyond the right margin doesn't affect any line but its

* For more details about syntax tables, rundescri be-f uncti on onnodi fy-syntax-entry.

Page 107
own, S0 if the current change is an insertion, and start and end are on the same line, and the end
of the lineisn't beyond the right margin, let'snotcal fi |l | - regi on at all.
This means we must surround our call tof i | | - r egi on with an if that looks something like
this:
(if (and (zerop len) ; ifit's an insertion
(sanme-line-p start end) ;. . . that doesn't span lines
(short-line-p end)) ;. . . and the line's still short
nil ; then do nothing
(save- excursion
(fill-region . . .))) ; otherw se, refi

We must now definesane- | i ne-p andshort-1ine-p.

Writing sane- | i ne- p should be easy by now. We smply test whether end falls between
start and the end of the line.

(defun sane-line-p (start end)
"Are START and END on the sane |ine?"
(save- excursi on
(goto-char start)
(end-of -1ine)
(<= end (point))))

Writingshort - | i ne- p issmilarly straightforward. The variable controlling the "right
margin" iscaledfi |l | - col unm, and curr ent - col unn returns the horizontal position of

point.

(defun short-1line-p (pos)
"Does line containing POS stay within 'fill-colum'?"
(save- excursi on
(got o- char pos)
(end-of -1ine)
(<= (current-colum) fill-colum)))

Here'sthe new definitionof refi l | :

(defun refill (start end |en)
"After a text change, refill the current paragraph.”
(let ((left (if (or (zerop len)
(not (before-2nd-word-p start)))

start
(save- excursi on
(max (progn
(goto-char start)
(begi nni ng-of -1i ne 0)
(point))
(progn
(goto-char start)
(backwar d- par agraph 1)
(point))))))

(if (and (zerop len)

Page 108
(sanme-line-p start end)
(short-line-p end))
nil
(save- excursi on
(fill-region left end nil nil t)))))
Trailing Whitespace
We dtill haven't dealt with the problemthat f i | | - r egi on deletes trailing whitespace from

each line, particularly the one you're editing, requiring you to type words likethis, then back up
and insert a space!

Our strategy will be to avoid refilling altogether whenever the cursor follows whitespace at the
end of aline, or if the cursor isin whitespace at the end of aline. This condition can be
expressed by

(and (eq (char-syntax (preceding-char))
2\
(I ooking-at "\\s *$"))

which is true when the character preceding the cursor is whitespace and when nothing but
whitespace follows the cursor on the line. Let's take a closer look at this.

First we compute (char - synt ax (pr ecedi ng- char)), which gives the syntax class of
the character preceding the cursor, and compare it with “A . That strange construct--question
mark, backdash, space-is the Emacs Lisp way of writing a space character. Recall that the
gpace character is the code letter for the "whitespace” syntax class, so thistest tells whether the
preceding character is whitespace.

Next we call | ooki ng- at , afunction that tells whether the text following the cursor matches
agiven regular expression. Theregexp inthiscaseis\s *$ (remember, backslashes get
doubled in Lisp strings). In Emacs Lisp regexps, \s introduces a syntax class based on the
current buffer's syntax table. The character following \stells which syntax classto use. Inthis
case, it's space, meaning "whitespace." So\s' is aregexp meaning "match a character of
whitespace," and\s * $ means "match zero or more whitespace characters, followed by end of
line."

Our final versonof r ef i | | includes this new test.

(defun refill (start end len)

"After atext change, refill the current paragraph.”
(let ((left (if (or (zerop len)
(not (before-2nd-word-p start)))
Start
(save-excursion
(max (progn

Page 109

(goto-char start)
(begi nni ng-of -1ine 0)
(point))

(progn
(goto-char start)
(backwar d- par agraph 1)

(point)))))))
(if (or (and (zerop |en)
(sanme-line-p start end)
(short-line-p end))
(and (eq (char-syntax (preceding-char))
2)

(I ooking-at "\\s *$")))

nil

(save- excursion
(fill-region left end nil nil t)))))

For performance reasons, it's normally a good ideato avoid putting functions, especialy
complicated oneslikerefi |l | ,inaft er - change- hooks. If your computer isfast
enough, you may not notice the cost of executing this function on every keypress, otherwise, you
might find it makes Emacs unusably duggish. In the next chapter, we'll examine away to speed
it up.

Page 110

8

Evaluation and Error Recovery

In this chapter:

- limited-save-
excursion

- eval

- Macro Functions

- Backquote and
Unquote

- Return Value

- Failing Gracefully
- PointMarker

In the previous chapter, we noted that save- excur si on isamoderately expensive function,
and we tried to reduce the number of timesitiscaledinrefi |l | (which, sinceit'sinvoked
on every buffer change, needsto be asfast as possible). Nevertheless, the codeforr ef i | |
containsfive callsto save- excur si on.

We could try to coalesce the uses of save- excur si on—for example, by surrounding the
entirebody of refi | | withacall tosave- excur si on, discarding al the

save- excur si ons within, and rewriting everything else to make sure the cursor is
properly positioned at all times. But this would harm the clear layout of the code. Of course,
clarity does sometimes have to be sacrificed in the name of optimization, but before we
consider coalescing the callsto save- excur si on, let's seeif we can do without them. It
turns out we can replace them with a different function with less overhead.

In this chapter we will explore ways to write afaster, limited form of save- excur si on.
WE!I encounter many interesting features of Emacs that have a common purpose: to control
when things are evaluated and what effect they have on the surrounding code. We will be
considering such issues as return values and cleaning up in case of error. Welll see how you
can make the Lisp interpreter refrain from evaluating expressions until you are ready for them.
WE!l even find ways to change the order in which functions are evaluated.

limited-save-excur sion

The purpose of save- excur si on isto restore the origina value of "point" after executing
some Lisp expressions; but that's not al. It also restores the value of the "mark," and it restores
Emacs'sidea of which buffer is current. That's more over-

Page 111

head than we need for r ef i | | ; after all, we're only changing the value of point. We're not
switching buffers or moving the mark.

We can write alimited form of save- excur si on that does only what we need and no more.
Specifically, we need to write afunction that, given any number of Lisp expressions as
arguments, does the following:

1. Records the position of point
2. Evaluates the subexpressions in order
3. Restores point to its original location

Thefirst problem we run into is that when aLisp function is called, its arguments are all
evaluated befor e the function gets control. In other words, if we write a function named
li mt ed- save- excursi on andcalitlikethis:

(1imted-save-excursion
(begi nni ng- of - 1i ne)
(point))

then the sequence of eventsis:

1. (begi nni ng- of - | i ne) isevauated, moving point to the beginning of the current

line and returning nil.
2. (poi nt) isevauated, returning the position to which the cursor has just moved.

3.1i mted-save- excur si on isinvoked with the values of the argumentsit was
passed-namely, nil and some number.

In this scenario, thereisnoway for | i m t ed- save- excur si on to record the position of
point prior to evaluation of the subexpressions; and it certainly can't do anything useful with the
argumentsni | and a cursor position.

eval

We could get around this problem by requiring the caller to quote every argument to
i mted-save-excursion:

(I'i mted-save-excursion
' (begi nni ng-of -1i ne)
"(point))

Thistimel i m t ed- save- excur si on iscalled with the two arguments

(begi nni ng- of - I i ne) and (poi nt). It could record the value of point, explicitly
evaluate each subexpression in turn, then restore point and return. It would look like the
following example.

Page 112
(defun |imted-save-excursion (& est exprs)
"Li ke save-excursion, but only restores point."
(let ((saved-point (point))) ; menor i zepoi nt
(while exprs
(eval (car exprs)) ;eval uate the next argunent

(setq exprs (cdr exprs)))
(got o- char saved-point))) ; restorepoint

This function contains something new: acall to eval , which takesa Lisp expression as an
argument and evauatesiit. At first that may not seem like much since, after dl, the Lisp
interpreter is already evaluating Lisp expressions automatically, with no callsto eval needed.
But sometimes the result of evaluation is another Lisp expression which you'd like to evaluate,
and Lisp won't do the second one automatically. If we wereto executeonly (car exprs),
we'd be extracting the first subexpression, then discarding it! We need eval to make that
subexpression do something useful once we have it.

Here's an simple example to illustrate the difference between the evaluation that Emacs does
normally and the need for eval:

(setg x "(+ 3 5))
x P (+305) ; eval uati ngx
(eval x) p 8 ; evaluating the val ue ofx

M acr o Functions

Although | i m t ed- save- excur si on workswhen we require its arguments to be

guoted, it's cumbersome for the caller, and it doesn't readlly qualify as a substitute for
save- excur si on (since save- excur si on doesn't have that restriction).

It is possible to write a special kind of function, called a macrofunction” that behaves as
though its arguments are quoted. That is, when amacro function isinvoked, its arguments are
not evaluated before the function gets control. Instead, the macro function produces some value,
typically arearrangement of its arguments, and then that is eval uated.

Here's a ssimple example. Suppose we wanted afunction called i ncr that could increment the
value of anumeric variable. We'd like to be able to write:

(setqg x 17)
(incr x)
x b 18

" Don't confuse macro functions with keyboard macros, from which Emacs (“editor macros”) getsits
name.

Page 113

Butif i ncr were an ordinary function, then it would be invoked with the argument 17, not X,
and could not therefore affect x. Soi ncr must be amacro function. Its output must be an
expression that, when evaluated, adds one to the value of the variable named in its argument.

Macro functions are defined with defmacro (whose syntax resembles defun). The way to write
incris:

"Add one to the naned variable."
(list "setq var (list '+ var 1)))

The body of a macro function produces an expansion of itsinput. The expansion then gets
evaluated. The expansion of (i ncr X)is:

(setg x (+ x 1))
When that expression is evaluated, X isincremented.

Y ou can debug macro functions using the function macr oexpand. Thisisan ordinary
function that takes a Lisp expression and returns it after macro-expanding it. If the expressionis
not a macro call, it's returned unchanged. So:

(macroexpand ' (incr x)) = (setq x (+ x 1))

Backquote and Unguote

Knowingthat | i m t ed- save- excur si on must be amacro function, all we havetodois
imaginehow acal tol i m t ed- save- excur si on should expand. Here's a start:

(1imted-save-excursion
subexpr |
subexpr 2

)

expands to

(let ((orig-point (point)))
subexpr

subexpr ,

(goto-char orig-point))
Here's how to write that as a Lisp macro function:

(def macro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."

(append ' (let ((orig-point (point))))
subexprs
((goto-char orig-point))))

Page 114

Remember that append works by effectively stripping off the outer parentheses of each list,
gluing the results together, and putting a new pair of parentheses around the result. So this call
to append takesthreelists:

(let ((orig-point (point))))
(subexprl subex~prj . . .)
((goto-char orig-point))

strips off their outer parentheses:

let ((orig-point (point)))
sube. xprl subexpr?2
(got o-char ori g-point)

and surrounds the result with new parentheses:

(let ((orig-point (point)))
sube. xpr |
sube. pr2

(goto-char orig-point))
That's the expansion of the macro, which then gets evaluated.

That would do the trick, but it's hard to read the macro definition and understand what's going
on. Fortunately, there's a better way. It turns out that nearly al macros recombine their
arguments with callsto such functionsas| i st and append, with some expressions quoted
and others not. In fact, that's so common that Emacs Lisp has a specia syntax making it
possible to write templates for how macro expansions should appear.

Remember 'expr, which expandsto (quot e expr)? Well, there's also 'expr, which expands to
(backquot e expr). Backquote isjust like quote, meaning that the result of evaluating a
backquoted expression is the expression itself:

"(abc) =(abec

Thereis one important difference, however. A backquoted list's subexpressions may be
individually unquoted using yet more specia syntax. This means that when the backquoted

expression is evaluated, the unquoted subexpressions actually do get evaluated-but the rest of
the list remains quoted!

"(a,bc) =>(atcalite-of- b c)
To understand why thisis useful, let'sreturn to thei ncr example. We could rewrite incr this
way:

(def macro incr (var)
"Add one to the naned variable."
"(setq ,var (+ ,var 1)))

" This syntax is new as of Emacs 19.29. In prior versions, before backquote and company were
wellintegrated into the language, they had to he invoked as functions, like this: (' expr).

Page 115

Each comma introduces a subexpression to be unquoted, so in this example, aliteral list is built
up containing:

(setg . . . (+. . . 1))

and thevalue of var (i.e., some variable name) is plugged in twice. The result is exactly the
same asour first version of i ncr, but thistimeit's much more clearly expressed.

Applying backquoting and unquotingto| i m t ed- save- excur si on givesusthe
not-yet-correct:

(defrmacro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."

"(let ((orig-point (point)))
, Subexprs ; wrong!
(goto-char orig-point)))

There's one more detail to learn about backquoting. Since subexpr s isa&r est parameter,
itisalist containing all the argumentspassedto | i m t ed- save- excur si on. Whenits
value is substituted into the template above, the result is necessarily also alist. In other words,

(I'i mted-save-excursion
(begi nni ng-of -1i ne)

(point))
expands to:

(let ((orig-point (point)))
((begi nni ng-of -1i ne)

(point))
(goto-char orig-point))

which isasyntax error, because of too many parentheses. What we need instead isaway to
splice thevaue of subexpr s into the surrounding list, removing the outer parentheses. For
this purpose, Emacs Lisp has one more special bit of syntax (last one, | promise): the splicing
unquote operator,, @. Thisversion:

(defrmacro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."

"(let ((orig-point (point)))

, @ubexprs
(goto-char orig-point)))

yields the correct result:

(let ((orig-point (point)))
(begi nni ng-of -1i ne)

(poi nt)
(goto-char orig-point))

Page 116
Return Value

There's still along way to go indeveloping | i mi t ed- save- excur si on. For onething, it
doesn't return the value of the last expression in subexpr s, whereasave- excur si on
does. Instead, | i m t ed- save- excur si on unhepfully returns the value of (got o- char
ori g- poi nt), whichisthesameasor i g- poi nt sincegot o- char returnsits argument.
Thisis particularly useless if you were expecting to do something like:

(setq line-start (limted-save-excursion
(begi nni ng-of -1i ne)
(point)))

To fix this problem, we must be sure to memorize the value of the last subexpression, then
restore point, then return the memorized value. We might try this:

(defrmacro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."
"(let ((orig-point (point))

(result (progn , @ubexprs)))
(got o-char ori g-point)
result))

Note the use of pr ogn, which ssimply executes everything passed to it and returns the value of
its last argument—exactly what we need the result of the overall macro to be. However, this
version iswrong for two reasons. The first reason has to do with theway | et works. When
this expression runs:

(let ((tarl t'all)
(v'ar2 val 2)

(t'arn tal,,))
bodiy . . .)

all the vals are evaluated before any of the vars are assigned, so no val may refer to any of the
vars. Furthermore, the order in which they are evaluated is undefined. So, if we use the
aboveversionof | i m t ed- save- excur si on toexpand

(I'i mted-save-excursion
(begi nni ng-of -1i ne)
(point))

into

(let ((orig-point (point))

(result (progn (beginning-of-1line)

(point)))
(goto-char orig-point)
result)

Page 117

it's quite possible that, when this expansion is evaluated, the call to begi nni ng-of -1i ne
may occur before the "first" call to poi nt , causing or i g- poi nt to have the wrong value.

The solution to this problem isto use | et * instead of let. With | et *, thereis no ambiguity:
the order in which the vals are evaluated is the same as the order in which they're written.”
Furthermore, each var isassigned as soon as the corresponding val is computed, so val; may
contain references to val, through var,;_;

(def macro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."
"(let* ((orig-point (point))

(result (progn , @ubexprs)))
(goto-char orig-point)
result))

The next problem isn't so easily fixed. Suppose one of the subexpr s refersto aglobal
variable named or i g- poi nt . Aswe just noted, each val can refer to preceding vars, so if
subexprs contains areferenceto aglobal or i g- poi nt , it will instead refer to

i mted-save-excursion'sinterna copy—amost certainly not what the writer of the
subexpressions had in mind. The variable reference is said to be captured by the macro
expansion. Thiswill wreak havoc with the subexpressions, which expect to manipulate an
entirely different variable. And if those subexpressions happen to modify or i g- poi nt , it
will wreak havoc with | i m t ed- save- excur si on itsaf.

By embedding the execution of subexpr s withinal et * that definesalocal or i g- poi nt,
we've effectively hidden the"real” or i g- poi nt from the code that hopes to useit.

Y ou might think that a good way to work around this problem is smply to choose a different
namefor or i g- poi nt, onethat isvery unlikely to appear in any of thesubexpr s. Thisis
an unsatisfactory approach because (a) no matter how uniquely you name your variables,
there's aways the possibility of acollision, and (b) it can be done right. The right way isto
generate a brand-new symbol that's guaranteed not to conflict with any other symbolsin use.
How can we do that?

To answer this question, we must first understand what it means for two symbols to conflict.
Two symbols conflict when they are the same object, not merely when they have the same
name. When you type a symbol name into a Lisp program, the Lisp interpreter internally
converts that name into a symbol object. A symbol

" 1f| et isambiguousand | et * isn't, why not ways usel et * ? The answer: | et may be more
efficient in some cases. Also, you may want all thevals to evaluate in a context where none of the
vars yet exist. In general, you should usel et unlessyou need | et * —but as you can probably
imagine, using the wrong one is a common source of program errors.

Page 118

object contains much more information than just its name. It includes the symbol's loca and
global variable bindings; it includes any function definition bound to the symbol (as with

def un); and it includes the symbol's property list (see the section on " Symbol Properties' in
Chapter 3).

The process of converting written Lisp code into internal data structures like symbol objects
(or cons cells, etc.) is called reading. When the Lisp "reader” sees the same symbol name
twice, it doesn't create two internal symbol objects-it reuses the same one.

It does this by storing symbolsin asymbol table, also called an obarray (short for "object
array"). Each time the reader sees a symbol name, it uses the corresponding symbol object
from thistable. If no corresponding symbol object exists, oneis created and used for
subsequent lookups of that name. Creating a new symbol and putting it in an obarray is called
interning the symbol. Because of interning, symbols with identical names are redlly the same
object.

Perhaps you can see where thisis headed: if you can obtain a distinct symbol object, bypassing
Ligp's tendency to intern symbols and reuse them, then Lisp won't consider it to be the same
object as any other symbol, even one that has the same name. The way to create such a symbol
iswith the function make- synbol , which takes the symbol's name (as a string) and creates a
brand-new, uninterned object guaranteed not to be equal, in the sense of eq, to any other Lisp
object.

In other words, the result of
(make- synbol "orig-point")

cannot conflict with any occurrence of or i g- poi nt that appears anywhere else. The newly
created or i g- poi nt isadifferent object from any that may have been previoudy created.

It's safe, then, to use a new, uninterned symbol in a situation where you want to avoid capturing
variable references. Here's arevised version of our function:

(defrmacro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."
(let ((orig-point-synbol (make-synbol "orig-point")))
"(let* ((,orig-point-synbol (point))
(result (progn , €subexprs)))
(goto-char , ori g-point-synbol)
result)))

Thefirst | et creates anew symbol object whose nameisor i g- poi nt , but which isn't the
same object as any other symbol, including any that happen to be named or i g- poi nt . This
new symbol object is assigned to the variableor i g-

Page 119
poi nt - synbol , then used twice (via unquoting) in the backquote template that follows.

At first glance, it might seem that we've smply traded the danger of capturing orig-point for the
danger of capturing orig-point-symbol. But origpoint-symbol doesn't appear in the expansion of

the macro, which looks like this (where orig-point’ denotes the unintemed symbol created with
makesymboal):

(let* ((orig-point' (point))
(result (progn subexprs)))

(goto-char orig-point')

result)

so at the point where the subexpr s are eval uated—after macro expansion-the only temporary
variableisori g- poi nt ', which is known to be unique. The temporary variabler esul t
does not yet exist at that point. So the problem of variable capture has definitely gone away.

Failing Gracefully

When an error occurs in Emacs, the current computation is aborted and Emacs returns to the top
of itsmain loop, where it waits for keyboard or other input. When an error occurs while
executingal i m t ed- save- excur si on subexpression, the whole

i mted-save-excursi on isaborted before reaching the call to got o- char , leaving
point who knows where. But thereal save- excur si on manages to correctly restore point
(and the mark and the current buffer) even when an error occurs. How is this possible?

Information about pending function callsis kept in an internal data structure called a stack.
Getting back to the top of the main loop after an error involves unwinding the stack, one
function call at atime, in reverse order—so if a called b, and b called c, and then an error
occurred, ¢ will be unwound, followed by b, then a, until Emacsis back at "top level."

It is possible to write Lisp code that gets executed while the stack is being unwound! Thisis
the key to writing code that fails "gracefully,” cleaning up after itself if it doesn't get the chance
to finish due to some error (or due to the user interrupti ng the operation with C-g). The function
touseiscaled unwi nd- pr ot ect , which takes one expression to evaluate normally,
followed by any number of expressions to execute afterward—even if an error interrupted the
first expression. It looks like this:

(unwi nd- pr ot ect
nor al
cl eanup,

Page 120

cl eanup2

)

Clearly, we'd like to restore the value of point in the "cleanup™" portion of an
unw nd- pr ot ect :

(defrmacro |imted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."
(let ((orig-point-synbol (make-synbol "orig-point")))
"(let ((,orig-point-synbol (point)))
(unwi nd- pr ot ect
(progn , @ubexprs)
(goto-char , orig-point-synbol)))))

One side benefit of unwi nd- pr ot ect isthat in the non-error case, itsreturn value isthe

value of the "normal" subexpression. (When there is an error, the return value doesn't matter.)
In this case, that's (pr ogn , @ ubexpr s), which is exactly the return value we want

i mted-save-excursi on to have, so were ableto do away with our earlier r esul t
variable, and we've turned thel et * back intoal et .

Point Marker

Asafina enhancementtol i m t ed- save- excur si on, rather than recording point asa
number, we should record it as a marker, for the same reason we used markers in the definition
of unscrol | (seethe"Markers' section in Chapter 3): namely, that executing the subexprs
may render the saved buffer position inaccurate, because text may be inserted or deleted earlier
in the buffer.

Thisistrivial to change. All that's necessary isto replace the call to point, which returns a
number, with acall to poi nt - mar ker , which returns point's current position as a marker.

(def macro |imnted-save-excursion (& est subexprs)
"Li ke save-excursion, but only restores point."
(let ((orig-point-synbol (make-synbol "orig-point")))
"(let ((,orig-point-synbol (point-nmarker)))
(unwi nd- pr ot ect
(progn , @ubexprs)

(goto-char ,orig-point-synbol)))))
Now all that remainsis to put this definition, followed by
(provide limted)

into afile named limited.el in adirectory onyour | oad- pat h and byte-compile thefile (see
Chapter 5, Lisp Files). Thenin refill.el we can replace the callsto save- excur si on with
callstol i m t ed- save- excur si on; add:

(require limted)

Page 121

to the beginning of refill.el; and byte-compile it. Now limited won't be loaded until refill is
loaded, and if you also put

(autoload 'refill-nmode "refill" "Refill mnor node." t)

in your .emacs, then refill won't be loaded until youinvoker ef i | | - node.

Page 122

9
A Major Mode

In this chapter:

- My Quips File

- Major Mode

- Major Mode Skeleton
- Changing the
Definition of a
Paragraph

- Quip Commands

- Keymaps
- Narrowing
- Derived Modes

Writing a simple major mode is very much like writing a minor mode, which we covered in
Chapter 7, Minor Mode. WE'| just touch on the basic ideas of mgor modes in this chapter,
preparing us for the creation of a substantial major mode—indeed, a whole new
application—in the next chapter.

My QuipsFile

For severa years | have been collecting witty quotations from various sources on the Internet,
storing them in afile called Quips whose format is the same one used by the old UNIX fortune
program. Each quotation isintroduced by a line containing the string %%. Here's an example:

%%
| like aman who grins when he fights.
- Winston Churchill
%%
The human race has one really effective weapon, and that is laughter.
- Mark Twain
Apart from the %% lines, the file is completely free-form.

After my Quipsfile had been growing for awhile, | found that | edited it a bit differently from
theway | edit ordinary text files. For one thing, | frequently needed to confine my editing to a
single quip in order to avoid accidentally straying into a neighboring quip. For ancther,
whenever | needed to fill aparagraph at the beginning of aquip, | first had to separate it from
the leading %%

Page 123
with ablank line. Otherwise, the %% would become filled asif it were part of the paragraph:
%%
| like aman who grins when he fights.

- Winston Churchill

%% The human race has one really effective weapon, and that is laughter.
- Mark Twain

Inserting a blank line told Emacs that the %% wasn't part of the paragraph. After filling the
paragraph, 1'd regjoin the text to the leading %% by deleting the blank line.

A new editing mode was clearly called for, one in which these workarounds were not
necessary. The question was, should it be a major mode or a minor mode? Recall that a mgjor
mode excludes al other mgor modes, while a minor mode can be turned on and off
independently of the major mode and other active minor modes. In this case, the need for an
editing mode arose from the format of the data itself, which suggested that the mode should be
major, not minor. Files using this data format would aways want this major mode and no other.
Y ou wouldn't, for example, use a Lisp-editing mgor mode in combination with a quip-editing
minor mode.'

Major Mode Skeleton
These are the steps involved in defining a major mode.
1. Choose a name. The name for our mode is quip.
2. Create afile called name.el to contain the code for the mode.

3. Define avariable called name-mode-hook. Thiswill contain the user's hook functions to
execute when entering the mode.

(def var qui p- node- hook ni |
"*List of functions to call when entering Qi p node.*")

4. If appropriate, define a mode-specific keymap (see "Keymaps' later in this chapter). Put
it in avariable called name-mode-map. Create a mode's keymap like this:

(def var name- node- map nil
"Keymap for nane major node.")
(i f name-node- map
ni
(set g nanme- node-map (rmake- keymap))

* The choice of major mode or minor mode can be considerably less clear-cut in other cases.

Page 124
(defi ne-key nane-node- map keysequence commrand)

)

Instead of make- keymap, you could use make- spar se- keymap, which is better
suited to keymaps that contain only afew keybindings.

5. If appropriate, define a mode-specific syntax table (see the section called "Minor
Adjustments’ in Chapter 7). Put it in avariable named name- node- synt ax-t abl e.

6. If appropriate, define a node-specific abbrev table. Put it in a variable named

name-node- abbr ev- tabl e.

7. Define acommand named name-node. Thisis the major mode command, and it takes no
arguments (unlike a minor mode command, which takes one optional argument). When
executed, it should cause the current buffer to enter name- node by performing the
following steps:

@ Itmustcal kill-all-1ocal-vari abl es, which removesthe definitions for all
buffer-local variables. This effectively turns off whatever modes, major and minor, were
previously active.

(kill-all-1ocal-variables)
(b) It must set the variable maj or - nbde to name- node. (setq ma or-mode 'quip-mode)

(c) It must set the variable node- nane to ashort string describing the mode, to be used in
the buffer's mode line.

(setq node- nane " Qui p")

(d) It must install the mode-specific keymap, if any, by calling use- | ocal - map on
name-mode-map.

(e) It must run the user's hook functions by calling run-hooks on namemode-hook.
(r un- hooks 'quip-node- hook)

8. It must "provide" the feature implemented by this mode (see the section on " Programmatic
Loading" in Chapter 5) by calling pr ovi de on name. (

provi de ' quip) ; allows users to (require 'quip)

Our first version of Quip mode will not include a keymap, syntax table, or abbrev table, so at
first quip.el looks like this:

(def var qui p- node- hook ni
"*List of functions to call when entering Quip node.")

(def un qui p-node ()
“"Maj or node for editing Quip files."
(interactive)
(kill-all-1ocal-variables)

Page 125

(setq mmj or-node ' qui p- node)
(setq node- nane " Qui p")
(run-hooks ' qui p- node- hook))

(provide 'quip)

Those are the basics, shared among all major modes. Now |et's start fleshing out the specifics
of Quip mode.

Changing the Definition of a Paragraph

First, we must arrange for aline consisting of %% not to be considered part of a paragraph.

This means we must change the variable par agr aph- separ at e, whose value is a regexp
that describes lines that separate paragraphs. Wel'll also have to change par agr aph- st art,
aregexp that describes lines that serve as either the first line of a paragraph or (despite the
name) as a line that separates paragraphs.

Emacsusestheregexpsin par agr aph-start andpar agr aph- separ at e to match at
the beginnings of lines, even though the regexps do not explicitly begin with the magic »
("match at the beginning of aline") character.

In Text mode, thevalue of par agr aph- st art is"[\t\n*L] ", which meansthat if aline
starts with a space, tab, newline,** or Control-L (the ASCII "formfeed" character), it's either
thefirst line of a paragraph or aline that separates paragraphs.

Text mode's value for par agr aph- separ at e is"[L] *$", which meansthat aline
containing zero or more spaces, tabs, or formfeeds, or some combination thereof, and nothing
else, isnot part of any paragraph.

What we'd like to do is augment these patternsto say "aline containing %% is a paragraph
separator, too."

Thefirst step is to make these variables have separate values for the current buffer when in
Quip mode. (That is, setting these variables, which are global, should not affect other buffers
that may not be in Quip mode.) Therefore, in addition to the basic skeleton described in the last
section, the function qui p- node should do this:

(make-1 ocal -vari abl e ' paragraph-start)
(make-1 ocal -vari abl e ' par agr aph- separ at e)

"No regexp variable exists to match just the start of a paragraph. Instead, the start of a paragraph is aline that me

** A linethat "starts' with anewlineis, of course, ablank line.

Page 126

Next, quip-mode must set the buffer-local values for both paragraph-start and
paragraph-separate.

(setq paragraph-start "9A\I[\t\n\~AL]")
(setq paragraph-separate "%&\\ [\t\~L]*$")

Thevaluefor par agr aph- st art means"%% or a space, tab, newline, or control-L." The
valuefor par agr aph- separ at e means"%% and nothing else or zero or more spaces,
tabs, or formfeeds and nothing else.” See the section on "Regular Expressions’ in Chapter 4.

Quip Commands

What el se should Quip mode be able to read?
It should alow the user to move forward and backward aquip at atime.
It should allow the user to restrict editing operations to a single quip.

It should be able to report the number of quipsin thefile, and the number of the quip that

point ison.

Apart from that, it should work by and large the same way Text mode works. After al, the
contents are mostly plain text.

Let's pause a moment to consider the different kinds of cursor motion commands in Emacs.
Theresf or war d- char and backwar d- char for moving one character at atime. There's
f or war d- word and backwar d- wor d. There'sf or war d- | i ne and

previ ous- | i ne. There are also commands for moving forward and backward in units of
sentences, paragraphs, sexps, and pages.

What's a page? Conventionally, a new page begins at aformfeed character (control-L), because
in the ancient days of teletypes and line printers, the way to begin anew page was to send a
control-L to the device. In true Emacs style, however, we can redefine what constitutes a
"page” by changing theregexpin page-del im ter.

(make- | ocal -vari abl e ' page-delinmter)
(setq page-delimter ""o8&")

This single insight—making a"page" equal a"quip"—solves most of the requirements we've
stipulated for Quip mode! Now Emacs's many built-in page commands will operate on quips:

backward-page and forward-page, normally bound to C-x [and C-x], alow moving back
and forth aquip a atime

narrow-to-page, bound to C-x n p, confines editing to asingle quip by "narrowing" the
buffer (see the section on "Narrowing" later in this chapter).

Page 127
what - page reports the number of the current quip

We've essentially co-opted Emacs's page commands, but that's okay: in Quip mode, those
commands would otherwise be unused, since a Quip fileis not divided into pages.

Keymaps

Unfortunately, the names of the commands—backwar d- page and what - page and so
on—obscure their function in Quip mode, which is to operate on quips, not pages. Therefore it
might be wise to do this:

(defalias 'backward-qui p 'backward- page)
(defalias 'forward-quip forward-page)
(defalias 'narrowto-quip 'narrowto-page)
(defalias 'what-quip 'what-page)

But that's not quite enough. Even with these aliases defined, the existing keybindings—C-x [,
C-x], and C-x n p—are till bound to the "page" commands, so that if userslist the
keybindingsin Quip modeusing descr i be- bi ndi ngs, they'll see:

Cx | backwar d- page

Cx] f or war d- page

Gxnp narr owt o- page

(among many others) but nothing relating to quips. It would be better if these keysequences
referred to the quip variant of the command names—in Quip mode only, of course. While were
at it, we should aso change C-x n p (so chosen because it means narrow to page) to C-x n g
(narrow to quip). We could also give akeybinding to what - qui p, which doesn't have one by
default. At this point we need a keymap specific to Quip mode.

A keymap isa Lisp data structure that maps keystrokes to the commands they should invoke.
When you press C-f, for instance, Emacs consults the "globa" keymap and finds the binding for
C-f, namely f or war d- char . Each entry in a keymap represents a single keystroke.

Key sequences, suchasC-x C-w (wri t e-fi | e), areimplemented by nesting keymaps. In
the global keymap, the entry for C-x contains a nested keymap instead of a command. The
nested keymap contains an entry for C-w, which magpstowr i t e- f i | e. The nested keymap
for C-x also contains an entry for n, which mapsto yet another nested keymap. That
doubly-nested keymap contains an entry for p, which maps to narrow-to-page.

Any key whose binding is a nested keymap is called a prefix key; thus C-x isaprefix for many
other commands, and C-x n isaprefix for a handful more. (As of

Page 128

Emacs 19.16, you can press a prefix key followed by C-h to see al the keybindings for which
that key isa prefix.)

At any time, there may be several keymaps active. The global keymap, mentioned above, is
always active. It can be superseded by entriesin a buffer's local keymap, which contains
specia keybindings for the current major mode. That, in turn, can be superseded by the entries

in the minor mode keymap corresponding to any minor modes that are active.”

Let's create alocal map for Quip mode as described earlier in this chapter. First we create the
variable to contain the keymap. Itsinitial value should be nil.

(def var qui p- node-map ni l
"Keymap for quip major node.")

Next we'll write ablock of code at the top level of quip.el that setsup qui p- node- map as
soon as quip.el isloaded, if the keymap hasn't already been set up. The way thisblock is
structured, if qui p- node- map already exists-for instance, because quip.el has been
previously loaded-it is |eft alone. Otherwise, it's created and populated with the desired
keybindings.

(i f quip-node- map
nil ; do nothing if quip-node-map exists
(setq qui p-node- map (nake- spar se- keynap))
(define-key qui p-node-map "\ G x[" ' backwar d- qui p)
(define-key qui p-node-map "\ G x]" ' forward-quip)
(define-key qui p-node-map "\ G xng" narrowto-quip)
(define-key qui p-node-map "\ G cw' 'what-quip))

Weuse nmake- spar se- keymap because Quip mode has only afew special keybindings
beyond the ones found in the global keymap. Only when a keymap has more than a couple
dozen keybindings should afull keymap be created with nake- keymap.

Each call todef i ne- key adds anew entry to qui p- node- map. When the keysequence
contains more than one key (as all the examplesin this chapter do), def i ne- key
automatically creates nested keymaps as necessary.**

We've chosen to bind what-quip to C-c w. By convention, mode-specific commands are often
bound to sequences beginning with C-c. The other Quip mode commands correspond to
existing keybindings elsewhere, so there's no point moving them to new prefixes.

" It's possible to subvert this ordering of keymap precedence slightly with avariable called
overridi ng- I ocal - map, but that's useful only in very unusual cases.

**Thefunction cur r ent - gl obal - map returns the current global keymap. (It's possible to change
globa keymapswith use-gl obal - keymap, though that'svery rare)) Thus, (gl obal - set - key
...)isequivaent to (define-key (cur r ent - gl obal - map) .. .).

Page 129

Finally, we make sure to install the new keymap when Quip mode is entered.

(def un qui p-node ()
“"Major node for editing Quip files."
(interactive)
(kill-all-1ocal-variables)
(setq maj or-node ' qui p- node)
(setqg node- name "Qui p")
(make-1 ocal -vari abl e ' paragraph-separ at e)
(make-1ocal -variabl e ' paragraph-start)
(make-1ocal -variabl e ' page-delimter)
(setq paragraph-start "9A\NI[\t\n\~AL]")
(setqg paragraph-separate "%@&\\ [\t\~L]*$")
(setq page-delimter ""oA&")
(use-1ocal - map qui p- node- map) ; this installs the keymap
(run-hooks qui p- node- hook))

If users wish to ater Quip mode's keybindings, they can do so usng a mode hook and
| ocal - set - key (which, within Quip mode, dtersqui p- node- map):

(add- hook ' qui p- mode- hook
(lanbda ()
(1 ocal -set-key "\ M p" backward- qui p)
(1 ocal -set-key "\Mn" 'forward-quip)
(1 ocal -unset-key "\Gx [") ; renoves a keybindi ng

(local -unset-key "\Cx]")))

It is customary to include a mode's local keybindings in the docstring that describes the mode.
However, it'sabad ideato "hardwire" the default keybindings into the docstring like this:

(def un qui p-node ()
“"Major node for editing Quip files.

Keybi ndings include 'Cx [' and 'Cx]' for backward-quip
and forward-quip, 'Gx n p' for narrowto-quip, and 'Gc W
for what-quip."

)

since as we've seen, the user may redefine which keys do what, rendering the docstring
inaccurate. Instead, we can write:

(def un qui p-node ()

“"Maj or node for editing Quip files.
Speci al conmmands:
\\ {qui p- node- map) "

)

This special syntax causes Emacs to substitute a description of the keybindings currently in
qui p- node- map whenever the user requests the docstring with descr i be- f uncti on,
or with descri be- node (which usesthe docstrings of all relevant mode commands to
describe the current major and minor modes).

Page 130

Narrowing

Y ou may already be familiar with the Emacs concept of narrowing. It is possible to define a
region of a buffer and narrow the buffer to that region. Emacs then makes it appear that that
region is the entire buffer, hiding any text that comes before or after it. All editing operations,
and most Lisp functions, are confined to the narrowed region (although when the fileis saved,
al of it is saved regardless of any narrowing) until the user undoes the narrowing with

wi den, normally boundto C-x nw. So nar r owt 0- qui p satisfiesthe requirement, "It
should allow the user to restrict editing operations to a single quip.”

Emacs Lisp code must be written to be aware of the possibility that a buffer is narrowed. Most
of thetime, Lisp functions won't care. They can behave asif the narrowed portion is the whole
buffer. Some functions that normally deal with buffer boundaries actually deal with
narrowed-region boundaries when narrowing isin effect. For instance, eobp

(" end- of - buf fer-p"), which normally tests whether point is at the end of the buffer,
returnstrueif point is at the end of a narrowed region. Similarly, poi nt - m n and

poi nt - max return the boundaries of the narrowed region if there is one, not of the whole
buffer. In a sense, these functions are preserving afiction for the benefit of Lisp programmers,
who might otherwise have to go to extreme lengthsto keep all their code aware of the
possibility of narrowing.

Thereisaprice to pay, however. On some occasions, functions do need to care about the
buffer outside any narrowed region. In those cases, it is necessary to call wi den, so that the
function can have access to the entire buffer. If thisis placed inside acall to
save-restricti on,then narrowing isrestored after the code is executed. (We used this
approach in Chapter 4, Searching and Modifying Buffers.)

Asan example, let'sdefine count - qui ps, which we must write ourselves since Emacs
doesn't have any page-counting commands for usto co- opt . Clearly count - qui ps needs
access to the entire buffer, regardless of any narrowing in effect. Therefore, a good way to
defineitisasfollows:

(def un count-quips ()

"Count the quips in the buffer.”
(interactive)
(save- excursion
(save-restriction
(wi den)
(goto-char (point-mn))
(count - mat ches ' "%4&"))))

" Narrowing does not nest. If you narrow a buffer to aregion, then narrow that region to asmaller
region, C-x n w will still restore aview of the entire buffer (i.e., it won't revert to the previous
narrowing).

Page 131

Thefunction count - mat ches returns astring such as "374 matches' that tells how many
matches for the given regexp were found following point.

Derived M odes

We've now satisfied all the requirements for Quip mode save one: "It should work by and large
thesameway Text node works." One way to achieve thisis actualy to call text-mode as
part of initializing Quip mode; then perform whatever specialization is required by Quip mode.
In conjunction with calling t ext node, we'd create qui p- node- map not from scratch with
make- spar se- keymap, but as a copy of text-mode-map using copy- keymap:

(def var qui p- node- map ni
"Keymap for Quip major node.")

(i f qui p-node- map
nil
(setq qui p-node- map (copy-keynmap text-node-map))
(define-key qui p-node-map "\ G x[" ' backwar d- qui p)
(define-key qui p-node-map "\ G x]" ' forward-quip)
(define-key qui p-node-map "\ G xng" ' narrowto-quip)
(define-key qui p-node-map "\ G cw' 'what-quip))

(def un qui p-node ()

“"Maj or node for editing Quip files.
Speci al conmands:
\\ {qui p- node- map}"

(interactive)

(kill-all-1ocal-variabl es)
(t ext - node) ;first, set things upfor Text nopde
(setq mmj or-node ' qui p- node) ; now, specializefor Quip nobde

(setq node- nane " Cui p")

(use-1ocal -map qui p- node- nmap)
(make-1 ocal -vari abl e ' par agr aph- separ at e)
(make-1 ocal -vari abl e ' paragraph-start)
(make- | ocal -vari abl e ' page-delinmter)

(setq paragraph-start "9A\I[\t\n\~AL]")
(setq paragraph-separate "%&\\ [\t\~AL]*\$")
(setq page-delimter ""o8&")

(run-hooks qui p- node- hook))

(provide 'quip)

For closer conformance with Text mode, we should clonet ext - node- synt ax-t abl e
too (using copy- synt ax-t abl e), notjustt ext - node- map. And there'salso

t ext - node- abbr ev-t abl e (but there's no corresponding copy- abbr ev-t abl e
function, perhaps because abbrev tables are not used quite so often and no one ever lamented
its absence).

Page 132

Actualy, alot of bookkeeping can be required when you clone another mode and specidize it
for anew purpose. It's easy to miss something. Fortunately, it's so common to derive new
modes by varying existing ones—just as we've varied Text mode to get Quip mode—that
there's an Emacs Lisp package to simplify thistask. The package is called derived and the
central function it providesiscalled def i ne- deri ved- node. (Actualy,

defi ne- deri ved- node isamacro.) Here's how we can useit to derive Quip mode from
Text mode;

(require 'derived)

(defi ne-derived- nbde qui p-node text-node " Quip'
“"Maj or node for editing Quip files.

Speci al conmands:

\\ qui p- node- map}"
(make-1 ocal -vari abl e ' par agr aph-separ at e)
(make-1 ocal -vari abl e paragraph-start)
(make-1 ocal -vari abl e page-delimter)
(setq paragraph-start "9A\[[\t\n\~AL]")
(setg paragraph-separate "%@&\\ [\t\~L]*$")
(setq page-delimter ""%8&"))

(define-key qui p-node-map "\ C-x[" ' backwar d- qui p)
(define-key qui p-node-map "\ G x]" ' forward-quip)
(defi ne-key qui p-node-map "\ G xng" narrowto-quip)

(define-key qui p-node-map "\ G cw' ' what - qui p)

(provide 'quip)
Thesyntax of def i ne- deri ved- node is

(define-derived-npde neu-mode ol d-node node-1line-string
docstring
bOdyl

body,

This creates the command new-mode and all the associated data structures. By the time the
body expressions execute, new-mode- map, new-mode- synt ax-t abl e, and
new-mode-abbr ev-t abl e exi st . Thelast thing that the constructed new-mode command
doesisto run new-mode-hook.

This chapter has shown us what it's like to change Emacs's behavior dightly for editing a
particular kind of data. Quip mode isn't much different from Text mode, because quips aren't
much different from text. But in the next chapter, we'll create a mgor mode that's very different
from anything elsein Emacs, for editing data that's very much unlike text.

Page 133

10

A Comprehensive Example

In this chapter:
- New York Times Rules
- Data Representation
- User Interface
- Setting Up the Mode
- Tracking Unauthorized
Changes
- Parsing the Buffer
- Word Finder

This chapter isthe culmination of our programming examples. It is a substantial mgjor mode
implementing a crossword puzzle editor—clearly a use which the designers of Emacs didn't
foresee, but implementable nonetheless. The straightforwardness of designing and
implementing Crossword mode demonstrates Emacs's true potential as an application-building
toolkit.

After devising a data model for a crossword puzzle editing application, we'll construct a user
interface for it, creating functions for displaying a representation of our data model and
restricting input to the set of operations we alow on it. We'll write commands that go on the
Emacs menu and commands that communicate with external processes. In doing so, welll
exploit the Lisp techniques we've learned for performing complex logic and string
manipulation.

New York Times Rules

I'm abig fan of crossword puzzles. | used to do the New York Times crossword puzzle daily. |
frequently found myself amazed at the skill that must go into constructing a crossword puzzle,
and wanted to try my hand at it. My initia attempts were on graph paper, but | quickly found
that crossword puzzle creation involves so much trial and error (at least for me) that by the
time | was halfway through, my eraser would be tearing holes in the paper! | hit on the idea of
writing a computer program to help me create crossword puzzles.

A crossword diagram, or grid, contains "blanks" and "blocks." A blank is an empty square
where aletter may be placed. A block is a blackened square where no letter goes, used to
separate words. Skillful crossword puzzle creatorstry to use as few blocks as possible.

Page 134

Crossword mode should enforce what | call the "New York Times rules" of crossword puzzles
(of course, they're similar to, or the same as, rules used by countless other crossword puzzle

writers):

1. The crossword grid isan nxn square, where nisodd. The daily New York Times crossword
puzzleis 15x5. The Saturday puzzleis 21x21.

2. Thegrid has"180° symmetry," meaning that if you rotate the grid 180 degrees, the pattern of
blocks and non-blocks is the same. Mathematically, this means that if grid square (x,y) is
blank, then so must grid square (n-x+1,n-y+1) be (where n is the width of the grid and x
and y count from 0); and if (x,y) contains a block, then so must (n-x+I,n-y+I). See Figure
10-1 for an example of 180" symmetry.

.|
| um

- =l

Figure 10-1.
An example of 180" symmetry

3. All words in the puzzle must be at least two letters long. (Actualy, I'm informed that The
New York Times never uses words shorter than three letters, but for smplicity in this
programming example, well leave it at two.)

Data Representation

Let's start by choosing a data representation. An obvious approach isto store the cells of the
crossword grid in atwo-dimensional array, or matrix. Emacs Lisp doesn't have such a data
type, but we can create one using vectors.

"180 symmetry is also known as "two-way symmetry." There's also "four-way symmetry," meaning
that the pattern is the same every time you rotate the grid 90 degrees.

Page 135
Vectors

A Lisp vector resembles alist, in that it is a sequence of zero or more arbitrary subexpressions
(including nested vectors or lists). However, vectors permit random access to their elements,
whereas one must traverse alist from its beginning to find a particular element. (That doesn't
necessarily make vectors superior to lists. Unlike lists, vectors can't be lengthened or shortened
except by copying. As aways, use the right tool for the job.)

Vectors are written with square brackets instead of parentheses:
[abec . .]

Vectors are self-evaluating; that is, the result of evaluating a vector is the vector itself. Its
subexpressions are not evaluated. So if you write:

[a b c]

you'll get a vector containing the three symbols, a, b, and c. If you want a vector containing the
values of variables a, b, and ¢, you must construct the vector using the vector function:

(vector a b c) b [17 37 42] ; or whatever the val ues happen to
be

Matrix Package

It is straightforward to design a matrix package using vectors. We'll choose to represent a
matrix as a vector of rows, with each row being a nested vector of columns. Here's how to
create one of these:

(defun make-matrix (rows columms &optional initial)
"Create a RONS by COLUMNS matrix."*
(let ((result (nake-vector rows nil))

(y 0))
(while (< vy rows)
(aset result y (make-vector columms initial))

(setqy (+vy 1))
result))

Theargumenti ni ti al specifiesalLisp expression to use astheinitial value for every
element in the matrix. Thefirst call to make- vect or createsavectorof ni | s, rows
elementslong. One by one, we replace each ni | with anew vector of length col umms. The
function aset isused for setting vector elements; ar ef retrievesthem.” Vectors are indexed
starting at 0. Calling (aset vector index

*The"a" in these function names stands for "array." Why notvset andvr ef , with"v" for "vector"?
The answer isthat in Emacs Lisp, vectors are just one kind of array. Strings are another kind of array.
Soaset andar ef can be used on strings as well as on vectors-but that doesn't mean that strings are
vectors.

Page 136

value) changes the element at position index in vector to be value. Calling (ar ef vector
index) retrieves the element at position index.

The call to make- vect or inside the while loop sets each element of the nested vectors to
initial,soattheendof make-matri x, resul t isavector of rows nested vectors,
where each nested vector isavector of col unms copiesof i ni ti al .

Why couldn't we have written this function more smply, like this?

(defun nmake-matrix (rows colums &optional initial)
"Create a RONS by COLUWMNS matri x. "

(make-vector rows (make-vector colums initial))) ; wroni

The reason is that the inner call to make- vect or yieldsasingle new vector. The outer call
would usethat si ngl e vect or astheinitia value for every element in the outer vector. In
other words, every element in the outer vector would share the same inner vector, when what
we want isfor every element in the outer vector to be a separate nested vector.

Given the structure of amatrix, it'sasmple matter to define the basic operations on one:

(defun matrix-set (matrix row colum elt)
"Gven a MATRI X, RON and COLUWN, put elenment ELT there."
(let ((nested-vector (aref matrix row)))
(aset nested-vector columm elt)))

(defun matrix-ref (matrix row col um)
"Get the element of MATRI X at ROWand COLUWN. "
(let ((nested-vector (aref matrix row)))
(aref nested-vector columm)))

It might also be useful to have functions that report the width and height of the matrix:

(defun matrix-colums (nmatrix)
“Nurmber of columms in MATRI X"
(length (aref matrix 0))) ;length of one of the :

(defun matrix-rows (nmatrix)
"Nurmber of rows in MATRI X "
(length matrix)) ; length of the outer °

When function definitions are very short, like these last four, it's usually agood ideato turn
them into inlinefunctions using def subst instead of def un. Inline functions defined with
def subst work the same way ordinary def un functions do, except that wien you compile a
function that calls an inline function, the call is replaced with a copy of the inline function
itself. This has one mgjor benefit: a run time, the current function doesn't have to set up acall
to another function. Thisis marginaly faster, but the savings can add up in loops that run
thousands

Page 137

or millions of times. Unfortunately, there are aso two drawbacks to inline functions. Oneis
that the inline function is duplicated everywhere it's used, which can increase memory
requirements. The other drawback is, if the inline function definition changes, the old definition
will still be "frozen" into compiled files that useit. (In all these respects, def subst functions
areequivaenttoi nl i ne functionsin C++, or macro functionsin C .)

We can put the above code into matrix.el, stick a(pr ovi de ' mat ri x) at theend of it, and
useit in subsequent programswith (r equi re ' matri x).

Crossword Variant of Matrix

Now let's consider a crossword grid, which is a specialized kind of matrix. Each cell in the

grid can be in only one of four states:
1. Empty, meaning we may place aletter or ablock init.

2. Semi-empty, meaning we may only place aletter init, not ablock (because of the
requirement of 180° symmetry).

3. Filled with a block.
4. Filled with aletter.

Let'suseni | tostand for acell that is empty, the symbol | et t er to stand for a semi-empty
cell that must be filled with aletter, the symbol block to stand for a cell containing abl ock,
and the letter itself (which is represented in Emacs by a number, its ASCII value) for cells
containing aletter.

Given dl that, let's define a new datatype for crossword grids, implemented in terms of
matrices.

(require "matrix)

(def un nmake-crossword (size)
"Make a crossword grid with SIZE rows and col umms. "
(if (zerop (%size 2)) ; Is size even? (%is the ri
function)
(error "make-crossword: size must be odd"))
(if (< size 3) ; Is size too small?
(error "make-crossword: size must be 3 or greater"))
(rmake-matrix size size nil))

(def subst crossword-size (crossword)
"Nurmber of rows and columms in CROSSWORD. "
(matrix-rows crossword)) ;ormatri x-columms, it doesn'

(def subst crossword-ref (crossword row col unm)
"Get the elenent of CROSSWORD at ROW and CCLUMN. "
(matrix-ref crossword row col um))

(def subst crossword--set (crossword row columm elt)

Page 138

“"Internal function for setting a crossword grid square.”
(matrix-set crossword row colum elt))

Thefunction cr osswor d- - set has adouble hyphen in its name. Thisis the conventional
way to denote a"private" function that isn't part of a package's advertised programming
interface. Inthiscase, cr osswor d- - set isprivate because it doesn't implement the New
York Times rules we want to preserve in the crossword grid. Users of the Crossword package
won't use cr osswor d- - set ; instead they'll usecr osswor d-store-l etter,

cr osswor d- st or e- bl ock, andcr osswor d- cl ear - cel | , defined below. Only the
Crossword package itself will use cr osswor d- - set , plus some logic for preserving 180°
symmetry and word lengths greater than 2.

Using Cons Célls

Let's coin the term "cousin” to mean the grid square symmetrically opposite a given square.

(defun crossword-cousin-position (crossword row col umm)
"G ve the cousin position for CROSSWORD ROW and COLUWN. "
(let ((size (crossword-size crossword)))

(cons (- size row 1) (- size colum 1))))

This function returns the position of the cousin of r ow and col unm as a dotted pair (see the
section entitled "List Details' in Chapter 6): (cousin-row . cousin-column). Here are two
functions for referencing and setting cousins directly:

(defun crossword-cousin-ref (crossword row col umm)
"CGet the cousin of CROSSWORD s ROW COLUWN position. "
(let ((cousin-position (crossword-cousin-position crossword
r ow
col um)))
(crossword-ref crossword
(car cousin-position)
(cdr cousin-position))))
(defun crossword--cousin-set (crossword row colunn elt)
“Internal function for setting the cousin of a cell."
(let ((cousin-position (crossword-cousin-position crossword
r ow
colum)))
(crossword--set crossword
(car cousin-position)
(cdr cousin-position)

elt)))

Notethat cr osswor d- - cousi n- set isanother "private" function with a double hyphen in
its name.

Now let's create functions for storing blocks and letters, preserving New York Times rules.
First, letters. When storing a letter in a cell, we must make sure that

Page 139

the cell's cousin already contains a letter (which we can test with nunber p). If it doesn't, we
must store the symbol | et t er there:

(defun crossword-store-letter (crossword row colum letter)
"G ven CROSSWORD, ROW and COLUWN, put LETTER there."
(crossword--set crossword row columm |etter)

(i f (nunberp (crossword-cousin-ref crossword row col um))
nil
(crossword--cousin-set crossword row colum 'letter)))

Inserting blocks is alittle bit smpler:

(defun crossword-store-block (crossword row col umm)
"G ven CROSSWORD, ROW and COLUWN, put a block there."
(crossword--set crossword row col um ' bl ock)
(crossword--cousin-set crossword row col um ' bl ock))

Now let's write afunction to erase a cell. When erasing a cell, the following situations are
possible:

The cell and its cousin both contain letters. If so, the cell becomes "semiempty" and the
cousin is unaffected.

The cell and its cousin both contain blocks. If so, the cell and its cousin both become
empty.

The cell isaready semi-empty (because its cousin contains a letter). If so, nothing changes.
The cell contains a letter but the cousin is semi-empty. If so, both cells become empty.
The cell and its cousin are both empty. If so, nothing changes.

We can handle all those cases with thisssimple logic: If the cell's cousin contains a letter, then
the cell becomes semi-empty and the cousin is unaffected; otherwise the cell and its cousin
both become empty. Here's how that looks in code.

(defun crossword-clear-cell (crossword row col umm)
"Erase the CROSSWORD cel | at ROW COLUMN. "
(i f (nunberp (crossword-cousin-ref crossword row col um))
(crossword--set crossword row colum 'letter)
(crossword--set crossword row columm nil)
(crossword--cousin-set crossword row colum nil)))

Now observe that the center square of an nxn grid isits own cousin, if nisodd. This means
that adlight correction isneeded in cr osswor d- cl ear - cel | . It must never set the center
squaretol et t er . (Luckily, cr osswor d- st or e- bl ock and

crosswor d-store-| etter happentowork correctly already.)

(defun crossword-clear-cell (crossword row col umm)
"Erase the CROSSWORD cel | at ROW COLUMN. "
(let ((cousin-position (crossword-cousin-position crossword
r ow

Page 140

colum)))
(if (and (not (equal cousin-position
(cons row colum)))
(nunberp (crossword-ref crossword
(car cousin-position)
(cdr cousin-position))))
(crossword--set crossword row columm |etter)
(crossword--set crossword row columm nil)
(crossword--set crossword
(car cousin-position)
(cdr cousin-position)

nil))))

Inthisversion, thecell issettol et t er only if cousi n- posi ti on isnot equa to (row .
column)-i.e., if the cell is not its own cousin. If the cell isits own cousin, or if its cousin does
not contain aletter, then (asin the original version) it's set to nil, and so isits cousin. That last

call tocr osswor d- - set isredundant in the case of the center square, but harmlessly so.
Note that since we compute the cousin's position at the beginning of the function, we've
replaced acall tocr osswor d- cousi n-r ef with acall to crossword-ref, and replaced a
call tocr osswor d- - cousi n- set withacal tocr osswor d- - set , to avoid computing
the cousin's position a second and third time.

One-Letter Words

A one-letter word is created any time three cellsin arow contain block, nonblock, block; or
when anon-block cell is between the border and a block. Here's a function to test whether a
given square is a one-letter word.

(defun crossword-one-letter-p (crossword row col umm)
"I's CROSSWORD cel | at ROW CCOLUWN a one-letter word?"
(and (not (eq (crossword-ref crossword row col umm)
' bl ock))
(or (and (crossword-bl ock-p crossword (- row 1) col umm)
(crossword- bl ock-p crossword (+ row 1) col um))
(and (crossword-bl ock-p crossword row (- columm 1))
(crossword- bl ock-p crossword row (+ colum 1))))))

Thisisacomplicated bit of logic, but recall our technique from Chapter 3, Cooperating
Commands, for making sense of such expressions: move inward one subexpression level a a
time.

(and . . .)

Theresult of cr osswor d- one- | ett er - p will betrueif al of some subexpressions are
true, false otherwise.

(and (not . . .)
(or . . .))

"Trueif something's not true and one or more other things are true.”

Page 141

(and (not (eq . . .))
(or (and .)

(and . . .)))

"Trueif something's not equal to something else and if one set of things are dl true or another
set of things are all true.”

(and (not (eq (crossword-ref crossword row col um)
" bl ock))
(or (and (crossword-bl ock-p crossword (- row 1) col um)
(crossword-bl ock-p crossword (+ row 1) col um))
(and (crossword-bl ock-p crossword row (- colum 1))
(crossword-bl ock-p crossword row (+ colum 1)))))

"Trueif the current cell isnot ablock and if the cells above and below are blocks or the cells
to the left and right are blocks." This relies on aminor convenience hack:
cr osswor d- bl ock- p must alow referring to squares outside the boundaries of the grid,

and must report that they contain blocks. Here's how we define cr osswor d- bl ock- p:

(defun crossword-bl ock-p (crossword row col umm)
"Does CROSSWORD s ROW COLUWN cel | contain a bl ock?"
(or (< row Q)
(>= row (crossword-size crossword))
(< colum 0)
(>= columm (crossword-size crossword))
(eq (crossword-ref crossword row colum) ' bl ock)))

User Interface

We now have a complete suite of functions for manipulating a crossword data structure,
obeying the rules we've chosen; but there's not yet any way for a user to interact with a
crossword grid. We must write the user interface, which includes commands to invoke the
various crossword operations and a means of displaying the crossword grid and keeping the
display up to date.

Display

Let's choose a visual representation for a crossword grid, to be used in an Emacs buffer. Each
row of the crossword grid should be represented by one line of the buffer. Each column of the
grid, however, should take up two screen columns—because, on most displays, this helpsthe
grid look squarer. (In most display fonts, the space for a single character is much higher than it
iswide, making an nxn block of characters|ook ludicrously narrow.)

Page 142

Empty grid squares will be represented by a dot (.). Blocks will be represented by a hash mark
(#). Semi-empty cellswill be represented by a question mark (?). And of course, cells
containing letters will display that letter. Hereis afunction that inserts a representation of a
crossword grid into the current buffer. It doesn't erase the buffer first, or position the cursor;
that's up to the caller of this function, which we'll define later.

(defun crossword-insert-grid (crossword)
"I nsert CROSSWORD into the current buffer."”
(mapcar 'crossword-insert-row crossword))

Recall from "Other Useful List Functions' in Chapter 6 that mapcar applies afunction to each
element of alist. It works on vectors, too; so, since cr osswor d isavector of rows,
crossword-insert-grid calscrossword-insert-rowoneachrow of thegrid.

Here'sthe definition of cr osswor d-i nsert - r ow, used above;

(defun crossword-insert-row (row
"Insert RONinto the current buffer.”
(mapcar 'crossword-insert-cell row)
(insert "\n"))

Thisworksthe same way, caling cr osswor d-i nsert -cel | oneachcell inrow. At the
end of the row, we begin anew line.

Finaly, here'scr osswor d-i nsert-cel |, neededby cr ossword-i nsert-row:

(defun crossword-insert-cell (cell)

“Insert CELL into the current buffer."
(insert (cond ((null cell) ".")
((eq cell '"letter) "?")
((eq cell "block) "#")
((nunmberp cell) cell))
"e))

Thisinsertstwo characters: a dot, a question mark, a hash mark, or aletter; followed by a
blank space (to make the cell take up two screen columns). The choice of which first character
to insert is made with cond, which isavariation of if. Each argument to cond is called a
clause, and each clauseis alist. Thefirst element of each clause, called its condition, is
evaluated in turn. When a clause is found whose condition evaluates true, then that clause's
remaining elements (if any) are evaluated, and the value of the last one is returned from cond.
Clauses that follow a successful condition are skipped.

(cond ((condition; body . . .)
(condition, body . . .)
))

Page 143

If you want an "else”" clause in the cond—a clause that executes if no other condition is
true—add afina clause whose conditionist:

(cond ((conditiongy body . . .)
(condition, body . . .)

(t body . . .)))

The function insert takes any number of strings or characters to insert into the current buffer;
that'swhy we can passthevaueof cel | , anumber, aswell as" " astring, toi nsert.

Cursor Positioning
L et's continue building the components that our complete mode will ultimately need.

Now that we can display a crossword grid, it will be useful to have away to position the
cursor on an arbitrary cell. The position of the cursor indicates to the user which cell will be
affected by the next operation he or she invokes.

This function assumes that a crossword grid has been drawn in the current buffer, and that it
begins at (poi nt - m n).

(def un crossword- pl ace-cursor (row col umm)
"Move point to RONCOLUWN. "
(goto-char (point-mn))
(forward-1ine row)
(forward-char (* colum 2)))

Next, when the user does invoke some operation, it will be necessary to deduce the current
crossword coordinates from the cursor's position.

(defun crossword-cursor-coords ()
"Conpute (ROW. COLUMN) from cursor position."
(cons (- (current-line) 1)

(/ (current-colum) 2)))

The function /, which performs division in Emacs Lisp, performsinteger division when its
arguments are al integers. The result is rounded toward zero. Thanksto this,

(/ (current-colum) 2)

returns the correct grid column whether the cursor isin the proper screen column or in the
blank space that followsiit.

" Although we won't use this fact in this chapter, remember that (point-min) isn't necessarily the
beginning of the buffer; it could be somewherein the middle, if narrowing isin effect.

Page 144

Unfortunately, while cur r ent - col umm is built into Emacs, there is no current-line function”
Hereisone way to writeit:

(defun current-line ()
"Return |ine nunber containing point."
(let ((result 1)) ; Emacs counts lines starti ngf

(save- excursi on
(begi nni ng- of - 1i ne) so bobp will work
(while (not (bobp))
(forward-line -1)
(setqg result (+ result 1))))
result))

Thefunction bobp tests whether the cursor is at the beginning of the buffer.
Updating the Display

Asthe user edits the crossword grid, changes to the underlying data structure have to be
reflected in the buffer. It would be wastefully inefficient to erase the whole buffer and call
crossword-insert-grid every timethe user makes a change. Instead, we'd like to
redraw just the affected grid cells.

We aready have the tools for doing this. cr osswor d- pl ace- cur sor and
crossword-insert-cel | .Here'safunction that uses those components. It presumes that
the cursor is on the affected cell, and redraws it and its cousin.

(def un crossword-updat e-di spl ay (crossword)
"Called after a change, keeps the display up to date."
(let* ((coords (crossword-cursor-coords))
(cousi n-coords (crossword-cousin-position crossword
(car coords)

(cdr coords))))

(save- excursion
(crossword- pl ace-cursor (car coords)
(cdr coords))
(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword

(car coords)
(cdr coords)))
(crossword- pl ace-cursor (car cousin-coords)
(cdr cousin-coords))
(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword
(car cousi n-coords)

(cdr cousin-coords)))).

"Thereiswhat - | i ne, but that function is meant to be used interactively, not in a program. It
displays a message about the current line number, and doesn't return a useful value. We need a
function with the opposite behavior: no message should be displayed, and the current line number
should be returned.

Page 145

Y ou might think that the first call to cr osswor d- pl ace- cur sor inthisfunction is
redundant, since it's placing the cursor at the same position that it just read with

crosswor d- cur sor - coor ds. But remember that the depiction of agrid cell istwo
screen columns wide, and the cursor may have somehow gotten into the righthand column. In
order for cr osswor d-i nsert -cel | towork, the cursor must bein the lefthand column.
Calling cr osswor d- pl ace- cur sor ensuresthat it is. The surrounding call to

save- excur si on makes sure that the cursor returns to where it started after the display is
updated.

User Commands

Now we need to define the interactive commands that will allow users to operate Crossword
mode.

Grid-changing commands

Let's start by assuming that a buffer in Crossword mode has a buffer-local variable named
crossword-grid that holdsthe cr osswor d gri d. (Well address how and when to create
crosswor d- gri d when we definethe cr osswor d- nbde command in the next section.)
The user command to erase a cell can therefore be written asin the following example.

(defun crossword-erase-conmand ()
"Erase current crossword cell."
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword-cl ear-cell crossword-grid
(car coords)
(cdr coords)))
(crosswor d- updat e- di spl ay crossword-grid))

Likewise, here's acommand to insert a block:

(def un crossword- bl ock-conmmand ()
"Insert a block in current cell and cousin."”
(interactive)
(let ((coords (crossword-cursor-coords)))

(crossword-store-bl ock crossword-grid
(car coords)
(cdr coords)))
(crosswor d- updat e- di spl ay crossword-grid))

The command for inserting a letter istrickier. There are twenty-six possible letters, but we
don't wish to write twenty-six different commands with nameslikecr osswor d-i nsert-a
andcr osswor d- i nsert - b and so on. We want one single function bound to all twenty-six
letter keys that, when invoked, inserts whatever letter was used to invoke it. One such function
for ordinary modesissel f-i nsert - command. WEell define

crossword-sel f-insert, whichinsertsthe letter that the user pressed.

Page 146

(defun crossword-sel f-insert ()
"Self-insert letter in current cell.”
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword-store-letter crossword-grid
(car coords)
(cdr coords)
(aref (this-comuand-keys) O)))
(crosswor d- updat e- di spl ay crossword-grid))

Thisfunction usest hi s- conmmand- key's to determine what key the user pressed. The return
value of this-command-keysisastring of characters or a vector of symbolic events (more
about those in the section on "Mouse Commands' later in this chapter); but
crossword-store-| etter expectsacharacter, not astring, symbol, or vector. By using
aref to select the first element and passing ittocr osswor d- st ore- | et t er, were trusting
that it isindeed a string, and that we don't care about anything other than the first letter. This
should be okay, because when we set up the keybindings in the section on "Keybindings' later
in this chapter, we'll bind cr osswor d- sel f-i nsert only to single keys (hamely, the
letters of the aphabet), and later on we'll make it impossible, or at least somewhat hard, for the
user to enter invalid characters.

Navigation

The user must have some way of navigating from cell to cell other than Emacs's ordinary
cursor-motion commands, which don't trandate well to crossword-grid navigation. For one
thing, each grid is two columns wide, so it would take two presses of C-f just to move one cell
to the right. For another thing, trying to move rightward at the right boundary of the grid should
not wrap around to the beginning of the next line, like C-f would. It should just stop.

Defining navigation commands is very straightforward. It's just a matter of figuring out in what
directions the user may want to move, and in what size jumps. We'll define commands for
moving one grid square |eft, right, up, and down; for moving to the beginning and end of each
grid row; for moving to the top and bottom of each grid column; and for moving to the
beginning (upper left comer) and end (bottom right corner) of the grid.

First, the horizontal cellwise motion commands:

(defun crossword-cursor-right (arg)
"Move ARG cells to the right."

(interactive "p") ;prefix arg as nunber
(let* ((coords (crossword-cursor-coords))
(newcolum (+ arg (cdr coords))))
(if (or (< newcolum 0)
(>= new- col umm (crossword-size crossword-grid)))
(error "Qut of bounds"))
(crossword- pl ace-cursor (car coords)

Page 147

new- col um)))

(defun crossword-cursor-left (arg)
"Move ARG cells to the left."
(interactive "p")
(crossword-cursor-right (- arg)))

Likewise for the vertical cellwise motion commands;

(defun crossword-cursor-down (arg)
"Mwve ARG cells down."
(interactive "p")
(let* ((coords (crossword-cursor-coords))
(new-row (+ arg (car coords))))
(if (or (< newrow 0)
(>= newrow (crossword-size crossword-grid)))
(error "Qut of bounds"))
(crosswor d- pl ace-cursor new row
(cdr coords))))

(defun crossword-cursor-up (arg)
"Mowve ARG cells up."
(interactive "p")
(crossword-cursor-down (- arg)))

Now the commands for moving to the beginning or end or arow or column.

(defun crossword- begi nni ng-of -row ()
"Move to beginning of current row "
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword- pl ace-cursor (car coords) 0)))

(defun crossword-end-of -row ()
"Move to end of current row"
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword- pl ace-cursor (car coords)
(- (crossword-size crossword-grid)

1))

(defun crossword-top-of-colum ()
"Move to top of current colum."”
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword-pl ace-cursor 0 (cdr coords))))

(def un crossword-bottom of -col um ()
"Move to bottomof current row"
(interactive)
(let ((coords (crossword-cursor-coords)))
(crossword-pl ace-cursor (- (crossword-size crossword-grid)
1)
(cdr coords))))

Page 148
Finally, the beginning- and end-of-grid commands.

(def un crossword- begi nning-of-grid ()
"Move to beginning of grid."
(interactive)
(crossword- pl ace-cursor 0 0))

(defun crossword-end-of -grid ()
"Move to end of grid."
(interactive)
(let ((size (crossword-size crossword-grid)))
(crossword- pl ace-cursor size size)))

As an afterthought, here's something that might be useful: a command to jump to the current
cell's cousin.

(defun crossword-junp-to-cousin ()

"Move to cousin of current cell.”

(interactive)

(let* ((coords (crossword-cursor-coords))

(cousin (crossword-cousin-position crossword-grid
(car coords)
(cdr coords))))
(crossword- pl ace-cursor (car cousin)
(cdr cousin))))

Setting Up the Mode

There are two circumstances under which a user expectsto enter Crossword mode. Oneis
when visiting afile that contains a crossword grid from an earlier session. Another iswhen
creating a brand-new crossword grid.

Creating a brand-new crossword grid requires creating an empty buffer and filling it in using
crossword-insert-grid. The act of entering a mgor mode shouldn't change buffers or
alter a buffer's contents, so crossword-mode will only be for entering Cr osswor d node in
abuffer already containing a crossword grid. We'll devise a separate command, cr osswor d,
for creating agrid from scratch.

Heresadtart at defining cr osswor d:

(defun crossword (size)
"Create a new buffer with an enpty crossword grid."
(interactive "nGid size: ")
(let* ((grid (make-crossword size))
(buf fer (generate-new buffer "*Crossword*")))
(switch-to-buffer buffer)

(crossword-insert-grid grid)
(crossword- pl ace-cursor 0 O ;start in upper-left corner

)

Page 149

WEI| leave this function unfinished for now, but before we move on, let's note some interesting
things about this function:

l.(interactive "nGid size: "). Theletter nisoneof afew code lettersfor
i nteractive thatinstruct Emacsto prompt the user for avalue. These letters allow
you to specify a prompt string, aswe've done here. This i nt er act i ve declaration
means, "Prompt the user with the string "Grid size: *, and read a number in response.”

What if this command took two arguments, a number and, say, a string? What would the
i nt eracti ve declaration look like?

Emacs considers everything after the n to be part of the prompt string, up to the first
newline. So just embed a newline in the string to introduce the next code Ietter, like this:

(interactive "nFirst pronpt: \nsSecond pronpt: ")

2.Weusel et * instead of | et to makesuregr i d gets created before buf f er . Thisisn't
strictly necessary, because the creation of buf f er doesn'tdependongri d. Butitisa
good idea, because we don't want to create buffer if there's an error creating gr i d (such
as, si ze isanillegal value). Thereason isthat buf f er creation isfairly expensivein
Emacs, and because buffers don't go away by themselves (they don't get garbage-collected)
the way other Lisp values do. Once a buffer is created, it stays around until killed with
kill-buffer.

3. The name of the new buffer is* Cr osswor d* . By convention, buffers that are not
associated with files have names beginning and ending with an asterisk-witness
scrat ch and*Hel p*. Oncethe user begins editing the buffer, he or she can save it
to afile (e.g., with C-x C-w), a which time Emacs will rename the buffer to correlate with
the chosen filename.

Let'sturn our attention momentarily to the cr osswor d- node command. As we've already
decided, it should be used only on buffers that already contain a crossword grid. It should
somehow par se the buffer. This means constructing a new crossword grid object based on the
text in the buffer. The parsed grid must be assigned to cr osswor d- gri d. Here'safirst
attempt, following the magjor mode guidelines laid out in Chapter 9, A MajorMode:

(defun crossword-node ()

"Maj or node for editing crossword puzzl es.
Speci al conmands:
\\ {crosswor d- node- map}"

(interactive)

(kill-all-1ocal-variables)

(setq mmj or-node ' crosswor d- node)

(setq node-nane "Crossword")

(use-1 ocal -map crosswor d- node- map)

Page 150

(make-1 ocal -variable crossword-grid)
(setq crossword-grid (crossword-parse-buffer))
(crossword- pl ace-cursor 0 O ;start in upper-| ef

(run-hooks ' crosswor d- node- hook))
WEe'l definecr osswor d- node- map andcr osswor d- par se-buffer |ater.

Now let'sreturn to thecr osswor d command. After placing agrid representation in an empty
buffer, it must cause the buffer to enter Crossword mode. How? The obvious answer isfor it to
call cr osswor d- node:

(defun crossword (size)

"Create a new buffer with an enpty crossword grid."

(interactive "nGid size: ")

(let* ((grid (make-crossword size))

(buf fer (generate-new buffer "*Crossword*")))

(switch-to-buffer buffer)
(crossword-insert-grid grid)
(crossword- pl ace-cursor 0 0) ;start in upper-left corne

(crosswor d- node)))

Thisisfine, but alittle inefficient. Note that cr osswor d- node calls

cr osswor d- par se- buf f er to create a crossword data structure, even though
crosswor d hasalready set one up. If we can preserve cr osswor d's copy of that data
structure, we can skip the parsing step.

The best way to do thisis to create athird function, used by both cr osswor d and
cr osswor d- node, that performs the steps common to both ways of entering Crossword
mode.

(defun crossword--node-setup (grid)
"Auxiliary function to set up crossword node."
(kill-all-1ocal-variabl es)
(setq mmj or-node ' crosswor d- node)
(setq node-nane "Crossword")
(use-1 ocal -map crosswor d- node- map)
(make-1ocal -variable crossword-grid)
(setq crossword-grid grid)
(crossword- pl ace-cursor 0 0)
(run-hooks ' crosswor d- node- hook))

Weve make cr osswor d- - node- set up take the crossword grid as an argument. So
crosswor d should cal it with the grid it constructs:

(defun crossword (size)

"Create a new buffer with an enpty crossword grid."

(interactive "nGid size: ")

(let* ((grid (make-crossword size))

(buffer (generate-new buffer "*Crossword*")))

(switch-to-buffer buffer)
(crossword-insert-grid grid)
(crossword--node-setup grid)))

and by cr osswor d- node should cal it with the result of parsing the buffer:

Page 151

(def un crossword-node ()
"Major node for editing crossword puzzl es.
Speci al conmands:
\\ {crosswor d- node- map}"
(interactive)
(crossword- - node-setup (crossword-parse-buffer)))

Keybindings

Earlier, we defined several user commands, such ascr osswor d- er ase- conmand and
crosswor d- bl ock- command. Now let's define cr osswor d- node-map and choose
keybindings for these commands.

(defvar crossword-node-nap ni
"Keymap for Crossword node.")

(i f crossword-node- map
nil
(setq crossword- node- map (rmake- keymap))
Most of these commands are natural analogues for ordinary Emacs commands. For instance,
cr osswor d- begi nni ng- of - r owand cr osswor d- end- of - r ow correspond pretty
well with begi nni ng- of -1i ne andend- of -1 i ne, which arenormally boundto C-a
and C-e. Does that mean we should bind those commands like this?

(defi ne-key crossword-node-nmap "\ C a"

cr osswor d- begi nni ng- of - r ow)
(defi ne-key crossword-node-nmap "\ C e"

cr osswor d- end- of - r ow)

Maybe. But suppose the user doesn't use C-a for begi nni ng- of - | i ne?Inthat case, C-ais
the wrong choice. Because of their similarity, the user will expect to use the same key for

cr osswor d- begi nni ng- of -r ow asfor begi nni ng- of - I i ne. It would be best if
we could find the user's keybinding for begi nni ng- of - | i ne and bind

cr osswor d- begi nni ng- of - r ow accordingly. Thisis exactly what

substi tut e- key-defi niti on does.

(substitute-key-definition 'beginning-of-Iline
cr osswor d- begi nni ng- of - r ow
cr osswor d- node- map
(current-gl obal - map))

This means, "Wherever begi nni ng- of - | i ne isnow bound in the current global keymap,
create abinding for cr osswor d- begi nni ng- of -rowincr osswor d- node- map."

We can set up cr osswor d- nbde- map using aseries of callsto
substitut e-key-definition; or, moreconcisaly, onecal inside aloop.

Page 152

(let ((equivs
((forward-char . crossword-cursor-right)
(backwar d-char . crossword-cursor-1left)
(previous-line . crossword-cursor-up)
(next-line . crossword-cursor-down)
(begi nning-of-1ine . crossword-begi nni ng-of - r ow)
(end-of -1ine . crossword-end-of-row)
(begi nni ng- of -buffer . crossword-begi nni ng-of -grid)
(end-of -buffer . crossword-end-of-grid))))
(whil e equivs
(substitute-key-definition (car (car equivs))
(cdr (car equivs))
cr osswor d- node- map
(current-gl obal - map))
(setq equivs (cdr equivs))))

We create alist of equivalence pairs' in equi vs. Each time through thisloop, (car

equi vs) isone of the equivalence pairs, such as(next -l i ne .

cr osswor d- cur sor - down). Thus, (car (car equivs)) is the command to find in the global
keymap (e. g., next-line)and(cdr (car equivs))isthecorresponding command
toplacein cr osswor d- node- map (e.g., cr osswor d- cur sor - down).

Now we must bind the letter keystocr osswor d- sel f-i nsert.

(let ((letters
(?A ?B ?C ?D ?E ?F ?G ?H ?l ?J ?K ?L ?M
?N ?20 ?P ?Q ?R ?S ?T ?2U ?V ?2W?X ?Y ?Z
?2a ?b ?c 2d ?e ?f ?g ?h 2i 2?2} 2k 2?1 ?m
?n 20 ?p ?q ?r ?s ?t ?2u ?v ?w ?X ?y ?z)))
(while letters
(defi ne-key crossword- nmode- map
(char-to-string (car letters))
crossword-sel f-insert)
(setq letters (cdr letters))))

Thisonly leavescr osswor d- er ase- conmand, cr osswor d- bl ock- command,
crosswor d-t op- of - col um, crossword- bott om of - col unmm, and
crosswor d-j unp-t o- cousi n without keybindings (because they have no obvious
equivalentsin other ordinary editing modes). Let's bind the first two as:

(defi ne-key crossword- node- nap" " cr osswor d- er ase- conmand)
(define-key crossword-node-map "#" cr osswor d- bl ock- command)

because those seem natural for clearing a cell and inserting a block, respectively. For the
remaining three, let's use two-keystroke keybindings beginning with C-c. Recall that by
convention, C-c isthe prefix for mode-specific keybindings.

(define-key crossword-node-map "\ C-ct”
cr osswor d- t op- of - col um)
(define-key crossword-node-map "\ C cb"

Page 153

cr osswor d- bot t om of - col umm)
(define-key crossword-node-map "\ Cc\Cc"

crosswor d- j unp-t o- cousi n) ; by analog, uwith Gx |

Those are al the keybindings we need for the moment; but unfortunately, like all local

keymaps, this one will inherit keybindings from the current globa keymap for any keys that
aren't locally bound. That means, for example, that there remain several keystrokes that could
wreak havoc on our carefully formatted crossword grid. Digits and typographical characters
remainboundtosel f -i nsert - command; C-w, C-k, and C-d can still eradicate part of the
buffer; C-y can still insert who-knows-what at any given point; and so on.

Thissituation is partially alleviated with suppr ess- keymap, which causes all
self-inserting keys to become undefined. We should call suppr ess- keynmap immediately
after creating the keymap, before starting to define keysin it.

(i f crossword-node- map
ni
(setqg crossword- node-map (rmake- keymap))
(suppress-keymap crosswor d- node- nap)

)

Thisonly getsrid of self-inserting keys, leaving other dangerous keys like C-w and C-y lurking
about. A more complete (and more drastic) solution is to place a catch-all binding in
cr osswor d- node- map:

(define-key crossword-node-nmap [t] 'undefined)

Inthiscall todef i ne- key, the "key" argument isn't astring of characters, as we've seen
before; it's avector containing the symbol t. Recall that vectors and strings are related; each is
akind of array. In fact, avector of characters means the same thing as a string of charactersin
acal todef i ne- key; and avector of symbolsisa useful extension at which we'll look
more closaly in the next section. But the vector [t | stands for an entry that catches all
keystrokes not otherwise bound by this keymap. Normally, if the current local keymap doesn't
bind a key, the key's definition is sought in the current global keymap. A binding for [t] means
"stop here." So thisisaway to disable any keystrokes that we haven't explicitly enabled.

Mouse Commands

When running Emacs under a windowing system such as X, the mouse can be used to invoke
actions just like keystrokes. In fact, mouse actions are under the control of the same keymaps
that contain the bindings for ordinary keys. The main differenceisin how Emacs|ooks up the
binding.

The keymap data structure can be a vector, an assoc list, or a combination of the two. When
you press akey, you generate a numeric code that can be used to

Page 154

index the vector, or it can be used as the search key in an assoc search. When you press a
mouse button, you generate a symbol that can only be used in an assoc search. The symbol
down- nouse- 1, for instance, represents a press of mouse button 1 (usually the left mouse
button), while the symbol nouse- 1 represents button 1 being released. (It is customary for a

button press to initiate an action by noting the position of the mouse pointer, and for a button
release to complete an action by noting whether the nmrouse has moved since the corresponding
button press.) Other mouse-event symbolsinclude C- down- nouse- 2 (pressing the middle
mouse button while holding the control key), S- dr ag- nouse- 3 (shift key plus mouse
motion with button 3 depressed), and doubl e- nbuse- 1 (after releasing mouse button 1 for
the second time in a double-click).

Another difference between mouse input and keyboard input is that when you press a mouse
button, there is additional data associated with the button press: for instance, there'sthe
location in the window where you pressed it. Keyboard input always happens at "point," but
mouse input happens wherever the mouse is. For this reason, mouse input is represented by a
data structure called an input event. A command bound to a mouse action can access the
current event by calling | ast - i nput - event , or by using the € code letter in its

i nt eracti ve declaration.

To demonstrate this, let's define three ssmple mouse commands for Crossword mode. Mouse
button 1 will place the cursor on agrid cell, mouse button 2 will place a block, and mouse
button 3 will clear acell.

In each casg, the initial down- event will place the cursor and memorize the locationin a
variable, cr osswor d- nouse- | ocat i on. When the button is released, the new location is
compared with the saved location. If they differ, no action is taken.

Let'sstart with cr osswor d- nobuse- set - poi nt , the function that responds to the
mouse-down event.

(def var crossword- nouse-| ocation ni
"Location of |ast nouse-down event, as crossword coords.")

(def un crossword- nouse- set - poi nt (event)

"Set point with the nouse."

(interactive "@")

(nmouse- set - poi nt event)

(let ((coords (crossword-cursor-coords)))
(setqg crossword-nouse-| ocation coords)
(crossword- pl ace-cursor (car coords)

(cdr coords))))

The@inthei nt er act i ve declaration means, "Before doing anything else, find the mouse
click (if any) that invoked this command, and select the window in

Page 155

which the mouse was clicked." The code |etter e tellsi nt er act i ve to bundle up the mouse
event that invoked thiscommand asalist and assignittoevent . Wedon't need any
information from the event structure, but we do need to passit to nouse- set - poi nt,
which uses the window location datainside event to compute a new position for point. Once
point is placed, we can call cr osswor d- cur sor - coor ds to compute and memorize the
resulting grid coordinates. Finally we call cr osswor d- pl ace- cur sor, because each
grid cell istwo screen columns wide and nouse- set - poi nt may have placed the cursor in
the wrong column of the selected cell.

Here's how to set up the bindings for all three mouse-down events:

(defi ne-key crossword-node- map [down- nouse-i|]
cr osswor d- nouse- set - poi nt)
(defi ne-key crossword-node- map [down- nouse- 2]
cr osswor d- nouse- set - poi nt)
(defi ne-key crossword-node- map [down- nouse- 3]
cr osswor d- nouse- set - poi nt)

Now for the individual mouse-up actions. Releasing button 1 is supposed to do the same thing
as pressing button 1, so simply bind nouse- 1 to the same command asdown- nouse- | :

(define-key crossword-node-map [nouse- 1]
' crosswor d- nouse- set - poi nt)

Here are mouse commands for placing a block and erasing a cell:

(def un crossword-nouse- bl ock (event)
"Place a block with the nouse."
(interactive "@")
(nmouse- set - poi nt event)
(let ((coords (crossword-cursor-coords)))
(i f (equal coords crossword-nouse-|ocation)
(crosswor d- bl ock-comand))))

(def un crossword-nouse-erase (event)
"Erase a cell with the nouse."
(interactive "@")
(nmouse- set - poi nt event)
(let ((coords (crossword-cursor-coords)))
(i f (equal coords crossword-nouse-|ocation)
(crossword- erase-comand))))

and here are the bindings for those commands:

(defi ne-key crossword-node-map [nouse- 2]
cr osswor d- nouse- bl ock)

(defi ne-key crossword-node-map [nouse- 3]
cr osswor d- nouse- er ase)

Page 156
Menu Commands

We dtill have no user command for checking the crossword grid for one-letter words; but we
do havecr osswor d- one- | ett er - p, defined back in the section on "One-L etter Words"
earlier in this chapter. Let's use that to define acommand, cr osswor d- f i nd- si ngl et on,
that finds a one-letter word in the grid (if one exists) and moves the cursor there.

(defun crossword-find-singleton ()
"Junp to a one-letter word, if one exists."
(interactive)
(let ((row O
(size (crossword-size crossword-grid))
(result nil))
(while (and (< row size)

(null result))
(let ((colum 0))
(while (and (< colum size)
(null result))
(if (crossword-one-letter-p crossword-grid
row col umm)
(setq result (cons row col um))
(setq colum (+ colum 1)))))
(setq row (+ row 1)))
(if result
(crossword-pl ace-cursor (car result)
(cdr result))
(message "No one-letter words."))))

This function iterates over every cell in the grid, testing whether it's a one-letter word, stopping
when it finds the first one or displaying the message, "No one-letter words."

We can now bind this function to akey. C-c 1 suggests itself.

(define-key crossword-node-map "\C-cl”
crosswor d- fi nd- si ngl et on)

But checking for one-letter words isn't likely to be a very common operation, like cursor
motion and other commands. The user may not wish to memorize akeybinding for it. Sinceit
will be infrequently used, it's a good candidate for placement in a menu.

Defining menu itemsis easy, and involves yet another aspect of keymaps. First we must define
anew keymap to contain the items that belong on asingle menu "card." Later we'll arrange for
this menu card to have a top-level menubar entry called " Crossword."

(def var crossword- menu- map ni
"Menu for Crossword node. ")

(i f crossword-nmenu- map

Page 157

ni |
(setq crossword-nenu-map (make-sparse-keymap " Crossword"))
(define-key crossword-nmenu-nmap [find-singleton]

"("Find singleton" . crossword-find-singleton)))

Menu keymaps must have an "overall prompt string." That's the meaning of the optiona
argument "Cr osswor d" in thiscall to make- spar se- keynmap.

Our menu card has only one entry at the moment. It is bound to the made-up event symbol,
find-singl et on. Thebinding for that "event" isacons cell containing the string, "Find
singleton”, and the symbol cr osswor d- f i nd- si ngl et on. The string is used on the menu
as the menu item description. The symboal is the name of the function to invoke when the menu
item is selected. The made-up event symbol f i nd- si ngl et on ismeaningless, other than
that it must be different from all other such symbols on the same menu card.

In order to place this menu card under a heading in the overall menu bar, we must choose
another symbol to stand for the menu card as awhole; well usecr osswor d. Now, installing
the menu card is asimple matter of binding the menu keymap to the made-up event sequence

[menu- bar crossword].

(define-key crossword-node-map [nenu-bar crosswor d]
(cons "Crossword" crossword-menu- map))

Thistime, the binding isplaced in cr osswor d- node- map, which isthe way to make the
entriesin cr osswor d- nenu- map "reachable" from the set of keymapsin use. The event
symbol menu- bar represents the menubar as awhole. The event sequence [nmenu- bar

cr osswor d] selects the Crossword menu keymap, and the event sequence [menu- bar
crossword find-singl et on] meansthe user navigated the menusto select the "Find
singleton™ item.

Tracking Unauthorized Changes

Suppose that, in spite of our precautions against unwanted buffer-modifying commands, the
user manages to invoke one anyway. The state of the crossword grid on the screen won't match
the data structure in crossword-grid. How can we recover?

Oneway isto attach afunctionto af t er - change- f unct i ons (seethe section called
"Clever Approach™" in Chapter 4) that isinvoked every time the buffer changes. If the change
was "unauthorized," we must somehow resynchronize the buffer and thecr osswor d-gri d
data structure.

What's "unauthorized"? Trivialy, it's the opposite of "authorized,” so let's add a mechanism to
"authorize" changes to the buffer.

(def var crossword- changes- aut hori zed ni
"Are changes currently authorized?")

Page 158

(make-vari abl e-buffer-1ocal 'crossword-changes-authorized)

(def macro crossword-aut horize (& est subexprs)
"Execut e subexpressions, authorizing changes."
"(let ((crossword-changes-authorized t))

, @ubexprs))

Thisisamacro that can be wrapped around function bodies where buffer changes happen. It
temporarily setscr osswor d- changes- aut hor i zed tot, executes the function body,
then revertscr osswor d- changes- aut hor i zed to its previous value. By default,
changes are not authorized. So to prevent the user from corrupting the buffer, we must rewrite
crossword-insert-gridandcrossword-updat e-di spl ay to authorize the
changes they make:

(defun crossword-insert-grid (crossword)
"I nsert CROSSWORD into the current buffer."”
(crossword-aut hori ze
(mapcar 'crossword-insert-row crossword)))

(def un crossword-updat e-di spl ay (crossword)
"Called after a change, keeps the display up to date."
(crossword-aut hori ze
(let* ((coords (crossword-cursor-coords))

(cousi n-coords (crossword-cousin-position crossword
(car coords’

(cdr coords’

(save- excursi on
(crossword- pl ace-cursor (car coords)
(cdr coords))
(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword
(car coords)
(cdr coords)))

(crossword- pl ace-cursor (car cousin-coords)
(cdr cousin-coords))

(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword
(car cousi n-coords)

(cdr cousin-coords)’

and we must attach afunctionto af t er - change- f unct i ons that detects changes made
when cr osswor d- changes- aut hor i zed isnot true:

(defun crossword-after-change-function (start end | en)
"Recover if this change is not authorized."
(i f crossword-changes-aut hori zed
ni | ; do nothing if this change is authorized

recover somehow))

(make- | ocal - hook ' after-change-functions)
(add- hook 'after-change-functions
' crosswor d- af t er - change-f uncti on)

Page 159

Recognizing that many individua changes can occur during the course of executing asingle

user command, we should not try to "recover somehow" more than once per command. This
meansthat after the current command completes (and after possibly many changes), we should
check to see whether any unauthorized changes occurred, and resynchronize then. Therefore we
also need toingtall afunctionin post - command- hook (which executes once after each
complete user command).

WEe'l create another new variable, cr osswor d- unaut hor i zed- change, whichtells
whether an unauthorized change occurred during the current command. Well revise
crossword-after-change-function to set it, and a new function,

crosswor d- post - command- f unct i on, will test it:

(defvar crossword-unaut hori zed- change ni
"Did an unaut hori zed change occur?")
(make-vari abl e-buffer-1ocal 'crossword-unauthorized-change)

(defun crossword-after-change-function (start end | en)
"Recover if this change is not authorized."
(i f crossword-changes-aut hori zed
nil

(setq crossword-unaut hori zed-change t)))

(defun crossword- post - conmand- function ()
"After each command, recover from unauthorized changes."
(i f crossword-unaut hori zed- change
resynchroni ze)
(setqg crossword-unaut hori zed-change nil))

These calls should be added to cr osswor d- node- set up:

(make- | ocal - hook ' after-change-functions)
(add- hook ' after-change-functions
cr osswor d- af t er - change- f uncti on)

(make- 1 ocal - hook ' post - command- hook)
(add- hook ' post - command- hook
cr osswor d- post - conmrand- f unct i on)

When resynchronizing, we have two choices: trust the contents of the buffer and update the
data structurein cr osswor d- gri d; or trust cr osswor d- gri d, erasing the buffer and
reinserting the grid with cr osswor d-i nsert-gri d.

On the surface, there doesn't seem to be any reason to trust the visible buffer more than our
internal data structure, because the buffer is more likely than the data structure to become
corrupted. However, thereis one big reason to at least try to trust the buffer: the undo
command. If the user invokes undo, it will revert the buffer to its state before the last command
executed. That's useful. But it won't revert the state of cr osswor d- gri d. For that, we
should use our unauthorized-change detector and attempt to re-parse the grid in the buffer
(which we

Page 160

know we can do, since we've already stipulated the existence of
cr osswor d- par se- buf f er). If that fails, presumably because the buffer isincorrectly
formatted, we should erase the buffer and insert a corrected grid.

Here's how we can fill in therest of cr osswor d- post - command- f unct i on to do this:

(defun crossword- post - conmand- function ()
"After each command, recover from unauthorized changes."
(i f crossword-unaut hori zed- change
(let ((coords (crossword-cursor-coords)))
(condi tion-case ni
(setq crossword-grid (crossword-parse-buffer))
(error (erase-buffer)
(crossword-insert-grid crossword-grid)))
(crossword- pl ace-cursor (car coords)
(cdr coords))))
(setqg crossword-unaut hori zed-change nil))

Thisfunctionusescondi ti on- case, aspecial form that isrelated to unwi nd- pr ot ect
(which we first encountered in the section entitled "Failing Gracefully" in Chapter 8). Recall
that unwi nd- pr ot ect lookslikethis:

(unwi nd- pr ot ect

body
unwind . . .)

It executes the body, which may or may not complete depending on whether an error is signaled
whileit's running. Whether or not body compl etes successfully, unwind is executed afterward.

The difference between condi t i on- case and unwi nd- pr ot ect isthat
condi ti on- case contains expressions to execute only in the case of an error. It's used like
this:

(condition-case tar
body
(synmbol 4 handler . ..)

(symbol , handler . . .)

-)

If body aborts because of a"signaled condition,” one of the subsequent handler clausesis
executed to "catch” the error. The clause that executes is the one whose symbol matchesthe
signaled condition. For now, we're only interested in the signaled condition called er r or
(which issignaled whentheer r or functioniscalled), so our use of condi ti on- case
looks like this:

(condition-case var
body
error handl er

Page 161

If var isnon-ni | , then it's the name of avariable into which Emacs will put information about
the current error—namely, the argumentsto theer r or call that signaled this condition-when
one of the handlersruns. But in our example, var isni | because we don't need access to that
information.

Weadtemptto set crossword- gri d totheresult of caling

crosswor d- par se- buf f er . If parsing fails, cr osswor d- par se- buf f er signalsan
error, which causes the body of thecondi t i on- case to abort before replacing the value of
crosswor d- gri d. If that happens, the error handler runs, erasing the buffer and inserting
the known-to-be-correct copy of cr osswor d- gri d.

In either case, we finish by placing the cursor at the grid coordinates we memorized at the
beginning of the function; but suppose the buffer is so badly mangled that even trying to
memorize the current coordinates fails? We should then have two separate callsto
condi ti on-case:

(def un crossword- post - conmand- f unction ()
"After each conmmand, recover from unauthorized changes."
(i f crossword-unaut horized- change
(condition-case ni
(let ((coords (crossword-cursor-coords)))
(condition-case ni
(setq crossword-grid (crossword-parse-buffer))
(error (erase-buffer)
(crossword-insert-grid crossword-grid)))

(crossword- pl ace-cursor (car coords)
(cdr coords)))
(error (erase-buffer)
(crossword-insert-grid crossword-grid)
(crossword-pl ace-cursor 0 0))))
(setqg crossword-unaut hori zed-change nil))

Theouter condi ti on-case handleserrorsin cr osswor d- cur sor - coor ds. It erases
the buffer, re-inserts the grid, and places the cursor in the upper left corner. The inner

condi ti on- case handleserrorsin cr osswor d- par se- buf f er , erasing and
re-inserting the grid, and restoring the memorized cursor position.

Now that we can track and recover from unauthorized changes in the buffer, I recommend
removing the catch-all keybinding,

(define-key crossword-node-nmap [t] 'undefined)

fromcr osswor d- node- nap, which after all isalittle too restrictive, making many
harmless and useful commands as inaccessible as C-k and C-y.

Since crosswords are stored in plain text files, it's still possible for usersto corrupt them by
editing them with another editor, or with Emacs when not in Crossword mode. But most such
changes would cause Crossword mode to fail on startup when it tries to parse the corrupted
file.

Page 162

Parsing the Buffer

Hereisadefinition for cr osswor d- par se- buffer:

(defun crossword-parse-buffer ()
"Parse the crossword grid in the current buffer."”
(save- excursi on
(goto-char (point-mn))
(let* ((Iine (crossword-parse-line))
(size (length line))
(result (rmake-crossword size))
(row 1))
(crossword- - handl e-parsed-line line O result)
(while (< row size)
(forward-1ine 1)
(setq line (crossword-parse-line))
(if (not (= (length Iine) size))
(error "Rows vary in length"))
(crossword- - handl e-parsed-line line row result)
(setg row (+ row 1)))
result)))

It callscr osswor d- par se- | i ne, which parsesaline of text and returnsit in list form.
The length of that list gives us the horizontal and vertical size of the crossword grid
(remember, our crossword grids are always square). We then call crossword-parse-line on the
si ze - 1 remaining lines. Each time we parse aline, wefill in arow of the crossword data
structure held in result by calling cr osswor d- - handl e- par sed- | i ne, which we can

define like this:

(defun crossword--handl e-parsed-line (line row grid)
"Take LINE and put it in RONof GRID."
(let ((colum 0))
(while line
(cond ((eq (car line) 'block)

(crossword-store-block grid row colum))
((eq (car line) nil)
(crossword-clear-cell grid row colum))
((nunberp (car line))
(crossword-store-letter grid row colum (car line))))

(setqg line (cdr line))
(setqg colum (+ columm 1)))))

Here'scr osswor d- par se- | i ne, which does the real work of
crosswor d- par se-buffer:

(defun crossword-parse-line ()

"Parse a line of a Crossword buffer.”

(begi nni ng- of - 1i ne)

(let ((result nil))

(while (not (eolp))
(cond ((eq (char-after (point)) ?#)

(setq result (cons 'block result)))
((eq (char-after (point)) ?.)

Page 163

(setqg result (cons nil result)))
((eq (char-after (point)) ??)
(setqg result (cons nil result)))
((looking-at "[A-Za-z]")
(setq result (cons (char-after (point))
result)))
(t (error "Unrecognized character")))
(forward-char 1)
(if (eq (char-after (point)) 2\
(forward-char 1)
(error "Non-bl ank between col ums")))
(reverse result)))

This moves along aline two characters at atime. Thefirst oneis expected to be pound sign
(#), period (.), question mark (?, which istreated the same way as.), or aletter. The cond
expression tells us what to do in each case. If it's none of those, an error is
signaled—"Unrecognized character." Otherwise, the next character is expected to be the blank
space separating columns of the grid. Again, if it isn't, an error is signaled.

Theresulting datais accumulated in r esul t using cons, which means that the first item on the
line appears at the end of the list, the second appears next-to-last, and so on. So the last thing
the function doesiscall r ever se to produce a correctly ordered list.

One more thing: when an Emacs mode is appropriate only for editing specially prepared text,
the mode symbol should be giventhespeci al property like this:

(put 'crossword-node ' node-cl ass ' special)

Thistells Emacs not to use Crossword mode as the default mode for any buffers, sinceit only
works on buffers that already contain parseable crossword grids.

Word Finder

So far, Crossword mode isn't much more than very fancy graph paper. Apart from keeping track
of what letters you want to put where, it offerslittle help to the aspiring crossword puzzle
creator. The really hard part of designing a crossword puzzle isn't keeping track of what
belongs in each grid square; it's trying to find words that will fit with other words you've
already chosen, such as when you need a five-letter word whose last three letters have to be
"fas".

It's possible to use standard UNIX utilitiesto find suitable words. The UNIX program grep,
given a suitable regular expression, can find matching words from aword file. Most UNIXes
have aword filein /usr/dict/words or /usr/lib/dict/words or, on modern GNU systems,
/usr/local/share/dict/words.

Page 164

If the word file contains one word per ling, it is possible to find afive-letter word ending in
"fas" with this UNIX command:

grep -i *..fas$ word-Jfile

(The-i tellsgrep to match case-insensitively.) Running this command gives us the answer,
"sofas’.

Wouldn't it be nice if we could just hit akey and have Emacs construct the correct regular
expression and run grep for us?

Here's how it would work. With the cursor on agrid cell, you press C-c h to find aword that
fits horizontally through the current cell, C-c v to find aword that fits vertically. In each case,
the function searches left and right, or up and down, for the nearest enclosing blocks. The
intervening cells are used to construct aregular expression. Empty or "letter” cells become
dots (.); letters become themselves. The regular expression is bracketed with » at the beginning
and $ at the end. This regular expression is handed to grep, whose output appearsin a
temporary buffer.

First Try

For simplicity, let's start by designing just the horizontal version of this command. Let's call it
cr osswor d- hwor ds. Thefirst thing we do is get the cursor position and test the type of the
current cell.

(defun crossword-hwords ()
"Pop up a buffer listing horizontal words for current cell."
(interactive)
(let ((coords (crossword-cursor-coords)))
(if (eq (crossword-ref crossword-grid
(car coords)

(cdr coords))
bl ock)
(error "Cannot use this command on a bl ock"))

We abort if the current cell is ablock. No words can cross a block (horizontally or vertically).
Otherwise:

(let ((start (- (cdr coords) 1))
(end (+ (cdr coords) 1)))

WEII use start and end to record the column number of the first block to the left and the first
block to the right of the current cell.

(while (not (crossword-block-p crossword-grid
(car coords)
start))

(setq start (- start 1)))

Page 165

Thismovesst ar t to theleft until we hit ablock. Remember that cr osswor d- bl ock- p
maintains the fiction that the border of the grid is surrounded by "blocks," so thisloop is
guaranteed to terminate when we reach the edge of the grid at the latest.

(while (not (crossword-block-p crossword-grid
(car coords)
end))

(setqg end (+ end 1)))

This does the same thing with end, but to the right instead of to the l€ft.

(let ((regexp """)
(colum (+ start 1)))
(while (< colum end)

This prepares to build up the regular expression, starting one cell after st ar t and ending one
cell before end.

(let ((cell (crossword-ref crossword-grid
(car coords)
colum)))
(i f (nunberp cell)
(setq regexp (concat regexp
(char-to-string cell)))
(setq regexp (concat regexp "."))))

This tests whether the present cell inthewhi | e loop isaletter. If itis, we add that |etter to
the regular expression; otherwise we add adot (.).

(Weusechar -t o- st ri ng to turn acharacter such as 7a into astring such as"a’, since
only strings may be passedto concat .)

Now we advance column for the next iteration of the loop:
(setqg colum (+ columm 1)))

After the loop exits, we end the regular expression with $:

(setq regexp (concat regexp "$"))
Next, we create a buffer to hold the grep output:
(let ((buffer (get-buffer-create "*Crossword words*")))

Thefunction get - buf f er - cr eat e returns abuffer object with the specified name. If a
buffer of that name aready exists, that buffer is returned, otherwise a suitable buffer is created.
(When you don't want to reuse an old buffer, you can use gener at e- new- buf f er to
unconditionally create a new one.)

(set-buffer buffer)

We temporarily select the*Cr osswor d wor ds* buffer, making it "current." The effect of
set - buf f er lastsonly for the duration of the current command, and

Page 166

doesn't change the user'sidea of the current buffer. (For that, we would use
switch-to-buffer.)

(erase-buffer)

This makes sure the buffer is empty, in case we're reusing a buffer that's lingering from a
previousrun of cr osswor d- hwor ds.

Now for thecall tocal | - pr ocess, the function that invokes the grep program:

(cal | -process "grep"
nil t nil
"-1" regexp
“/usr/local/share/dict/words")

Instead of invoking grep by name, it would be better to create a variable—say,

crosswor d- gr ep- pr ogr am—and useit in the above call instead of "gr ep"”. If another
grep program is desired, the user can change the variable. We can do the same thing for the
words file, declaring and using avariable called cr osswor d-words - fil e instead of
explicitly naming /usr/local/share/dict/words.

Thearguments ni |, t, andnil inthemiddleof thecal | - process cal mean:

1. "The program does not need 'standard input'.” Itsinput will come from the file named in its
command-line arguments. If astring isused instead of ni | , that string names afileto use
asinput to the program. If t isgiven, the current buffer is used as input to the program.

2. "Send output to the current buffer” (i.e., the* Cr osswor d wor ds* buffer). An argument
of ni | means"discard the output.” An argument of 0 means 'discard the output and return
immediately (don't wait for the program to finish)." An argument that is a buffer object
means to send output to that buffer.

The argument may also be atwo-element list, where each element is one of the arguments
just described. The first element of the list tells Emacs where to put the program'’s
"standard output." The second element tells Emacs where to put the program'’s "standard
error."

3. "Do not incrementally redisplay the buffer as data arrives' (which would slow things down).
Emacs waits for the program to finish before showing any of the output in the
Crossword wor ds buffer.

Theremaining argumentsto cal | - pr ocess are passed as command-line arguments to grep.
-i to turn of f case-sengitivity; r egexp, which contains the regular expression we've computed;
and/ usr/ | ocal / shar e/ di ct/ wor ds, thefilethat grep will search for matches.

Page 167

Thelast thing cr osswor d- hwor ds must do isto show the* Cr osswor d wor ds* buffer
containing the output of grep. Thisisdonewith di spl ay- buf fer:

(di spl ay-buffer buffer))))))
This completes our first version of cr osswor d- hwor ds.

Thisversion of cr osswor d- hwor ds isfineif you aways want to find words that
completely fill the space between two existing blocks; but sometimes you'd settle for shorter
words and insert more blocks as necessary. For instance, if you have a crossword row that
lookslike this:

. a dac

and you press C-c h, you'll get back one suggestion: "asclepiadaceous’. But you might be
satisfied with turning this line into:

. # headache##

The problemis, cr osswor d- hwor ds computes the regular expression
Aoadac $, but"headache" doesn't match that regexp.

We could try removing the and the $ from the regexp, along with the leading and trailing dots,
leaving uswith adac. If that regexp is handed to grep, it will find "headache". But it will also
find "tetracadactylity"”, which is one letter too long (and wtich hasthe adac in the wrong
place at any rate).

Second Try

A good way to solve this problem isto construct regexps that look like this:

N?.72.?2.?.7. 7. ?2adac. ?.?.7.?%. Each.?matches zero characters or one; so the
overall regexp matches from zero to seven characters, followed by "adac”, followed by zero to
four more characters. This pattern includes "headache" and excludes "tetracadactylity".

Let'sgivecr osswor d- hwor ds another try:

(defun crossword-hwords ()

"Pop up a buffer listing horizontal words for current cell."

(interactive)

(let ((coords (crossword-cursor-coords)))

(if (eq (crossword-ref crossword-grid
(car coords)
(cdr coords))
bl ock)

(error "Cannot use this command on a bl ock"))
(let ((start (- (cdr coords) 1))
(end (+ (cdr coords) 1)))
(while (not (crossword-block-p crossword-grid
(car coords)
start))

Page 168

(setq start (- start 1)))

(while (not (crossword-block-p crossword-grid
(car coords)
end))

(setq end (+ end 1)))

So far, thisis the same as before: start and end point to the enclosing blocks.

Now let's introduce a new concept into this function: that of the regexp's core. We'll use this
term to refer to the part of the regexp that must match character-for-character.

Leading and trailing blanks don't have to be matched; they're optional. But everything starting
from thefirst letter and ending at the last letter must be matched, even intervening blanks. So
when we construct the regexp to match thisline:

bar . f o o .

the"core' isbar . f 00, and the overal regexp has three optional characters at the beginning
andfiveattheend: . ?. ?. ?bar.foo0.?.?.?. 7. ?$isthefina result.

This means that we must find the core in the crossword grid. Any blanks outside the core must
be turned into . ?in the regexp. Any blanks inside the core must be turned into . (a dot).

Well startat st art andend and work our way inward:

(let ((corestart (+ start 1))
(coreend (- end 1)))

(while (null (crossword-ref crossword-grid
(car coords)
corestart))

(setq corestart (+ corestart 1)))

(while (null (crossword-ref crossword-grid
(car coords)
coreend))

(setq coreend (- coreend 1)))

Thisadvancescor est art rightward and cor eend leftward to skip over blank cells. Note
that there may be no "core" between start and end. Inthiscase, cor est art advances all the
way to end and coreend backs up al the way to start. That's okay, because the way we use
corestart andcor eend inthisnext bit of codeisinsengtiveto that peculiarity:

(let ((regexp """)
(colum (+ start 1)))
(while (< colum end)
(if (or (< colum corestart)
(> colum coreend))
(setq regexp

(concat regexp ".?"))

Page 169

Here, if we haven't yet reached the core, or if we've already passed it, we append .? to
r egexp. Notethat if there was no core, we always append . 7.

If we'rein the core, we proceed exactly as before—except that we now invoke egrep instead
of grep, because grep doesn't understand the ? syntax in regular expressions and egrep does:

(let ((cell (crossword-ref crossword-grid
(car coords)
colum)))
(i f (nunberp cell)
(setq regexp (concat regexp
(char-to-string cell)))

(setqg regexp (concat regexp ".")))))
(setqg colum (+ columm 1)))
(setq regexp (concat regexp "$"))
(let ((buffer (get-buffer-create "*Crossword words*")))

(set-buffer buffer)
(erase-buffer)
(cal | -process "egrep"
nil t nil
"-i" regexp
"/usr/local /share/dict/words")
(di spl ay-buffer buffer)))))))

Again, you may wish to use variables called cr osswor d- egr ep- pr ogr anm and
crossword-words-fil e instead of referring to egrep and /usr/local/share/dict/ words
by name. In fact, the remainder of this chapter will take that approach.

The command cr osswor d- vwor ds—the vertical counterpart of

cr osswor d- hwor ds—is substantially identical to cr osswor d- hwor ds. Defining it,
along with factoring out common code into a separate function for both commandsto use, is left
as an exercise for the reader.

Asynchronous egrep

Theway cr osswor d- hwor ds is presently written, it runs egrep, waits for it to finish, then
displaysits output. But suppose you're using some program other than egrep; or suppose your
setting for cr osswor d- wor ds-f i | e isafile on thefar side of aslow network. It could
takecr osswor d- hwor ds quite awhileto run, and Emacs will be unavailable the whole
time.

It would be better if cr osswor d- hwor ds could start the egrep program running, and let it
run "in the background” while you continue to interact with Emacs. For this, we can use
Emacs's asynchronous process objects.

" Invoking cr osswor d- hwor ds where thereis no "core" isn't exactly an error, but it might be worth
alerting the user in such a case, since the resulting regexp would match all words in the dictionary that
aretheright length or shorter—probably not what the user wishes to see!

Page 170

An asynchronous process object is a Lisp data structure that represents another running
program on your computer. New processes are created with st ar t - pr ocess, which
resembles call-process (which we saw in the previous section). Unlikecal | - pr ocess,
however, st ar t - pr ocess does not wait for the executed program to complete. Instead, it
returns a process object.

There are many things one can do with a process object. Y ou can send input to a running
process; you can send signals; you can kill the process. Y ou can query the process's state (e.g.,
to find out whether it's running or has exited). Y ou can associate the process with an Emacs
buffer.

Let'srewritecr osswor d- hwor ds tousest art - process. To save space, welll
concentrate on just the end of cr osswor d- hwor ds. Here'sthe original version:

(let ((buffer (get-buffer-create "*Crossword words*")))
(set-buffer buffer)
(erase-buffer)
(cal I - process crossword-egrep-program
nil t nil
"-i" regexp
crossword-words-file)
(di splay-buffer buffer)))))))

Here'saversion using start-process.

(let ((buffer (get-buffer-create "*Crossword words*")))

(set-buffer buffer)
(erase-buffer)
(start-process "egrep"

buffer

cr osswor d- egr ep- pr ogr am

"-i" regexp

crossword-words-file)

(di spl ay-buffer buffer)))))))

The only change herewasto replacecal | - pr ocess with st art - process and shuffle
the arguments around appropriately. Thefirst argumentto st art - process ("egrep”in
this example) is a name that Emacs uses internally to refer to the process. (It is not necessarily
the name of the program to run.) Next comes the buffer, if any, that will receive the process's
output; then the program to run, and its arguments.

As soon asthe processis started, st ar t - pr ocess returns, which means

di spl ay- buf f er iscalled immediately. But we may not wish for the* Cr osswor d

wor ds* buffer to appear right away. It would be better if it only appeared after egrep has run.
So we would like away to find out when the process exits. When that happens, that's when we
want to call di spl ay- buffer.

To do this, we need to install a sentinel on the process object. A sentinel isaLisp function that
gets called when the process changes state. We're interested in the

Page 171

state change that happens when the program exits; but state changes can a so happen when the
process receives asignal.

Heresaversionthat callsst art - pr ocess, then instals asenting to display the buffer
when the process exits. In order to install the sentinel, we must save the process object that is
returnedfrom st art - pr ocess sowecanpassittoset - pr ocess-senti nel :

(let ((buffer (get-buffer-create "*Crossword words*")))

(set-buffer buffer)

(erase-buffer)

(let ((process

(start-process "egrep"
buffer
cr osswor d- egr ep- pr ogr am
"-i" regexp crossword-words-file)))
(set-process-sentinel process
'crossword--egrep-sentinel))))))))

We can definecr osswor d- - egr ep- senti nel as.

(def un crossword--egrep-sentinel (process string)
"When PROCESS exits, display its buffer.'
(if (eq (process-status process)
"exit)
(di spl ay-buf fer (process-buffer process))))

Process sentinels are called with two arguments: the process object, and a string describing the
state change. We ignore the string. Instead, we test the process's status to see whether it has
exited. If it has, we display the process's buffer, which we find with pr ocess- buf f er.
Thisisthe buffer originally associated with the processinthest art - pr ocess call.

Suppose we don't want to wait for egrep to exit before we display the buffer, but we don't want
to display the buffer immediately either. Instead, we want to display the buffer as soon as the
first input arrivesin it. For this, we need to install afilter on the process object.

A filter isafunction that gets called whenever output from the process arrives. When a process
has no filter, output goes into the associated buffer. But when thereis afilter, the filter function
isresponsible for putting the output wherever it belongs. So let's modify our example alittle
more, to use afilter function that (a) puts output in the buffer and (b) displays the buffer:

(let ((buffer (get-buffer-create "*Crossword words*")))
(set-buffer buffer)
(erase-buffer)
(let ((process
(start-process "egrep"
buf f er
cr osswor d- egr ep- pr ogr am

Page 172

"-i" regexp
crossword-words-file)))
(set-process-filter process
crossword--egrep-filter)

(set-process-sentinel process
| crossword--egrep-sentinel))))))))

We're keeping the sentinel in addition to the filter so that the buffer is sure to be displayed
when egrep exits, even if there was no output.

Here'show we can definecr osswor d- - egrep-filter:

(defun crossword--egrep-filter (process string)
"Handl e out put from PROCESS. "
(let ((buffer (process-buffer process)))

(save- excursi on
(set-buffer buffer)
(got o-char (point-max))
(insert string))

(di spl ay-buffer buffer)))

Filters are called with two arguments: the process object, and the chunk of output that has just
arrived, as a string. We find the process's buffer and insert the output at the end. Then we make
sure the buffer is displayed by caling di spl ay- buf fer.

Because filters (and sentinels) can be called at unpredictable times (which is the nature of
asynchronous programming), they must take care not to have any unexpected side effects. This
means there are some things they must do that synchronous functions needn't worry about. For
example, every time acommand finishes, Emacs restores the selected buffer; so during the
command, functions may call set - buf f er to change buffers without affecting what the user
sees. But resetting the selected buffer only happens when a command ends-around the same
timethat post - conmand- hook isinvoked. Since an asynchronous function may be invoked
when there is no command in progress, any callsto set - buf f er may not be reset, and so
may have unwanted effects. That'swhy cr osswor d- - egrep-fil ter uses

save- excur si on.

Onemorething about st art - pr ocess. When Emacs creates the process, it maintains a
connection to it (through which input and output flow) using either UNIX pipes or UNIX
pseudo-ttys. Pipes are more appropriate for non-interactive processes like egrep, while
pseudo-ttys, or ptys, are more appropriate for interactive programs—e.g., command
interpreters like the UNIX shell. The kind of connection that is created by start-processis
controlled by the variable pr ocess- connecti on-type--ni | meansuse pipes, t
means use ptys. Though it's alittle baroque, it's a good idea always to wrap calls to
start-process insidealet call whereyou temporarily set

process-connecti on-type tothedesired value, asin:

Page 173

(let ((process-connection-type nil))
(start-process "egrep"
buffer
cr osswor d- egr ep- pr ogr am
"-i" regexp crossword-words-file))

Choosing Words

Now let's make it possible to select words from the * Cr osswor d wor ds* buffer and have

them automatically inserted in the crossword grid.

Thefirst thing well have to do is store some extrainformation in the* Cr osswor d wor ds*
buffer—that is, in local variablesin that buffer. If we expect to be able to pressRET (say) on
one of the words in that buffer and have it go in the right place in the Crossword buffer, then the
Crossword wor ds buffer will have to know which isthe right Crossword buffer and
where to place the word when it's selected.

Here's the information that must be communicated between buffers.
1. Thevaueof start + 1-i.e, the placewheretheword may begininthegrid.

2. Whether the current word search is vertical or horizontal. As before, we'll restrict our
examples to the horizontal case, but bear in mind the considerations arising from the two
possible directions.

3. Information about the "core" of the regular expression. To explain why thisis necessary, let's
reconsider our earlier example: the crossword-grid line that looks like this:

adac

Theregular expression that cr osswor d- hwor ds generatesfor thislineis
?2.?2.2.?2.?2.?2. ?adac. ?.7?.7.7?%.The"core" isadac, with a"prefix" of
2.2.2.2.72.?2.? anda"suffix" of .?2. 2. ?. ?. When the user selects, for instance, the
word adact yl fromthe* Cr ossword wor ds* buffer, wherein theline should it be
placed? Should it be placed like this?

adact yl adac

Of course not; it should be placed like this:

.adactyl.

In order to place the word correctly within the line, it will help to know that the prefix is
seven characters long, and that a match for the "core" of the regexp can be found at position
zerointheword adact yl . In generd, if the prefix is p characterslong, and a match for
the core can be found at position

Page 174

m in the chosen word, then we should skip p - m characters before beginning the word in
the allotted space.

In order to store these variables locally inthe* Cr osswor d wor ds* buffer, and in order to
have akeybinding for RET that means "select the word that the cursor ison,” let's define alittle
major mode for that buffer. Let'scall it cr osswor d- wor ds- node. Hereitis:

(defvar crossword-wor ds- node- map ni
"Keymap for crossword-words node.")

(def var crosswor d-wor ds-crosswor d- buffer ni
"The associ ated crossword buffer.")

(def var crossword-words-core ni
"The core of the regexp.")

(defvar crossword-words-prefix-len ni

"Length of the regexp prefix.")
(def var crossword-words-row nil

"Row nunber where the word can start.")
(def var crosswor d-wor ds-col umm ni

"Col um nunber where the word can start.")
(defvar crossword-words-vertical-p ni

"Whet her the current search is vertical.")

(i f crossword-words- node- map
nil
(setq crossword-words-nmode- map (nake-spar se- keymap))
(define-key crossword-words-node-nmap "\r" crossword-words-sel ect))

The return key iswritten "\r " in strings.

(def un crosswor d-words-node ()
"Maj or node for Crossword word-list buffer.”
(interactive)
(kill-all-1ocal-variables)
(setq maj or-node ' crossword- wor ds- node)
(setq nmode- nane " Crossword-words")
(use-1 ocal -map crosswor d-wor ds- node- nap)
(make- | ocal -vari abl e ' crosswor d- wor ds- cr osswor d- buf f er)
(make- 1 ocal -vari abl e crossword-words-core)
(make- | ocal -vari abl e ' crosswor d- words- prefix-1en)
(make- | ocal -vari abl e cr osswor d- wor ds- r ow)
(make- | ocal -vari abl e cr osswor d- wor ds- col um)
(make- | ocal -vari abl e ' crossword-words-verti cal - p)
(run-hooks crossword-words- node- hook))

We haven't yet defined cr osswor d- wor ds- sel ect . Well get to that in amoment. First,
let'srewrite cr osswor d- hwor ds to do two things:

It must preserve information about the core of the regexp and the length of the prefix. To
keep things simple, let'scal it an error if thereis no core, and abort the operation.

Page 175

When it creates the word-list buffer, it must place it in Crossword-words mode and set the
various local variables.

Hereitis:

(defun crossword-hwords ()
"Pop up a buffer listing horizontal words for current cell."
(interactive)
(let ((coords (crossword-cursor-coords)))
(if (eq (crossword-ref crossword-grid
(car coords)
(cdr coords))
bl ock)
(error "Cannot use this command on a bl ock"))
(let ((start (- (cdr coords) 1))
(end (+ (cdr coords) 1)))
(while (not (crossword-block-p crossword-grid
(car coords)

start))

(setq start (- start 1)))
(while (not (crossword-block-p crossword-grid
(car coords)

end))

(setq end (+ end 1)))

(let ((corestart (+ start 1))
(coreend (- end 1)))

(while (null (crossword-ref crossword-grid
(car coords)
corestart))

(setq corestart (+ corestart 1)))

So far, same as before.

(if (= corestart end)
(error "No core for regexp"))
This tinme, if there is no core, abort with an error

(while (null (crossword-ref crossword-grid
(car coords)

coreend))
(setq coreend (- coreend 1)))

(let ((core "")
(colum corestart)

(regexp """))
We're going to construct r egexp from the inside out this time, starting by separately
computing the core:

(whil e (<= colum coreend)
(let ((cell (crossword-ref crossword-grid
(car coords)

colum)))
(i f (nunberp cell)

(setq core (concat core
Page 176

(char-to-string cell)))
(setqg core (concat core ".")))
(setq colum (+ colum 1)))

Now cor e holds the core of the regexp.

This constructs the prefix for the regexp:

(setqg colum (+ start 1))

(while (< colum corestart)
(setq regexp (concat regexp ".?"))
(setqg colum (+ columm 1)))

... This appends the core to the prefix:

(setq regexp (concat regexp core))

... and this appends the suffix:

(setqg colum (+ coreend 1))

(while (< colum end)
(setq regexp (concat regexp ".?"))
(setg colum (+ columm 1)))

(setq regexp (concat regexp "$"))

Now let's move to the word-list buffer, but this time let's memorize the current buffer in
cr osswor d- buf f er sowe can easily refer to it later:

(let ((buffer (get-buffer-create "*Crossword words*"))

(crossword-buffer (current-buffer)))
(set-buffer buffer)

Now let'sput * Cr osswor d wor ds* in Crossword-words mode:
(crosswor d- wor ds- node)
and set its buffer-local variables:

(setqg crossword-words-crossword- buffer
crosswor d- buffer)
(setqg crossword-words-core core)
(setq crossword-words-prefix-len (- corestart
(+ start 1)))

(setq crossword-words-row (car coords))
(setq crossword-words-colum (+ start 1))
(setq crossword-words-vertical-p nil)

The rest isthe same as we've aready seen.

(erase-buffer)
(let ((process
(let ((process-connection-type nil))
(start-process "egrep"

buffer
cr osswor d- egr ep- pr ogr am
"-i" regexp
crossword-words-file))))

Page 177

(set-process-filter process
crossword--egrep-filter)
(set-process-sentinel process
'crossword--egrep-sentinel)))))’

Now all that remainsisto definecr osswor d- wor ds- sel ect . Itspurposeisto figure out
the word that point is on, find a match for the core within that word, then figure out where in the
crossword grid the word belongs, and put it there.

(defun crossword-words-sel ect ()
(interactive)
(begi nni ng-of -1i ne)
(let* ((wordstart (point))

(word (progn (end-of-1ine)
(buf fer-substring wordstart

(point))))

Now wor d contains the word from the selected line.

Next we find amatch for the corein wor d using st r i ng- mat ch:

(corematch (string-match crossword-words-core
wor d))

Now cor emat ch containsthe position within wor d of amatch for the core.
(vertical -p crossword-words-vertical -p)

This copies the buffer-local variable cr osswor d- wor ds-verti cal - p intothe
temporary variableverti cal - p, sincewell need to refer to it back in the Crossword
buffer (where cr osswor d- wor ds- verti cal - p isn't defined).

(wi ndow (sel ect ed-w ndow)))

This memorizes the window that contains the word-list buffer. Later in this function, well
delete that window (but not the buffer) since the user is presumably finished with it after
selecting aword.

(if (not corematch)
(error "This word does not fit"))

This shouldn't be possible—unless the user has atered the contents of the wordlist buffer, so
it'sagood ideato test for it.

(let ((row (if vertical-p
(+ crossword-words-row
(- crossword-words-prefix-len corematch))

cr osswor d- wor ds-row))
(colum (if vertical-p
cr osswor d- wor ds- col um
(+ crossword-words-col um
(- crossword-words-prefix-len corematch))))

Now r ow and col umm designate the position in the crossword grid where we should begin
placing the word.

Page 178
(i 0))
WEe'l usei to iterate over the characters of wor d, adding them to the grid one at atime.
(switch-to-buffer crossword-words-crossword-buffer)

This switches to the Crossword buffer using swi t ch-t o- buf f er ,not set - buf f er . This
means that the Crossword buffer will still be selected after this command finishes.

(while (< i (length word))

(crossword-store-letter crossword-grid
r ow
col um
(aref word i))
(crosswor d- updat e- di spl ay crossword-grid
r ow
col um)
(setgi (+1i 1))
(if vertical-p
(setqg row (+ row 1))
(setqg colum (+ colum 1)))))

This stores each letter in the grid, moving horizontally or vertically as appropriate. After
updating the data structure with cr osswor d- st or e- | et t er , keep the display in sync by
calingcr osswor d- updat e- di spl ay.

Whenwe call cr osswor d- updat e- di spl ay, we don't want to update the cell that

contains the cursor; we want to update the cell at row and column where we've just stored a
letter. So let's pretend, for now, that cr osswor d- updat e- di spl ay takes grid coordinates
as optional arguments, and uses those instead of the cursor position if they're given. Welll
revisecr osswor d- updat e- di spl ay below.

Finaly, let's delete the Crossword-words window so the user can concentrate on the
Crossword buffer:

(del et e-wi ndow w ndow)))

Heresaversion of cr osswor d- updat e- di spl ay that takes optional grid coordinates,
using the cursor position if the optional arguments are not specified.

(def un crossword-updat e-di spl ay (crossword &optional row col umm)
"Called after a change, keeps the display up to date."
(crossword-aut hori ze

(if (or (null row
(nul'l colum)).
(let ((coords (crossword-cursor-coords)))
(setq row (car coords)
colum (cdr coords))))
(let ((cousin-coords (crossword-cousin-position crossword
r ow

Page 179
column)))

(save- excursi on
(crossword- pl ace-cursor row
col um)
(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword
r ow
col um))
(crossword- pl ace-cursor (car cousin-coords)
(cdr cousin-coords))
(del ete-char 2)
(crossword-insert-cell (crossword-ref crossword

(car cousi n-coords)

(cdr cousin-coords))).

There's just one more thing we have to adjust in this code: we have to solve the problem of
ambiguous alignment of selected words.

Ambiguous Alignment

Imagine you have a section of a crossword line that looks like this:

.. . F .

and you press C-c h somewherein that line. The regexp that cr osswor d- hwor ds generates
iIsA.?..7%. 2% itscoreisf.

The word-list buffer fills up with lots of words containing "f". Y ou choose "fluff'. What
happens?

When you select "fluff”, cr osswor d- wor ds- sel ect findsamatch for the core, "f", at
position zero in the word "fluff'. This means that it will try to line up the first letter of "fluff'
with the "f" that's aready in the puzzle, running off the end like so:

#. f #

In this case, we can't use the first match for the core. But we can't use the last match either,
because that will cause the last |etter of "fluff' to line up with the "f' in the puzzle, which places
one too many lettersto the left:

luff.

We must align the second "f" in "fluff' with the "f" already in the grid. How can we make the
word line up correctly?

The answer isto choose the rightmost match for the core that begins within the
prefix-length. This ensuresthat the string to the left of the match is short enough to fit in the
prefix, while minimizing the number of charactersto the right of the match.

Page 180

For example, the word "fluff' contains three matches for the core regexp, f. Thefirstisat
position 0, the second is a position 3, and the third is at position 4. The length of the prefix of
the regexp is 3. So the rightmost match for f in 'fluff that begins at or before position 3 isthe
second one.

Choosing the rightmost match that isn't too far to the right ensures that we fill up at much of the
prefix as possible when placing the word in the grid. That, in turn, will ensure that we don't run
off the end on the right.

We should therefore replace the following part of cr osswor d- wor ds- sel ect .

(let* (. .
(corematch (string-match crossword-words-core
wor d))

with this;

(let* (.
(coremat ch
(let ((bestmatch nil)

(index O)
(while (and index (<= index
cr osswor d- wor ds- prefi x-1en))
(let ((match (string-match crossword-words-core
wor d
i ndex)))
(if (and match
(<= match crossword-words-prefix-1len))
(setq bestmatch match
i ndex (+ match 1))
(setqg index nil))))
best mat ch))

Here's how that works:

(let ((bestmatch nil)
(index O)

Weuse best mat ch to hold the rightmost match so far and i ndex to denote where to begin
the next search. The loop terminates when i ndex becomes nil (which is not the same asiits
initial value of 0).

(while (and index (<= index
cr osswor d- wor ds- prefi x-1en))

Thiskeepsthewhi | e loop going until we've gone too far to theright (i.e., until we start
searching for matches beyond the position cr osswor d- wor dsprefi x-1 en) .

(let ((match (string-match crossword-words-core
wor d
i ndex)))

Page 181

Here we use the optional third argument to st ri ng- mat ch, which isthe position in word
where the search should begin.

(if (and match
(<= match crossword-words-prefix-1len))

We must make sure mat ch isnon-ni | before passing it to <=, which accepts only numbers.

If there was a match suitably early, memorize it and begin the next iteration one position to the
right; otherwise, escape the loop by setting i ndex toni | :

(setq bestmatch match
index (+ match 1))
(setq index nil))))

Finaly, return best mat ch asthe valuefor cor emat ch.

best mat ch)

Last Word

We could add features to Crossword mode from now until the cows come home, and it's hard
for me to resist the temptation to do just that. For example, once the grid isfull, it would be
nice to number the squaresin the grid and generate lists of Across and Down words. It would
also be nice to have cursor motion commands that move around the grid in units of words.

But thisisasfar as|'ve taken Crossword mode. | have a book deadline to meet, and besides,
no one likes a programmer who doesn't know when to abandon a pet project.

Of course there's no limit to how far you can take Crossword mode—or to how far you can
take Emacs, in whatever direction you choose.

Page 183

Conclusion

Y ou are now ready to embark on your Emacs Lisp programming career. The discussion of
techniques and tools in this book should accomplish for you what it took me years of
experimentation to learn.

As| wrote in the Preface, this book isn't exhaustive in its coverage of the language. There are
many interesting areas of Emacs Lisp we haven't covered. We haven't made use of Emacs's
"selective display" facility, for example. Selective display allows you to hide and reveal
individual lines or portions thereof. We haven't used "text properties’ either. Text properties
allow you to associate things like colors and fonts and even Lisp actions with the text in a
buffer. We haven't tried to customize a mode line. We barely touched on the minibuffer and the
various prompting and completion routines. We didn't even mention timers, appl y, or
funcal | . And we've skirted the whole subject of tailoring Emacs's "undo” mechanism.

What we have doneisto learn what kinds of things are possible in Emacs Lisp and what they
tend to look like. We've investigated the process of developing an Emacs Lisp solutionto a
wide variety of problems. We've gotten a good, solid feel for where to begin, how to proceed,
where to seek information, and what pitfalls to avoid.

We learn by doing. Rather than belabor every aspect of Emacs Lisp, my goa has been to get
you on the fast track to writing your own Lisp code and exploring the remaining expanse of
Emacs on your own. If I've done my job, the existence of still-uncharted Emacs Lisp territory
should no longer daunt you. It should whet your appetite.

Happy hacking.

Page 185

Lisp Quick Reference

In this appendix:

- Basics

- Data Types

- Control Structures
- Code Objects

This appendix summarizes general Lisp syntax as used in Emacs, and some important Lisp
functions. It does not summarize Emacs-specific features such as buffers, hook variables,
keymaps, modes, and so on. For a complete Emacs Lisp reference, see The GNU Emacs Lisp
Reference Manual. Details on obtaining it are in Appendix D, Obtaining and Building Emacs.

Basics

A Lisp expression isaunit of data that can be evaluated. The expression may be composed of
subexpressions, asin the cases of lists and vectors.

Every Lisp expression has away to produce a value when evaluated. Most kinds of expression
are self-evaluating, which means that they are their own vaue.

A Lisp expression can be treated as literal datainstead of being evaluated. Nonself-evaluating
expressions must be quoted in order to use them as literals and prevent them from being
evaluated.

The symbol ni | denotes falsehood. It is exactly the same object asthe empty list, (). Every
other Lisp object denotes truth, but the symbol t is reserved to mean truth anyway.

Emacs Lisp (unlike some other dialects of Lisp) is case-sensitive.

Page 186

Data Types
Numbers

Emacs Lisp supports integers and floating-point numbers. They're written in just the way you'd
expect: as astring of base-10 digits with an optional leading minus sign and optional decimal
point. Some functions that operate on numbers are;

(nunmberp x)

Test whether x is a nunber.
(integerp x)

Test whether x is an integer.

(zerop x)
Test whether x is zero.
(=a b)
Test whether two nunbers are equal .
(+abc. . .)
Addi ti on.
(-abc. . .)

Subt racti on.

Characters

Single characters can be written in Emacs Lisp by preceding them with a question mark. For
instance, 7a denotes lowercase a. Some special characters, particularly those that can be used
to begin other kinds of Lisp expression, must be preceded with question mark-backdash, such
as A", A (, and ?\). Some special characters can be written by combining a backslash with a
letter. For instance, At isatab character, and An is a newline character.

The result of evaluating a character isits ASCII code. For instance, evaluating 7a yields97. In
fact, integers can be used wherever characters are expected; Emacs Lisp does not distinguish
between the two, except to allow the more convenient form of denoting characters.

(char-equal a b)
Test whether two characters are equal. lgnores case if the variable ca

fold-search is non-nil.
(char-to-string c)
Create a one-character string containing c.

Page 187
Strings

A string is a sequence of characters, and is written by enclosing the charactersin
double-quotes, "l i ke t hi s". If adouble-quote or backdlash appearsin the string, it must be
preceded with abackdash, "\" Li ke this,\" he sai d.". Strings are self-evaluati ng.

Emacs, being atext editor, has many functions for operating on strings. Here isatiny sample:

(stringp x)
Test whether x is a string.
(string= sl s2)
Test whether two strings are equal
(string-lessp sl s2)
Test whether string sl cones before string s2 according to ASCII sorti

(concat abc. . .)
Create a new string by concatenating other strings.
(length s)

Return the length in characters of string s.
(aref s i)
Return the ith character of string s, counting fromO
(aset sich)
Set the ith character of string s to ch
(substring sfim[to])
Extract the substring of s beginning at position fromand extending to

tion to (or to the end of s if tois onmtted).
Symbols

Symbols are names that can have certain kinds of data associated with them. The name of a
symbol is a sequence of characters that must not look like a number, string, list, vector, or other
Lisp datatype.

Symbols can be used as variables, function names, or as atomic values themselves. The result
of evaluating asymbol isits variable value.

(synbol p x)
Test whether x is a synbol.
(setq sym epr)
Use symas a variable: assign the value of expr to sym

Page 188

sym
A symbol evaluatesto itsvalue as avariable.

(defun sym...)
Use sy as afunction name.

(symarg; arg; . ..)
A list that starts with a symbol denotes afunction call of the function named by syrr.

Every symbol has a property list associated with it. The property list is a mapping where the
keys are Lisp symbols and the values are arbitrary Lisp expressions.

(put sym key value)
In sym's property list, assign value to symbol key.

(get sym key)
Get the value previoudy assigned to symbol key in syn's property list, or ni | if there
was none.

Symbols are normally stored internally in a symbol table to prevent duplicate symbols from
being created. It is possible to explicitly add entries to the symbol table or to create symbols
that are not placed in the symbol table (and which may therefore duplicate the name of other
symbols).

(intern string)
Return a symbol from the internal symbol table whose nameis string. If one didn't
previoudy exist, oneis created.

(make- synbol string
Return a brand-new symbol whose name is string. The symbol is not placed in the internal
symbol table, and is distinct from all other objects, including identically named symbols.

Lists

Lists are the foundation of Lisp. A list is a sequence of zero or more other Lisp expressions
(including, potentialy, other lists). A list iswritten by writing its subexpressions, separated by
whitespace; and then surrounding the whole sequence with a pair of parentheses.

Lists are used to denote function callsin Lisp. When evauated, the function designated by the
first element of thelist isinvoked, with the values of the remaining elements as arguments.

Internally, alist isimplemented as a chain of cons cells. Accessing an item in the list therefore
entails traversing the chain until the element is found.

Page 189

(I'stp x)
Test whether x isalist.
(nul I x)
Test whether x isthe empty list.
(consp x)
Test whether x isanon-empty list.
(car Iist)
Return the first element of list (or the first part of a cons cell).
(cdr list)

Return the remainder (all but the first element) of list (or the second part of acons cell).

(I'ist abc. ..)
Construct anew list, with the values of the given arguments as elements.

(cons a b)
Insert a at the beginning of list b (or create a new cons cell (a. b).

(append list list2 . . .)
Create anew list by (effectively) stripping off each sublist's outer parentheses, sticking all
the elements together, and surrounding the whole thing with anew pair of parentheses.

(nt hilist)
Return the ith subexpression of list, counting from O.

(nt hedr i list)
Return the result of calling cdr onlisti times.

Listsare covered in detall in Chapter 6, Lists.
Vectors

Likealist, avector is a sequence of zero or more subexpressions, written with square brackets
instead of parentheses. Unlike alist, a vector's elements can be randomly accessed (without
first traversing an internal data structure). Vectors are self-evaluating.

When you write a vector, its subexpressions are automatically quoted. To construct a vector
from elements that are evaluated first, usethevect or function.

(vectorp x)
Test whether x is avector.

(vector abc. . .)
Construct a new vector, with the values of the given arguments as elements.

Page 190

(I engt h vector
Return the length of vector.

(ar ef vectori)
Return the ith subexpression of vector, counting from zero.

(aset vector i expr)
Set the ith eement of vector to expr.

Sequences and Arrays

Some Emacs Lisp datatypes are related. Strings and vectors are both kinds of arrays. An
array isalinear collection of data elements that permits random access to its e ements. A
string isan array of characters, while avector is an array of arbitrary expressions. The
functionsar ef andaset arefor manipulating arrays, and work on vectors as well as strings.

A sequence is an even more general kind of data structure that includes arrays and lists. A
sequenceis alinear collection of data elements, period. The function length works on lists,
strings, and arrays.

(arrayp x)
Test whether x isan array.

(sequencep X)
Test whether x is a sequence.

(copy- sequence sequence)
Return a copy of the list, string, or vector sequence.

Control Structures
Variables

To reference avariable, smply use its name (asymbol). To assign avariable, use set q.

(setq x 17) ;assign 17 to variable x
x = 17 ; value ofvariable x

To make temporary variables that are in effect only in acertain region of code, usel et .

(let ((varl vauue])
(ar2 val ue2)

o)
bodyl body2 .. .)

Page 191

Inal et , al the values are computed in an unspecified order before any of the vats are
assigned. Thevariant | et * (whose syntax isidentical to let) evaluates value, and assignsit to
var; before evaluating value, ;.

Sequencing

To evaluate a sequence of expressions where only a single expression is allowed, use
pr ogn.

(progn exprq expro . . .)
Evaluates each expr in turn. Returns the value of the last expr.

To evaluate a sequence of expressions and return the value of the first subexpression instead of
thelast, use pr ogl .

Conditionals

Emacs Lisp has two kinds of conditional expression: i f and cond.

(if test
t hen
el se; el se, o)

Evauatestest. If theresult isnon-ni | , evaluates then. Otherwise, evaluates each else
expression in turn. Returns the value of the last expression it evaluates.

(cond ((test; od body;, . ..)
(st2 bod)1l body,, . ..)

Evauatestest;. If theresult isnon- ni | , evaluates each body, in turn. Otherwise evaluates
test,. If theresultisnon-ni | , evaluates each body,, and so on with each ‘cond clause." Returns
the value of the last expression it evaluates. A common practice is to place a catch-all clause at
theend like this:

(cond ((testq body,, body;, . ..)
(testz bOdyZJ_ bOdyz .

(t body,; body,, . . .)))

Thelogical operatorsand, or , and not are often used in conjunction with—and sometimes
as substitutes for—conditionals.

(and expr, expro, . . .)

Evaluates each expr until onereturnsni | (or it runs out of subexpressions), then returns. The
result is the value of the last expression evaluated. Thisisthe logical operation "and" because
and returns truth if and only if none of its subexpressionsis false.

Page 192
The expressions
(if eprl
(if expr2
(if arn-1 ePn)))
and

(if (and exprl expr . . . nprl)

earn)
are frequently condensed to

(and eprl expr2 . . . xprnl exprn)
The expression

(or eprl eaxpr2 . . .)

evaluates each expr until one returns non-nil (or it runs out of subexpressions), then returns.
The result isthe value of the last expression evaluated. Thisisthe logical operation "or"
because or returns falsehood if and only if none of its subexpressionsis true.

The expression
(i f aab)
is often condensed to
(or a b)
Finaly,
(not expr)

returns the logical negation of expr. If expr evaluates true, return nil. If expr evaluates false,
return t. (Interestingly, not is the same exact function as null.)

Looping
Emacs Lisp has one looping function, while.
(while test
boded body; . . .)

Evaluates test. If the result is non-nil, evaluates each body in turn. Then repeats. Returns when
test yieldsnil.

Page 193
Function Call

To call afunction, write alist whose first element is the function name and whose remaining
elements are the arguments to the function.

(function argl arg2 . . .)

Calls function with the given arguments; returns the result of function.
Literal Data

To make alitera out of a control structure—i.e., to prevent an expression from being
evaluated-quote it by preceding it with'

expr b epr
(quote expr) b epr ; sanme thing

To make aliteral list in which individual subexpressions can be evaluated, backquote it, then

unguote the individual subexpressions.

'"(abc) P (aboc)
(backquote (a b c)) P (a b c) ;sanething
'(a,bc) P (avalue-of-b c)

To unguote a list-valued expression and "splice" its elementsinto the containing backquote
template, use the splicing unquote operator, "', @".

(setqg b "(xy z))
'(a,@®@c) P (axyzc)

Code Objects

Functions

A functionisalist in the following form:

(! anbda (paraneters . . .)
"docunentati on string"
bodyl' body2 . . .)

The documentation string is optional.

When the function isinvoked, the actua arguments will be bound to the parameterslisted in
the parameter list. The keyword &opt i onal appearing in the parameter list means the
following parameters are optional. If the function is called without a value for an optional
parameter, the parameter is assigned nil. The last parameter may be preceded by the keyword
&r est , meaning that all remaining unused arguments are placed in alist and assigned to that
parameter.

The result of invoking afunction isthe result of the last body expression.

Page 194
To define afunction with aname, usedef un.
(defun nane (prammetes . . .)
"docunentation string"
| body' body4 ..)

This createsal anbda expression and assigns it to the function value of the symbol name.
Thisisdifferent from name's variable value, so there is no conflict between function names
and variable names.

Macro Functions

A macro functionisalist likeal anbda expression, but instead of | anbda, macro is used.
When amacr o isinvoked, its arguments are not evaluated. Instead, they are used in their
literal form to compute a new Lisp expression. Then that is eval uated.

To define amacro with aname, use def nacr o exactly likedef un.

Page 195

B
Debugging and Profiling

In this appendix:
- Evaluation
- The Debugger
- Edebug
- The Profiler

This appendix describes some facilities in Emacs for testing and debugging your Lisp
programs.

Evaluation

A Lisp expression in any buffer can be evaluated by placing the cursor at the end of the
expression and pressing C-x C-e (eval - | ast - sexp). The keystroke M-:

(eval - expr essi on) promptsfor aLisp expression to evaluate in the minibuffer. Y ou can
also usethe commandseval - regi on andeval - current - buf fer.

The*scr at ch* buffer isnormally in Lisp Interaction mode (and if it isn't, it can be put in
that mode with M-x lisp-interaction-mode RET). In that mode, C-j is nhormally

eval - print -1 ast-sexp,whichislikeeval - | ast - sexp except that it also inserts
the result of evaluation into the buffer. Also in Lisp Interaction modeis C-M-x,

eval - def un, which evaluates the "defun" that point isin. The meaning of "defun” in this
context is broad; it means the enclosing Lisp expression (if there is one) that begins with an
open-parenthesis at the left margin. Finaly, Lisp Interaction mode allows you to type partial
Lisp symbols and complete them with M-TAB.

Lisp expressions can also be placed in filesand loaded with | oad, | oad-fil e,
| oad-library,andrequire.

The Debugger

Emacs Lisp has a built-in debugging mode that can be invoked automatically under certain
circumstances. Entering the debugger is controlled as follows.

Page 196

debug-on-entry
Thisisacommand. It prompts (with completion) for the name of a function. Whenever that
function isinvoked, Emacs will enter the debugger.

debug-on-error
Thisisavariable. If it isnon-nil, then Emacs will enter the debugger whenever an error is
signaled.

debug- on- next - cal |

Thisisavariable. If it isnon-nil, Emacs will enter the debugger the very next time an
expression is to be evaluated.

debug-on-qui t
Thisisavariable. If it isnon-nil, Emacs will enter the debugger whenever a"quit" issignaled
(e.g., when the user presses C-g).

When the debugger is invoked, awindow displaying the Lisp stack appears. In this buffer,
called * Backt r ace*, each line represents a pending function call, with the top lines
representing more recent calls. Y ou can see the pending Lisp expressions, test the values of
variables and other expressions in different contexts, and force afunction to return a certain
value.

These are the useful debugging-mode commands.

c
L eave the debugger, continuing whatever code was interrupted by entering it. Thisisn't
possible when the debugger was invoked because of an error.

q

L eave the debugger, aborting the pending computation.

d

Continue execution until the next function call, then reenter the debugger.

e

Prompt for aLisp expression to evaluate in the context of the topmost stack “frame.”
b

"Break" when returning from the current function. If the debugger isinvoked when afunctionis
called, then this command will continue execution until the same function is about to return,
then will reenter the debugger.

r
When about to return from a function, prompt for a Lisp expression to be that function's return
value (instead of whatever value it computed).

Page 197

Edebug

Edebug is an elaborate debugging environment that is far more powerful than the debugging
facilities described in the previous section. It allows you to step through the actual source code
of arunning Lisp program. Edebug is an amazing piece of work written entirely in Lisp; it'sa
testament both to the talents of its author, Daniel Lal iberte, and to the expressive power of
Emacs Lisp, which provides enough access to its own internals to make such atool possible.

This section isonly abrief summary of Edebug. For complete information, refer to the Edebug
section of The GNU Emacs Lisp Reference Manual. Details on obtaining it arein Appendix D,
Obtaining and Building Emacs.

To use Edebug, you must select those functions that you specifically wish to be able to trace.

Each function must be individually instrumented, which means evaluating it in a special way.
Thecommand edebug- def un performsthistask, and isused likeeval - def un. The
variable edebug- al | - def s (g.v.) controls whether loading Edebug should redefine the
variouseval - commandsto do instrumenting as well.

After instrumenting the desired functions, leave their definitions available in some buffer. Y ou
can uninstrument functions by re-evaluating their definitionsin the ordinary way.

Edebug is activated whenever any instrumented function is called. A window showing the
function's definition appears, along with alittle arrow in the left margin indicating on what line
execution has stopped. The cursor will be placed at the beginning of the expression that is
about to be invoked (but if you wish, you can move the cursor, or even hide the buffer, without
affecting the operation of Edebug).

At this point, you're in Edebug mode and can execute the following commands:

C
Continue execution.

q
Abort execution and |eave Edebug.

SPC

Single-step. If Edebug is stopped at a variable or a constant, move past it and show itsvalue. If
Edebug is stopped at the beginning of afunction call, move inside the function call. Subsequent
single-steps will move over each argument, showing their values. If Edebug is stopped at a
point where al the arguments to a function have been evaluated, then single-stepping calls that
function with those arguments and displays the result. If that functionisalso

Page 198

instrumented, single-stepping will descend into it. At each step, the cursor moves to the
appropriate point in the source code.

n
Next. Like single-step, but evaluates nested, instrumented functions without descending into
them.

e
Prompt for an expression to evaluate in the context of the stopped program.
h

"Continue to here." If you place the cursor in a spot in the source code where you'd like to stop,
h will cause the program to continue execution until it reaches that spot.

d
Display a backtrace, similar in appearance to Emacs's * Backtrace* buffer (see the previous
section) but without the functionality. (Edebug commands continue to work.)

b
Set a breakpoint at the location of the cursor. The program will stop any time it reaches that

point.

u
Unset a breakpoint.

X
Set a conditional breakpoint. You'll be prompted for a Lisp expression. Each time this
breakpoint is reached, if the expression is true, the program will stop.

Edebug has many more capabilities than the few listed here, but these are the most-often-used
features.

The Profiler

Profiling a program is the process of figuring out how much time different parts of it take to
run, presumably in a quest to make it more efficient. Barry Warsaw has written an ingenious
package for profiling Emacs Lisp called ELP.

Like Edebug, ELP relies on functions being "instrumented.” This is done with the command
el p-i nstrunent -functi on, which promptsfor afunction name. There'saso

el p-instrunent - package, which prompts for a prefix. Any existing functions whose
names begin with the given prefix will get instrumented.

Functions are uninstrumente with el p-rest ore-functi onandel p-restore-al | .

Page 199

To use ELP, smply run your program after instrumenting the functions you wish to profile.
Profiling data will accumulate silently. When you're ready to see the results so far, run the
command el p-resul ts. A buffer will appear, showing, for each profiled function, the
number of timesit was called, the total time spent in the function, and the average time per call.

Useel p-reset -functi on to set afunction's call-count and elapsed-time counters back to
zero; el p-reset - al | doesthisfor all profiles functions.

Page 200

C
Sharing Your Code

In this appendix:

- Preparing Source Files
- Documentation

- Copyright

- Posting

If you write aterrific new Emacs mode, or feature, or game, or whatever, it'sin the spirit of
free software for you to share it with others by posting it to the gnu.emacs.sour ces newsgroup.
This appendix describes the conventions for sharing Emacs Lisp code.

Preparing Sour ce Files

Before sharing your code with the world, it's considerate to first test it with reasonable
thoroughness, fixing any bugs you happen to find. Learn more about testing and debugging in
Appendix B, Debugging and Profiling.

Once the code is working the way you'd like it to, you should add a comment block to the
beginning of each source file describing the file, its copyright (see below), its authorship, its
version information, and other commentary. Heré's atypica beginning:

;;; foretell.el -- predict what the user will do
77, Copyright 1996 by Mrtinmer J. Hacker <njh@j h. net>
; Foretell is free software distributed under the terns

;. of the GNU General Public License, version 2. For details,
;. see the file COPYING
;; This is version 1.7 of 5 August 1996.
For nore information about Foretell, subscribe to the
;; Foretell mailing list by sending a nessage to
;; <foretell-request @i h. net>.

The file should end with a comment line like this:

;; foretell.el ends here

Page 201

which will help identify the file boundary if the fileis sent through email (which might cause
signature and other lines to be appended).

If your package includes more than onefile, it's customary to create afile called README
describing the package, the filesin it, and how to install it; then to combine al thefilesinto a
single distribution file with the shar program. If you don't have shar, you can obtain the GNU
version; refer to Appendix D, Obtaining and Building Emacs.

Documentation

At aminimum, your source files should contain enough commentary in the beginning comment
block so that readers can understand what they're for. Ideally, your code will also be
self-documenting—i.e., you will have made liberal and effective use of docstringsin al your
function and variable definitions.

If you're ambitious about writing documentation, you might want to consider creating a Texinfo
manual for your package. Texinfo is the standard documentation format of the GNU system.
Texinfo files can be processed with the makeinfo program to produce Info files, which are
browsable, tree-structured text files that can be viewed in Emacs's Info mode. Texinfo files can
also be processed with the TEX typesetting system to produce nicely-formatted printed
manuals.

An excellent Info manual on how to write Texinfo manuals accompanies the GNU texinfo
package, which includes makeinfo. For information on obtaining it or TEX, see Appendix D.

Copyright

Y ou are free to assign any copyright termsto your code you wish, within the law, of course.
Most authors of Emacs Lisp packages choose to make their software "free" (in availability, not
necessarily price) by assigning to it the terms of the GNU General Fublic License, a special
kind of copyright invented by the Free Software Foundation. Software covered by the GPL is
assured of remaining freely available, which isn't the case when, say, you release your
software into the public domain. (In that case, someone can legally copy your software, make a
changetoit, call it their own, sell the binaries, and refuse to continue distributing the source
code.)

If you wish to place your software under the GPL (a process humorously referred to as
"copylefting” your software), you need to include the terms of the GPL either in your source
files, or in aseparate file (usually COPYING) that is referenced in the copyright notice of each
source file (asin the example a the

Page 202

beginning of this appendix). Y ou can see the GPL from within Emacs by typing M-x
describe-copying RET.

Posting

Once you've assembled your shard, copyrighted, documented, tested and debugged software,
post it using your favorite newsreader to the gnu.emacs.sour ces newsgroup. Be sure to provide
ahelpful one-line description in the Subj ect : field of the post, and be sure that readers of the
newsgroup know how to contact you with questions or comments. Note well, it is considered
very bad form to post anything other than Emacs Lisp sources to gnu.emacs.sour ces. For
Non-source Posts, use gnu.misc.discuss.

Page 203

D
Obtaining and Building Emacs

In this appendix:
- Availability of
Packages
- Unpacking,
Building, and
Installing Emacs

Availability of Packages
All the software packages described in this book, with the exception of TEX, are GNU

software from the Free Software Foundation. Their software and other packages can be
retrieved via anonymous FTP from the Internet site ftp.gnu.ai.mit.edu in the directory
/pub/gnu. There are numerous mirror sites, information about whichisin GNUinfo/FTP.

If you cannot download the packages you want from the Internet, or if you wish an easier
solution, you can order software distributions from the Free Software Foundation. They are
available in diskette, tape, and CD-ROM form. Y ou can also order printed, bound copies of
many GNU manuals, including several about Emacs, plus the Texinfo manua mentioned in
Appendix C, Sharing Your Code. For more information, including prices, contact the FSF:

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA
Telephone: +1-617-542-5942
Fax: +1-617-542-2652

Emalil: gnu@prep.ai.mit.edu

The packages mentioned in this book that are available from the FSF are:

Emacs

The editor itself, plus a huge number of Lisp extensions. Available in source form asfile
emacs-X.y.tar.gz, where x and y are the magjor and minor version numbers of the latest version
(presently 19.34).

Page 204

Texinfo

The GNU documentation system, including makeinfo and a manua on writing Texinfo
documents. Requires TEX to make printed manuals. Available as texinfo-x.y.gz. The present
versionis 3.7.

Emacs Lisp Reference Manual

The Texinfo document The Emacs Lisp Reference Manual is available in source form as
elisp-manual-19-x.y.tar.gz. (The 19 refers to the major version of Emacs.) The present version
of the manual is 2.4. An online copy of this manual, created from source with makei nf o, is
indispensable for Emacs Lisp programmers.

Shar utilities

Includes shar and unshar, for creating and unpacking software distributions. Available as
sharutils-x.y.gz. The present version is4.2. Note that shar files can be unpacked without
unshar; just feed them to the standard UNIX sh command.

Gz p Compression and decompression package
Available as gzip-x.y.shar. The present versionis 1.2.4.

Tar—Another program for creating and unpacking software distributions Available as
tar-x.y.shar.gz. The present version is 1.11.8. Note that GNU tar, unlike most other
implementations, can intrinsically handle .tar.gz files without requiring the use of Gzip.

The Jargon File
The On-line HackerJargon File (which was cited in the Introduction) is also available from

the FSF as thefilejargversion.txt.gz, where version is presently 400. There'salso an Info
format version, jargversion.info.gz. It's atreasure trove of hacker lore, and is periodically
published in book form as The New Hacker's Dictionary.

Y ou can obtain TEX from the TEX Users Group:

TEX Users Group

1850 Union Street—Suite 1637
San Francisco, CA 94123 USA
Home page: http://www.tug.org/
Emalil: tug@tug.org

Fax: +1-415-982-8559

Page 205

Unpacking, Building, and I nstalling Emacs

Like most GNU software, Emacsis trivialy easy to unpack, build, and install. In fact, the
instructions that follow apply to nearly all GNU software packages, not merely Emacs.

Unpacking

If you have acompressed tar file (file name ending in .tar.gz, .tar.Z, or .tgz and you have GNU
tar, run:

tar zxvf file
If you don't have GNU tar, use this:
zcat file | tar xvf -

(You'll find zcat in the Gzip package.) If you use thetar that comes with SV R4derived
variants of UNIX, you may need to use xvof in place of xvf. The o makes you the owner of the
extracted files. (Otherwise, the owner isthe tar fil€'s originator—who probably isn't known on
your computer.) If you have a shar file (file name ending in .sh or .shar), run

unshar file
or simply
sh file

If the shar fileis compressed (.Z or .gz), uncompressit first with gzip -d.
Building and Installing

Firgt, in the top-level directory of the software package being built, configure the software by
running the configure script.

Different software packages have different configuration options. See what the options are for
apackage with ./configure --help. The options for Emacs are:

--with-gcc
Use the GNU C compiler to compile Emacs.

--with-pop
Compilein support for the Post Office Protocol (POP), sometimes used for retrieving email
(for those who read email with Emacs).

--with-kerberos
Use the Kerberos authentication extension to POP.

Page 206

--with-hesiod
Use Hesiod for finding the POP server.

--with-x
Build in X Window support.

--with-x-tool kit
Fancier X Window support; uses toolkit widgets. The X Toolkit is used by default, but
- - with-x-toolkit=motifuses the Motif toolkit instead.

Y ou may also want to watch what the configure script is doing while it runs—it can take a
while—so you'll probably want to use the - - verbose option, too. Here's how | alwaysinvoke
configure:

./configure --verbose --with-x --with-x-tool kit

After configuring the package, run make. Thiswill compile the program and can take along
time.

Next, run make check. Thisruns any self-tests that are included with the package.

Presuming that the software successfully compiled and passed its tests, install it with make
install.

Page 207

| ndex

Symbols
* (asterisk), 48-50
in buffer names, 149
in regular expressions, 58
@ ininteractive declaration, 154
' (backquote), 114, 193
\ (backslash), 6, 58, 186

\< and \> metacharacters, 60
\b and \B metacharacters, 60
\[...] construct, 49
\('\) metacharacters, 59
[1 (brackets), 135, 189
in regular expressions, 58
N (caret) in regular expressions, 58
,@ (splicing operator), 115, 193
$ (dollar sign) in regular expressions, 59
- (hyphen) in regular expressions, 58
() (parentheses), 3
in regular expressions, 59
. (period), 58
+ (plus sign) in regular expressions, 59
? (Question mark), 186
in regular expressions, 59
"(quotation mark), 7
' (single quote), 7, 193
/ (dash) function, 143

A

activate (keyword), 31

active keymaps, 128

add-hook function, 25

advice tool, 30-32

after (keyword), 30

after-change-functions variable, 67, 99, 157
after-save-hook variable, 51

aliases, function, 22

aist-replace function, 91

atkey, 5
anonymous functions, 26
append function, 82, 114, 189
apropos command, 10
aref function, 135, 187, 190
arguments, optional, 17
around (keyword), 31
ASCII codesfor characters, 186
aset function, 135, 187, 190
assoc functions, 88
association lists, 85, 89, 91
ass function, 89
asterisk (*), 48-50

in buffer names, 149

in regular expressions, 58
asynchronous process objects, 169-173
atoms, 85
auto-save-mode, 97
auto-fill-mode, 96
autoload function, 75

autoloading files, 75

B

b (debugging command), 196, 198
backquote (), 114, 193

backslash (\), 6, 58, 186

Page 208
Backspace key, 1
Backtrace* buffer, 196

backward-page command, 126

backward-word function, 104
before (keyword), 30
beginning of line, matching, 59
binding (see keybindings)
bobp function, 144
bounding searches (see limiting searches)
brackets| , 135, 189
in regular expressions, 58
breakpoints, 198
BS code, 1
buffer-file-name variable, 25
buffer-local variables (see local variables)
buffer-modified-p variable, 66
buffer objects, 165
buffers
Backtrace, 196
local keymap, 128
matching beginning/end of, 59
narrowing, 130
position in (see navigation)
read-only, 24, 50
restriction of, 53
scratch, 10, 195
switching, 30-32
unauthorized changesto, 157-161
building Emacs, 205
byte-compiling, 36, 71, 76
byte-recompile-directory function, 77

C

¢ (debugging command), 197
C-u prefix, 11

C-x commands, 127
call-process function, 166, 170

car function, 81, 189

caret (U) in regular expressions, 58
cars, cell, 83-85
case sendgitivity, 5, 63, 185
cdr function, 81, 189
char-equal function, 186
char-syntax function, 106
char-to-string function, 186
characters, 186
ASCII codesfor, 186
range of, 58
specia (metacharacters), 6, 58, 186
circular lists, 93
classes, syntax, 105
code, compiling (see byte-compiling)
command-apropos command, 12
commands, 5
completion, 195
debugging, 196
finding with apropos, 10
interactive, 15, 145-148
keymaps, 127-129
last-command variable, 35
menu, 156-157
mouse-related, 153-155

this-command variable, 43
comments, 3, 96, 200
comparing

lists, 88

strings, 186
compile (keyword), 31
compiling (see byte-compiling)
completion, 195
compression package, 204
concat function, 60, 187
concatenating lists, 82
cond function, 142, 191
condition-case function, 160
conditional expressions, 191
conditional fileloading, 74
configuration file (see .emacsfile)
configure script, 205
conflicting symbols, 117-119
cons cells, 83-85, 188
cons function, 82-84, 163
consp function, 85, 189
constants (see literal data)
control key, 5
copy-keymap function, 131
copyright, 201
copy-sequence function, 190
copy-syntax-table function, 131
crossword mode example, 133-181

current-buffer function, 176

current-column variable, 107
current-prefix-arg function, 32-33
current-time function, 48
current-time-string function, 47

current-window-configuration function, 38

Page 209
cursor
characters preceding, 108
commands for, 23
preserving location of, 52
(see also point)

customizing Emacs, 1-12

D
d (debugging command), 196, 198
data types, 186-190
date (seetime)
debugging, 195-198
macro functions, 113
profiling programs, 198
declaring (see defining)
decompression package, 204
defadvice function, 31
defalias function, 22
default variable values, 36
define-derived-mode function, 132
define-key function, 128, 153
defining
advice, 31

aliases, 22

functions, 14

interactive commands, 15

macro functions, 113, 194

minor modes, 97-99

pages, 126

paragraphs, 125

variables, 35
defmacro function, 113, 194
defsubst function, 136
defun function, 14, 194
defvar function, 35
DEL code, 1
delete-backward-char command, 8
delete-char function, 11
Delete key, 1
delete-region function, 54
derived (package), 132
derived modes, 131-132
describe-bindings command, 7
describe-copying function, 202
describe-key command, 13
detecting errors, 39
directories

byte-compiling, 77

in load path, 73
display-buffer function, 167
documentation, 201

docstrings, 14, 129, 193

dollar sign ($) in regular expressions, 59

dotted pair notation, 83

down-mouse symbols, 154-155

E
e code in interactive declaration, 154
e (debugging command), 196, 198
Edebug, 197-198
edebug-all-defs variable, 197
edebug-defun command, 197
edit-options, 49
efficiency, 46
byte-compiled files, 77
egrep utility, 169-172
€l fileextension, 71
elcfileextension, 77
elp- commands, 198-199
ELP package, 198
else clause (seeif function)
Emacs
obtaining, 203
unpacking, building, installing, 205
versions of, xii
.emacsfile, 2, 8, 71
empty list, 17, 81, 185, 189
empty string, 59
enable-local-eval function, 80
enable-local-variables function, 80
end of line, matching, 59
equa function, 88
equality (see comparing)

equivalence pairs, 152
erase-buffer function, 166
Erase key, 1
error function, 39
errors, 39, 119
condition-case function, 160
(see dso debugging)
eval-after-load command, 77
eval-defun command, 195
eval-expression command, 9, 195
eval function, 111
eval-last-sexp command, 9, 195
eval-print-last-sexp command, 10

eval pseudovariable, 80

evaluation, 185, 195
code execution after file loads, 77
explicit, 8
macro functions and, 112
of Lisp expressions, 8-10
order of, 116
self-evaluation, 8, 135, 185
of strings, 8
of variables, 4
vectors, 135
executing processes, 172
expansion of input, 113
explicit evaluation, 8

explicit fileloading, 74

Page 210

expressions, 4, 185

F

conditional, 191

evaluating, 8-10

factoring out, 18

lists of (seelists)

logical, 19

quoted/unquoted (see quoting)
S-expressions, 9

sequencing, 191

factoring out subexpressions, 18

failling gracefully, 119
falsehood, 17

features (function collections), 74

file-symlink-p function, 25

files

autoloading, 75

compiling (see byte-compiling)
configuration (see .emacsfile)
documentation for, 201
loading, 8

marking boundary of, 201
modifystamps, 65-70

symbolic links, 24-30
writestamps, 50-64

fill-column variable, 107

fill-paragraph function, 100

fill-region function, 101-102

filling paragraphs, 95

filter functions, 171
find-file-hooks variable, 24
finding commands, 10

finding Lisp files, 72
first-change-hook variable, 65
font-lock-mode, 97

format function, 29
format-time-string function, 48
forward-page command, 126

forward-word function, 104

Free Software Foundation (FSF), 203

FTP, obtaining software via, 203
function (keyword), 15, 193
functions, 193
adding to hook variables, 25
aliasesfor, 22
anonymous, 26
collections of (features), 74
defining, 14
filters, 171
function calls, 3, 188, 193
inline, 136
instrumented, 197
list-related (seelists)
macro functions, 112
parameterizing, 15-17
private, 138
return values, 55

string-related, 187

(see also hook variables)

Fundamental mode, 96

G

garbage collection, 4, 46
generate-new-buffer function, 165
get-buffer-create function, 165

get function, 44, 188

globa keymap, 128
global-set-key function, 5

global variables, 35

GNU Genera Public License, 201
goto-char function, 37

GPL (Genera Public License), 201
graceful failure, 119

grep utility, 163

H
h (debugging command), 198
help commands, 7, 13
history of Emacs, xii
hooks, 24-26, 51
horizontal
point position, 107
scolling, 38

hscroll, window, 38

hyphen (-) in regular expressions, 58

I
if function, 18, 191

Page 211

improper lists, 85
indent-for-comment command, 96
infix notation, 3
initial (argument), 135
inline functions, 136
input events, 154
input, expanding, 113
insert function, 50
installing Emacs, 205
instrumented functions, 197
integer division, 143
integerp function, 186
interactive
commands, 15, 145-148
autoloading functions as, 76
loading of Lisp files, 73
Setting user options, 49
interactive (keyword), 14, 149
interface, user (example), 141-148
intern function, 188
interning symbols, 118
iterative list functions, 87

J

Jargon File, xii, 204
judtification, 95

K

keybindings, 5, 151-153
keyboard, mouse versus, 153

keymaps, 127-129

keysequences, 127
kill-all-local-variables function, 124

L
lambda (keyword), 26, 194
|ast-change-time variable, 68
last-command variable, 35
last-input-event function, 154
length function, 56, 87, 187, 190
let (keyword), 28, 69
let* function, 117, 149
limited-save-excursion (example), 110-121
limiting searches, 54, 61
line-number-mode, 97
line-to-top function, 23
lines, matching beginning/end of, 59
links (see symbolic links)
lisp-complete-symbol command, 10
Lisp Interaction mode, 10, 195
Lisp language, 2-4

advice tool, 30-32

files, 71-80

quick reference, 185-194

sharing code, 200-202
list function, 82
listp function, 17, 85, 189
lists, 3, 81-94, 188

association lists, 89

circular, 93

destructive modification of, 89-93

empty list, 17, 81, 185, 189

functions for, 85-89
local variable, 78-80
symbol property, 43-44
literal data, 185, 193
load-file command, 8, 73
load function, 74
load-library command, 73
load path, 72
loading files, 8, 72-76
local

keymaps, 128

variables, 25, 51, 65, 124

local-set-key function, 129
local variableslists, 78-80

local-write-file-hooks variable, 51, 55

location, cursor (see cursor)
logical expressions, 19
logical operators, 191
looking-at function, 108
lookup tables, 88

loops, 192

M

M-x prefix, 15

macro functions, 112, 194
templates, 114

macroexpand function, 113

magic (Ssee metacharacters)

Page 212

mail-signature variable, 36
major modes, 96, 122-132
make-keymap function, 124
make-local-hook function, 65
make-marker function, 45
make-sparse-keymap function, 124, 128
make-symbol function, 188
make utility, 206
make-variable-buffer-local function, 67
make-vector function, 135
makeinfo utility, 201, 204
make-symbol function, 118
mapcar function, 88
margins, 107
markers, 44-46
match-beginning function, 57
match-end function, 57
matching (see searching)
matrices, 135
memory recollection (see garbage collection)
menu-bar symbol, 157
menu commands, 156-157
messages, error, 39
metakey, 5
metacharacters, 6, 58, 186
minor-mode-alist variable, 98
minor modes, 95, 97

defining, 97-99

keymaps for, 128

mode line, 98

modes, 96-99
auto-fill-mode, 96
auto-save-mode, 97
debugging, 195-198
derived, 131-132
font-lock-mode, 97
Fundamental, 96
line-number-mode, 97
Lisp Interaction, 10, 195
major, 96, 122-132
minor, 95, 97-99, 128
option-editing, 49
setting up (example), 148-151
(see also under specific mode name)

modifiers, 5

modifystamps, 65-70

mouse-1 symbol, 154

mouse commands, 153-155

mouse-set-point function, 155

N
n (debugging command), 198
narrow-to-page command, 126
narrowing, 53, 130, 143
navigation

cursor location (see cursor)

hscroll value, 38

scrolling, 21-22

undoing, 34-46

nconc function, 92
nested

keymaps, 127

list elements, 85

vectors, 135
newline characters, 186
newsgroup on GNU emacs, 202
nil symbol, 17, 81, 185

recursion and, 86
not function, 191
nreverse function, 92
nth function, 88, 189
nthedr function, 87
null function, 85, 189
numberp function, 186
numbers, 186

O

obarrays, 118

objects, buffer, 165

obtaining packages, 203
On-Line Hacker Jargon File, xii
On-line Hacker Jargon File, 204
option-editing mode, 49
optional arguments, 17
&optional (keyword), 17, 193
or function, 19, 191

order of evaluation, 116
other-buffer function, 32

other-window command, 13

other-window-backward (example), 14-21

overal prompt string, 157

P

p code (interactive), 16

P code (interactive), 21
page-delimiter variable, 126
pages, 126

paragraph-separate variable, 125
paragraph-start variable, 125

paragraphs
filling, 95
redefining, 125
parameters, function, 14, 15-17, 193
parentheses, 3
in regular expressions, 59
pathnames, 72
period (.), 58
pipes, 172
plus sign (+) in regular expressions, 59
point, 36, 53
horizontal position of, 107
matching at, 60
point markers, 120
(see also save-excursion function)
point-marker function, 120
point-min function, 53, 143
point-to-bottom function, 23

point-to-top function, 23

Page 213

post-command-hook variable, 24
posting programs, 202
preceding-char function, 108
prefix arguments, 11, 32-33
prefix keys, 127
prefix notation, 3
prefix-numeric-vaue function, 21
private functions, 138
process-buffer function, 171
process-connection-type variable, 172
processfilters, 171
process objects, 169-173
profiling programs, 198
progn function, 25, 116, 191
programs

copyright, 201

sharing, 200-202
property lists, 43-44, 188
provide function, 74
pseudo-ttys (ptys), 172
pseudovariables, 80

put function, 9, 44, 188

Q
g (debugging command), 196, 197

guestion mark (?), 186

in regular expressions, 59
quotation mark ("), 7
guote function, 8

quoting, 114, 185, 193

backquote (), 193
unquoted expressions (see quoting)
lists, 81
guotation marks ("), 7
regular expressions, 61

single quote (), 7, 193

R

r (debugging command), 196
range of characters, 58

raw prefix argument, 32-33
read-buffer function, 32
reading Lisp code, 118
README files, 201
read-only buffers, 24, 50
recusrive list functions, 85
regexp-quote function, 61
regexps (see regular expressions)
regions, 58

regular expressions, 57-64
remove-hook function, 27
replace-match function, 63
replacing text, 63

require function, 74
re-search-forward function, 60
&rest keyword, 67, 115, 193
restoring point, 36
restriction, buffer, 53

return value, function, 55

reverse function, 83, 163

reversing list elements, 83, 92
right margin, 107

run-hooks function, 124

S

S-expressions, 9

ssyntax class, 108

save-excursion function, 52, 102, 110
save-match-data function, 53
save-restriction function, 53, 130
scope, variable, 28

scratch buffer, 10, 195
scroll-down, scroll-up functions, 21
scrolling (see navigation)

search-forward function, 53

Page 214

searching

limiting, 61

for Lisp files, 72

regular expressions, 57-64

and replacing, 63

search bounds, 54
security, local variableslist and, 80
selected-window function, 177
self-evaluation, 8, 135, 185
sentinels, 170-172
sequences, 190-191
set-buffer function, 165, 178
set-marker function, 45

set-process-sentinel function, 171

set-variable function, 49
set-window-hscroll function, 39
set-window-start function, 38
setcar function, 92

setedr function, 92

setq function, 7

Setting point, 36

setting up modes (example), 148-151
sexp (see S-expressions)

shar utility, 204

sharing Lisp code, 200-202
signaled errors, 160

single quote ('), 7, 193

single-step debugging, 197
skip-chars-forward function, 104
skip-syntax-forward function, 105
dash (/) function, 143

software (see programs)

source files, 200

SPC (debugging command), 197
special characters (see metacharacters)
special property, 163

speed (see efficiency)

splicing operator (,@), 115, 193
stacks, 119

start-process function, 170

status, process, 171

string-match function, 177, 181
strings, 5, 187

comparing, 186

concatenating, 60

converting charactersto, 186

date and time (see time)

documentation (see documentation)

zero-length (empty), 59

subexpressions (see expressions)

submatches, 59
substitute-key-definition function, 151
substring function, 187
suppress-keymap function, 153
switch-to-buffer command, 30, 166, 178
switching buffers, 30-32
symbol-name function, 75
symbol table, 188
symbolic expressions (see S-expressions)
symbolic links, 24-30
symbolp function, 17
symboals, 6, 187

conflicting, 117-119

interning, 118

mouse, 154

property lists, 43-44, 188

symbol tables, 118

vector of, 153
symlinks (see symboalic links)

syntax tables/classes, 105

T
t symbol, 18, 185

table, symbol, 188
tags, 36
tar program, 204, 205
templates, macro expansions, 114
temporary variables, 28, 69, 190
testing for symbolic links, 25
TeX, 204
Texinfo format, 201, 204
text justification, 95
text motion commands, 23
this-command variable, 43
this-command-keys function, 146
timestamps, 47
modifystamps, 65-70
writestamps, 50-64
trailing whitespace, 108
traversing windows, 13-21
Trojan horse attacks, 80
troubl eshooting (see debugging)
truth. 18, 185

)

u (debugging command), 198
undoing navigation, 34-46
unpacking Emacs, 205

unscrolling (see navigation, undoing)

unshar utility, 204
unwind-protect function, 119, 160

unwinding the stack, 119

Page 215

use-local-map function, 124
user interface (example), 141-148

user options, 48

\%
variables, 190
declaring, 35
default values for, 36
evaluating, 4
global, 35
hooks (see hooks)
local, 25, 51, 65, 78-80, 124
pseudovariables, 80
temporary, 28, 69, 190
user options, 48
(see a'so under specific variable name)
vector function, 135
vectors, 135, 153, 189

versions of Emacs, xii

W

what-line function, 144
what-page command, 127
while loops, 53, 192
whitespace, trailing, 108
widen function, 53, 130
window-edges function, 37
window-height function, 38
window-hscroll function, 39
window-start function, 38

windows, 13-21, 37

words

matching beginning/end of, 60

navigating among, 104

word files, 163
write-contents-hooks variable, 51
write-file-hooks variable, 24, 51

writestamps, 50-64
X

X (debugging command), 198

Z
zero-length string, 59

zerop function, 186

