
Page ii

Writing GNU Emacs Extensions

Bob Glickstein

O'REILLY

Cambridge • Koln • Paris • Sebastopol • Tokyo

Page iv

Writing GNU Emacs Extensions
by Bob Glickstein

Copyright © 1997 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editor: Andy Oram

Production Editors: Kismet McDonough-Chan and Ellie Fountain Maden

Printing History:

April 1997: First Edition.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks and The Java
Series is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-261-1 [8/97]

Page v

For Mom and Dad, without whom. . .
well, I'd just rather not think about it.

Page vii

Table of Contents

Preface xi

1. Customizing Emacs 1

Backspace and Delete 1

Lisp 2

Keys and Strings 4

To What Is C-h Bound? 7

To What Should C-h Be Bound? 8

Evaluating Lisp Expressions 8

Apropos 10

2. Simple New Commands 13

Traversing Windows 13

Line-at-a-Time Scrolling 21

Other Cursor and Text Motion Commands 23

Clobbering Symbolic Links 24

Advised Buffer Switching 30

Addendum: Raw Prefix Argument 33

3. Cooperating Commands 34

The Symptom 34

A Cure 35

Generalizing the Solution 40

40

4. Searching and Modifying Buffers 47

Inserting the Current Time 47

Page viii

Writestamps 50

Modifystamps 65

5. Lisp Files 71

Creating a Lisp File 71

Loading the File 72

Compiling the File 76

eval-after-load 77

Local Variables Lists 78

Addendum: Security Consideration 80

6. Lists 81

The Simple View of Lists 81

List Details 83

Recursive List Functions 85

Iterative List Functions 87

Other Useful List Functions 87

Destructive List Operations 89

Circular Lists?! 93

7. Minor Mode 95

Paragraph Filling 95

Modes 96

Defining a Minor Mode 97

Mode Meat 99

99

8. Evaluation and Error Recovery 110

limited-save-excursion 110

eval 111

Macro Functions 112

Backquote and Unquote 113

Return Value 116

Failing Gracefully 119

Point Marker 120

9. A Major Mode 122

My Quips File 122

Major Mode Skeleton 123

Changing the Definition of a Paragraph 125

Quip Commands 126

Page ix

Keymaps 127

Narrowing 130

Derived Modes 131

10. A Comprehensive Example 133

New York Times Rules 133

Data Representation 134

User Interface 141

Setting Up the Mode 148

Tracking Unauthorized Changes 157

Parsing the Buffer 162

162

Word Finder 163

Last Word 181

Conclusion 183

A. Lisp Quick Reference 185

Basics 185

Data Types 186

Control Structure 190

Code Objects 193

B. Debugging and Profiling 195

Evaluation 195

The Debugger 195

Edebug 197

The Profiler 198

C. Sharing Your Code 200

Preparing Source Files 200

Documentation 201

Copyright 201

Posting 202

D. Obtaining and Building Emacs 203

Availability of Packages 203

Unpacking, Building, and Installing Emacs 205

Index 207

Page xi

Preface

Before you even begin to extend Emacs, it's already the highest-function text editor there is. Not
only can it do everything you'd normally expect (formatting paragraphs, centering lines,
searching for patterns, putting a block in upper case), not only does it have advanced features
(matching braces in source code, employing color to highlight syntactic elements in your files,
giving online help on every keystroke and other commands), but it also performs a host of
functions you'd never dream of finding in a text editor. You can use Emacs to read and compose
email and to browse the World Wide Web; you can have it run FTP for you, transparently
making remote files editable as if they were local; you can ask it to remind you about upcoming
meetings, appointments, and anniversaries. As if that weren't enough, Emacs can also play you
in a game of Go-Moku (and win, more than likely); it can tell you today's date in the ancient
Mayan calendar; and it can decompose a number into its prime factors.

With all that functionality, it may seem crazy that Emacs users often spend a significant portion
of their time extending Emacs. After all, most programmers view their editors as tools for
creating other software; why spend so much energy modifying the tool itself? A carpenter
doesn't tinker with his hammer; a plumber doesn't tinker with his wrench; they use their tools to
accomplish the job at hand. So why are Emacs users different?

The answer is that the carpenter and the plumber would tinker with their tools to make them
better, if they knew how. Who knows exactly what they need better than they do? But they're not
toolsmiths. On the other hand, Emacs is a special kind of tool: it's software, which means the
tool is the same stuff as what Emacs users use it on. The user of Emacs is often a programmer,
and programming Emacs is, after all, just programming. Emacs users are in the happy position
of being their own toolsmiths.

Page xii

This book teaches Emacs Lisp programming using a series of real-life examples progressing
from trivial to sophisticated. We'll start with simple configuration tweaks that you can put in
your Emacs startup file, and by the end we'll be writing "major modes" and modifying Emacs's
own "command loop." Along the way we'll learn about variables, keymaps, interactive
commands, buffers, windows, process I/O, and more. When I refer to Emacs in this book, I
specifically mean GNU Emacs. There are many editors that call themselves Emacs. Here's a bit
of the history of the name according to the authoritative On-line Hacker Jargon File, version
4.0.0, 24-Jul-1996:

[Emacs] was originally written by Richard Stallman in TECO under ITS at the MIT Al lab; AI Memo
554 described it as "an advanced, self-documenting, customizable, extensible real-time display
editor." It has since been re-implemented any number of times, by various hackers, and versions exist
that run under most major operating systems. Perhaps the most widely used version, also written by
Stallman and now called "GNU EMACS" or GNUMACS, runs principally under UNIX. It includes
facilities to run compilation subprocesses and send and receive mail; many hackers spend up to 80%
of their tube time inside it. Other variants include GOSMACS, CCA EMACS, UniPress EMACS,
Montgomery EMACS, jove, epsilon, and MicroEMACS.

The examples in this book were all developed and tested in GNU Emacs version 19.34 and a

pre-release version of Emacs 20.1 under various flavors of UNIX. See Appendix D, Obtaining
and Building Emacs, for information on where to find the Emacs distribution.

I've let my own progression as an Emacs user be my guide in selecting instructive examples.
The sequence of examples in this book essentially retells the story of how my own Emacs
usage matured. For instance, from the very first moment I started using Emacs I knew I had to
do something about getting that damn BACKSPACE key not to invoke the online help! Maybe
you have that problem, too. Solving that problem is the first example we'll cover in the next
chapter.

After I'd been using Emacs for a short while, I found myself wanting a number of cursor-motion
shortcuts. As I learned, they were easily written in terms of Emacs's existing motion primitives.
We'll see several examples of those in Chapter 2, Simple New Commands. Later I needed to
have some way of undoing one of my most common and maddening typing errors: pressing
CONTROL-v several times, when I meant to press CONTROL-b. Instead of moving the
cursor a few spaces to the left, I'd scroll the whole window a few times and lose my place.
Fixing this was easily done, too, as you'll see in Chapter 3, Cooperating Commands. When I
began to manage files full of clever quotations, I needed special tools to handle the specially
formatted files. We'll see some of those in Chapter 9, A Major Mode. Except for the first
handful of examples, which are simple one- and two-liners, each example has its own chapter.
Each chapter illustrates some problem needing

Page xiii

an Emacs Lisp solution, then presents a function or set of functions that solves the problem.
Then, just as real-life customizations tend to evolve to become more useful and more general,
we'll revise the solution once or twice before going on to the next subject.

Each example builds on the concepts of prior examples and introduces a few new ones of its
own. By the end of the book, we will have covered most major topics in Emacs Lisp
programming and discussed the techniques for quickly finding out how to do anything you might
need to do in Emacs Lisp, using online documentation and other information. To borrow an old
saying: Give a man a new Emacs command and he can hack for a night; teach a man to make
new Emacs commands and he can hack for a lifetime.

This book presumes that you're familiar with programming and with Emacs use. It would help
if you were acquainted with some variant of the Lisp programming language (of which Emacs
Lisp is one dialect), but that's not strictly necessary. The essentials of Lisp programming are
pretty simple and should quickly become clear through the examples we'll be using. There's
also Appendix A, Lisp Quick Reference, which briefly recaps Lisp fundamentals.

If you aren't familiar with the basic concepts in Emacs, refer to Learning GNU Emacs, 2nd
edition by Debra Cameron, Bill Rosenblatt, and Eric Raymond. Also useful is Emacs's own
online documentation, especially the Emacs "info" manual, which is also available in book
form as The GNU Emacs Manual. If you'd like a more complete understanding of Lisp
programming, I recommend Common Lisp: A Gentle Introduction to Symbolic Computation
by David Touretzky.

This book is not a reference manual for Emacs Lisp; nor, in fact, is it particularly thorough in
its coverage of the language. It's a tutorial, covering topics chosen more for good instructional

flow than for exhaustiveness. For best effect it should be read from beginning to end. The Free
Software Foundation publishes The GNU Emacs Lisp Reference Manual, the definitive
reference manual on which it would be difficult to improve. It's available in printed and
electronic forms from several sources; see Appendix D.

What Is Emacs?

It's missing the point to say that Emacs is just a programmable text editor. It's also, for instance,
a C code editor. That may seem like nitpicking, but editing C code and editing text are two very
different activities, and Emacs accommodates the differences by being two different editors.
When editing code, you don't care

Page xiv

about paragraph structure. When editing text, you don't care about indenting each line according
to its syntax.

Emacs is also a Lisp code editor. It's also a hexadecimal binary file editor. It's also a
structured outline editor. It's also a directory editor, a tar file editor, an email editor, and a
hundred others. Each kind of editor is an Emacs mode, a chunk of Lisp code that combines
Emacs's primitive types and operations in some new way. Each mode is therefore an extension
of Emacs, which means that when you strip away all those modes—when you remove the
extensions and you're left with just the core of Emacs—you don't have any editors at all; you
have the raw materials for making editors. You have an editor-builder.

What can you build with an editor-builder? Editors, of course, but what's an editor? An editor
is a program for viewing and altering a representation of data of some kind. By
"representation" I mean a set of rules for showing the data's structure and content, and for
indicating naturally how interactions with the data are supposed to proceed. When editing a
text file, the rules are pretty simple: each printable byte gets displayed in sequence, with
newline characters causing line breaks; and a cursor indicates where in the byte sequence the
next user-invoked operation will occur. When editing a directory, the metaphor is a little less
straightforward—data in the directory file must first be translated into a human-readable
form—but the resulting interactions still seem natural.

This definition of editor covers nearly the whole range of interactive applications, and that's no
accident. Interactive applications are almost always editors for some kind of data or another.
Emacs therefore is, in the end, a general-purpose, interactive application builder. It's a user
interface toolkit! Like any good toolkit, Emacs supplies a set of user-interface widgets, a set of
operations on them, an event loop, a sophisticated I/O regime, and a language for putting them
all together. The widget set may not be fancy and graphical like X11, Windows, or Macintosh
toolkits are, but as Emacs programmers discover, a full-blown graphical toolkit is often
overkill. 99% of most applications is textual, whether it's rows and columns of numbers, lists
of menu items, or letters in a crossword puzzle diagram (as in our culminating example in
Chapter 10, A Comprehensive Example). For such applications, Emacs surpasses other toolkits
in power, sophistication, simplicity, and performance.

The real answer to "Why are Emacs users different?" isn't merely that they spend time tinkering
with the tools they use. They're using Emacs for its intended purpose: to create a universe of
new tools.

Page xv

Conventions Used in This Book

The following conventions are used in this book.

Typographic Conventions

Constant Willison
Used for Emacs commands and all elements of code.

Italic
Used to introduce new terms. Used for filenames, commands entered from a UNIX shell,
newsgroups, and
Internet addresses.

Bold
Used for keystrokes.

Emacs Commands

This book follows the standard Emacs documentation when referring to keys. When you hold
down the CONTROL (CTRL) key, the syntax C- is used. When you hold down the META or
ALT key (or use the ESCAPE key for the same effect), the syntax M- is used. We also refer to
RET for the RETURN or ENTER key, TAB for the TAB key, ESC for the ESCAPE key, and
SPC for the space bar.

Examples

When you see x ⇒ y, it means that the result of computing the expression on the left yields
the value on the right.

Organization of This Book

Each chapter in this book builds on the chapters before it. I recommend that you read the
chapters in order; that way everything should make sense.

Chapter 1, Customizing Emacs
Introduces some basic changes you can make to Emacs. It will familiarize you with Emacs
Lisp, how to
evaluate Lisp expressions, and how that alters Emacs's behavior.

Chapter 2, Simple New Commands
Continues the tutorial by teaching you how to write Lisp functions and install them so
they're invoked at the
right time. Hooks and the feature called advice are introduced.

Page xvi

Chapter 3, Cooperating Commands

Teaches techniques for saving information between separate function calls and helping
groups of functions work together—the first step in writing systems instead of mere
commands. Symbol properties and markers are among the topics introduced along the way.

Chapter 4, Searching and Modifying Buffers
Shows some of the most common techniques you'll need: those that affect the current buffer
and strings within it. Regular expressions are introduced.

Chapter 5, Lisp Files
Discusses loading, autoloading, and packages, which are features you'll need when you
start creating large groups of related functions.

Chapter 6, Lists
Fills in some background on this fundamental feature of Lisp.

Chapter 7, Minor Mode
Shows how to assemble related functions and variables into an editing package called a
"minor mode." The central example in this chapter deals with making paragraph formatting
in Emacs work more like paragraph formatting in a word processor.

Chapter 8, Evaluation and Error Recovery
Shows the flexibility of the Emacs Lisp interpreter, how to control what gets evaluated
when, and how to write code that is impervious to run-time errors.

Chapter 9, A Major Mode
Explains the differences between minor and major modes, and offers a simple example of
the latter: a mode for treating a file of quotations in a more structured manner than ordinary
text.

Chapter 10, A Comprehensive Example
Defines a major mode that drastically alters Emacs's normal behavior. It's a crossword
puzzle editor and an illustration of how flexible an environment Emacs is for developing
text-oriented applications.

Appendix A, Lisp Quick Reference
Provides a handy guide to Lisp's syntax, data types, and control structures.

Appendix B, Debugging and Profiling
Describes tools you can use to track down problems in your Emacs Lisp code.

Appendix C, Sharing Your Code
Explains the steps you should take when you want to distribute your creations to other
people.

Page xvii

Appendix D, Obtaining and Building Emacs
Outlines the steps necessary to get a working version of Emacs running on your system.

Obtaining the Example Programs

If you're using a Web browser, you can get the examples from

ftp://ftp.oreilly.com/published/oreilly/nutshell/emacs_extensions.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should type in boldface.

% ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com:yourname): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: yournameayourhost.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/nutshell/emacsextensions
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for
gzipped files.)
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.
ftp> quit
221 Goodbye.

The file is a gzipped tar archive; extract the files from the archive by typing:

% gzip -dc examples.tar.gz  tar -xvf -

System V systems require the following tar command instead:

% gzip -dc examples.tar.gz  tar -xvof -

If gzip is not available on your system, use separate uncompress and tar commands.

% uncompress examples.tar.gz
% tar xvf examples.tar

Page xviii

Acknowledgments

Thanks to Nathaniel Borenstein, who helped to dispel my chauvinism about C and taught me an
appreciation for the world's amazing variety of programming languages.

Thanks to Richard Stallman for writing Emacs—twice—and who was right about an amazing
phenomenon: hackers write better code when it's for their own satisfaction instead of for pay.

Thanks to Mike McInerny, whose stubborn persistence got me started using GNU Emacs—even
after several false starts convinced me it wasn't worth my time.

Thanks to Ben Liblit for ideas, code, and bug hunting in my Defer package (which was going to
be a chapter in this book until Emacs evolved parallel functionality: the timer package.)
Additional help was provided by Simon Marshall, who used and improved on many of the
ideas in his defer-lock. Hi, Si.

Thanks to Linda Branagan for showing me it's possible for an ordinary person like me to write
a book. (Not that she's ordinary; not even close.)

Thanks to Emily Cox and Henry Rathvon for some insider information about crossword
puzzles.

Thanks to all the folks who reviewed and commented on early drafts of this book: Julie
Epelboim, Greg Fox, David Hartmann, Bart Schaefer, Ellen Siever, and Steve Webster.

Thanks to my partners at Zanshin Inc. and the Internet Movie Database for allowing me to
divide my energies between those projects and this book.

Thanks to my editor, Andy Oram, for coping flexibly with the aforementioned divided energies.

Thanks to Alex, my dog, for curling happily by my feet for much of the writing of this book.

Most of all, to Andrea Dougherty, who encouraged me, supported me, made innumerable
sacrifices, performed uncountable services, provided companionship when I needed it and
solitude when I needed that (never the other way around), and who in all other respects was
good for me and for this book: it must be love.

Page 1

1
Customizing Emacs
In this chapter

• Backspace and Delete
• Lisp
• Keys and Strings
• To What Is C-h
Bound

• To What Should C-h
be bound

• Evaluating Lisp
Expressions

• Apropos

This chapter introduces basic Emacs customizations, and teaches some Emacs Lisp along the
way. One of the simplest and most common customizations is to move commands from one key
to another. Perhaps you don't like Emacs's two-key sequence for saving files (C-x C-s)
because you've been using some other editor where save is simply C-s. Or perhaps you
sometimes accidentally type C-x C-c, which exits Emacs, when you mean to press only C-x,
and you'd like accidental presses of C-x C-c to have a less drastic effect. Or perhaps, as in the
example that follows, you need to work around an unusual expectation that Emacs has about
your keyboard.

Backspace and Delete

Imagine you're typing the word ''Lisp" and you accidentally type "List." To correct your typo,
do you press the BACKSPACE key or the DELETE key?

The answer depends on your keyboard, but it's not merely a question of how the key is labeled.
Sometimes the key is labeled "Backspace," sometimes it's labeled "Delete," sometimes
"Erase," and sometimes it's not labeled with a word but has a left-pointing arrow or some other
graphic. To Emacs, what matters isn't the label but the numeric character code that the key
generates when pressed. Regardless of the label on the key, the "move left and erase the
previous character" key may generate an ASCII "backspace" code (decimal 8, usually denoted
BS) or an ASCII "delete" code (decimal 127, usually denoted DEL).

In its default configuration, Emacs believes only DEL is the code meaning "move left and erase
the previous character." If you have a BACKSPACE/DELETE/ERASE key that generates a
BS, it won't do what you expect when you press it.

Page 2

What's worse is what your BACKSPACE/DELETE/ERASE key will do when you press it, if
it's a BS-generating key. Emacs presumes that since BS isn't used for moving left and erasing
the previous character, it's available to perform another function. As it happens, BS is also the
code sent when you press C-h. If you're among those who don't need C-h to mean "move left
and erase the previous character," then C-h is a pretty natural choice for a Help key, and in fact
that's what Emacs uses it for by default. Unfortunately, this means that if you have a
BS-generating BACKSPACE/DELETE/ERASE key, then pressing it won't backspace or
delete or erase; it will invoke Emacs's online help.

More than one tentative first-time Emacs user has been put off by the surprise that greets them
the first time they try to erase a typo. Suddenly a new Emacs window—the Help
window—pops up, prompting the hapless user to choose some Help subcommand. The Help
window is so verbose and unexpected that it merely exacerbates the user's astonishment. The
natural panic reaction—hit C-g ("abort the current operation") a bunch of times—is
accompanied by a cacophonous ringing of the terminal bell. It's no wonder that intelligent,
well-meaning users who might otherwise have helped swell the ranks of fervent Emacs
evangelists instead choose to continue struggling with safe, inoffensive vi. It pains me to think
of it, especially when the situation is so easily remedied. When Emacs starts, it reads and
executes the contents of the .emacs file in your home directory. Emacs Lisp is the language of
this file, and as we will discover in the course of this book, there's almost nothing you can't
customize in Emacs by writing some Emacs Lisp and putting it in .emacs. The first thing we'll
look at is adding some code to .emacs to make BS and DEL both do "back up and erase a
character," moving the Help command to some other key. First we'll need to take a look at
Lisp, the language of the .emacs file.

Lisp

Various forms of Lisp have been around since the 1950s. It is traditionally associated with
artificial intelligence applications, for which Lisp is well-suited because it permits symbolic

computation, can treat code as data, and simplifies building very complicated data structures.
But Lisp is much more than just an AI language. It is applicable to a wide range of problems, a
fact that is frequently overlooked by computer scientists but which is well known to Emacs
users. Among the features that distinguish Lisp from other programming languages are:

Page 3

Fully-parenthesized prefix notation

All expressions and function calls in Lisp are surrounded by parentheses,* and the function
name always precedes the arguments to the function. So whereas in other languages you
may be able to write:

x + y

to apply the + function to the arguments x and y, in Lisp you write

(+ x y)

"Prefix notation" means that the operator precedes the operands. When the operator is
between the operands, it's called "infix notation."

Though unfamiliar, prefix notation has some benefits over infix notation. In infix languages,
to write the sum of five variables you need four plus signs:

a+b+ c +d+e

Lisp is more concise:

(+ a b c d e)

Also, questions of operator precedence do not arise. For example, is the value of

3 + 4 * 5

35 or 23? It depends on whether * has higher precedence than +. But in Lisp, the confusion
vanishes:

(+ 3 (* 4 5)) ;result is 23

(* (+ 3 4) 5) ;result is 35

(Comments in Lisp are introduced with a semicolon and continue to the end of the line.)
Finally, while infix languages need commas to separate the arguments to a function:

foo(3 + 4, 5 + 6)

Lisp doesn't need that extra bit of syntax:

(foo (+ 3 4) (+ 5 6))

List data type

Lisp has a built-in data type called a list. A list is a Lisp object containing zero or more
other Lisp objects, surrounded by parentheses. Here are some lists:

 (hello there) ; list containing two "symbols"

 (1 2 xyz ") ; two numbers and a string
 (a (b c)) ; a symbol and a sublist (containing two symbols)

 () ; the empty list

* The proliferation of parentheses in Lisp is a feature that Lisp critics cheerfully decry as a sure sign
of its inferiority. According to them, Lisp stands for "Lots of Infernal Stupid Parentheses." (In fact,
Lisp stands for "List Processing.") In my view, the much simpler syntax renders Lisp code more
readable, not less, than code in other languages, as I hope you will agree.

Page 4

Lists can be assigned to variables, passed as arguments to functions and returned from
them, constructed with such functions as cons and append, and taken apart with such
functions as car and cdr. We'll be covering all that in plenty of detail later.

Garbage collection

Lisp is a garbage-collected language, which means that Lisp itself automatically reclaims
the memory used by your program's data structures. By contrast, with languages such as C,
one must explicitly allocate memory with malloc when it's needed, then explicitly release
it with free. (The malloc/free approach and others like it in non-garbage-collecting
languages are prone to abuse. Prematurely releasing allocated memory is one of the world's
greatest sources of program errors, and forgetting to release allocated memory can cause
programs to "bloat" until all available memory is used up.)

For all the convenience that garbage collection affords the programmer, it also has a
drawback: periodically, Emacs stops everything it's doing and displays the message
"Garbage collecting. . . " to the user. The user cannot use Emacs until garbage collection is
finished.* This usually takes only a second or less, but it may happen very often. Later on
we'll learn some programming practices that help to reduce the amount of garbage
collection that takes place.

The word expression usually means any piece of Lisp code or any Lisp data structure. All Lisp
expressions, whether code or data, can be evaluated by the Lisp interpreter built into Emacs to
make them yield some computational result. The effect of evaluating a variable is to access the
Lisp object previously stored in the variable. Evaluating a list is the way to invoke Lisp
functions, as we'll see below. Since the invention of Lisp, there have been many Lisp dialects,
some of which barely resemble the others. MacLisp, Scheme, and Common Lisp are some of
the better-known ones. Emacs Lisp is different from all of these. This book focuses only on
Emacs Lisp.

Keys and Strings

The goal of this chapter is to make any BS-generating key work the same as any
DEL-generating key. Unfortunately, C-h will no longer invoke the Help command.

* Emacs uses a mark-and-sweep garbage collection scheme, which is one of the easiest ways to
implement garbage collection. There are other approaches to implementing garbage collection that
would not be so intrusive from the user's point of view; for instance, so-called "incremental" garbage
collection can take place without bringing Emacs to a halt. Unfortunately, Emacs does not employ

one of these more advanced approaches.

Page 5

You'll need to choose some other key to invoke Help; my own choice for the new Help key is
META-question-mark.

The META Key

The META key works like the CONTROL key and the SHIFT key, which means that you hold
it down while pressing some other key. Such keys are called modifiers. Not all keyboards have
a META key, though. Sometimes the ALT key will serve the same purpose, but not all
keyboards have an ALT key, either. In any case, you don't need to use the META key or the
ALT key. The single keystroke META-x can always be replaced with the two-key sequence
ESC x. (Note that ESC is not a modifier—you press it and release it like a normal key before
pressing x.)

Binding Keystrokes to Commands

In Emacs, every keystroke invokes a command or is part of a multiple-key sequence that
invokes a command. Commands are special kinds of Lisp functions, as we will see. Making a
keystroke invoke a command such as Help is known as binding the keysequence to the
command. We'll need to execute some Lisp code to bind keys to commands. One Lisp function
for doing this is global-set-key.

Here's what a call to global-set-key looks like. Remember that a function call in Lisp is
simply a parenthesized list. The first element of the list is the name of the function, and any
remaining elements are the arguments. The function global-set-key takes two arguments:
the keysequence to bind, and the command to bind it to.

(global-set-key keysequence command)

One important thing to note about Emacs Lisp is that it is case-sensitive.

The keysequence we've chosen is META-question-mark. How is this denoted in Emacs Lisp?

Denoting Keys in Strings

There are a few different ways to write a keysequence in Emacs Lisp notation. The simplest is
to write the keys as a string. In Lisp, a string is a sequence of characters surrounded with
double quotes.

"xyz " ; three-character string

 Page 6

To get a double quote in the string itself, precede it with a backslash (\):

"I said, \"Look out!\""

This represents the string containing these characters:

I said, "Look out!"

To include a backslash in the string, precede it with another backslash.

An ordinary key is denoted by writing the character in a string. For instance, the keystroke q is
denoted in Lisp by the string "q". The keystroke \ would be written as "\ \".

Special characters such as META-question-mark are denoted in strings using a special
syntax: "\M-?". Even though there are four characters inside the double quotes, Emacs reads
this as a string containing the single character called META question-mark.*

In Emacs jargon, M- x is shorthand for META- x, and "\M-x" is the string version.
CONTROL-x is abbreviated C- x in Emacs documentation, and in strings is written as: "\C- x
". You can combine the CONTROL and META keys, too. CONTROL META-x is denoted
C-M- x and is written as ''\C-\M- x " in strings. "\C-\M- x ", incidentally, is interchangeable
with "\M-\C- x " (META-CONTROL- x).

(CONTROL- x is also sometimes abbreviated ^x in documentation, corresponding to this
alternative string syntax: "\^x".)

Now we know how to fill in the first argument to our global-set-key example:

(global-set-key "\M-?" command)

(One other way to write the keysequence "\M-?" is "\e?". The string "\e" denotes the escape
character, and M- x is the same as ESC x.)

Next we must figure out what belongs in place of command. This argument should be the name
of the Help function that we want M-? to invoke-i.e., the function that C-h now invokes. In
Lisp, functions are named with symbols. Symbols are like function names or variable names in
other languages, although Lisp allows a wider variety of characters in symbols than most
languages allow in their variable names. For instance, legal Lisp symbols include let* and
up&down-p.

* You can use the length function, which returns the length of a string, to confirm this. If you
evaluate (length " \M-? "), the result is 1. How to "evaluate" is covered later in this chapter.

Page 7

To What Is C-h Bound?

In order to find the symbol that names the Help command, we can use C-h b, which invokes
another command called describe-bindings. This is one of the Help system's many
subcommands. It presents a window listing all the keybindings in effect. Looking through it for
the C-h binding, we find this line:

C-h help-command

This tells us that help-command is the symbol that names the function that invokes Help.

Our Lisp example is almost complete, but we can't just write

(global-set-key "\M-?" help-command) ; almost right!

This is wrong because of the way symbols are interpreted when they appear in Lisp
expressions. If a symbol appears in the first position of a list, it's the name of a function to
execute. If it appears elsewhere, it's a variable whose value needs to be retrieved. But when
we run global-set-key as shown, we don't want the value contained in
help-command, whatever that may be. The value we want is the symbol help-command
itself. In short, we wish to prevent the symbol from being evaluated before it's passed to
global-set-key. After all, as far as we know, help-command doesn't have a value as a
variable.

The way to prevent a symbol (or any Lisp expression) from being evaluated is to quote it by
preceding it with a single quote ('). It looks like this:

(global-set-key * \M-?" 'help-command)

Our Lisp example is now complete. If you place this line in your .emacs file, then M-? will
invoke help-command the next time you run Emacs, and in all future Emacs sessions. (Soon
we'll learn how to make Lisp expressions take effect immediately.) M-? b will invoke
describe-bindings the way C-h b did before (and still does—at this point, both M-?
and C-h are bound to help-command).

Incidentally, to illustrate the difference between quoting and not quoting, the same effect could
be achieved with

(setq x 'help-command) ; setq assigns a variable
(global-set-key "\M-?" x) ; usex's value

The first line sets the variable x to hold the symbol help-command. The second uses x's
value-the symbol help-command—as the binding for M-?. The only difference between this
and the first example is that now you end up with a leftover variable named x that didn't exist
before.

Page 8

Symbols aren't the only things that may follow a ' character; any Lisp expression can be quoted,
including lists, numbers, strings, and other kinds of expressions we'll learn about later. Writing
'expr is shorthand for

(quote expr)

which, when evaluated, yields expr. You might have noticed that a quote is required before the
symbol help-command but not before the string argument, "\M-?". This is because in Lisp,
strings are self-evaluating, which means that when the string is evaluated, the result is the
string itself. So quoting it, while harmless, is redundant. Numbers, characters, and vectors are
other types of self-evaluating Lisp expressions.

To What Should C-h Be Bound?

Now that we've bound help-command to M-?, the next thing to do is to change the binding
for C-h. Using exactly the same process just described-that is, running
describe-bindings (with either C-h b or M-? b at this point)-we find that the command
invoked by DEL is delete-backward-char.

So we can write

(global-set-key "\C-h" delete-backward-char)

Now DEL and C-h do the same thing. If you put these lines into your .emacs file:

(global-set-key "\M-?" 'help-command)
(global-set-key "\C-h" delete-backward-char)

then in your future Emacs sessions, your BACKSPACE/DELETE/ERASE key will do the
right thing, whether it sends a BS code or a DEL code. But how can we cause these changes to
take effect in the current session? This requires explicit evaluation of these two Lisp
expressions.

Evaluating Lisp Expressions

There are several ways to explicitly evaluate Lisp expressions.

1. You can put the Lisp expressions in a file, then load the file. Suppose you place the
expressions in a file named rebind.el. (Emacs Lisp filenames customarily end in .el.) You
could then type M-x load-file RET rebind.el RET to cause Emacs to evaluate the contents
of that file.

If you placed those expressions into your .emacs file, you could load .emacs in the same
way. But after you've been using Emacs for a while, your .emacs tends to grow, and if it's
very large, loading it could be slow. In that case, you wouldn't want to load the entire file
just to get the effect of a couple of small changes. That brings us to our next option.

Page 9

2. You can use the command eval-last-sexp, which is bound to* C-x C-e. (Sexp is an
abbreviation for S-expression, which in turn is short for symbolic expression, which is
another name for "Lisp expression.") This command evaluates the Lisp expression to the left
of the cursor. So what you'd do is position the cursor at the end of the first line:

(global-set-key "\M-?" 'help-command)
(global-set-key "\C-h" 'delete-backward-char)

and press C-x C-e; then move to the end of the second line:

(global-set-key "\M-?" 'help-command
(global-set-key "\C-h" 'delete-backward-char)

and press C-x C-e again. Note that each time you press C-x C-e, the result of evaluating
global-set-key-the special symbol nil (which we'll see again later)—is shown in
Emacs's message area at the bottom of the screen.

3. You can use the command eval-expression, which is bound to M- . This command
prompts you in the minibuffer (the area at the bottom of the screen) for a Lisp expression,
then evaluates it and shows the result.

eval-expression is one of a few commands considered by the makers of Emacs to be
dangerous for novice users to try. Hogwash, I say; nevertheless, the command is initially

disabled, so when you try to use it, Emacs tells you "You have typed M-:, invoking disabled
command eval-expression." Then it displays a description of eval-expression
and prompts you as follows:

You can now type
Space to try the command just this once,
 but leave it disabled,
Y to try it and enable it (no questions if you use it again),
N to do nothing (command remains disabled).

If you choose Y, Emacs adds the following Lisp expression to your .emacs.

(put 'eval-expression 'disabled nil)

(The put function relates to property lists, which we'll see in the section on "Symbol
Properties" in Chapter 3.) My advice is to put this in your .emacs yourself before you ever
get this message from Emacs, so you'll never have to bother with the "disabled command"
warning. As soon as you put the put

*Technically, one should only speak of keysequences being bound to commands, not commands being
bound to keysequences. (To say that a keysequence is "bound" to a command correctly signifies that
there's just one thing it can do-invoke that command. To say that a command is "bound" to a
keysequence would mean that only one keysequence can invoke the command, but that's never the
case.) But this misuse of "bound to" is as common as the correct use, and rarely causes confusion.

Pronounced "sex pee." Unfortunately.

 This keybinding is new in Emacs 19.29. In prior versions, eval-expression was bound to
M-ESC by default.

Page 10

function in .emacs, of course, it's a good idea to evaluate it so it takes effect in the present
session, using eval-last-sexp as described above.

4. You can use the *scratch* buffer. This buffer is automatically created when Emacs
starts. The buffer is in Lisp Interaction mode. In this mode, pressing C-j invokes
eval-print-last-sexp, which is like eval-lastsexp except that the result of
the evaluation is inserted into the buffer at the location of the cursor. Another feature of
Lisp Interaction mode is its ability to complete a partially typed Lisp symbol when you
press M-TAB (which invokes lisp-complete-symbol). Lisp Interaction mode is
particularly useful for testing and debugging Lisp expressions that are too long to type into
the minibuffer, or that yield complicated data structures when evaluated.

Whichever method you use, evaluating the global-set-key expression results in the new
bindings being used.

Apropos

Before wrapping up this first example, let's discuss Emacs's most important online help
facility, apropos. Suppose you're one of those who have both BS and DEL keys and think
it's a good idea for BS to erase the character preceding the cursor and DEL to erase the
character following the cursor. You know that delete-backward-char is the command
that accomplishes the former, but you don't know which command achieves the latter. You

strongly suspect that Emacs must have such a command. How do you find it?

The answer is to use the apropos command, which allows you to search all known variables
and functions for a pattern you specify. Try this:*

M-x apropos RET delete RET

The result is a buffer listing all the matches for "delete" among Emacs's variables and
functions. If we search that buffer for occurrences of the word "character," we narrow the field
down to

backward-delete-char
Command: Delete the previous N characters (following if N is negative).
backward-delete-char-untabify
Command: Delete characters backward, changing tabs into spaces.
delete-backward-char
Command: Delete the previous N characters (following if N is negative).
delete-char
Command: Delete the following N characters (previous if N is negative).

*All Emacs commands, regardless of which keys (if any) they're bound to, can be invoked with M-x command-name

binding for a command, execute-extended-command, which prompts for the name of a command to execute.

Page 11

The function delete-char is the one we want.

(global-set-key "\C-?" 'delete-char)

(For historical reasons, the way to write the DEL character is CONTROL-question-mark.)

You may invoke apropos with a prefix argument. In Emacs, pressing C-u before executing a
command is a way to pass extra information to the command. Frequently, C-u is followed by a
number; for instance, C-u 5 C-b means "move the cursor left 5 characters." Sometimes the
extra information is just the fact that you pressed C-u.

When apropos is invoked with a prefix argument, it not only reports Emacs functions and
variables that match the search pattern, it also reports any existing keybindings for each
command in the list. (This isn't the default because finding the keybindings can be slow.) Using
C-u M-x apropos RET delete RET and picking out occurrences of "character" as before, we
come up with:

backward-delete-char (not bound to any keys)
Command: Delete the previous N characters (following if N is negative).
backward-delete-char-untabify (not bound to any keys)
Command: Delete characters backward, changing tabs into spaces.
delete-backward-char C-h, DEL
Command: Delete the previous N characters (following if N is negative).
delete-char C-d
Command: Delete the following N characters (previous if N is negative).

This confirms that both C-h and DEL now invoke delete-backward-char, and also
informs us that delete-char already has a binding: C-d. After we execute

(global-set-key "\C-?" 'delete-char)

if we run apropos again, we find

backward-delete-char (not bound to any keys)
Command: Delete the previous N characters (following if N is negative).
backward-delete-char-untabify (not bound to any keys)
Command: Delete characters backward, changing tabs into spaces.
delete-backward-char C-h
Command: Delete the previous N characters (following if N is negative).
delete-char C-d, DEL
Command: Delete the following N characters (previous if N is negative).

Page 12

When we know that the target of our search is an Emacs command, as opposed to a variable or
function, we can further limit the scope of the search by using command-apropos (M-? a)
instead of apropos. The difference between a command and other Lisp functions is that
commands have been written specially to be invoked interactively, i.e., from a keybinding or
with M-x. Functions that aren't commands can only be invoked as function calls from other
Lisp code or by such commands as eval-expression and eval-last-sexp. We'll
look at the roles of functions and commands more in the next chapter.

Page 13

2
Simple New Commands
In this chapter:

• Traversing Windows

• Line-at-a-Time
Scrolling

• Other Cursor and
Text Motion
Commands

• Clobbering Symbolic
Links

• Advised Buffer
Switching

• Addendum Raw
Prefix Argument

In this chapter we'll develop several very small Lisp functions and commands, introducing a
wealth of concepts that will serve us when we tackle larger tasks in the chapters to follow.

Traversing Windows

When I started using Emacs, I was dissatisfied with the keybinding C-x o, other-window. It
moves the cursor from one Emacs window into the next. If I wanted to move the cursor to the
previous window instead, I had to invoke other-window with -1 as an argument by typing
C-u - 1 C-x o, which is cumbersome. Just as cumbersome was pressing C-x o repeatedly until
I cycled through all the windows and came back around to what had been the "previous" one.

What I really wanted was one keybinding meaning "next window" and a different keybinding
meaning "previous window." I knew I could do this by writing some new Emacs Lisp code and
binding my new functions to new keybindings. First I had to choose those keybindings. ''Next"
and "previous" naturally suggested C-n and C-p, but those keys are bound to next-line and
previous-line and I didn't want to change them. The next best option was to use some
prefix key, followed by C-n and C-p. Emacs already uses C-x as a prefix for many
two-keystroke commands (such as C-x o itself), so I chose C-x C-n for "next window" and
C-x C-p for "previous window."

I used the Help subcommand describe-key* to see whether C-x C-n and C-x C-p were
already bound to other commands. I learned that C-x C-n was the keybinding

* The keybinding for describe-key is M-? k if you've changed the help-command binding as
described in Chapter 1, Customizing Emacs; otherwise it's C-h k.

Page 14

for set-goal-column, and C-x C-p was the keybinding for mark-page. Binding them to
commands for "next window" and "previous window" would override their default bindings.
But since those aren't commands I use very often, I didn't mind losing the keybindings for them.
I can always execute them using M-x.

Once I'd decided to use C-x C-n for "next window," I had to bind some command to it that
would cause "next window" to happen. I wanted a ''next window" function that would move the
cursor into the next window by default-just like C-x o, which invokes other-window. So
creating the keybinding for C-x C-n was a simple matter of putting

(global-set-key "\C-x\C-n" 'other-window)

into my .emacs. Defining a command to bind to C-x C-p was trickier. There was no existing
Emacs command meaning "move the cursor to the previous window." Time to define one!

Defining other-window-backward

Knowing that other-window can move the cursor to the previous window when given an
argument of -1, we can define a new command, other-window-backward, as follows:

(defun other-window-backward ()
"Select the previous window."
(interactive)
(other-window -1))

Let's look at the parts of this function definition.

1. A Lisp function definition begins with defun.

2. Next comes the name of the function being defined; in this case, I've chosen
other-window-backward.

3. Next comes the function's parameter list.* This function has no parameters, so we specify an
empty parameter list.

4. The string "Select the previous window." is the new function's documentation string, or
docstring. Any Lisp function definition may have a docstring. Emacs displays the docstring
when showing online help about the function, as with the commands
describe-function (M-? f) or apropos.

5. The next line of the function definition, (interactive), is special. It distinguishes this
function as an interactive command.

* What's the difference between a "parameter" and an "argument"? The terms are usually used
interchangeably, hut technically speaking, "parameter" refers to the variable in the function definition,
while "argument" is the value that gets passed in when the function is called. The value of the argument
is assigned to the parameter.

Page 15

A command, in Emacs, is a Lisp function that can be invoked interactively, which means it
can be invoked from a keybinding or by typing M-x command-name. Not all Lisp
functions are commands, but all commands are Lisp functions.

Any Lisp function, including interactive commands, can be invoked from within other Lisp
code using the (function arg . . .) syntax.

A function is turned into an interactive command by using the special (interactive)
expression at the beginning of the function definition (after the optional docstring). More
about this "interactive declaration" below.

6. Following the name of the function, the parameter list, the docstring, and the
interactive declaration is the body of the function, which is simply a sequence of Lisp
expressions. This function's body is the sole expression (other-window -1), which
invokes the function other-window with an argument of -1.

Evaluating the defun expression defines the function. It's now possible to call it in Lisp
programs by writing (other-window-backward); to invoke it by typing M-x
other-window-backward RET; even to get help on it by typing M-? f
other-window-backward RET. Now all that's needed is the keybinding:

(global-set-key "\C-x\C-p" 'other-window-backward)

Parameterizing other-window-backward

This keybinding does what we need, but we can improve on it a bit. When using C-x o (or,
now, C-x C-n) to invoke other-window, you can specify a numeric prefix argument n to
change its behavior. If n is given, other-window skips forward that many windows. For
instance, C-u 2 C-x C-n means "move to the second window following this one." As we've
seen, n may be negative to skip backward some number of windows. It would be natural to

give other-window-backward the ability to skip backward some number of windows
when a prefix argument n is given-skipping forward if n is negative. As it is,
other-window-backward can only move backward one window at a time.

In order to change it, we must parameterize the function to take one argument: the number of
windows to skip. Here's how we do that:

(defun other-window-backward (n)
"Select Nth previous window.'
(interactive "p")
(other-window (- n)))

* Again, it's only M-? f if you've changed the keybinding for help-command to M-?. From here on,
I'll assume that you have, or if you haven't you at least know what I mean.

Page 16

We've given our function a single parameter named n. We've also changed the interactive
declaration to (interactive "p"), and we've changed the argument we pass to
other-window from -1 to (- n). Let's look at these changes, starting with the
interactive declaration.

An interactive command is, as we have observed, a kind of Lisp function. That means that the
command may take arguments. Passing arguments to a function from Lisp is easy; they simply
get written down in the function call, as in (other-window -1). But what if the function is
invoked as an interactive command? Where do the arguments come from then? Answering this
question is the purpose of the interactive declaration.

The argument to interactive describes how to obtain arguments for the command that
contains it. When the command takes no arguments, then i interactive has no arguments,
as in our first draft of other-window-backward. When the command does take
arguments, then interactive takes one argument: a string of code letters, one code letter
per argument being described. The code letter p used in this example means, "if there is a
prefix argument, interpret it as a number, and if there is no prefix argument, interpret that as the
number 1."* The parameter n receives the result of this interpretation when the command is
invoked. So if the user invokes other-window-backward by typing C-u 7 Cx C-p, n will
be 7. If the user simply types C-x C-p, n will be 1. Meanwhile,
other-window-backward can also be called non-interactively from other Lisp code in
the normal way: (other-window-backward 4), for example.

The new version of other-window-backward calls other-window with the argument
(- n). This computes the negative of n by passing it to the function -. (Note the space between
the - and the n.) The function - normally performs subtraction-for instance, (- 5 2) yields
3—but when given only one argument, it negates it.

In the default case, where n is 1, (- n) is -1 and the call to other-window becomes
(other-window -1)—precisely as in the first version of this function. If the user specifies
a numeric prefix argument-C-u 3 C-x C-p, say—then we call (other-window -3), moving
three windows backward, which is exactly what we want.

It's important to understand the difference between the two expressions (- n) and -1. The first

is a function call. There must be a space between the function name and the argument. The
second expression is an integer constant. There may not be a space between the minus sign and
the 1. It is certainly possible to write (- 1) (though there's no reason to incur the cost of a
function call when you

* To see a description of interactive' s code letters, type M-? f interactive RET.

Page 17

can alternatively write -1). It is not possible to write -n, because n is not a constant.

Making the Argument Optional

There's one more improvement we can make to other-window-backward, and that's to
make the argument n optional when invoked from Lisp code, just as giving a prefix argument is
optional when invoking other-window-backward interactively. It should be possible to
pass zero arguments (like this: (other-window-backward)) and get the default behavior
(as if calling this: (other-window-backward 1)). Here's how that's done:

(defun other-window-backward (&optional n)
"Select Nth previous window."
(interactive "p")
(if n

(other-window (- n)) ;ifn s non-nil
(other-window -1))) ;ifn snil

The keyword &optional appearing in a parameter list means that all subsequent parameters
are optional. The function may be called with or without a value for an optional parameter. If
no value is given, the optional parameter gets the special value nil.

The symbol nil is special in Lisp for three reasons:

• It designates falsehood. In the Lisp structures that test a true/false condition—if, cond,
while, and, or, and not-a value of nil means "false" and any other value means
"true." Thus, in the expression

(if n
 (other-window (- n))
 (other-window -1))

(which is Lisp's version of an if-then-else statement), first n is evaluated. If the value of n
is true (non-nil), then

(other-window (- n))

is evaluated, otherwise

(other-window -1)

is evaluated.

There is another symbol, t, that designates truth, but it is less important than nil. See
below.

• It is indistinguishable from the empty list. Inside the Lisp interpreter, the symbol nil and

the empty list () are the same object. If you call listp, which tests whether its argument
is a list, on the symbol nil, you'll get the result t, which means truth. Likewise, if you call
symbolp, which tests whether its

Page 18

argument is a symbol, on the empty list, you'll get t again. However, if you call symbolp
on any other list, or listp on any other symbol, you'll get ni1—falsehood.

• It is its own value. When you evaluate the symbol nil, the result is nil. For this reason,
unlike other symbols, nil doesn't need to be quoted when you want its name instead of its
value, because its name is the same as its value. So you can write

(setq x nil) ;assign nil to variable x

instead of writing

(setq x 'nil)

although both will work. For the same reason, you should never ever assign a new value to
nil*,' even though it looks like a valid variable name.

Another function of nil is to distinguish between proper and improper lists. This use is
discussed in Chapter 6, Lists.

There is a symbol, t, for designating truth. Like nil, t is its own value and doesn't need to be
quoted. Unlike nil, t isn't mysteriously the same object as something else. And also unlike
nil, which is the only way to denote falsehood, all other Lisp values denote truth just like t
does. However, t is useful when all you mean is truth (as in the result of symbolp) and you
don't want to choose some arbitrary other Lisp value, like 17 or "plugh", to stand for truth.

Condensing the Code

As mentioned before, the expression

(if n ; if this. . .
(other-window (- n)) ;. . . then this

(other-window -1)) ;. . . else this

is the Lisp version of an if-then-else statement. The first argument to if is a test. It is evaluated
to see whether it yields truth (any expression except nil) or falsehood (nil). If it's truth, the
second argument-the "then" clause-is evaluated. If it's falsehood, the third argument—the "else"
clause (which is optional)—is evaluated. The result of if is always the result of the last thing
it evaluates. See Appendix A, Lisp Quick Reference, for a summary of if and of Lisp's other
flow-control functions, such as cond and while.

In this case, we can make the if expression more concise by factoring out the common
subexpressions. Observe that other-window is called in both branches (the "then" and the
"else" clauses) of the if. The only thing that varies,

*Actually, Emacs won't let you assign a value to nil.

Page 19

depending on n, is the argument that gets passed to other-window. We can therefore
rewrite this expression as:

(other-window (if n (- n) -1))

In general,

(if test
(a b)

(a c))

can be shortened to (a (if test b c)).

We can factor out common subexpressions again by observing that in both branches of the if,
we're looking for the negative of something—either the negative of n or the negative of 1. So

(if n (- n) -1)

can become (- (if n n 1)).

Logical Expressions

An old Lisp programmers' trick can now be used to make this expression even

more concise:

(if n n 1) (or n 1)

The function or works like the logical "or" in most languages: if all of its arguments are false,
it returns falsehood, otherwise it returns truth. But Lisp's or has an extra bit of usefulness: it
evaluates each of its arguments in order until it finds one that's non-nil, then it returns that
value. If it doesn't find one, it returns nil. So the return value from or isn't merely false or
true, it's false or the first true value in the list. This means that generally speaking,

(if a a b)

can be replaced by

(or a b)

In fact, it often should be written that way because if a is true, then (if a a b) will evaluate it
twice whereas (or a b) won't. (On the other hand, if you specifically want a evaluated twice,
then of course you should use if.) In fact,

(if a a ; if a is true, return a
(if b b ; else if b is true, return b

. . .
(if y y z))) ; else if y is true, return y, else z

(which might look artificial here but is actually a pretty common pattern in actual programs)
can be changed to the following form.

Page 20

(or a b . . . y z)

subject to the warning about evaluating expressions multiple times.

Similarly,

(if a
(if b

. . .
(if y z)))

(note that none of the ifs in this example has an "else" clause) can also be written as

(and a b . . . y z)

because and works by evaluating each of its arguments in order until it finds one that's nil. If
it finds one, it returns nil, and if it doesn't find one, it returns the value of the last argument.

One other shorthand to watch out for: some programmers like to turn

(if (and a b . . . y) z)

into

(and a b . . . y z)

but not me because, while they're functionally identical, the former has shades of meaning—"do
z if a through y are all true"—that the latter doesn't, which could make it easier for a human
reader to understand.

The Best other-window-backward

Back to other-window-backward. Using our factored-out version of the call to
other-window, the function definition now looks like this:

(defun other-window-backward (&optional n)
"Select Nth previous window."
(interactive "p")
(other-window (- (or n 1))))

But the best definition of all—the most Emacs-Lisp-like—turns out to be:

(defun other-window-backward (&optional n)
"Select Nth previous window."
(interactive "P")
(other-window (- (prefix-numeric-value n))))

In this version, the code letter in the interactive declaration is no longer lowercase p, it's
capital P; and the argument to other-window is (- (prefix-numeric-value n))
instead of (- (or n 1)).

Page 21

The capital P means "when called interactively, leave the prefix argument in raw form and
assign it to n." The raw form of a prefix argument is a data structure used internally by Emacs
to record the prefix information the user gave before invoking a command. (See the section
called "Addendum: Raw Prefix Argument" for the details of the raw prefix argument data

structure.) The function prefix-numeric-value can interpret that data structure as a
number in exactly the way (interactive "p") did. What's more, if
other-window-backward is called non-interactively (and n is therefore not a prefix
argument in raw form), prefix-numeric-value does the right thing—namely, return n
unchanged if it's a number, and return 1 if it's nil.

Arguably, this definition is no more or less functional than the version of
other-window-backward we had before. But this version is more "Emacs-Lisp-like"
because it achieves better code reuse. It uses the built-in function
prefix-numeric-value rather than duplicating that function's behavior.

Now let's look at another example.

Line-at-a-Time Scrolling

Before I became an Emacs user, I grew accustomed to some functions in other editors that
weren't present in Emacs. Naturally I missed having those functions and decided to replace
them. One example is the ability to scroll text up and down one line at a time with a single
keystroke.

Emacs has two scrolling functions, scroll-up and scroll-down, which are bound to
C-v and M-v. Each function takes an optional argument telling it how many lines to scroll. By
default, they each scroll the text one windowful at a time. (Don't confuse scrolling up and down
with moving the cursor up and down as with C-n and C-p. Cursor motion moves the cursor and
scrolls the text only if necessary. Scrolling moves the text in the window and moves the cursor
only if necessary.)

Though I could scroll up and down one line at a time with C-u 1 C-v and C-u 1 M-v, I wanted
to be able to do it with a single keystroke. Using the techniques from the previous section, it is
easy to write two new commands for scrolling with one keystroke.

First things first, though. I can never remember which function does what. Does scroll-up
mean that the text moves up, revealing parts of the file that are farther down? Or does it mean
that we reveal parts of the file that are farther up, moving the text down? I'd prefer that these
functions had less confusing names, like scroll-ahead and scroll-behind.

Page 22

We can use defalias to refer to any Lisp function by a different name.

(defalias 'scroll-ahead 'scroll-up)
(defalias 'scroll-behind scroll-down)

There. Now we'll never have to deal with those ambiguous names again (although the original
names remain in addition to the new aliases).

Now to define two new commands that call scroll-ahead and scroll-behind with
the right arguments. We proceed exactly as we did with other-window-backward:

(defun scroll-one-line-ahead ()
"Scroll ahead one line."
(interactive)
(scroll-ahead 1))

(defun scroll-one-line-behind ()
"Scroll behind one line."
(interactive)
(scroll-behind 1))

As before, we can make the functions more general by giving them an optional argument:

(defun scroll-n-lines-ahead (&optional n)
"Scroll ahead N lines (1 by default)."
(interactive "P")
(scroll-ahead (prefix-numeric-value n)))

(defun scroll-n-lines-behind (&optional n)
"Scroll behind N lines (1 by default)."
(interactive "P")
(scroll-behind (prefix-numeric-value n)))

Finally, we choose keys to bind to the new commands. I like C-q for
scroll-n-lines-behind and C-z for scroll-n-lines-ahead:

(global-set-key "\C-q" 'scroll-n-lines-behind)
(global-set-key "\C-z" 'scroll-n-lines-ahead)

By default, C-q is bound to quoted-insert. I move that infrequently used function to C-x
C-q:

(global-set-key "\C-x\C-q" 'quoted-insert)

The default binding of C-x C-q is vc-toggle-read-only, which I don't mind losing.

C-z has a default binding of iconify-or-deiconify-frame when running under X,
and suspend-emacs when running in a character terminal. In both cases, the function is also
bound to C-x C-z, so there's no need to rebind them.

Page 23

Other Cursor and Text Motion Commands

Here are a few more easy commands with their suggested keybindings.

(defun point-to-top ()
"Put point on top line of window."
(interactive)
(move-to-window-line O))

(global-set-key "\M-," 'point-to-top)

"Point" refers to the position of the cursor. This command makes the cursor jump to the top left
of the window it's in. The suggested keybinding replaces tags-loop-continue, which I
like to put on C-x,:

(global-set-key "\C-x," 'tags-loop-continue)

The next function makes the cursor jump to the bottom left of the window it's in.

(defun point-to-bottom ()
"Put point at beginning of last visible line."

(interactive)
(move-to-window-line -1))

(global-set-key "\M-." 'point-to-bottom)

The suggested keybinding in this case replaces find-tag. I put that on C-x which in turn
replaces set-fill-prefix, which I don't mind losing.

(defun line-to-top ()
"Move current line to top of window."
(interactive)
(recenter O))

(global-set-key "\M-!" 'line-to-top)

This command scrolls the window so that whichever line the cursor is on becomes the top line
in the window. The keybinding replaces shell-command.

There is one drawback to changing the bindings for keys in Emacs. If you become accustomed
to a highly customized Emacs and then try to use an uncustomized Emacs (e.g., on a different
computer or using a friend's login account), you'll keep pressing the wrong keys. This happens
to me all the time. I've essentially trained myself to be unable to use an uncustomized Emacs
without a lot of frustration. But I rarely use an uncustomized Emacs, so the convenience of
customizing it the way I like outweighs the occasional drawbacks. Before you move commands
from one key to another with wild abandon like I do, you should weigh the costs and benefits of
doing so.

Page 24

Clobbering Symbolic Links

So far, the functions we've written have been very simple. Essentially, they all just rearrange
their arguments and then call a single other function to do the real work. Let's look at an
example now where more programming is required.

In UNIX, a symbolic link, or symlink, is a file that refers to another file by name. When you ask
for the contents of a symlink, you actually get the contents of the real file named by the symlink.

Suppose you visit a file in Emacs that is really a symlink to some other file. You make some
changes and press C-x C-s to save the buffer. What should Emacs do?

1. Replace the symbolic link with the edited version of the file, breaking the link but
leaving the original link target alone.

2. Overwrite the file pointed to by the symbolic link.

3. Prompt you to choose one of the above actions.

4. Something else altogether.

Different editors handle the symlink situation in different ways, so a user who has grown
accustomed to one editor's behavior may be unpleasantly surprised by another's. Plus, I believe
that the right answer changes depending on the situation, and that the user should be forced to
think about what's right each time this comes up.

Here's what I do: when I visit a file that's really a symlink, I have Emacs automatically make
the buffer read-only. This causes a ''Buffer is read-only" error as soon as I try to change
anything in the buffer. The error acts as a reminder, alerting me to the possibility that I'm
visiting a symlink. Then I choose how to proceed using one of two special commands I've
designed.

Hooks

For Emacs to make the buffer read-only when I first visit the file, I have to somehow tell
Emacs, "execute a certain piece of Lisp code whenever I visit a file." The action of visiting a
file should trigger a function I write. This is where hooks come in.

A hook is an ordinary Lisp variable whose value is a list of functions that get executed under
specific conditions. For instance, the variable write-file-hooks is a list of functions that
Emacs executes whenever a buffer is saved, and post-command-hook is a list of functions
to run after every interactive command. The hook that interests us most for this example is
find-file-hooks, which Emacs runs every time a new file is visited. (There are many
more

Page 25

hooks, some of which we'll be looking at later in the book. To discover what hooks are
available, try M-x apropos RET hook RET.)

The function add-hook adds a function to a hook variable. Here's a function to add to
find-file-hooks:

(defun read-only-if-symlink ()
(if (file-symlink-p buffer-file-name)

(progn
(setq buffer-read-only t)
(message "File is a symlink"))))

This function tests whether current buffer's file is a symlink. If it is, the buffer is made
read-only and the message "File is a symlink" is displayed. Let's look a little closer at some
parts of this function.

• First, notice that the parameter list is empty. Functions that appear in hook variables take no
arguments.

• The function file-symlink-p tests whether its argument, which is a string naming a
file, refers to a symbolic link. It's a Boolean predicate, meaning it returns true or false. In
Lisp, predicates traditionally have names ending in p or -p.

• The argument to file-symlink-p is buffer-file-name. This predefined variable
has a different value in every buffer, and is therefore known as a buffer-local variable. It
always refers to the name of the file in the current buffer. The "current buffer," when
find-file-hooks gets executed, is the newly found file.

• If buffer-file-name does refer to a symlink, there are two things we want to do:
make the buffer read-only, and display a message. However, Lisp only allows one

expression in the "then" part of an if-then-else. If we were to write:

(if (file-symlink-p buffer-file-name)
(setq buffer-read-only t)
(message "File is a symlink"))

it would mean, "if buffer-file-name is a symlink, then make the buffer readonly, else print
the message, 'File is a symlink'." To get both the call to setq and the call to message
into the "then" part of the if, we wrap them in a progn, as in the following example.

(progn
(setq buffer-read-only t)
(message "File is a symlink"))

A progn expression evaluates each of its subexpressions in order and returns the value
of the last one.

Page 26

• The variable buffer-read-only is also buffer-local and controls whether the current
buffer is read-only.

Now that we've defined read-only-if-symlink, we can call

(add-hook 'find-file-hooks 'read-only-if-symlink)

to add it to the list of functions that are called whenever a new file is visited.

Anonymous Functions

When you use defun to define a function, you give it a name by which the function can be
called from anywhere. But what if the function won't ever be called from anywhere else? What
if it needs to be available in only one place? Arguably, read-only-if-symlink is
needed only in the find-file-hooks list; in fact, it might even be harmful for it to be
called outside of find-file-hooks.

It's possible to define a function without giving it a name. Such functions are appropriately
known as anonymous functions. They're created with the Lisp keyword lambda,* which
works exactly like defun except that the name of the function is left out:

(lambda ()
(if (file-symlink-p buffer-file-name)

(progn
(setq buffer-read-only t)
(message "File is a symlink"))))

The empty parentheses after the lambda are where the anonymous function's parameters
would be listed. This function has no parameters. An anonymous function definition can be
used wherever you might use the name of a function:

(add-hook 'find-file-hooks
'(lambda ()

(if (file-symlink-p buffer-file-name)
(progn

(setq buffer-read-only t)

(message "File is a symlink")))))

Now only find-file-hooks has access to the function; no other code is able to call it.

* The "Lambda calculus" is a mathematical formalism having to do with the way functions instantiate
their arguments. To some extent it is the theoretical basis for Lisp (and plenty of other computer
languages). The word "lambda" has no significance other than being the name of a Greek letter.

 That's not exactly true. It is possible for another piece of code to search the contents of the
find-file-hooks list, pick out any function it finds, and execute it. The point is that the function
is hidden, not exposed as with defun.

Page 27

There's one reason not to use anonymous functions in hooks. If you ever wish to remove a
function from a hook, you need to refer to it by name in a call to remove-hook, like so:

(remove-hook 'find-file-hooks 'read-only-if-symlink)

This is much harder if the function is anonymous.

Handling the Symlink

When Emacs alerts me that I'm editing a symlink, I may wish to replace the buffer with one
visiting the target of the link instead; or I may wish to "clobber" the symlink (replacing the link
itself with an actual copy of the real file) and visit that. Here are two commands for these
purposes:

(defun visit-target-instead ()
"Replace this buffer with a buffer visiting the link target."
(interactive)
(if buffer-file-name

(let ((target (file-symlink-p buffer-file-name)))
(if target

(find-alternate-file target)
(error "Not visiting a symlink")))

(error "Not visiting a file")))

(defun clobber-symlink ()
"Replace symlink with a copy of the file."
(interactive)
(if buffer-file-name

(let ((target (file-symlink-p buffer-file-name)))
(if target

(if (yes-or-no-p (format "Replace %s with %s?
buffer-file-name
target))

(progn
(delete-file buffer-file-name)
(write-file buffer-file-name)))

(error "Not visiting a symlink")))
(error "Not visiting a file")))

Both functions begin with

(if buffer-file-name
. . .

(error "Not visiting a file"))

(I've abbreviated the meat of the function as . . . to illustrate the surrounding structure.) This
test is necessary because buffer-file-name may be nil (in the case that the current
buffer isn't visiting any file---e.g., it might be the *scratch* buffer), and passing nil to
file-symlink-p would generate the error, "Wrong type argument: stringp, nil * The error
message means that some

* Try it yourself: M-: (file-symlink-p nil) RET.

Page 28

function was called expecting a string—an object satisfying the predicate stringp—but got
nil instead. The user of visit-target-instead or clobber-symlink would be
baffled by this error message, so we detect ourselves whether buffer-file-name is nil.
If it is, then in the "else" clause of the if we issue a more informative error message—"Not
visiting a file"—using error. When error is called, the current command aborts and Emacs
returns to its top-level to await the user's next action.

Why wasn't it necessary to test buffer-file-name in read-only-ifsymlink?
Because that function only gets called from find-file-hooks, and find-file-hooks
only gets executed when visiting a file.

In the "then" part of the buffer-file-name test, both functions next have

(let ((target (file-symlink-p buffer-file-name))) . . .)

Most languages have a way to create temporary variables (also called local variables) that
exist only in a certain region of code, called the variable's scope. In Lisp, temporary variables
are created with let, whose syntax is

(let ((var1 value1)
(var2 value2)
. . .
(varn valuen))

body1 body2 . . . bodyn)

This gives var1 the value value1, var2 the value value2, and so on; and var1 and var2 can be
used only within the body1 expressions. Among other things, using temporary variables helps to
avoid conflicts between regions of code that happen to use identical variable names.

So the expression

(let ((target (file-symlink-p buffer-file-name))) . . .)

creates a temporary variable named target whose value is the result of calling

(file-symlink-p buffer-file-name)

As mentioned earlier, file-symlink-p is a predicate, which means it returns truth or
falsehood. But because "truth" in Lisp can be represented by any expression except nil,
file-symlink-p isn't constrained to returning t if its argument really is a symlink. In fact,
it returns the name of the file to which the symlink refers. So if buffer-file-name is the

name of a symlink, target will be the name of the symlink's target.

With the temporary variable target in effect, the body of the let looks like this in both
functions:

(if target
. . .

(error "Not visiting a symlink"))

Page 29

After executing the body of the let, the variable target no longer exists.

Within the let, if target is nil (because file-symlink-p returned nil, because
buffer-file-name must not be the name of a symlink), then in the "else" clause we issue
an informative error message, "Not visiting a symlink." Otherwise we do something else that
depends on which function we're talking about. Finally we reach a point where the two
functions differ.

At this point, visit-target-instead does

(find-alternate-file target)

which replaces the current buffer with one visiting target, prompting the user first in case
there are unsaved changes in the original buffer. It even reruns the find-file-hooks when
the new file is visited, which is good because it, too, may be a symlink!

At the point where visit-target-instead calls find-alternate-file,
clobber-symlink does this instead:

(if (yes-or-no-p . . .) . . .)

The function yes-or-no-p asks the user a yes or no question and returns true if the answer
was "yes," false otherwise. The question, in this case, is:

(format "Replace %s with %s?
buffer-file-name
target)

This constructs a string in a fashion similar to C's printf. The first argument is a pattern.
Each %s gets replaced with the string representation of a subsequent argument. The first %s
gets replaced with the value of buffer-file-name and the second gets replaced with the
value of target. So if buffer-file-name is the string "foo" and target is "bar", the
prompt will read, "Replace foo with bar?" (The format function understands other
%-sequences in the pattern string. For instance, %c prints a single character if the
corresponding argument is an ASCII value. See the online help for format—by typing M-? f
format RET—for a complete list.)

After testing the return value of yes-or-no-p to make sure the user answered

"yes," clobber-symlink does this:

(progn
(delete-file buffer-file-name)
(write-file buffer-file-name))

As we've seen, the progn is for grouping two or more Lisp expressions where only one is
expected. The call to delete-file deletes the file (which is really just a symlink), and the
call to write-file saves the contents of the current buffer right back to the same filename,
but this time as a plain file.

Page 30

I like to put these functions on C-x t for visit-target-instead (unused by default) and
C-x 1 for clobber-symlink (by default bound to count-linespage).

Advised Buffer Switching

Let's conclude this chapter with an example that introduces a very useful Lisp tool called
advice.

It frequently happens that I'm editing many similarly named files at the same time; for instance,
foobar.c and foobar.h. When I want to switch from one buffer to the other, I use C-x b,
switch-to-buffer, which prompts me for a buffer name. Since I like to keep my
keystrokes to a minimum, I depend on TAB completion of the buffer name. I'll type

C-x b fo TAB

expecting that the TAB will complete "fo" to "foobar.c", then I'll press RET to accept the
completed input. Ninety percent of the time, this works great. Other times, such as in this
example, pressing fo TAB will only expand as far as "foobar.'', requiring me to disambiguate
between "foobar.c" and "foobar.h". Out of habit, though, I often press RET and accept the
buffer name "foobar.".

At this point, Emacs creates a brand-new empty buffer named foobar., which of course isn't
what I wanted at all. Now I've got to kill the brand-new buffer (with C-x k, kill-buffer)
and start all over again. Though I do occasionally need the ability to switch to a nonexistent
buffer, that need is very rare compared with the number of times I commit this error. What I'd
like is for Emacs to catch my error before letting me commit it, by only accepting the names of
existing buffers when it prompts me for one.

To achieve this, we'll use advice. A piece of advice attached to a Lisp function is code that
gets executed before or after the function each time the function is invoked. Before advice can
affect the arguments before they're passed to the advised function. After advice can affect the
return value that comes out of the advised function. Advice is a little bit like hook variables,
but whereas Emacs defines only a few dozen hook variables for very particular circumstances,
you get to choose which functions get "advised."

Here's a first try at advising switch-to-buffer:

(defadvice switch-to-buffer (before existing-buffer
activate compile)

"When interactive, switch to existing buffers only."
(interactive "b"))

Page 31

Let's look at this closely. The function defadvice creates a new piece of advice. Its first
argument is the (unquoted) name of the existing function being advised— in this case,
switch-to-buffer. Next comes a specially formatted list. Its first element—in this case,
before—tells whether this is "before" or "after" advice. (Another type of advice, called
"around," lets you embed a call to the advised function inside the advice code.) Next comes the
name of this piece of advice; I named it existing-buffer. The name can be used later if
you want to remove or modify the advice. Next come some keywords: activate means that
this advice should be active as soon as it's defined (it's possible to define advice but leave it
inactive); and compile means that the advice code should be "byte-compiled" for speed (see
Chapter 5, Lisp Files).

After the specially formatted list, a piece of advice has an optional docstring.

The only thing in the body of this advice is its own interactive declaration, which
replaces the interactive declaration of switch-to-buffer. Whereas
switch-to-buffer accepts any string as the buffer-name argument, the code letter b in an
interactive declaration means "accept only names of existing buffers." By using the
interactive declaration to make this change, we've managed to not affect any Lisp code
that wants to call switch-to-buffer noninteractively. So this tiny piece of advice
effectively does the whole job: it changes switch-to-buffer to accept only the names of
existing buffers.

Unfortunately, that's too restrictive. It should still be possible to switch to nonexistent buffers,
but only when some special indication is given that the restriction should be lifted—say, when
a prefix argument is given. Thus, C-x b should refuse to switch to nonexistent buffers, but C-u
C-x b should permit it.

Here's how this is done:

(defadvice switch-to-buffer (before existing-buffer
activate compile)

"When interactive, switch to existing buffers only,
unless given a prefix argument."

(interactive
(list (read-buffer "Switch to buffer:

(other-buffer)
(null current-prefix-arg)))))

Once again, we're overriding the interactive declaration of switch-to-buffer
using "before" advice. But this time, we're using interactive in a way we haven't seen
before: we're passing a list as its argument, rather than a string of code letters.

When the argument to interactive is some expression other than a string, that expression
is evaluated to get a list of arguments that should be passed to the

Page 32

function. So in this case we call list, which constructs a list out of its arguments, with the
result of

(read-buffer "Switch to buffer:
(other-buffer)

(null current-prefix-arg))

The function read-buffer is the low-level Lisp function that prompts the user for a buffer
name. It's "low-level" in the sense that all other functions that prompt for buffer names
ultimately call read-buffer. It's called with a prompt string and two optional arguments: a
default buffer to switch to, and a Boolean stating whether input should be restricted to existing
buffers only.

For the default buffer, we pass the result of calling other-buffer, which computes a useful
default buffer for this very purpose. (Usually it chooses the most recently used buffer that isn't
presently visible in a window.) For the Boolean stating whether to restrict input, we use

(null current-prefix-arg)

This tests whether current-prefix-arg is nil. If it is, the result will be t; if it's not,
the result will be nil. Thus, if there is no prefix argument (i.e., current-prefix-arg is
nil), then we call

(read-buffer "Switch to buffer:
(other-buffer)
t)

meaning "read a buffer name, restricting input to existing buffers only." If there is a prefix
argument, then we call

(read-buffer "Switch to buffer:
(other-buffer)
nil)

meaning "read a buffer name with no restrictions" (allowing non-existent buffer names to be
entered). The result of read-buffer is then passed to list, and the resulting list
(containing one element, the buffer name) is used as the argument list for
switch-to-buffer.

With switch-to-buffer thus advised, Emacs won't let me respond to the prompt with a
nonexistent buffer name unless I asked for that ability by pressing C-u first.

For completeness, you should similarly advise the functions
switch-to-buffer-other-window and switch-to-buffer-other-frame.

Page 33

Addendum: Raw Prefix Argument

The variable current-prefix-arg always contains the latest "raw" prefix argument,
which is the same thing you get from

(interactive ' P")

The function prefix-numeric-value can be applied to a "raw" prefix argument to get its
numeric value, which is the same thing you get from

(interactive "p")

What does a raw prefix argument look like? Table 2-1 shows possible raw values along with

their corresponding numeric values.
Table 2-1: Prefix arguments

If the User Types Raw Value Numeric Value
C-u followed by a (possibly negative)
number

The number itself The number
itself

C-u - (with no following number) The symbol - -1

C-u n times in a row (with no
following number or minus sign)

A list containing the number 4n 4n itself

No prefix argument nil 1

Page 34

3
Cooperating Commands
In this chapter:

• The Symptom
• A Cure
• Generalizing the

Solution

This chapter shows how to get different commands to work together by saving information in
one command and retrieving it in another. The simplest way to share information is to create a
variable and store a value in it. We'll certainly do that in this chapter. For instance, we'll store
the current buffer position and reuse it in a later command. But we'll also learn some more
sophisticated ways to preserve state, notably markers and symbol properties. We'll combine
these techniques with information about buffers and windows to write a set of functions that
allow you to "undo" scrolling.

The Symptom

You're deep into editing some complicated Lisp code. You're concentrating, juggling the
tenuous connections between the conceptual structures in your brain and the glyphs that
represent them on the screen. You're in a particularly tricky part when you notice a typo a few
characters to the left. You mean to press C-b C-b C-b to back up and correct it, but
instead—horrors!—you press C-v C-v C-v, paging the Emacs window three times, ending up
light years away from the code you were editing. Your mental context is ruined as you try to
figure out where the cursor was before your mistake, and why, and what you were doing there.
As you scroll, or search, or cycle through the mark-ring or the undo-list trying to get back to
where you were, you forget about that original typo you were trying to correct, and much later
it turns into a bug in your code that takes hours to find.

Emacs hasn't helped in this instance, it has hindered. It has made it too easy to get lost in your
document and too hard to find your way back. Although Emacs has an extensive undo facility, it

only allows you to undo changes. You can't undo simple navigation.

Page 35

A Cure

Suppose we could alter C-v (the scroll-up command *) in such a way that when you press
it, Emacs thinks, "Maybe the user is pressing C-v in error, so I'll record some 'undo'
information in case it's needed." Then we could write another function, unscroll, which
undoes the effects of the latest scroll. Getting lost should therefore cause no more disruption to
your mental context than it takes to remember the keybinding for unscroll.

Actually, that's not quite good enough. If you press several C-vs in a row, one call to
unscroll should undo them all, not only the last one. This means that only the first C-v in a
sequence should memorize the starting location. How can we arrange for this to happen?
Somewhere in our C-v code, before we memorize the starting location, we have to test either
(a) that the next command will be a call to scroll-up, or (b) that the previous command
wasn't a call to scroll-up. Obviously, (a) is impossible: we can't know the future.
Fortunately, (b) is easy: Emacs maintains a variable for this purpose called last-command.
This variable is the first mechanism we'll use to communicate information from one command
to a later one.

Now the only question remaining is: how can we attach this extra code to the scroll-up
command? The advice facility is ideal for this purpose. Recall that a piece of advice can run
before or after the advised function. In this case, we'll need before advice, because it's only
before scroll-up runs that we know the starting location.

Declaring Variables

We'll start by setting up a global variable, unscroll-to, which will hold the "undo"
information, which is simply the position in the buffer to which unscroll should move the
cursor. We'll use defvar to declare the variable.

(defvar unscroll-to nil

"Text position for next call to 'unscroll'.")*

Global variables don't need to be declared. But there are some advantages to declaring
variables with defvar:

• Using defvar allows a docstring to be associated with the variable, in the same way that
defun allows a docstring to be associated with a function.

* Although in Chapter 2. Simple ewu Commands, we used defalias to make scroll-ahead and
scroll-behind synonyms for scroll-up and scroll-down, in this chapter we'll refer to
scroll-up and scroll-down by their original names.

Page 36

• A default value for the variable can be given. In this case, the default value for
unscroll-to is nil.

Setting a variable's default value with defvar is different from setting a variable's value
with setq. Instead of unconditionally assigning the value to the variable like setq does,
defvar assigns the value only if the variable does not yet have any value.

Why is this important? Suppose your .emacs file contains the line

(setq mail-signature t)

meaning that when you send a mail message from within Emacs, you wish to append your
signature file to it. When you start Emacs, mail-signature gets set to t, but the Lisp
file that defines the mail-sending code, sendmail, has not yet been loaded. It's loaded on
demand when you first invoke the mail command. When you do, Emacs executes this line
from the sendmail Lisp file:

(defvar mail-signature nil . . .)

This says that nil is a default initial value for mail-signature. But you've already
given mail-signature a value, and you wouldn't want loading sendmail to override
your setting. On the other hand, if your .emacs didn't specify any value for
mail-signature, you would want this value to be in effect.

• A variable declaration using defvar can be found by the various tag-related commands.
Tags are a way to quickly find variable and function definitions in a programming project.
Emacs's tag facilities, such as the find-tag command, can find anything created with the
def. . . functions (defun, defalias, defmacro, defvar, defsubst,
defconst, defadvice).

• When you byte-compile the code (see Chapter 5, Lisp Files), the byte-compiler emits a
warning for each variable it encounters that hasn't been declared with defvar. If all your
variables are declared, then you can use the warnings to find places where you've mistyped
the name of a variable.

Saving and Restoring Point

Let's define the value of unscroll-to to be the position in the text where the cursor was
before the latest sequence of scroll-ups. The position of the cursor in the text is the
number of characters from the beginning of the buffer (counting from 1) and is called point or
the point. The value of point at any moment is given by the function point.

(defadvice scroll-up (before remember-for-unscroll
activate compile)

"Remember where we started from, for 'unscroll'."

Page 37

(if (not (eq last-command 'scroll-up))
(setq unscroll-to (point))))

The body of this advice works as follows:

1. The function eq takes two arguments and tells whether they are identical. In this case, the
arguments are the value of the last-command variable, and the literal symbol
scroll-up. The value of last-command is the symbol naming the last command

that the user invoked (usually-see the section on "Using this-command" later in this
chapter).

2. The result of the call to eq is passed to not, which inverts the truth value of its argument. If
nil is passed to not, the result is t. If anything else is passed to not, the result is nil.

3. If the result of the call to not is true-i.e., if last-command is not the symbol
scroll-up-then the variable unscroll-to is set to the current value of point by
calling the function point with no arguments.

Now it should be easy to define unscroll:

(defun unscroll ()

"Jump to location specified by 'unscroll-to'."*

(interactive)
(goto-char unscroll-to))

The function goto-char moves the cursor to the given position.

Window Appearance

There's something unsatisfactory about this solution. After an unscroll, the cursor is
restored to its correct location, true, but the screen may look very different from the way it
appeared before the C-v excursion. For example, I may be editing a line of code that is near the
bottom of the Emacs window when I mistakenly press C-v C-v C-v. I'll immediately invoke
unscroll, but even though the cursor goes back where it belongs, the line in question may
now appear in the middle of the window.

Since our goal is to minimize the disruption caused by unintended scrolling, we'd really like to
restore not only the location of the cursor, but also the appearance of the window with respect
to which lines are visible where.

Saving the value of point is no longer sufficient, therefore. We must also save a value
representing what's visible in the current window. Emacs provides several functions
describing what's visible in a window, such as window-edges,

* If you think the way not works sounds like the way null works, you're right—they're exactly the
same function. One is simply an alias for the other. Which one you use is a readability issue. Use
null when testing to see whether an object is the empty list. Use not when inverting truth values.

Page 38

window-height, and current-window-configuration. For now we'll only use
window-start which, for a given window, yields the buffer position that is the first visible
character (i.e., the upper-left corner) in the window. We're just adding a little more information
to be preserved between commands.

Updating our example is straightforward. First we replace our declaration of the variable
unscroll-to with two new variables: one containing the saved value of point, and one
containing the saved position of the first visible character in the window.

 (defvar unscroll-point nil
 "Cursor position for next call to 'unscroll'.")

 (defvar unscroll-window-start nil
 "Window start for next call to 'unscroll'.")

Next we update the advice on scroll-up and unscroll to set and use these two values.

 (defadvice scroll-up (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (eq last-command 'scroll-up))
 (progn
 (setq unscroll-point (point))
 (setq unscroll-window-start (window-start)))))

 (defun unscroll ()
 "Revert to 'unscroll-point' and 'unscroll-window-start'."
 (interactive)
 (goto-char unscroll-point)
 (set-window-start nil unscroll-window-start))

Since the advice is still named remember-for-unscroll, this advice replaces the
previous advice, which was identically named.

The function set-window-start sets the window-start position in the same way that
goto-char sets the position of the cursor. However, set-window-start takes two
arguments. The first argument is the window whose start position is being set. If nil is passed
as the first argument (as in this example), set-window-start defaults to the currently
selected window. (Window objects for passing to set-window-start can be obtained
from such functions as get-buffer-window and previous-window.)

There's one more piece of information we might like to save for unscrolling purposes, and
that's the window's hscroll, the number of columns by which the window is scrolled
horizontally, normally zero. We'll add yet another variable for storing it:

 (defvar unscroll-hscroll nil
 "Hscroll for next call to 'unscroll' ."

Page 39

then we'll update unscroll and the scroll-up advice again to include calls to
window-hscroll (which reports the window's current hscroll) and
set-window-hscroll (which sets it):

 (defadvice scroll-up (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'.'
 (if (not (eq last-command 'scroll-up))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

 (defun unscroll ()
 "Revert to 'unscroll-point' and 'unscroll-window-start'."
 (interactive)
 (goto-char unscroll-point)
 (set-window-start nil unscroll-window-start)
 (set-window-hscroll nil unscroll-hscroll))

Notice that in this version of the scroll-up advice, the progn call:

 (progn
 (setq . . .)
 (setq . . .))

has been turned into a single setq call with multiple variable-value pairs. For conciseness,
setq can set any number of variables.

Detecting Errors

What happens if the user invokes unscroll before any call to scroll-up? The variables
unscroll-point, unscroll-window-start, and unscroll-scroll will all
contain their default value, nil. This value is unsuitable for passing to the functions
goto-char, set-window-start, and set-window-scroll. As soon as the call
to goto-char is reached, execution of the unscroll command will abort with this error:
"Wrong type argument: integer-or-marker-p, nil." This means a function expecting an integer or
a marker (to satisfy the predicate integer-or-marker-p) was passed nil instead.
(Markers are explained in an earlier section of this chapter.)

To keep the user from being baffled by this cryptic error message, it's a good idea to precede
the call to goto-char with a simple check and a more informative error message:

 (if (not unscroll-point) ;i.e., ifunscroll-point is nil
 (error "Cannot unscroll yet"))

When error is invoked, execution of unscroll aborts and the message "Cannot unscroll
yet" is displayed.

Page 40

Generalizing the Solution

It's easy to press C-v when meaning to press C-b. That's what led us to devise the unscroll
function. Now observe that it's just as easy to press M-v (scrolldown) when meaning to
press M-b (backward-word). It's the same problem, but in the other direction, sort of. It
would be nice if we could generalize unscroll to undo scrolling in any direction.

The obvious way to generalize unscroll is to advise scroll-down in the same way that
we advised scroll-up:

 (defadvice scroll-down (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (eq last-command 'scroll-down))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

(Note that two functions, such as scroll-up and scroll-down, may have identically
named pieces of advice, such as remember-for-unscroll, without conflict.)

Now we must decide how we want unscroll to behave in the case where we mingle

erroneous C-vs with erroneous M-vs. In other words, suppose you mistakenly press C-v C-v
M-v. Should unscroll revert to the position before the M-v, or should it revert all the way back
to the position before the first C-v?

I prefer the latter behavior. But this means that in the advice for scroll-up, where we now
test whether the last command was scroll-up, we must now test whether it was either
scroll-up or scroll-down, and do the same in scroll-down.

(defadvice scroll-up (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

(defadvice scroll-down (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'.'
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

Page 41

Take a moment to make sure you understand the expression

 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)))
 (setq . . .))

It's best to read such expressions by moving inward one level of subexpression at a time. Start
with

 (if (not . . .)
 (setq . . .))

''If something's not true, set some variable(s)." Next, peer a little deeper:

 (if (not (or . . .))
 (setq . . .))

"If none of a set of conditions is true, set some variable(s)." Finally,

 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)))
 (setq . . .))

means, "If neither 'last-command is scroll-up' nor 'last-command is
scroll-down' is true, set some variable(s)."

Suppose somewhere down the line, you come up with more commands you'd like to advise this
way; let's say scroll-left and scroll-right:

 (defadvice scroll-up (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'.
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)
 (eq last-command 'scroll-left) ;new
 (eq last-command 'scroll-right))) ; new
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

 (defadvice scroll-down (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)
 (eq last-command 'scroll-left) ;neu
 (eq last-command 'scroll-right))) ;neuw
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

 (defadvice scroll-left (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command 'scroll-down)

Page 42

 (eq last-command 'scroll-left)
 (eq last-command scroll-right)))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

 (defadvice scroll-right (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command scroll-down)
 (eq last-command scroll-left)
 (eq last-command 'scroll-right)))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

Not only is this very repetitive and error-prone, but for each new command that we wish to
make "unscrollable," the advice for each existing unscrollable command must have its
last-command test modified to include the new one.

Using this-command

Two things can be done to improve this situation. First, since the advice is identical in each
case, it can be factored out into a shared function:

 (defun unscroll-maybe-remember ()
 (if (not (or (eq last-command 'scroll-up)
 (eq last-command scroll-down)
 (eq last-command scroll-left)
 (eq last-command scroll-right)))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

 (defadvice scroll-up (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (unscroll-maybe-remember))

 (defadvice scroll-down (before remember-for-unscroll
 activate compile)
 'Remember where we started from, for 'unscroll'."
 (unscroll-maybe-remember))

 (defadvice scroll-left (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (unscroll-maybe-remember))

 (defadvice scroll-right (before remember-for-unscroll
 activate compile)
 "Remember where we started from, for 'unscroll'."
 (unscroll-maybe-remember))

Page 43

Second, instead of having to test for n possible values of last-command, all meaning "the
last command was unscrollable," it would be nice if there were a single such value, and if all
the unscrollable commands could somehow set last-command to that value.

Enter this-command, the variable that contains the name of the current command invoked by the
user. In fact, the way last-command gets set is this: while Emacs is executing a command,
this-command contains the name of the command; then when it is finished, Emacs puts the
value of this-command into last-command.

While a command is executing, it can change the value of this-command. When the next
command runs, the value will be available in last-command.

Let's choose a symbol to represent all unscrollable commands: say, unscrollable. Now we can
change unscroll-maybe-remember as follows:

 (defun unscroll-maybe-remember ()
 (setq this-command 'unscrollable)
 (if (not (eq last-command 'unscrollable))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

Any command that calls unscroll-maybe-remember now causes thiscommand to contain
unscrollable. And instead of checking last-command for four different values (more if we add

new unscrollable commands), we only need to check for one value (even if we define new
unscrollable commands).

Symbol Properties

Our improved unscroll-maybe-remember works great, but (as perhaps you've come to
expect by now) there are still some refinements we can make. The first is to address this
problem: the variables this-command and last-command aren't exclusively ours to do
with as we please. They're central to the Emacs Lisp interpreter, and other components of
Emacs depend on them, too. For all we know, there exists an Emacs component that depends on
the various scroll functions not overriding the settings of this-command and
last-command. Still, we would like a single, distinguished value in last-command to
identify all unscrollable commands.

Here's where symbol properties come in handy. In addition to having a variable value and/or a
function definition, every Emacs Lisp symbol may also have associated with it a property list.
A property list is a mapping from names to values. Each name is yet another Lisp symbol,
while each value may be any Lisp expression.

Page 44

Properties are stored with the put function and retrieved with the get function. Thus, if we
give the value 17 to the property named some-property belonging to the symbol
a-symbol:

(put 'a-symbol 'some-property 17)

then

(get 'a-symbol 'some-property)

returns 17. If we try to get a property from a symbol that doesn't have that property, the result is
nil.

Instead of using unscrollable as a value for this-command and last-command, we
can instead use an unscrollable property. We'll set it up so that commands that are
unscrollable have the unscrollable property of their names set to t, like so:

 (put 'scroll-up unscrollable t)
 (put 'scroll-down 'unscrollable t)
 (put 'scroll-left 'unscrollable t)
 (put 'scroll-right 'unscrollable t)

This only has to be done once, before any calls to unscroll-maybe-remember.

Now (get x unscrollable) will be true only when x is one of the symbols
scroll-up, scroll-down, scroll-left, and scroll-right. For all other
symbols, since the unscrollable property is (presumably) undefined, the result will be nil.

We can now change

 (if (not (eq last-command unscrollable)) . . .)

in unscroll-maybe-remember to

 (if (not (get last-command 'unscrollable)) . . .)

and we can also stop assigning unscrollable to this-command:

 (defun unscroll-maybe-remember ()
 (if (not (get last-command 'unscrollable))
 (setq unscroll-point (point)
 unscroll-window-start (window-start)
 unscroll-hscroll (window-hscroll))))

Markers

How can we make this code even better? Suppose you inadvertently scroll-down a few
times and you want to unscroll. But before you do, you happen

Page 45

to see a bit of text you'd like to change, and you change it. Then you unscroll. The screen
hasn't been correctly restored!

The reason is that editing text earlier in the buffer changes all the subsequent buffer positions.
An edit involving a net addition or removal of n characters adds or subtracts n to or from all
subsequent positions. Therefore the saved buffer positions in the variables
unscroll-point and unscroll-window-start will be off by n. (If n is zero, you
got lucky.)

Instead of using absolute positions as the values of unscroll-point and
unscroll-window-start, it would be a good idea to use markers. A marker is a special
object that specifies a buffer position just like an integer does. But if the buffer position moves
because of insertions or deletions, the marker "moves" too so that it keeps pointing to the same
spot in the text.

Since we're changing unscroll-point and unscroll-window-start to be markers,
we no longer initialize them with nil. We instead initialize them as new, empty marker objects
using the function make-marker:

 (defvar unscroll-point (make-marker)
 "Cursor position for next call to 'unscroll'.")
 (defvar unscroll-window-start (make-marker)
 "Window start for next call to 'unscroll'.")

The function set-marker is used to set the position of a marker.

 (defun unscroll-maybe-remember ()
 (if (not (get last-command 'unscrollable))
 (progn
 (set-marker unscroll-point (point))
 (set-marker unscroll-window-start (window-start))
 (setq unscroll-hscroll (window-hscroll)))))

The call to progn is back because the single call to setq has been split up into several
function calls. We don't use a marker for unscroll-hscroll because its value isn't a
buffer position.

We don't need to rewrite unscroll, because goto-char and set-window-start can
both handle arguments that are markers as well as arguments that are integers. So the previous
definition (reprinted here for convenience) will continue to work:

 (defun unscroll ()
 "Revert to 'unscroll-point' and 'unscroll-window-start'."
 (interactive)
 (goto-char unscroll-point)
 (set-window-start nil unscroll-window-start)
 (set-window-hscroll nil unscroll-hscroll))

Page 46

Addendum: Efficiency Consideration

When we declare unscroll-point and unscroll-marker, we create "empty" marker
objects and reuse them in each call to unscroll-remember, rather than creating new
marker objects in each call to unscroll-remember and discarding the old objects. This is
an optimization. Not only is it better, in general, to avoid very prolific object creation when
possible, but markers happen to be more expensive than other objects to create. Each marker
that points into some buffer somewhere has to be updated every time text is inserted or deleted
in that buffer. A discarded marker object will eventually be reclaimed by the garbage
collector, but until it is, it'll slow down editing in its buffer.

In general, when you intend to discard a marker object m (meaning that you no longer intend to
refer to its value), it's a good idea to first make it point "nowhere" by doing this:

 (set-marker m nil)

Page 47

 4
Searching and Modifying Buffers
In this chapter:
• Inserting the Current
Time
• Writestamps
• Modifystamps

There will be lots of times when you want to search through a buffer for a string, perhaps
replacing it with something else. In this chapter we'll show a lot of powerful ways to do this.
We'll cover the functions that perform searches and also show you how to form regular
expressions, which add great flexibility to the kinds of searches you can do.

Inserting the Current Time

It is sometimes useful to insert the current date or time into a file as you edit it. For instance,
right now, as I'm writing this, it's 10:30pm on Friday, 18 August, 1996. A few days ago, I was
editing a file of Emacs Lisp code and I changed a comment that read

 ;; Each element of ENTRIES has the form
 ;; (NAME (VALUE-HIGH . VALUE-LOW))

to

 ;; Each element of ENTRIES has the form
 ;; (NAME (VALUE-HIGH . VALUE-LOW))
 ;; [14 Aug 96] I changed this so NAME can now be a symbol,
 ;; a string, or a list of the form (NAME . PREFIX) [bg]

I placed a timestamp in the comment because it could be useful when editing that code in the
future to look back and see when this change was made.

A command that merely inserts the current time is simple, once you know that the function
current-time-string yields today's date and time as a string.*

* How do you find this out in the first place? Using M-x apropos RET time RET, of course.

Page 48

 (defun insert-current-time ()
 "Insert the current time"
 (interactive "*")
 (insert (current-time-string)))

The section "More Asterisk Magic" later in this chapter explains the meaning of
(interactive "*") and insert.

The simple function above is pretty inflexible, as it always results in inserting a string of the
form "Sun Aug 18 22:34:53 1996" (in the style of the standard C library functions ctime and
asctime). That's cumbersome if all you want is the date, or just the time, or if you prefer
12-hour time instead of 24-hour time, or dates in the form "18 Aug 1996" or "8/18/96" or
"18/8/96".

Happily, we can get finer control if we're willing to do a little extra work. Emacs includes a
few other time-related functions, notably current-time, which yields the current time in a
raw form, and format-time-string, which can take such a time and format it in a wide
variety of ways (in the style of C's strftime). For instance,

(format-time-string "%1.%M %p" (current-time))

returns "10.38 PM". (The format codes used here are %1, "hour from 1-12," %M, "minute from
00-59," and %p, "the string 'AM' or 'PM'." For a complete list of format codes, use
describe-function on format-time-string.)

From here it's a short leap to providing two commands, one for inserting the current time and
one for inserting the current date. We can also easily permit the format used by each to be
user-configurable, based on a configuration variable the user can set. Let's call the two
functions insert-time and insert-date. The corresponding configuration variables

will be insert-time-format and insert-date-format.

User Options and Docstrings

First we'll define the variables.

 (defvar insert-time-format "%X"
 "*Format for \\[insert-time] (c.f. format-time-string').")

 (defvar insert-date-format "%x"
 "*Format for \\[insert-date] (c.f. 'format-time-string').")

There are two new things to note about these docstrings.

• First, each begins with an asterisk (*). A leading asterisk has special meaning in defvar
docstrings. It means that the variable in question is a user option. A user option is just like
any other Lisp variable except that it's treated specially in two cases:

Page 49

— User options can be set interactively using set-variable, which prompts the user
for a variable name (with completion of partially typed names) and a value. In some
cases, the value can be entered in an intuitive way without having to dress it up in Lisp
syntax; e.g., strings can be entered without their surrounding double-quotes.

To set variables interactively when they aren't user options, you must do something like

 M-: (setq variable value) RET

(using Lisp syntax for value).

— User options, but not other variables, can be edited en masse using the option-editing
mode available as M-x edit-options RET.*

• The second new thing about these docstrings is that each contains the special construct \
[command]. (Yes, it's \[. . .], but since it's written inside a Lisp string, the backslash has to
be doubled: \\[. . .].) This syntax is magic. When the docstring is displayed to the user-such
as when the user uses apropos or describe-variable—\ [command] is replaced
with a representation of a keybinding that invokes command. For example, if C-x t invokes
insert-time, then the docstring

"*Format for \\[insert-time] (c.f. 'format-time-string')."

is displayed as

*Format for C-x t (c.f. 'format-time-string').

If there is no keybinding for insert-time, then M-x insert-time is used. If there are two
or more keybindings for insert-time, Emacs chooses one.

Suppose you want the string \ [insert-time] to appear literally in a docstring. How
could you prevent its keybinding being substituted? For this purpose there is a special
escape sequence: \=. When \= precedes \ [. . . , the magic replacement of \ [. . .] doesn't

happen. Of course, Lisp string syntax dictates that this be written as " . . . \\=\\ [. ".

\= is also useful for escaping the asterisk at the beginning of a defvar docstring, if you
don't want the variable to be a user option but you absolutely must have a docstring that
begins with an asterisk.

All variables that are shared between two or more functions should be declared with defvar.
Which of those should be user options? A rule of thumb is that if the variable directly controls
a user-visible feature that a user might want to change, and if setting that variable is
straightforward (i.e., no complex data structures or specially coded values), then it should be a
user option.

* Emacs 20.1, which was not yet released when this book went to press, will introduce a major new
system for editing user options called "customize." Hooking user options into the "customize" system
requires using special functions called defgroup and defcustom

Page 50

More Asterisk Magic

Now that we've defined the variables that control insert-time and insert-date, here
are the definitions of those simple functions.

 (defun insert-time ()
 "Insert the current time according to insert-time-format."
 (interactive "*")
 (insert (format-time-string insert-time-format
 (current-time))))

 (defun insert-date ()
 "Insert the current date according to insert-date-format.
 (interactive "*")
 (insert (format-time-string insert-date-format
 (current-time))))

The two functions are identical except that one uses insert-time-format where the
other uses insert-date-format. The insert function takes any number of arguments
(which must all be strings or characters) and inserts them one after another in the current buffer
at the present location of point, moving point forward.

The main thing to notice about these functions is that each begins with

(interactive "*")

By now you know that interactive turns a function into a command and specifies how to
obtain the function's arguments when invoked interactively. But we haven't seen * in the
argument of interactive before, and besides, these functions take no arguments, so why
does interactive have one?

The asterisk, when it is the first character in an interactive argument, means "abort this
function if the current buffer is read-only." It is better to detect a read-only buffer before a
function begins its work than to let it get halfway through then die from a "Buffer is read-only"
error. In this case, if we omitted to check for read-onlyness, the call to insert would trigger its

own "Buffer is read-only" error almost right away and no harm done. A more complicated
function, though, might cause irreversible side effects (such as changing global variables),
expecting to be able to finish, before discovering that it can't.

Writestamps

Inserting the current date and time automatically and in such a configurable format is pretty neat
and probably beyond the ken of most text editors, but its usefulness is limited. Undoubtedly
more useful would be the ability to store a writestamp in a file; that is, the date and/or time the
file was last written to disk. A writestamp updates itself each time the file is saved anew.

Page 51

Updating Writestamps

The first thing we'll need is a way to run our writestamp-updating code each time the file is
saved. As we discovered in the section ''Hooks" in Chapter 2, the best way to associate some
code with a common action (such as saving a file) is by adding a function to a hook variable,
provided that a suitable hook variable exists. Using M-x apropos RET hook RET, we
discover four promising hook variables: after-save-hook,
local-write-file-hooks, write-contents-hooks, and
write-file-hooks.

We can discard after-save-hook right away. We don't want our code executed,
modifying writestamps, after the file is saved, because then it will be impossible to save an
up-to-date version of the file!

The differences between the remaining candidates are subtle:

write-file-hooks
Code to execute for any buffer each time it is saved.

local-write-file-hooks
A buffer-local version of write-file-hooks. Recall from the "Hooks" section of
Chapter 2 that a buffer-local variable is one that can have different values in different
buffers. Whereas write-file-hooks pertains to every buffer,
local-write-file-hooks can pertain to individual buffers. Thus, if you want to run
one function while saving a Lisp file and another one when saving a text file,
local-write-file-hooks is the one to use.

write-contents-hooks
Like local-write-file-hooks in that it's buffer-local and it contains functions to
execute each time the buffer is saved to a file. However—and I warned you this was
subtle—the functions in write-contents-hooks pertain to the buffer's contents,
while the functions in the other two hooks pertain to the files being edited. In practice, this
means that if you change the major mode of the buffer, you're changing the way the contents
should be considered, and therefore write-contents-hooks reverts to nil but
local-write-file-hooks doesn't. On the other hand, if you change Emacs's idea of
which file is being edited, e.g. by invoking set-visited-file-name, then
local-write-file-hooks reverts to nil and write-contents-hooks
doesn't.

We'll rule out write-file-hooks because we'll want to invoke our writestampupdater
only in buffers that have writestamps, not every time any buffer is saved. And, hair-splitting
semantics aside, we'll rule out write-contents-hooks because we want our chosen
hook variable to be immune to changes in the buffer's major mode. That leaves
local-write-file-hooks.

Page 52

Now, what should the writestamp updater that we'll put in local-write-file-hooks
do? It must locate each writestamp, delete it, and replace it with an updated one. The most
straightforward approach is to surround each writestamp with a distinguishing string of
characters that we can search for. Let's say that each writestamp is surrounded by the strings
"WRITESTAMP((" on the left and "))" on the right, so that in a file it looks something like this:

 went into the castle and lived happily ever after.
 The end. WRITESTAMP((12:19pm 7 Jul 96))

Let's say that the stuff inside the WRITESTAMP ((. . .)) is put there by insert-date
(which we defined earlier) and so its format can be controlled with
insert-date-format.

Now, supposing we have some writestamps in the file to begin with,* we can update it at
file-writing time like so:

 (add-hook 'local-write-file-hooks 'update-writestamps)

 (defun update-writestamps ()
 "Find writestamps and replace them with the current time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (while (search-forward "WRITESTAMP((" nil t)
 (let ((start (point)))
 (search-forward "))")
 (delete-region start (- (point) 2))
 (goto-char start)
 (insert-date))))))
 nil)

There's a lot here that's new. Let's go through this function a line at a time.

First we notice that the body of the function is wrapped inside a call to save-excursion.
What save-excursion does is memorize the position of the cursor, execute the
subexpressions it's given as arguments, then restore the cursor to its original position. It's useful
in this case because the body of the function is going to move the cursor all over the buffer, but
by the time the function finishes we'd like the caller of this function to perceive no cursor
motion. There'll be much more about save-excursion in Chapter 8, Evaluation and Error
Recovery.

* Inserting writestamps is similar to inserting the date or the time. A function for doing so is left as

an exercise for the reader.

Page 53

Next is a call to save-restriction. This is like save-excursion in that it
memorizes some information, then executes its arguments, then restores the information. The
information in this case is the buffer's restriction, which is the result of narrowing. Narrowing
is covered in Chapter 9. For now let's just say that narrowing refers to Emacs's ability to show
only a portion of a buffer. Since update-writestamps is going to call widen, which
undoes the effect of any narrowing, we need save-restriction in order to clean up after
ourselves.

Next is a call to save-match-data that, like save-excursion and
save-restriction, memorizes some information, executes its arguments, then restores the
information. This time the information in question is the result of the latest search. Each time a
search occurs, information about the result of the search is stored in some global variables (as
we will see shortly). Each search wipes out the result of the previous search. Our function will
perform a search, but for the sake of other functions that might be calling ours, we don't want to
disrupt the global match data.

Next is a call to widen. As previously mentioned, this undoes any narrowing in effect. It
makes the entire buffer accessible, which is necessary if every writestamp is to be found and
updated.

Next we move the cursor to the beginning of the buffer with (goto-char (point-min))
in preparation for the function's main loop, which is going to search for each successive
writestamp and rewrite it in place. The function point-min returns the minimum value for
point, normally 1. (The only time (point-min) might not be 1 is when there's narrowing in
effect. Since we've called widen, we know narrowing is not in effect, so we could write
(gotochar 1) instead. But it's good practice to use point-min where appropriate.)

The main loop looks like this:

(while (search-forward "WRITESTAMP((" nil t)
. . .)

This is a while loop, which works very much like while loops in other languages. Its first
argument is an expression that is tested each time around the loop. If the expression evaluates
to true, the remaining arguments are executed and the whole cycle repeats.

The expression (search-forward "WRITESTAMP((" nil t) searches for the first
occurrence of the given string, starting from the current location of point. The nil means the
search is not bounded except by the end of the buffer. This is explained in more detail later.
The t means that if no match is found, search-forward should simply return nil.
(Without the t, search-forward signals an error, aborting the current command, if no match is
found.) If the search is successful, point is moved to the first character after the matched text,
and

Page 54

search-forward returns that position. (It's possible to find where the match began using

match-beginning, which is shown in Figure 4-1.)

Figure 4-1.
 After searchingfor the string WRITESTAMP((

The body of the while loop is

(let ((start (point)))

This creates a temporary variable, start, that holds the location of point, which is the
beginning of the date string inside the WRITESTAMP ((. . .) delimiters.

With start defined, the body of the let contains:

 (search-forward "))")
 (delete-region start (- (point) 2))
 (goto-char start)
 (insert-date)

This call to search-forward places point after the two closing parentheses. We still know
the beginning of the timestamp, because this location is in start, as shown in Figure 4-2.

Figure 4-2.
 After searchingfor ")) "

This time, only the first argument to search-forward, the search string, is given. Earlier
we saw two additional arguments: the search bound, and whether to signal an error. When
omitted, they default to nil (unbounded search) and nil (signal an error if the search fails).

After search-forward succeeds—and if it fails, an error is signaled and execution of the
function never gets past search-forward—delete-region deletes the text region that
is the date in the writestamp, starting at position

Page 55

start and ending before position (- (point) 2) (two characters to the left of point),
leaving the results shown in Figure 4-3.

Figure 4-3.
 After deleting the region between start and (- (point) 2)

Next, (goto-char start) positions the cursor inside the writestamp delimiters and,
finally, (insert-date) inserts the current date.

The while loop executes as many times as there are matches for the search string. It's
important that each time a match is found, the cursor remains "to the right" of the place where
the match began. Otherwise, the next iteration of the loop will find the same match for the
search string!

When the while loop is done, save-match-data returns, restoring the match data; then
save-restriction returns, restoring any narrowing that was in effect; then
save-excursion returns, restoring point to its original location.

The final expression of update-writestamps, after the call to save-excursion, is

nil

This is the function's return value. The return value of a Lisp function is simply the value of the
last expression in the function's body. (All Lisp functions return a value, but so far every
function we've written has done its job via "side effects" instead of by returning meaningful
values.) In this case we force it to be nil. The reason is that functions in
local-write-file-hooks are treated specially. Normally, the return value of a function
in a hook variable doesn't matter. But for functions in local-write-file-hooks (also
in write-file-hooks and write-contents-hooks), a non-nil return value means, "This hook
function has taken over the job of writing the buffer to a file." If the hook function returns a
non-nil value, the remaining functions in the hook variables are not called, and Emacs does not
write the buffer to a file itself after the hook functions run. Since update-writestamps is
not taking over the job of writing the buffer to a file, we want to be sure it returns nil.

Page 56

Generalizing Writestamps

This approach to implementing writestamps works, but there are a few problems. First, by
hardwiring the strings "WRITESTAMP((" and "))" we've doomed the user to an unaesthetic
and inflexible way to distinguish writestamps in text. Second, the user's preference might not be
to use insert-date for writestamps.

These problems are simple to fix. We can introduce three new variables: one that, like
insert-date-format and insert-time-format, describes a time format to use; and
two that describe the delimiters surrounding a writestamp.

 (defvar writestamp-format "%C"

 "*Format for writestamps (c.f. 'format-time-string').")

 (defvar writestamp-prefix "WRITESTAMP(("
 "*Unique string identifying start of writestamp.")

 (defvar writestamp-suffix "))"
 "*String that terminates a writestamp.")

Now we can modify update-writestamps to be more configurable.

 (defun update-writestamps ()
 "Find writestamps and replace them with the current time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (while (search-forward writestamp-prefix nil t)
 (let ((start (point)))
 (search-forward writestamp-suffix)
 (delete-region start (match-beginning 0))
 (goto-char start)
 (insert (format-time-string writestamp-format
 (current-time))))))))
 nil)

In this version of update-writestamps, we've replaced occurrences of
"WRITESTAMP((" and "))" with writestamp-prefix and
writestamp-suffix, and we've replaced insert-date with

 (insert (format-time-string writestamp-format
 (current-time)))

We also changed the call to delete-region. Previously it looked like this:

(delete-region start (- (point) 2))

That was when we had the writestamp suffix hardwired to be "))", which is two characters
long. But now that the writestamp suffix is stored in a variable, we don't know in advance how
many characters long it is. We could certainly find out, by calling length:

Page 57

 (delete-region start (- (point)
 (length writestamp-suffix)))

but a better solution is to use match-beginning. Remember that before the call to
delete-region is

(search-forward writestamp-suffix)

No matter what writestamp-suffix is, search-forward finds the first occurrence of
it, if one exists, and returns the first position after the match. But extra data about the match,
notably the position where the match begins, is stored in Emacs's global match-data variables.
The way to access this data is with the functions match-beginning and match-end. For
reasons that will become clear shortly, match-beginning needs an argument of 0 to tell

you the position of the beginning of the match for the latest search. In this case, that happens to
be the beginning of the writestamp suffix, which also happens to be the end of the date inside
the writestamp, and therefore the end of the region to delete:

(delete-region start (match-beginning O))

Regular Expressions

Suppose the user chooses "Written: " and "." as the writestamp-prefix and
writestamp-suffix, so that writestamps appear like so: "Written: 19 Aug 1996." This is
a perfectly reasonable preference, but the string "Written: " is less likely than
"WRITESTAMP((" to be completely unique. In other words, the file may contain occurrences
of "Written: " that aren't writestamps. When updatewritestamps searches for
writestamp-prefix, it might find one of these occurrences, then search for the next
occurrence of a period and delete everything in between. Worse, this unwanted deletion takes
place almost undetectably, just as the file is being saved, with the cursor location and other
appearances preserved.

One way to solve this problem is to impose tighter constraints on how the writestamp may
appear, making mismatches less likely. One natural restriction might be to require writestamps
to appear alone on a line: in other words, a string is a writestamp only if
writestamp-prefix is the first thing on the line and writestamp-suffix is the last
thing on the line.

Now it won't suffice to use

(search-forward writestamp-prefix . . .)

to find writestamps, because this search isn't constrained to find matches only at the beginnings
of lines.

This is where regular expressions come in handy. A regular expression—called a regexp or
regex for short—is a search pattern just like the first argument to

Page 58

search-forward. Unlike a normal search pattern, regular expressions have certain
syntactic rules that allow more powerful kinds of searches. For example, in the regular
expression '^Written: ', the caret (^) is a special character that means, "this pattern must
match at the beginning of a line." The remaining characters in the regexp '^Written: ' don't
have any special meaning in regexp syntax, so they match the same way ordinary search
patterns do. Special characters are sometimes called metacharacters or (more poetically)
magic.

Many UNIX programs use regular expressions, among them sed, grep, awk, and pert. The
syntax of regular expressions tends to vary slightly from one application to another,
unfortunately; but in all cases, most characters are non-"magic" (particularly letters and
numbers) and can be used to search for occurrences of themselves; and longer regexps can be
built up from shorter ones simply by stringing them together. Here is the syntax of regular
expressions in Emacs.

1. Period (.) matches any single character except newline.

2. Backslash, followed by a magic character, matches that character literally. So, for example,
\. matches a period. Since backslash itself is magic, \\ matches \ itself.

3. A set of characters inside square brackets matches any one of the enclosed characters. So
[aeiou] matches any occurrence of a or e or i or o or u. There are some exceptions to this
rule—the syntax of square brackets in regular expressions has its own "subsyntax," as
follows:

(a) A range of consecutive characters, such as abed, can be abbreviated a-d. Any number of
such ranges can be included, and ranges can be intermixed with single characters. So
[a-dmx-z] matches any a, b, c, d, m, x, y, or z.

(b) If the first character is a caret (^), then the expression matches any character not
appearing inside the square brackets. So [^a-d] matches any character except a, b, c, or d.

(c) To include a right-square-bracket, it must be the first character in the set. So []a]
matches] or a. Similarly, [^]a] matches any character except] and a.

(d) To include a hyphen, it must appear where it can't be interpreted as part of a range; for
example, as the first or last character in the set, or following the end of a range. So [a-e-z]
matches a, b, c, d, e, -, or z.

(e) To include a caret, it must appear someplace other than as the first character in the set.

(f) Other characters that are normally "magic" in regexps, such as * and. are not magic
inside square brackets.

4. A regexp x may have one of the following suffixes:

Page 59

(a) An asterisk, matching zero or more occurrences of x

(b) A plus sign, matching one or more occurrences of x

(c) A question mark, matching zero or one occurrence of x

So a* matches a, aa, aaa, and even an empty string (zero as);* a+ matches a, aa, aaa, but not
an empty string; and a? matches an empty string and a. Note that x+ is equivalent to xx*.

5. The regexp ^x matches whatever x matches, but only at the beginning of a line. The regexp
x$ matches whatever x matches, but only at the end of a line. This means that ^x$ matches
a line containing nothing but a match for x. In this case, you could leave out x altogether;
^$ matches a line containing no characters.

6. Two regular expressions x and y separated by \ I match whatever x matches orwhatever
ymatches. So hello\ I goodbye matches hello or goodbye.

7. A regular expression x enclosed in escaped parentheses— \ (and \)—matches whatever x
matches. This can be used for grouping complicated expressions. So \ (ab\)+ matches ab,
abab, ababab, and so on. Also, \ (ab\ I cd\) ef matches abef or cdef.

As a side effect, any text matched by a parenthesized subexpression is called a submatch

and is memorized in a numbered register. Submatches are numbered from 1 through 9 by
counting occurrences of \ (in a regexp from left to right. So if the regexp ab\ (cd*e\)
matches the text abcddde, then the one and only submatch is the string cddde. If the regexp
ab\ (cd\ lef\ (g+h\)\)j\(k*\) matches the text abefgghjkk, then the first submatch is efggh, the
second submatch is ggh, and the third submatch is kk.

8. Backslash followed by a digit n matches the same text matched by the nth parenthesized
subexpression from earlier in the same regexp. So the expression \(a+b\)\l matches abab,
aabaab, and aaabaaab, but not abaab (because ab isn't the same as aab).

9. The empty string can be matched in a wide variety of ways.

(a) \' matches the empty string that's at the beginning of the buffer. So \ 'hello matches the
string hello at the beginning of the buffer, but no other occurrence of hello.

(b) \ ' matches the empty string that's at the end of the buffer.

*The * regular expression operator is known among computer scientists as a "Kleene closure."

Page 60

(c) \= matches the empty string that's at the current location of point.

(d) \b matches the empty string that's at the beginning or end of a word. So \bgnu\b
matches the word "gnu" but not the occurrence of "gnu" inside the word "interregnum".

(e) \B matches the empty string that's anywhere but at the beginning or end of a word. So
\Bword matches the occurrence of "word" in "sword" but not in "words''.

(f) \< matches the empty string at the beginning of a word only.

(g) \> matches the empty string at the end of a word only.

As you can see, regular expression syntax uses backslashes for many purposes. So does Emacs
Lisp string syntax. Since regexps are written as Lisp strings when programming Emacs, the two
sets of rules for using backslashes can cause some confusing results. For example, the regexp
ab\) cd, when expressed as a Lisp string, must be written as "ab\\ Icd". Even stranger is when
you want to match a single \ using the regexp \\ : you must write the string "\ \ \ \". Emacs
commands that prompt for regular expressions (such as apropos and keeplines) allow
you to type them as regular expressions (not Lisp strings) when used interactively.

Regexp Quoting

Now that we know how to assemble regular expressions, it might seem obvious that the way to
search for writestamp-prefix at the beginning of a line is to prepend a caret onto
writestamp-prefix and append a dollar sign onto writestamp-suffix, like so:

 (re-search-forward (concat "^"
 writestamp-prefix) . ..) ;wrong!

 (re-search-forward (concat writestamp-suffix
 "$") . . .) ;wrong!

The function concat concatenates its string arguments into a single string. The function
re-search-forward is the regular expression version of search-forward.

This is almost right. However, it contains a common and subtle error: either
writestamp-prefix or writestamp-suffix may contain "magic" characters. In fact,
writestamp-suffix does, in our example: it's ".". Since matches any character (except
newline), this expression:

 (re-search-forward (concat writestamp-suffix
 "$") . . .)

which is equivalent to this expression:

Page 61

 (re-search-forward ".$" . . .)

matches any character at the end of a line, whereas we only want to match a period (.).

When building up a regular expression as in this example, using pieces such as
writestamp-prefix whose content is beyond the programmer's control, it is necessary to
"remove the magic" from strings that are meant to be taken literally. Emacs provides a function
for this purpose called regexp-quote, which understands regexp syntax and can turn a
possibly-magic string into the corresponding non-magic one. For example, (regexp-quote
".") yields "\\." as a string. You should always use regexp-quote to remove the magic from
variable strings that are used to build up regular expressions.

We now know how to begin a new version of update-writestamps:

 (defun update-writestamps ()
 "Find writestamps and replace them with the current time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (while (re-search-forward
 (concat "^"
 (regexp-quote writestamp-prefix))
 nil t)
 . . .))))
 nil)

Limited Searching

Let's finish our new version of update-writestamps by filling in the body of the while
loop. Just after re-search-forward succeeds, we need to know whether the current line
ends with writestamp-suffix. But we can't simply write

 (re-search-forward (concat (regexp-quote writestamp-suffix)
 "$"))

because that could find a match several lines away. We're only interested in knowing whether

the match is on the current line.

One solution is to limit the search to the current line. The optional second argument to
search-forward and re-search-forward, if non-nil, is a buffer position beyond
which the search may not go. If we plug in the buffer position corresponding to the end of the
current line like so:

 (re-search-forward (concat (regexp-quote writestamp-suffix)
 $nn)
 end-of-line-position)

Page 62

then the search is limited to the current line, and we'll have the answer we need. So how do we
come up with end-of-line-position? We simply put the cursor at the end of the current line
using end-of-line, then query the value of point. But after we do that and before
re-search-forward begins, we must make sure to return the cursor to its original
location since the search must start from there. Moving the cursor then restoring it is exactly
what save-excursion is designed to do. So we could write:

 (let ((end-of-line-position (save-excursion
 (end-of-line)
 (point))))
 (re-search-forward (concat (regexp-quote writestamp-suffix)
 "$,,)
 end-of-line-position))

which creates a temporary variable, end-of-line-position, that is used to limit
re-search-forward; but it's simpler not to use a temporary variable if we don't really
need it:

 (re-search-forward (concat (regexp-quote writestamp-suffix)

 (save-excursion
 (end-of-line)
 (point)))

Observe that the value of the save-excursion expression is, like so many other Lisp
constructs, the value of its last subexpression (point).

So update-writestamps can be written like this:

 (defun update-writestamps ()
 "Find writestamps and replace them with the current time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (while (re-search-forward
 (concat "^"
 (regexp-quote writestamp-prefix))
 nil t)
 (let ((start (point)))
 (if (re-search-forward (concat (regexp-quote

 writestamp-suffix)

 (save-excursion
 (end-of-line)
 (point))
 t)
 (progn
 (delete-region start (match-beginning 0))
 (goto-char start)
 (insert (format-time-string writestamp-format
 (current-time))))))))))

 nil)

Page 63

Notice that both calls to re-search-forward have t as the optional third argument,
meaning "if the search fails, return nil (as opposed to signaling an error)."

More Regexp Power

We have created a more or less straightforward translation of updatewritestamps from
its original form to use regular expressions, but it doesn't really exploit the power of regexps.
In particular, the entire sequence of finding a writestamp prefix, checking for a matching
writestamp suffix on the same line, and replacing the text in between can be reduced to just
these two expressions:

 (re-search-forward (concat "^"
 (regexp-quote writestamp-prefix)
 "\\(. \\)
 (regexp-quote writestamp-suffix)
 "$"))
 (replace-match (format-time-string writestamp-format
 (current-time))
 t t nil 1)

The first expression, the call to re-search-forward, constructs a regexp that looks like
this:

^prefix\ (. * \) suffix$

where prefix and suffix are regexp-quoted versions of writestamp-prefix and
writestamp-suffix. This regexp matches one entire line, beginning with the writestamp
prefix, followed by any string (which is made a submatch by the use of \ (. . . \)), and ending
with the writestamp suffix.

The second expression is a call to replace-match, which replaces some or all of the
matched text from a previous search. It's used like this:

 (replace-match new-string
 preserve-case
 literal
 base-string
 subexpression)

The first argument is the new string to insert, which in this example is the result of

format-time-string. The remaining arguments, which are all optional, have the
following meanings:

preserve-case
We set this to t, which tells replace-match to preserve alphabetic case in
new-string. If it's nil, replace-match tries to intelligently match the case of the text
being replaced.

Page 64

literal
We use t, which means "treat new-string literally." If it's nil, then replacematch
interprets new-string according to some special syntax rules (for which see
describe-function on replace-match).

base-string
We use nil, which means "Modify the current buffer." If this were a string, then
replace-match would perform the replacement in the string instead of in a buffer.

subexpression
We use 1, which means "Replace submatch 1, not the entire matched string" (which would
include the prefix and the suffix).

So after finding the writestamp with re-search-forward and "submatching" the text
between the delimiters, our call to replace-match snips out the text between the delimiters
and inserts a fresh new string formatted according to writestamp-format.

As a final improvement to update-writestamps, we can observe that if we write

 (while (re-search-forward (concat . . .) . . .)
 (replace-match . . .))

then the concat function is called each time through the loop, constructing a new string each
time even though its arguments never change. This is inefficient. It would be better to compute
the desired string once, before the loop, and store it in a temporary variable. The best way to
write update-writestamps is therefore:

 (defun update-writestamps ()
 "Find writestamps and replace them with the current time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (let ((regexp (concat "^"
 (regexp-quote writestamp-prefix)
 "\\(.*\\) "
 (regexp-quote writestamp-suffix)
 "$")))
 (while (re-search-forward regexp nil t)
 (replace-match (format-time-string writestamp-format
 (current-time))
 t t nil 1))))))
 nil)

Page 65

Modifystamps

Well, timestamps were marginally useful, and writestamps were somewhat more so, but
modifystamps may be even better. A modifystamp is a writestamp that records the time the file
was last modified, which may not be the same as the last time it was saved to disk. For
instance, if you visit a file and save it under a new name without making any changes to it, you
shouldn't cause the modifystamp to change.

In this section we'll briefly explore two very simple approaches to implementing
modifystamps, and one clever one.

Simple Approach #1

Emacs has a hook variable called first-change-hook. Whenever a buffer is changed
for the first time since it was last saved, the functions in first-change-hook get
executed. Implementing modifystamps by using this hook merely entails moving our old
update-writestamps function from local-write-file-hooks to
first-change-hook. Of course, we'll also want to change its name to
update-modifystamps, and introduce new variables—modifystamp-format,
modifystamp-prefix, and modifystamp-suffix-that work like their writestamp
counterparts without overloading the writestamp variables. Then update-modifystamps
should be changed to use the new variables.

Before any of this happens, first-change-hook, which is normally global, should be
made buffer-local. If we add update-modifystamps to first-change-hook while
it is still global, update-modifystamps will be called every time any buffer is saved.
Making it buffer-local in the current buffer causes changes to the variable to be invisible
outside that buffer. Other buffers continue to use the default global value.

(make-local-hook 'first-change-hook)

Although ordinary variables are made buffer-local with either make-localvariable or
make-variable-buffer-local (see below), hook variables must be made buffer-local with
make-local-hook.

 (defvar modifystamp-format "%C"
 "*Format for modifystamps (c.f. 'format-time-string').")

 (defvar modifystamp-prefix "MODIFYSTAMP (("
 "*String identifying start of modifystamp.")

 (defvar modifystamp-suffix "))"
 "*String that terminates a modifystamp.")

Page 66

 (defun update-modifystamps ()
 "Find modifystamps and replace them with the current time."
 (save-excursion

 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (let ((regexp (concat "^"
 (regexp-quote modifystamp-prefix)
 " \\(.*\\) "
 (regexp-quote modifystamp-suffix)
 "$")))
 (while (re-search-forward regexp nil t)
 (replace-match (format-time-string modifystamp-format

 (current-time))
 t t nil 1))))))
 nil)
 \(add-hook 'first-change-hook 'update-modifystamps nil t)

The nil argument to add-hook is just a place holder. We care only about the last argument,
t, which means "change only the buffer-local copy of first-changehook."

The problem with this approach is that if you make ten changes to the file before saving it, the
modifystamps will contain the time of the first change, not the last change. Close enough for
some purposes, but we can do better.

Simple Approach #2

This time we'll go back to using local-write-file-hooks, but we'll call
update-modifystamps from it only if buffer-modified-p returns true, which tells
us that the current buffer has been modified since it was last saved:

 (defun maybe-update-modifystamps ()
 "Call 'update-modifystamps' if the buffer has been modified."
 (if (buffer-modified-p)
 (update-modifystamps)))

 (add-hook 'local-write-file-hooks maybe-update-modifystamps)

Now we have the opposite problem from simple approach #1: the last-modified time isn't
computed until the file is saved, which may be much later than the actual time of the last
modification. If you make a change to the file at 2:00 and save at 3:00, the modifystamps will
record 3:00 as the last-modified time. This is a closer approximation, but it's still not perfect.

Clever Approach

Theoretically, we could call update-modifystamps after every change to the buffer, but
in practice it's prohibitively expensive to scan through the whole file and rewrite parts of it
after every keystroke. But it's not too expensive to memo-

Page 67

rize the current time after each buffer change. Then, when the buffer is saved to a file, the
memorized time can be used for computing the time in the modifystamps.

The hook variable after-change-functions contains functions to call after each buffer

change. First let's make it buffer-local:

(make-local-hook 'after-change-functions)

Now we define a buffer-local variable to hold this buffer's latest modification time:

 (defvar last-change-time nil
 "Time of last buffer modification.")
 (make-variable-buffer-local 'last-change-time)

The function make-variable-buffer-local causes the named variable to have a
separate, buffer-local value in every buffer. This is subtly different from
make-local-variable, which makes a variable have a buffer-local value in the current
buffer while allowing other buffers to share the same global value. In this case, we use
make-variable-buffer-local because there is no meaningful global value of
last-change-time for other buffers to share.

Now we need a function to set last-change-time each time the buffer changes. Let's call
it remember-change-time and add it to after-change-functions:

 (add-hook 'after-change-functions remember-change-time nil t)

Functions in after-change-functions are passed three arguments describing the
change that just took place (see the section called "Mode Meat" in Chapter 7). But
remember-change-time doesn't care what the change was; only that there was a change.
So we'll allow remember-change-time to take arguments, but we'll ignore them.

 (defun remember-change-time (&rest unused)
 "Store the current time in 'last-change-time'."
 (setq last-change-time (current-time)))

The keyword &rest, followed by a parameter name, must appear last in a function's
parameter list. It means "collect up any remaining arguments into a list and assign it to the last
parameter" (unused in this case). The function may have other parameters, including
&optional ones, but these must precede the &rest parameter. After all the other
parameters are assigned in the normal fashion, the &rest parameter gets a list of whatever's
left. So if a function is defined as

 (defun foo (a b &rest c)

 . . .)

and is called with (foo 1 2 3 4), then a will be 1, b will be 2, and c will be the list (3 4).

Page 68

In some situations, &rest is very useful, even necessary; but right now we're only using it out
of laziness (or economy, if you prefer), to avoid having to name three separate parameters that
we don't plan to use.

Now we must revise update-modifystamps: it must use the time stored in
last-change-time instead of using (current-time). For efficiency, it should also
reset last-change-time to nil when it is done, so if the file is subsequently saved
without being modified, we can avoid the overhead of calling update-modifystamps.

 (defun update-modifystamps ()
 "Find modifystamps and replace them with the saved time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (let ((regexp (concat "^"
 (regexp-quote modifystamp-prefix)
 "\\(.*\\) "
 (regexp-quote modifystamp-suffix)
 "$")))
 (while (re-search-forward regexp nil t)
 (replace-match (format-time-string modifystamp-format
 last-change-time)

 t t nil 1))))))
 (setq last-change-time nil)
 nil)

Finally, we wish not to call update-modifystamps when last-change-time is
nil:

 (defun maybe-update-modifystamps ()
 "Call 'update-modifystamps' if the buffer has been modified."
 (if last-change-time ; instead of testing (buffer-modified-p)

 (update-modifystamps)))

There's still one important thing missing from maybe-update-modifystamps. Before
reading ahead to the next section, can you figure out what it is?

A Subtle Bug

The problem is that every time a modifystamp gets rewritten by update-modifystamps,
the buffer changes, causing last-change-time to change! Only the first modifystamp will
be correctly rewritten. Subsequent ones will contain a time much closer to when the file was
saved than when the last modification was made.

One way around this problem is to temporarily set the value of
after-change-functions to nil while executing update-modifystamps as shown
below.

Page 69

 (add-hook 'local-write-file-hooks
 (lambda ()
 (if last-change-time
 (let ((after-change-functions nil))
 (update-modifystamps)))))

This use of let creates a temporary variable, after-change-functions, that
supersedes the global after-change-functions during the call to
update-modifystamps in the body of the let. After the let exits, the temporary
after-change-functions disappears and the global one is again in effect.

This solution has a drawback: if there are other functions in after-change-functions,
they'll also be disabled during the call to update-modifystamps, though you might not
intend for them to be.

A better solution would be to "capture" the value of last-change-time before any
modifystamps are updated. That way, when updating the first modifystamp causes
last-change-time to change, the new value of last-change-time won't affect any
remaining modifystamps because update-modifystamps won't be referring to
last-change-time.

The simplest way to "capture" the value of last-change-time is to pass it as an argument
to update-modifystamps:

 (add-hook 'local-write-file-hooks
 (lambda ()
 (if last-change-time
 (update-modifystamps last-change-time))))

This requires changing update-modifystamps to take one argument and use it in the call
to format-time-string:

 (defun update-modifystamps (time)
 "Find modifystamps and replace them with the given time."
 (save-excursion
 (save-restriction
 (save-match-data
 (widen)
 (goto-char (point-min))
 (let ((regexp (concat "^"
 (regexp-quote modifystamp-prefix)

 "\\(.*\\) "
 (regexp-quote modifystamp-suffix)

 "$")))
 (while (re-search-forward regexp nil t)
 (replace-match (format-time-string modifystamp-format

 time)
 t t nil 1))))))
 (setq last-change-time nil)
 nil)

Page 70

You might be thinking that setting up a buffer to use modifystamps involves evaluating a lot of
expressions and setting up a lot of variables, and that it seems hard to keep track of what's
needed to make modifystamps work. If so, you're right. So in the next chapter, we'll look at
how you can encapsulate a collection of related functions and variables in a Lisp file.

Page 71

5
Lisp Files
In this chapter
• Creating a Lisp File
• Loading the File
• Compiling the File
• eval-after-load
• Local Variables Lists
• Addendum: Security
Consideration

Up to now, most of the Emacs Lisp we've written has been suitable for inclusion in your
.emacs file. The alternative is to put Emacs Lisp code into files separated by functionality. This
requires a little more effort to set up, but has some benefits over putting everything into .emacs:

• Code in .emacs is always executed when Emacs starts up, even if it is never needed in a
given session. This makes startup time longer and consumes memory. By contrast, a
separate file of Lisp code can be loaded only when and if needed.

• Code in .emacs typically isn't byte-compiled. Byte-compiling is the process of turning
Emacs Lisp into a more efficient form that loads faster, runs faster, and uses less memory
(but which, like compiled programs in other languages, contains unreadable codes that are
not meant for human eyes). Bytecompiled Lisp files usually have names ending in .elc
(''Emacs Lisp, compiled"), while their non-compiled counterparts usually have names
ending in .el ("Emacs Lisp").

• Putting everything into .emacs can cause that file to balloon over time into an
impossible-to-manage jumble.

The previous chapter is a good example of a set of related functions and variables that can be
encapsulated in a separate Lisp file that should only be loaded when and if needed, and that
calls for byte-compilation for very efficient execution.

Creating a Lisp File

Emacs Lisp files have names ending in .el, so to begin, let's create timestamp.el and put in it
the finished forms of the last chapter's code, as shown below.

Page 72

(defvar insert-time-format . . .)
(defvar insert-date-format . . .)
(defun insert-time () . . .)
(defun insert-date () . . .)

(defvar writestamp-format . . .)

(defvar writestamp-prefix . . .)
(defvar writestamp-suffix . . .)
(defun update-writestamps () . . .)

(defvar last-change-time . . .)
(make-variable-buffer-local 'last-change-time)
(defun remember-change-time . . .)
(defvar modifystamp-format . . .)
(defvar modifystamp-prefix . . .)
(defvar modifystamp-suffix . . .)
(defun maybe-update-modifystamps () . . .)
(defun update-modifystamps (time) . . .)

Don't include the calls to add-hook or make-local-hook yet. We'll get to those later.
For now, observe that Lisp files should be written such that they can be loaded at any time,
even multiple times, without unwanted side-effects. One such side-effect would be including
(make-local-hook 'after-change-functions) in timestamp.el, then loading
timestamp.el while the current buffer is not the one whose after-change-functions
you want to make local.

Loading the File

Once the code is in timestamp.el, we must arrange for its definitions to be available when we
need them. This is done by loading the file, which causes Emacs to read and execute its
contents. There are many ways to load Lisp files in Emacs: interactively, non-interactively,
explicitly, implicitly, and with and without pathsearching.

Finding Lisp Files

Emacs can load files based on full path names such as /usr/local/share/emacs/ site-lisp/foo.el,
but it is usually more convenient to use only a file's base name, bo.el, and let Emacs find it
among the directories in the loadpath. The load path is simply a list of directories that Emacs
searches for files to load, very much like the way the UNIX shell uses the environment variable
PATH to find programs to execute. Emacs's load path is stored as a list of strings in the Lisp
variable load-path.

When Emacs starts, load-path has an initial setting that looks something like the following
example.

Page 73

 ("/usr/local/share/emacs/19.34/site-lisp"
 "/usr/local/share/emacs/site-lisp"
 "/usr/local/share/emacs/19.34/lisp")

Directories in load-path are searched in the order they appear. To add a directory to
the beginning of load-path, use

 (setq load-path
 (cons "/your/directory/here"
 load-path))
 in your .emacs file. To add a directory to the end, use

 (setq load-path

 (append load-path
 ("/your/directory/here")))

Notice that in the first example, "/your/directory/here" appears as an ordinary string, but in the
second example, it appears inside a quoted list. Chapter 6, Lists, explains these and other ways
to manipulate lists in Lisp.

If you ask Emacs to find a Lisp file in the load path and you omit the suffix of the file for which
you're looking-e.g., you specify foo instead of foo.e/-Emacs first looks for foo.elc, the
byte-compiled form of foo.el. If that's not found in the load path, then foo.el is tried, followed
by plain foo. It's usually best to omit the suffix when specifying a file to load. Not only does it
get you that useful search behavior, but it helps eval-after-load to work properly (see
the section about eval-after-load later in this chapter).

Interactive Loading

Two Emacs commands exist for interactively loading a Lisp file: load-file and
load-library. When you type M-x load-file RET, Emacs prompts you for the full
pathname of a Lisp file (e.g., /home/bobg/emacs/foo.el) and does not search load-path. It
uses the normal filename-prompting mechanisms, so filename completion is available. On the
other hand, when you type M-x load-library RET, Emacs prompts you for just the base name
of the library (e.g, foo) and attempts to find it in load-path. It does not use
filename-prompting and completion is not available.

Programmatic Loading

When loading files from Lisp code, you may choose explicit loading, conditional loading, or
autoloading.

Page 74

Explicit loading

Files are loaded explicitly by calling load (which works like the interactive load-library) or
load-file.

(load "lazy-lock")

searches load-path for lazy-lock.elc, lazy-lock.el, or lazy-lock.

(load-file "/home/bobg/emacs/lazy-lock.elc")

doesn't use load-path.

Explicit loading should be used when you definitely need the file to be loaded immediately,
and you either know that the file hasn't already been loaded or you don't care. As it turns out,
given the alternatives below, it is rarely the case that you need to explicitly load a Lisp file.

Conditional loading

When n different pieces of Lisp code want to load a particular file, two Emacs Lisp functions,
require and provide, give a way to make sure it only gets loaded once instead of n times.

A Lisp file usually contains a collection of related functions. The collection can be thought of
abstractly as a single feature. Loading the file makes available the feature it contains.

Emacs makes the feature concept explicit. Features are named by Lisp symbols, declared with
provide, and requested by require.

Here's how it works. First, we'll choose a symbol to stand for the feature provided by the file
timestamp.el. Let's use the obvious one, timestamp. We indicate that timestamp.el provides
the feature timestamp by writing

(provide 'timestamp)

in timestamp.el. Normally this appears at the very end of the file, so that the feature isn't
"provided" unless everything preceding it worked correctly. (If something fails, then loading of
the file aborts before reaching the call to provide.)

Now suppose that somewhere, there's some code that needs the timestamp functionality. Using
require like this:

(require 'timestamp "timestamp")

means, "if the timestamp feature is not yet present, load timestamp" (using load, which
searches load-path). If the timestamp feature has already been provided (presumably
because timestamp has already been loaded), nothing happens.

Page 75

Usually, all the necessary calls to require are collected together at the beginning of a Lisp
file—something like the way C programs usually begin with lots of #includes. But some
programmers like to place require calls deep in the code that actually depends on the
required feature. There may be many such places, and if each such place actually caused the
file to load, the program would slow to a crawl, loading Lisp files possibly dozens of times
each. Using "features" to make sure files only get loaded once can be a real timesaver!

In the call to require, if the filename is the "string equivalent" of the feature name, then the
filename can be omitted and will be inferred from the feature name. The "string equivalent" of
a symbol is simply the symbol's name as a string. The string equivalent of the feature symbol
timestamp is "timestamp", so we can write

(require 'timestamp)

instead of (require 'timestamp "timestamp"). (The function symbol-name
called on a symbol yields its string equivalent.)

If require causes the associated file to be loaded (because the feature hasn't yet been
provided), that file should provide the requested feature. Otherwise, require reports that
loading the requested file failed to provide the desired feature.

Autoloading

With autoloading, you can arrange to defer loading a file until it's needed-that is, until you call
one of its functions. Setting up autoloads is very inexpensive, and therefore is usually done in

the .emacs file.

The function autoload connects a function name with the file that defines it. When Emacs
tries to invoke a function that is not yet defined, it loads the file that, according to autoload,
supposedly defines it. Without an autoload, attempting to invoke an undefined function is an
error.

Here's how it's used:

 (autoload 'insert-time "timestamp")
 (autoload 'insert-date "timestamp")
 (autoload 'update-writestamps "timestamp")
 (autoload 'update-modifystamps "timestamp")

The first time any of the functions insert-time, insert-date,
updatewritestamps, or update-modifystamps is called, Emacs loads
timestamp. Not only will this cause the invoked function to get defined, but it will define
the other three as well, so subsequent calls to these functions won't reload timestamp.

Page 76

The autoload function has several optional parameters. The first one is a docstring for the
not-yet-defined function. Including a docstring allows the user to get help on the function (via
describe-function and apropos) even before its definition has been loaded from
the file.

 (autoload 'insert-time "timestamp"
 "Insert the current time according to insert-time-format.")
 (autoload 'insert-date "timestamp"
 "Insert the current date according to insert-date-format.")
 (autoload 'update-writestamps "timestamp"
 "Find writestamps and replace them with the current time.")
 (autoload 'update-modifystamps "timestamp"
 "Find modifystamps and replace them with the given time.")

The next optional parameter describes whether the function, once loaded, will be an
interactive command or a mere function. If omitted or nil, the function is expected to be
non-interactive; otherwise it's expected to be a command. When this information exists
prior to loading the actual function definition, it can be used by such functions as
command-apropos that need to distinguish interactive from non-interactive functions.

 (autoload 'insert-time "timestamp"
 "Insert the current time according to insert-time-format."
 t)
 (autoload 'insert-date "timestamp"
 "Insert the current date according to insert-date-format."
 t)
 (autoload 'update-writestamps "timestamp"
 "Find writestamps and replace them with the current time."
 nil)
 (autoload 'update-modifystamps "timestamp"
 "Find modifystamps and replace them with the given time."
 nil)

If you mistakenly label a non-interactive function interactive or vice versa in the

autoload call, it won't matter once the real definition is loaded. The real definition
replaces all information given in the autoload call.

The last optional parameter is one we won't cover for now. It specifies the type of the
autoloadable object, if not a function. As it turns out, keymaps and macros (which we'll cover
in coming chapters) may also be autoloaded.

Compiling the File

As mentioned at the beginning of this chapter, once we have our Lisp code in a file of its own,
we can byte-compile it. Byte-compiling converts Emacs Lisp into a more compact,
faster-running format. Like compilation in other programming languages, the result of
byte-compilation is essentially unreadable to humans. Unlike other kinds of compilation, the
result of byte-compilation is still portable

Page 77

among different hardware platforms and operating systems (but may not be portable to older
versions of Emacs).

Byte-compiled Lisp code executes substantially faster than uncompiled Lisp code.

Byte-compiled Emacs Lisp files have names ending in .elc. As mentioned earlier, load and
load-library, when given no file suffix, will preferentially load a .elc file over a .el
file.

There are several ways to byte-compile files. The most straightforward ways are

From within Emacs: Execute M-x byte-compile-file RET file.el RET.

From the UNIX shell: Run emacs -batch -f batch-byte-compilefile.el.

You can byte-compile an entire directory full of Lisp files with
byte-recompile-directory.

When Emacs loads a .elc file, it compares the date of the file with the date of the corresponding
.el file. If the .elc is out of date with respect to the .el, Emacs will still load it but it will issue a
warning.

eval-after-load

If you'd like to defer the execution of some code until a particular file has been loaded,
eval-after-load is the way to do it. For example, suppose you came up with a better
definition for dired-sort-toggle than the one that's in dired (Emacs's directory-editing
module). You couldn't simply put your version into your .emacs, because the first time you edit
a directory, dired will be autoloaded, complete with its definition for
dired-sort-toggle, which will wipe out your definition.

What you could do instead is:

 (eval-after-load
 "dired"
 (defun dired-sort-toggle ()

This will execute the defun immediately after dired is loaded, clobbering dired's version of
dired-sort-toggle instead of the other way around. Note, however, that this will work
only if dired is loaded under precisely the name dired. It won't work if dired is loaded under
the name dired.elc or /usr/local/share/emacs/19.34/ lisp/dired. The load or autoload or
require that causes dired to be loaded must refer to it by exactly the same name used in
eval-after-load. This is why, as mentioned earlier, it's best always to load files by just
their base name.

Page 78

Another use for eval-after-load is when you need to refer to a variable, function, or
keymap in a package that's not loaded yet, and you don't want to force the package to be
loaded:

 (eval-after-load
 "font-lock"
 '(setq lisp-font-lock-keywords lisp-font-lock-keywords-2))

This refers to the value of lisp-font-lock-keywords-2, a variable defined in
font-lock. If you try to refer to lisp-font-lock-keywords-2 before fontlock is loaded,
you'll get a "Symbol's value as variable is void" error. But there's no hurry to load font-lock,
because this setq only uses lisp-font-lock keywords-2 in order to set
lisp-font-lock-keywords, another font-lock variable that's not needed until font-lock
gets loaded for some other reason. So we use eval-after-load to make sure that the setq
doesn't happen too early and cause an error.

What happens if you call eval-after-load and the named file has already been loaded?
Then the given Lisp expression is executed immediately. What if there's more than one
eval-after-load for the same file? They all execute, one after another, when the file is
finally loaded.

You may have observed that eval-after-load works very much like hook variables. It's
true, they do, but one important difference is that hooks only execute Lisp functions (frequently
in the form of anonymous lambda expressions), whereas eval-after-load can execute
any Lisp expression.

Local Variables Lists

What we've described in this chapter so far is enough to set up a file of Lisp code and have it
loaded on demand. But in the case of timestamp, things are a little different. We've already
arranged for calling update-writestamps to autoload timestamp, but who or what is
going to call update-writestamps and force timestamp to load? Recall that
update-writestamps is supposed to get called from local-write-file-hooks.
So how does update-writestamps get into local-write-file-hooks? Loading
the file mustn't do that for the reasons mentioned in the section called "Creating a Lisp File"
earlier in this chapter.

What we need is a way to get update-writestamps into local-writefile-hooks
in buffers that need it, so that the first invocation of local-write-file-hooks can cause
the autoloading of timestamp.

Page 79

A good way to accomplish this is by using the local variables list that may appear near the end
of any file. Whenever Emacs visits a new file, it scans near the end * for a block of text that
looks like this:

 Local variables:
 var1 : value1
 var2: value2

 End:

When Emacs finds such a block, it assigns each value to the corresponding var, which is
automatically made buffer-local. Emacs can recognize this block even if each line begins with
a prefix, as long as they all begin with the same prefix. This is necessary in a file of Lisp code,
for example, to comment out the lines so they're not interpreted as Lisp:

 ; Local variables:
 ; var1: value1
 ; var2: value2

 ; End:

The values are treated as if quoted; they are not evaluated before being assigned to their
respective vars. So in a file that has

 ; Local variables:
 ; foo: (+ 3 5)
 ; End:

the buffer-local variable foo has the value (+ 3 5), not 8.

Any file that needs update-writestamps in its local-write-file-hooks could
therefore specify:

 Local variables:
 local-write-file-hooks: (update-writestamps)
 End:

In fact, a file could set up all of the unique values it needs:

 Local variables:
 local-write-file-hooks: (update-writestamps)
 writestamp-prefix: "Written:"
 writestamp-suffix: "."
 writestamp-format: "%D"
 End:

One problem with setting local-write-file-hooks this way is that it's preferable to
add update-writestamps to whatever value may already be in
local-write-file-hooks, rather than replace local-write-file-hooks

* "Near the end" means: within the final 3000 bytes of the file—yes, it's arbitrary—and following the
last line, if any, that begins with a CONTROL-L.

Page 80

with a new list as in the example above. Doing so would require evaluating Lisp code, though.
Specifically, you'd need to execute the expression

(add-hook 'local-write-file-hooks 'update-writestamps)

To allow this, Emacs recognizes a "pseudovariable" in the local variables list called eval.
When

eval: value

appears in a local variables list, value is evaluated. The result of evaluating it is discarded; it
is not stored in a buffer-local variable named eval. So a complete solution is to include:

eval: (add-hook 'local-write-file-hooks 'update-writestamps)

among the local variables.

Actually, the right way to set up local-write-file-hooks for this purpose is to write a
minor mode, which is the subject of Chapter 7.

Addendum: Security Consideration

The local variables list is a potential security hole, exposing the user to "Trojan horse"
attacks. Imagine a variable setting that causes Emacs to behave in an unexpected way; or an
eval that has unexpected side-effects, like deleting files or forging email in your name. All an
attacker has to do is entice you to visit a file with such a setting in its local variables list. As
soon as you visit the file, the code is executed.

The way to protect yourself is to put

(setq enable-local-variables 'query)

in your .emacs. This causes Emacs to present any local variables list to you for inspection
before executing it. There's also enable-local-eval, specifically controlling the eval
pseudovariable.

Page 81

6
Lists

In this chapter
• The Simple View
of Lists
• List Details
• Recursive List
Functions
• Iterative List
Functions
• Other Useful List
Functions
• Destructive List
Operations
• Circular Lists?!

So far, we've seen lists in a few contexts, but we haven't really explored how they work and
why they're useful. Since lists are central to Lisp, this chapter provides a thorough look at this
data structure.

The Simple View of Lists

As we've already seen, a list in Lisp is a sequence of zero or more Lisp expressions enclosed
in parentheses. Lists may be nested; that is, the enclosed subexpressions may include one or
more lists. Here are a few examples:

 (a b c) ; list of three symbols
 (7 "foo") ; list of number and string
 ((4.12 31178)) ; list of one element: a sublist of two numbers

The empty list () is synonymous with the symbol nil.

The functions car and cdr * are used to access parts of a list: car yields the first element in
a list, and cdr yields the remainder of the list (everything but the first element).

 (car '(a b c)) ⇒ a
 (cdr '(a b c))) ⇒ (b c)
 (car (cdr '(a b c))) ⇒ b

(Recall that quoting an expression—even a complete list—means to use that

expression literally. So '(a b c) means the list containing a, b, and c, not the

result of calling function a on arguments b and c.)

* Pronounced ''could-er." These names are historical holdovers from the computer architecture on
which Lisp was first designed.

Page 82

The cdr of a one-element list is nil:

 (cdr ' (x)) ⇒ nil

The car and cdr of the empty list are both nil:

 (car '()) ⇒ nil
 (cdr '()) ⇒ nil

Note that this is also true of the list containing nil:

 (car '(nil)) ⇒ nil
 (cdr '(nil)) ⇒ nil

This does not mean that () is the same as (nil).

You don't have to take my word for any of this. Just go into the *scratch* buffer and, as
explained in the section on "Evaluating Lisp Expressions" in Chapter 1, try any of these
examples for yourself.

Lists are constructed with the functions list, cons, and append. The function list
makes a list out of any number of arguments:

 (list 'a "b" 7) ⇒ (a "b" 7)
 (list (x y z) 3) ⇒ ((x y z) 3)

The function cons takes an arbitrary Lisp expression and an existing list. It makes a new list
by prepending the arbitrary expression to the old list:

 (cons 'a '(3 4 5)) ⇒ (a 3 4 5)
 (cons "hello" '()) ⇒ ("hello")
 (cons '(a b) '(c d)) ⇒ ((a b) c d)

Note that consing onto a list creates a new list without affecting the old list:

 (setq x '(a b c)) ;assign (a b c) tovariablex
 (setq y (cons 17 x)) ;cons 17 onto it andput it in y
 y ⇒ (17 a b c) ;as expected
 x ⇒ (a b c) ;no change in x

The function append takes any number of lists and makes a new list by concatenating the
top-level elements of all the lists. It effectively strips off the outer parentheses of each list,
sticks all the resulting elements together, and surrounds them with a new pair of parentheses:

 (append '(a b) ' (c d)) ⇒ (a b c d)
 (append '(a (b c) d) '(e (f))) ⇒ (a (b c) d e (f))

Page 83

The function reverse takes a list and makes a new list by reversing its top-level elements.

 (reverse (a b c)) (c b a)
 (reverse (1 2 (3 4) 5 6)) = (6 5 (3 4) 2 1)

Note that reverse does not reverse elements in sublists.

List Details

This section explains the inner workings of Lisp lists. Since most Lisp programs employ lists

to some degree or other, it is beneficial to understand why they work the way they do. This will
help you to understand what Lisp lists are and aren't good at.

Lists are composed of smaller data structures called cons cells. A cons cell is a structure that
contains two Lisp expressions, referred to, you may not be surprised to learn, as the cell's car
and cdr.

The function cons creates a new cons cell from its two arguments. Contrary to the implication
in the preceding section, both arguments to cons may be arbitrary Lisp expressions. The second
one need not be an existing list.

 (cons 'a 'b) > a cons cell uitb car a and cdr b
 (car (cons 'a 'b)) = a
 (cdr (cons 'a 'b)) = b

The resulting cons cell is usually depicted as in Figure 6-1.

Figure 6-1.
The result of (cons 'a 'b)

When you cons something onto a list, as in

(cons 'a '(b c))

the result is (a b c), which is merely a cons cell whose car is a and whose cdr is (b c). More
about this below.

There's a special syntax for cons cells whose cdrs aren't lists. It's called dotted pair notation,
and cons cells themselves are sometimes referred to as dotted pairs:

 (cons a b) = (a . b)
 (cons '(1 2) 3) = ((1 2) . 3)

Page 84

When the cdr of a cons cell is nil, as in Figure 6-2, the dotted pair notation can be abbreviated
to omit the dot and the nil.

Figure 6-2.
A single-element list: (a)

Another abbreviation rule says that if the cdr of a cons cell is another cons cell, then the dot

can be discarded along with the parentheses surrounding the cdr. See Figure 6-3.

Figure 6-3.
One cons cell points to another

When combined with the abbreviation rule about nil cdrs, we recognize the lists with which
we're already familiar:

(a . (b . nil)) (a b . nil) - (a b)

Generally speaking, a Lisp list is a chain of cons cells where each cdr is another cons cell and
the last cdr is nil. It doesn't matter what the cars of the cons cells are. Figure 6-4 shows a list
as part of another list.

Figure 6-4.
 A list containing a sublist

Page 85

When you write

(setq x '(a b c))

you make x point to the first cons cell in a three-cons-cell chain. If you then write

(setq y (cdr x)) ; now y is (b c)

you make y point to the second cons cell in the same chain. A list is really only a pointer to a
cons cell.

A list where the last cdr is not nil is sometimes called an improper list. Frequently, the entries
in an association list (see below) are improper lists.

There are several functions for testing whether a Lisp object is a list or a list component.

• consp tests whether its argument is a cons cell. (consp x) is true when x is any list
except the empty list, and false for all other objects.

• atom tests whether its argument is atomic. (atom x) is the opposite of (consp

x)—everything that's not a cons cell, including nil, numbers, strings, and symbols, is an
atom.

• listp tests whether its argument is a list. (listp x) is true for all cons cells and for nil,
false for everything else.

• null tests whether its argument is nil.

Now that you know about cons cells, you might find it odd that (car nil) and (cdr nil)
are both defined to be nil, when nil isn't even a cons cell and therefore has no car or cdr.
Indeed, a few dialects of Lisp make it an error to call car and cdr on nil. Most Lisps
behave like Emacs Lisp in this regard, however, mainly for convenience—but this special case
does have the bizarre side effect (previously noted) of making () and (nil) behave the same
way with respect to car and cdr.

Recursive List Functions

Traditional Lisp textbooks use a variety of short programming exercises to illustrate the
behavior of lists and cons cells. Let's just take a moment now to look at two of the
better-known examples, then move on.

Our goal in this exercise is to define a function called flatten that, given a list, undoes any
nesting of sublists, causing all elements to be at the top level. For example:

 (flatten '(a ((b) c) d)) = (a b c d)

Page 86

The solution calls for recursion, flattening the car and the cdr separately, then recombining
them in a way that preserves flatness. Suppose the input to flatten is the list

((a (b)) (c d))

The car is (a (b)) which when flattened yields (a b). The cdr is ((c d)) which when flattened
becomes (c d). The function append can be used to combine (a b) with (c d) and preserve
flatness, yielding (a b c d). So at the heart of flatten is this code:

 (append (flatten (car lst))
 (flatten (cdr 1st)))

(I've chosen 1st as the name for flatten's parameter. I prefer not to use list, which is
the name of a Lisp function.) Now, flatten is only meant to work on lists, so (flatten
(car lst)) is an error if (car lst) is not a list. We must therefore elaborate as follows:

 (if (listp (car lst))
 (append (flatten (car lst))
 (flatten (cdr lst))))

This if has no "else" clause. What if (car lst) is not a list? For example, suppose 1st were

(a ((b) c))

The car, a, is not a list. In this case, we will simply need to flatten the cdr, (((b) c)), to get (b
c); then cons the car back onto it.

 (if (listp (car 1st))
 (append (flatten (car lst))
 (flatten (cdr 1st)))
 (cons (car 1st)
 (flatten (cdr lst))))

Finally, we need a way to terminate the recursion. In recursive functions that work on smaller
and smaller pieces of lists, the smallest piece you can wind up with is nil, and nil is almost
always used as the "basis case" for such functions. In this case, the result of flattening nil is
simply nil, so our complete function is

 (defun flatten (1st)
 (if (null lst) ; Islstnil?
 nil ; Ifso, return nil
 (if (listp (car lst))
 (append (flatten (car lst))
 (flatten (cdr 1st)))
 (cons (car 1st)
 (flatten (cdr 1st))))))

Page 87

Try running this function on a few sample lists in the *scratch* buffer, and try following the
logic of the function by hand on a few examples. Remember that the return value of a function
in Lisp is the value of the last expression to execute.

Iterative List Functions

Recursion isn't always the right solution for a list-related programming problem. Sometimes
plain old iteration is needed. In this example, we'll demonstrate the Emacs Lisp idiom for
operating on a list of elements one at a time, sometimes called "cdr-ing down" a list (because
in each iteration, the list is shortened by taking its cdr).

Suppose we need a function that counts the number of symbols in a list, skipping over other
kinds of list elements like numbers, strings, and sublists. A recursive solution is wrong:

 (defun count-syms (1st)
 (if (null lst)
 0
 (if (symbolp (car lst))
 (+ 1 (count-syms (cdr lst)))
 (count-syms (cdr lst)))))

Recursion—particularly deep recursion—introduces a fair amount of overhead in terms of
keeping track of many nested function calls and return values, and should be avoided when
possible. Furthermore, this problem naturally suggests an iterative solution, and code should
usually reflect the natural approach to solving a problem, rather than obfuscating the solution
by being too clever.

 (defun count-syms (1st)
 (let ((result 0))
 (while 1st
 (if (symbolp (car lst))
 (setq result (+ 1 result)))

 (setq 1st (cdr lst)))
 result))

Other Useful List Functions

Here are some more list-related Lisp functions that Emacs defines.

• length returns the length of a list. It does not work on "improper" lists.

(length nil) ⇒ 0
(length '(x y z)) ⇒ 3
(length '((x y z))) ⇒ 1
(length '(a b . c)) ⇒ error

• nthcdr calls cdr on a list n times.

(nthcdr 2 '(a b c)) ⇒ (c)

Page 88

• nth returns the nth element of a list (where the first element is numbered zero). This is the
same as the car of the nthcdr.

(nth 2 (a b c))⇒ c
(nth 1 '((a b) (c d) (e f))) ⇒ (c d)

• mapcar takes a function and a list as arguments. It calls the function once for each element
of the list, passing that element as an argument to the function. The result of mapcar is a
list of the results of calling the function on each element. So if you have a list of strings and
want to capitalize each one, you could write:

(mapcar '(lambda (x)
 (capitalize x))
 ("lisp" "is" "cool")) ⇒ ("Lisp" "Is" "Cool")

• equal tests whether its two arguments are equal. This is a different kind of equality
test from eq, which we first encountered in the section called "Saving and Restoring Point," in
Chapter 3. Whereas eq tests whether its arguments are the same object, equal tests whether
two objects have the same structure and contents.

This distinction is important. In the following example:

(setq x (list 1 2 3))
(setq y (list 1 2 3))

x and y are two different objects. That is, the first call to list creates a chain of three cons
cells, and the second call to list creates a chain of three more cons cells. So (eq x y) is
nil, even though the two lists have the same structure and contents. But since they do have
the same structure and contents, (equal x y) is true.

In Lisp programming, any time you wish to compare two objects for equality, you must be
alert to whether eq or equal is appropriate. Another consideration is that eq is an
instantaneous operation, whereas equal may have to recursively compare the structure of
its two arguments.

Note that when you write

(setq x (list 1 2 3))
(setq y x)
(eq x y) becomes true.

• assoc is a function that helps you use lists as lookup tables. When a list has the form

((key1. value1)
(key2 . value2)

(keyn . valuenn)

Page 89

it is called an association list, or assoc list for short.* The function assoc finds the first
sublist of an assoc list whose car (the keyi "field") matches the argument you give. So:

 (assoc green
 ((red . "ff0000)
 (green . "00ff00")
 (blue . "0000ff"))) ⇒ (green . "00ff00")

If no matching sublist is found, assoc returns nil.

This function uses equal to test whether each keyi matches the argument you give. Another
function, assq, is like assoc but uses eq instead.

Some programmers do not like dotted pairs, so instead of setting up a lookup table in this
form:

 ((red . "ff000")
 (green . "00ff00")
 (blue . "000ff"))

they'll do this instead:

 ((red "ff0000")
 (green "00ff00O")
 (blue "000ff"))

This is fine, because as far as assoc is concerned, each element of the list is still a dotted
pair:

 ((red . ("ff0000"))
 (green . ("00ff00"))
 (blue . ("0000ff")))

The only difference is that in the earlier example, each entry in the assoc list can be stored
in a single cons cell, but now each entry requires two cons cells. And retrieving the value
associated with a key could previously be done like this:

(cdr (assoc 'green . . .)) ⇒ "00ff00"

but now must be done like this:

(car (cdr (assoc 'green . . .))) ⇒ "00ff00"

Destructive List Operations

So far, all the list operations we've looked at have been non-destructive. For instance, when
you cons an object onto an existing list, the result is a brand new cons cell whose cdr points to
the unaltered old list. Any other objects or variables that refer to the old list are unaffected.
Similarly, append works by making a

* I've never found consensus on whether this should be pronounced a-SOAK, a-SOASH, or a-SOCK
list. I've heard all three. Some avoid the problem by calling it an "a-list."

Page 90

brand new list, creating as many new cons cells as necessary to hold the elements of the lists in
its arguments. It cannot make the last cdr of x point directly to y, or the last cdr of y point
directly to z, because the nil pointer at the end would be changed. x and y could no longer be
used in their original forms. Instead append makes an unnamed copy of those lists as shown
in Figure 6-5. Note that the value of z need not be copied; append always uses its last
argument directly.

Figure 6-5:
The append function does not alter its arguments.

Here's what the non-destructiveness of append means in Lisp code:

 (setq x '(a b c))
 (setq y '(d e f))
 (setq z '(g h i))
 (append x y z) ⇒ (a b c d e f g h i)

Because append does not destructively modify its arguments, these three variables continue
to have their old values:

 x ⇒ (a b c)
 y ⇒ (d e f)
 z ⇒ > (g h i)

But if destructive modification were used, then each variable would refer to some part of a

single, long cons chain made when the three shorter cons chains are strung together as shown in
Figure 6-6. The function that performs a destructive append is called nconc.

 (nconc x y z) ⇒ (a b c d e f g h i)
 x ⇒ (a b c d e f g h i)
 y ⇒ (d e f g h i)
 z ⇒ (g h i)

*Because it's pointed to directly, the last argument to append doesn't even have to be a list! Try it
and see.

Page 91

Figure 6-6
unlike append, nconc alters its arguments

Usually its unwise to destructively modify lists. Many other variables and data structures may
be using the same copies of the lists you modify, so it's best not to change them in ways that
would have unpredictable effects.

On the other hand, sometimes you do want to destructively modify a list. Perhaps you need the
efficiency of nconc and you know that no other code depends on the data structure remaining
unchanged.

One of the most common uses of destructive list operations is when changing values ina n assoc
list. For example, suppose you have an assoc list that maps people's name's to their email
address:

(setq-addrs
 '(("robin" . "rl@sherwood.uk")
 ("marian" . "mf@sherwood.uk")

Now suppose someone's email address changes. You could update the list like this:

setq e-addrs
 (alist-replace e-addrs "john" "johnl@exile.fr"))

where alist-replace is some hideously expensive recursive operation that basically
recopies the whole list:

(defun alist-replace (alist key new-value)
 (if (null alist)
 nil
 (if (and (listp (car alist)
 key))
 (cons (cons key new-value)

 (cdr alist))
 (cons (car alist)
 (alist-replce (cdr alist) key new-value)))))

Not only is this slow (especially if the input is large), But this is acase wher you probably do
want to effect any other objects or variables referring to this data structure. Unfortunately,
alist-replace doesn't actually change the data struc-

Page 92

ture. It makes a brand-new copy, and anything referring to the old copy does not see the update.
In code, this means:

 (setq alist '((a . b) (c . d))) ;alist is an assoc list.

 (setq alist-2 alist) ;alist-2 refers to the same list

 (setq alist (alist-replace alist c q)) ;alist is a newlist.

 alist ⇒ ((a . b) (c . q)) ;alist reflects the change.

 alist-2 ⇒ ((a . b) (c . d)) ;alist-2 still refers to the old list

Enter setcar and setcdr.* Given a cons cell and a new value, these functions replace the
cell's car or cdr with the new value. Examples:

 (setq x (cons 'a 'b)) ⇒ (a . b)
 (setcar x c)
 x ⇒ (c . b)
 (setcdr x d)
 x ⇒ (c . d)

We can now easily write a destructive version of alist-replace like so:

 (defun alist-replace (alist key new-value)
 (let ((sublist (assoc key alist)))
 (if sublist
 (setcdr sublist new-value))))

This finds the sublist of alist whose car is the sought-for key—e.g., the sublist ("john" .
"jl@nottingham.co.uk")—and replaces the cdr with new-value. Since this changes
the data structure in place—that is, since it doesn't work by making a new copy of
anything—all variables and other objects that refer to the cons cell, particularly the assoc list
containing it, reflect the change.

There is one other important destructive list operation: nreverse, a non-copying version of
reverse.

 (setq x '(a b c))
 (nreverse x) ⇒ (c b a)
 x ⇒ (a)

Why does x equal (a) after the last example? It's because x continues to refer to the same cons
cell, which has gotten shuffled around. Consider: the list (a b c) consists of three cons cells,
one whose car is a, one whose car is b, and one whose car is c. At first, x refers to the list by
referring to the first cons—cell-the one whose car is a and whose cdr refers to the next cons
cell in the chain (which is the one containing b). But after nreverse, the cdrs of all the cons
cells are changed. Now the cons cell whose car is c is the first in the chain, and its cdr is

*Also called rplaca and rplacd, for the same historical reasons that gave us car and cdr.

Page 93

the cons cell containing b. Meanwhile, x's value hasn't changed: it still refers to the original
cons cell, whose car is a. But now that cell's cdr is nil because it's at the end of the chain, so
x is (a).

If you need x to reflect the change in the list, you'd have to write

(setq x (nreverse x)) ⇒ (c b a)

Circular Lists?!

Because we can destructively modify lists after they're created, we're not limited to building
lists only out of pre-existing parts. A list can be made to refer to part of itself! Consider:

 (setq x '(a b c))
 (nthcdr 2 x) ⇒ (c)
 (setcdr (nthcdr 2 x) x) ;don't try this yet.!

What's happening in this example? First we create a three-element list and place it in x. Next,
we find the last cons cell with nthcdr. Finally, we replace that cell's cdr with x-which is the
first cons cell in the list. The list is now circular: the former end of the list now points back to
the beginning.

What does this list look like? Well, it starts out like this:

(a b c ab c ab c a b c a b c a b c a b c a b c . . .

and it never stops. The reason I wrote don't try this yet! above is that if you executed the
setcdr in the *scratch* buffer, Emacs would try to display the result—and would never
finish. It would get caught in an infinite loop, albeit one that you can interrupt with C-g. Go
ahead and try it now, but press C-g as soon as Emacs locks up. The longer you wait, the more
it fills up the *scratch* buffer with repetitions of a b c.

Obviously, printing isn't the only thing you can do to a circular data structure that can make
Emacs loop forever. Any operation that iterates over all the elements in a list will never
terminate. Here's an important illustration:

 (eq x (nthcdr 3 x)) ⇒ t ;3rd cdr issameobjectas x
 (equal x (nthcdr 3 x)) ⇒ never terminates!

If circular lists throw Emacs for a loop (pun intended), what good are they? One doesn't
normally think of lists as being circular, but if you stop thinking of them as lists and start

thinking of them as connected cons cells, you can build any kind of linked data structure, from
trees to lattices. Some data structures are self-referential, i.e., circular. If you ever find
yourself needing to build such a data structure, you should not be daunted by the fact that Emacs
loops forever trying

Page 94

to display it. Simply don't evaluate it in a context where the result needs to be displayed. For
instance, if we changed the setcdr above to

 (setq x (a b c))
 (progn
 (setcdr (nthcdr 2 x) x)
 nil)

then Emacs would not try to display the result of the setcdr, and now x is a circular data
structure that we can manipulate without trying to display the whole thing.

 (nth 0 x) ⇒ a
 (nth 1 x) ⇒ b
 (nth 412 x) ⇒ b

Page 95

7
Minor Mode
In this chapter:
• Paragraph Filling
• Modes
• Defining a Minor
Mode
• Mode Meat

In this chapter we'll ratchet our Emacs programming dexterity up a notch by considering times
when we don't want extensions to apply to all buffers, but just to a particular type of buffer. For
instance, when you're in Lisp mode it's nice to press C-M-a and have Emacs jump backwards
to the beginning of the nearest function definition, but you don't want or need that ability when
you're editing a textual document. The Emacs ''mode" mechanism arranges things so that C-M-a
does its magic only when you're in Lisp mode.

The subject of modes in Emacs is a complex one. We'll ease into it by first studying so-called
minor modes. A minor mode coexists with a major mode in a buffer, adding a typically small
amount of new editing behavior. Every Emacs user is familiar with major modes like Lisp and
C and Text, but they may not be aware of little strings that appear on the "mode line" saying
things like Fill when you're also in Auto Fill minor mode.

We'll create a minor mode that builds on Emacs's idea of filling paragraphs. Our minor mode,

Refill, dynamically fills paragraphs as you edit them.

Paragraph Filling

Filling a paragraph is the process of making all the lines in the paragraph the right length.
Every line should be more or less equally long without extending past the right margin. Long
lines should be split up at the spaces between words. Short lines should be lengthened with text
from subsequent lines. Filling optionally includes justification, which is the process of adding
whitespace throughout each line to make both margins come out even.

Most modern word processors keep paragraphs filled at all times. After every change, the text
in the paragraph "flows" to keep the layout correct. Some detrac-

Page 96

tors of Emacs point out that Emacs isn't as good as these other applications when it comes to
filling paragraphs. Emacs does provide auto-fill-mode, but that only wraps the current
line, and only when you insert whitespace beyond the "right margin." It doesn't keep paragraphs
filled after deletions; it doesn't fill any lines besides the current one; and it does nothing when
insertions that occur near the left margin push other text past the right margin.

As an Emacs enthusiast, you can give one of three responses to the detractor who holds up
some other program as the neplus ultra of text editing:

1. Glitzy features like on-the-fly filling of paragraphs are needed only to hide the program's
many inadequacies compared to Emacs (which you may feel free to list).

2. You value content over form so don't need to see a paragraph continually refilled, but when
you do feel the need, it's a simple matter of pressing M-q to invoke fill-paragraph.

3. Given a little Lisp hacking, Emacs can do on-the-fly paragraph filling just like the other
program (and you may ask whether the other program can likewise be made to emulate
Emacs).

This chapter is about option 3.

In order to make sure that the current paragraph is correctly filled at all times, we'll need to
recheck it after each insertion and each deletion. This may be computationally expensive, so
we'll want to be able to turn it on or off at will; and when we turn it on, we'll want the behavior
only in the current buffer, since it may not be suitable behavior for all buffers.

Modes

Emacs uses the concept of a mode to encapsulate a set of editing behaviors. In other words,
Emacs behaves differently in buffers with different modes. To take a small example, while the
TAB key inserts an ASCII tab character in Text mode, in Emacs Lisp mode it inserts or deletes
enough whitespace to indent a line of code to the correct column. As another example, when
you invoke the command indent-for-comment in an Emacs Lisp mode buffer, you get an
empty comment beginning with the Lisp comment character, ;. When you invoke it in a C mode
buffer, you get an empty comment using C comment syntax: /* */.

Every buffer in Emacs is always in exactly one major mode. A major mode specializes a

buffer for a particular kind of editing such as Text, Lisp, or C. A major mode called
Fundamental isn't specialized for anything in particular and can be thought of as sort of a null
mode. Usually the major mode for a buffer is chosen automatically by the name of the file you
visit, or by some cues in the buffer

Page 97

itself. You can change major modes by invoking a mode's command, such as text-mode,
emacs-lisp-mode, or c-mode.* When you do so, the buffer is in the new major mode
and is no longer in the old major mode.

A minor mode, by contrast, adds to a buffer a package of functionality that doesn't
fundamentally change the way editing in the buffer is performed. Minor modes can be turned on
and off independently of the major mode and of each other. A buffer can be in zero, one, two,
three, or more minor modes in addition to the major mode. Examples of minor modes are:
auto-save-mode, which causes a buffer to be periodically saved to a specially-named file
during editing (which can prevent losses in case of a system crash); font-lock-mode,
which (on capable displays) colors the text in a buffer according to its syntactic meaning; and
line-number-mode, which shows the current line number in the buffer's mode line (see
below).

Generally speaking, a package should be implemented as a minor mode if one should be able to
turn it off and on separately in individual buffers, regardless of the major mode. This is exactly
how we defined the requirements for our paragraph filling mechanism in the last section, so we
now know that our paragraph filling project calls for a minor mode. We'll take the plunge into
implementing major modes in Chapter 9, A Major Mode.

Defining a Minor Mode

These are the steps involved in defining a minor mode.

1. Choose a name. The name for our mode is refill.

2. Define a variable named name-mode. Make it buffer-local. The minor mode is "on" in a
buffer if that buffer's value of name-mode is non-nil, "off" otherwise.

 (defvar refill-mode nil
 "Mode variable for refill minor mode.")
 (make-variable-buffer-local 'refill-mode)

3. Define a command called name-mode.** The command should take one optional argument.
With no arguments, it should toggle the mode on or off. With an argument, it should turn the
mode on if the prefix-numeric-value of the argument is greater than zero, off
otherwise. Thus, C-u M-x name-mode RET always turns it on, and C-u - M-x name-mode
RET always

* There are many other major modes than the few I'm using as examples here. There are modes for
editing HTML files, LATEX files, ASCII art files, troff files, files of binary data, directories, and on
and on. Also, major modes are used to implement many non-editing features such as newsreading and
Web browsing. Try M-x finder-by-keyword RET to browse Emacs's many modes and other
extensions.

** You can use the same name for a function and a variable; they won't conflict.

Page 98

turns it off (refer to the section entitled "Addendum: Raw Prefix Argument" in Chapter 2).
Here's the command for toggling Refill mode:

 (defun refill-mode (&optional arg)
 "Refill minor mode."
 (interactive "P")
 (setq refill-mode
 (if (null arg)
 (not refill-mode)
 (> (prefix-numeric-value arg) 0)))
 (if refill-mode
 code for turning on refill-mode
 code for turning offrefill-mode))

That setq is a little hairy, but it's a common idiom in minor mode definitions. If arg is
nil (because no prefix argument was given), it sets refill-mode to (not
refill-mode)—i.e., the opposite of refill-mode's previous value, t or nil.
Otherwise, it sets refill-mode to the truth value of

 (> (prefix-numeric-value arg) 0)

which is t if arg has a numeric value greater than 0, nil otherwise.

4. Add an entry to minor-mode-alist, a variable whose value is an assoc list (refer to the
section entitled "Other Useful List Functions" in Chapter 6) of the form:

 ((model stringl)
 (mode2 string2)
 . . .)

The new entry maps name-mode to a short string to use in the buffer's mode line. The
mode line is the informative banner that appears at the bottom of every Emacs window and
that includes, among other things, the names of the buffer's major mode and all active minor
modes. The short string describing this minor mode should begin with a space, since it is
appended to the other strings that appear in the mode portion of the mode line. Here's how
to do this for Refill mode:

 (if (not (assq 'refill-mode minor-mode-alist))
 (setq minor-mode-alist
 (cons '(refill-mode " Refill")
 minor-mode-alist)))

(The surrounding if prevents (refill-mode " Refill") being added a second time
if it's already in minor-mode-alist, such as if refill.el is loaded twice.) This makes
the mode line of buffers that use refill-mode look something like this:

--**-Emacs: foo.txt (Text Refill) --L1--Top---

Page 99

There are other steps involved in defining some minor modes that don't apply in this example.

For instance, the minor mode may have a keymap, a syntax table, or an abbrev table
associated with it, but since refill-mode won't, let's skip them for now.

Mode Meat

With the basic structure in place, let's start defining the guts of Refill mode.

We've already identified the basic feature of refill-mode: each insertion and deletion must
ensure that the current paragraph is correctly filled. The correct way to execute code when the
buffer is changed, as you may recall from Chapter 4, is by adding a function to the hook
variable after-change-functions when refill-mode is turned on (and removing it
when it is turned off). We'll add a function called refill (which does not yet exist) that will
do all the work of making sure the current paragraph remains correctly filled.

 (defun refill-mode (&optional arg)
 "Refill minor mode."
 (interactive "P")
 (setq refill-mode
 (if (null arg)
 (not refill-mode)
 (> (prefix-numeric-value arg) 0)))
 (make-local-hook 'after-change-functions)
 (if refill-mode
 (add-hook 'after-change-functions 'refill nil t)
 (remove-hook 'after-change-functions 'refill t)))

The extra arguments to add-hook and remove-hook ensure that only the bufferlocal
copies of after-change-functions are altered. Whether refill-mode is being turned on or off
when this function is called, we call make-local-hook on
after-change-functions to make it buffer-local. This is because in both
cases—turning refill-mode on or turning it off—we need to manipulate
after-change-functions separately in each buffer. Unconditionally calling
make-local-hook first is the simplest way to do this, especially since make-local-hook
has no effect if the named hook variable is already buffer-local in the current buffer.

Now all that remains is to define the function refill.

Naïve First Try

As mentioned in Chapter 4, the hook variable after-change-functions is special
because the functions in it take three arguments (whereas normal hook functions take no
arguments). The three arguments refer to the change that took place in the buffer before
after-change-functions was executed.

Page 100

• The position where the change began, which we'll call start

• The position where the change ended, which we'll call end

• The length of the affected text, which we'll call len

The numbers start and end refer to positions in the buffer after the change. The length len

refers to the text before the change. After an insertion, len is zero (because no previously
existing text in the buffer was affected), and the newly inserted text lies between start and end.
After a deletion, len is the length of the deleted text, now gone, and start and end are the same
number, since deleting the text closed the gap, so to speak, between the two ends of the
deletion.

Now that we know what the parameters to refill have to be, we can make an artless first
attempt at defining it:

 (defun refill (start end len)
 "After a text change, refill the current paragraph *"
 (fill-paragraph nil))

This is a totally inadequate solution because fill-paragraph is far too expensive a
function to invoke on every keystroke! It also has the problem that each time you try to add a
space to the end of a line, fill-paragraph immediately deletes it—it cleans up trailing
whitespace when it fills a paragraph—and since, while you're typing, the cursor spends most of
its time at the end of a line, the only way to get a space between words is to type the two words
together, like this, then go back and put a space between them. But this first try does prove the
concept, and gives us a starting point for refinement.*

Constraining refill

To optimize refill, let's analyze the problem a bit. First of all, does the entire paragraph
have to be filled every time?

No. When text is inserted or deleted, only the affected line and subsequent lines in the
paragraph need to be refilled. Prior lines needn't be. If text is inserted, the line may become too
long, which may cause some text to spill over onto the next line (which may become too long in
turn, at which point the process is repeated). If text is deleted, the line may become too short,
which may call for some text being slurped up from the following line (which may become too
short in turn, and the process is repeated). So changes can't affect any lines prior to the one in
which they occur.

* Sharp-eyed readers might object that the call to fill-paragraph could alter the buffer, causing
after-change-functions to execute again, invoking refill recursively and perhaps leading
to an infinite loop, or rather an infinite recursion. Good call, but to avoid this very problem Emacs
unsets after-change-functions while the functions in it are executing.

Page 101

Actually, there's one case where changes can affect at most one prior line. Consider the
following paragraph:

 Glitzy features like on-the-fly filling of paragraphs are
 needed only to hide the program's many inadequacies
 compared to Emacs

Suppose we delete the word "compared" from the beginning of the third line:

 Glitzy features like on-the-fly filling of paragraphs are
 needed only to hide the program's many inadequacies
 to Emacs

The word "to" can now be filled onto the end of the prior line, like so:

 Glitzy features like on-the-fly filling of paragraphs are
 needed only to hide the program's many inadequacies to
 Emacs

A moment's reflection should convince you that at most one prior line needs to be refilled—and
then only when the first word on the current line is shortened or removed.

So we can constrain the paragraph-filling operation to the affected line, perhaps the line before
it, and the subsequent lines in the current paragraph. Instead of using fill-paragraph,
which determines the paragraph boundaries itself, we'll choose our own "paragraph
boundaries" and use fill-region.

The boundaries we choose for fill-region should enclose the entire affected portion of
the paragraph. For an insertion, the "left" boundary is simply start, the point of insertion, and
the "right" boundary is the end of the current paragraph. For a deletion, the left boundary is the
beginning of the previous line (that is, the line prior to the one containing start), and the right
boundary is again the end of the paragraph. So here's the outline of the new refill:

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if this is an insertion
 start
 beginning of previous line))
 (right end ofparagraph))
 (fill-region left right . . .)))

Filling in this is an insertion is easy. Recall that when refill is called, a zero value for len
means insertion and a non-zero len means deletion.

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (zerop len) ;is len zero?
 start
 beginning of previous line))
 (right end ofparagraph))
 (fill-region left right . . .)))

Page 102

To compute beginning of previous line, we first move the cursor to start, then move the cursor
to the end of the previous line (oddly, this can be done with (beginning-of-line 0)),
then take the value of (point), all inside a save-excursion:

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (zerop len)
 start
 (save-excursion
 (goto-char start)
 (beginning-of-line 0)
 (point)))
 (right end ofparagraph))
 (fill-region left right . . .)))

We could do something similar for end of paragraph, but instead we'll use a convenient
feature of fill-region: it'll find the end of the paragraph for us. The fifth argument to
fill-region (there are two mandatory arguments and three optional ones), if non-nil,
tells fill-region to keep filling through the end of the region until the next paragraph
boundary. So there's no need to compute right.

Our new version of refill is not complete. We must first solve the problem of fill-region
positioning the cursor at the end of the affected region. Naturally, it is unacceptable for the
cursor to jump to the end of the paragraph on every keystroke! Wrapping the call to fill-region
in a call to save-excursion solves the problem.

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (zerop len)
 start
 (save-excursion
 (goto-char start)
 (beginning-of-line O)
 (point))))
 (save-excursion
 (fill-region left end nil nil t)))))

(The second argument to fill-region is ignored because we're using the feature that finds
the end of the paragraph. We pass in end just because it's handy and not entirely meaningless
to a human reader.)

Minor Adjustments

Well, that's the basic idea, but there's still plenty to do. For one thing, when computing left,
we shouldn't back up to the previous line if the previous line is not in the same paragraph. So
we should locate the beginning of the paragraph and the beginning of the previous line, then use
whichever position is greater.

Page 103

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (zerop len)
 start
 (max (save-excursion
 (goto-char start)
 (beginning-of-line 0)
 (point))
 (save-excursion
 (goto-char start)
 (backward-paragraph 1)
 (point))))))
 (save-excursion
 (fill-region left end nil nil t))))

(The function max returns the larger of its arguments.)

We now have three calls to save-excursion, which is a moderately expensive function. It
might be better to combine two of them into one and compute both values inside it.

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (zerop len)
 start
 (save-excursion
 (max (progn
 (goto-char start)
 (beginning-of-line 0)
 (point))
 (progn
 (goto-char start)
 (backward-paragraph 1)
 (point)))))))
 (save-excursion
 .(fill-region left end nil nil t))))

Next, recall our earlier observation about filling the prior line: "at most one prior line needs to
be refilled—and then only when the first word on the current line is shortened or removed."
But in the code we've written, we're backing up to the previous line on every deletion. Let's see
if we can avoid that in the case where the deletion occurred in or beyond the second word of a
line.

We'll do this by changing this

 (if (zerop len)
 start
 find previous line)

to
 (if (or (zerop len)
 (not (before-2nd-word-p start)))

Page 104

 start
 find previous line)

where before-2nd-word-p is a function that tells whether its argument, a buffer position,
lies before the second word on a line.

Now we must write before-2nd-word-p. It should locate the second word on the line,
then compare its position with its argument.

How shall we locate the second word on a line?

We could go to the beginning of the line, then call forward-word to skip over the first
word. The problem with that solution is that it puts us at the end of the first word, not at the
beginning of the second word, which may follow after much whitespace.

We could go to the beginning of the line, then call forward-word twice (actually, we'd call
forward-word once, with an argument of 2), then call backward-word, which will put
us at the beginning of the second word. That's fine, but now we realize that the way
forward-word and backward-word define a "word" isn't the same as the definition we
need. According to those functions, punctuation (such as a hyphen) separates words, so that (for

example) "forward-word" is actually two words. That's bad for us, because our function needs
to count words as separate only when they're separated by whitespace.

We could go to the beginning of the line, then skip over all non-whitespace characters (the first
word), then skip over all whitespace characters (the whitespace after the first word), which
will leave us positioned at the second word. That sounds promising; let's give it a try.

 (defun before-2nd-word-p (pos)
 "Does POS lie before the second word on the line?"
 (save-excursion
 (goto-char pos)
 (beginning-of-line)
 (skip-chars-forward "^ ")
 (skip-chars-forward " ")
 (< pos (point))))

The function skip-chars-forward is very useful. It moves the cursor forward until
encountering a character either in or not in a set of characters you specify. The set of characters
works exactly like the inside of a square-bracketed regular expression (see regular expression
rule 3 in the section "Regular Expressions" in Chapter 4). So

 (skip-chars-forward "^ "

Page 105

means ''skip over characters that aren't a space," while

(skip-chars-forward ")

means "skip over spaces."

One problem with this approach is that if the line has no spaces,

(skip-chars-forward "^ ")

will skip right on to the next line! We don't want that. So let's make sure we don't skip too far
by adding a newline (written "\n" in strings) to the first skipchars-forward:

(skip-chars-forward "^ \n") ; skip tofirst space or newline

The next problem is that a tab character ("\t" in strings) may be used to separate words just like
spaces. So we must modify our two skip-chars-forward calls like so:

(skip-chars-forward "^ \t\n")
(skip-chars-forward" \t")

Are there other characters like space and tab that are considered whitespace? Possibly. The
formfeed character (ASCII 12) is usually considered to be whitespace. And if the buffer is
using some character set other than ASCII, there may be other characters that are
word-separating whitespace. For example, in the 8-bit character set known as Latin-1,
character numbers 32 and 160 are both spaces—though 160 is a "non-breaking space" which
means lines should not be broken there.

Rather than worry about these details, why not let Emacs worry about them? This is where
syntax tables come in handy. A syntax table is a mode-specific mapping from characters to

"syntax classes." Classes include "word constituent" (usually letters and apostrophes and
sometimes digits), "balanced brackets" (usually pairs like (), [], (), and sometimes < >),
"comment delimiters" (which are ; and newline for Lisp mode, /* and */ for C mode),
"punctuation," and of course, "whitespace."

The syntax table is used by commands like forward-word and backward-word to figure
out just what a word is. Because different buffers can have different syntax tables, the
definition of a word can vary from one buffer to another. We're going to use the syntax table to
figure out which characters are to be considered whitespace in the current buffer.

All we need to do is replace our two calls to skip-chars-forward with two calls to
skip-syntax-forward like so:

 (skip-syntax-forward "^ ")
 (skip-syntax-forward" ")

Page 106

For each syntax class, there's a code letter *. Space is the code letter meaning "whitespace," so
the two lines above mean "skip all non-whitespace" and "skip all whitespace.''

Unfortunately, we again have the problem that our first call to skip-syntax-forward
might traverse to the next line. Worse, this time we can't simply add \n to
skip-syntax-forward's argument, because \n isn't the code letter for the syntax of
newline characters. In fact, the code letter for the syntax of newline characters will be different
in different buffers.

What we can do is ask Emacs to tell us the code letter for the syntax of newline characters,
then use that result to construct the argument to skip-syntax-forward:

 (skip-syntax-forward (concat^ "
 (char-to-string
 (char-syntax ?\n))))

The function char-syntax returns a character's syntax code as another character. That's then
converted to a string with char-to-string and appended to "^ "

Here's the final form of before-2nd-word-p:

 (defun before-2nd-word-p (pos)
 "Does POS lie before the second word on the line?"
 (save-excursion
 (goto-char pos)
 (beginning-of-line)
 (skip-syntax-forward (concat "^
 (char-to-string
 (char-syntax ?\n))))
 (skip-syntax-forward ")
 (< pos (point))))

Bear in mind that the cost of computing before-2nd-word-p might outweigh the benefit
it's meant to provide (i.e., avoiding the calls to end-of-line and
backward-paragraph in refill). If you're interested, you can try using the profiler
(see Appendix B, Debugging and Profiling) to see which version of refill is faster, the

one with a call to before-2nd-word-p or the one without.

Eliminating Unwanted Filling

We needn't refill the paragraph every time an insertion occurs. A small insertion that doesn't
push any text beyond the right margin doesn't affect any line but its

* For more details about syntax tables, run describe-function on modify-syntax-entry.

Page 107

own, so if the current change is an insertion, and start and end are on the same line, and the end
of the line isn't beyond the right margin, let's not call fill-region at all.

This means we must surround our call to fill-region with an if that looks something like
this:

 (if (and (zerop len) ; ifit's an insertion. . .
 (same-line-p start end) ;. . . that doesn't span lines. . .

 (short-line-p end)) ;. . . and the line's still short

 nil ; then do nothing
 (save-excursion
 (fill-region . . .))) ; otherwise, refill

We must now define same-line-p and short-line-p.

Writing same-line-p should be easy by now. We simply test whether end falls between
start and the end of the line.

 (defun same-line-p (start end)
 "Are START and END on the same line?"
 (save-excursion
 (goto-char start)
 (end-of-line)
 (<= end (point))))

Writing short-line-p is similarly straightforward. The variable controlling the "right
margin" is called fill-column, and current-column returns the horizontal position of
point.

 (defun short-line-p (pos)
 "Does line containing POS stay within 'fill-column'?"
 (save-excursion
 (goto-char pos)
 (end-of-line)
 (<= (current-column) fill-column)))

Here's the new definition of refill:

 (defun refill (start end len)
 "After a text change, refill the current paragraph."
 (let ((left (if (or (zerop len)
 (not (before-2nd-word-p start)))

 start
 (save-excursion
 (max (progn
 (goto-char start)
 (beginning-of-line 0)
 (point))
 (progn
 (goto-char start)
 (backward-paragraph 1)
 (point))))))
 (if (and (zerop len)

Page 108

 (same-line-p start end)
 (short-line-p end))
 nil
 (save-excursion
 (fill-region left end nil nil t)))))

Trailing Whitespace

We still haven't dealt with the problem that fill-region deletes trailing whitespace from
each line, particularly the one you're editing, requiring you to type words likethis, then back up
and insert a space!

Our strategy will be to avoid refilling altogether whenever the cursor follows whitespace at the
end of a line, or if the cursor is in whitespace at the end of a line. This condition can be
expressed by

 (and (eq (char-syntax (preceding-char))
 ?\)
 (looking-at "\\s *$"))

which is true when the character preceding the cursor is whitespace and when nothing but
whitespace follows the cursor on the line. Let's take a closer look at this.

First we compute (char-syntax (preceding-char)), which gives the syntax class of
the character preceding the cursor, and compare it with '?\ '. That strange construct--question
mark, backslash, space-is the Emacs Lisp way of writing a space character. Recall that the
space character is the code letter for the "whitespace" syntax class, so this test tells whether the
preceding character is whitespace.

Next we call looking-at, a function that tells whether the text following the cursor matches
a given regular expression. The regexp in this case is \s *$ (remember, backslashes get
doubled in Lisp strings). In Emacs Lisp regexps, \s introduces a syntax class based on the
current buffer's syntax table. The character following \s tells which syntax class to use. In this
case, it's space, meaning "whitespace." So '\s ' is a regexp meaning "match a character of
whitespace," and \s *$ means "match zero or more whitespace characters, followed by end of
line."

Our final version of refill includes this new test.

 (defun refill (start end len)

 "After a text change, refill the current paragraph."
 (let ((left (if (or (zerop len)
 (not (before-2nd-word-p start)))
 start
 (save-excursion
 (max (progn

Page 109

 (goto-char start)
 (beginning-of-line 0)
 (point))
 (progn
 (goto-char start)
 (backward-paragraph 1)
 (point)))))))
 (if (or (and (zerop len)
 (same-line-p start end)
 (short-line-p end))
 (and (eq (char-syntax (preceding-char))
 ?\)
 (looking-at "\\s *$")))
 nil
 (save-excursion
 (fill-region left end nil nil t)))))

For performance reasons, it's normally a good idea to avoid putting functions, especially
complicated ones like refill, in after-change-hooks. If your computer is fast
enough, you may not notice the cost of executing this function on every keypress; otherwise, you
might find it makes Emacs unusably sluggish. In the next chapter, we'll examine a way to speed
it up.

Page 110

8
Evaluation and Error Recovery
In this chapter:
• limited-save-
excursion
• eval
• Macro Functions
• Backquote and
Unquote
• Return Value
• Failing Gracefully
• PointMarker

In the previous chapter, we noted that save-excursion is a moderately expensive function,
and we tried to reduce the number of times it is called in refill (which, since it's invoked
on every buffer change, needs to be as fast as possible). Nevertheless, the code for refill
contains five calls to save-excursion.

We could try to coalesce the uses of save-excursion—for example, by surrounding the
entire body of refill with a call to save-excursion, discarding all the
save-excursions within, and rewriting everything else to make sure the cursor is
properly positioned at all times. But this would harm the clear layout of the code. Of course,
clarity does sometimes have to be sacrificed in the name of optimization, but before we
consider coalescing the calls to save-excursion, let's see if we can do without them. It
turns out we can replace them with a different function with less overhead.

In this chapter we will explore ways to write a faster, limited form of save-excursion.
We'll encounter many interesting features of Emacs that have a common purpose: to control
when things are evaluated and what effect they have on the surrounding code. We will be
considering such issues as return values and cleaning up in case of error. We'll see how you
can make the Lisp interpreter refrain from evaluating expressions until you are ready for them.
We'll even find ways to change the order in which functions are evaluated.

limited-save-excursion

The purpose of save-excursion is to restore the original value of "point" after executing
some Lisp expressions; but that's not all. It also restores the value of the "mark," and it restores
Emacs's idea of which buffer is current. That's more over-

Page 111

head than we need for refill; after all, we're only changing the value of point. We're not
switching buffers or moving the mark.

We can write a limited form of save-excursion that does only what we need and no more.
Specifically, we need to write a function that, given any number of Lisp expressions as
arguments, does the following:

1. Records the position of point

2. Evaluates the subexpressions in order

3. Restores point to its original location

The first problem we run into is that when a Lisp function is called, its arguments are all
evaluated before the function gets control. In other words, if we write a function named
limited-save-excursion and call it like this:

 (limited-save-excursion
 (beginning-of-line)
 (point))

then the sequence of events is:

1. (beginning-of-line) is evaluated, moving point to the beginning of the current

line and returning nil.

2. (point) is evaluated, returning the position to which the cursor has just moved.

3. limited-save-excursion is invoked with the values of the arguments it was
passed-namely, nil and some number.

In this scenario, there is no way for limited-save-excursion to record the position of
point prior to evaluation of the subexpressions; and it certainly can't do anything useful with the
arguments nil and a cursor position.

eval

We could get around this problem by requiring the caller to quote every argument to
limited-save-excursion:

 (limited-save-excursion
 '(beginning-of-line)
 '(point))

This time limited-save-excursion is called with the two arguments
(beginning-of-line) and (point). It could record the value of point, explicitly
evaluate each subexpression in turn, then restore point and return. It would look like the
following example.

Page 112

 (defun limited-save-excursion (&rest exprs)
 "Like save-excursion, but only restores point."
 (let ((saved-point (point))) ;memorizepoint
 (while exprs
 (eval (car exprs)) ;evaluate the next argument

 (setq exprs (cdr exprs)))
 (goto-char saved-point))) ;restorepoint

This function contains something new: a call to eval, which takes a Lisp expression as an
argument and evaluates it. At first that may not seem like much since, after all, the Lisp
interpreter is already evaluating Lisp expressions automatically, with no calls to eval needed.
But sometimes the result of evaluation is another Lisp expression which you'd like to evaluate,
and Lisp won't do the second one automatically. If we were to execute only (car exprs),
we'd be extracting the first subexpression, then discarding it! We need eval to make that
subexpression do something useful once we have it.

Here's an simple example to illustrate the difference between the evaluation that Emacs does
normally and the need for eval:

 (setq x '(+ 3 5))
 x ⇒ (+ 3 5) ;evaluatingx
 (eval x) ⇒ 8 ; evaluating the value ofx

Macro Functions

Although limited-save-excursion works when we require its arguments to be

quoted, it's cumbersome for the caller, and it doesn't really qualify as a substitute for
save-excursion (since save-excursion doesn't have that restriction).

It is possible to write a special kind of function, called a macrofunction*, that behaves as
though its arguments are quoted. That is, when a macro function is invoked, its arguments are
not evaluated before the function gets control. Instead, the macro function produces some value,
typically a rearrangement of its arguments, and then that is evaluated.

Here's a simple example. Suppose we wanted a function called incr that could increment the
value of a numeric variable. We'd like to be able to write:

 (setq x 17)
 (incr x)
 x ⇒ 18

* Don't confuse macro functions with keyboard macros, from which Emacs ("editor macros") gets its
name.

Page 113

But if incr were an ordinary function, then it would be invoked with the argument 17, not x,
and could not therefore affect x. So incr must be a macro function. Its output must be an
expression that, when evaluated, adds one to the value of the variable named in its argument.

Macro functions are defined with defmacro (whose syntax resembles defun). The way to write
incr is:

 "Add one to the named variable."
 (list 'setq var (list '+ var 1)))

The body of a macro function produces an expansion of its input. The expansion then gets
evaluated. The expansion of (incr x) is:

(setq x (+ x 1))

When that expression is evaluated, x is incremented.

You can debug macro functions using the function macroexpand. This is an ordinary
function that takes a Lisp expression and returns it after macro-expanding it. If the expression is
not a macro call, it's returned unchanged. So:

(macroexpand '(incr x)) = (setq x (+ x 1))

Backquote and Unquote

Knowing that limited-save-excursion must be a macro function, all we have to do is
imagine how a call to limited-save-excursion should expand. Here's a start:

 (limited-save-excursion
 subexprl
 subexpr2

 . . .)

expands to

 (let ((orig-point (point)))
 subexpr1
 subexpr2

 (goto-char orig-point))

Here's how to write that as a Lisp macro function:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 (append '(let ((orig-point (point))))
 subexprs
 ((goto-char orig-point))))

Page 114

Remember that append works by effectively stripping off the outer parentheses of each list,
gluing the results together, and putting a new pair of parentheses around the result. So this call
to append takes three lists:

 (let ((orig-point (point))))
 (subexprl subex~prj . . .)
 ((goto-char orig-point))

strips off their outer parentheses:

 let ((orig-point (point)))
 sube.xprl subexpr2 . . .
 (goto-char orig-point)

and surrounds the result with new parentheses:

 (let ((orig-point (point)))
 sube.xprl
 sube.pr2

 (goto-char orig-point))

That's the expansion of the macro, which then gets evaluated.

That would do the trick, but it's hard to read the macro definition and understand what's going
on. Fortunately, there's a better way. It turns out that nearly all macros recombine their
arguments with calls to such functions as list and append, with some expressions quoted
and others not. In fact, that's so common that Emacs Lisp has a special syntax making it
possible to write templates for how macro expansions should appear.

Remember 'expr, which expands to (quote expr)? Well, there's also 'expr, which expands to
(backquote expr). Backquote is just like quote, meaning that the result of evaluating a
backquoted expression is the expression itself:

'(a b c) = (a b c)

There is one important difference, however. A backquoted list's subexpressions may be
individually unquoted using yet more special syntax. This means that when the backquoted

expression is evaluated, the unquoted subexpressions actually do get evaluated-but the rest of
the list remains quoted!

'(a ,b c) => (a tcalite-of- b c)

To understand why this is useful, let's return to the incr example. We could rewrite incr this
way:

 (defmacro incr (var)
 "Add one to the named variable."
 '(setq ,var (+ ,var 1)))

* This syntax is new as of Emacs 19.29. In prior versions, before backquote and company were
wellintegrated into the language, they had to he invoked as functions, like this: (' expr).

Page 115

Each comma introduces a subexpression to be unquoted, so in this example, a literal list is built
up containing:

(setq . . . (+ . . . 1))

and the value of var (i.e., some variable name) is plugged in twice. The result is exactly the
same as our first version of incr, but this time it's much more clearly expressed.

Applying backquoting and unquoting to limited-save-excursion gives us the
not-yet-correct:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 '(let ((orig-point (point)))
 ,subexprs ; wrong!
 (goto-char orig-point)))

There's one more detail to learn about backquoting. Since subexprs is a &rest parameter,
it is a list containing all the arguments passed to limited-save-excursion. When its
value is substituted into the template above, the result is necessarily also a list. In other words,

 (limited-save-excursion
 (beginning-of-line)
 (point))
expands to:

 (let ((orig-point (point)))
 ((beginning-of-line)
 (point))
 (goto-char orig-point))

which is a syntax error, because of too many parentheses. What we need instead is a way to
splice the value of subexprs into the surrounding list, removing the outer parentheses. For
this purpose, Emacs Lisp has one more special bit of syntax (last one, I promise): the splicing
unquote operator,, @. This version:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 '(let ((orig-point (point)))

 ,@subexprs
 (goto-char orig-point)))

yields the correct result:

 (let ((orig-point (point)))
 (beginning-of-line)
 (point)
 (goto-char orig-point))

Page 116

Return Value

There's still a long way to go in developing limited-save-excursion. For one thing, it
doesn't return the value of the last expression in subexprs, wherea save-excursion
does. Instead, limited-save-excursion unhelpfully returns the value of (goto-char
orig-point), which is the same as orig-point since goto-char returns its argument.
This is particularly useless if you were expecting to do something like:

 (setq line-start (limited-save-excursion
 (beginning-of-line)
 (point)))

To fix this problem, we must be sure to memorize the value of the last subexpression, then
restore point, then return the memorized value. We might try this:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 '(let ((orig-point (point))
 (result (progn ,@subexprs)))
 (goto-char orig-point)
 result))

Note the use of progn, which simply executes everything passed to it and returns the value of
its last argument—exactly what we need the result of the overall macro to be. However, this
version is wrong for two reasons. The first reason has to do with the way let works. When
this expression runs:

 (let (('arI t'al1)
 (v'ar2 val2)

 (t'arn tal,,))
 bodiy . . .)

all the vals are evaluated before any of the vars are assigned, so no val may refer to any of the
vars. Furthermore, the order in which they are evaluated is undefined. So, if we use the
above version of limited-save-excursion to expand

 (limited-save-excursion
 (beginning-of-line)
 (point))

into

 (let ((orig-point (point))

 (result (progn (beginning-of-line)
 (point)))
 (goto-char orig-point)
 result)

Page 117

it's quite possible that, when this expansion is evaluated, the call to beginning-of-line
may occur before the "first" call to point, causing orig-point to have the wrong value.

The solution to this problem is to use let* instead of let. With let*, there is no ambiguity:
the order in which the vals are evaluated is the same as the order in which they're written.*

Furthermore, each var is assigned as soon as the corresponding val is computed, so va1i may
contain references to va1, through vari-1.

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 '(let* ((orig-point (point))
 (result (progn ,@subexprs)))
 (goto-char orig-point)
 result))

The next problem isn't so easily fixed. Suppose one of the subexprs refers to a global
variable named orig-point. As we just noted, each val can refer to preceding vars, so if
subexprs contains a reference to a global orig-point, it will instead refer to
limited-save-excursion's internal copy—almost certainly not what the writer of the
subexpressions had in mind. The variable reference is said to be captured by the macro
expansion. This will wreak havoc with the subexpressions, which expect to manipulate an
entirely different variable. And if those subexpressions happen to modify orig-point, it
will wreak havoc with limited-save-excursion itself.

By embedding the execution of subexprs within a let* that defines a local orig-point,
we've effectively hidden the "real" orig-point from the code that hopes to use it.

You might think that a good way to work around this problem is simply to choose a different
name for orig-point, one that is very unlikely to appear in any of the subexprs. This is
an unsatisfactory approach because (a) no matter how uniquely you name your variables,
there's always the possibility of a collision, and (b) it can be done right. The right way is to
generate a brand-new symbol that's guaranteed not to conflict with any other symbols in use.
How can we do that?

To answer this question, we must first understand what it means for two symbols to conflict.
Two symbols conflict when they are the same object, not merely when they have the same
name. When you type a symbol name into a Lisp program, the Lisp interpreter internally
converts that name into a symbol object. A symbol

* If let is ambiguous and let* isn't, why not always use let*? The answer: let may be more
efficient in some cases. Also, you may want all the vals to evaluate in a context where none of the
vars yet exist. In general, you should use let unless you need let*—but as you can probably
imagine, using the wrong one is a common source of program errors.

Page 118

object contains much more information than just its name. It includes the symbol's local and
global variable bindings; it includes any function definition bound to the symbol (as with
defun); and it includes the symbol's property list (see the section on "Symbol Properties" in
Chapter 3).

The process of converting written Lisp code into internal data structures like symbol objects
(or cons cells, etc.) is called reading. When the Lisp ''reader" sees the same symbol name
twice, it doesn't create two internal symbol objects-it reuses the same one.

It does this by storing symbols in a symbol table, also called an obarray (short for "object
array"). Each time the reader sees a symbol name, it uses the corresponding symbol object
from this table. If no corresponding symbol object exists, one is created and used for
subsequent lookups of that name. Creating a new symbol and putting it in an obarray is called
interning the symbol. Because of interning, symbols with identical names are really the same
object.

Perhaps you can see where this is headed: if you can obtain a distinct symbol object, bypassing
Lisp's tendency to intern symbols and reuse them, then Lisp won't consider it to be the same
object as any other symbol, even one that has the same name. The way to create such a symbol
is with the function make-symbol, which takes the symbol's name (as a string) and creates a
brand-new, uninterned object guaranteed not to be equal, in the sense of eq, to any other Lisp
object.

In other words, the result of

(make-symbol "orig-point")

cannot conflict with any occurrence of orig-point that appears anywhere else. The newly
created orig-point is a different object from any that may have been previously created.

It's safe, then, to use a new, uninterned symbol in a situation where you want to avoid capturing
variable references. Here's a revised version of our function:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 (let ((orig-point-symbol (make-symbol "orig-point")))
 '(let* ((,orig-point-symbol (point))
 (result (progn ,@subexprs)))
 (goto-char ,orig-point-symbol)
 result)))

The first let creates a new symbol object whose name is orig-point, but which isn't the
same object as any other symbol, including any that happen to be named orig-point. This
new symbol object is assigned to the variable orig-

Page 119

point-symbol, then used twice (via unquoting) in the backquote template that follows.

At first glance, it might seem that we've simply traded the danger of capturing orig-point for the
danger of capturing orig-point-symbol. But origpoint-symbol doesn't appear in the expansion of

the macro, which looks like this (where orig-point' denotes the unintemed symbol created with
makesymbol):

 (let* ((orig-point' (point))
 (result (progn subexprs)))
 (goto-char orig-point')
 result)

so at the point where the subexprs are evaluated—after macro expansion-the only temporary
variable is orig-point', which is known to be unique. The temporary variable result
does not yet exist at that point. So the problem of variable capture has definitely gone away.

Failing Gracefully

When an error occurs in Emacs, the current computation is aborted and Emacs returns to the top
of its main loop, where it waits for keyboard or other input. When an error occurs while
executing a limited-save-excursion subexpression, the whole
limited-save-excursion is aborted before reaching the call to goto-char, leaving
point who knows where. But the real save-excursion manages to correctly restore point
(and the mark and the current buffer) even when an error occurs. How is this possible?

Information about pending function calls is kept in an internal data structure called a stack.
Getting back to the top of the main loop after an error involves unwinding the stack, one
function call at a time, in reverse order—so if a called b, and b called c, and then an error
occurred, c will be unwound, followed by b, then a, until Emacs is back at "top level."

It is possible to write Lisp code that gets executed while the stack is being unwound! This is
the key to writing code that fails "gracefully," cleaning up after itself if it doesn't get the chance
to finish due to some error (or due to the user interrupting the operation with C-g). The function
to use is called unwind-protect, which takes one expression to evaluate normally,
followed by any number of expressions to execute afterward—even if an error interrupted the
first expression. It looks like this:

 (unwind-protect
 normal
 cleanupl

Page 120

 cleanup2
 . . .)

Clearly, we'd like to restore the value of point in the "cleanup" portion of an
unwind-protect:

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 (let ((orig-point-symbol (make-symbol "orig-point")))
 '(let ((,orig-point-symbol (point)))
 (unwind-protect
 (progn ,@subexprs)
 (goto-char ,orig-point-symbol)))))

One side benefit of unwind-protect is that in the non-error case, its return value is the

value of the "normal" subexpression. (When there is an error, the return value doesn't matter.)
In this case, that's (progn ,@subexprs), which is exactly the return value we want
limited-save-excursion to have, so we're able to do away with our earlier result
variable, and we've turned the let* back into a let.

Point Marker

As a final enhancement to limited-save-excursion, rather than recording point as a
number, we should record it as a marker, for the same reason we used markers in the definition
of unscroll (see the "Markers" section in Chapter 3): namely, that executing the subexprs
may render the saved buffer position inaccurate, because text may be inserted or deleted earlier
in the buffer.

This is trivial to change. All that's necessary is to replace the call to point, which returns a
number, with a call to point-marker, which returns point's current position as a marker.

 (defmacro limited-save-excursion (&rest subexprs)
 "Like save-excursion, but only restores point."
 (let ((orig-point-symbol (make-symbol "orig-point")))
 '(let ((,orig-point-symbol (point-marker)))
 (unwind-protect
 (progn ,@subexprs)
 (goto-char ,orig-point-symbol)))))

Now all that remains is to put this definition, followed by

(provide limited)

into a file named limited.el in a directory on your load-path and byte-compile the file (see
Chapter 5, Lisp Files). Then in refill.el we can replace the calls to save-excursion with
calls to limited-save-excursion; add:

 (require limited)

Page 121

to the beginning of refill.el; and byte-compile it. Now limited won't be loaded until refill is
loaded, and if you also put

 (autoload 'refill-mode "refill" "Refill minor mode." t)

in your .emacs, then refill won't be loaded until you invoke refill-mode.

Page 122

9
A Major Mode

In this chapter:
• My Quips File
• Major Mode
• Major Mode Skeleton
• Changing the
Definition of a
Paragraph
• Quip Commands
• Keymaps
• Narrowing
• Derived Modes

Writing a simple major mode is very much like writing a minor mode, which we covered in
Chapter 7, Minor Mode. We'll just touch on the basic ideas of major modes in this chapter,
preparing us for the creation of a substantial major mode—indeed, a whole new
application—in the next chapter.

My Quips File

For several years I have been collecting witty quotations from various sources on the Internet,
storing them in a file called Quips whose format is the same one used by the old UNIX fortune
program. Each quotation is introduced by a line containing the string %%. Here's an example:

%%

I like a man who grins when he fights.

- Winston Churchill

%%

The human race has one really effective weapon, and that is laughter.

- Mark Twain

Apart from the %% lines, the file is completely free-form.

After my Quips file had been growing for a while, I found that I edited it a bit differently from
the way I edit ordinary text files. For one thing, I frequently needed to confine my editing to a
single quip in order to avoid accidentally straying into a neighboring quip. For another,
whenever I needed to fill a paragraph at the beginning of a quip, I first had to separate it from
the leading %%

Page 123

with a blank line. Otherwise, the %% would become filled as if it were part of the paragraph:

%%

I like a man who grins when he fights.

- Winston Churchill

%% The human race has one really effective weapon, and that is laughter.

- Mark Twain

Inserting a blank line told Emacs that the %% wasn't part of the paragraph. After filling the
paragraph, I'd rejoin the text to the leading %% by deleting the blank line.

A new editing mode was clearly called for, one in which these workarounds were not
necessary. The question was, should it be a major mode or a minor mode? Recall that a major
mode excludes all other major modes, while a minor mode can be turned on and off
independently of the major mode and other active minor modes. In this case, the need for an
editing mode arose from the format of the data itself, which suggested that the mode should be
major, not minor. Files using this data format would always want this major mode and no other.
You wouldn't, for example, use a Lisp-editing major mode in combination with a quip-editing
minor mode.'

Major Mode Skeleton

These are the steps involved in defining a major mode.

1. Choose a name. The name for our mode is quip.

2. Create a file called name.el to contain the code for the mode.

3. Define a variable called name-mode-hook. This will contain the user's hook functions to
execute when entering the mode.

 (defvar quip-mode-hook nil
 "*List of functions to call when entering Quip mode.*")

4. If appropriate, define a mode-specific keymap (see "Keymaps" later in this chapter). Put
it in a variable called name-mode-map. Create a mode's keymap like this:

 (defvar name-mode-map nil
 "Keymap for name major mode.")
 (if name-mode-map
 nil
 (setq name-mode-map (make-keymap))

* The choice of major mode or minor mode can be considerably less clear-cut in other cases.

Page 124

 (define-key name-mode-map keysequence command)

 . . .)

Instead of make-keymap, you could use make-sparse-keymap, which is better
suited to keymaps that contain only a few keybindings.

5. If appropriate, define a mode-specific syntax table (see the section called "Minor
Adjustments" in Chapter 7). Put it in a variable named name-mode-syntax-table.

6. If appropriate, define a mode-specific abbrev table. Put it in a variable named

name-mode-abbrev- table.

7. Define a command named name-mode. This is the major mode command, and it takes no
arguments (unlike a minor mode command, which takes one optional argument). When
executed, it should cause the current buffer to enter name-mode by performing the
following steps:

(a) It must call kill-all-local-variables, which removes the definitions for all
buffer-local variables. This effectively turns off whatever modes, major and minor, were
previously active.

(kill-all-local-variables)

(b) It must set the variable major-mode to name-mode. (setq major-mode 'quip-mode)

(c) It must set the variable mode-name to a short string describing the mode, to be used in
the buffer's mode line.

(setq mode-name "Quip")

(d) It must install the mode-specific keymap, if any, by calling use-local-map on
name-mode-map.

(e) It must run the user's hook functions by calling run-hooks on namemode-hook.
(run-hooks 'quip-mode-hook)

8. It must "provide" the feature implemented by this mode (see the section on "Programmatic
Loading" in Chapter 5) by calling provide on name. (

provide 'quip) ; allows users to (require 'quip)

Our first version of Quip mode will not include a keymap, syntax table, or abbrev table, so at
first quip.el looks like this:

 (defvar quip-mode-hook nil
 "*List of functions to call when entering Quip mode.")

 (defun quip-mode ()
 "Major mode for editing Quip files."
 (interactive)
 (kill-all-local-variables)

Page 125

 (setq major-mode 'quip-mode)
 (setq mode-name "Quip")
 (run-hooks 'quip-mode-hook))

 (provide 'quip)

Those are the basics, shared among all major modes. Now let's start fleshing out the specifics
of Quip mode.

Changing the Definition of a Paragraph

First, we must arrange for a line consisting of %% not to be considered part of a paragraph.

This means we must change the variable paragraph-separate, whose value is a regexp
that describes lines that separate paragraphs. We'll also have to change paragraph-start,
a regexp that describes lines that serve as either the first line of a paragraph or (despite the
name) as a line that separates paragraphs.

Emacs uses the regexps in paragraph-start and paragraph-separate to match at
the beginnings of lines, even though the regexps do not explicitly begin with the magic ^
("match at the beginning of a line") character.

In Text mode, the value of paragraph-start is "[\t\n\^L] ", which means that if a line
starts with a space, tab, newline,** or Control-L (the ASCII "formfeed" character), it's either
the first line of a paragraph or a line that separates paragraphs.

Text mode's value for paragraph-separate is "[\t\^L] *$", which means that a line
containing zero or more spaces, tabs, or formfeeds, or some combination thereof, and nothing
else, is not part of any paragraph.

What we'd like to do is augment these patterns to say "a line containing %% is a paragraph
separator, too."

The first step is to make these variables have separate values for the current buffer when in
Quip mode. (That is, setting these variables, which are global, should not affect other buffers
that may not be in Quip mode.) Therefore, in addition to the basic skeleton described in the last
section, the function quip-mode should do this:

 (make-local-variable 'paragraph-start)
 (make-local-variable 'paragraph-separate)

*No regexp variable exists to match just the start of a paragraph. Instead, the start of a paragraph is aline that matches

** A line that "starts" with a newline is, of course, a blank line.

Page 126

Next, quip-mode must set the buffer-local values for both paragraph-start and
paragraph-separate.

 (setq paragraph-start "%%\\I[\t\n\^L]")
 (setq paragraph-separate "%%$\\ [\t\^L]*$")

The value for paragraph-start means "%% or a space, tab, newline, or control-L." The
value for paragraph-separate means "%% and nothing else or zero or more spaces,
tabs, or formfeeds and nothing else." See the section on "Regular Expressions" in Chapter 4.

Quip Commands

What else should Quip mode be able to read?

• It should allow the user to move forward and backward a quip at a time.

• It should allow the user to restrict editing operations to a single quip.

• It should be able to report the number of quips in the file, and the number of the quip that

point is on.

• Apart from that, it should work by and large the same way Text mode works. After all, the
contents are mostly plain text.

Let's pause a moment to consider the different kinds of cursor motion commands in Emacs.
There's forward-char and backward-char for moving one character at a time. There's
forward-word and backward-word. There's forward-line and
previous-line. There are also commands for moving forward and backward in units of
sentences, paragraphs, sexps, and pages.

What's a page? Conventionally, a new page begins at a formfeed character (control-L), because
in the ancient days of teletypes and line printers, the way to begin a new page was to send a
control-L to the device. In true Emacs style, however, we can redefine what constitutes a
"page" by changing the regexp in page-delimiter.

 (make-local-variable 'page-delimiter)
 (setq page-delimiter "^%%$")

This single insight—making a "page" equal a "quip"—solves most of the requirements we've
stipulated for Quip mode! Now Emacs's many built-in page commands will operate on quips:

• backward-page and forward-page, normally bound to C-x [and C-x], allow moving back
and forth a quip at a time

• narrow-to-page, bound to C-x n p, confines editing to a single quip by "narrowing" the
buffer (see the section on "Narrowing" later in this chapter).

Page 127

• what-page reports the number of the current quip

We've essentially co-opted Emacs's page commands, but that's okay: in Quip mode, those
commands would otherwise be unused, since a Quip file is not divided into pages.

Keymaps

Unfortunately, the names of the commands—backward-page and what-page and so
on—obscure their function in Quip mode, which is to operate on quips, not pages. Therefore it
might be wise to do this:

 (defalias 'backward-quip 'backward-page)
 (defalias 'forward-quip forward-page)
 (defalias 'narrow-to-quip 'narrow-to-page)
 (defalias 'what-quip 'what-page)

But that's not quite enough. Even with these aliases defined, the existing keybindings—C-x [,
C-x], and C-x n p—are still bound to the "page" commands, so that if users list the
keybindings in Quip mode using describe-bindings, they'll see:

C-x [backward-page
C-x] forward-page
C-x n p narrow-to-page

(among many others) but nothing relating to quips. It would be better if these keysequences
referred to the quip variant of the command names—in Quip mode only, of course. While we're
at it, we should also change C-x n p (so chosen because it means narrow to page) to C-x n q
(narrow to quip). We could also give a keybinding to what-quip, which doesn't have one by
default. At this point we need a keymap specific to Quip mode.

A keymap is a Lisp data structure that maps keystrokes to the commands they should invoke.
When you press C-f, for instance, Emacs consults the "global" keymap and finds the binding for
C-f, namely forward-char. Each entry in a keymap represents a single keystroke.

Key sequences, such as C-x C-w (write-file), are implemented by nesting keymaps. In
the global keymap, the entry for C-x contains a nested keymap instead of a command. The
nested keymap contains an entry for C-w, which maps to write-file. The nested keymap
for C-x also contains an entry for n, which maps to yet another nested keymap. That
doubly-nested keymap contains an entry for p, which maps to narrow-to-page.

Any key whose binding is a nested keymap is called a prefix key; thus C-x is a prefix for many
other commands, and C-x n is a prefix for a handful more. (As of

Page 128

Emacs 19.16, you can press a prefix key followed by C-h to see all the keybindings for which
that key is a prefix.)

At any time, there may be several keymaps active. The global keymap, mentioned above, is
always active. It can be superseded by entries in a buffer's local keymap, which contains
special keybindings for the current major mode. That, in turn, can be superseded by the entries
in the minor mode keymap corresponding to any minor modes that are active.*

Let's create a local map for Quip mode as described earlier in this chapter. First we create the
variable to contain the keymap. Its initial value should be nil.

 (defvar quip-mode-map nil
 "Keymap for quip major mode.")

Next we'll write a block of code at the top level of quip.el that sets up quip-mode-map as
soon as quip.el is loaded, if the keymap hasn't already been set up. The way this block is
structured, if quip-mode-map already exists-for instance, because quip.el has been
previously loaded-it is left alone. Otherwise, it's created and populated with the desired
keybindings.

 (if quip-mode-map
 nil ; do nothing if quip-mode-map exists
 (setq quip-mode-map (make-sparse-keymap))
 (define-key quip-mode-map "\C-x[" 'backward-quip)
 (define-key quip-mode-map "\C-x]" 'forward-quip)
 (define-key quip-mode-map "\C-xnq" narrow-to-quip)
 (define-key quip-mode-map "\C-cw" 'what-quip))

We use make-sparse-keymap because Quip mode has only a few special keybindings
beyond the ones found in the global keymap. Only when a keymap has more than a couple
dozen keybindings should a full keymap be created with make-keymap.

Each call to define-key adds a new entry to quip-mode-map. When the keysequence
contains more than one key (as all the examples in this chapter do), define-key
automatically creates nested keymaps as necessary.**

We've chosen to bind what-quip to C-c w. By convention, mode-specific commands are often
bound to sequences beginning with C-c. The other Quip mode commands correspond to
existing keybindings elsewhere, so there's no point moving them to new prefixes.

* It's possible to subvert this ordering of keymap precedence slightly with a variable called
overriding-local-map, but that's useful only in very unusual cases.

**The function current-global-map returns the current global keymap. (It's possible to change
global keymaps with use-global-keymap, though that's very rare.) Thus, (global-set-key
. . .) is equivalent to (define-key (current-global-map) . . .).

Page 129

Finally, we make sure to install the new keymap when Quip mode is entered.

 (defun quip-mode ()
 "Major mode for editing Quip files."
 (interactive)
 (kill-all-local-variables)
 (setq major-mode 'quip-mode)
 (setq mode-name "Quip")
 (make-local-variable 'paragraph-separate)
 (make-local-variable 'paragraph-start)
 (make-local-variable 'page-delimiter)
 (setq paragraph-start "%%\\I[\t\n\^L]")
 (setq paragraph-separate "%%$\\ [\t\^L]*$")
 (setq page-delimiter "^%%$")
 (use-local-map quip-mode-map) ; this installs the keymap
 (run-hooks quip-mode-hook))

If users wish to alter Quip mode's keybindings, they can do so using a mode hook and
local-set-key (which, within Quip mode, alters quip-mode-map):

 (add-hook 'quip-mode-hook
 (lambda ()
 (local-set-key "\M-p" backward-quip)
 (local-set-key "\M-n" 'forward-quip)
 (local-unset-key "\C-x [") ; removes a keybinding

 (local-unset-key "\C-x]")))

It is customary to include a mode's local keybindings in the docstring that describes the mode.
However, it's a bad idea to ''hardwire" the default keybindings into the docstring like this:

 (defun quip-mode ()
 "Major mode for editing Quip files.

 Keybindings include 'C-x [' and 'C-x]' for backward-quip
 and forward-quip, 'C-x n p' for narrow-to-quip, and 'C-c w'
 for what-quip."

 . . .)

since as we've seen, the user may redefine which keys do what, rendering the docstring
inaccurate. Instead, we can write:

 (defun quip-mode ()
 "Major mode for editing Quip files.
 Special commands:
 \\{quip-mode-map)"

 . . .)

This special syntax causes Emacs to substitute a description of the keybindings currently in
quip-mode-map whenever the user requests the docstring with describe-function,
or with describe-mode (which uses the docstrings of all relevant mode commands to
describe the current major and minor modes).

Page 130

Narrowing

You may already be familiar with the Emacs concept of narrowing. It is possible to define a
region of a buffer and narrow the buffer to that region. Emacs then makes it appear that that
region is the entire buffer, hiding any text that comes before or after it. All editing operations,
and most Lisp functions, are confined to the narrowed region (although when the file is saved,
all of it is saved regardless of any narrowing) until the user undoes the narrowing with
widen, normally bound to C-x n w. So narrow-to-quip satisfies the requirement, "It
should allow the user to restrict editing operations to a single quip."

Emacs Lisp code must be written to be aware of the possibility that a buffer is narrowed. Most
of the time, Lisp functions won't care. They can behave as if the narrowed portion is the whole
buffer. Some functions that normally deal with buffer boundaries actually deal with
narrowed-region boundaries when narrowing is in effect. For instance, eobp
("end-of-buffer-p"), which normally tests whether point is at the end of the buffer,
returns true if point is at the end of a narrowed region. Similarly, point-min and
point-max return the boundaries of the narrowed region if there is one, not of the whole
buffer. In a sense, these functions are preserving a fiction for the benefit of Lisp programmers,
who might otherwise have to go to extreme lengths to keep all their code aware of the
possibility of narrowing.

There is a price to pay, however. On some occasions, functions do need to care about the
buffer outside any narrowed region. In those cases, it is necessary to call widen, so that the
function can have access to the entire buffer. If this is placed inside a call to
save-restriction, then narrowing is restored after the code is executed. (We used this
approach in Chapter 4, Searching and Modifying Buffers.)

As an example, let's define count-quips, which we must write ourselves since Emacs
doesn't have any page-counting commands for us to co-opt. Clearly count-quips needs
access to the entire buffer, regardless of any narrowing in effect. Therefore, a good way to
define it is as follows:

 (defun count-quips ()

 "Count the quips in the buffer."
 (interactive)
 (save-excursion
 (save-restriction
 (widen)
 (goto-char (point-min))
 (count-matches '^%%$"))))

* Narrowing does not nest. If you narrow a buffer to a region, then narrow that region to a smaller
region, C-x n w will still restore a view of the entire buffer (i.e., it won't revert to the previous
narrowing).

Page 131

The function count-matches returns a string such as "374 matches" that tells how many
matches for the given regexp were found following point.

Derived Modes

We've now satisfied all the requirements for Quip mode save one: "It should work by and large
the same way Text mode works." One way to achieve this is actually to call text-mode as
part of initializing Quip mode; then perform whatever specialization is required by Quip mode.
In conjunction with calling textmode, we'd create quip-mode-map not from scratch with
make-sparse-keymap, but as a copy of text-mode-map using copy-keymap:

 (defvar quip-mode-map nil
 "Keymap for Quip major mode.")

 (if quip-mode-map
 nil
 (setq quip-mode-map (copy-keymap text-mode-map))
 (define-key quip-mode-map "\C-x[" 'backward-quip)
 (define-key quip-mode-map "\C-x]" 'forward-quip)
 (define-key quip-mode-map "\C-xnq" 'narrow-to-quip)
 (define-key quip-mode-map "\C-cw" 'what-quip))

 (defun quip-mode ()
 "Major mode for editing Quip files.
 Special commands:
 \\{quip-mode-map}"
 (interactive)
 (kill-all-local-variables)
 (text-mode) ;first, set things upfor Text mode
 (setq major-mode 'quip-mode) ; now, specializefor Quip mode

 (setq mode-name "Quip")
 (use-local-map quip-mode-map)
 (make-local-variable 'paragraph-separate)
 (make-local-variable 'paragraph-start)
 (make-local-variable 'page-delimiter)
 (setq paragraph-start "%%\\I[\t\n\^L]")
 (setq paragraph-separate "%%$\\ [\t\^L]*\$")
 (setq page-delimiter "^%%$")
 (run-hooks quip-mode-hook))

 (provide 'quip)

For closer conformance with Text mode, we should clone text-mode-syntax-table
too (using copy-syntax-table), not just text-mode-map. And there's also
text-mode-abbrev-table (but there's no corresponding copy-abbrev-table
function, perhaps because abbrev tables are not used quite so often and no one ever lamented
its absence).

Page 132

Actually, a lot of bookkeeping can be required when you clone another mode and specialize it
for a new purpose. It's easy to miss something. Fortunately, it's so common to derive new
modes by varying existing ones—just as we've varied Text mode to get Quip mode—that
there's an Emacs Lisp package to simplify this task. The package is called derived and the
central function it provides is called define-derived-mode. (Actually,
define-derived-mode is a macro.) Here's how we can use it to derive Quip mode from
Text mode:

 (require 'derived)

 (define-derived-mode quip-mode text-mode "Quip'
 "Major mode for editing Quip files.
 Special commands:
 \\ quip-mode-map}"
 (make-local-variable 'paragraph-separate)
 (make-local-variable paragraph-start)
 (make-local-variable page-delimiter)
 (setq paragraph-start "%%\\[[\t\n\^L]")
 (setq paragraph-separate "%%$\\ [\t\^L]*$")
 (setq page-delimiter "^%%$"))

 (define-key quip-mode-map "\C-x[" 'backward-quip)
 (define-key quip-mode-map "\C-x]" 'forward-quip)
 (define-key quip-mode-map "\C-xnq" narrow-to-quip)
 (define-key quip-mode-map "\C-cw" 'what-quip)

 (provide 'quip)

The syntax of define-derived-mode is

 (define-derived-mode neu-mnode old-mode mode-line-string
 docstring
 body1
 body2

This creates the command new-mode and all the associated data structures. By the time the
body expressions execute, new-mode-map, new-mode-syntax-table, and
new-mode-abbrev-table exist. The last thing that the constructed new-mode command
does is to run new-mode-hook.

This chapter has shown us what it's like to change Emacs's behavior slightly for editing a
particular kind of data. Quip mode isn't much different from Text mode, because quips aren't
much different from text. But in the next chapter, we'll create a major mode that's very different
from anything else in Emacs, for editing data that's very much unlike text.

Page 133

10
A Comprehensive Example
In this chapter:
• New York Times Rules
• Data Representation
• User Interface
• Setting Up the Mode
• Tracking Unauthorized
Changes
• Parsing the Buffer
• Word Finder

This chapter is the culmination of our programming examples. It is a substantial major mode
implementing a crossword puzzle editor—clearly a use which the designers of Emacs didn't
foresee, but implementable nonetheless. The straightforwardness of designing and
implementing Crossword mode demonstrates Emacs's true potential as an application-building
toolkit.

After devising a data model for a crossword puzzle editing application, we'll construct a user
interface for it, creating functions for displaying a representation of our data model and
restricting input to the set of operations we allow on it. We'll write commands that go on the
Emacs menu and commands that communicate with external processes. In doing so, we'll
exploit the Lisp techniques we've learned for performing complex logic and string
manipulation.

New York Times Rules

I'm a big fan of crossword puzzles. I used to do the New York Times crossword puzzle daily. I
frequently found myself amazed at the skill that must go into constructing a crossword puzzle,
and wanted to try my hand at it. My initial attempts were on graph paper, but I quickly found
that crossword puzzle creation involves so much trial and error (at least for me) that by the
time I was halfway through, my eraser would be tearing holes in the paper! I hit on the idea of
writing a computer program to help me create crossword puzzles.

A crossword diagram, or grid, contains "blanks" and "blocks." A blank is an empty square
where a letter may be placed. A block is a blackened square where no letter goes, used to
separate words. Skillful crossword puzzle creators try to use as few blocks as possible.

Page 134

Crossword mode should enforce what I call the "New York Times rules" of crossword puzzles
(of course, they're similar to, or the same as, rules used by countless other crossword puzzle

writers):

1. The crossword grid is an n×n square, where n is odd. The daily New York Times crossword
puzzle is 15×5. The Saturday puzzle is 21×21.

2. The grid has "180° symmetry," meaning that if you rotate the grid 180 degrees, the pattern of
blocks and non-blocks is the same. Mathematically, this means that if grid square (x,y) is
blank, then so must grid square (n-x+1,n-y+1) be (where n is the width of the grid and x
and y count from 0); and if (x,y) contains a block, then so must (n-x+l,n-y+l). See Figure
10-1 for an example of 180° symmetry.

Figure 10-1.

An example of 180° symmetry

3. All words in the puzzle must be at least two letters long. (Actually, I'm informed that The
New York Times never uses words shorter than three letters, but for simplicity in this
programming example, we'll leave it at two.)

Data Representation

Let's start by choosing a data representation. An obvious approach is to store the cells of the
crossword grid in a two-dimensional array, or matrix. Emacs Lisp doesn't have such a data
type, but we can create one using vectors.

*180 symmetry is also known as "two-way symmetry." There's also "four-way symmetry," meaning
that the pattern is the same every time you rotate the grid 90 degrees.

Page 135

Vectors

A Lisp vector resembles a list, in that it is a sequence of zero or more arbitrary subexpressions
(including nested vectors or lists). However, vectors permit random access to their elements,
whereas one must traverse a list from its beginning to find a particular element. (That doesn't
necessarily make vectors superior to lists. Unlike lists, vectors can't be lengthened or shortened
except by copying. As always, use the right tool for the job.)

Vectors are written with square brackets instead of parentheses:

 [a b c. . .]

Vectors are self-evaluating; that is, the result of evaluating a vector is the vector itself. Its
subexpressions are not evaluated. So if you write:

 [a b c]

you'll get a vector containing the three symbols, a, b, and c. If you want a vector containing the
values of variables a, b, and c, you must construct the vector using the vector function:

 (vector a b c) ⇒ [17 37 42] ; or whatever the values happen to
be

Matrix Package

It is straightforward to design a matrix package using vectors. We'll choose to represent a
matrix as a vector of rows, with each row being a nested vector of columns. Here's how to
create one of these:

 (defun make-matrix (rows columns &optional initial)
 "Create a ROWS by COLUMNS matrix."*
 (let ((result (make-vector rows nil))
 (y 0))
 (while (< y rows)
 (aset result y (make-vector columns initial))
 (setq y (+ y 1)))
 result))

The argument initial specifies a Lisp expression to use as the initial value for every
element in the matrix. The first call to make-vector creates a vector of nils, rows
elements long. One by one, we replace each nil with a new vector of length columns. The
function aset is used for setting vector elements; aref retrieves them.* Vectors are indexed
starting at 0. Calling (aset vector index

*The "a" in these function names stands for "array." Why not vset and vref, with "v" for "vector"?
The answer is that in Emacs Lisp, vectors are just one kind of array. Strings are another kind of array.
So aset and aref can be used on strings as well as on vectors-but that doesn't mean that strings are
vectors.

Page 136

value) changes the element at position index in vector to be value. Calling (aref vector
index) retrieves the element at position index.

The call to make-vector inside the while loop sets each element of the nested vectors to
initial, so at the end of make-matrix, result is a vector of rows nested vectors,
where each nested vector is a vector of columns copies of initial.

Why couldn't we have written this function more simply, like this?

 (defun make-matrix (rows columns &optional initial)
 "Create a ROWS by COLUMNS matrix."

 (make-vector rows (make-vector columns initial))) ; wrong.

The reason is that the inner call to make-vector yields a single new vector. The outer call
would use that single vector as the initial value for every element in the outer vector. In
other words, every element in the outer vector would share the same inner vector, when what
we want is for every element in the outer vector to be a separate nested vector.

Given the structure of a matrix, it's a simple matter to define the basic operations on one:

 (defun matrix-set (matrix row column elt)
 "Given a MATRIX, ROW, and COLUMN, put element ELT there."
 (let ((nested-vector (aref matrix row)))
 (aset nested-vector column elt)))

 (defun matrix-ref (matrix row column)
 "Get the element of MATRIX at ROW and COLUMN."
 (let ((nested-vector (aref matrix row)))
 (aref nested-vector column)))

It might also be useful to have functions that report the width and height of the matrix:

 (defun matrix-columns (matrix)
 "Number of columns in MATRIX."
 (length (aref matrix 0))) ;length of one of the subvectors

 (defun matrix-rows (matrix)
 "Number of rows in MATRIX."
 (length matrix)) ; length of the outer vector

When function definitions are very short, like these last four, it's usually a good idea to turn
them into inlinefunctions using defsubst instead of defun. Inline functions defined with
defsubst work the same way ordinary defun functions do, except that when you compile a
function that calls an inline function, the call is replaced with a copy of the inline function
itself. This has one major benefit: at run time, the current function doesn't have to set up a call
to another function. This is marginally faster, but the savings can add up in loops that run
thousands

Page 137

or millions of times. Unfortunately, there are also two drawbacks to inline functions. One is
that the inline function is duplicated everywhere it's used, which can increase memory
requirements. The other drawback is, if the inline function definition changes, the old definition
will still be "frozen" into compiled files that use it. (In all these respects, defsubst functions
are equivalent to inline functions in C++, or macro functions in C .)

We can put the above code into matrix.el, stick a (provide 'matrix) at the end of it, and
use it in subsequent programs with (require 'matrix).

Crossword Variant of Matrix

Now let's consider a crossword grid, which is a specialized kind of matrix. Each cell in the

grid can be in only one of four states:

1. Empty, meaning we may place a letter or a block in it.

2. Semi-empty, meaning we may only place a letter in it, not a block (because of the
requirement of 180° symmetry).

3. Filled with a block.

4. Filled with a letter.

Let's use nil to stand for a cell that is empty, the symbol letter to stand for a semi-empty
cell that must be filled with a letter, the symbol block to stand for a cell containing a block,
and the letter itself (which is represented in Emacs by a number, its ASCII value) for cells
containing a letter.

Given all that, let's define a new data type for crossword grids, implemented in terms of
matrices.

 (require 'matrix)

 (defun make-crossword (size)
 "Make a crossword grid with SIZE rows and columns."
 (if (zerop (% size 2)) ; Is size even? (% is the remainder
 function)
 (error "make-crossword: size must be odd"))
 (if (< size 3) ; Is size too small?
 (error "make-crossword: size must be 3 or greater"))
 (make-matrix size size nil))

 (defsubst crossword-size (crossword)
 "Number of rows and columns in CROSSWORD."
 (matrix-rows crossword)) ;ormatrix-columns, it doesn't matter

 (defsubst crossword-ref (crossword row column)
 "Get the element of CROSSWORD at ROW and COLUMN."
 (matrix-ref crossword row column))

 (defsubst crossword--set (crossword row column elt)

Page 138

 "Internal function for setting a crossword grid square."
 (matrix-set crossword row column elt))

The function crossword--set has a double hyphen in its name. This is the conventional
way to denote a "private" function that isn't part of a package's advertised programming
interface. In this case, crossword--set is private because it doesn't implement the New
York Times rules we want to preserve in the crossword grid. Users of the Crossword package
won't use crossword--set; instead they'll use crossword-store-letter,
crossword-store-block, and crossword-clear-cell, defined below. Only the
Crossword package itself will use crossword--set, plus some logic for preserving 180°

symmetry and word lengths greater than 2.

Using Cons Cells

Let's coin the term "cousin" to mean the grid square symmetrically opposite a given square.

 (defun crossword-cousin-position (crossword row column)
 "Give the cousin position for CROSSWORD ROW and COLUMN."
 (let ((size (crossword-size crossword)))
 (cons (- size row 1) (- size column 1))))

This function returns the position of the cousin of row and column as a dotted pair (see the
section entitled "List Details" in Chapter 6): (cousin-row . cousin-column). Here are two
functions for referencing and setting cousins directly:

 (defun crossword-cousin-ref (crossword row column)
 "Get the cousin of CROSSWORD's ROW,COLUMN position."
 (let ((cousin-position (crossword-cousin-position crossword
 row
 column)))
 (crossword-ref crossword
 (car cousin-position)
 (cdr cousin-position))))
 (defun crossword--cousin-set (crossword row column elt)
 "Internal function for setting the cousin of a cell."
 (let ((cousin-position (crossword-cousin-position crossword
 row
 column)))
 (crossword--set crossword
 (car cousin-position)
 (cdr cousin-position)
 elt)))

Note that crossword--cousin-set is another "private" function with a double hyphen in
its name.

Now let's create functions for storing blocks and letters, preserving New York Times rules.
First, letters. When storing a letter in a cell, we must make sure that

Page 139

the cell's cousin already contains a letter (which we can test with numberp). If it doesn't, we
must store the symbol letter there:

 (defun crossword-store-letter (crossword row column letter)
 "Given CROSSWORD, ROW, and COLUMN, put LETTER there."
 (crossword--set crossword row column letter)
 (if (numberp (crossword-cousin-ref crossword row column))
 nil
 (crossword--cousin-set crossword row column 'letter)))

Inserting blocks is a little bit simpler:

 (defun crossword-store-block (crossword row column)
 "Given CROSSWORD, ROW, and COLUMN, put a block there."
 (crossword--set crossword row column 'block)
 (crossword--cousin-set crossword row column 'block))

Now let's write a function to erase a cell. When erasing a cell, the following situations are
possible:

• The cell and its cousin both contain letters. If so, the cell becomes ''semiempty" and the
cousin is unaffected.

• The cell and its cousin both contain blocks. If so, the cell and its cousin both become
empty.

• The cell is already semi-empty (because its cousin contains a letter). If so, nothing changes.

• The cell contains a letter but the cousin is semi-empty. If so, both cells become empty.

• The cell and its cousin are both empty. If so, nothing changes.

We can handle all those cases with this simple logic: If the cell's cousin contains a letter, then
the cell becomes semi-empty and the cousin is unaffected; otherwise the cell and its cousin
both become empty. Here's how that looks in code.

 (defun crossword-clear-cell (crossword row column)
 "Erase the CROSSWORD cell at ROW,COLUMN."
 (if (numberp (crossword-cousin-ref crossword row column))
 (crossword--set crossword row column 'letter)
 (crossword--set crossword row column nil)
 (crossword--cousin-set crossword row column nil)))

Now observe that the center square of an nxn grid is its own cousin, if n is odd. This means
that a slight correction is needed in crossword-clear-cell. It must never set the center
square to letter. (Luckily, crossword-store-block and
crossword-store-letter happen to work correctly already.)

 (defun crossword-clear-cell (crossword row column)
 "Erase the CROSSWORD cell at ROW,COLUMN."
 (let ((cousin-position (crossword-cousin-position crossword
 row

Page 140

 column)))
 (if (and (not (equal cousin-position
 (cons row column)))
 (numberp (crossword-ref crossword
 (car cousin-position)
 (cdr cousin-position))))
 (crossword--set crossword row column letter)
 (crossword--set crossword row column nil)
 (crossword--set crossword
 (car cousin-position)
 (cdr cousin-position)
 nil))))

In this version, the cell is set to letter only if cousin-position is not equal to (row .
column)-i.e., if the cell is not its own cousin. If the cell is its own cousin, or if its cousin does
not contain a letter, then (as in the original version) it's set to nil, and so is its cousin. That last

call to crossword--set is redundant in the case of the center square, but harmlessly so.
Note that since we compute the cousin's position at the beginning of the function, we've
replaced a call to crossword-cousin-ref with a call to crossword-ref, and replaced a
call to crossword--cousin-set with a call to crossword--set, to avoid computing
the cousin's position a second and third time.

One-Letter Words

A one-letter word is created any time three cells in a row contain block, nonblock, block; or
when a non-block cell is between the border and a block. Here's a function to test whether a
given square is a one-letter word.

 (defun crossword-one-letter-p (crossword row column)
 "Is CROSSWORD cell at ROW,COLUMN a one-letter word?"
 (and (not (eq (crossword-ref crossword row column)
 'block))
 (or (and (crossword-block-p crossword (- row 1) column)
 (crossword-block-p crossword (+ row 1) column))
 (and (crossword-block-p crossword row (- column 1))
 (crossword-block-p crossword row (+ column 1))))))

This is a complicated bit of logic, but recall our technique from Chapter 3, Cooperating
Commands, for making sense of such expressions: move inward one subexpression level at a
time.

(and . . .)

The result of crossword-one-letter-p will be true if all of some subexpressions are
true, false otherwise.

 (and (not . . .)
 (or . . .))

"True if something's not true and one or more other things are true."

Page 141

 (and (not (eq . . .))
 (or (and . . .)
 (and . . .)))

"True if something's not equal to something else and if one set of things are all true or another
set of things are all true."

 (and (not (eq (crossword-ref crossword row column)
 'block))
 (or (and (crossword-block-p crossword (- row 1) column)
 (crossword-block-p crossword (+ row 1) column))
 (and (crossword-block-p crossword row (- column 1))
 (crossword-block-p crossword row (+ column 1)))))

"True if the current cell is not a block and if the cells above and below are blocks or the cells
to the left and right are blocks." This relies on a minor convenience hack:
crossword-block-p must allow referring to squares outside the boundaries of the grid,

and must report that they contain blocks. Here's how we define crossword-block-p:

 (defun crossword-block-p (crossword row column)
 "Does CROSSWORD's ROW,COLUMN cell contain a block?"
 (or (< row 0)
 (>= row (crossword-size crossword))
 (< column 0)
 (>= column (crossword-size crossword))
 (eq (crossword-ref crossword row column) 'block)))

User Interface

We now have a complete suite of functions for manipulating a crossword data structure,
obeying the rules we've chosen; but there's not yet any way for a user to interact with a
crossword grid. We must write the user interface, which includes commands to invoke the
various crossword operations and a means of displaying the crossword grid and keeping the
display up to date.

Display

Let's choose a visual representation for a crossword grid, to be used in an Emacs buffer. Each
row of the crossword grid should be represented by one line of the buffer. Each column of the
grid, however, should take up two screen columns—because, on most displays, this helps the
grid look squarer. (In most display fonts, the space for a single character is much higher than it
is wide, making an nxn block of characters look ludicrously narrow.)

Page 142

Empty grid squares will be represented by a dot (.). Blocks will be represented by a hash mark
(#). Semi-empty cells will be represented by a question mark (?). And of course, cells
containing letters will display that letter. Here is a function that inserts a representation of a
crossword grid into the current buffer. It doesn't erase the buffer first, or position the cursor;
that's up to the caller of this function, which we'll define later.

 (defun crossword-insert-grid (crossword)
 "Insert CROSSWORD into the current buffer."
 (mapcar 'crossword-insert-row crossword))

Recall from "Other Useful List Functions" in Chapter 6 that mapcar applies a function to each
element of a list. It works on vectors, too; so, since crossword is a vector of rows,
crossword-insert-grid calls crossword-insert-row on each row of the grid.

Here's the definition of crossword-insert-row, used above:

 (defun crossword-insert-row (row)
 "Insert ROW into the current buffer."
 (mapcar 'crossword-insert-cell row)
 (insert "\n"))

This works the same way, calling crossword-insert-cell on each cell in row. At the
end of the row, we begin a new line.

Finally, here's crossword-insert-cell, needed by crossword-insert-row:

 (defun crossword-insert-cell (cell)

 "Insert CELL into the current buffer."
 (insert (cond ((null cell) ".")
 ((eq cell 'letter) "?")
 ((eq cell 'block) "#")
 ((numberp cell) cell))
 " •))

This inserts two characters: a dot, a question mark, a hash mark, or a letter; followed by a
blank space (to make the cell take up two screen columns). The choice of which first character
to insert is made with cond, which is a variation of if. Each argument to cond is called a
clause, and each clause is a list. The first element of each clause, called its condition, is
evaluated in turn. When a clause is found whose condition evaluates true, then that clause's
remaining elements (if any) are evaluated, and the value of the last one is returned from cond.
Clauses that follow a successful condition are skipped.

 (cond ((conditionl body . . .)
 (condition2 body . . .)
 . . .))

Page 143

If you want an "else" clause in the cond—a clause that executes if no other condition is
true—add a final clause whose condition is t:

 (cond ((condition1 body . . .)
 (condition2 body . . .)

 (t body . . .)))

The function insert takes any number of strings or characters to insert into the current buffer;
that's why we can pass the value of cell, a number, as well as " " a string, to insert.

Cursor Positioning

Let's continue building the components that our complete mode will ultimately need.

Now that we can display a crossword grid, it will be useful to have a way to position the
cursor on an arbitrary cell. The position of the cursor indicates to the user which cell will be
affected by the next operation he or she invokes.

This function assumes that a crossword grid has been drawn in the current buffer, and that it
begins at (point-min).

 (defun crossword-place-cursor (row column)
 "Move point to ROW,COLUMN."
 (goto-char (point-min))
 (forward-line row)
 (forward-char (* column 2)))

Next, when the user does invoke some operation, it will be necessary to deduce the current
crossword coordinates from the cursor's position.

 (defun crossword-cursor-coords ()
 "Compute (ROW . COLUMN) from cursor position."
 (cons (- (current-line) 1)

 (/ (current-column) 2)))

The function /, which performs division in Emacs Lisp, performs integer division when its
arguments are all integers. The result is rounded toward zero. Thanks to this,

(/ (current-column) 2)

returns the correct grid column whether the cursor is in the proper screen column or in the
blank space that follows it.

* Although we won't use this fact in this chapter, remember that (point-min) isn't necessarily the
beginning of the buffer; it could be somewhere in the middle, if narrowing is in effect.

Page 144

Unfortunately, while current-column is built into Emacs, there is no current-line function*

Here is one way to write it:

 (defun current-line ()
 "Return line number containing point."
 (let ((result 1)) ; Emacs counts lines startingfrom 1.

 (save-excursion
 (beginning-of-line) so bobp will work
 (while (not (bobp))
 (forward-line -1)
 (setq result (+ result 1))))
 result))

The function bobp tests whether the cursor is at the beginning of the buffer.

Updating the Display

As the user edits the crossword grid, changes to the underlying data structure have to be
reflected in the buffer. It would be wastefully inefficient to erase the whole buffer and call
crossword-insert-grid every time the user makes a change. Instead, we'd like to
redraw just the affected grid cells.

We already have the tools for doing this: crossword-place-cursor and
crossword-insert-cell. Here's a function that uses those components. It presumes that
the cursor is on the affected cell, and redraws it and its cousin.

 (defun crossword-update-display (crossword)
 "Called after a change, keeps the display up to date."
 (let* ((coords (crossword-cursor-coords))
 (cousin-coords (crossword-cousin-position crossword
 (car coords)

 (cdr coords))))

 (save-excursion
 (crossword-place-cursor (car coords)
 (cdr coords))
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword

 (car coords)
 (cdr coords)))
 (crossword-place-cursor (car cousin-coords)
 (cdr cousin-coords))
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword
 (car cousin-coords)

 (cdr cousin-coords))))))

*There is what-line, but that function is meant to be used interactively, not in a program. It
displays a message about the current line number, and doesn't return a useful value. We need a
function with the opposite behavior: no message should be displayed, and the current line number
should be returned.

Page 145

You might think that the first call to crossword-place-cursor in this function is
redundant, since it's placing the cursor at the same position that it just read with
crossword-cursor-coords. But remember that the depiction of a grid cell is two
screen columns wide, and the cursor may have somehow gotten into the righthand column. In
order for crossword-insert-cell to work, the cursor must be in the lefthand column.
Calling crossword-place-cursor ensures that it is. The surrounding call to
save-excursion makes sure that the cursor returns to where it started after the display is
updated.

User Commands

Now we need to define the interactive commands that will allow users to operate Crossword
mode.

Grid-changing commands

Let's start by assuming that a buffer in Crossword mode has a buffer-local variable named
crossword-grid that holds the crossword grid. (We'll address how and when to create
crossword-grid when we define the crossword-mode command in the next section.)
The user command to erase a cell can therefore be written as in the following example.

 (defun crossword-erase-command ()
 "Erase current crossword cell."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-clear-cell crossword-grid
 (car coords)
 (cdr coords)))
 (crossword-update-display crossword-grid))

Likewise, here's a command to insert a block:

 (defun crossword-block-command ()
 "Insert a block in current cell and cousin."
 (interactive)
 (let ((coords (crossword-cursor-coords)))

 (crossword-store-block crossword-grid
 (car coords)
 (cdr coords)))
 (crossword-update-display crossword-grid))

The command for inserting a letter is trickier. There are twenty-six possible letters, but we
don't wish to write twenty-six different commands with names like crossword-insert-a
and crossword-insert-b and so on. We want one single function bound to all twenty-six
letter keys that, when invoked, inserts whatever letter was used to invoke it. One such function
for ordinary modes is self-insert-command. We'll define
crossword-self-insert, which inserts the letter that the user pressed.

Page 146

 (defun crossword-self-insert ()
 "Self-insert letter in current cell."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-store-letter crossword-grid
 (car coords)
 (cdr coords)
 (aref (this-command-keys) O)))
 (crossword-update-display crossword-grid))

This function uses this-command-keys to determine what key the user pressed. The return
value of this-command-keys is a string of characters or a vector of symbolic events (more
about those in the section on "Mouse Commands" later in this chapter); but
crossword-store-letter expects a character, not a string, symbol, or vector. By using
aref to select the first element and passing it to crossword-store-letter, we're trusting
that it is indeed a string, and that we don't care about anything other than the first letter. This
should be okay, because when we set up the keybindings in the section on "Keybindings" later
in this chapter, we'll bind crossword-self-insert only to single keys (namely, the
letters of the alphabet), and later on we'll make it impossible, or at least somewhat hard, for the
user to enter invalid characters.

Navigation

The user must have some way of navigating from cell to cell other than Emacs's ordinary
cursor-motion commands, which don't translate well to crossword-grid navigation. For one
thing, each grid is two columns wide, so it would take two presses of C-f just to move one cell
to the right. For another thing, trying to move rightward at the right boundary of the grid should
not wrap around to the beginning of the next line, like C-f would. It should just stop.

Defining navigation commands is very straightforward. It's just a matter of figuring out in what
directions the user may want to move, and in what size jumps. We'll define commands for
moving one grid square left, right, up, and down; for moving to the beginning and end of each
grid row; for moving to the top and bottom of each grid column; and for moving to the
beginning (upper left comer) and end (bottom right corner) of the grid.

First, the horizontal cellwise motion commands:

 (defun crossword-cursor-right (arg)
 "Move ARG cells to the right."

 (interactive "p") ;prefix arg as number
 (let* ((coords (crossword-cursor-coords))
 (new-column (+ arg (cdr coords))))
 (if (or (< new-column 0)
 (>= new-column (crossword-size crossword-grid)))
 (error "Out of bounds"))
 (crossword-place-cursor (car coords)

Page 147

 new-column)))

 (defun crossword-cursor-left (arg)
 "Move ARG cells to the left."
 (interactive "p")
 (crossword-cursor-right (- arg)))

Likewise for the vertical cellwise motion commands:

 (defun crossword-cursor-down (arg)
 "Move ARG cells down."
 (interactive "p")
 (let* ((coords (crossword-cursor-coords))
 (new-row (+ arg (car coords))))
 (if (or (< new-row 0)
 (>= new-row (crossword-size crossword-grid)))
 (error "Out of bounds"))
 (crossword-place-cursor new-row
 (cdr coords))))

 (defun crossword-cursor-up (arg)
 "Move ARG cells up."
 (interactive "p")
 (crossword-cursor-down (- arg)))

Now the commands for moving to the beginning or end or a row or column.

 (defun crossword-beginning-of-row ()
 "Move to beginning of current row."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-place-cursor (car coords) 0)))

 (defun crossword-end-of-row ()
 "Move to end of current row."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-place-cursor (car coords)
 (- (crossword-size crossword-grid)

 1))))

 (defun crossword-top-of-column ()
 "Move to top of current column."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-place-cursor 0 (cdr coords))))

 (defun crossword-bottom-of-column ()
 "Move to bottom of current row."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (crossword-place-cursor (- (crossword-size crossword-grid)
 1)
 (cdr coords))))

Page 148

Finally, the beginning- and end-of-grid commands.

 (defun crossword-beginning-of-grid ()
 "Move to beginning of grid."
 (interactive)
 (crossword-place-cursor 0 0))

 (defun crossword-end-of-grid ()
 "Move to end of grid."
 (interactive)
 (let ((size (crossword-size crossword-grid)))
 (crossword-place-cursor size size)))

As an afterthought, here's something that might be useful: a command to jump to the current
cell's cousin.

 (defun crossword-jump-to-cousin ()
 "Move to cousin of current cell."
 (interactive)
 (let* ((coords (crossword-cursor-coords))
 (cousin (crossword-cousin-position crossword-grid
 (car coords)
 (cdr coords))))
 (crossword-place-cursor (car cousin)
 (cdr cousin))))

Setting Up the Mode

There are two circumstances under which a user expects to enter Crossword mode. One is
when visiting a file that contains a crossword grid from an earlier session. Another is when
creating a brand-new crossword grid.

Creating a brand-new crossword grid requires creating an empty buffer and filling it in using
crossword-insert-grid. The act of entering a major mode shouldn't change buffers or
alter a buffer's contents, so crossword-mode will only be for entering Crossword mode in
a buffer already containing a crossword grid. We'll devise a separate command, crossword,
for creating a grid from scratch.

Here's a start at defining crossword:

 (defun crossword (size)
 "Create a new buffer with an empty crossword grid."
 (interactive "nGrid size: ")
 (let* ((grid (make-crossword size))
 (buffer (generate-new-buffer "*Crossword*")))
 (switch-to-buffer buffer)

 (crossword-insert-grid grid)
 (crossword-place-cursor 0 O) ;start in upper-left corner

 . . .))

Page 149

We'll leave this function unfinished for now, but before we move on, let's note some interesting
things about this function:

1. (interactive "nGrid size: "). The letter n is one of a few code letters for
interactive that instruct Emacs to prompt the user for a value. These letters allow
you to specify a prompt string, as we've done here. This interactive declaration
means, "Prompt the user with the string "Grid size: ", and read a number in response."

What if this command took two arguments, a number and, say, a string? What would the
interactive declaration look like?

Emacs considers everything after the n to be part of the prompt string, up to the first
newline. So just embed a newline in the string to introduce the next code letter, like this:

(interactive "nFirst prompt: \nsSecond prompt: ")

2. We use let* instead of let to make sure grid gets created before buffer. This isn't
strictly necessary, because the creation of buffer doesn't depend on grid. But it is a
good idea, because we don't want to create buffer if there's an error creating grid (such
as, size is an illegal value). The reason is that buffer creation is fairly expensive in
Emacs, and because buffers don't go away by themselves (they don't get garbage-collected)
the way other Lisp values do. Once a buffer is created, it stays around until killed with
kill-buffer.

3. The name of the new buffer is *Crossword*. By convention, buffers that are not
associated with files have names beginning and ending with an asterisk-witness
scratch and *Help*. Once the user begins editing the buffer, he or she can save it
to a file (e.g., with C-x C-w), at which time Emacs will rename the buffer to correlate with
the chosen filename.

Let's turn our attention momentarily to the crossword-mode command. As we've already
decided, it should be used only on buffers that already contain a crossword grid. It should
somehow parse the buffer. This means constructing a new crossword grid object based on the
text in the buffer. The parsed grid must be assigned to crossword-grid. Here's a first
attempt, following the major mode guidelines laid out in Chapter 9, A MajorMode:

 (defun crossword-mode ()
 "Major mode for editing crossword puzzles.
 Special commands:
 \\{crossword-mode-map}"
 (interactive)
 (kill-all-local-variables)
 (setq major-mode 'crossword-mode)
 (setq mode-name "Crossword")
 (use-local-map crossword-mode-map)

Page 150

 (make-local-variable crossword-grid)
 (setq crossword-grid (crossword-parse-buffer))
 (crossword-place-cursor 0 O) ;start in upper-left corner

 (run-hooks 'crossword-mode-hook))

We'll define crossword-mode-map and crossword-parse-buffer later.

Now let's return to the crossword command. After placing a grid representation in an empty
buffer, it must cause the buffer to enter Crossword mode. How? The obvious answer is for it to
call crossword-mode:

 (defun crossword (size)
 "Create a new buffer with an empty crossword grid."
 (interactive "nGrid size: ")
 (let* ((grid (make-crossword size))
 (buffer (generate-new-buffer "*Crossword*")))
 (switch-to-buffer buffer)
 (crossword-insert-grid grid)
 (crossword-place-cursor 0 0) ;start in upper-left corner

 (crossword-mode)))

This is fine, but a little inefficient. Note that crossword-mode calls
crossword-parse-buffer to create a crossword data structure, even though
crossword has already set one up. If we can preserve crossword's copy of that data
structure, we can skip the parsing step.

The best way to do this is to create a third function, used by both crossword and
crossword-mode, that performs the steps common to both ways of entering Crossword
mode.

 (defun crossword--mode-setup (grid)
 "Auxiliary function to set up crossword mode."
 (kill-all-local-variables)
 (setq major-mode 'crossword-mode)
 (setq mode-name "Crossword")
 (use-local-map crossword-mode-map)
 (make-local-variable crossword-grid)
 (setq crossword-grid grid)
 (crossword-place-cursor 0 0)
 (run-hooks 'crossword-mode-hook))

We've make crossword--mode-setup take the crossword grid as an argument. So
crossword should call it with the grid it constructs:

 (defun crossword (size)
 "Create a new buffer with an empty crossword grid."
 (interactive "nGrid size: ")
 (let* ((grid (make-crossword size))
 (buffer (generate-new-buffer "*Crossword*")))
 (switch-to-buffer buffer)
 (crossword-insert-grid grid)
 (crossword--mode-setup grid)))

and by crossword-mode should call it with the result of parsing the buffer:

Page 151

 (defun crossword-mode ()
 "Major mode for editing crossword puzzles.
 Special commands:
 \\{crossword-mode-map}"
 (interactive)
 (crossword--mode-setup (crossword-parse-buffer)))

Keybindings

Earlier, we defined several user commands, such as crossword-erase-command and
crossword-block-command. Now let's define crossword-mode-map and choose
keybindings for these commands.

 (defvar crossword-mode-map nil
 "Keymap for Crossword mode.")

 (if crossword-mode-map
 nil
 (setq crossword-mode-map (make-keymap))

Most of these commands are natural analogues for ordinary Emacs commands. For instance,
crossword-beginning-of-row and crossword-end-of-row correspond pretty
well with beginning-of-line and end-of-line, which are normally bound to C-a
and C-e. Does that mean we should bind those commands like this?

 (define-key crossword-mode-map "\C-a"
 crossword-beginning-of-row)
 (define-key crossword-mode-map "\C-e"
 crossword-end-of-row)

Maybe. But suppose the user doesn't use C-a for beginning-of-line? In that case, C-a is
the wrong choice. Because of their similarity, the user will expect to use the same key for
crossword-beginning-of-row as for beginning-of-line. It would be best if
we could find the user's keybinding for beginning-of-line and bind
crossword-beginning-of-row accordingly. This is exactly what
substitute-key-definition does.

 (substitute-key-definition 'beginning-of-line
 crossword-beginning-of-row
 crossword-mode-map
 (current-global-map))

This means, ''Wherever beginning-of-line is now bound in the current global keymap,
create a binding for crossword-beginning-of-row in crossword-mode-map."

We can set up crossword-mode-map using a series of calls to
substitute-key-definition; or, more concisely, one call inside a loop.

Page 152

 (let ((equivs
 ((forward-char . crossword-cursor-right)
 (backward-char . crossword-cursor-left)
 (previous-line . crossword-cursor-up)
 (next-line . crossword-cursor-down)
 (beginning-of-line . crossword-beginning-of-row)
 (end-of-line . crossword-end-of-row)
 (beginning-of-buffer . crossword-beginning-of-grid)
 (end-of-buffer . crossword-end-of-grid))))
 (while equivs
 (substitute-key-definition (car (car equivs))
 (cdr (car equivs))
 crossword-mode-map
 (current-global-map))
 (setq equivs (cdr equivs))))

We create a list of equivalence pairs" in equivs. Each time through this loop, (car
equivs) is one of the equivalence pairs, such as (next-line .
crossword-cursor-down). Thus, (car (car equivs)) is the command to find in the global
keymap (e.g., next-line) and (cdr (car equivs)) is the corresponding command
to place in crossword-mode-map (e.g., crossword-cursor-down).

Now we must bind the letter keys to crossword-self-insert.

 (let ((letters
 (?A ?B ?C ?D ?E ?F ?G ?H ?I ?J ?K ?L ?M
 ?N ?O ?P ?Q ?R ?S ?T ?U ?V ?W ?X ?Y ?Z
 ?a ?b ?c ?d ?e ?f ?g ?h ?i ?j ?k ?l ?m
 ?n ?o ?p ?q ?r ?s ?t ?u ?v ?w ?x ?y ?z)))
 (while letters
 (define-key crossword-mode-map
 (char-to-string (car letters))
 crossword-self-insert)
 (setq letters (cdr letters))))

This only leaves crossword-erase-command, crossword-block-command,
crossword-top-of-column, crossword-bottom-of-column, and
crossword-jump-to-cousin without keybindings (because they have no obvious
equivalents in other ordinary editing modes). Let's bind the first two as:

 (define-key crossword-mode-map" " crossword-erase-command)
 (define-key crossword-mode-map "#" crossword-block-command)

because those seem natural for clearing a cell and inserting a block, respectively. For the
remaining three, let's use two-keystroke keybindings beginning with C-c. Recall that by
convention, C-c is the prefix for mode-specific keybindings.

 (define-key crossword-mode-map "\C-ct"
 crossword-top-of-column)
 (define-key crossword-mode-map "\C-cb"

Page 153

 crossword-bottom-of-column)
 (define-key crossword-mode-map "\C-c\C-c"

 crossword-jump-to-cousin) ; by analog, uwith C-x C-x

Those are all the keybindings we need for the moment; but unfortunately, like all local
keymaps, this one will inherit keybindings from the current global keymap for any keys that
aren't locally bound. That means, for example, that there remain several keystrokes that could
wreak havoc on our carefully formatted crossword grid. Digits and typographical characters
remain bound to self-insert-command; C-w, C-k, and C-d can still eradicate part of the
buffer; C-y can still insert who-knows-what at any given point; and so on.

This situation is partially alleviated with suppress-keymap, which causes all
self-inserting keys to become undefined. We should call suppress-keymap immediately
after creating the keymap, before starting to define keys in it.

 (if crossword-mode-map
 nil
 (setq crossword-mode-map (make-keymap))
 (suppress-keymap crossword-mode-map)

 . . .)

This only gets rid of self-inserting keys, leaving other dangerous keys like C-w and C-y lurking
about. A more complete (and more drastic) solution is to place a catch-all binding in
crossword-mode-map:

(define-key crossword-mode-map [t] 'undefined)

In this call to define-key, the "key" argument isn't a string of characters, as we've seen
before; it's a vector containing the symbol t. Recall that vectors and strings are related; each is
a kind of array. In fact, a vector of characters means the same thing as a string of characters in
a call to define-key; and a vector of symbols is a useful extension at which we'll look
more closely in the next section. But the vector [t] stands for an entry that catches all
keystrokes not otherwise bound by this keymap. Normally, if the current local keymap doesn't
bind a key, the key's definition is sought in the current global keymap. A binding for [t] means
"stop here." So this is a way to disable any keystrokes that we haven't explicitly enabled.

Mouse Commands

When running Emacs under a windowing system such as X, the mouse can be used to invoke
actions just like keystrokes. In fact, mouse actions are under the control of the same keymaps
that contain the bindings for ordinary keys. The main difference is in how Emacs looks up the
binding.

The keymap data structure can be a vector, an assoc list, or a combination of the two. When
you press a key, you generate a numeric code that can be used to

Page 154

index the vector, or it can be used as the search key in an assoc search. When you press a
mouse button, you generate a symbol that can only be used in an assoc search. The symbol
down-mouse-1, for instance, represents a press of mouse button 1 (usually the left mouse
button), while the symbol mouse-1 represents button 1 being released. (It is customary for a

button press to initiate an action by noting the position of the mouse pointer, and for a button
release to complete an action by noting whether the mouse has moved since the corresponding
button press.) Other mouse-event symbols include C-down-mouse-2 (pressing the middle
mouse button while holding the control key), S-drag-mouse-3 (shift key plus mouse
motion with button 3 depressed), and double-mouse-1 (after releasing mouse button 1 for
the second time in a double-click).

Another difference between mouse input and keyboard input is that when you press a mouse
button, there is additional data associated with the button press: for instance, there's the
location in the window where you pressed it. Keyboard input always happens at "point," but
mouse input happens wherever the mouse is. For this reason, mouse input is represented by a
data structure called an input event. A command bound to a mouse action can access the
current event by calling last-input-event, or by using the e code letter in its
interactive declaration.

To demonstrate this, let's define three simple mouse commands for Crossword mode. Mouse
button 1 will place the cursor on a grid cell, mouse button 2 will place a block, and mouse
button 3 will clear a cell.

In each case, the initial down- event will place the cursor and memorize the location in a
variable, crossword-mouse-location. When the button is released, the new location is
compared with the saved location. If they differ, no action is taken.

Let's start with crossword-mouse-set-point, the function that responds to the
mouse-down event.

 (defvar crossword-mouse-location nil
 "Location of last mouse-down event, as crossword coords.")

 (defun crossword-mouse-set-point (event)
 "Set point with the mouse."
 (interactive "@e")
 (mouse-set-point event)
 (let ((coords (crossword-cursor-coords)))
 (setq crossword-mouse-location coords)
 (crossword-place-cursor (car coords)
 (cdr coords))))

The @ in the interactive declaration means, "Before doing anything else, find the mouse
click (if any) that invoked this command, and select the window in

Page 155

which the mouse was clicked." The code letter e tells interactive to bundle up the mouse
event that invoked this command as a list and assign it to event. We don't need any
information from the event structure, but we do need to pass it to mouse-set-point,
which uses the window location data inside event to compute a new position for point. Once
point is placed, we can call crossword-cursor-coords to compute and memorize the
resulting grid coordinates. Finally we call crossword-place-cursor, because each
grid cell is two screen columns wide and mouse-set-point may have placed the cursor in
the wrong column of the selected cell.

Here's how to set up the bindings for all three mouse-down events:

 (define-key crossword-mode-map [down-mouse-i]
 crossword-mouse-set-point)
 (define-key crossword-mode-map [down-mouse-2]
 crossword-mouse-set-point)
 (define-key crossword-mode-map [down-mouse-3]
 crossword-mouse-set-point)

Now for the individual mouse-up actions. Releasing button 1 is supposed to do the same thing
as pressing button 1, so simply bind mouse-1 to the same command as down-mouse-l:

 (define-key crossword-mode-map [mouse-1]
 'crossword-mouse-set-point)

Here are mouse commands for placing a block and erasing a cell:

 (defun crossword-mouse-block (event)
 "Place a block with the mouse."
 (interactive "@e")
 (mouse-set-point event)
 (let ((coords (crossword-cursor-coords)))
 (if (equal coords crossword-mouse-location)
 (crossword-block-command))))

 (defun crossword-mouse-erase (event)
 "Erase a cell with the mouse."
 (interactive "@e")
 (mouse-set-point event)
 (let ((coords (crossword-cursor-coords)))
 (if (equal coords crossword-mouse-location)
 (crossword-erase-command))))

and here are the bindings for those commands:

 (define-key crossword-mode-map [mouse-2]
 crossword-mouse-block)
 (define-key crossword-mode-map [mouse-3]
 crossword-mouse-erase)

Page 156

Menu Commands

We still have no user command for checking the crossword grid for one-letter words; but we
do have crossword-one-letter-p, defined back in the section on "One-Letter Words"
earlier in this chapter. Let's use that to define a command, crossword-find-singleton,
that finds a one-letter word in the grid (if one exists) and moves the cursor there.

 (defun crossword-find-singleton ()
 "Jump to a one-letter word, if one exists."
 (interactive)
 (let ((row O)
 (size (crossword-size crossword-grid))
 (result nil))
 (while (and (< row size)

 (null result))
 (let ((column 0))
 (while (and (< column size)
 (null result))
 (if (crossword-one-letter-p crossword-grid
 row column)
 (setq result (cons row column))
 (setq column (+ column 1)))))
 (setq row (+ row 1)))
 (if result
 (crossword-place-cursor (car result)
 (cdr result))
 (message "No one-letter words."))))

This function iterates over every cell in the grid, testing whether it's a one-letter word, stopping
when it finds the first one or displaying the message, "No one-letter words."

We can now bind this function to a key. C-c 1 suggests itself.

 (define-key crossword-mode-map "\C-cl"
 crossword-find-singleton)

But checking for one-letter words isn't likely to be a very common operation, like cursor
motion and other commands. The user may not wish to memorize a keybinding for it. Since it
will be infrequently used, it's a good candidate for placement in a menu.

Defining menu items is easy, and involves yet another aspect of keymaps. First we must define
a new keymap to contain the items that belong on a single menu "card." Later we'll arrange for
this menu card to have a top-level menubar entry called "Crossword."

 (defvar crossword-menu-map nil
 "Menu for Crossword mode.")

 (if crossword-menu-map

Page 157

 nil
 (setq crossword-menu-map (make-sparse-keymap "Crossword"))
 (define-key crossword-menu-map [find-singleton]
 '("Find singleton" . crossword-find-singleton)))

Menu keymaps must have an "overall prompt string." That's the meaning of the optional
argument "Crossword" in this call to make-sparse-keymap.

Our menu card has only one entry at the moment. It is bound to the made-up event symbol,
find-singleton. The binding for that "event" is a cons cell containing the string, "Find
singleton", and the symbol crossword-find-singleton. The string is used on the menu
as the menu item description. The symbol is the name of the function to invoke when the menu
item is selected. The made-up event symbol find-singleton is meaningless, other than
that it must be different from all other such symbols on the same menu card.

In order to place this menu card under a heading in the overall menu bar, we must choose
another symbol to stand for the menu card as a whole; we'll use crossword. Now, installing
the menu card is a simple matter of binding the menu keymap to the made-up event sequence

[menu-bar crossword].

 (define-key crossword-mode-map [menu-bar crossword]
 (cons "Crossword" crossword-menu-map))

This time, the binding is placed in crossword-mode-map, which is the way to make the
entries in crossword-menu-map "reachable" from the set of keymaps in use. The event
symbol menu-bar represents the menubar as a whole. The event sequence [menu-bar
crossword] selects the Crossword menu keymap, and the event sequence [menu-bar
crossword find-singleton] means the user navigated the menus to select the "Find
singleton" item.

Tracking Unauthorized Changes

Suppose that, in spite of our precautions against unwanted buffer-modifying commands, the
user manages to invoke one anyway. The state of the crossword grid on the screen won't match
the data structure in crossword-grid. How can we recover?

One way is to attach a function to after-change-functions (see the section called
"Clever Approach" in Chapter 4) that is invoked every time the buffer changes. If the change
was "unauthorized," we must somehow resynchronize the buffer and the crossword-grid
data structure.

What's "unauthorized"? Trivially, it's the opposite of "authorized," so let's add a mechanism to
"authorize" changes to the buffer.

 (defvar crossword-changes-authorized nil
 "Are changes currently authorized?")

Page 158

 (make-variable-buffer-local 'crossword-changes-authorized)

 (defmacro crossword-authorize (&rest subexprs)
 "Execute subexpressions, authorizing changes."
 '(let ((crossword-changes-authorized t))
 ,@subexprs))

This is a macro that can be wrapped around function bodies where buffer changes happen. It
temporarily sets crossword-changes-authorized to t, executes the function body,
then reverts crossword-changes-authorized to its previous value. By default,
changes are not authorized. So to prevent the user from corrupting the buffer, we must rewrite
crossword-insert-grid and crossword-update-display to authorize the
changes they make:

 (defun crossword-insert-grid (crossword)
 "Insert CROSSWORD into the current buffer."
 (crossword-authorize
 (mapcar 'crossword-insert-row crossword)))

 (defun crossword-update-display (crossword)
 "Called after a change, keeps the display up to date."
 (crossword-authorize
 (let* ((coords (crossword-cursor-coords))

 (cousin-coords (crossword-cousin-position crossword
 (car coords)

 (cdr coords))))

 (save-excursion
 (crossword-place-cursor (car coords)
 (cdr coords))
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword
 (car coords)
 (cdr coords)))
 (crossword-place-cursor (car cousin-coords)
 (cdr cousin-coords))
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword
 (car cousin-coords)

 (cdr cousin-coords)))))))

and we must attach a function to after-change-functions that detects changes made
when crossword-changes-authorized is not true:

 (defun crossword-after-change-function (start end len)
 "Recover if this change is not authorized."
 (if crossword-changes-authorized
 nil ; do nothing if this change is authorized
 recover somehow))

 (make-local-hook 'after-change-functions)
 (add-hook 'after-change-functions
 'crossword-after-change-function)

Page 159

Recognizing that many individual changes can occur during the course of executing a single
user command, we should not try to "recover somehow" more than once per command. This
means that after the current command completes (and after possibly many changes), we should
check to see whether any unauthorized changes occurred, and resynchronize then. Therefore we
also need to install a function in post-command-hook (which executes once after each
complete user command).

We'll create another new variable, crossword-unauthorized-change, which tells
whether an unauthorized change occurred during the current command. We'll revise
crossword-after-change-function to set it, and a new function,
crossword-post-command-function, will test it:

 (defvar crossword-unauthorized-change nil
 "Did an unauthorized change occur?")
 (make-variable-buffer-local 'crossword-unauthorized-change)

 (defun crossword-after-change-function (start end len)
 "Recover if this change is not authorized."
 (if crossword-changes-authorized
 nil

 (setq crossword-unauthorized-change t)))

 (defun crossword-post-command-function ()
 "After each command, recover from unauthorized changes."
 (if crossword-unauthorized-change
 resynchronize)
 (setq crossword-unauthorized-change nil))

These calls should be added to crossword-mode-setup:

 (make-local-hook 'after-change-functions)
 (add-hook 'after-change-functions
 crossword-after-change-function)

 (make-local-hook 'post-command-hook)
 (add-hook 'post-command-hook
 crossword-post-command-function)

When resynchronizing, we have two choices: trust the contents of the buffer and update the
data structure in crossword-grid; or trust crossword-grid, erasing the buffer and
reinserting the grid with crossword-insert-grid.

On the surface, there doesn't seem to be any reason to trust the visible buffer more than our
internal data structure, because the buffer is more likely than the data structure to become
corrupted. However, there is one big reason to at least try to trust the buffer: the undo
command. If the user invokes undo, it will revert the buffer to its state before the last command
executed. That's useful. But it won't revert the state of crossword-grid. For that, we
should use our unauthorized-change detector and attempt to re-parse the grid in the buffer
(which we

Page 160

know we can do, since we've already stipulated the existence of
crossword-parse-buffer). If that fails, presumably because the buffer is incorrectly
formatted, we should erase the buffer and insert a corrected grid.

Here's how we can fill in the rest of crossword-post-command-function to do this:

 (defun crossword-post-command-function ()
 "After each command, recover from unauthorized changes."
 (if crossword-unauthorized-change
 (let ((coords (crossword-cursor-coords)))
 (condition-case nil
 (setq crossword-grid (crossword-parse-buffer))
 (error (erase-buffer)
 (crossword-insert-grid crossword-grid)))
 (crossword-place-cursor (car coords)
 (cdr coords))))
 (setq crossword-unauthorized-change nil))

This function uses condition-case, a special form that is related to unwind-protect
(which we first encountered in the section entitled "Failing Gracefully" in Chapter 8). Recall
that unwind-protect looks like this:

 (unwind-protect

 body
 unwind . . .)

It executes the body, which may or may not complete depending on whether an error is signaled
while it's running. Whether or not body completes successfully, unwind is executed afterward.

The difference between condition-case and unwind-protect is that
condition-case contains expressions to execute only in the case of an error. It's used like
this:

 (condition-case tar
 body
 (symbol1 handler . ..)
 (symbol2 handler . . .)

 .. .)

If body aborts because of a "signaled condition," one of the subsequent handler clauses is
executed to "catch" the error. The clause that executes is the one whose symbol matches the
signaled condition. For now, we're only interested in the signaled condition called error
(which is signaled when the error function is called), so our use of condition-case
looks like this:

 (condition-case var
 body
 error handler

Page 161

If var is non-nil, then it's the name of a variable into which Emacs will put information about
the current error—namely, the arguments to the error call that signaled this condition-when
one of the handlers runs. But in our example, var is nil because we don't need access to that
information.

We attempt to set crossword-grid to the result of calling
crossword-parse-buffer. If parsing fails, crossword-parse-buffer signals an
error, which causes the body of the condition-case to abort before replacing the value of
crossword-grid. If that happens, the error handler runs, erasing the buffer and inserting
the known-to-be-correct copy of crossword-grid.

In either case, we finish by placing the cursor at the grid coordinates we memorized at the
beginning of the function; but suppose the buffer is so badly mangled that even trying to
memorize the current coordinates fails? We should then have two separate calls to
condition-case:

 (defun crossword-post-command-function ()
 "After each command, recover from unauthorized changes."
 (if crossword-unauthorized-change
 (condition-case nil
 (let ((coords (crossword-cursor-coords)))
 (condition-case nil
 (setq crossword-grid (crossword-parse-buffer))
 (error (erase-buffer)
 (crossword-insert-grid crossword-grid)))

 (crossword-place-cursor (car coords)
 (cdr coords)))
 (error (erase-buffer)
 (crossword-insert-grid crossword-grid)
 (crossword-place-cursor 0 0))))
 (setq crossword-unauthorized-change nil))

The outer condition-case handles errors in crossword-cursor-coords. It erases
the buffer, re-inserts the grid, and places the cursor in the upper left corner. The inner
condition-case handles errors in crossword-parse-buffer, erasing and
re-inserting the grid, and restoring the memorized cursor position.

Now that we can track and recover from unauthorized changes in the buffer, I recommend
removing the catch-all keybinding,

 (define-key crossword-mode-map [t] 'undefined)

from crossword-mode-map, which after all is a little too restrictive, making many
harmless and useful commands as inaccessible as C-k and C-y.

Since crosswords are stored in plain text files, it's still possible for users to corrupt them by
editing them with another editor, or with Emacs when not in Crossword mode. But most such
changes would cause Crossword mode to fail on startup when it tries to parse the corrupted
file.

Page 162

Parsing the Buffer

Here is a definition for crossword-parse-buffer:

 (defun crossword-parse-buffer ()
 "Parse the crossword grid in the current buffer."
 (save-excursion
 (goto-char (point-min))
 (let* ((line (crossword-parse-line))
 (size (length line))
 (result (make-crossword size))
 (row 1))
 (crossword--handle-parsed-line line 0 result)
 (while (< row size)
 (forward-line 1)
 (setq line (crossword-parse-line))
 (if (not (= (length line) size))
 (error "Rows vary in length"))
 (crossword--handle-parsed-line line row result)
 (setq row (+ row 1)))
 result)))

It calls crossword-parse-line, which parses a line of text and returns it in list form.
The length of that list gives us the horizontal and vertical size of the crossword grid
(remember, our crossword grids are always square). We then call crossword-parse-line on the
size - 1 remaining lines. Each time we parse a line, we fill in a row of the crossword data
structure held in result by calling crossword--handle-parsed-line, which we can

define like this:

 (defun crossword--handle-parsed-line (line row grid)
 "Take LINE and put it in ROW of GRID."
 (let ((column 0))
 (while line
 (cond ((eq (car line) 'block)
 (crossword-store-block grid row column))
 ((eq (car line) nil)
 (crossword-clear-cell grid row column))
 ((numberp (car line))
 (crossword-store-letter grid row column (car line))))

 (setq line (cdr line))
 (setq column (+ column 1)))))

Here's crossword-parse-line, which does the real work of
crossword-parse-buffer:

 (defun crossword-parse-line ()
 "Parse a line of a Crossword buffer."
 (beginning-of-line)
 (let ((result nil))
 (while (not (eolp))
 (cond ((eq (char-after (point)) ?#)
 (setq result (cons 'block result)))
 ((eq (char-after (point)) ?.)

Page 163

 (setq result (cons nil result)))
 ((eq (char-after (point)) ??)
 (setq result (cons nil result)))
 ((looking-at "[A-Za-z]")
 (setq result (cons (char-after (point))
 result)))
 (t (error "Unrecognized character")))
 (forward-char 1)
 (if (eq (char-after (point)) ?\
 (forward-char 1)
 (error "Non-blank between columns")))
 (reverse result)))

This moves along a line two characters at a time. The first one is expected to be pound sign
(#), period (.), question mark (?, which is treated the same way as .), or a letter. The cond
expression tells us what to do in each case. If it's none of those, an error is
signaled—''Unrecognized character." Otherwise, the next character is expected to be the blank
space separating columns of the grid. Again, if it isn't, an error is signaled.

The resulting data is accumulated in result using cons, which means that the first item on the
line appears at the end of the list, the second appears next-to-last, and so on. So the last thing
the function does is call reverse to produce a correctly ordered list.

One more thing: when an Emacs mode is appropriate only for editing specially prepared text,
the mode symbol should be given the special property like this:

(put 'crossword-mode 'mode-class 'special)

This tells Emacs not to use Crossword mode as the default mode for any buffers, since it only
works on buffers that already contain parseable crossword grids.

Word Finder

So far, Crossword mode isn't much more than very fancy graph paper. Apart from keeping track
of what letters you want to put where, it offers little help to the aspiring crossword puzzle
creator. The really hard part of designing a crossword puzzle isn't keeping track of what
belongs in each grid square; it's trying to find words that will fit with other words you've
already chosen, such as when you need a five-letter word whose last three letters have to be
"fas".

It's possible to use standard UNIX utilities to find suitable words. The UNIX program grep,
given a suitable regular expression, can find matching words from a word file. Most UNIXes
have a word file in /usr/dict/words or /usr/lib/dict/words or, on modern GNU systems,
/usr/local/share/dict/words.

Page 164

If the word file contains one word per line, it is possible to find a five-letter word ending in
"fas" with this UNIX command:

grep -i '^..fas$' word-Jfile

(The -i tells grep to match case-insensitively.) Running this command gives us the answer,
"sofas".

Wouldn't it be nice if we could just hit a key and have Emacs construct the correct regular
expression and run grep for us?

Here's how it would work. With the cursor on a grid cell, you press C-c h to find a word that
fits horizontally through the current cell, C-c v to find a word that fits vertically. In each case,
the function searches left and right, or up and down, for the nearest enclosing blocks. The
intervening cells are used to construct a regular expression. Empty or "letter" cells become
dots (.); letters become themselves. The regular expression is bracketed with ^ at the beginning
and $ at the end. This regular expression is handed to grep, whose output appears in a
temporary buffer.

First Try

For simplicity, let's start by designing just the horizontal version of this command. Let's call it
crossword-hwords. The first thing we do is get the cursor position and test the type of the
current cell.

 (defun crossword-hwords ()
 "Pop up a buffer listing horizontal words for current cell."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (if (eq (crossword-ref crossword-grid
 (car coords)

 (cdr coords))
 block)
 (error "Cannot use this command on a block"))

We abort if the current cell is a block. No words can cross a block (horizontally or vertically).
Otherwise:

 (let ((start (- (cdr coords) 1))
 (end (+ (cdr coords) 1)))

We'll use start and end to record the column number of the first block to the left and the first
block to the right of the current cell.

 (while (not (crossword-block-p crossword-grid
 (car coords)
 start))
 (setq start (- start 1)))

Page 165

This moves start to the left until we hit a block. Remember that crossword-block-p
maintains the fiction that the border of the grid is surrounded by "blocks," so this loop is
guaranteed to terminate when we reach the edge of the grid at the latest.

 (while (not (crossword-block-p crossword-grid
 (car coords)
 end))
 (setq end (+ end 1)))

This does the same thing with end, but to the right instead of to the left.

 (let ((regexp "^")
 (column (+ start 1)))
 (while (< column end)

This prepares to build up the regular expression, starting one cell after start and ending one
cell before end.

 (let ((cell (crossword-ref crossword-grid
 (car coords)
 column)))
 (if (numberp cell)
 (setq regexp (concat regexp
 (char-to-string cell)))
 (setq regexp (concat regexp "."))))

This tests whether the present cell in the while loop is a letter. If it is, we add that letter to
the regular expression; otherwise we add a dot (.).

(We use char-to-string to turn a character such as ?a into a string such as "a", since
only strings may be passed to concat.)

Now we advance column for the next iteration of the loop:

(setq column (+ column 1)))

After the loop exits, we end the regular expression with $:

(setq regexp (concat regexp "$"))

Next, we create a buffer to hold the grep output:

(let ((buffer (get-buffer-create "*Crossword words*")))

The function get-buffer-create returns a buffer object with the specified name. If a
buffer of that name already exists, that buffer is returned, otherwise a suitable buffer is created.
(When you don't want to reuse an old buffer, you can use generate-new-buffer to
unconditionally create a new one.)

(set-buffer buffer)

We temporarily select the *Crossword words* buffer, making it "current." The effect of
set-buffer lasts only for the duration of the current command, and

Page 166

doesn't change the user's idea of the current buffer. (For that, we would use
switch-to-buffer.)

(erase-buffer)

This makes sure the buffer is empty, in case we're reusing a buffer that's lingering from a
previous run of crossword-hwords.

Now for the call to call-process, the function that invokes the grep program:

 (call-process "grep"
 nil t nil
 "-i" regexp
 "/usr/local/share/dict/words")

Instead of invoking grep by name, it would be better to create a variable—say,
crossword-grep-program—and use it in the above call instead of "grep". If another
grep program is desired, the user can change the variable. We can do the same thing for the
words file, declaring and using a variable called crossword-words - file instead of
explicitly naming /usr/local/share/dict/words.

The arguments nil, t, and nil in the middle of the call-process call mean:

1. "The program does not need 'standard input'." Its input will come from the file named in its
command-line arguments. If a string is used instead of nil, that string names a file to use
as input to the program. If t is given, the current buffer is used as input to the program.

2. "Send output to the current buffer" (i.e., the *Crossword words* buffer). An argument
of nil means "discard the output." An argument of 0 means 'discard the output and return
immediately (don't wait for the program to finish)." An argument that is a buffer object
means to send output to that buffer.

The argument may also be a two-element list, where each element is one of the arguments
just described. The first element of the list tells Emacs where to put the program's
"standard output." The second element tells Emacs where to put the program's "standard
error."

3. "Do not incrementally redisplay the buffer as data arrives" (which would slow things down).
Emacs waits for the program to finish before showing any of the output in the
Crossword words buffer.

The remaining arguments to call-process are passed as command-line arguments to grep.
-i to turn off case-sensitivity; regexp, which contains the regular expression we've computed;
and /usr/local/share/dict/words, the file that grep will search for matches.

Page 167

The last thing crossword-hwords must do is to show the *Crossword words* buffer
containing the output of grep. This is done with display-buffer:

(display-buffer buffer))))))

This completes our first version of crossword-hwords.

This version of crossword-hwords is fine if you always want to find words that
completely fill the space between two existing blocks; but sometimes you'd settle for shorter
words and insert more blocks as necessary. For instance, if you have a crossword row that
looks like this:

. a d a c

and you press C-c h, you'll get back one suggestion: "asclepiadaceous". But you might be
satisfied with turning this line into:

. . # headache##

The problem is, crossword-hwords computes the regular expression
^.adac $, but "headache" doesn't match that regexp.

We could try removing the ^ and the $ from the regexp, along with the leading and trailing dots,
leaving us with adac. If that regexp is handed to grep, it will find "headache". But it will also
find "tetracadactylity", which is one letter too long (and which has the adac in the wrong
place at any rate).

Second Try

A good way to solve this problem is to construct regexps that look like this:
^.?.?.?.?.?.?.?adac. ?.?.?.?$. Each .? matches zero characters or one; so the
overall regexp matches from zero to seven characters, followed by "adac", followed by zero to
four more characters. This pattern includes "headache" and excludes "tetracadactylity".

Let's give crossword-hwords another try:

 (defun crossword-hwords ()
 "Pop up a buffer listing horizontal words for current cell."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (if (eq (crossword-ref crossword-grid
 (car coords)
 (cdr coords))
 block)

 (error "Cannot use this command on a block"))
 (let ((start (- (cdr coords) 1))
 (end (+ (cdr coords) 1)))
 (while (not (crossword-block-p crossword-grid
 (car coords)
 start))

Page 168

 (setq start (- start 1)))
 (while (not (crossword-block-p crossword-grid
 (car coords)
 end))
 (setq end (+ end 1)))

So far, this is the same as before: start and end point to the enclosing blocks.

Now let's introduce a new concept into this function: that of the regexp's core. We'll use this
term to refer to the part of the regexp that must match character-for-character.

Leading and trailing blanks don't have to be matched; they're optional. But everything starting
from the first letter and ending at the last letter must be matched, even intervening blanks. So
when we construct the regexp to match this line:

. . bar . f o o

the "core" is bar. foo, and the overall regexp has three optional characters at the beginning
and five at the end: ^.?.?. ?bar.foo.?.?.?.?.?$ is the final result.

This means that we must find the core in the crossword grid. Any blanks outside the core must
be turned into . ? in the regexp. Any blanks inside the core must be turned into . (a dot).

We'll start at start and end and work our way inward:

 (let ((corestart (+ start 1))
 (coreend (- end 1)))
 (while (null (crossword-ref crossword-grid
 (car coords)
 corestart))
 (setq corestart (+ corestart 1)))
 (while (null (crossword-ref crossword-grid
 (car coords)
 coreend))
 (setq coreend (- coreend 1)))

This advances corestart rightward and coreend leftward to skip over blank cells. Note
that there may be no "core" between start and end. In this case, corestart advances all the
way to end and coreend backs up all the way to start. That's okay, because the way we use
corestart and coreend in this next bit of code is insensitive to that peculiarity:

 (let ((regexp "^")
 (column (+ start 1)))
 (while (< column end)
 (if (or (< column corestart)
 (> column coreend))
 (setq regexp

 (concat regexp ".?"))

Page 169

Here, if we haven't yet reached the core, or if we've already passed it, we append .? to
regexp. Note that if there was no core, we always append . ?.

If we're in the core, we proceed exactly as before—except that we now invoke egrep instead
of grep, because grep doesn't understand the ? syntax in regular expressions and egrep does:

 (let ((cell (crossword-ref crossword-grid
 (car coords)
 column)))
 (if (numberp cell)
 (setq regexp (concat regexp
 (char-to-string cell)))

 (setq regexp (concat regexp ".")))))
 (setq column (+ column 1)))
 (setq regexp (concat regexp "$"))
 (let ((buffer (get-buffer-create "*Crossword words*")))

 (set-buffer buffer)
 (erase-buffer)
 (call-process "egrep"
 nil t nil
 "-i" regexp
 "/usr/local/share/dict/words")
 (display-buffer buffer)))))))

Again, you may wish to use variables called crossword-egrep-program and
crossword-words-file instead of referring to egrep and /usr/local/share/dict/ words
by name. In fact, the remainder of this chapter will take that approach.

The command crossword-vwords—the vertical counterpart of
crossword-hwords—is substantially identical to crossword-hwords. Defining it,
along with factoring out common code into a separate function for both commands to use, is left
as an exercise for the reader.

Asynchronous egrep

The way crossword-hwords is presently written, it runs egrep, waits for it to finish, then
displays its output. But suppose you're using some program other than egrep; or suppose your
setting for crossword-words-file is a file on the far side of a slow network. It could
take crossword-hwords quite a while to run, and Emacs will be unavailable the whole
time.

It would be better if crossword-hwords could start the egrep program running, and let it
run "in the background" while you continue to interact with Emacs. For this, we can use
Emacs's asynchronous process objects.

* Invoking crossword-hwords where there is no "core" isn't exactly an error, but it might be worth
alerting the user in such a case, since the resulting regexp would match all words in the dictionary that
are the right length or shorter—probably not what the user wishes to see!

Page 170

An asynchronous process object is a Lisp data structure that represents another running
program on your computer. New processes are created with start-process, which
resembles call-process (which we saw in the previous section). Unlike call-process,
however, start-process does not wait for the executed program to complete. Instead, it
returns a process object.

There are many things one can do with a process object. You can send input to a running
process; you can send signals; you can kill the process. You can query the process's state (e.g.,
to find out whether it's running or has exited). You can associate the process with an Emacs
buffer.

Let's rewrite crossword-hwords to use start-process. To save space, we'll
concentrate on just the end of crossword-hwords. Here's the original version:

 (let ((buffer (get-buffer-create "*Crossword words*")))
 (set-buffer buffer)
 (erase-buffer)
 (call-process crossword-egrep-program
 nil t nil
 "-i" regexp
 crossword-words-file)
 (display-buffer buffer)))))))

Here's a version using start-process.

 (let ((buffer (get-buffer-create "*Crossword words*")))
 (set-buffer buffer)
 (erase-buffer)
 (start-process "egrep"
 buffer
 crossword-egrep-program
 "-i" regexp
 crossword-words-file)
 (display-buffer buffer)))))))

The only change here was to replace call-process with start-process and shuffle
the arguments around appropriately. The first argument to start-process ("egrep" in
this example) is a name that Emacs uses internally to refer to the process. (It is not necessarily
the name of the program to run.) Next comes the buffer, if any, that will receive the process's
output; then the program to run, and its arguments.

As soon as the process is started, start-process returns, which means
display-buffer is called immediately. But we may not wish for the *Crossword
words* buffer to appear right away. It would be better if it only appeared after egrep has run.
So we would like a way to find out when the process exits. When that happens, that's when we
want to call display-buffer.

To do this, we need to install a sentinel on the process object. A sentinel is a Lisp function that
gets called when the process changes state. We're interested in the

Page 171

state change that happens when the program exits; but state changes can also happen when the
process receives a signal.

Here's a version that calls start-process, then installs a sentinel to display the buffer
when the process exits. In order to install the sentinel, we must save the process object that is
returned from start-process so we can pass it to set-process-sentinel:

 (let ((buffer (get-buffer-create "*Crossword words*")))
 (set-buffer buffer)
 (erase-buffer)
 (let ((process
 (start-process "egrep"
 buffer
 crossword-egrep-program
 "-i" regexp crossword-words-file)))
 (set-process-sentinel process
 'crossword--egrep-sentinel))))))))

We can define crossword--egrep-sentinel as:

 (defun crossword--egrep-sentinel (process string)
 "When PROCESS exits, display its buffer.'
 (if (eq (process-status process)
 'exit)
 (display-buffer (process-buffer process))))

Process sentinels are called with two arguments: the process object, and a string describing the
state change. We ignore the string. Instead, we test the process's status to see whether it has
exited. If it has, we display the process's buffer, which we find with process-buffer.
This is the buffer originally associated with the process in the start-process call.

Suppose we don't want to wait for egrep to exit before we display the buffer, but we don't want
to display the buffer immediately either. Instead, we want to display the buffer as soon as the
first input arrives in it. For this, we need to install a filter on the process object.

A filter is a function that gets called whenever output from the process arrives. When a process
has no filter, output goes into the associated buffer. But when there is a filter, the filter function
is responsible for putting the output wherever it belongs. So let's modify our example a little
more, to use a filter function that (a) puts output in the buffer and (b) displays the buffer:

 (let ((buffer (get-buffer-create "*Crossword words*")))
 (set-buffer buffer)
 (erase-buffer)
 (let ((process
 (start-process "egrep"
 buffer
 crossword-egrep-program

Page 172

 "-i" regexp
 crossword-words-file)))
 (set-process-filter process
 crossword--egrep-filter)

 (set-process-sentinel process
 Icrossword--egrep-sentinel))))))))

We're keeping the sentinel in addition to the filter so that the buffer is sure to be displayed
when egrep exits, even if there was no output.

Here's how we can define crossword--egrep-filter:

 (defun crossword--egrep-filter (process string)
 "Handle output from PROCESS."
 (let ((buffer (process-buffer process)))
 (save-excursion
 (set-buffer buffer)
 (goto-char (point-max))
 (insert string))
 (display-buffer buffer)))

Filters are called with two arguments: the process object, and the chunk of output that has just
arrived, as a string. We find the process's buffer and insert the output at the end. Then we make
sure the buffer is displayed by calling display-buffer.

Because filters (and sentinels) can be called at unpredictable times (which is the nature of
asynchronous programming), they must take care not to have any unexpected side effects. This
means there are some things they must do that synchronous functions needn't worry about. For
example, every time a command finishes, Emacs restores the selected buffer; so during the
command, functions may call set-buffer to change buffers without affecting what the user
sees. But resetting the selected buffer only happens when a command ends-around the same
time that post-command-hook is invoked. Since an asynchronous function may be invoked
when there is no command in progress, any calls to set-buffer may not be reset, and so
may have unwanted effects. That's why crossword--egrep-filter uses
save-excursion.

One more thing about start-process. When Emacs creates the process, it maintains a
connection to it (through which input and output flow) using either UNIX pipes or UNIX
pseudo-ttys. Pipes are more appropriate for non-interactive processes like egrep, while
pseudo-ttys, or ptys, are more appropriate for interactive programs—e.g., command
interpreters like the UNIX shell. The kind of connection that is created by start-process is
controlled by the variable process-connection-type--nil means use pipes, t
means use ptys. Though it's a little baroque, it's a good idea always to wrap calls to
start-process inside a let call where you temporarily set
process-connection-type to the desired value, as in:

Page 173

 (let ((process-connection-type nil))
 (start-process "egrep"
 buffer
 crossword-egrep-program
 "-i" regexp crossword-words-file))

Choosing Words

Now let's make it possible to select words from the *Crossword words* buffer and have

them automatically inserted in the crossword grid.

The first thing we'll have to do is store some extra information in the *Crossword words*
buffer—that is, in local variables in that buffer. If we expect to be able to press RET (say) on
one of the words in that buffer and have it go in the right place in the Crossword buffer, then the
Crossword words buffer will have to know which is the right Crossword buffer and
where to place the word when it's selected.

Here's the information that must be communicated between buffers.

1. The value of start + 1-i.e., the place where the word may begin in the grid.

2. Whether the current word search is vertical or horizontal. As before, we'll restrict our
examples to the horizontal case, but bear in mind the considerations arising from the two
possible directions.

3. Information about the ''core" of the regular expression. To explain why this is necessary, let's
reconsider our earlier example: the crossword-grid line that looks like this:

. a d a c

The regular expression that crossword-hwords generates for this line is
.?.?.?.?.?.?. ?adac. ?.?.?.?$. The "core" is adac, with a "prefix" of
.?.?.?.?.?.?.? and a "suffix" of .?.?.?.?. When the user selects, for instance, the
word adactyl from the *Crossword words* buffer, where in the line should it be
placed? Should it be placed like this?

adactyladac . . .

Of course not; it should be placed like this:

. a da c t y 1 .

In order to place the word correctly within the line, it will help to know that the prefix is
seven characters long, and that a match for the "core" of the regexp can be found at position
zero in the word adactyl. In general, if the prefix is p characters long, and a match for
the core can be found at position

Page 174

m in the chosen word, then we should skip p - m characters before beginning the word in
the allotted space.

In order to store these variables locally in the *Crossword words* buffer, and in order to
have a keybinding for RET that means "select the word that the cursor is on," let's define a little
major mode for that buffer. Let's call it crossword-words-mode. Here it is:

 (defvar crossword-words-mode-map nil
 "Keymap for crossword-words mode.")

 (defvar crossword-words-crossword-buffer nil
 "The associated crossword buffer.")
 (defvar crossword-words-core nil
 "The core of the regexp.")
 (defvar crossword-words-prefix-len nil

 "Length of the regexp prefix.")
 (defvar crossword-words-row nil
 "Row number where the word can start.")
 (defvar crossword-words-column nil
 "Column number where the word can start.")
 (defvar crossword-words-vertical-p nil
 "Whether the current search is vertical.")

 (if crossword-words-mode-map
 nil
 (setq crossword-words-mode-map (make-sparse-keymap))
 (define-key crossword-words-mode-map "\r" crossword-words-select))

The return key is written "\r" in strings.

 (defun crossword-words-mode ()
 "Major mode for Crossword word-list buffer."
 (interactive)
 (kill-all-local-variables)
 (setq major-mode 'crossword-words-mode)
 (setq mode-name "Crossword-words")
 (use-local-map crossword-words-mode-map)
 (make-local-variable 'crossword-words-crossword-buffer)
 (make-local-variable crossword-words-core)
 (make-local-variable 'crossword-words-prefix-len)
 (make-local-variable crossword-words-row)
 (make-local-variable crossword-words-column)
 (make-local-variable 'crossword-words-vertical-p)
 (run-hooks crossword-words-mode-hook))

We haven't yet defined crossword-words-select. We'll get to that in a moment. First,
let's rewrite crossword-hwords to do two things:

• It must preserve information about the core of the regexp and the length of the prefix. To
keep things simple, let's call it an error if there is no core, and abort the operation.

Page 175

• When it creates the word-list buffer, it must place it in Crossword-words mode and set the
various local variables.

Here it is:

 (defun crossword-hwords ()
 "Pop up a buffer listing horizontal words for current cell."
 (interactive)
 (let ((coords (crossword-cursor-coords)))
 (if (eq (crossword-ref crossword-grid
 (car coords)
 (cdr coords))
 block)
 (error "Cannot use this command on a block"))
 (let ((start (- (cdr coords) 1))
 (end (+ (cdr coords) 1)))
 (while (not (crossword-block-p crossword-grid
 (car coords)

 start))
 (setq start (- start 1)))
 (while (not (crossword-block-p crossword-grid
 (car coords)
 end))
 (setq end (+ end 1)))
 (let ((corestart (+ start 1))
 (coreend (- end 1)))
 (while (null (crossword-ref crossword-grid
 (car coords)
 corestart))
 (setq corestart (+ corestart 1)))

So far, same as before.

 (if (= corestart end)
 (error "No core for regexp"))
 This time, if there is no core, abort with an error.

 (while (null (crossword-ref crossword-grid
 (car coords)
 coreend))
 (setq coreend (- coreend 1)))
 (let ((core "")
 (column corestart)
 (regexp "^"))

We're going to construct regexp from the inside out this time, starting by separately
computing the core:

 (while (<= column coreend)
 (let ((cell (crossword-ref crossword-grid
 (car coords)
 column)))
 (if (numberp cell)
 (setq core (concat core

Page 176

 (char-to-string cell)))
 (setq core (concat core ".")))
 (setq column (+ column 1)))

Now core holds the core of the regexp.

This constructs the prefix for the regexp:

 (setq column (+ start 1))
 (while (< column corestart)
 (setq regexp (concat regexp ".?"))
 (setq column (+ column 1)))

. . . This appends the core to the prefix:

 (setq regexp (concat regexp core))

. . . and this appends the suffix:

 (setq column (+ coreend 1))
 (while (< column end)
 (setq regexp (concat regexp ".?"))
 (setq column (+ column 1)))
 (setq regexp (concat regexp "$"))

Now let's move to the word-list buffer, but this time let's memorize the current buffer in
crossword-buffer so we can easily refer to it later:

 (let ((buffer (get-buffer-create "*Crossword words*"))

 (crossword-buffer (current-buffer)))
 (set-buffer buffer)

Now let's put *Crossword words* in Crossword-words mode:

 (crossword-words-mode)

and set its buffer-local variables:

 (setq crossword-words-crossword-buffer
 crossword-buffer)
 (setq crossword-words-core core)
 (setq crossword-words-prefix-len (- corestart
 (+ start 1)))

 (setq crossword-words-row (car coords))
 (setq crossword-words-column (+ start 1))
 (setq crossword-words-vertical-p nil)

The rest is the same as we've already seen.

 (erase-buffer)
 (let ((process
 (let ((process-connection-type nil))
 (start-process "egrep"
 buffer
 crossword-egrep-program
 "-i" regexp
 crossword-words-file))))

Page 177

 (set-process-filter process
 crossword--egrep-filter)
 (set-process-sentinel process
 'crossword--egrep-sentinel))))))))

Now all that remains is to define crossword-words-select. Its purpose is to figure out
the word that point is on, find a match for the core within that word, then figure out where in the
crossword grid the word belongs, and put it there.

 (defun crossword-words-select ()
 (interactive)
 (beginning-of-line)
 (let* ((wordstart (point))

 (word (progn (end-of-line)
 (buffer-substring wordstart
 (point))))

Now word contains the word from the selected line.

Next we find a match for the core in word using string-match:

 (corematch (string-match crossword-words-core
 word))

Now corematch contains the position within word of a match for the core.

 (vertical-p crossword-words-vertical-p)

This copies the buffer-local variable crossword-words-vertical-p into the
temporary variable vertical-p, since we'll need to refer to it back in the Crossword
buffer (where crossword-words-vertical-p isn't defined).

 (window (selected-window)))

This memorizes the window that contains the word-list buffer. Later in this function, we'll
delete that window (but not the buffer) since the user is presumably finished with it after
selecting a word.

 (if (not corematch)
 (error "This word does not fit"))

This shouldn't be possible—unless the user has altered the contents of the wordlist buffer, so
it's a good idea to test for it.

 (let ((row (if vertical-p
 (+ crossword-words-row
 (- crossword-words-prefix-len corematch))

 crossword-words-row))
 (column (if vertical-p
 crossword-words-column
 (+ crossword-words-column
 (- crossword-words-prefix-len corematch))))

Now row and column designate the position in the crossword grid where we should begin
placing the word.

Page 178

(i 0))

We'll use i to iterate over the characters of word, adding them to the grid one at a time.

(switch-to-buffer crossword-words-crossword-buffer)

This switches to the Crossword buffer using switch-to-buffer, not set-buffer. This
means that the Crossword buffer will still be selected after this command finishes.

 (while (< i (length word))

 (crossword-store-letter crossword-grid
 row
 column
 (aref word i))
 (crossword-update-display crossword-grid
 row
 column)
 (setq i (+ i 1))
 (if vertical-p
 (setq row (+ row 1))
 (setq column (+ column 1)))))

This stores each letter in the grid, moving horizontally or vertically as appropriate. After
updating the data structure with crossword-store-letter, keep the display in sync by
calling crossword-update-display.

When we call crossword-update-display, we don't want to update the cell that
contains the cursor; we want to update the cell at row and column where we've just stored a
letter. So let's pretend, for now, that crossword-update-display takes grid coordinates
as optional arguments, and uses those instead of the cursor position if they're given. We'll
revise crossword-update-display below.

Finally, let's delete the Crossword-words window so the user can concentrate on the
Crossword buffer:

 (delete-window window)))

Here's a version of crossword-update-display that takes optional grid coordinates,
using the cursor position if the optional arguments are not specified.

 (defun crossword-update-display (crossword &optional row column)
 "Called after a change, keeps the display up to date."
 (crossword-authorize
 (if (or (null row)
 (null column)).
 (let ((coords (crossword-cursor-coords)))
 (setq row (car coords)
 column (cdr coords))))
 (let ((cousin-coords (crossword-cousin-position crossword
 row

Page 179

column)))

 (save-excursion
 (crossword-place-cursor row
 column)
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword
 row
 column))
 (crossword-place-cursor (car cousin-coords)
 (cdr cousin-coords))
 (delete-char 2)
 (crossword-insert-cell (crossword-ref crossword

 (car cousin-coords)

 (cdr cousin-coords)))))))

There's just one more thing we have to adjust in this code: we have to solve the problem of
ambiguous alignment of selected words.

Ambiguous Alignment

Imagine you have a section of a crossword line that looks like this:

. . . f .

and you press C-c h somewhere in that line. The regexp that crossword-hwords generates
is A. ?. . ?f. ?$; its core is f.

The word-list buffer fills up with lots of words containing "f". You choose "fluff'. What
happens?

When you select "fluff", crossword-words-select finds a match for the core, "f", at
position zero in the word "fluff'. This means that it will try to line up the first letter of "fluff'
with the "f" that's already in the puzzle, running off the end like so:

. f

In this case, we can't use the first match for the core. But we can't use the last match either,
because that will cause the last letter of "fluff' to line up with the "f' in the puzzle, which places
one too many letters to the left:

luff.

We must align the second "f" in "fluff' with the "f" already in the grid. How can we make the
word line up correctly?

The answer is to choose the rightmost match for the core that begins within the
prefix-length. This ensures that the string to the left of the match is short enough to fit in the
prefix, while minimizing the number of characters to the right of the match.

Page 180

For example, the word "fluff' contains three matches for the core regexp, f. The first is at
position 0, the second is at position 3, and the third is at position 4. The length of the prefix of
the regexp is 3. So the rightmost match for f in 'fluff that begins at or before position 3 is the
second one.

Choosing the rightmost match that isn't too far to the right ensures that we fill up at much of the
prefix as possible when placing the word in the grid. That, in turn, will ensure that we don't run
off the end on the right.

We should therefore replace the following part of crossword-words-select.

 (let* (. . .
 (corematch (string-match crossword-words-core
 word))

with this:

 (let* (. . .
 (corematch
 (let ((bestmatch nil)
 (index O))
 (while (and index (<= index
 crossword-words-prefix-len))
 (let ((match (string-match crossword-words-core
 word
 index)))
 (if (and match
 (<= match crossword-words-prefix-len))
 (setq bestmatch match
 index (+ match 1))
 (setq index nil))))
 bestmatch))

Here's how that works:

 (let ((bestmatch nil)
 (index O))

We use bestmatch to hold the rightmost match so far and index to denote where to begin
the next search. The loop terminates when index becomes nil (which is not the same as its
initial value of 0).

 (while (and index (<= index
 crossword-words-prefix-len))

This keeps the while loop going until we've gone too far to the right (i.e., until we start
searching for matches beyond the position crossword-wordsprefix-len).

 (let ((match (string-match crossword-words-core
 word
 index)))

Page 181

Here we use the optional third argument to string-match, which is the position in word
where the search should begin.

 (if (and match
 (<= match crossword-words-prefix-len))

We must make sure match is non-nil before passing it to <=, which accepts only numbers.

If there was a match suitably early, memorize it and begin the next iteration one position to the
right; otherwise, escape the loop by setting index to nil:

 (setq bestmatch match
 index (+ match 1))
 (setq index nil))))

Finally, return bestmatch as the value for corematch.

 bestmatch)

Last Word

We could add features to Crossword mode from now until the cows come home, and it's hard
for me to resist the temptation to do just that. For example, once the grid is full, it would be
nice to number the squares in the grid and generate lists of Across and Down words. It would
also be nice to have cursor motion commands that move around the grid in units of words.

But this is as far as I've taken Crossword mode. I have a book deadline to meet, and besides,
no one likes a programmer who doesn't know when to abandon a pet project.

Of course there's no limit to how far you can take Crossword mode—or to how far you can
take Emacs, in whatever direction you choose.

Page 183

Conclusion

You are now ready to embark on your Emacs Lisp programming career. The discussion of
techniques and tools in this book should accomplish for you what it took me years of
experimentation to learn.

As I wrote in the Preface, this book isn't exhaustive in its coverage of the language. There are
many interesting areas of Emacs Lisp we haven't covered. We haven't made use of Emacs's
"selective display" facility, for example. Selective display allows you to hide and reveal
individual lines or portions thereof. We haven't used "text properties" either. Text properties
allow you to associate things like colors and fonts and even Lisp actions with the text in a
buffer. We haven't tried to customize a mode line. We barely touched on the minibuffer and the
various prompting and completion routines. We didn't even mention timers, apply, or
funcall. And we've skirted the whole subject of tailoring Emacs's "undo" mechanism.

What we have done is to learn what kinds of things are possible in Emacs Lisp and what they
tend to look like. We've investigated the process of developing an Emacs Lisp solution to a
wide variety of problems. We've gotten a good, solid feel for where to begin, how to proceed,
where to seek information, and what pitfalls to avoid.

We learn by doing. Rather than belabor every aspect of Emacs Lisp, my goal has been to get
you on the fast track to writing your own Lisp code and exploring the remaining expanse of
Emacs on your own. If I've done my job, the existence of still-uncharted Emacs Lisp territory
should no longer daunt you. It should whet your appetite.

Happy hacking.

Page 185

A

Lisp Quick Reference
In this appendix:
• Basics
• Data Types
• Control Structures
• Code Objects

This appendix summarizes general Lisp syntax as used in Emacs, and some important Lisp
functions. It does not summarize Emacs-specific features such as buffers, hook variables,
keymaps, modes, and so on. For a complete Emacs Lisp reference, see The GNU Emacs Lisp
Reference Manual. Details on obtaining it are in Appendix D, Obtaining and Building Emacs.

Basics

A Lisp expression is a unit of data that can be evaluated. The expression may be composed of
subexpressions, as in the cases of lists and vectors.

Every Lisp expression has a way to produce a value when evaluated. Most kinds of expression
are self-evaluating, which means that they are their own value.

A Lisp expression can be treated as literal data instead of being evaluated. Nonself-evaluating
expressions must be quoted in order to use them as literals and prevent them from being
evaluated.

The symbol nil denotes falsehood. It is exactly the same object as the empty list, (). Every
other Lisp object denotes truth, but the symbol t is reserved to mean truth anyway.

Emacs Lisp (unlike some other dialects of Lisp) is case-sensitive.

Page 186

Data Types

Numbers

Emacs Lisp supports integers and floating-point numbers. They're written in just the way you'd
expect: as a string of base-10 digits with an optional leading minus sign and optional decimal
point. Some functions that operate on numbers are:

(numberp x)
 Test whether x is a number.
(integerp x)
 Test whether x is an integer.
(zerop x)
 Test whether x is zero.
(=a b)
 Test whether two numbers are equal.
(+abc. . .)
 Addition.
(-abc. . .)
 Subtraction.

Characters

Single characters can be written in Emacs Lisp by preceding them with a question mark. For
instance, ?a denotes lowercase a. Some special characters, particularly those that can be used
to begin other kinds of Lisp expression, must be preceded with question mark-backslash, such
as ?\'', ?\ (, and ? \). Some special characters can be written by combining a backslash with a
letter. For instance, ?\t is a tab character, and ?\n is a newline character.

The result of evaluating a character is its ASCII code. For instance, evaluating ?a yields 97. In
fact, integers can be used wherever characters are expected; Emacs Lisp does not distinguish
between the two, except to allow the more convenient form of denoting characters.

(char-equal a b)
 Test whether two characters are equal. Ignores case if the variable case-

 fold-search is non-nil.
(char-to-string c)
 Create a one-character string containing c.

Page 187

Strings

A string is a sequence of characters, and is written by enclosing the characters in
double-quotes, "like this". If a double-quote or backslash appears in the string, it must be
preceded with a backslash, "\"Like this,\" he said.". Strings are self-evaluating.

Emacs, being a text editor, has many functions for operating on strings. Here is a tiny sample:

(stringp x)
 Test whether x is a string.
(string= s1 s2)
 Test whether two strings are equal.
(string-lessp s1 s2)
 Test whether string sl comes before string s2 according to ASCII sorting order.

(concat abc. . .)
 Create a new string by concatenating other strings.
(length s)
 Return the length in characters of string s.
(aref s i)
 Return the ith character of string s, counting from 0.
(aset sich)
 Set the ith character of string s to ch.
(substring sfim [to])
 Extract the substring of s beginning at position from and extending to posi-

 tion to (or to the end of s if to is omitted).

Symbols

Symbols are names that can have certain kinds of data associated with them. The name of a
symbol is a sequence of characters that must not look like a number, string, list, vector, or other
Lisp data type.

Symbols can be used as variables, function names, or as atomic values themselves. The result
of evaluating a symbol is its variable value.

(symbolp x)
 Test whether x is a symbol.
(setq sym epr)
 Use sym as a variable: assign the value of expr to sym.

Page 188

sym
A symbol evaluates to its value as a variable.

(defun sym. . .)
Use sym as a function name.

(sym arg1 arg2 . . .)
A list that starts with a symbol denotes a function call of the function named by sym.

Every symbol has a property list associated with it. The property list is a mapping where the
keys are Lisp symbols and the values are arbitrary Lisp expressions.

(put sym key value)
In sym's property list, assign value to symbol key.

(get sym key)
Get the value previously assigned to symbol key in sym's property list, or nil if there
was none.

Symbols are normally stored internally in a symbol table to prevent duplicate symbols from
being created. It is possible to explicitly add entries to the symbol table or to create symbols
that are not placed in the symbol table (and which may therefore duplicate the name of other
symbols).

(intern string)
Return a symbol from the internal symbol table whose name is string. If one didn't
previously exist, one is created.

(make-symbol string
Return a brand-new symbol whose name is string. The symbol is not placed in the internal
symbol table, and is distinct from all other objects, including identically named symbols.

Lists

Lists are the foundation of Lisp. A list is a sequence of zero or more other Lisp expressions
(including, potentially, other lists). A list is written by writing its subexpressions, separated by
whitespace; and then surrounding the whole sequence with a pair of parentheses.

Lists are used to denote function calls in Lisp. When evaluated, the function designated by the
first element of the list is invoked, with the values of the remaining elements as arguments.

Internally, a list is implemented as a chain of cons cells. Accessing an item in the list therefore
entails traversing the chain until the element is found.

Page 189

(listp x)
Test whether x is a list.

(null x)
Test whether x is the empty list.

(consp x)
Test whether x is a non-empty list.

(car list)
Return the first element of list (or the first part of a cons cell).

(cdr list)
Return the remainder (all but the first element) of list (or the second part of a cons cell).

(list abc. . .)
Construct a new list, with the values of the given arguments as elements.

(cons a b)
Insert a at the beginning of list b (or create a new cons cell (a. b).

(append list list2 . . .)
Create a new list by (effectively) stripping off each sublist's outer parentheses, sticking all
the elements together, and surrounding the whole thing with a new pair of parentheses.

(nth i list)
Return the ith subexpression of list, counting from 0.

(nthcdr i list)
Return the result of calling cdr on list i times.

Lists are covered in detail in Chapter 6, Lists.

Vectors

Like a list, a vector is a sequence of zero or more subexpressions, written with square brackets
instead of parentheses. Unlike a list, a vector's elements can be randomly accessed (without
first traversing an internal data structure). Vectors are self-evaluating.

When you write a vector, its subexpressions are automatically quoted. To construct a vector
from elements that are evaluated first, use the vector function.

(vectorp x)
Test whether x is a vector.

(vector abc. . .)
Construct a new vector, with the values of the given arguments as elements.

Page 190

(length vector
Return the length of vector.

(aref vectori)
Return the ith subexpression of vector, counting from zero.

(aset vector i expr)
Set the ith element of vector to expr.

Sequences and Arrays

Some Emacs Lisp data types are related. Strings and vectors are both kinds of arrays. An
array is a linear collection of data elements that permits random access to its elements. A
string is an array of characters, while a vector is an array of arbitrary expressions. The
functions aref and aset are for manipulating arrays, and work on vectors as well as strings.

A sequence is an even more general kind of data structure that includes arrays and lists. A
sequence is a linear collection of data elements, period. The function length works on lists,
strings, and arrays.

(arrayp x)
Test whether x is an array.

(sequencep x)
Test whether x is a sequence.

(copy-sequence sequence)
Return a copy of the list, string, or vector sequence.

Control Structures

Variables

To reference a variable, simply use its name (a symbol). To assign a variable, use setq.

 (setq x 17) ;assign 17 to variable x
 x = 17 ; value ofvariable x

To make temporary variables that are in effect only in a certain region of code, use let.

 (let ((var1 vauue])
 (ar2 value2)
 . . .)
 bodyl body2 .. .)

Page 191

In a let, all the values are computed in an unspecified order before any of the vats are
assigned. The variant let* (whose syntax is identical to let) evaluates valuei and assigns it to
vari before evaluating valuei+1.

Sequencing

To evaluate a sequence of expressions where only a single expression is allowed, use
progn.

(progn expr1 expr2 . . .)

Evaluates each expr in turn. Returns the value of the last expr.

To evaluate a sequence of expressions and return the value of the first subexpression instead of
the last, use progl.

Conditionals

Emacs Lisp has two kinds of conditional expression: if and cond.

 (if test
 then
 else1 else2 . . .)

Evaluates test. If the result is non-nil, evaluates then. Otherwise, evaluates each else
expression in turn. Returns the value of the last expression it evaluates.

 (cond ((test1 od body12 . ..)
 (st2 bod)1 body22 . ..)

Evaluates test1. If the result is non-nil, evaluates each body1 in turn. Otherwise evaluates
test2. If the result is non-nil, evaluates each body2, and so on with each 'cond clause." Returns
the value of the last expression it evaluates. A common practice is to place a catch-all clause at
the end like this:

 (cond ((test1 bodyll body12 . ..)
 (test2 body21 body2 . . .

 (t bodyn1 bodyn2 . . .)))

The logical operators and, or, and not are often used in conjunction with—and sometimes
as substitutes for—conditionals.

 (and exprl expr2 . . .)

Evaluates each expr until one returns nil (or it runs out of subexpressions), then returns. The
result is the value of the last expression evaluated. This is the logical operation "and" because
and returns truth if and only if none of its subexpressions is false.

Page 192

The expressions

 (if eprl
 (if expr2

 (if arn-l ePn)))

and

 (if (and expr1 expr . . . nprl)

 earn)
 are frequently condensed to

 (and eprl expr2 . . . xprn1 exprn)
 The expression

 (or epr1 eaxpr2 . . .)

evaluates each expr until one returns non-nil (or it runs out of subexpressions), then returns.
The result is the value of the last expression evaluated. This is the logical operation "or"
because or returns falsehood if and only if none of its subexpressions is true.

The expression

(if aab)

is often condensed to

(or a b)

Finally,

(not expr)

returns the logical negation of expr. If expr evaluates true, return nil. If expr evaluates false,
return t. (Interestingly, not is the same exact function as null.)

Looping

Emacs Lisp has one looping function, while.

 (while test
 boded bodyj . . .)

Evaluates test. If the result is non-nil, evaluates each body in turn. Then repeats. Returns when
test yields nil.

Page 193

Function Call

To call a function, write a list whose first element is the function name and whose remaining
elements are the arguments to the function.

 (function arg1 arg2 . . .)

Calls function with the given arguments; returns the result of function.

Literal Data

To make a literal out of a control structure—i.e., to prevent an expression from being
evaluated-quote it by preceding it with '

 expr ⇒ epr
 (quote expr) ⇒ epr ;same thing

To make a literal list in which individual subexpressions can be evaluated, backquote it, then

unquote the individual subexpressions.

 '(a b c) ⇒ (a b c)
 (backquote (a b c)) ⇒ (a b c) ;samething
 '(a ,b c) ⇒ (a value-of-b c)

To unquote a list-valued expression and "splice" its elements into the containing backquote
template, use the splicing unquote operator, ",@".

 (setq b '(x y z))
 '(a ,@b c) ⇒ (a x y z c)

Code Objects

Functions

A function is a list in the following form:

 (lambda (parameters . . .)
 "documentation string"
 body1' body2 . . .)

The documentation string is optional.

When the function is invoked, the actual arguments will be bound to the parameters listed in
the parameter list. The keyword &optional appearing in the parameter list means the
following parameters are optional. If the function is called without a value for an optional
parameter, the parameter is assigned nil. The last parameter may be preceded by the keyword
&rest, meaning that all remaining unused arguments are placed in a list and assigned to that
parameter.

The result of invoking a function is the result of the last body expression.

Page 194

To define a function with a name, use defun.

 (defun name (prammetes . . .)
 "documentation string"
 Ibody' body4 ..)

This creates a lambda expression and assigns it to the function value of the symbol name.
This is different from name's variable value, so there is no conflict between function names
and variable names.

Macro Functions

A macro function is a list like a lambda expression, but instead of lambda, macro is used.
When a macro is invoked, its arguments are not evaluated. Instead, they are used in their
literal form to compute a new Lisp expression. Then that is evaluated.

To define a macro with a name, use defmacro exactly like defun.

Page 195

B
Debugging and Profiling
In this appendix:
• Evaluation
• The Debugger
• Edebug
• The Profiler

This appendix describes some facilities in Emacs for testing and debugging your Lisp
programs.

Evaluation

A Lisp expression in any buffer can be evaluated by placing the cursor at the end of the
expression and pressing C-x C-e (eval-last-sexp). The keystroke M-:
(eval-expression) prompts for a Lisp expression to evaluate in the minibuffer. You can
also use the commands eval-region and eval-current-buffer.

The *scratch* buffer is normally in Lisp Interaction mode (and if it isn't, it can be put in
that mode with M-x lisp-interaction-mode RET). In that mode, C-j is normally
eval-print-last-sexp, which is like eval-last-sexp except that it also inserts
the result of evaluation into the buffer. Also in Lisp Interaction mode is C-M-x,
eval-defun, which evaluates the "defun" that point is in. The meaning of "defun" in this
context is broad; it means the enclosing Lisp expression (if there is one) that begins with an
open-parenthesis at the left margin. Finally, Lisp Interaction mode allows you to type partial
Lisp symbols and complete them with M-TAB.

Lisp expressions can also be placed in files and loaded with load, load-file,
load-library, and require.

The Debugger

Emacs Lisp has a built-in debugging mode that can be invoked automatically under certain
circumstances. Entering the debugger is controlled as follows.

Page 196

debug-on-entry
This is a command. It prompts (with completion) for the name of a function. Whenever that
function is invoked, Emacs will enter the debugger.

debug-on-error
This is a variable. If it is non-nil, then Emacs will enter the debugger whenever an error is
signaled.

debug-on-next-call

This is a variable. If it is non-nil, Emacs will enter the debugger the very next time an
expression is to be evaluated.

debug-on-quit
This is a variable. If it is non-nil, Emacs will enter the debugger whenever a "quit" is signaled
(e.g., when the user presses C-g).

When the debugger is invoked, a window displaying the Lisp stack appears. In this buffer,
called *Backtrace*, each line represents a pending function call, with the top lines
representing more recent calls. You can see the pending Lisp expressions, test the values of
variables and other expressions in different contexts, and force a function to return a certain
value.

These are the useful debugging-mode commands.

c
Leave the debugger, continuing whatever code was interrupted by entering it. This isn't
possible when the debugger was invoked because of an error.

q
Leave the debugger, aborting the pending computation.

d
Continue execution until the next function call, then reenter the debugger.

e
Prompt for a Lisp expression to evaluate in the context of the topmost stack ''frame."

b
"Break" when returning from the current function. If the debugger is invoked when a function is
called, then this command will continue execution until the same function is about to return,
then will reenter the debugger.

r
When about to return from a function, prompt for a Lisp expression to be that function's return
value (instead of whatever value it computed).

Page 197

Edebug

Edebug is an elaborate debugging environment that is far more powerful than the debugging
facilities described in the previous section. It allows you to step through the actual source code
of a running Lisp program. Edebug is an amazing piece of work written entirely in Lisp; it's a
testament both to the talents of its author, Daniel LaLiberte, and to the expressive power of
Emacs Lisp, which provides enough access to its own internals to make such a tool possible.

This section is only a brief summary of Edebug. For complete information, refer to the Edebug
section of The GNU Emacs Lisp Reference Manual. Details on obtaining it are in Appendix D,
Obtaining and Building Emacs.

To use Edebug, you must select those functions that you specifically wish to be able to trace.

Each function must be individually instrumented, which means evaluating it in a special way.
The command edebug-defun performs this task, and is used like eval-defun. The
variable edebug-all-defs (q.v.) controls whether loading Edebug should redefine the
various eval- commands to do instrumenting as well.

After instrumenting the desired functions, leave their definitions available in some buffer. You
can uninstrument functions by re-evaluating their definitions in the ordinary way.

Edebug is activated whenever any instrumented function is called. A window showing the
function's definition appears, along with a little arrow in the left margin indicating on what line
execution has stopped. The cursor will be placed at the beginning of the expression that is
about to be invoked (but if you wish, you can move the cursor, or even hide the buffer, without
affecting the operation of Edebug).

At this point, you're in Edebug mode and can execute the following commands:

c
Continue execution.

q
Abort execution and leave Edebug.

SPC
Single-step. If Edebug is stopped at a variable or a constant, move past it and show its value. If
Edebug is stopped at the beginning of a function call, move inside the function call. Subsequent
single-steps will move over each argument, showing their values. If Edebug is stopped at a
point where all the arguments to a function have been evaluated, then single-stepping calls that
function with those arguments and displays the result. If that function is also

Page 198

instrumented, single-stepping will descend into it. At each step, the cursor moves to the
appropriate point in the source code.

n
Next. Like single-step, but evaluates nested, instrumented functions without descending into
them.

e
Prompt for an expression to evaluate in the context of the stopped program.

h
"Continue to here." If you place the cursor in a spot in the source code where you'd like to stop,
h will cause the program to continue execution until it reaches that spot.

d
Display a backtrace, similar in appearance to Emacs's *Backtrace* buffer (see the previous
section) but without the functionality. (Edebug commands continue to work.)

b
Set a breakpoint at the location of the cursor. The program will stop any time it reaches that
point.

u
Unset a breakpoint.

x
Set a conditional breakpoint. You'll be prompted for a Lisp expression. Each time this
breakpoint is reached, if the expression is true, the program will stop.

Edebug has many more capabilities than the few listed here, but these are the most-often-used
features.

The Profiler

Profiling a program is the process of figuring out how much time different parts of it take to
run, presumably in a quest to make it more efficient. Barry Warsaw has written an ingenious
package for profiling Emacs Lisp called ELP.

Like Edebug, ELP relies on functions being "instrumented." This is done with the command
elp-instrument-function, which prompts for a function name. There's also
elp-instrument-package, which prompts for a prefix. Any existing functions whose
names begin with the given prefix will get instrumented.

Functions are uninstrumente with elp-restore-function and elp-restore-all.

Page 199

To use ELP, simply run your program after instrumenting the functions you wish to profile.
Profiling data will accumulate silently. When you're ready to see the results so far, run the
command elp-results. A buffer will appear, showing, for each profiled function, the
number of times it was called, the total time spent in the function, and the average time per call.

Use elp-reset-function to set a function's call-count and elapsed-time counters back to
zero; elp-reset-all does this for all profiles functions.

Page 200

C
Sharing Your Code
In this appendix:
• Preparing Source Files
• Documentation
• Copyright
• Posting

If you write a terrific new Emacs mode, or feature, or game, or whatever, it's in the spirit of
free software for you to share it with others by posting it to the gnu.emacs.sources newsgroup.
This appendix describes the conventions for sharing Emacs Lisp code.

Preparing Source Files

Before sharing your code with the world, it's considerate to first test it with reasonable
thoroughness, fixing any bugs you happen to find. Learn more about testing and debugging in
Appendix B, Debugging and Profiling.

Once the code is working the way you'd like it to, you should add a comment block to the
beginning of each source file describing the file, its copyright (see below), its authorship, its
version information, and other commentary. Here's a typical beginning:

 ;;; foretell.el -- predict what the user will do
 ;;; Copyright 1996 by Mortimer J. Hacker <mjh@mjh.net>
 ;;; Foretell is free software distributed under the terms
 ;;; of the GNU General Public License, version 2. For details,
 ;;; see the file COPYING.
 ;;; This is version 1.7 of 5 August 1996.
 ;;; For more information about Foretell, subscribe to the
 ;;; Foretell mailing list by sending a message to
 ;;; <foretell-request@mjh.net>.

The file should end with a comment line like this:

 ;;; foretell.el ends here

Page 201

which will help identify the file boundary if the file is sent through email (which might cause
signature and other lines to be appended).

If your package includes more than one file, it's customary to create a file called README
describing the package, the files in it, and how to install it; then to combine all the files into a
single distribution file with the shar program. If you don't have shar, you can obtain the GNU
version; refer to Appendix D, Obtaining and Building Emacs.

Documentation

At a minimum, your source files should contain enough commentary in the beginning comment
block so that readers can understand what they're for. Ideally, your code will also be
self-documenting—i.e., you will have made liberal and effective use of docstrings in all your
function and variable definitions.

If you're ambitious about writing documentation, you might want to consider creating a Texinfo
manual for your package. Texinfo is the standard documentation format of the GNU system.
Texinfo files can be processed with the makeinfo program to produce Info files, which are
browsable, tree-structured text files that can be viewed in Emacs's Info mode. Texinfo files can
also be processed with the TEX typesetting system to produce nicely-formatted printed
manuals.

An excellent Info manual on how to write Texinfo manuals accompanies the GNU texinfo
package, which includes makeinfo. For information on obtaining it or TEX, see Appendix D.

Copyright

You are free to assign any copyright terms to your code you wish, within the law, of course.
Most authors of Emacs Lisp packages choose to make their software "free" (in availability, not
necessarily price) by assigning to it the terms of the GNU General Public License, a special
kind of copyright invented by the Free Software Foundation. Software covered by the GPL is
assured of remaining freely available, which isn't the case when, say, you release your
software into the public domain. (In that case, someone can legally copy your software, make a
change to it, call it their own, sell the binaries, and refuse to continue distributing the source
code.)

If you wish to place your software under the GPL (a process humorously referred to as
"copylefting" your software), you need to include the terms of the GPL either in your source
files, or in a separate file (usually COPYING) that is referenced in the copyright notice of each
source file (as in the example at the

Page 202

beginning of this appendix). You can see the GPL from within Emacs by typing M-x
describe-copying RET.

Posting

Once you've assembled your shard, copyrighted, documented, tested and debugged software,
post it using your favorite newsreader to the gnu.emacs.sources newsgroup. Be sure to provide
a helpful one-line description in the Subject: field of the post, and be sure that readers of the
newsgroup know how to contact you with questions or comments. Note well, it is considered
very bad form to post anything other than Emacs Lisp sources to gnu.emacs.sources. For
non-source posts, use gnu.misc.discuss.

Page 203

D
Obtaining and Building Emacs
In this appendix:
• Availability of
Packages
• Unpacking,
Building, and
Installing Emacs

Availability of Packages

All the software packages described in this book, with the exception of TEX, are GNU

software from the Free Software Foundation. Their software and other packages can be
retrieved via anonymous FTP from the Internet site ftp.gnu.ai.mit.edu in the directory
/pub/gnu. There are numerous mirror sites, information about which is in GNUinfo/FTP.

If you cannot download the packages you want from the Internet, or if you wish an easier
solution, you can order software distributions from the Free Software Foundation. They are
available in diskette, tape, and CD-ROM form. You can also order printed, bound copies of
many GNU manuals, including several about Emacs, plus the Texinfo manual mentioned in
Appendix C, Sharing Your Code. For more information, including prices, contact the FSF:

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA
Telephone: +1-617-542-5942
Fax: +1-617-542-2652
Email: gnu@prep.ai.mit.edu

The packages mentioned in this book that are available from the FSF are:

Emacs
The editor itself, plus a huge number of Lisp extensions. Available in source form as file
emacs-x.y.tar.gz, where x and y are the major and minor version numbers of the latest version
(presently 19.34).

Page 204

Texinfo
The GNU documentation system, including makeinfo and a manual on writing Texinfo
documents. Requires TEX to make printed manuals. Available as texinfo-x.y.gz. The present
version is 3.7.

Emacs Lisp Reference Manual
The Texinfo document The Emacs Lisp Reference Manual is available in source form as
elisp-manual-19-x.y.tar.gz. (The 19 refers to the major version of Emacs.) The present version
of the manual is 2.4. An online copy of this manual, created from source with makeinfo, is
indispensable for Emacs Lisp programmers.

Shar utilities
Includes shar and unshar, for creating and unpacking software distributions. Available as
sharutils-x.y.gz. The present version is 4.2. Note that shar files can be unpacked without
unshar; just feed them to the standard UNIX sh command.

Gzip Compression and decompression package
Available as gzip-x.y.shar. The present version is 1.2.4.

Tar—Another program for creating and unpacking software distributions Available as
tar-x.y.shar.gz. The present version is 1.11.8. Note that GNU tar, unlike most other
implementations, can intrinsically handle .tar.gz files without requiring the use of Gzip.

The Jargon File
The On-line HackerJargon File (which was cited in the Introduction) is also available from

the FSF as the file jargversion.txt.gz, where version is presently 400. There's also an Info
format version, jargversion.info.gz. It's a treasure trove of hacker lore, and is periodically
published in book form as The New Hacker's Dictionary.

You can obtain TEX from the TEX Users' Group:

TEX Users Group
1850 Union Street—Suite 1637
San Francisco, CA 94123 USA
Home page: http://www.tug.org/
Email: tug@tug.org
Fax: +1-415-982-8559

Page 205

Unpacking, Building, and Installing Emacs

Like most GNU software, Emacs is trivially easy to unpack, build, and install. In fact, the
instructions that follow apply to nearly all GNU software packages, not merely Emacs.

Unpacking

If you have a compressed tar file (file name ending in .tar.gz, .tar.Z, or .tgz and you have GNU
tar, run:

tar zxvf file

If you don't have GNU tar, use this:

zcat file I tar xvf -

 (You'll find zcat in the Gzip package.) If you use the tar that comes with SVR4derived
variants of UNIX, you may need to use xvof in place of xvf. The o makes you the owner of the
extracted files. (Otherwise, the owner is the tar file's originator—who probably isn't known on
your computer.) If you have a shar file (file name ending in .sh or .shar), run

unshar file

or simply

sh file

If the shar file is compressed (.Z or .gz), uncompress it first with gzip -d.

Building and Installing

First, in the top-level directory of the software package being built, configure the software by
running the configure script.

Different software packages have different configuration options. See what the options are for
a package with ./configure --help. The options for Emacs are:

--with-gcc
Use the GNU C compiler to compile Emacs.

--with-pop
Compile in support for the Post Office Protocol (POP), sometimes used for retrieving email
(for those who read email with Emacs).

--with-kerberos
Use the Kerberos authentication extension to POP.

Page 206

--with-hesiod
Use Hesiod for finding the POP server.

--with-x
Build in X Window support.

--with-x-toolkit
Fancier X Window support; uses toolkit widgets. The X Toolkit is used by default, but
--with-x-toolkit=motifuses the Motif toolkit instead.

You may also want to watch what the configure script is doing while it runs—it can take a
while—so you'll probably want to use the --verbose option, too. Here's how I always invoke
configure:

./configure --verbose --with-x --with-x-toolkit

After configuring the package, run make. This will compile the program and can take a long
time.

Next, run make check. This runs any self-tests that are included with the package.

Presuming that the software successfully compiled and passed its tests, install it with make
install.

Page 207

Index

Symbols

* (asterisk), 48-50

in buffer names, 149

in regular expressions, 58

@ in interactive declaration, 154

' (backquote), 114, 193

\ (backslash), 6, 58, 186

\< and \> metacharacters, 60

\b and \B metacharacters, 60

\[. . .] construct, 49

\(\) metacharacters, 59

[] (brackets), 135, 189

in regular expressions, 58

^ (caret) in regular expressions, 58

,@ (splicing operator), 115, 193

$ (dollar sign) in regular expressions, 59

- (hyphen) in regular expressions, 58

() (parentheses), 3

in regular expressions, 59

. (period), 58

+ (plus sign) in regular expressions, 59

? (question mark), 186

in regular expressions, 59

''(quotation mark), 7

' (single quote), 7, 193

/ (slash) function, 143

A

activate (keyword), 31

active keymaps, 128

add-hook function, 25

advice tool, 30-32

after (keyword), 30

after-change-functions variable, 67, 99, 157

after-save-hook variable, 51

aliases, function, 22

alist-replace function, 91

alt key, 5

anonymous functions, 26

append function, 82, 114, 189

apropos command, 10

aref function, 135, 187, 190

arguments, optional, 17

around (keyword), 31

ASCII codes for characters, 186

aset function, 135, 187, 190

assoc functions, 88

association lists, 85, 89, 91

assq function, 89

asterisk (*), 48-50

in buffer names, 149

in regular expressions, 58

asynchronous process objects, 169-173

atoms, 85

auto-save-mode, 97

auto-fill-mode, 96

autoload function, 75

autoloading files, 75

B

b (debugging command), 196, 198

backquote ('), 114, 193

backslash (\), 6, 58, 186

Page 208

Backspace key, 1

Backtrace* buffer, 196

backward-page command, 126

backward-word function, 104

before (keyword), 30

beginning of line, matching, 59

binding (see keybindings)

bobp function, 144

bounding searches (see limiting searches)

brackets [, 135, 189

in regular expressions, 58

breakpoints, 198

BS code, 1

buffer-file-name variable, 25

buffer-local variables (see local variables)

buffer-modified-p variable, 66

buffer objects, 165

buffers

Backtrace, 196

local keymap, 128

matching beginning/end of, 59

narrowing, 130

position in (see navigation)

read-only, 24, 50

restriction of, 53

scratch, 10, 195

switching, 30-32

unauthorized changes to, 157-161

building Emacs, 205

byte-compiling, 36, 71, 76

byte-recompile-directory function, 77

C

c (debugging command), 197

C-u prefix, 11

C-x commands, 127

call-process function, 166, 170

car function, 81, 189

caret (∧) in regular expressions, 58

cars, cell, 83-85

case sensitivity, 5, 63, 185

cdr function, 81, 189

char-equal function, 186

char-syntax function, 106

char-to-string function, 186

characters, 186

ASCII codes for, 186

range of, 58

special (metacharacters), 6, 58, 186

circular lists, 93

classes, syntax, 105

code, compiling (see byte-compiling)

command-apropos command, 12

commands, 5

completion, 195

debugging, 196

finding with apropos, 10

interactive, 15, 145-148

keymaps, 127-129

last-command variable, 35

menu, 156-157

mouse-related, 153-155

this-command variable, 43

comments, 3, 96, 200

comparing

lists, 88

strings, 186

compile (keyword), 31

compiling (see byte-compiling)

completion, 195

compression package, 204

concat function, 60, 187

concatenating lists, 82

cond function, 142, 191

condition-case function, 160

conditional expressions, 191

conditional file loading, 74

configuration file (see .emacs file)

configure script, 205

conflicting symbols, 117-119

cons cells, 83-85, 188

cons function, 82-84, 163

consp function, 85, 189

constants (see literal data)

control key, 5

copy-keymap function, 131

copyright, 201

copy-sequence function, 190

copy-syntax-table function, 131

crossword mode example, 133-181

current-buffer function, 176

current-column variable, 107

current-prefix-arg function, 32-33

current-time function, 48

current-time-string function, 47

current-window-configuration function, 38

Page 209

cursor

characters preceding, 108

commands for, 23

preserving location of, 52

(see also point)

customizing Emacs, 1-12

D

d (debugging command), 196, 198

data types, 186-190

date (see time)

debugging, 195-198

macro functions, 113

profiling programs, 198

declaring (see defining)

decompression package, 204

defadvice function, 31

defalias function, 22

default variable values, 36

define-derived-mode function, 132

define-key function, 128, 153

defining

advice, 31

aliases, 22

functions, 14

interactive commands, 15

macro functions, 113, 194

minor modes, 97-99

pages, 126

paragraphs, 125

variables, 35

defmacro function, 113, 194

defsubst function, 136

defun function, 14, 194

defvar function, 35

DEL code, 1

delete-backward-char command, 8

delete-char function, 11

Delete key, 1

delete-region function, 54

derived (package), 132

derived modes, 131-132

describe-bindings command, 7

describe-copying function, 202

describe-key command, 13

detecting errors, 39

directories

byte-compiling, 77

in load path, 73

display-buffer function, 167

documentation, 201

docstrings, 14, 129, 193

dollar sign ($) in regular expressions, 59

dotted pair notation, 83

down-mouse symbols, 154-155

E

e code in interactive declaration, 154

e (debugging command), 196, 198

Edebug, 197-198

edebug-all-defs variable, 197

edebug-defun command, 197

edit-options, 49

efficiency, 46

byte-compiled files, 77

egrep utility, 169-172

.el file extension, 71

.elc file extension, 77

elp- commands, 198-199

ELP package, 198

else clause (see if function)

Emacs

obtaining, 203

unpacking, building, installing, 205

versions of, xii

.emacs file, 2, 8, 71

empty list, 17, 81, 185, 189

empty string, 59

enable-local-eval function, 80

enable-local-variables function, 80

end of line, matching, 59

equal function, 88

equality (see comparing)

equivalence pairs, 152

erase-buffer function, 166

Erase key, 1

error function, 39

errors, 39, 119

condition-case function, 160

(see also debugging)

eval-after-load command, 77

eval-defun command, 195

eval-expression command, 9, 195

eval function, 111

eval-last-sexp command, 9, 195

eval-print-last-sexp command, 10

eval pseudovariable, 80

Page 210

evaluation, 185, 195

code execution after file loads, 77

explicit, 8

macro functions and, 112

of Lisp expressions, 8-10

order of, 116

self-evaluation, 8, 135, 185

of strings, 8

of variables, 4

vectors, 135

executing processes, 172

expansion of input, 113

explicit evaluation, 8

explicit file loading, 74

expressions, 4, 185

conditional, 191

evaluating, 8-10

factoring out, 18

lists of (see lists)

logical, 19

quoted/unquoted (see quoting)

S-expressions, 9

sequencing, 191

F

factoring out subexpressions, 18

failing gracefully, 119

falsehood, 17

features (function collections), 74

file-symlink-p function, 25

files

autoloading, 75

compiling (see byte-compiling)

configuration (see .emacs file)

documentation for, 201

loading, 8

marking boundary of, 201

modifystamps, 65-70

symbolic links, 24-30

writestamps, 50-64

fill-column variable, 107

fill-paragraph function, 100

fill-region function, 101-102

filling paragraphs, 95

filter functions, 171

find-file-hooks variable, 24

finding commands, 10

finding Lisp files, 72

first-change-hook variable, 65

font-lock-mode, 97

format function, 29

format-time-string function, 48

forward-page command, 126

forward-word function, 104

Free Software Foundation (FSF), 203

FTP, obtaining software via, 203

function (keyword), 15, 193

functions, 193

adding to hook variables, 25

aliases for, 22

anonymous, 26

collections of (features), 74

defining, 14

filters, 171

function calls, 3, 188, 193

inline, 136

instrumented, 197

list-related (see lists)

macro functions, 112

parameterizing, 15-17

private, 138

return values, 55

string-related, 187

(see also hook variables)

Fundamental mode, 96

G

garbage collection, 4, 46

generate-new-buffer function, 165

get-buffer-create function, 165

get function, 44, 188

global keymap, 128

global-set-key function, 5

global variables, 35

GNU General Public License, 201

goto-char function, 37

GPL (General Public License), 201

graceful failure, 119

grep utility, 163

H

h (debugging command), 198

help commands, 7, 13

history of Emacs, xii

hooks, 24-26, 51

horizontal

point position, 107

scolling, 38

Page 211

hscroll, window, 38

hyphen (-) in regular expressions, 58

I

if function, 18, 191

improper lists, 85

indent-for-comment command, 96

infix notation, 3

initial (argument), 135

inline functions, 136

input events, 154

input, expanding, 113

insert function, 50

installing Emacs, 205

instrumented functions, 197

integer division, 143

integerp function, 186

interactive

commands, 15, 145-148

autoloading functions as, 76

loading of Lisp files, 73

setting user options, 49

interactive (keyword), 14, 149

interface, user (example), 141-148

intern function, 188

interning symbols, 118

iterative list functions, 87

J

Jargon File, xii, 204

justification, 95

K

keybindings, 5, 151-153

keyboard, mouse versus, 153

keymaps, 127-129

keysequences, 127

kill-all-local-variables function, 124

L

lambda (keyword), 26, 194

last-change-time variable, 68

last-command variable, 35

last-input-event function, 154

length function, 56, 87, 187, 190

let (keyword), 28, 69

let* function, 117, 149

limited-save-excursion (example), 110-121

limiting searches, 54, 61

line-number-mode, 97

line-to-top function, 23

lines, matching beginning/end of, 59

links (see symbolic links)

lisp-complete-symbol command, 10

Lisp Interaction mode, 10, 195

Lisp language, 2-4

advice tool, 30-32

files, 71-80

quick reference, 185-194

sharing code, 200-202

list function, 82

listp function, 17, 85, 189

lists, 3, 81-94, 188

association lists, 89

circular, 93

destructive modification of, 89-93

empty list, 17, 81, 185, 189

functions for, 85-89

local variable, 78-80

symbol property, 43-44

literal data, 185, 193

load-file command, 8, 73

load function, 74

load-library command, 73

load path, 72

loading files, 8, 72-76

local

keymaps, 128

variables, 25, 51, 65, 124

local-set-key function, 129

local variables lists, 78-80

local-write-file-hooks variable, 51, 55

location, cursor (see cursor)

logical expressions, 19

logical operators, 191

looking-at function, 108

lookup tables, 88

loops, 192

M

M-x prefix, 15

macro functions, 112, 194

templates, 114

macroexpand function, 113

magic (see metacharacters)

Page 212

mail-signature variable, 36

major modes, 96, 122-132

make-keymap function, 124

make-local-hook function, 65

make-marker function, 45

make-sparse-keymap function, 124, 128

make-symbol function, 188

make utility, 206

make-variable-buffer-local function, 67

make-vector function, 135

makeinfo utility, 201, 204

make-symbol function, 118

mapcar function, 88

margins, 107

markers, 44-46

match-beginning function, 57

match-end function, 57

matching (see searching)

matrices, 135

memory recollection (see garbage collection)

menu-bar symbol, 157

menu commands, 156-157

messages, error, 39

meta key, 5

metacharacters, 6, 58, 186

minor-mode-alist variable, 98

minor modes, 95, 97

defining, 97-99

keymaps for, 128

mode line, 98

modes, 96-99

auto-fill-mode, 96

auto-save-mode, 97

debugging, 195-198

derived, 131-132

font-lock-mode, 97

Fundamental, 96

line-number-mode, 97

Lisp Interaction, 10, 195

major, 96, 122-132

minor, 95, 97-99, 128

option-editing, 49

setting up (example), 148-151

(see also under specific mode name)

modifiers, 5

modifystamps, 65-70

mouse-1 symbol, 154

mouse commands, 153-155

mouse-set-point function, 155

N

n (debugging command), 198

narrow-to-page command, 126

narrowing, 53, 130, 143

navigation

cursor location (see cursor)

hscroll value, 38

scrolling, 21-22

undoing, 34-46

nconc function, 92

nested

keymaps, 127

list elements, 85

vectors, 135

newline characters, 186

newsgroup on GNU emacs, 202

nil symbol, 17, 81, 185

recursion and, 86

not function, 191

nreverse function, 92

nth function, 88, 189

nthcdr function, 87

null function, 85, 189

numberp function, 186

numbers, 186

O

obarrays, 118

objects, buffer, 165

obtaining packages, 203

On-Line Hacker Jargon File, xii

On-line Hacker Jargon File, 204

option-editing mode, 49

optional arguments, 17

&optional (keyword), 17, 193

or function, 19, 191

order of evaluation, 116

other-buffer function, 32

other-window command, 13

other-window-backward (example), 14-21

overall prompt string, 157

P

p code (interactive), 16

P code (interactive), 21

page-delimiter variable, 126

pages, 126

paragraph-separate variable, 125

paragraph-start variable, 125

Page 213

paragraphs

filling, 95

redefining, 125

parameters, function, 14, 15-17, 193

parentheses, 3

in regular expressions, 59

pathnames, 72

period (.), 58

pipes, 172

plus sign (+) in regular expressions, 59

point, 36, 53

horizontal position of, 107

matching at, 60

point markers, 120

(see also save-excursion function)

point-marker function, 120

point-min function, 53, 143

point-to-bottom function, 23

point-to-top function, 23

post-command-hook variable, 24

posting programs, 202

preceding-char function, 108

prefix arguments, 11, 32-33

prefix keys, 127

prefix notation, 3

prefix-numeric-value function, 21

private functions, 138

process-buffer function, 171

process-connection-type variable, 172

process filters, 171

process objects, 169-173

profiling programs, 198

progn function, 25, 116, 191

programs

copyright, 201

sharing, 200-202

property lists, 43-44, 188

provide function, 74

pseudo-ttys (ptys), 172

pseudovariables, 80

put function, 9, 44, 188

Q

q (debugging command), 196, 197

question mark (?), 186

in regular expressions, 59

quotation mark ("), 7

quote function, 8

quoting, 114, 185, 193

backquote ('), 193

unquoted expressions (see quoting)

lists, 81

quotation marks ("), 7

regular expressions, 61

single quote ('), 7, 193

R

r (debugging command), 196

range of characters, 58

raw prefix argument, 32-33

read-buffer function, 32

reading Lisp code, 118

README files, 201

read-only buffers, 24, 50

recusrive list functions, 85

regexp-quote function, 61

regexps (see regular expressions)

regions, 58

regular expressions, 57-64

remove-hook function, 27

replace-match function, 63

replacing text, 63

require function, 74

re-search-forward function, 60

&rest keyword, 67, 115, 193

restoring point, 36

restriction, buffer, 53

return value, function, 55

reverse function, 83, 163

reversing list elements, 83, 92

right margin, 107

run-hooks function, 124

S

S-expressions, 9

s syntax class, 108

save-excursion function, 52, 102, 110

save-match-data function, 53

save-restriction function, 53, 130

scope, variable, 28

scratch buffer, 10, 195

scroll-down, scroll-up functions, 21

scrolling (see navigation)

search-forward function, 53

Page 214

searching

limiting, 61

for Lisp files, 72

regular expressions, 57-64

and replacing, 63

search bounds, 54

security, local variables list and, 80

selected-window function, 177

self-evaluation, 8, 135, 185

sentinels, 170-172

sequences, 190-191

set-buffer function, 165, 178

set-marker function, 45

set-process-sentinel function, 171

set-variable function, 49

set-window-hscroll function, 39

set-window-start function, 38

setcar function, 92

setcdr function, 92

setq function, 7

setting point, 36

setting up modes (example), 148-151

sexp (see S-expressions)

shar utility, 204

sharing Lisp code, 200-202

signaled errors, 160

single quote ('), 7, 193

single-step debugging, 197

skip-chars-forward function, 104

skip-syntax-forward function, 105

slash (/) function, 143

software (see programs)

source files, 200

SPC (debugging command), 197

special characters (see metacharacters)

special property, 163

speed (see efficiency)

splicing operator (,@), 115, 193

stacks, 119

start-process function, 170

status, process, 171

string-match function, 177, 181

strings, 5, 187

comparing, 186

concatenating, 60

converting characters to, 186

date and time (see time)

documentation (see documentation)

zero-length (empty), 59

subexpressions (see expressions)

submatches, 59

substitute-key-definition function, 151

substring function, 187

suppress-keymap function, 153

switch-to-buffer command, 30, 166, 178

switching buffers, 30-32

symbol-name function, 75

symbol table, 188

symbolic expressions (see S-expressions)

symbolic links, 24-30

symbolp function, 17

symbols, 6, 187

conflicting, 117-119

interning, 118

mouse, 154

property lists, 43-44, 188

symbol tables, 118

vector of, 153

symlinks (see symbolic links)

syntax tables/classes, 105

T

t symbol, 18, 185

table, symbol, 188

tags, 36

tar program, 204, 205

templates, macro expansions, 114

temporary variables, 28, 69, 190

testing for symbolic links, 25

TeX, 204

Texinfo format, 201, 204

text justification, 95

text motion commands, 23

this-command variable, 43

this-command-keys function, 146

timestamps, 47

modifystamps, 65-70

writestamps, 50-64

trailing whitespace, 108

traversing windows, 13-21

Trojan horse attacks, 80

troubleshooting (see debugging)

truth. 18, 185

Page 215

U

u (debugging command), 198

undoing navigation, 34-46

unpacking Emacs, 205

unscrolling (see navigation, undoing)

unshar utility, 204

unwind-protect function, 119, 160

unwinding the stack, 119

use-local-map function, 124

user interface (example), 141-148

user options, 48

V

variables, 190

declaring, 35

default values for, 36

evaluating, 4

global, 35

hooks (see hooks)

local, 25, 51, 65, 78-80, 124

pseudovariables, 80

temporary, 28, 69, 190

user options, 48

(see also under specific variable name)

vector function, 135

vectors, 135, 153, 189

versions of Emacs, xii

W

what-line function, 144

what-page command, 127

while loops, 53, 192

whitespace, trailing, 108

widen function, 53, 130

window-edges function, 37

window-height function, 38

window-hscroll function, 39

window-start function, 38

windows, 13-21, 37

words

matching beginning/end of, 60

navigating among, 104

word files, 163

write-contents-hooks variable, 51

write-file-hooks variable, 24, 51

writestamps, 50-64

X

x (debugging command), 198

Z

zero-length string, 59

zerop function, 186

