
Object Oriented Perl





Object Oriented Perl

DAMIAN CONWAY

M A N N I N G

Greenwich
(74° w. long.)



For electronic browsing and ordering of this and other Manning books, 
visit http://www.manning.com. The publisher offers discounts on this book 
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2000 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by means electronic, mechanical, photocopying, or 
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their 
products are claimed as trademarks. Where those designations appear in the book, 
and Manning Publications was aware of a trademark claim, the designations have 
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s 
policy to have the books we publish printed on acid-free paper, and we exert our best 
efforts to that end.

Library of Congress Cataloging-in-Publication Data  
Conway, Damian, 1964-

Object oriented Perl / Damian Conway.
p. cm.

includes bibliographical references.
ISBN 1-884777-79-1 (alk. paper)
1.  Object-oriented programming (Computer science)  2.  Perl 

(Computer program language) I. Title.
QA76.64.C639 1999
005.13'3--dc21 99-27793

CIP

Manning Publications Co. Copyeditor: Adrianne Harun
32 Lafayette Place Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – CM – 02 01 00 99

http://www.manning.com


For Linda





contents

foreword xi

preface xii

acknowledgments xviii

author online xx

1 What you need to know first (an object-orientation primer) 1
1.1 The essentials of object orientation 2
1.2 Other object-oriented concepts 13
1.3 Terminology: a few (too many) words 18
1.4 Where to find out more 18
1.5 Summary 20

2 What you need to know second (a Perl refresher) 21
2.1 Essential Perl 21
2.2 Non-essential (but very useful) Perl 51
2.3 The CPAN 65
2.4 Where to find out more 68
2.5 Summary 72

3 Getting started 73
3.1 Three little rules 73
3.2 A simple Perl class 80
3.3 Making life easier 89
3.4 The creation and destruction of objects 96
3.5 The CD::Music class, compleat 114
3.6 Summary 117
vii



4 Blessing arrays and scalars 118
4.1 What’s wrong with a hash? 118
4.2 Blessing an array 119
4.3 Blessing a pseudo-hash 126
4.4 Blessing a scalar 135
4.5 Summary 142

5 Blessing other things 143
5.1 Blessing a regular expression 143
5.2 Blessing a subroutine 151
5.3 Blessing a typeglob 158
5.4 Summary 166

6 Inheritance 168
6.1 How Perl handles inheritance 168
6.2 Tricks and traps 178
6.3 Example: Inheriting the CD class 193
6.4 Where to find out more 201
6.5 Summary 202

7 Polymorphism 203
7.1 Polymorphism in Perl 203
7.2 Example: Polymorphic methods for the Lexer class 205
7.3 The simple pretty-printer objectified 208
7.4 Using interface polymorphism instead 210
7.5 Where to find out more 212
7.6 Summary 212

8 Automating class creation 213
8.1 The Class::Struct module 213
8.2 The Class::MethodMaker module 222
8.3 Where to find out more 234
8.4 Summary 235
viii CONTENTS



9 Ties 236
9.1 A jacketing tie required 236
9.2 Tie-ing a scalar 238
9.3 Tie-ing a hash 243
9.4 Tie-ing an array 249
9.5 Tie-ing a filehandle 256
9.6 Inheriting from a tie’able package 262
9.7 Tied variables as objects 265
9.8 Where to find out more 274
9.9 Summary 275

10 Operator overloading 276
10.1 The problem 276
10.2 Perl’s operator overloading mechanism 278
10.3 Example: A Roman numerals class 284
10.4 Circumventing undesired reference semantics 291
10.5 The use and abuse of operators 292
10.6 Where to find out more 295
10.7 Summary 295

11 Encapsulation 296
11.1 The perils of trust 296
11.2 Encapsulation via closures 297
11.3 Encapsulation via scalars 302
11.4 Encapsulation via ties 309
11.5 Where to find out more 326
11.6 Summary 326

12 Genericity 327
12.1 Why Perl doesn’t need special generic mechanisms 327
12.2 Using specific mechanisms anyway 329
12.3 Implicit generics via polymorphism 336
12.4 Where to find out more 350
12.5 Summary 350
CONTENTS ix



13 Multiple dispatch 351
13.1 What is multiple dispatch? 351
13.2 Multiple dispatch via single dispatch and cases 353
13.3 Multiple dispatch via a table 356
13.4 Comparing the two approaches 361
13.5 Dynamic dispatch tables 363
13.6 Some lingering difficulties 367
13.7 The Class::Multimethods module 367
13.8 Comparing the three approaches 385
13.9 Where to find out more 385

13.10 Summary 385

14 Persistent objects 387
14.1 The ingredients 387
14.2 Object-oriented persistence 398
14.3 Coarse-grained persistence 400
14.4 Fine-grained persistence 412
14.5 Where to find out more 427
14.6 Summary 428

A  Quick reference guide 429

B What you might know instead 438
B.1 Perl and Smalltalk 438
B.2 Perl and C++ 443
B.3 Perl and Java 449
B.4 Perl and Eiffel 454

glossary 459

bibliography 466

index 468
x CONTENTS



foreword

I’ve waited years for the perfect object-oriented Perl book to use for our Stonehenge corporate
and open trainings, and the wait is now over. Damian Conway has written a comprehensive
guide, organized well for both the casual OO hacker as well as the experienced OO user, includ-
ing large reusable chunks of code (and that’s what OO is all about).

Damian’s humor makes the reading light and fast. The depth of coverage from “what’s the
big fuss about Perl objects?” to “creating a self-tied inheritable overloaded filehandle with auto-
loaded accessors” means that this is the first and last book I need to teach Perl objects to my
students.

For experienced users, the appendix comparing and contrasting Perl with other popular OO
languages is by itself worth the entire price of the book. I’ve been recommending this book heartily
upon seeing the first draft. Thank you, Damian.

RANDAL L. SCHWARTZ
xi



preface

What’s this book about?
This book is about the Laziness—on a grand scale. 

It’s about how to create bigger, more robust applications that require less effort to build, less
time to debug, fewer resources to maintain, and less trouble to extend.

Specifically, it’s about how to do all that with the object-oriented features of Perl—how those
features work and how to make use of the many labor-saving techniques and “tricks” that they
make possible. Presenting these new language features requires only a few chapters (specifically,
chapters 3 to 6), but the range of programming styles and idioms they make available would fill
several books. This book concentrates on the most useful and powerful ways to use object-oriented
Perl.

This book is also about the tremendous flexibility of Perl’s approach to object orientation,
and how—in Perl—there’s almost always more than one object-oriented way to solve a given
problem. You’ll find that the text revisits a few key examples time and again, extending and re-
implementing them in various ways. Sometimes those changes will add extra functionality to a
previous example; sometimes they’ll merely illustrate an alternative solution with different
strengths and limitations.

This book is about helping you to develop new Perl programming skills that scale. Perl is a
great language for “one-line-stands”: ad hoc solutions that are quick, cryptic, and unstructured.
But Perl can also be a great language for developing large and complex applications. The only
problem is that “quick, cryptic, and unstructured” is cute in a throw-away script, but not so amus-
ing in 5,000 or 50,000 lines of application code. Object-oriented programming techniques are in-
valuable for building large, maintainable, reusable, and comprehensible systems in Perl. 

Finally, this book is about how Perl makes object-oriented programming more enjoyable and
how object-oriented programming makes Perl more enjoyable too. Life is too short to endure the
cultured bondage-and-discipline of Eiffel programming or wrestle the alligators that lurk in the
muddy semantics of C++. Object-oriented Perl gives you all the power of those languages (and
more!) with few of their tribulations. And, best of all, like regular Perl, it’s fun!

Who’s this book for?
This book was written for the whole Perl community. In other words, for an eclectic range of
people of wildly differing backgrounds, interests, and levels of experience. 
xii



To that end, it starts slowly, assuming only a basic familiarity with the core features of Perl
itself: scalars, arrays and hashes, pattern matching, basic I/O, and simple subroutines. If these
things sound familiar, this book is definitely for you. If they don’t, chapter 2 provides a quick re-
fresher course in everything you’ll need to know. 

The only other assumption that’s made is that you’re interested in object orientation. Maybe
you’ve only heard about its many advantages. Maybe you’re familiar with the basic concepts (if
not, see chapter 1). Maybe you’ve already had some experience—even a bad one!—in another ob-
ject-oriented language. If so, you might find appendix B a useful place to start.

If you’ve already dabbled in object-oriented Perl—perhaps blessed a hash or two—this book
is also for you. If you start at chapter 4, you’ll find a range of increasingly specialized techniques
to expand your repertoire and, maybe, even challenge some of your notions about object-oriented
programming. 

If you’re an experienced object-oriented Perl programmer, this book’s for you too. The ear-
lier chapters might contain a few tricks you haven’t seen before—blessed a regular expression or
a typeglob lately?—and the later chapters may suggest some novel approaches you haven’t con-
sidered. (The section on generic trees in chapter 12, for example, is worth a look.)

Even if you’re a Perl guru, this book’s still for you. Check out chapter 7, where object meth-
ods that don’t have a class are called on class objects that don’t have a method. Or try chapter 11,
where objects are stored as one of their own attributes. Or explore chapter 13, where the entire
dispatch mechanism is replaced with one that provides multiply dispatched methods and subrou-
tine overloading.

So what is object-oriented Perl?
Object-oriented Perl is a small amount of additional syntax and semantics, added to the existing
imperative features of the language. Those extras allow regular Perl packages, variables, and sub-
routines to behave like classes, objects, and methods. 

Object-oriented Perl is also a small number of special variables, packages, and modules, and
a large number of new techniques, that together provide inheritance, data encapsulation, operator
overloading, automated definition of commonly used methods, generic programming, multiply-
dispatched polymorphism, and persistence.

It’s an idiosyncratic, no-nonsense, demystified approach to object-oriented programming
with a typically Perlish disregard for accepted rules and conventions. Object-oriented Perl draws
inspiration, and sometimes syntax, from many different object-oriented predecessors, adapting
their ideas to its own needs. It reuses and extends the functionality of existing Perl features and,
in the process, throws an entirely new slant on what they mean.

In other words, it’s everything that regular Perl is, only object-oriented.

What object-oriented Perl isn’t
Perl was not originally designed—or implemented—as an object-oriented language. Its version of
object orientation is simple and well integrated, but not fundamental to the language.1

1 …as it is in Java, or Eiffel, or Python, for example.
PREFACE xiii



That evolutionary development shows in the few places where object-oriented features of the
language are still experimental or incomplete. For example, recent versions of the Perl compiler
support weakly typed variables, which provide compile-time checking and optimization for ac-
cesses to the data stored in Perl objects. But the current version of the mechanism doesn’t actually
enforce type safety or proper data encapsulation, nor does it fully support inheritance.

Because Perl wasn’t originally designed as an object-oriented language, object-oriented Perl
isn’t fast. Calling a method through an object is significantly slower than calling a regular Perl sub-
routine. Just how much slower is a matter of some debate, and depends on whether you measure
entire software systems or just raw single-call invocation speed.

A single method call is about 30 percent slower than a regular call to the same subroutine
(depending on your hardware, your operating system, the phase of the moon, etc.) But though
they’re individually much slower, method calls are more powerful than regular subroutine calls,
due to a feature known as polymorphism (see chapters 1 and 7). In a larger system, that redresses
the speed imbalance in a little, but, in general, it’s fair to say that an object-oriented implemen-
tation of a system in Perl will almost never be faster than the equivalent non-object-oriented im-
plementation, and will usually be somewhere between 20 to 50 percent slower. 

Those figures are enough to turn many people away from object-oriented Perl, and that’s a
pity because then they miss out on the many compensating benefits of object-oriented design and
implementation: simpler analysis methods, a domain-oriented approach to design, cleaner and
more compact code, more robust implementations, greater code modularity, easier debugging,
more comprehensible interfaces to modules (including operator-based interfaces), better abstrac-
tion of software components, less namespace pollution, greater code reusability, scalability of soft-
ware, and better marketability of the final product.2

The sad thing is that people get spooked by the numbers (20 to 50 percent slower!!!) and forget
what that really means (…just as fast in six months time, when processor speeds have doubled).

About this book
This book is arranged as a tutorial on the object-oriented features of Perl, and the many tech-
niques developed for using those features. 

Chapter 1 provides a quick revision of the fundamentals of object orientation: objects, class-
es, attributes, methods, inheritance, polymorphism, aggregation, interfaces, genericity, and per-
sistence. Chapter 2 offers a refresher on aspects of the Perl language most relevant to object-
oriented Perl: basic data types, subroutines and closures, references, packages and modules, type-
globs, and the CPAN.

Chapter 3 introduces the basic features of Perl’s object-oriented mechanisms, concentrating
on the most commonly used way of building classes and objects. Chapters 4 and 5 explore nu-
merous other ways of implementing objects in Perl. Chapter 6 introduces Perl’s inheritance mech-
anism and chapter 7 discusses Perl’s approach to polymorphism.

2 Not to mention that, according to its more extreme proponents, object-oriented programming apparently
builds cardiovascular fitness, reduces weight, lowers cholesterol, makes money fast, promotes world peace,
and improves your love life.
xiv PREFACE



Chapter 8 describes two freely available packages that can be used to automate the creation
of class methods and attributes. Chapter 9 describes the Perl tie mechanism, which allows objects
to be accessed like regular Perl variables or filehandles. This theme is continued in chapter 10
where Perl’s operator overloading facilities are introduced.

Chapter 11 looks at the problem of Perl’s poor support for encapsulation and suggests three
class implementation techniques that can be used to protect attributes within objects. Chapter 12
explains why generic programming techniques are rarely needed in Perl and suggests several useful
approaches for the few situations where they are required. 

Chapter 13 looks at a generalized form of polymorphism known as multiple dispatch, which
allows every argument of a method call to contribute to the invocation process. Chapter 14 ex-
amines how persistence techniques can be integrated with an object-oriented system.

Appendix A provides a condensed summary of Perl’s object-oriented features, with examples
of the syntax for each. Appendix B provides an overview of those same features designed to assist
programmers who are already familiar with one of four major object-oriented languages: Smalk-
talk, C++, Java, and Eiffel. A glossary of important object-oriented terms is also provided.

Throughout the text, each feature and technique is introduced with an example of a common
type of programming problem that the feature or technique helps to solve. If you’re looking for
a specific technique to solve a particular problem, here’s a list of the example problems and the
chapter and section in which they’re discussed. The words (and following) indicate a major exam-
ple that continues in subsequent sections of the same chapter.

• Bit-strings
Chapter 4: A bit-string class
Chapter 6: The “empty subclass” test

• Bugs: storing reports
Chapter 3: Three little rules
Chapter 8: Creating classes (and following)

• Case insensitive hashes 
Chapter 9: Case-insensitive hashes

• CDs: storing catalog information
Chapter 3: A simple class (and following)
Chapter 4: Reimplementing CD::Music (and following)
Chapter 6: Inheriting the CD::Music class
Chapter 8: Automating the CD::Music class (and following)

• Chemical vs medical names
Chapter 11: Ambiguous keys in a secure hash

• Colours: RGB representation
Chapter 11: Converting to “fast” mode (and following)

• Contacts data
Chapter 14: Class specific persistence (and following)

• Days of the week
Chapter 10: Fallback operations (and following)
PREFACE xv



• Debugging: tracking the source of data
Chapter 9: Implementing a scalar using a nonscalar (and following)

• EBCDIC: automated interconversion with ASCII
Chapter 9: Filtered filehandles

• Employees: tracking and identifying
Chapter 8: Flag-like attributes (and following)

• GDP: per capita, China vs USA
Chapter 10: The problem

• Genetics: accessing and manipulating large DNA databases
Chapter 9: A base/codon array (and following)

• Graphical User Interfaces: event handling
Chapter 13: What is multiple dispatch (and following)

• Hashes: nested iterations of the same hash
Chapter 4: An array-specific example
Chapter 5: So how can a subroutine be an object?

• Hashes: sorted keys
Chapter 9: Sorted hashes

• Lexical analysis
Chapter 5: A lexer object
Chapter 7: Polymorphic methods for the Lexer class

• Lists: generic
Chapter 8: Subroutines as attributes
Chapter 12: Closures as generic subroutines

• Networks: representation
Chapter 3: Destructors and circular data structures

• Paged output
Chapter 5: Paging STDOUT (and following)

• Passwords
Chapter 4: An object-oriented password
Chapter 8: Key-like attributes

• Personality traits: statistical analysis
Chapter 8: Hash attributes

• Pretty-printing
Chapter 5: A simple pretty-printer
Chapter 7: The simple pretty-printer objectified (and following)

• Queues: implementing a customer queue
Chapter 8: List attributes
xvi PREFACE



• Regular expressions: making them more readable
Chapter 5: Blessing a regular expression (and following)

• Roman numerals
Chapter 10: A Roman numerals class (and following)

• Round pegs in square holes
Chapter 13: Handling dispatch resolution failure

• Semaphores: control of a transceiver
Chapter 4: Advantages of a pseudo-hash (and following)
Chapter 6: Inheritance and pseudo-hashes

• Soldiers: dog-tag information
Chapter 8: Key-like attributes
Chapter 11: Encapsulation via closures (and following)

• Stringification: of simple and hierarchical data types
Chapter 13 Nonclass types as parameters (and following)
Chapter 14: Encoding/serialization

• Taxonomies
Chapter 6: Constructors and inheritance (and following)

• Trees: generic binary search trees and heaps
Chapter 12: The generic Tree class (and following)

• Unique IDs: autoincremented scalar variables
Chapter 9: A simple example

Typographical conventions
The following typographical conventions are used throughout this book:

• Technical terms (all of which are explained in the Glossary) are introduced in italics.
• Code examples and fragments are set in a fixed-width font.
• Comments in code are set in a fixed-width italic font.
• Sections of code that are of special significance are set in a bold fixed-width font. Often

these sections represent changes or additions to a previous version of the code.
• All forms of system-level text and anything you might actually type yourself—file names,

command-line instructions, program input—are set in a sans-serif font.
• Any kind of program output, including exception and error messages, is set in a bold sans-

serif font.
PREFACE xvii



acknowledgments 

The small number of names on the cover of most books—in this case, just one—is an outright
deception. Every book is a collaboration of a large number of dedicated and talented people. In
writing this book, I have been guided, helped, and supported by a multitude of generous and
wise people. I am especially grateful to…

My beloved Linda, who has borne most of the burdens of our daily life these past six months,
and who still found time to contribute her wisdom and insight to this book. Every day she sustains
me with her extraordinary beauty, grace, and love; she is my inspiration, my joy, and my light.

My parents, James and Sandra, for their faith, love, and very practical support over so many
years. They have been the giants on whose shoulders I stood.

My parents-in-law, Corallie and Fred, for their encouragement, their kindness, and their love
over the past decade.

Tom Christiansen, for his extraordinary generosity in reviewing the entire manuscript at
short notice and in record time. His suggestions have sharpened my prose and my Perl immea-
surably.

Nat Torkington, who has been a constant source of wise counsel, practical assistance, and a
host of favors far beyond the call of friendship, duty, or even antipodean solidarity.

Randal Schwartz who somehow found time in his insanely busy life to review the entire
manuscript, and to suggest many significant improvements.

Bennett Todd, whose excellent advice, unflagging enthusiasm, and endless encouragement,
have buoyed me through some very dark hours.

Uri Guttman, whose meticulous last-minute review suggested many subtle changes that
greatly enhanced the final manuscript.

Mark-Jason Dominus, whose insight and experience were instrumental in setting the overall
structure and direction of my early drafts, and whose guidance I have sorely missed ever since.

The many other reviewers of my manuscripts, who have devoted extraordinary amounts of
time, effort, and ability to dissecting my English and my Perl: Ilya Zakharevich, for his expert ad-
vice on the care and feeding of operators; Graham Barr, for finding some very subtle bugs—both
in my programs and in my writing; Tim Bunce, François Désarménien, Brian Shensky, and Adri-
an Blakey, for knocking my SQL into shape; Chris Nandor, for a thorough dissection of the
toughest five chapters; Gary Ashton-Jones, for highlighting the importance of sequence; Leon
Brocard, for keeping the focus where it ought to be; David Cantrell, for his tremendous attention
to detail; and John Dlugosz, for making me question so many assumptions.
xviii



The eagle-eyed readers of this book, who have gently pointed out typos and other errata. Es-
pecially: Mark-Jason Dominus, Brand Hilton, Peter Scott, Mike Stok, and Steven Tolkin.

The many other members of the Perl community who have shared their knowledge and un-
derstanding with me and helped to resolve all manner of fine points of Perl lore over the years.

My colleagues at Monash University, for their support and encouragement. In particular:
David Abramson, John Crossley, Trevor Dix, Linda McIver, Steve Welsh, and Ingrid Zukerman.

Marjan Bace and the staff of Manning Publications, who have guided and encouraged me
at every stage of development with patience, good humor, and very practical support: Brian Riley
and Peter Schoenberg, who watched over me; Ted Kennedy, who masterminded the review pro-
cess, adding his own invaluable suggestions; Ben Kovitz, for his guidance and advice on the ma-
terial itself and for his inspiring illustrations; Mary Piergies, who turned a raw manuscript into a
polished book; Adrianne Harun, who edited away the worst faults of my original copy; and Tony
Roberts, who worked typesetting miracles. 

And, finally, Larry Wall, for giving us all this wonderful adventure playground called Perl.
ACKNOWLEDGMENTS xix



author online

Purchase of Object Oriented Perl includes free access to a private Internet forum where you can
make comments about the book, ask technical questions, and receive help from the author and
from other users. To access the forum, point your web browser to http://www.manning.com/
conway. There you will be able to subscribe to the forum. This site also provides information on
how to access the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

All source code for the examples presented in Object Oriented Perl is available from the Man-
ning website. The URL http://www.manning.com/conway includes a link to the source code files,
and to the inevitable errata.
xx

http://www.manning.com/
http://www.manning.com/conway


C H A P T E R 1

What you need to know first
(An object orientation primer)
1.1 The essentials of object 
orientation 2

1.2 Other object-oriented concepts 13

1.3 Terminology: a few (too many) 
words 18

1.4 Where to find out more 18
1.5 Summary 20
In order to understand how object orientation works in Perl, we first need to agree what
object orientation actually is. And that’s surprisingly hard to do. Object-oriented program-
ming has been around for at least three decades now, and in that time many opinions, theo-
ries, and even ideologies have been formulated on the subject. Each has purported to
definitively characterize object orientation. Most are mutually inconsistent. No two are
exactly alike.

Yet the basic ideas of object orientation are simple, obvious, and easy to explain. This
chapter provides a quick refresher course in those basic ideas. If you’re already familiar with
the topic, you may want to skim or skip the following sections. If your object orientation is
shaky (or rusty), this chapter should be all you need to firm up your understanding of the con-
cepts underlying object-oriented Perl. 

If you’re completely new to object orientation, you may find the information here suffi-
cient to bring you up to speed on the essential concepts, or you might prefer to start with one
of the excellent introductory texts suggested at the end of this chapter.
1



1.1 THE ESSENTIALS OF OBJECT ORIENTATION
You really need to remember only five things to understand 90 percent of the theory of object
orientation: 

• An object is anything that provides a way to locate, access, modify, and secure data;
• A class is a description of what data is accessible through a particular kind of object, and

how that data may be accessed;
• A method is the means by which an object’s data is accessed, modified, or processed;
• Inheritance is the way in which existing classes of object can be upgraded to provide addi-

tional data or methods;
• Polymorphism is the way that distinct objects can respond differently to the same mes-

sage, depending on the class to which they belong.

This chapter discusses each of these ideas.

1.1.1 Objects

An object is an access mechanism for data. In most object-oriented languages that means that
objects act as containers for data or, at least, containers for pointers to data. But in the more
general sense, anything that provides access to data—a variable, a subroutine, a file handle—
may be thought of as an object.

The data to which an object provides access are known as the object’s attribute values. The
containers storing those attribute values are called attributes. Attributes are usually nothing
more than variables that have somehow been exclusively associated with a given object.

Objects are more than just collections of variables however. In most languages, objects
have an extra property called encapsulation. Encapsulation means that the attributes of an ob-
ject are not directly accessible to the entire program.1 Instead, they can only be accessed
through certain subroutines associated with the object. Those subroutines are called methods,
and they are usually universally accessible. This layer of indirection means that methods can
be used to limit the ways in which an object’s attribute values may be accessed or changed. In
other words, an object’s attribute values can only be retrieved or modified in the ways permit-
ted by that object’s methods.

Let’s take a real-world example of an object: an automated teller machine (ATM). An ATM
is an object because it provides (controlled) access to certain attribute values, such as your ac-
count balance, or the bank’s supply of cash. Some of those attribute values are stored in at-
tributes within the machine itself—its cash trays—while others are stored elsewhere—in the
bank’s central accounts computer. From the customer’s point of view, it doesn’t matter where

1 Encapsulation is an awkward term because it has two distinct meanings: “bundling things together” and
“isolating things from the outside world.” In the literature of object orientation, both senses of the
word have been used at different times. Originally, encapsulation was used in the “bundling” sense, as
a synonym for aggregation (see the later section of that name). More recently, encapsulation has increas-
ingly been used in the “isolation” sense, as a synonym for data hiding (see the later section on Interface
vs implementation). It is in this more modern sense that the term is used throughout this book and in
most of the reference sources suggested at the end of this chapter.
2 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



the attribute values actually are, so long as they’re accessible via the ATM object. Access to the
ATM’s attributes is restricted by the interface of the machine. That is, the buttons, screens, and
slots of the ATM control how encapsulated attribute values—cash, information, and so forth—
may be accessed. Those restrictions are designed to ensure that the object maintains a consistent
internal state and that any external interactions with its attributes are valid and appropriate.

For example, most banks don’t use ATMs consisting of a big basket of loose cash and a
note pad on which you record exactly how much you take. Even if the bank could assume that
everyone is honest, it can’t assume that everyone is infallible. People inevitably end up taking
or recording the wrong amount by mistake, even if no one does so deliberately. 

The restrictions on access are in the customer’s interest too. The machine can provide ac-
cess to attribute values that are private to a particular client, such as their account balance, and
it shouldn’t make that information available to just anyone. The account information
shouldn’t be universally available because, eventually, someone will access and modify the
wrong account data by accident.

In object-oriented programming, an object’s methods provide the same kinds of protec-
tion for data. The question is, how does an object know which methods to trust?

1.1.2 Classes

Setting up an association between a particular kind of object and a set of trusted subroutines,
or methods, is the job of the object’s class. A class is a formal specification of the attributes of a
particular kind of object and the methods that may be called to access those attributes.

In other words, a class is a blueprint for a given kind of object. Every object belonging
to a class has an identical interface—a common set of methods that may be called—and im-
plementation—the actual code defining those methods and the attributes they access. Objects
are said to be instances of the class.

When a program is asked to create an object of a particular kind, it consults the appro-
priate class definition, or blueprint, to determine how to build such an object. Typically, the
class definition specifies what attributes the class’s objects possess and whether those attributes
are stored inside the object, or remotely through a pointer or reference.

When a particular method is called on an object, the program again consults the object’s
class definition to ensure that the method is “legal” for that object—that is, the method is part
of the object’s blueprint, and has been called correctly, in line with the definition in the class
blueprint. 

For example, in software controlling a bank’s automated teller network there might be a
class called ATM that describes the structure and behavior of objects representing individual
ATMs. The ATM class might specify that each ATM object has the attributes cash_remaining,
transaction_list, cards_swallowed, and so forth, and methods such as start_up(),
withdraw_cash(), list_transactions(), restrict_withdrawal(), chew_cards(),
close_down().

Thereafter, when an ATM object receives a request to invoke a method called withdraw_
cash_without_debiting_account(), it can check the ATM class blueprint and ascertain
that the method cannot be called. Alternatively, if the valid method close_down() is defined
to increment a nonexistent attribute called downtime, this coding error can be detected.
THE ESSENTIALS OF OBJECT ORIENTATION 3



1.1.3 Class attributes and methods

So far, we’ve only considered attributes that are accessed through—or belong to—an individ-
ual object. Such attributes are more formally known as object attributes. Likewise, we’ve only
talked about methods called on a particular object to manipulate its object attributes. No
prizes for guessing that such methods are called object methods.

Unfortunately, object attributes and methods don’t always provide an appropriate mech-
anism for controlling data associated with objects of a particular class. In particular, the at-
tributes of an individual object of a class are not usually suitable for encapsulating data that
belongs collectively to the complete set of objects of that class. 

Let’s go back to the ATM example for a moment. At the end of each day, the bank will
want to know how much money in toto has been dispensed from all its teller machines. Each
of those machines will have a record of how much it has dispensed individually, but no ma-
chine will have a record of how much all the bank’s machines have dispensed collectively. That
information is not a property of a particular ATM. Rather, it’s a collective property of the entire
set of ATMs.

The most obvious solution is to design another kind of machine—an ATM coordinator—
that gathers and stores the collective data of the set of ATMs: total cash dispensed, average num-
ber of transactions, funniest hidden video, and so forth. We then create exactly one coordinator
machine and arrange for each of the ATMs to feed data to it. Now we can access the accumu-
lated ATM data through the interface of the coordinator machine.

In object-oriented terms, the design of the coordinator machine is the design of a separate
class, say, ATM_Coordinator, and the construction of such a machine corresponds to the cre-
ation of a single ATM_Coordinator object. This is certainly a viable solution to the problem
of collective data, but it is unattractive in several respects. 

For a start, this approach means that every time a class needs to handle collective data,
we have to define yet another class and then create a single instance of it. Moreover, we have
to be careful not to create more than one instance, to ensure that the collective data is not some-
how duplicated or, worse still, fragmented.

Next, we have to provide some mechanism for connecting the collection of individual ob-
jects of the original class to the single object of the new collective class. That, in turn, means
that the collective object has to be accessible anywhere that any individual object might be cre-
ated. Consequently, the collective object must be globally accessible, which is generally con-
sidered a Bad Thing.

For these reasons, most object-oriented languages don’t take this helper class approach to
regulating collective data. Instead, they allow classes to specify a second kind of attribute, one
that is shared by every object of that class, rather than being owned by a single object. Such
attributes are, unimaginatively, called class attributes. 

Of course, to maintain the appropriate protection for this kind of classwide data,2 a class
must also provide class methods, through which its class attributes may be safely accessed. A class
method differs from an object method in that it is not called on a specific object. That’s

2 After all, the bank certainly doesn’t want devices outside the ATM network accessing its collective ATM
records.
4 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



because, unlike an object attribute, a class attribute doesn’t belong to a specific object. Instead,
a class method is called on the class itself. This usually means that to call a class method we
must specify both the class name and the method name. For example, we must instruct our
program to invoke the daily_total() method for the class ATM .

In some object-oriented languages, class methods provide strong encapsulation of a class’s
class attributes. In other words, there is no way to access a class attribute, except through the
appropriate class method. Other languages offer only weak encapsulation of class attributes,
which are directly visible to either a class method or an object method. This means that class
attributes may be accessed through individual objects as well. As explained in chapter 3, Perl
enforces neither of these approaches, but allows us to use either or both. 

1.1.4 Inheritance

If you’re building an extension to your house, customizing a car, or upgrading your computer,
you normally start with an existing blueprint, adding on or replacing certain bits. If your orig-
inal blueprint is good, it’s a waste of time and resources to start from the beginning, separately
reconstructing a near replica of an existing structure.

The same thing happens in object-oriented programming. Often you have a class of ob-
jects that partially meets your requirements—say, a class that represents a truck—and you want
to create a new class that exactly meets your needs—say, a class that represents a fire truck.

To produce a class representing fire trucks, it’s not necessary to code that class from
scratch, reproducing or maybe cutting-and-pasting the original truck code and adding new
methods to implement alarms, ladders, hoses, red braces, and so forth. 

Instead, we can just tell the program that the new FireTruck class is based on—or is de-
rived from or inherits—the existing Truck class. Then we tell it to add certain extra features
—that is, additional attributes and methods—to the FireTruck class, over and above those
it inherited from the Truck class. Any class like FireTruck that inherits attributes and meth-
ods from another is called a derived class, or sometimes, a child class. The class from which it
inherits, Truck in this case, is called its base class or its parent class. 

The relationship between a base class and its derived class is called the is-a relationship,
because an object of a derived class must necessarily have all the attributes and methods of an
object of the base class, and, hence, “is a” base-class object for all practical purposes. This idea
corresponds to our inherent sense of the hierarchy of categories: a fire truck is-a truck, an au-
tomated teller machine is-a machine, a hench-person is-a person, an unnecessarily long list of
analogies is-a list of analogies.

The is-a relationship is transitive, so you can have increasingly general categories over
more than two levels: a fire truck is-a truck is-a vehicle is-a device is-a thing; a hench-person
is-a person is-a animal is-a life-form is-a thing.3 

3 In fact, just about any class of object can be traced back to being a “thing.” Of course, that doesn’t
mean we have to represent all those higher levels of categorization in an actual program. The universal
“thingness” of a fire truck, an ATM, or a hench-person is probably completely irrelevant to most
applications.
THE ESSENTIALS OF OBJECT ORIENTATION 5



The is-a relationship is not bidirectional. Though an object of a derived class is always an
object of a base class, it’s not always or even usually true that an object of a base class is-a object
of a derived class. That is, although a fire truck always is-a truck, it’s not the case that a truck
always is-a fire truck.

Inheritance and abstraction
Naturally, having created a useful base class like Truck, we are immediately going to derive
from it not just a FireTruck class, but also classes representing dump trucks, tow trucks,
pickup trucks, armored cars, cement mixers, delivery vans, and so forth. Each of these will
separately inherit the same set of characteristics from the original Truck class, and each will
extend or modify those characteristics uniquely. The relationship between the Truck class and
its numerous child classes is shown in figure 1.1.

Using inheritance means that we only have to specify how a fire truck or a cement mixer
or an armored car differs from a regular truck, rather than constantly needing to restate all the
standard features of trucks as well. Assuming we already have the code for a truck, that reduces
the amount of code required to define each new type of truck.

More importantly, using inheritance reduces our maintenance load because any change
to the behavior of the general Truck class, such as modifying its register() method in re-
sponse to some change in transportion regulations, is automatically propagated to all the spe-
cific truck classes (FireTruck, DumpTruck, ArmoredCar, etc.) that inherit from Truck.

In this way, inheritance also provides a way of capturing the abstract relationships between
specific classes of objects within a program. Thus, the class of fire trucks is a special case of the
more general class of trucks, which, in turn, might be a special case of the even more general
class of vehicles. The more abstract classes are generalized blueprints that define the common
features of a wide range of objects. The more specialized classes presuppose those common fea-
tures, then describe the additional attributes and methods unique to their particular kind of
object.

Inheritance hierarchies
The relative ease with which we can create and maintain new classes by inheriting from an
existing one will almost certainly encourage us to create more complex chains of inheritance.
For example, there are many specialized types of fire trucks: ladders, tankers, pumpers, snor-

Truck
register()

DumpTruck
register()

Semi
register()

FireTruck
register()

sound_siren()

ArmoredCar
register()

is-a is-a

is-ais-a

Figure 1.1 Inheriting 

from the Truck class
6 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



kels, tarmac crash vehicles, and so forth. Likewise, there are many species of dump truck: dou-
ble bottom, highside end, lowside end, two-axle tractor, three-axle tractor, bob-tail, and so
forth.

We may need individual classes for each specific type of truck, perhaps because each of
them has unique regulations governing registration and inspection. By deriving such classes
from FireTruck and DumpTruck, we might extend the set of class relationships shown in
figure 1.1 to the hierarchy shown in figure 1.2.

Within such a hierarchy, every class offers all the methods offered by any class above it
in the hierarchy. Therefore, objects of a particular class can always be treated as if they were
objects of a class higher in the inheritance tree. 

For example, both a Tanker object and a DoubleBottom object may be treated as if they
were Truck objects. That is, you can call their register() method, because both of them
can trace their ancestry back to the primordial Truck class. However, of the two, only the
Tanker object can be treated as a FireTruck object—you could call its sound_siren()
method—because only the Tanker object can trace its ancestry to class FireTruck.

Some classes in the Truck hierarchy choose to redefine one or more of the methods they
inherit. (See the following section on Polymorphism for an explanation of why they might want
do that.) For example, the Semi class redefines the register() method it inherits from class
Truck. We can distinguish a method that has been (re)defined in a class from a method that
a class merely inherits from its parent by listing inherited methods in italics.

Multiple inheritance
The inheritance hierarchy shown in figure 1.2 is a branching treelike structure because each
class in that hierarchy has at most one parent class even though it may have many child
classes. But there is no reason that this has to be the case. We could envisage a situation where
a particular class needs to inherit the properties of two or more separate classes.

Truck
register()

DumpTruck
register()

Semi
register()

FireTruck
register()

sound_siren()

ArmoredCar
register()

is-a is-a

is-ais-a

Tanker
register()

sound_siren()

Snorkel
register()

sound_siren()

Pumper
register()

sound_siren()

HighSideEnd
register()

is-a is-ais-ais-ais-a

DoubleBottom
register()

Figure 1.2 Extending the Truck hierarchy
THE ESSENTIALS OF OBJECT ORIENTATION 7



Suppose there were special regulations governing “oversize” vehicles. For example, a spe-
cial license might be required to drive them. We would need extra attributes and methods to
implement those additional requirements. Nonetheless, we shouldn’t add them to the Truck
class because not all trucks are “oversize” (e.g., pickup trucks, armored cars, minivans), and not
all oversize vehicles are trucks (e.g., tractors, bulldozers, tanks, oil tankers). 

We could simply cut-and-paste the same “oversize”-related code into each derived class
that needs it but avoiding the maintenance costs and inelegance of doing that was the reason
we built the Truck inheritance hierarchy in the first place.

A better solution is simply to create a new Oversize class that provides the necessary at-
tributes (permit_number, turning_circle, gross_vehicle_mass) and methods
(renew_permit(), turn(), check_GVM()). We then arrange for the classes representing
oversize trucks, such as FireTruck, Semi, DumpTruck, to inherit from class Oversize as
well. Adding the Oversize class into the hierarchy shown in figure 1.2 produces figure 1.3.

The ability to have a single class inherit characteristics from two or more parent classes
is called multiple inheritance. It’s a useful feature, because it corresponds to the way most people
think about categories (i.e., classes) in the real world. For example, class FireTruck is a special
case of the Truck class, but it’s also a special case of the EmergencyVehicle class, the Tax-
payerFundedMunicipalProperty class, the BigShinyRedThing class, and the What-
IWantToDriveWhenIGrowUp class. Each inheritance relationship may contribute important
characteristics to a FireTruck object, even if not all of them are relevant to a particular
application.4

Designers and users of object-oriented languages are divided over the value of multiple
inheritance. Critics point out that multiple inheritance can lead to awkward ambiguities. For

4 A vehicle registration system probably doesn’t care that fire trucks are big and shiny and magnetic to
small boys; a toy manufacturer certainly does.

Truck
register()

DumpTruck
register()

check_GVM()

Semi
register()

check_GVM()

FireTruck
register()

check_GVM()
sound_siren()

ArmoredCar
register()

Tanker
register()

check_GVM()
sound_siren()

Snorkel
register()

check_GVM()
sound_siren()

Pumper
register()

check_GVM()
sound_siren()

HighSideEnd
register()

check_GVM()

DoubleBottom
register()

check_GVM()

Oversize
check_GVM()

Figure 1.3 Multiple inheritance in the Truck class
8 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



example, if a Person class inherits from the Golfer, Chef, and Ninja classes, which of the
three distinct inherited methods should it invoke in response to a request to slice? 

Another problem occurs when a class inherits from two parent classes, each of which in
turn inherits from a common grandparent class. For example, the FireTruck class inherits
from Truck and EmergencyVehicle. It’s possible that those two classes each in turn inher-
ited from a common base class, say Vehicle. Should the FireTruck class receive two distinct
copies of the each of Vehicle’s attributes because Truck and EmergencyVehicle each have
separate copies? Or should those two separate copies be merged back into one in the
FireTruck class since they’re both really the same attribute from class Vehicle? This situa-
tion is known as a diamond inheritance problem because the inheritance relationships among
the four classes form a diamond shape—two arrows out from FireTruck to its parents, Truck
and EmergencyVehicle; two arrows in from those parents to Vehicle.

Proponents of multiple inheritance point out that there are plenty of ways to resolve such
dilemmas and ambiguities. For example, to resolve the problem of inheriting multiple slice
methods, we can make the compiler detect ambiguous cases and require the programmer to
give the offending methods unique aliases in the derived class (slice_ball, slice_carrot,
slice_throat). Or the compiler can simply select the slice method that was inherited ear-
liest. That is, the compiler can prioritize the inheritance of characteristics from one class ahead
of inheritance from any other.

In a similar way, the compiler could detect the duplication of an ancestral attribute under
diamond inheritance and either require each inherited copy of attribute to be renamed in the
derived class, or else cause the attribute to be inherited through only a single “priority” inher-
itance path. 

Consequently, most modern object-oriented languages, including Perl, allow multiple in-
heritance, though no two take exactly the same approach. Chapter 6 discusses what Perl’s ver-
sion of multiple inheritance means and how it works.

1.1.5 Polymorphism

If you’ve ever gone up to someone in a bar or club and introduced yourself, you know that
people can respond to the same message—I’d like to get to know you better—in very different
ways. If we categorize those ways, we can create several classes of person: ReceptivePerson,
IndifferentPerson, ShyPerson, RejectingPerson, RejectingWithExtremePreju-
dicePerson, JustPlainWeirdPerson.

Turning that around, we can observe that the way in which a particular person will re-
spond to your message depends on the class of person they are. A ReceptivePerson will re-
spond enthusiastically, a ShyPerson will respond tentatively, and a JustPlainWeirdPerson
will probably respond in iambic pentameter. The original message is always the same; the re-
sponse depends on the kind of person who receives it.

Language theorists5 call this type of behavior polymorphism. When a method is called on
a particular object, the actual method that’s involved may depend on the class to which the ob-

5 …most of whom live at ground-zero in the JustPlainWeirdPerson category…
THE ESSENTIALS OF OBJECT ORIENTATION 9



ject belongs. For instance, if we call an object’s ignite() method, its response will be different
depending on whether it belongs to the Paper, Rocket, Passion, or FlameWar class.

Randomly calling an identically named method on objects of different classes is not, of
course, a recommended programming technique. However, polymorphic behavior does prove
extremely useful when an explicit relationship exists between two or more classes of object, or
when an implicit relationship or a common universal property is shared between them. The
following subsections discuss each of these cases.

Inheritance polymorphism
Suppose we are creating an object-oriented system for tracking the registration and inspection
of trucks. We would almost certainly want to use our Truck class and its many descendents to
implement the parts of the system that represent individual trucks.

Typically, the objects representing the various trucks are collected in some kind of con-
tainer, probably a list. Some operations need to be carried out on individual objects (for ex-
ample, register this particular truck, schedule an inspection for that one, etc.). However, many
tasks have to be performed on every truck in the system (for example, send out an annual reg-
istration notice for each, print a complete list of recent inspection dates, etc.).

For operations that need to be performed on every truck, the application is likely to walk
along the truck list in a loop, calling the appropriate method for each object in turn. For ex-
ample, the loop might call each object’s print_registration_reminder() method. 

The problem is that the actual procedure to be followed by each object may be different,
depending on the actual kind of truck the object represents—that is, the actual class to which
it belongs. For instance, the form for registering a semitrailer may be different from the one
for a fire truck or an armored car. If that’s the case, the processing loop will have to determine
the class of each object and then branch to perform a separate method call for each distinct
class. That’s a pain to code and a bigger pain to re-code every time we add or remove another
class of truck.

This situation is the ideal place to use polymorphism. If the ancestral Truck class has a
register() method, then we are guaranteed that every derived class also has a register()
method, inherited from Truck. However, when we specify the derived classes, we may choose
to replace the inherited register() method with one specific to the needs of the derived class. 

Having given each class its own unique register() method, we can simply step through
the list of objects and call register() on each. We’re sure each can respond to that method
call because, at the very least, it will use the register() it inherited from the Truck class.
However, if it has a more specialized way of registering itself, then that more specialized meth-
od will be automatically invoked instead. In other words, we can arrange that each object has
a register() method, but not necessarily the same register() method.

Although our loop code is very simple:

for each object in the list…

call its register() method

the response to those calls is always appropriate to the particular object on which the method
is called. Better still, if we subsequently add a new class derived from Truck, and put objects
of that new class in the list, the old code continues to work without modification. When the
10 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



loop encounters an object of the new class, it simply calls that object’s new register()
method and executes the new behavior specified by the object’s class definition. If the new
class doesn’t define any new behavior, the old behavior inherited from class Truck is used
instead.

This kind of polymorphism is known as inheritance polymorphism because the objects
whose methods are called belong to a hierarchy of classes that are related by inheritance. The
presence of the required method in the base class of the hierarchy ensures that objects of any
derived class can always respond, if only generically, to a given method call. The ability to re-
define individual methods in derived classes allows objects of those classes to respond more spe-
cifically to a particular method call if they so wish.

All object-oriented languages support inheritance polymorphism;6 for some, it’s the only
form of polymorphism they permit. But inheritance polymorphism certainly isn’t the only
form that’s possible. In fact, there’s no need for objects treated polymorphically to have any
kind of class relationship at all.

Interface polymorphism
The alternative approach to polymorphism is to allow any object with a suitable method to
respond to a call to that method. This is known as interface polymorphism, because the only
requirement is that a particular object’s interface provides a method of the appropriate name.7

For example, since there are probably no actual Truck objects used in the truck registry
application, there’s no real need for the Truck class at all as far as the polymorphism in the
registration loop is concerned. So long as each object in the list belongs to a class that has a
register() method, the loop doesn’t really care what its ancestral class was, whether it’s a
truck, a trucker, a trucking company, or a truculent. Provided it can respond to a call on its
register() method, the loop proceeds with serene indifference.

Of course, that’s a mighty big proviso. With inheritance polymorphism we could be sure
that every object in the list did have a register() method, at least the one inherited from
Truck. There’s no such guarantee with interface polymorphism. 

Worse still, because the list is almost certainly built at run-time and modified as the pro-
gram executes, unless we’re careful in setting up the logic of our application, we’re not likely
to know beforehand whether a particular object in the list can respond to a register() re-
quest. In fact, we’re unlikely to find out until the application attempts to invoke the object’s
register() method and finds it doesn’t have one.

Consequently, languages that allow interface polymorphism must also provide a run-time
mechanism for handling cases where an object is unable to provide a requested method. Typ-
ically, this involves providing a means of specifying a fallback subroutine that is called when-
ever an object cannot respond to a particular method invocation. Alternatively, such languages

6 But that’s rather a circular definition, since most language lawyers insist that this form of polymor-
phism is one of the essential characteristics a language must possess if it’s to be considered object-ori-
ented in the first place.

7 Statically typed object-oriented languages (like Java or Ada) usually also require that the argument list
passed in the method call be type-compatible with the parameter list specified by the object’s method.
THE ESSENTIALS OF OBJECT ORIENTATION 11



may have some form of exception system. In that case, the language will trigger a well-defined
exception if the object cannot respond more appropriately.

Inheritance polymorphism is a special case of interface polymorphism because a common
base class guarantees that objects share a specific inherited method. Any language that supports
interface polymorphism automatically supports inheritance polymorphism as well. As we shall
see in chapter 5, Perl is such a language.

Abstract methods
In the earlier section on Inheritance and abstraction, we saw that one purpose of inheritance
was to capture abstract relationships between classes and to “factor out” pieces of code (i.e.,
methods) shared by related classes. 

Consequently, it’s often the case that a class hierarchy will contain some classes—typically
near the top of the hierarchy—that were never intended to be used to build objects directly.
In other words, these classes exist only to represent a shared category or provide a single source
from which descendent classes can inherit shared methods. Such classes are called abstract base
classes.

There is one additional role that an abstract base class can fulfill. As described under In-
heritance polymorphism, any base class, abstract or not, can be used to ensure that every class
derived from it has a specific polymorphic method. That’s a handy feature because we are then
guaranteed that any derived class will be able to respond polymorphically to a specified set of
method calls.

Abstract base classes are clearly useful, but in large object-oriented systems two problems
can arise. The first is that they may accidentally be used as real classes when someone mistak-
enly creates an object of their type. Thus, we might find an obscure section of the truck registry
code that creates Truck objects, rather than FireTrucks or DumpTrucks, even though Truck
objects have no proper role in the system and cannot function in meaningful ways. The use
of such abstract objects is not inherently wrong or bad, but it does indicate a place where the
system implementation is almost certainly deviating from the system design.

The second problem is that, although an abstract base class ensures that a derived class
has a certain set of methods, it does not require that the derived class redefine any of those
methods meaningfully. This can be a problem if many such polymorphic methods are inher-
ited, and we accidentally forget to redefine one of them. The result is that a particular class uses
the generic behavior for a polymorphic function, instead of its own appropriate class-specific
behavior. Misimplementations of this kind can be annoyingly hard to discover.

Many object-oriented programming languages solve these two problems by introducing
the concept of an abstract method.8 An abstract method is a method in an abstract base class
that has no valid implementation and exists only to indicate a necessary part of each derived
class’s interface. It is a kind of placeholder in the interface, indicating the need for a certain
functionality, but not actually providing it. 

8 …which is also known as a pure virtual function, or a deferred feature. In other languages, abstract in-
terface specifications—such as interfaces in Java and Modula-3 or the Smalltalk protocol—serve a sim-
ilar purpose.
12 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



Suppose, for example, the register() method of the Truck class had been declared as
an abstract method (i.e., defined but not implemented). Now, because that ancestral regis-
ter() method doesn’t provide a working implementation, whenever a Truck object is creat-
ed, and its register() method is called, an error will be flagged. This immediately solves the
general problem of incorrect use of objects belonging to an abstract base class. 

Better still, it also solves the problem of forgetting to redefine a method in a derived class.
For example, if the person coding the FireTruck class neglects to implement a suitable reg-
istration method for that class, then the register() method inherited from Truck will be
called instead. Rather than performing some inadequate default registration process, the in-
herited abstract method will immediately signal an error, indicating that the implementation
is incorrect.

Most object-oriented languages provide some mechanism for declaring abstract methods.
Chapter 6 describes how to do so in Perl.

1.2 OTHER OBJECT-ORIENTED CONCEPTS
None of the remaining ideas of object orientation is any harder to understand than those
described so far. In this section, we’ll look at some extra concepts particularly relevant to
object-oriented programming in Perl:

• Interfaces hide messy and changeable details from the world at large.
• You can build more complicated objects by collecting together simpler ones.
• It’s sometimes useful to generalize the syntactic structure of code rather than its semantics.
• Objects can live beyond the program that creates them.

1.2.1 Interface vs. implementation

Thinking back to the ATM example mentioned earlier, we can see another useful feature of
objects: The interface with which you interact is distinct from the internal implementation that
makes everything happen. 

Each ATM in the late Cretaceous era9 had a trained octopus inside. Nowadays, cephalo-
pods are considered unreliable and have largely been replaced by mechanical cash dispensers
and computer chips. In the future, we can expect that ATMs will be controlled by isolinear gel-
packs and will distribute cash via matter transporter. 

The point is, as long as the ATM designers continue to use the same interface—the now-
familiar keypad, instruction screen, and slots—the customer doesn’t care what goes on inside
the ATM object. Whether its innards are squishy or solid-state has no bearing on the way cus-
tomers interact with the machine. Customers only care whether the ATM behaves in a pre-
dictable and consistent manner.

It’s the same with automobiles. Electric cars still have a steering wheel, an accelerator, a
brake pedal, and a speedometer. Under the hood, everything is completely different—batteries
instead of a fuel tank, electric motors instead of an engine, a flywheel instead of brake pads—
but the everyday user interface is essentially the same as that of a fossil fueled car.

9 …at least, those around the town of Bedrock…
OTHER OBJECT-ORIENTED CONCEPTS 13



In the same way, object-oriented programming languages provide an important separa-
tion between how data is used externally—the methods that can be called on an object—and
how that data is represented and manipulated internally—the way its attribute values are
stored, and its methods are coded. So long as the interface remains stable, the implementation
can be changed as necessary—optimized, extended, parallelized, distributed, and so forth.

Localizing implementation details within an object’s methods provides an important de-
coupling of different parts of the program. For example, if the storage mechanism for a partic-
ular attribute has to be changed, say, from a fixed-length array to a linked list, we need only
alter the internals of the methods through which that attribute is accessed. The rest of the pro-
gram that uses those methods shouldn’t have to change at all.

Of course, there’s nothing revolutionary about this idea of encapsulating implementation
details inside a subroutine. Good procedural programmers have been doing that for decades.
The evolutionary aspect of object-oriented programming is that those encapsulating subrou-
tines (methods) are now explicitly associated with only a single class of object. This ensures that
the subroutines themselves cannot “accidentally” be applied to the wrong data.

1.2.2 Aggregation

One of the most useful properties of a subroutine is that it can call other subroutines to do
part of its job. For example, if you’re writing a subroutine that calculates the initial velocity
needed to throw a ball a certain horizontal distance,10 then you want to call the sqrt and sin
functions to compute parts of the answer. In this way, larger and more complicated subrou-
tines can be built up out of simpler components: a process known as aggregation.

In an object-oriented system, it’s usually the objects that are aggregated together, to pro-
duce larger and more complicated objects.

This process of constructing larger objects by bringing together and jointly encapsulating
smaller ones is certainly not a new idea. Single-celled organisms have been doing it for over a
billion years, collecting mitochondria, reticula, centrioles, ribosomes, vacuoles, and a nucleus,
inside a cytoplasmic membrane. That membrane provides an interface that protects the at-
tributes of the cell from outside attack, while allowing important nutrients in.

More recently—a mere 800 million years ago—a diverse collection of single-celled or-
ganisms started working together inside the shelter of another layer of encapsulation (i.e., skins,
coats, shells, etc.), and the first multicellular creatures, the sponges, arose. Within the last half
a billion years, multicellular creatures have evolved to cooperate in so-called “colony organ-
isms,” the earliest being coral polyps. Such colonies typically build themselves yet another layer
of encapsulation, such as the calcium carbonate endoskeletons of coral, the mounds of termites,
or the office buildings of multinational corporations. 

Software objects can be built up in the same way. Small, simple objects representing the
behaviors and state of an individual employee can be used to implement the attributes of larger,
more complex ones, representing the entire employee. The employee object can then be ag-
gregated with other asset objects to construct an object representing a corporation.

10  
14 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



Why aggregate?
Let’s consider the attributes of the ATM class (cash_remaining, transaction_list,
cards_swallowed). These attributes might be raw variables, or they might instead be imple-
mented using objects of other classes. The cash_remaining attribute, for example, might be
an object of the MoneyAmount class. 

That class might have methods such as debit() and credit(), which we would call
whenever it was necessary to change the value of the cash_remaining attribute of an ATM ob-
ject. That means that when someone invokes an ATM object’s withdraw_cash() method, that
method, in turn, invokes the debit() method of the object’s cash_remaining attribute. 

Why arrange all this apparent complexity? Why not just make the cash_remaining at-
tribute an integer variable (i.e., how many dollars left) and avoid the multiple method calls?
One advantage of making the cash_remaining attribute a nested object is that we then have
better control over how its data is modified. For example, the debit() method might check
that a debit operation does not reduce the amount to less than zero. Or it might send a message
to the bank (“Send more cash!”) when the machine’s cash reserves drop below a certain thresh-
old.

The point is that the ATM object’s withdraw_cash() method doesn’t need to concern
itself with any of these “side-effects.” They’re encapsulated inside the methods of the Money-
Amount class, so if the requirements change—for example, if we now also need to ensure that
the debited amount does not exceed a predetermined limit—the basic withdraw_cash() al-
gorithm doesn’t have to be modified. Instead, we put the new code in the MoneyAmount class’s
debit() method.

Likewise, if the bank decides it also wants to dispense coins from its ATMs, then repre-
senting a machine’s cash reserves as an integer number of dollars won’t work any more. Either
the representation will have to change to a pair of integers—one for dollars, one for cents—
or else we’ll have to change units—to an integer number of cents. If the cash_remaining at-
tribute is an unencapsulated integer, we will have to recode every ATM method that relies on
that representation—probably most of them. On the other hand, if the cash_remaining at-
tribute is a MoneyAmount object, then we can just alter the representation specified inside that
class, adjust the debit() and credit() methods to compensate, and none of the ATM meth-
ods need be altered at all.

Objects are useful precisely because they decouple the public interface of data from its pri-
vate implementation, and thereby reduce the costly flow-on effects of changes in representation
or in local behavior. There is no reason why the methods of a class shouldn’t also benefit from
the protection offered by object encapsulation. Using simple objects to implement the at-
tributes of more complicated ones makes that possible.

1.2.3 Genericity

Class hierarchies provide a useful means of reusing common fragments of code, by allowing
derived classes to inherit them. Inheritance does, however, imply a type relationship between
any classes that inherit that common code. Sometimes that’s just not appropriate because the
only aspects of the common code that aren’t reusable are the types involved.
OTHER OBJECT-ORIENTED CONCEPTS 15



Consider, for example, the design of a class implementing a binary search tree. The me-
chanics of such a class are straightforward: each node has up to two subtrees; each subtree con-
tains only nodes less than or not less than its parent node; the tree can be traversed recursively
by visiting the less than subtree, then the current node, then the not less than subtree; and so
forth.

The same general structure can be used to store any kind of data for which a “less than”
relationship can be defined. Structurally speaking, the only difference between a binary search
tree of logical expressions and a binary search tree of the sayings of Dan Quayle is the type of
data that is stored in each node (i.e., Boolean versus character string).

And, because it’s the data (i.e., the attributes) that differ in each type of tree, inheritance
isn’t a good solution. In most object-oriented languages, inheritance allows derived classes to
redefine the behavior of inherited methods, but not to change the types of inherited attributes.

What we actually want is something much less sophisticated, less “polymorphize the se-
mantics of the hierarchy,” and more “fill in the blanks in the syntax.” In other words, we’d like
to be able to create a class blueprint with certain features, such as the type of data stored in a
node, left unspecified. Such a blueprint becomes a pattern that can be used to generate a range
of distinct (and unrelated!) classes, simply by filling in the missing information (e.g., stating
what kind of data is to be stored in the nodes of a particular kind of search tree).

In a similar way, we might wish to specify a generic method for finding the largest element
in a list:

assume the first <whatever> is the largest <whatever>

for the remaining <whatever>s…
if the next <whatever> is larger than the current largest <whatever>…

replace the current largest <whatever> with the next <whatever>

return the current largest <whatever> 

To generate a specific method for a list of integers, we replace <whatever> with Inte-
ger; to generate a specific method for lists of character strings, we replace <whatever> with
String; to generate a specific method for lists of egos, we replace <whatever> with Ego. 

Of course, this scheme only works if the is-larger operator is polymorphic. That is, we
need to be sure that, when is-larger is applied to two Ego objects, the behavior is appropriate,
and different from the behavior that results when the operator is applied to two Integer
objects. 

Generic classes and methods are less important in languages where type information is dy-
namic—that is, a property of the data, not its container. Perl is such a language. However, even
in dynamically typed languages generic techniques can still be useful in reducing the overall
coding required. Chapter 12 presents some approaches to generic programming in object-ori-
ented Perl.

1.2.4 Persistence

In object-oriented terms, persistence is the ability of objects to retain their attribute values,
their association with a class, and their individual identity, between separate executions of a
16 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



program. In other words, persistent objects are those that, next time you start running the
program, are still there.

Persistence requires more than just dumping an object’s attribute values into a file or a
database when the program terminates, and then creating a new object, and reloading the saved
data next time the program executes. The essence of persistence is that when the program next
executes, a persistent object will have been identifiably reconstructed, either with the same
name, the same location in memory, or another way of accessing it that is consistent between
executions.

Moreover, the reconstruction ought to be as fully automated as possible. Ideally, the pro-
grammer should only have to somehow mark an object as persistent, and thereafter it will au-
tomagically reappear every time the program executes. In practice, very few languages can
achieve that level of transparency.11 

More often, to create a persistent object it is necessary to create a special-purpose class,
perhaps by deriving it from the object’s original class. This, in turn, requires the programmer
to create some custom code to translate internal representations of the object—the bit patterns
representing it in the program—to external representations—the bit patterns in a file or database. 

This translation process is called encoding or serialization and is difficult to implement in
the general case. It’s particularly hard if some attributes of a persistent object store pointers or
references to other data. In such cases, it may also be necessary to also encode the data being
referred to, as well as the abstract relationship between the persistent objects involved. In an
inherently persistent language, this requirement must be met for an arbitrary number of at-
tributes storing arbitrary interrelationships between arbitrary objects of arbitrary classes. Not
surprisingly, few languages fully support both object orientation and automatic persistence.

Another important issue is the granularity of the persistence conferred upon objects.
Some languages, such as HyperTalk, offer fine-grained persistence, in which every change in
the attributes of an object is immediately recorded externally. Most, however, offer only coarse-
grained persistence, where the attributes of an object are recorded only at the very end of a pro-
gram’s execution.

Coarse-grained persistence is almost always a more efficient alternative since it minimizes
the amount of disk access a program performs. Fine-grained persistence, on the other hand,
is clearly the safer alternative since it ensures that an object’s state can always be reconstructed
in a subsequent execution of the program, even if a previous execution terminated prematurely.

Of course, in practice, not even the finest of fine-grained persistence offers any real guar-
antee of data integrity. Even if an object is updated every time it is modified, the program
might still crash in the middle of the update process itself, or, in crashing at some other point,
it might somehow trash the file system on which the object was recorded. However, these prob-
lems also apply to coarse-grained persistence, which is far more likely to lose data due to an
inopportune termination since, in general, nothing at all will have been recorded prior to the
crash.

In many respects, persistence is the evil half-brother of object orientation: misunderstood,
troublesome, unreliable, hard to coexist with, yet occasionally essential to the plot. Conse-
quently, many definitions of object orientation don’t include persistence as one of their re-

11 Perl, fortunately, is one of them.
OTHER OBJECT-ORIENTED CONCEPTS 17



quired features, and most object-oriented languages don’t directly support persistence, though
it can be grafted on to almost all of them. 

Chapter 14 looks at a range of techniques for adding either fine- or coarse-grained per-
sistence to Perl objects.

1.3 TERMINOLOGY: A FEW (TOO MANY) WORDS
The systematic study of object orientation is a relatively young science.12 Nowhere is this more
evident than in the mishmash of mutually contradictory jargon that besets it. In the literature
on object-oriented programming, standard concepts pass by many strange aliases. It some-
times seems that every object-oriented language designer deliberately invents a completely
new set of names for the same fundamental ideas. 

To help makes sense of this cacophony of jargon, table 1.1 summarizes the most common
alternatives to the terms used in this book. The glossary at the end of this book may also be
of assistance.

1.4 WHERE TO FIND OUT MORE 
The world is awash with textbooks, tutorials, and other resources dedicated to object-oriented
programming. Your local bookstore probably stocks several dozen titles, and your local techni-

12 It’s older than quantum computing, but not as old as quantum physics.

Table 1.1 Other names for standard object oriented concepts

Concept… Also known as…

object class instance, instance variable

class user-defined type, object template, meta-object, package, module

object attribute field, slot, instance variable, member object, data member

class attribute class variable, class field, static field, static data member, shared attribute, 
class datum

object method instance method, selector, handler, message handler, feature, member func-
tion, operation, package operation

class method static method, static member function, shared method

method invocation method call, method activation, message, event

interface protocol, feature set

inheritance subclassing, class specialization, derivation

encapsulation data hiding, data privacy

generic class template, parameterized class, generic package, generic module

polymorphic method virtual function, generic method, overridden operation, method

abstract method pure virtual function, deferred feature

superclass parent class, base class

subclass child class, derived class
18 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



cal bookstore, several hundred. In early 1999, a naive search of the web on the term “object-
oriented” returned 840,000 matches. This section distils that bounty to four books, two web-
sites, and two newsgroups.

1.4.1 Books

Most books on the subject are linked to a particular language—most often C++ or Java, but
sometimes Eiffel, Smalltalk, Ada, or Visual Basic. That connection isn’t necessarily a bad
thing, provided you’re careful not to let your first object-oriented language warp your view of
object orientation in general.

The classic text on object orientation is Object-Oriented Software Construction by Bertrand
Meyer. Although its concepts and examples are slanted toward Meyer’s own programming lan-
guage, Eiffel, the explanation of object-oriented concepts is sufficiently general that the text
forms a useful introduction to the entire field.13 

Another excellent introductory text is Object-Oriented Design with Applications by Grady
Booch. The first edition introduced object orientation by taking examples from five different
languages: Smalltalk, Object Pascal, C++, CLOS, and Ada.14 The second edition, retitled Ob-
ject-Oriented Analysis and Design with Applications, confines itself to C++.

For a practical and highly detailed guide to actually doing object-oriented software devel-
opment, Trygve Reenskaug’s Working With Objects offers the fruits of more than twenty years
of experience by one of the pioneers of object orientation.

If you find these references too technical or too caught-up in specific languages, you
might like to consider Object Technology: A Manager’s Guide by David A. Taylor. Don’t let the
title put you off; this is an excellent language-independent introduction to the fundamental
concepts of object orientation. 

See the bibliography for full details of each of these books and others mentioned in later
chapters.

1.4.2 Websites

While it’s not surprising that object-oriented programming is so profusely represented on the
web, it’s also no surprise that much of the material available is of dubious value at best. Rather
than attempt to pick the most suitable sites, this section lists two that provide broad entry
points into the vast array of on-line resources.

Cetus Links, at http://www.cetus-links.org/, is probably the most extensive list of resourc-
es and links related to object orientation and the related area of component-based program-
ming. Currently, it offers over 13,000 links, categorized in every way imaginable. The page
http://www.cetus-links.org/oo_infos.html is a good place to start.

The other exceptionally comprehensive starting point is the Object FAQ site at http://
www.cyberdyne-object-sys.com/oofaq2/. It provides a somewhat smaller and more technically
oriented resource than Cetus Links, but is exceptionally accurate and conveniently arranged. 

13 If you are familiar with Eiffel you may find it useful to consult appendix B, which presents a compar-
ison of object-oriented Perl with that language.

14 Appendix B also provides a comparison of Perl with Smalltalk and C++.
WHERE TO FIND OUT MORE 19

http://www.cetus-links.org/
http://www.cetus-links.org/oo_infos.html
http://www.cyberdyne-object-sys.com/oofaq2/


1.4.3 Newsgroups

The principal newsgroups for discussions of object-oriented programming are comp.object
and comp.object.moderated. As usual, the unmoderated group has much greater level of traf-
fic and more noise, while the moderated group drifts into deep and theoretical discussions at
times. However, both groups have high signal-to-noise ratios and are relatively novice-friendly.

1.5 SUMMARY
• Objects are mechanisms that provide controlled access to collections of data (attributes)

and allow them to be manipulated in predefined ways.
• This access and manipulation is provided by methods, which are subroutines specifically

associated with a particular class of objects.
• A class defines the attributes and methods that a certain type of object provides. 
• Inheritance allows new classes of objects to be created by extending or altering the behav-

ior of an existing class. A derived class has all the attributes and methods of the classes it
inherits and typically adds new ones as well.

• The way an object responds to a standard method call often depends on the kind of
object it is. This is known as polymorphism. 

• The main advantage of object orientation is that it separates the interface to data from
the implementation of that data and of the operations defined on it.

• Object attributes may also be objects of simpler classes. Building larger objects by joining
together smaller ones is known as aggregation.

• Sometimes it’s useful to generalize the syntactic structure of a set of similar classes, rather
than their semantics. Such structural generalizations produce generic classes or methods.
20 CHAPTER 1  WHAT YOU NEED TO KNOW FIRST



C H A P T E R 2

What you need to know second
(A Perl refresher)
2.1 Essential Perl 21
2.2 Nonessential (but very useful) 

Perl 51
2.3 The CPAN 65

2.4 Where to find out more 68
2.5 Summary 72
Object orientation in Perl is achieved using standard features of the language—hashes, pack-
ages, subroutines, and references—held together with a surprisingly small amount of new
glue.1 To understand how that extra adhesive works, you first need to be comfortable with the
standard Perl features it’s connecting. 

As with the previous chapter, if you’re already confident with this material, you’ll prob-
ably want to skip ahead and get straight down to business. Alternatively, if you’re completely
new to the language, you might prefer to seek refuge in the introductory Perl texts suggested
at the end of this chapter.

2.1 ESSENTIAL PERL

2.1.1 Scalars

A scalar variable is able to store a single value of any standard Perl type: a number, a character
string, or a reference (see section 2.1.5). The value of a scalar variable can be accessed or
assigned by giving its name, preceded by a dollar sign:

1 Much less, for example, than C++ adds to C.
21



$unit = "meters";
$earth_diameter = 12756000; 
$height = 1.80; 
$horizon_distance = sqrt($height * $earth_diameter);

The name can be up to 251 characters long and can only be composed of alphabetical
characters (in upper or lower case), digits, and underscores. In addition, the name can’t start
with a digit.

Scalar variables have no fixed or static type associated with them. Instead, they can be
thought of as dynamically taking on the type of the value that they are currently storing (num-
ber, character string, etc.). 

It’s not necessary to predeclare a scalar variable—or an array or a hash for that matter—
before using it, though it is possible to do so with a my qualifier (see the section on Lexical vari-
ables below) or a use vars statement:

use vars qw($unit $earth_diameter $height $horizon_distance);

2.1.2 Arrays

An array variable is able to store a series of values, with each value uniquely identified by an
integer known as its index. The contents of an array can be accessed collectively by giving the
array’s name, preceded by an “at sign” (@):

@dwarfs= ("Happy", "Sleepy", "Grumpy", "Dopey", "Sneezy", "Bashful", "Doc");

@deadly_sins= ("Gluttony", "Sloth", "Anger", "Envy", "Lust", "Greed", "Pride");

print "@dwarfs never commit @deadly_sins\n";

Individual values stored in the array can be accessed by giving the array’s name, preceded
by a dollar sign2 and followed by a numeric value—the index—in square brackets:

foreach $i (0..5)
{

print $dwarfs[$i], " was accused of ", $deadly_sins[$i], "\n";
}
print "and ", $dwarfs[6], " was accused of ", $deadly_sins[6], "\n";

The index of the first element is zero, not one, because the index indicates how far the ele-
ment is from the start of the array, not its ordinal position.

Elements can also be individually assigned to, and will automatically be created if they
do not already exist:

$dwarfs[7] = "Funky";
$deadly_sins[11] = "Incompetence";

Because array elements are always consecutive, assigning a value to $deadly_sins[11]
causes the @deadly_sins array to grow to a length of twelve elements—elements 0 through
11. The extra three elements—$deadly_sins[8], $deadly_sins[9], and $deadly_

sins[10]—that are also created are initalized to the special undefined value undef.

2 …because each element of an array is itself a (nameless) scalar variable, and accesses to scalars always
start with a dollar sign.
22 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



There are two ways of obtaining information about the length of an array, depending on
whether we want to access the last element or to count the number of elements. The variable
$#array_name always stores the last index of the array @array_name. Therefore

print $deadly_sins[$#deadly_sins];

always prints the last deadly sin, no matter how many are in the array. 
Another way to access the end of an array is to use a negative index. In Perl, negative in-

dices count backward from the end of the array, with —1 being the last element, —2 the second
last, etc:

print $deadly_sins[-1];# also prints value of last element

The value of $#array_name is always one less than the number of elements in the array
because indices start from zero, but counting starts from one. If a complete array is referred
to somewhere that a scalar value was expected—this is called a scalar context (see Calling context
below)—then the resulting scalar value is the number of elements in the array. For example

$sin_count = @deadly_sins;# equivalent to: $sin_count = 7

while ($n < @dwarfs)# equivalent to: while ($n < 7)
{

print $dwarfs[$n++], "\n";
}

In the first example, the assignment to a scalar variable ($sin_count) means that a scalar
value is expected to the right of the = operator. The @deadly_sins array has been used in a
scalar context, so the number of elements it contains is returned. In the second example, both
operands of the < operator are expected to be numeric (scalar) values, so @dwarfs is also in a
scalar context.

Arrays and lists
Arrays are closely related to (but not the same as) lists. A Perl list is a sequence of comma sep-
arated values usually in a set of parentheses. A Perl array is a container for a sequence of values
(that is, a container for a list). As shown in the examples in the previous section, lists are com-
monly used to initialize arrays. Assigning a list to an array places each item in the list in a con-
secutive element of the array.

Lists may also be used to extract values from arrays. If an array is assigned to a list of scalar
variables, the value of each element of the array is copied into consecutive variables in the list.
For example

($dw1, $dw2, $dw3, $dw4, $dw5, $dw6, $leader) = @dwarfs;

assigns $dwarfs[0] to $dw1, $dwarfs[1] to $dw2, $dwarfs[2] to $dw3, and so forth.
If there are more variables in the list than elements in the array, the extra variables are as-

signed the undefined value (undef). If there are fewer variables than array elements, the extra
elements are ignored. For example, in the following assignments

($dw1, $dw2, $dw3, $dw4, $dw5, $dw6, $leader, $dw8) = @dwarfs;
($mad, $bad, $dangerous_to_know) = @deadly_sins;
ESSENTIAL PERL 23



the variables $dw1 through $dw6 and $leader are assigned the seven names stored in
@dwarf, while $dw8 is assigned undef. In the second assignment, the three variables are
assigned only the first three sins in @deadly_sins. The rest would be ignored.

You can also assign lists of values to lists of variables:

($sanguine, $saline, $doleful) = ("blood", "sweat", "tears");

which is particularly useful for swapping the value of two variables:

($friend, $foe) = ($foe, $friend);

Lists of literal character strings like ("blood", "sweat", "tears") can be annoying
to type in and difficult to read. Perl provides a special operator (qw) that can be used to specify
a list of single words, where each “word” is a character string that doesn’t contain a whitespace
character:

($sanguine, $saline, $doleful) = qw(blood sweat tears);

Whenever you put a qw before the listifying parentheses, you can omit the quotation marks
and the commas. In fact, you must omit them since they’re valid non-white space characters
and will simply be treated as part of whatever whitespace-delimited word to which they’re
connected. 

List flattening
Contrary to what you might expect, if a list contains another nested list:

@virtues = ( "faith", "hope", ("love", "charity") );

then this doesn’t produce a hierarchical list of three elements, where the third element is itself a
two-element list. That’s because each element of a list must be a scalar, not another list.

What happens instead is that the entire nested list is flattened by the removal of all in-
ternal bracketing. Therefore, the previous example is actually equivalent to

@virtues = ( "faith", "hope", "love", "charity" );

Any arrays that appear in a list are also expanded in this way. Therefore,

@virtues = ( "faith", "hope", @deadly_sins );

puts nine elements (not three) into @virtues.
It is possible to build hierarchical lists in Perl, but you need to use references to arrays (see

References below).

Arrays as stacks and queues
Perl provides support for using arrays to implement stacks and queues, via the built-in func-
tions push, pop, shift, and unshift.

The push function takes an array and a list of elements to append to it. It then appends
them and returns the new length of the array. The pop function removes the last element of
an array and returns that element. If the array is empty, it returns undef. For example

$stack_height = push @stack, $next;
$stack_height = push @stack, ($item1, $item2, $item3);
24 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



print "$next\n"
while $next = pop @stack;   # assume no undef elements in stack

The unshift and shift functions work just like push and pop respectively, except that they
add elements to the start of an array instead of to the end. 

The combination of pushing elements onto the end of an array and shifting them off the
start of it produces a queue:

push @menu, qw(appetizer soup entree main dessert coffee mints);
print "the next course is $next_course\n"

while $next_course = shift @menu;

The push, pop, shift, and unshift functions are all special cases of a more general
function called splice, which changes the elements of an array. The splice function takes
four arguments: the array to be modified; the index at which it’s to be modified; the number
of elements to be removed (starting at the index specified in the previous argument), and a list
of extra elements to be inserted at the index (after the previous elements are removed). The
function returns a list of the elements removed from the array being modified.

So, for example, to replace Deadly Sins 3 and 4 with the four Virtues, we would write

@ex_sins = splice @deadly_sins, 3, 2, @virtues;

In other words, take the @deadly_sins array, go to index 3, remove two elements (i.e., ele-
ments 3 and 4), and replace them with the elements in @virtues. The two elements removed
are returned by splice and saved in the @ex_sins array.

Slicing an array
Sometimes it’s useful to be able to extract or assign to only part of an array. For example, we
might want to print out elements 3 through 5 of a particular array:

print $tragedy[3], $tragedy[4], $tragedy[5];

or perhaps reassign them

($tragedy[3], $tragedy[4], $tragedy[5])
= ("Macburger", "King Leer", "Hamlet, A Pig in the City");

This kind of thing happens so often that Perl provides a special syntax to simplify it. If
the contents of a trailing pair of square brackets are a list of comma-separated values, rather
than a single value, Perl produces an array slice, instead of a single array element:

print @tragedy[3,4,5];# same as previously, but less cluttered

That slice is a list (hence, the @ prefix) that acts just like a subset of the original array. In
other words, rather than just being copies, the elements of that temporary array are the same
scalars as in the original array. Thus, assigning to an array slice assigns to the original elements:

@tragedy[3,4,5] = ("Macburger", "King Leer", "Hamlet, A Pig in the City");
# same as previously, but much less cluttered

The list of indices in the square brackets need not be comma-separated, explicit, or even
sequential. For example:
ESSENTIAL PERL 25



@sqr[1..4]= (1, 4, 9, 16);# range of indices
@sqrt[1,49,9,16,4]= (1, 7, 3, 4, 2);# non-sequential indices
@inverse[@sqr]= (1, 0.25, 0.1111, 0.0625);# indices stored in

# another array

2.1.3 Hashes

A hash3 is best thought of as a two-column table, where the left column stores keys and the
right column stores their associated scalar values. It’s called a hash because a hashing algorithm
is used to map each key string to an internal index into the table.

A hash variable is prefixed with a percent sign and initialized with a list:

%sound = ("cat", "meow", "dog", "woof", "goldfish", undef);

The initializer list consists of an alternating sequence of keys and their associated values.
Therefore, in the hash %sound, the key "cat" is associated with the value "meow", the key
"dog" with the value "woof", and the key "goldfish" with the value undef. 

In a long list of such key/value pairs, it can be easy to lose track of which elements are
keys and which are values. To improve the readability of such hash initializers, Perl provides
a special operator (=>) that may be used instead of a comma:

%sound = ("cat"=>"meow", "dog"=>"woof", "goldfish"=>undef);

The => operator is exactly equivalent to a comma except that it has a useful extra property.
It treats any potential identifier—that is, a string of alphanumerics and/or underscores—to its
immediate left as if it were a quoted character string. That allows us to write

%sound = (cat=>"meow", dog=>"woof", goldfish=>undef);

The value after the => still requires quotation marks if it’s a character string.
The individual values stored in a hash (called entries) are accessed in much the same way

as the individual elements of an array. The only difference is that, instead of specifying an index
in square brackets, we specify a key in curly braces. For example:

print "The cat replied: ", $sound{"cat"};

$sound{"cat"} = "purr";
print "The cat replied: ", $sound{"cat"};

$animal = "cat";
print "The $animal replied: ", $sound{$animal};

As with the array elements, a hash entry such as $sound{"cat"} is the cat entry of the hash
%sound, and has nothing whatsoever to do with the scalar variable $sound. 

Like the left-hand side of a => operator, the interior of the curly braces of a hash entry
will automatically interpret an identifier as a quoted string. Consequently, we could simply
write:

3 Back when dinosaurs rule the Earth, hashes were known as associative arrays, because each stored value
is associated with (and accessed through) its key, rather than having some positional index as in a nor-
mal array. However the term is now archaic and calling a hash an associative array will see you shunned
by polite Perl society.
26 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



print "The cat replied: ", $sound{cat};
$sound{cat} = "purr";
# etc.

This is only true, however, if the contents are an unbroken sequence of alphanumerics or
underscores. That is, we can’t write:

$sound{homo sapiens vendax} = "have a nice day"; # Wrong!

if we mean:4

$sound{"homo sapiens vendax"} = "have a nice day";

Iterating a hash
Unlike arrays, where the elements are ordered by their sequential indices, entries in a hash are
not stored in any obvious or useful order.5 In particular, entries are not stored alphabetically,
nor are they stored in the order in which they were added to the hash. Therefore, stepping
through each entry in a hash isn’t quite as simple as in an array.

Perl provides three built-in functions that assist in iterating a hash: keys, values, and
each. The keys function takes a hash as its argument and returns a list of its keys, in an ap-
parently random order. Likewise, the values function returns a list of the values of its hash
argument in the same apparently random order.6 Thus, to print out all the key/value pairs in
a hash, we could write:

foreach $key (keys %sound)
{

print "The key $key has the value $sound{$key} \n";
}

Or, if we just wanted the values without the keys, we could write:

foreach $val (values %sound)
{

print $val, "\n";
} 

Alternatively, we could use the built-in function each. The each function takes a hash
and returns one distinct key from that hash every time it’s called. When successive calls to each
have returned every possible key from the hash, the next call returns undef, after which the
cycle repeats. Consequently, each is used like so:

4 Without the quotes, the hash access $sound{homo sapiens vendax} would be interpreted as a
call to the subroutine vendax with no arguments, then a call to the subroutine sapiens passing it
the value returned from vendax, then a call to the subroutine homo passing it the return value of sa-
piens. The final return value would then be used as a key into %sound. See the section on Subroutines.

5 Of course, they are stored internally in a specific order—the order of the integers to which their keys
are hashed—but that order is certainly not obvious or useful from the point of view of most program-
mers.

6 That is, the nth element of keys %hash is always the key of the entry whose value is returned as the nth

element of values %hash.
ESSENTIAL PERL 27



while (defined($nextkey = each %sound)) # get next key until undef
{

print "The key $nextkey has the value $sound{$nextkey} \n"
}

If each is called in a list context—for example, if its return value is assigned to a list, array,
or hash—it returns a two-element list containing the next key and its associated value. After
all keys have been returned by successive calls, each returns an empty array (which would cause
a while loop to fail). For example:

while ( ($nextkey,$nextval) = each %sound )
{

print "The key $nextkey has the value $nextval \n";
}

Slicing a hash
The values function returns values in an apparently random order, so to create a list of val-
ues from a hash with a specific order, we have to write something like this: 

print ($sound{cat}, $sound{goldfish}, $sound{dog}, $sound{dolphin})

That’s a tedious solution to a common problem, so Perl provides some shorthand for it:

print @sound{"cat", "goldfish", "dog", "dolphin"};

This is called a hash slice, and it’s analogous to the array slice notation described earlier. Instead
of putting a single key in the curly braces, a list of keys is specified.7 The slice’s prefix is @, not
$ or %, because the result is a list, not a single scalar or a hash. 

As with an array slice, the list produced by a hash slice may be the target of an assignment:

@sound{"mouse", "bird"} = ("arriba!", "itortitawapuddytat");

This causes the "mouse" and "bird" entries in the original hash to be assigned the corre-
sponding elements of the list or array.

2.1.4 Subroutines

A subroutine is a small, user-defined, self-contained subprogram. Like Perl’s built-in functions,
a subroutine is invoked by name and may have arguments passed to it. A subroutine may
return a scalar or list value.

Subroutines are defined using the sub keyword, followed by the subroutine code in curly
braces:

sub dictionary_order
{

@ordered = sort @_;
return @ordered;

}

7 Because the list of keys is not a single identifier, the keys are not automatically stringified within the
curly braces. Instead, they must be explicitly quoted, often with the qw operator:
@sound{ qw(cat goldfish dog dolphin) }
28 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



The arguments passed to the subroutine are available within its code block via the special
@_ array. The built-in function return causes execution of the subroutine to finish immedi-
ately and the value specified after the return to be returned as the result. Using a return is
optional in a subroutine. If none is specified, the subroutine automatically returns the value
of the last statement it actually executed.

Subroutines are called by specifying their name, followed by a list of arguments:

@sorted = dictionary_order ("eat", "at", "Joes");
@sorted = dictionary_order (@unsorted);
@sorted = dictionary_order (@sheep, @goats, "shepherd", $goatherd);

Just like any other list, if the argument list has nested lists or arrays, they are “flattened.”
Therefore, at the start of the third call to dictionary_order, @_ would contain the contents
of the array @sheep, followed by the contents of @goats, the value "shepherd", and, finally,
the scalar value stored in $goatherd. It is possible to pass two or more arrays to a subroutine
and keep them “unflattened” (see Passing subroutine arguments as explicit references later in this
chapter). If the subroutine does not require arguments, it can be called with an empty
argument list. The list can also be omitted completely as long as Perl already knows it’s a
subroutine:

sub get_next { return <> }

prompt();# always okay
$next = get_next();# always okay

prompt;# error: hasn't seen definition yet
$next = get_next;# okay: get_next definition already seen

sub prompt { print "next> " }

Like variables, subroutines have a leading symbol that indicates what they are. The “for-
mal” name of a subroutine has an ampersand (&) prefix, which may be used when calling it

@sorted = &dictionary_order("eat", "at", "Joes");

and must be used in certain other contexts (see References below). However, it can’t be used
when defining the subroutine:

sub &dictionary_order# Fatal compile-time error!
{

return sort @_;
}

Because a subroutine’s arguments are passed to it in the special array @_, and because all
arrays in Perl are dynamically sized, any subroutine may be passed any number of arguments.8

Hence, the dictionary_order subroutine shown above can be given as many arguments as
required. Similarly, we could write a generic maximum function for numeric values:

8 Subroutine prototypes can be used to limit the number of arguments that can be passed to a subrou-
tine. See the section on Prototypes below.
ESSENTIAL PERL 29



sub max
{

$max = shift @_;# assume the first arg is the largest
foreach $candidate ( @_ )# for the rest…
{

$max = $candidate#   replace the current largest
if $max < $candidate;#   if some other is bigger

}
return $max;

}

Other ways to call a subroutine
Subroutines that have been defined earlier in a program may also be called without parenthe-
ses around the argument list:

sub make_sequence # args: (from, to, step_size)
{

@list = ();
for ($n = $_[0]; $n < $_[1]; $n+=$_[2])
{

push @list, $n;
}
return @list

}

# then later…

@stepped_sequence = make_sequence $min, $max, $step_size;

Another way to call a subroutine is to use its & prefix but provide no argument list. Such
a subroutine call has the contents of the current @_ array passed to it instead. This is most often
used to call subroutines from within other subroutines. To surround an existing subroutine—
for example, one called inverse—with pre- and post-conditions, we could write the
following:

sub checked_inverse
{

die "can't invert 0" if $_[0] == 0;# pre-condition
$inv = &inverse;# call &inverse with same args
die "inversion failed" unless $inv*$_[0]==1;# post-condition
return $inv;

}

This means there is a subtle difference between

&checked_inverse;# means checked_inverse(@_); 

and:

checked_inverse;# means checked_inverse(); 

A final variation on calling a subroutine also uses the & prefix, but invokes the subroutine
with a goto as well:

goto &inverse;
30 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



This version acts like the previous no-argument inverse call in that it automatically passes
the current contents of @_ to the invoked subroutine. But this version differs in that it doesn’t
call the inverse subroutine and then return to the next statement after the call. Instead,
goto &inverse replaces the call to the current subroutine with a call to inverse. For exam-
ple, if we only wanted a precondition on inverse, we could write:

sub checked_inverse
{

die "can't invert 0" if $_[0] == 0;# pre-condition
goto &inverse;# become a call to &inverse

# (using the current arg list)
}

This special form of subroutine call is used mainly in autoloaded subroutines (see section
2.2.2 ).

Named arguments
Suppose we want to implement a subroutine called listdir that provides the functionality
of our operating system’s directory listing command (i.e., dir or ls). Such a subroutine might
take arguments specifying which files to list, what type of files to consider, whether to list hid-
den files, what details of each file should be reported, whether files and directories should be
listed separately, how to sort the listing, whether directories should be listed recursively, how
many columns to use, and whether the output should be paged or just dumped.

But we certainly don’t want to have to specify every one of those nine parameters every
time we call listdir:

listdir("*", "any", 1, 1, 0, 0, "alpha", 4, 1);

Even if we arranged things so that specifying an undefined value for an argument selects a
default behavior for that argument, the call is no easier to code and no more readable:

listdir(undef, undef, 1, 1, undef, undef, undef, 4, 1);

Some programming languages provide a mechanism for naming the arguments passed to
a subroutine. This facility is especially useful when implementing a subroutine like listdir,
where there are many potential parameters, but only a few of them may be needed for a par-
ticular call.

Perl supports named arguments in a cunning way. If we pretend that a particular sub-
routine takes a hash, rather than a list, we can use the => operator to associate a name with
each argument. For example

listdir(cols=>4, page=>1, hidden=>1, sep_dirs=>1);

Inside the subroutine, we simply initialize a hash with the resulting contents of the @_ ar-
ray. We can access the arguments by name, using each name as the key to an entry in the hash.
For example, we can define listdir like so:

sub listdir
{

%arg = @_;# Convert argument list to hash

# Use defaults for missing arguments…
ESSENTIAL PERL 31



$arg{match} = "*"unless exists $arg{match};
$arg{cols}  = 1unless exists $arg{cols};
# etc.

# Use arguments to control behaviour…
@files = get_files( $arg{match} );
push @files, get_hidden_files() if $arg{hidden};
# etc.

}

Apart from documenting the call better, this approach has another important advantage.
Since the entries of a hash can be initialized in any convenient order, we no longer need to re-
member the order of the nine potential arguments, as long as we remember their names. 

In addition, because hashes are flattened inside lists, if we have several calls that require
the same subset of arguments, we can store that subset in a separate hash and reuse it:

%std_listing = (cols=>2, page=>1, sort_by=>"date");

listdir(file=>"*.txt", %std_listing);
listdir(file=>"*.log", %std_listing);
listdir(file=>"*.dat", %std_listing);

We can even override specific elements of the standard set of arguments, by placing an
explicit version after the standard set. Then the explicit version will reinitialize (i.e., overwrite)
the corresponding entry in the hash:

listdir(file=>"*.exe", %std_listing, sort_by=>"size");

This idea of a standard argument set, overridden by explicitly specified arguments, can
also be used within the subroutine to simplify the handling of default values. For example:

sub listdir
{

%defaults = (match=>"*", cols=>1, sort_by=>"name");
%arg = (%defaults, @_); 

# Use arguments to control behaviour…
# etc.

}

In this version, the default values are stored in the %defaults hash, and are then flat-
tened into the list used to initialize the %arg hash. The default values appear first in the ini-
tializer list. Any entry of the same name passed in via @_ will therefore overwrite the
corresponding entry in %arg, replacing the default value with the user-specified one. As a final
optimization, the default hash could be moved outside listdir, so that it need only be ini-
tialized once, before the program runs, rather than each time listdir is called:

%defaults = (match=>"*", cols=>1, sort_by=>"name");

sub listdir
{

%arg = (%defaults, @_); 
# etc.

}

32 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



Aliasing of parameters
Elements of the @_ array are special in that they are not copies of the actual arguments of the
function call. Rather they are aliases for those arguments. That means that if values are
assigned to $_[0], $_[1], $_[2], etc., each value is actually assigned to the corresponding argu-
ment with which the current subroutine was invoked. For example, the following subroutine
increments its first argument each time it’s called, but keeps the result less than 10 at all times. 

sub cyclic_incr
{

$_[0] = ($_[0]+1) % 10;
}

It would be called like this:

$next_digit = 8;
print $next_digit;# prints: 8

cyclic_incr($next_digit);
print $next_digit; # prints: 9

cyclic_incr($next_digit);
print $next_digit; # prints: 0

Attempting to call such a subroutine with an unmodifiable value:

cyclic_incr(7);

would provoke a fatal run-time error.
This aliasing behavior is useful when you need it, but can introduce subtle bugs if you

trip it unintentionally. Therefore, if you don’t intend to change the values of the original ar-
guments, it’s usually a good idea to explicitly copy the @_array into a set of variables, to avoid
“accidents”:

sub next_cyclic
{

($number,$modulus) = @_;
$number = ($number+1) % $modulus;
return $number;

}

Apart from protecting the original arguments from unintended modification, this ap-
proach has an added advantage: Provided the variable names are well-chosen, they document
the number and purpose of the expected arguments and make the code of the subroutine more
readable as well. 

Of course, this approach can lead to other unexpected side effects, since the variables
$number and $modulus used above are global variables. A safer approach is to use the my key-
word to restrict the variables to the subroutine (see Lexical variables below).

Calling context
When a subroutine is called, it’s possible to detect whether it was expected to return a scalar
value, or a list, or nothing at all. These possibilities define three contexts in which a subroutine
may be called. For example:
ESSENTIAL PERL 33



listdir(@files);# void context: no return value expected

$listed = listdir(@files);# scalar context: scalar return value expected

@missing = listdir(@files);# list context: list return value expected
($f1,$f2) = listdir(@files);# list context: list return value expected
print( listdir(@files) );# list context: list return value expected

This information may be obtained via a call to the built-in wantarray function. This
function returns:

• undef (i.e., false and undefined) if the current subroutine was not expected to return a
value,

• "" (i.e., false but defined) if it was expected to return a scalar,
• 1 (i.e., true and defined) if it was expected to return a list. 

We could use this information to select the appropriate form of return statement (and
perhaps optimize for cases where the return value would not be used). For example

sub listdir
{

# Do file listing, and then:

return @missing_files if wantarray();
return $listed_count if defined(wantarray());

}

When it’s time to return, the listdir subroutine first checks to see if the value returned
by wantarray is true, indicating that a list of values is required. If so, it returns the contents
of a particular array. Otherwise, the subroutine checks whether the false value returned by
wantarray is nevertheless defined, indicating a scalar value is required. If so, it returns the
contents of a scalar variable. If neither of those cases is true, the value returned by wantarray
must have been undef, so the subroutine allows itself to return without a value, by reaching
the end of its block. If the subroutine is always supposed to return a value, we could issue a
warning whenever that return value is ignored:

use Carp;

sub listdir
{

# Do file listing, and then:

return @missing_files if wantarray;
return $listed_count if defined(wantarray);
carp "subroutine &listdir was called in void context";

}

We use Carp::carp subroutine, instead of the built-in warn function, so that the warn-
ing reports the location of the call to listdir, instead of the location within listdir at
which the error was actually detected.
34 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



Determining a subroutine’s caller
The Carp module is useful because it reports the location of a subroutine’s caller, rather than
the location of the subroutine’s code. Sometimes, it can also be useful to have access to that
sort of information within a program. For example, to improve debugging, we might wish to
track where particular data was initialized (see chapter 9). Or to enhance modularity, we
might want to allow access to certain data only to code from a single source file (see chapter
11). 

Unlike most languages, Perl makes it easy to determine where a subroutine was called.
The built-in caller function returns a list of values9 indicating:

[0] the package (see Packages below) from which the current subroutine was called,

[1] the name of the file containing the code that called the current subroutine,

[2] the line in that file from which the current subroutine was called.

If caller is called in a scalar context (i.e., $calling_package = caller()), then
only the first element is returned.

Therefore, when initializing some simulation data, we could determine the file and line
at which the initialization subroutine was actually called and record that as part of the data:

sub initial_sample
{

($reaction_rate, $temperature, $pressure) = @_;
($package, $file, $line) = caller();
%state =(

rate=> $reaction_rate,
temp=> $temperature,
pres=> $pressure,
_trail=> "init ($file:$line)",

);
}

The "_trail" entry in the hash has nothing to do with the thermodynamics of the sim-
ulation, but is included so that, if something goes wrong, we can easily track down where the
errant data originated. Other subroutines that modify the data might update the "_trail"
entry, so that a full bit-trail is always available. For example

sub catalyse
{

($catalyst, $rate_multiplier) = @_;
($package, $file, $line) = caller();
$state{rate} *= $rate_multiplier;
$state{catalyst} = $catalyst;
$state{_trail} .= ", catalysed ($file:$line)";

}

If caller is called in a list context with an integer argument, then it returns some addi-
tional information:

9 The numbers indicate the index at which each datum is returned in the list.
ESSENTIAL PERL 35



[3] the name of the subroutine,

[4] whether the subroutine was passed arguments,

[5] the context in which the subroutine was called (the value returned by wantarray),

[6] the actual source code that called the subroutine (but only if the call was part of an eval
TEXT statement),

[7] whether the subroutine was called as part of a require or use statement.

The above descriptions deliberately don’t say “…the current subroutine…”, because the
integer argument passed to caller determines which particular subroutine is reported on. If
the argument is zero, then the information returned refers to the current subroutine (i.e., which
file and line it was called from, its name, whether it was passed arguments, etc.) If the argument
is 1, then the immediate caller of the current subroutine is reported on (i.e., what was the caller
of the caller of the current subroutine). If the argument was 2, then the caller of the caller of
the caller of the current subroutine is reported; and so on up the hierarchy of calls for ever larger
integer arguments.10 

Chapter 11 illustrates another use for the information returned by caller, namely to en-
able the Tie::SecureHash module to enforce the encapsulation of attributes within certain
packages and source files.

Prototypes
Subroutines can also be declared with a prototype, which is a series of specifiers that tells the
compiler to restrict the type and number of arguments with which the subroutine may be
invoked. For example, in the subroutine definition

sub insensitive_less_than ($$)
{

return lc($_[0]) lt lc($_[1]);
}

the prototype is ($$) and specifies that the subroutine insensitive_less_than can only
be called with exactly two arguments, each of which will be treated as a scalar—even if it’s
actually an array!11 The full range of specifiers allowed in a prototype, and their various mean-
ings, are described in the perlsub documentation. 

Prototypes are only enforced when a subroutine is called using the name(args) syntax.
Prototypes are not enforced when a subroutine is called with a leading & or through a subrou-
tine reference (see References and referents below). Chapter 3 explains why they are also ignored
when an object method is called. 

10 If you try to look too far up the hierarchy, beyond the primordial subroutine call at the top level of the
program, caller just returns an empty list.

11 In other words, a $ prototype causes the corresponding argument to be evaluated in a scalar context.
That means, for example, that a call like insensitive_less_than(@a,@b) will treat @a and @b
as scalars. The two values passed to insensitive_less_than will be the lengths of @a and @b
respectively, not their contents. This kind of introduced subtlety is a good reason to avoid using a pro-
totype, unless you’re very confident that you know its full consequences.
36 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



2.1.5 References and referents

Sometimes, it’s important to be able to indirectly access a variable, a subroutine, or a value.
That is, occasionally, it’s important to be able to refer to something in a general way, rather
than directly using its name. 

To this end, Perl provides a special scalar datatype called a reference. A reference is like
the traditional Zen idea of the “finger pointing at the moon.” The finger (reference) isn’t the
moon (the variable, function, or value), merely a means of locating it.

To create a reference to an existing variable or value we use the unary \ operator, which
takes a variable or value and returns a reference to it. The original variable or value is then
known as the referent to which the reference refers.

For example, if $s is a scalar variable, then \$s is a reference to that scalar variable—or
a finger pointing at it. Likewise, if &s is a subroutine, \&s is a reference to that subroutine.
You can also take references to arrays, hashes, and typeglobs (see Typeglobs below).

Any of these types of references can be stored in a scalar variable. For example:

$slr_ref = \$s; # scalar $slr_ref now stores a reference to scalar $s
$arr_ref = \@a; # scalar $arr_ref now stores a reference to array @a
$hsh_ref = \%h; # scalar $hsh_ref now stores a reference to hash %h
$sub_ref = \&s; # scalar $sub_ref now stores a reference to subroutine &s

Figure 2.1 shows the relationships produced by those assignments.
Once we have a reference, we can get back to the original thing it refers to by simply pre-

fixing the reference (optionally in curly braces) with the appropriate symbol. So, to refer to $s,
we write ${\$s} or $$slr_ref or ${$slr_ref}. Likewise, we can access @a as @{$arr_
ref}, %h as %{$hsh_ref}, or &s as &$sub_ref. If we attempt to prefix a reference with the
wrong symbol—for example: @{$sub_ref}—Perl produces a fatal run-time error.

$s

“cargo”

$slr_ref

@a

1.61803 3.14159 2.71828 9.80665

$arr_ref

“une” 1

“trois” 3

“deux” 2

%h
$hsh_ref

$sub_ref

&s

use Lingua::EN::Inflect "inflect";

$n=99;

print inflect<<BURP while $n;

NO(bottle of beer,$n) on the wall,

NO(bottle of beer,$n)!

Take one down, pass it around,

NO(bottle of beer,@{[--$n]}) on the wall.

BURP

Figure 2.1 References and referents
ESSENTIAL PERL 37



The arrow operator
Accessing the elements of an array or a hash through a reference can be awkward using the
syntax shown above:

$a[0] = ${$hsh_ref}{"first"};# i.e. $a[0] = $h{"first"}

# or…

${$arr_ref}[0] = $h{"first"};# i.e. $a[0] = $h{"first"}

so Perl provides a little extra syntax to make life less cluttered:

$a[0] = $hsh_ref->{"first"};# i.e. $a[0] = $h{"first"}

# or…

$arr_ref->[0] = $h{"first"};# i.e. $a[0] = $h{"first"}

The arrow operator (->) takes a reference on its left and either an array index (in square
brackets) or a hash key (in curly braces) on its right. It locates the array or hash that the ref-
erence refers to, and then accesses the appropriate element of it. 

The arrow operator can also be applied to subroutine references, so instead of writing:

&{$sub_ref}($arg1, $arg2, $etc);#i.e. s($args1, $arg2, $etc)

we can write

$sub_ref->($arg1, $arg2, $etc); #i.e. s($args1, $arg2, $etc)

Identifying a referent
Because a scalar variable can store a reference to any kind of data, and dereferencing a refer-
ence with the wrong prefix leads to fatal errors, it’s sometimes convenient to be able to deter-
mine the type of referent to which a specific reference refers. Perl provides a built-in function
called ref that takes a scalar, such as $slr_ref, and returns a description of the kind of ref-
erence it contains. Table 2.1 summarizes the string that is returned for each type of reference.

Table 2.1 What ref returns

If $slr_ref contains… then ref($slr_ref) returns…

a scalar value undef

a reference to a scalar "SCALAR"

a reference to an array "ARRAY"

a reference to a hash "HASH"

a reference to a subroutine "CODE"

a reference to a filehandle "IO" or "IO::Handle"

a reference to a typeglob "GLOB"

a reference to a precompiled pattern "Regexp"

a reference to another reference "REF"
38 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



The ref function can be used to improve error messages,

die "Expected scalar reference" unless ref($slr_ref) eq "SCALAR";

or to allow a subroutine to automatically dereference any arguments that might be references:

sub trace
{

($prefix, @args) = @_;
foreach $arg ( @args )
{

if (ref($arg) eq 'SCALAR'){ print $prefix, ${$arg} }
elsif (ref($arg) eq 'ARRAY'){ print $prefix, @{$arg} }
elsif (ref($arg) eq 'HASH'){ print $prefix, %{$arg} }
else{ print $prefix, $arg }

}
}

If a reference is used in a context where a string is expected, then the ref function is called
automatically to produce a string, and a unique hexadecimal value representing the internal
memory address of the referent is appended. That means that printing out a reference

print $hsh_ref, "\n";

produces something like:

HASH(0x10027588)

since each element of print’s argument list is stringified before printing.
The ref function has a vital additional role in object-oriented Perl, where it can be used

to identify the class to which a particular object belongs (see chapter 3).

References and anonymous arrays
References are particularly useful in creating multidimensional data structures. As we saw ear-
lier, nested lists are automatically flattened, so trying to build a list of lists doesn’t work:

@table =(
( 1, 2, 3),
( 2, 4, 6),
( 3, 6, 9),

);

This fails to have the desired effect because flattening makes the above equivalent to:

@table = (1,2,3,2,4,6,3,6,9);

Fortunately, each element in a Perl array can store any kind of scalar value. Since a ref-
erence is just a special kind of scalar, it’s possible to write:

@row1 = ( 1, 2, 3);
@row2 = ( 2, 4, 6);
@row3 = ( 3, 6, 9);
 
@cols = (\@row1,\@row2,\@row3);

$table = \@cols;
ESSENTIAL PERL 39



Figure 2.2 illustrates the structure that has been set up.
Now, elements in the “row” arrays can be accessed using the arrow notation:

print "2 x 3 is ", $table->[1]->[2];

The $table->[1] bit means: find the array referred to by the reference in $table (i.e., @cols),
then get the element at index 1. That element stores another reference (a reference to @row2).
The final ->[2] bit means: find the array referred to by $table->[1] (i.e., @row2), then get
the element at index 2. Figure 2.3 illustrates the full path taken through the data structure.

Of course, tables like this are very popular, so Perl provides some syntactic assistance. If
we specify a list of values in square brackets instead of parentheses, the result is not a list, but
a reference to a nameless (or anonymous) array. That array is automatically initialized to the
specified values. Using this syntax we can replace the table set-up code with the following:

$table

@row1

1 2 3

@row2

2 4 6

@row3

3 6 9

@cols
[0] [1] [2]

[0] [1] [2]

[0] [1] [2]

[0]

[1]

[2]

Figure 2.2 Internal structure of a 2D table

$table

@row1

1 2 3

@row2

2 4 6

@row3

3 6 9

@cols
[0] [1] [2]

[0] [1] [2]

[0] [1] [2]

[0]

[1]

[2]

Figure 2.3 Traversing the internal structure of a 2D table
40 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



$row1_ref = [ 1, 2, 3];
$row2_ref = [ 2, 4, 6];
$row3_ref = [ 3, 6, 9];
 
$table = [$row1_ref, $row2_ref, $row3_ref];

Better still, we can eliminate the $row… variables entirely, by nesting sets of square brackets:

my $table =
[

[ 1, 2, 3],
[ 2, 4, 6],
[ 3, 6, 9],

];

This results in the data structure shown in figure 2.4. That data structure is identical to
the structure shown in figure 2.2 except that the various arrays are now nameless and, there-
fore, only accessible via the reference in $table.

As a final piece of syntactic assistance, in any expression like:

print $table->[$x]->[$y];

each arrow between a closing square or curly bracket and an opening square or curly bracket is
optional. So we can write:

print $table->[$x][$y];

References and anonymous hashes
It’s also possible to create references to anonymous hashes by replacing the parentheses of a
hash-like list:

%association = ( cat=>"nap", dog=>"gone", mouse=>"ball" );

with curly braces:

$association = { cat=>"nap", dog=>"gone", mouse=>"ball" };

Like the […] array constructor, the {…} hash constructor returns a reference, which must be
assigned to a scalar variable ($association), not to a hash (%association).

Access to the resulting anonymous hash is only possible through the returned reference:

print "When I say 'cat', you say…", $association->{cat};

We can even create multilevel hashes, by nesting anonymous hash references:

$behaviour = 
{

cat => { nap => "lap", eat => "meat" },
dog => { prowl => "growl", pool => "drool" },
mouse => { nibble => "kibble" },

};

Here again, accessing the data requires a chain of arrow operators:

print "A cat eats ", $behaviour->{cat}->{eat};

And, as with multidimensional arrays, any arrows after the first can be omitted:

print "A mouse nibbles ", $behaviour->{mouse}{nibble};
ESSENTIAL PERL 41



Anonymous subroutine references
In addition to anonymous arrays and hashes, anonymous subroutines can be created by using
the sub keyword without giving a subroutine name:

sub { print "Heeeeeeeeere's $_[0]!\n" };

Of course, by itself such a declaration is useless, since there’s no way of actually calling
such a nameless subroutine. Fortunately, when sub is used in this way, it returns a reference
to the anonymous subroutine it just created. If we cache that reference in a scalar:

$sub_ref = sub { print "Heeeeeeeeere's $_[0]!\n" };

we can then use it to call the original subroutine, via the arrow notation:

$sub_ref->("looking at you, kid");

The need for anonymous subroutines doesn’t crop up very often in regular Perl program-
ming, but they are surprisingly useful in object-oriented Perl. The section on Closures below
explains their relationship with the object-oriented concept of encapsulation. Chapters 5 and
11 explain how anonymous subroutines can be used as the basis for special types of objects.

Passing subroutine arguments as explicit references
References also provide a means of passing unflattened arrays or hashes into subroutines. Sup-
pose we want to write a subroutine called insert, to insert a value into a sorted array of val-
ues, so that the ordering of the array is preserved. We can’t call this subroutine in the obvious
way:

insert(@ordered, $next_val);

because normal list flattening will squash the contents of @ordered and the value of $next_
val into a single list (i.e., @_). Then there would be no way within the subroutine to access
@ordered itself in order to insert the new element.12 

Instead, we could set up insert so that it expected a reference to the array as its first
argument:

$table

1 2 3

2 4 6

3 6 9

[0] [1] [2]

[0] [1] [2]

[0] [1] [2]

[0]

[1]

[2]

Figure 2.4 The internal structure of another 2D table
42 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



sub insert
{

($arr_ref, $new_val) = @_;
@{$arr_ref} = sort {$a<=>$b} (@{$arr_ref}, $new_val);# numerical sort

}

We could then call it like so:

insert(\@ordered, $next_val);

Now, within insert, we can dereference the array reference (@{$arr_ref}), to direct-
ly access the original array that $arr_ref refers to (e.g., @ordered). Consequently, any
changes made to @{$arr_ref} will change that original array.

2.1.6 Packages

In the cult movie The Adventures of Buckaroo Banzai across the 8th Dimension,13 the alien Lec-
troids don’t quite understand the human concept of names. Consequently, every one of them
is called John. The same problem arises when programming: we’d all like to use the “popular”
variable and subroutine names such as $file, @options, &create, $John, %John, &John,
and so forth. But, if we did, there would be no way to reuse other people’s code, since they’d
be using those variable names too, almost certainly for incompatible purposes.

The Lectroids solved the problem by given everyone a unique family name: John Whor-
fin, John Bigboote, John Yaya, John Emdall, John Parker, and so forth. Perl solves the problem
in exactly the same way. Each named variable14 and each named subroutine belongs to a par-
ticular family, known as a package. Each package maintains its own distinct symbol table, or
namespace. Two different packages may each have distinct variables or subroutines of the same
name in their respective namespaces.

By default, Perl assumes that code is written in the namespace of the main package, but
you can change that default at any time using the package keyword. A package declaration
changes the namespace until another package declaration is encountered, or until the end of
the current enclosing block, eval, subroutine, or file. For example, the following code:

sub call 
{

($sub_ref, @args) = @_;
$sub_ref->(@args);

}

package Telephone;
sub call
{

if (dial()) { talk(); }
}

12 The normal aliasing of @_ to the subroutine’s arguments doesn’t help in this case. Each scalar element
of the @ordered array is aliased to the corresponding element in @_, but the @ordered array itself
isn’t aliased to anything.

13 Vestron Video, 1984.
14 Except variables that are declared "lexical" (see below).
ESSENTIAL PERL 43



package Poker;

sub call
{

$pot += $_[0];
compare_hands();

}

declares three completely distinct subroutines named call. The first call is defined in the
main namespace, the second in the namespace Telephone, and the last in the Poker
namespace. If we then returned to the main namespace and wrote:

package main;

call($callback_sub);

the first version of call would be invoked, since it’s the one that belongs to the current pack-
age at the point of invocation. If we meant to invoke the call subroutine defined in the
Telephone package, we’d either have to switch back to that package

package Telephone;

call("1-800-BLAQ-LECTROID");

or prefix the subroutine name with the name of its package, separating the two with a double
colon (::) :

package main;

Telephone::call("1800-BLAQ-LECTROID");# i.e. &call in package Telephone

Poker::call(0.50);# i.e. &call in package Poker

main::call($timeout_sub);# i.e. &call in package main
call($timeout_sub);# i.e. &call in current package

This second solution is like referring to someone who is not present by their full name,
to distinguish them from someone with the same name who’s currently in the room: “Tell me
John, did you ever meet John Glenn or John Kennedy?”

Package names can have multiple parts, as surnames sometimes do, with each part sepa-
rated by a double colon:

package Telephone::Mobile;

sub call
{

if ( signal() && dial() ) { talk() }
}

package Poker::Saloon::Traditional;
sub call
{

&Poker::call; # Call &Poker::call with same args
accuse();
draw();
44 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



shoot();
die;

}

The fact that the packages Telephone and Telephone::Mobile share the initial part
of their names doesn’t imply any hierarchical connection between them. In particular, Tele-
phone::Mobile is not, in any important sense,15 a “subpackage of…” or “located inside…”
the Telephone package.16

Package variables
Perl variables come in two flavors: package variables and lexical variables. They look and act
much the same, but there are fundamental differences between them.

As the name suggests, each package variable belongs to a package—normally, the current
one. Package variables are the ones that casual Perl programmers use most of the time. They’re
the standard, no-preparation-necessary, ready-to-serve, instant variables frequently used in
small throw-away programs:

for ($i=0; $i<100; $i++)
{

$time = localtime();
print "$i at $time\n";

}
print "last time was: $time\n";
print "last index was: $ i\n";

Here, the variables $time and $i are both package variables. They are created automat-
ically the first time they’re referred to and continue to exist until the end of the program. They
belong to the current package.

Whenever it’s necessary to make a package variable’s ownership explicit, its “personal”
name can be prefixed with the name of its package, just as subroutine names were in the pre-
vious section. 

Package variables belonging to packages other than the current package are not accessible
unless you use their fully qualified name. For example, this code:

package main;

for ($i=0; $i<100; $i++)
{

$Other_package::time = localtime();
print "$i at $Other_package::time\n";

}

15 In a purely technical sense, there is a reference to the symbol table of Telephone::Mobile inside the
symbol table of Telephone, but if that sense ever becomes important to you, you’ll be far beyond such
minor semantic quibbles.

16 Mark-Jason Dominus gave the clearest explanation of this nonnesting of packages in his “Just the
FAQs” column in issue #12 of The Perl Journal, when he pointed out that Sir Isaac Newton
(Newton::Isaac) is not related to Olivia Newton-John (Newton::John::Olivia).
ESSENTIAL PERL 45



package Other_package;
print "last time was: $time\n";
print "last index was: $main::i\n";

uses the package variable $time belonging to the package called Other_package, and the
package variable $i belonging to the main package. Within their home packages, they can be
referred to directly; elsewhere, you have to give their package name as well.

The package name prefix always comes after the leading symbol. That is, you write
$Other_package::time, not Other_package::$time.

Lexical variables
The other type of variable is a lexical variable. Unlike package variables, lexicals have to be
explicitly declared, using the my keyword:

package main;

my $i;

for ($i=0; $i<100; $i++)
{

my $time = localtime();
print "$i at $time\n";

}

Lexical variables differ from package variables in three important respects:

• They don’t belong to any package, so you can’t prefix them with a package name.
• They are only directly accessible within the physical boundaries of the code block or file

scope in which they’re declared. In the code above, $time is only accessible to code phys-
ically located inside the for loop and not to code called during or after that loop.

• They usually cease to exist each time the program leaves the code block in which they
were declared. In the code above, the variable $time ceases to exist at the end of each
iteration of the for loop (and is recreated at the beginning of the next iteration).

It may help to think of the two types of variables—package and lexical—in the way the
Ancient Greeks thought of their gods. Ancient Greece had big general-purpose gods like Ura-
nus, Zeus, Aphrodite, and Atropos, who existed for all time and could appear anywhere with-
out warning. These are analogous to package variables.17

Then there were the small, specialized gods like the spirits of trees, or doorsteps, or
hearths. These gods were restricted to a well-defined domain—a tree, a building, the fire-
place—and existed only for a specific period—the life of the tree, the occupation of the build-
ing, the duration of a fire. These are like lexical variables: localized and transient.

Generally speaking, package variables are fine for very short programs, but cause problems
in larger code. Because package variables are accessible throughout the program source, changes
made at one point in the code can unexpectedly affect the program’s behavior elsewhere. The
typical example is something like this:

17 The big Greek gods even came in “packages”: $Titans::Uranus, $Olympians::Zeus, $Olym-
pians::Aphrodite, $Fates::Atropos.
46 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



package Recipe;

sub print_recipes
{

for ($i=0; $i<@_; $i++)
{

print_ingredients($_[$i]);
print_directions($_[$i]);

}
}

sub print_ingredients
{

for ($i=0; $i<$#recipes; $i++)
{

print $_[0]->{ingredients}[$i], "\n";
}

}

The problem is that $i is a package variable, since it’s not predeclared as a lexical with a
my. That means that the subroutines Recipe::print_recipes and Recipe::print_in-
gredients both use the same package variable, $Recipe::i, in their respective for loops.
So after Recipe::print_ingredients has been called from within Recipe::print_rec-
ipe, $Recipe::i will no longer contain the index of the current recipe. Instead, it will con-
tain a number one greater than the number of ingredients of the current recipe, since that’s
the value left in it by the for loop in Recipe::print_ingredients.

If we’d use lexical variables instead:

package Recipe;
sub print_recipes
{

for (my $i=0; $i<@_; $i++)
{

print_ingredients($_[$i]);
print_directions($_[$i]);

}
}

sub print_ingredients
{

for (my $i=0; $i<@_; $i++)
{

print $_[0]->{ingredients}[$i], "\n";
}

}

there would be no unexpected interaction between the two subroutines.18 Each lexical $i is
distinct, unrelated to any other lexical $i or to the package variable $Recipe::i, for that
matter. Most importantly, each lexical is confined to the body of the for loop in which it’s
declared.

18 An interaction of this kind between subroutines is known as coupling, and just as in real life, it can cause
no end of difficulties.
ESSENTIAL PERL 47



The only problem is that, in Perl, lexical variables and package variables look the same,
and since package variables can be conjured into existence just by mentioning them, this sim-
ilarity can lead to subtle difficulties. For example, if we added an extra statement to the end
of the loop timer shown earlier:

package main;

my $i;
for ($i=0; $i<100; $i++)
{

my $time = localtime();
print "$i at $time\n";

}
print "last time was: [$time]\n";

we’d find that the last line printed was
last time was: []

Because the lexical variable $time exists only inside the for loop, Perl assumes that when
we referred to $time outside the loop, we meant the (undefined) package variable
$main::time. This problem doesn’t arise if you always put a use strict at the start of your
code, because use strict requires that all package variables be fully qualified (to avoid just
this kind of confusion).

Reference counting
Lexical variables normally cease to exist at the end of the block or file in which they’re
declared, but not always. The rule is that a lexical is destroyed at the end of its block unless
some other part of the program still has a reference to it. In that case it continues to exist until
that reference disappears.

For example, consider a subroutine that returns a reference to a lexical array:

sub make_array_ref
{

my @array = @_;
return \@array;

}

# and later…

$arr_ref = make_array_ref(1,2,3,4,5);

Normally, the lexical @array would be destroyed when the make_array_ref subrou-
tine ended, but, in this case, the code that called make_array_ref receives a reference to that
lexical. Because the lexical array variable is now accessible through $arr_ref, Perl arranges for
the lexical to “survive” the end of its original scope.19 Indeed, the lexical continues to survive
until no more references to it exist anywhere in the program.

19 Perl’s behavior in this regard is very different from that of many statically typed OO languages (e.g.,
Ada or C++), where returning a reference, or pointer, to a variable declared within a subroutine is a
Very Bad Thing.
48 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



For example, if we were to subsequently reassign $arr_ref:

$arr_ref = "something else";

then the reference to @array is replaced, causing the last reference to @array to be lost.
When that happens, Perl finally destroys that lexical variable.

This behavior is called reference counting because each lexical has a count associated with
it, telling Perl how many references to it exist. Each time another reference to the lexical is cre-
ated, the count goes up; each time a reference disappears, the count goes down. Each time the
count goes down, Perl checks to see if it hit zero, in which case the variable is destroyed.

You may have noticed that the make_array_ref subroutine shown above is a hand-built
equivalent of the standard Perl anonymous array constructor. That is:

$arr_ref = make_array_ref(1,2,3,4,5);

is exactly the same as:

$arr_ref = [1,2,3,4,5];

It’s probably no surprise therefore that anonymous arrays and hashes are also subject to
reference counting and, like lexicals, will vanish automatically when the last reference to them
ceases to exist. 

Localized variables
Just to muddy the waters a little more, Perl has another way of imposing a limited scope on a
variable. 

The local function takes package variables—but not lexicals—and temporarily replaces
their value. Thereafter, any reference to that package variable anywhere in the program accesses
that new temporary value. The original value (that is, the value before the call to local) is only
restored when execution reaches the end of the block in which the replacement was originally
made. Figure 2.5 illustrates the idea.

For example, if we write:

package main;

$myname = "Damian";
print $myname;

if (secret_identity())
{

local $myname = "OOP-erman";
print $myname;

protect_innocent_attributes();
dispatch_evil_methods();

}

print $myname;

then:
ESSENTIAL PERL 49



• The first print statement would print “Damian” (since that’s the value assigned to the
package variable $main::myname at the time),

• The second print would produce “OOP-erman” (since the call to local temporarily
replaces the value of $main::myname within the if block),

• The third print would output “Damian” again (since the temporary replacement caused
by local ceases at the end of the block containing the call to local).

In addition, if either of the subroutines protect_innocent_attributes or
dispatch_evil_methods ever refers to the package variable $myname, perhaps as
$main::myname, the subroutine will access the replacement value, not the original value.
That’s because, when the subroutine is called, the temporary replacement of $main::myname
is still in effect. Execution hasn’t yet reached the end of the if block from which the subroutine
was called.

It’s important to be clear about the difference between my and local. The my qualifier
creates a new lexical variable, accessible by name only in the current block and not directly ac-
cessible in any subroutines called by the current block. Using local temporarily replaces an ex-
isting package variable, still accessible by name anywhere, including in subroutines called by
the current block. 

In other words, lexical variables are restricted to the spatial (syntactic) boundaries of the
block in which their my is specified, while localized package variables are restricted to the
temporal (execution) boundaries of the block in which their local is called.

If you want a variable with a limited scope—and no nasty surprises when distant and un-
related code messes with its value—you want my. If you want to temporarily change the value

$var = "first";

for (1..100)
{
   local $var = 1.00001;
   

   if ($condition)
   {
      local $var = \$var2;
      
      
   }

   # back in loop scope

}

# back at main scope

"first"

1.00001

$var2

"alpha"

$var

$var

"first"

"first"

$var

1.00001

$var

"first"

"first"

$var

1.00001

Figure 2.5 Localizing a package variable
50 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



of a package variable until the end of the current block, you want local. In practice, you al-
most always want my.

2.2 NONESSENTIAL (BUT VERY USEFUL) PERL
Although you can create Perl classes with just the standard data types, subroutines, references,
and packages, to realize the full power and beauty of object-oriented Perl, you really need to
take advantage of Perl’s more advanced features. In particular, you need an understanding of
modules, autoloading, closures, and typeglobs. 

2.2.1 Modules

When you’ve created some usable code, the last thing you want to do is cut-and-paste that
same code into other applications. It’s inefficient and inelegant. It also creates a maintenance
nightmare every time you find a bug. Fortunately, Perl provides a simple module system that
allows us to put packaged code into a separate file, put that file in a well-defined place, and
thereafter have the compiler add the file into other programs semiautomatically. The standard
perlmod and perlmodlib documentation explains the concept in detail, and it’s worth taking
the time to read them carefully. Meanwhile, this section provides a minimal survival guide.

What is a module?
A Perl module is simply a text file (with a .pm suffix) containing some Perl code. The file is
placed in one of several standard directories where the compiler knows to look for it. When-
ever the compiler encounters a use statement in a program, it searches through these standard
directories, locates the matching file, and evaluates the code inside it.20 That evaluation makes
the code in the file available to the rest of the program.

Within a Perl program, module names look just like package names. Frequently, there is
a one-to-one correspondence, with each module storing one package. The module name is also
related to the actual name of the text file. To determine the file name, take the module name
and replace each :: with the local directory path separator, then append .pm. The resulting
path is the location of the file, relative to one of the standard directories in Perl’s current "in-
clude" path.

So what does that mean, exactly? Well, suppose a program includes the following use
statement:

use Database::Access::Control;

On encountering the use statement, the compiler translates each :: into a file path separator,
yielding:

• Database/Access/Control.pm under Unix or Linux or OS/2
• Database\Access\Control.pm under Windows

20 It also handles compilation errors, prevents multiple or circular loading of modules, enforces a separate
lexical scope on the module’s code, and automatically calls the module’s import subroutine. See the
perlmod documentation for gory details.
NONESSENTIAL (BUT VERY USEFUL) PERL 51



• Database:Access:Control.pm under MacOS
• [Database.Access]Control.pm under VMS

The compiler then starts searching through its list of standard and user-defined library di-
rectories, looking for a file matching that relative path. That list of directories is available with-
in a Perl program as the global array variable @INC. You can even change the contents of @INC
to change the search path for modules (see below).

The Perl compiler opens the first matching file it finds, and eval’s the text inside it. If
the eval fails, compilation is terminated with an error message. That can happen if the file is
inaccessible, the code it contains is invalid, or the code doesn’t produce a true value when
executed.

Otherwise, the compiler looks through the module’s code for a subroutine named im-
port, and if it finds one, calls it (see Exporting control in modules below). When the module’s
import subroutine returns, compilation continues back in the original file, from the line after
the use statement.

Setting up a module
To place your own code in a separate module that you can subsequently use, you need to do
the following:

1 Choose the standard library directory under which you want the module to reside. You
may have to create such a directory if this is your first personal module. Typically, such a
directory lives under your home directory. For example, on UNIX, you might create a
subdirectory called ~/lib/perl5. Under MacOS you might set up the folder
Users:Applications:MacPerl ƒ:lib:my modules. For Windows, you might use the directory
C:\USERS\DAMIAN\PERLLIB. 

2 Tell Perl of the existence of your directory. If you want to permanently inform Perl of
the new module directory, you can add the path name to the colon-separated list stored
in the shell variable PERL5LIB:

% PERL5LIB="${PERL5LIB}:/users/damian/lib/perl5" # UNIX sh shell
% export PERL5LIB 

(assuming you’re working on an operating system that has such things), or add the path
to the appropriate list in the Perl application’s preferences (when using MacPerl, for
example), or you can invoke Perl with the -I<pathname> option. 

On the other hand, if you only want to add the directory for a particular program, you
can push a string containing the full path onto the array @INC (in a BEGIN block at the
start of your program):

#! /usr/local/bin/perl -w

BEGIN { push @INC, "/users/damian/lib/perl5" }

Better still, use the use lib directive:

#! /usr/local/bin/perl -w

use lib "/users/damian/lib/perl5";
52 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



3 Create nested subdirectories under that standard directory for each component of the
module name, except the last.21 If the module is going to be called W::X::Y::Z, then you
need to create the subdirectories W, W/X, and W/X/Y, or whatever the local translation of
those are on your operating system, inside your chosen library directory.

4 Create a text file in the bottom subdirectory. The file must have the same (case-sensi-
tive) name as the last component of the module name, plus a .pm suffix, in this case
Z.pm.

5 Insert your code into the text file.

6 Add an extra statement that evaluates to true, to the end of the text file. The usual
choice is simple to place a line consisting of

1;

at the end of the file.

So, for example, under the sh shell on Unix,22 you could use the following sequence of
commands to set up a module containing the Database::Access::Control source code:

% cd ~/lib# go to your personal lib directory
% mkdir perl5# create a perl5 subdirectory…
% cd perl5# …and descend into it
% mkdir Database# create a Database subdirectory…
% cd Database# …and descend into it
% mkdir Access# create a Access subdirectory…
% cd Access# …and descend into it
% vi Control.pm# create the module file, then copy your 

# code into it, and append a 1; at the end
% PERL5LIB= "${PERL5LIB}:${HOME}/lib/perl5"

# add the name of the root include directory
# into the PERL5LIB environment variable

% export PERL5LIB#…and export it to other programs (i.e. perl)

You’ll probably want to put those last two commands in your .profile file,23 so the
PERL5LIB environment variable is correctly set up every time you log in.

Once your new module is in place, any Perl program can access it by including the state-
ment use Database::Access::Control.

21 Alternatively, you can combine steps three and four by using the h2xs application that comes standard
with Perl. If you use the -AXn flag, h2xs will set up a nice skeleton package for you (see the h2xs doc-
umentation for details).

22 If you’re of the “other” persuasion, Ron Savage has a full example of setting up a new module under
Windows 95/NT at: http://savage.net.au/Perl-tutorials/tutorial1.html

23 or put the appropriate equivalents in your .login file, or wherever else your particular system allows
you to define environment variables for an interactive session.
NONESSENTIAL (BUT VERY USEFUL) PERL 53

http://savage.net.au/Perl-tutorials/tutorial1.html


Version control in modules
The use statement also allows a program to specify that a module must be at least a certain
version number. For example, if we need to be sure we’re using version 1.20 or later of the
Database::Access::Control module, we would write 

use Database::Access::Control 1.20; 

If a use statement includes a version number like this, then, when the module has been
loaded, its VERSION subroutine is automatically called with the requested version number. The
default VERSION subroutine24 checks to make sure that the requested version is less than or
equal to the value of the $VERSION variable belonging to the named package. In other words,
specifying a version number as in the above use statement causes the compiler to verify that
1.20 <= $Database::Access::Control::VERSION. If the condition isn’t true, the de-
fault VERSION subroutine dies with an appropriate error message.

You could provide your own VERSION subroutine if you really wanted to, but it’s almost
never a good idea, since other programmers who use your module will expect the standard be-
havior from it.

All you need to do to ensure that your module supports regular Perl version control is to
define a variable called $VERSION within the appropriate package:

package Database::Access::Control;
$VERSION = 1.00;
use strict;
# …etc.

$VERSION must be a package variable, so don’t put a my in front of it. It’s easiest to define
$VERSION before any use strict comes into effect. Otherwise, you have to fully qualify it:

package Database::Access::Control;
use strict;
$Database::Access::Control::VERSION = 1.00; 

Or you can placate use strict with a use vars statement:

package Database::Access::Control;
use strict;
use vars '$VERSION';
$VERSION = 1.00; 

Export control in modules
Whenever a module is successfully located and compiled into a Perl program, the subroutine
import belonging to that module is called. The default behavior of import25 is to do noth-
ing, but you can change that behavior by creating your own import subroutine in the
module.

When it is called, the import subroutine is passed the name of the module being used
as its first argument, followed by any argument list that appears at the end of the use state-
ment. For example, if a program included the line

24 …which lives in the UNIVERSAL package. See chapter 6.
25 …once again, defined in the UNIVERSAL package…
54 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



use Database::Access::Control ("my.db");

then, after the Database::Access::Control module had been located and compiled, the subrou-
tine Database::Access::Control::import would automatically be called:

Database::Access::Control::import("Database::Access::Control","my.db");

Very few people ever write their own import subroutine (although we’ll see how to do
so in chapter 12). Instead, they generally use the Exporter module, which is part of the Perl
standard distribution. Exporter makes it easy to take care of the typical tasks for which import
is used, namely, importing package variables and subroutines from the module’s name space
to the caller’s.

We won’t discuss the use of Exporter here. See, instead, the documentation that comes
with the module. Though important in regular Perl, the Exporter module and the import sub-
routine are hardly ever used in object-oriented Perl, since exporting variables or subroutines
from classes goes against the encapsulation principle of object orientation.

2.2.2 Autoloading

In most programming languages, if you call a subroutine that doesn't exist, you get an imme-
diate and fatal error, and there’s nothing you can do about it. But that behavior implies that
every subroutine must be defined before the program runs, and that’s not always what we
want.

Perl gives us a way of creating a catch-all subroutine for each package, which will be called
instead when a requested subroutine doesn't exist. That catch-all is called AUTOLOAD.

For example, if the subroutine Robot::move_arm is invoked:

Robot::move_arm(left=>100);

but the Robot package doesn't have a subroutine named move_arm, then, before it issues a
fatal error, Perl also tries to call Robot::AUTOLOAD. 

A package's AUTOLOAD subroutine is always invoked with the argument list that was in-
tended for the missing subroutine. In the above example, Robot::AUTOLOAD would be invoked
with the argument list: ("left", 100). 

Usually, it's also important for the catch-all subroutine to know exactly which subroutine
was actually requested. So, whenever an AUTOLOAD is invoked, the package variable $AUTO-
LOAD is automatically assigned the fully qualified name of the missing subroutine, in this case:
Robot::move_arm.

For example, we could set up the Robot package's catch-all to politely point out that the
requested action isn't implemented:

package Robot;

sub AUTOLOAD
{

print"Sorry $AUTOLOAD isn't defined.\n",
"(I'll just pretend, shall I?)\n";

}

Any attempt to call an unimplemented subroutine in the Robot package now gets a sim-
ilar message:
NONESSENTIAL (BUT VERY USEFUL) PERL 55



package Robot;

wash_floor();# Sorry, Robot::wash_floor isn't defined…"
empty_trash("all");# Sorry, Robot::empty_trash isn't defined…"

package main;

Robot::barada_nikto("Klaatu");# Sorry, Robot::barada_nikto isn't defined…"

Of course, polite error messages aren't particularly useful, except during software devel-
opment.26 A more interesting application of autoloading is to have the AUTOLOAD subroutine
work out what to do, and then actually do it. For example:

sub AUTOLOAD
{

$AUTOLOAD =~ s/.*:://;# Strip leading package name
return `$AUTOLOAD @_`;# Execute in a shell

}

# and later…

$files = dir();
del('DATA.TMP');
$help = type("HELP.TXT");

In this example, the AUTOLOAD subroutine first strips off any leading package name from
the full subroutine name in $AUTOLOAD. It executes the resulting short name as a DOS com-
mand, using backquotes to capture the resulting output. Consequently, with a two line AU-
TOLOAD, you can instantly do DOS programming directly in Perl.27 

In chapter 3, we'll look at extra features of autoloading that come into play when methods
are invoked. We’ll also see how a class-specific AUTOLOAD can be used to simplify the creation
of object methods, particularly those used to access and modify attributes.

2.2.3 Closures

To hear some people talking about closures, you’d think they were discussing quantum phys-
ics, brain surgery, or VCR programming. In reality, the idea of closures is incredibly simple
and obvious, once the technical jargon has been stripped from it.

In Perl, a closure is just a subroutine that refers to one or more lexical variables declared
outside the subroutine itself. For example

my $name = "Damian";

sub print_my_name
{

print $name, "\n";
}

26 …when it’s sometimes convenient to use autoloading to implement a set of placeholder subroutines,
known as “stubs”.

27  The standard Shell module that comes with Perl is a vastly more robust, portable, and sophisticated
version of this idea.
56 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



The subroutine print_my_name accesses the lexical variable $name, which is declared
outside the code block of the subroutine, so print_my_name is a closure. The subroutine is
perfectly within its rights to access $name, because that variable’s scope extends from the point
at which it is declared to the end of the surrounding block.28

The interesting bit is that lexical variables usually cease to exist once execution reaches the
end of the scope in which they are declared. That is, in a piece of code like this

{
my $name = "Damian";

} 

# $name not accessible out here

the $name variable would become inaccessible and cease to exist29 at the end of the block.
However, if we define a closure within the block

{
my $name = "Damian";

sub print_my_name { print $name, "\n" }
}

# $name not accessible out here (except through &print_my_name)

then the definition of that subroutine confers eternal life on the otherwise-doomed variable
$name. In other words, as long as the print_my_name subroutine continues to exist (i.e., for
the rest of the program), Perl will make sure that the lexical variable stays available for the sub-
routine’s use.

The tricky bit is that, apart from this special relationship with print_my_name, the nor-
mal rules of accessibility still apply to the lexical variable. That is, at the end of the block, $name
will become inaccessible to the rest of the program, except for print_my_name. Therefore, af-
ter the block ends, the only way to access $name is by calling that subroutine. 

That’s all there is to a closure: a subroutine that preserves any lexical variables it’s using,
even after they become invisible everywhere else.

Anonymous subroutines and closures
Of course using closures can get a great deal more complicated than the previous examples,
especially when closures are built using anonymous (unnamed) subroutines. 

For example, here is a generator subroutine, which creates an anonymous closure that can
be used to skip along an array by a fixed step size:

sub hop_along
{

my ($from, $to, $step) = @_;# Unpack args
my $next = $from-$step;# Initialize counter
my $closure_ref =# Build closure

sub # that does the following…

28 …or to the end of the current file, if the lexical wasn’t declared inside a block.
29 The two aren’t the same, as we’ll see in a moment.
NONESSENTIAL (BUT VERY USEFUL) PERL 57



       {
$next+=$step; # Take a step
return if $next > $to;# undef if out of range
$_[0] = $next;# Otherwise set new value
return 1;# and succeed

};
return $closure_ref;# Return closure

}

When the hop_along subroutine is called, it copies its three arguments into lexical vari-
ables, sets up another lexical (i.e., $next) as a counter, and then creates an anonymous sub-
routine that uses the values in those variables. The anonymous subroutine increments $next
by $step each time the subroutine is called, until the result is greater than $to. A reference
to the newly created anonymous subroutine is then returned.

The generator would be used like this:

$iterator = hop_along 1, 100, 7;# Create closure
while ($iterator->($next))# Call closure
{

print $next;
}

in this case skipping from 1 to 99 in steps of 7.
Normally, the lexical variables inside the call to hop_along (i.e., $from, $to, $step,

$next) would cease to exist when hop_along returned. But, because the anonymous subrou-
tine still needs access to them, Perl arranges for them to live on in seclusion, accessible only
by the anonymous subroutine itself.

It’s important to realize that the next time hop_along is called:

$iterator2 = hop_along -1000000, +1000000, 0.000001;

it creates an entirely new set of lexical variables and sets up a completely separate anonymous
subroutine with access to those new variables. For example, we could set up two closures at
once, each with its own range and step size:

$row = hop_along 1, 1024, 1;
while ($row->($r))
{

$col = hop_along 1, 768, 2;
while ($col->($c))
{

draw_pixel($r, $c, $video_buffer->[$r][$c]);
}

}

Closures are a means of giving a subroutine its own private memory— variables that per-
sist between calls to that subroutine and are accessible only to it.

Even more interestingly, two or more closures can share the same private memory or state:

{
my $locked;

sub lock{ return 0 if $locked; $locked=1; }
sub unlock{ $locked=0 }
58 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



}

# and later

lock() or die "Resource already in use";
# Do critical stuff…
unlock();

In this case, the two subroutines lock and unlock share access to the lexical $locked
variable, even after it becomes generally inaccessible—and would normally have ceased to ex-
ist—outside the block they share.

This ability of closures to provide restricted access to certain variables is an excellent, if
unusual, example of the object-oriented concept of encapsulation. Indeed, we will see how clo-
sures can be used to implement encapsulation for Perl classes in chapter 11.

2.2.4 Typeglobs

Typeglobs are among the most poorly understood features of Perl, right up there with clo-
sures, in fact. But, like closures, they’re actually easy to understand and use once you unravel
their mysterious syntax and their polymorphic behavior.

As was mentioned in the earlier section on packages, Perl maintains separate namespaces
for each package and each type of named construct within a package. Therefore, within a given
package you can have the variables $FILE, @FILE, and %FILE, as well as the subroutine
&FILE. Best of all, you can use them all at the same time. 

Unlike many other languages, where an identifier must be associated with exactly one
thing in the symbol table, in Perl there’s no confusion. Each identifier has a unique prefix sym-
bol indicating its type. In fact, they all live together in the very same entry of their package’s
symbol table, as figure 2.6 illustrates. 

Each Perl symbol table entry is like a sampler box of chocolates. You get one slot for each
type of Perl reference: one for a scalar reference; one for an array reference; one for a hash

1

“make” “nail” “anglo”

“dir” “.”

“type” “ASCII”

open FILE, shift

   or die “Could open”;

print FILE, @_

   or die “Could print”;

close FILE

   or die “Could close”;

return 1;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“X”

“date” 1304312

*FILE

formline($l1,@a1);

formline($l2,@a2)

  while grep {length} @a2;

formline($l3,@a3);

formline($l4,@a4);

formline($l5,@a5);

Figure 2.6 An entry (typeglob) in a package’s symbol table
NONESSENTIAL (BUT VERY USEFUL) PERL 59



reference; and one for a reference to subroutine (as well slots holding references to one file-
handle and one format). 

You can access an entire symbol table entry through a special piece of syntax called a
typeglob:30 *symbol_name. To refer to the complete symbol table entry for anything that’s
called “FILE”, such as $FILE, %FILE, &FILE, etc., we would use the typeglob *FILE. The slots
in that symbol table entry would contain individual references to the package scalar variable
$FILE, the package array variable @FILE, the package subroutine &FILE, and so forth.

Typeglob assignment
Assigning one typeglob to another causes the references in the second symbol table entry to be
assigned to the matching slots of the first, in the same way that assigning one array to another
or one hash to another assigns corresponding elements or entries. For example

*FILE = *SOURCE;

means “assign the references stored in the various slots of the symbol table entry for 'SOURCE'
to the corresponding slots of the symbol table entry from 'FILE'.” So now, as figure 2.7 illus-
trates, the scalar variable referred to by the “SCALAR” slot in *FILE is actually the same one
referred to by the “SCALAR” slot in *SOURCE (i.e., $SOURCE). 

That means, whenever Perl goes to look up the package variable $FILE, and checks in
the symbol table, it will go to the symbol table entry *FILE, follow the reference in its “SCA-
LAR” slot, and arrive at $SOURCE. In the same way, when looking for the subroutine &FILE,
Perl will follow the reference in the “CODE” slot of *FILE and will end up at &SOURCE instead.
In other words, assigning *SOURCE to *FILE makes $FILE another name for $SOURCE, &FILE
another name for &SOURCE, @FILE another name for @SOURCE, and so forth.

The simplest use of such a typeglob assignment is to shorten the name of an unwieldy
set of variables:

*rules = *the_Marquis_of_Queensbury_rules;

$rules = rules(@rules);

# instead of
# $the_Marquis_of_Queensberry_rules =
#   the_Marquis_of_Queensberry_rules(@the_Marquis_of_Queensberry_rules);

or to import things from another package:31

*rules = *Open::Software::rules;

However, typeglobs have another important trick up their sleeve: they can be selectively
assigned to. If a typeglob is assigned a reference of any kind

*SOURCE = \$SOURCE1;
*args = \@ARGV;
*do_it = sub { print "doin' it!\n" };

30 …because it “globs” (generically matches) any type of variable with the correct name.
31 …typically as part of the import subroutine of a module. See Export control in modules.
60 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



then only the typeglob slot of the corresponding kind is replaced. In other words, given the
above three assignments, $SOURCE will now be another name for $SOURCE1, while @SOURCE,
%SOURCE, &SOURCE, and so forth. will be unaffected. Likewise @args will now be another
name for @ARGV and &do_it will be another name for the anonymous subroutine. Figure 2.8
illustrates the effect of the *SOURCE = \$SOURCE1 assignment.

This assignment behavior is an example of polymorphism. The stimulus—an assign-
ment—is always the same, but the response—which bit of the typeglob actually gets altered—
depends on the type of value being assigned.

Creating references to typeglobs
Typeglobs are just another container data type in Perl, like arrays or hashes. They are more
specialized in their storage ability—“one of each” rather than “many of any”—and more
sophisticated in their assignment semantics. Otherwise, typeglobs are quite similar to other
container datatypes. For example, it’s perfectly possible to take a reference to a typeglob:

1

“make” “nail” “anglo”

“dir” “.”

“type” “ASCII”

open FILE, shift

   or die “Could open”;

print FILE, @_

   or die “Could print”;

close FILE

   or die “Could close”;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“X”

“date” 1304312

*FILE

formline($l1,@a1);

formline($l2,@a2)

  while grep {length} @a2;

formline($l3,@a3);

formline($l4,@a4);

“BBQ”

“is” “with” “you”

“from” 9

“to” 17

my ($src, %s) = @_;

foreach (keys %s)

{

  $src =~ s/$_/$s{$_}/ 

}

eval $src;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“always”

“via” 12

*SOURCE

formline($l1,@a1);

formline($l2,@a2)

formline($l3,@a3);

  while grep {length} @a3;

“BBQ”

“is” “with” “you”

“from” 9

“to” 17
my ($src, %s) = @_;

foreach (keys %s)

{

  $src =~ s/$_/$s{$_}/ 

}

eval $src;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“always”

“via” 12

*SOURCE

formline($l1,@a1);

formline($l2,@a2)

formline($l3,@a3);

  while grep {length} @a3;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

*FILE

handle

Figure 2.7 The effect of a typeglob-to-typeglob assignment

a Before *FILE = *SOURCE; 

b After *FILE = *SOURCE;

a

b

NONESSENTIAL (BUT VERY USEFUL) PERL 61



$var = 'this is $var';
%var = (v=>"very", a=>"active", r=>"rodent");
sub var { print "this is &var\n" }

$typeglob_ref = \*var;

Now, $typeglob_ref holds a reference to the symbol table entry for everything called
“var” (as shown in figure 2.9). Only three of the symbol’s slots are filled, indicating that there
is no @var array, var filehandle, nor associated format. 

We can access the individual elements of that symbol table entry through the reference,
but it’s a two-step operation. First, we have to retrieve the typeglob itself, which we do by pre-
fixing the reference, $typeglob_ref, with the usual typeglob prefix: *$typeglob_ref. 

If we want to get to the corresponding scalar variable (i.e., $var), we need to prefix the
resulting typeglob with a dollar-sign: ${*$typeglob_ref}. The curly braces are required

“BBQ”

“is” “with” “you”

“from” 9

“to” 17

my ($src, %s) = @_;

foreach (keys %s)

{

  $src =~ s/$_/$s{$_}/ 

}

eval $src;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“always”

“via” 12

*SOURCE

formline($l1,@a1);

formline($l2,@a2)

formline($l3,@a3);

  while grep {length} @a3;

“power”

$SOURCE1

“is“ “with” “you”

“from” 9

“to” 17

my ($src, %s) = @_;

foreach (keys %s)

{

  $src =~ s/$_/$s{$_}/ 

}

eval $src;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“always”

“via” 12

*SOURCE

formline($l1,@a1);

formline($l2,@a2)

formline($l3,@a3);

  while grep {length} @a3;

“power”

$SOURCE1

Figure 2.8 The effect of a reference-to-typeglob assignment

a Before *SOURCE = \$SOURCE1;
b After *SOURCE = \$SOURCE1;

a

b

62 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



here to prevent Perl from treating the leading “$*” of $*$typeglob_ref as the name of the
special variable $*.

If we want access to the corresponding hash %var instead, we have to use a percent sign
as the prefix: %{*$typeglob_ref}. If we want to call the subroutine component var(), we
prefix with an ampersand and add the argument list in parentheses at the end:
&{*$typeglob_ref}().

Typeglob references are an obscure way of accessing a variable or subroutine, but they are
often the only reasonable means of accessing a filehandle. Chapter 5 demonstrates the use of
typeglob references in accessing filehandles in an object-oriented manner.

Accessing the references within typeglobs
As the previous sections indicate, the slots of a typeglob don’t directly store the scalar, array,
hash, subroutine, and filehandle that belong to the symbol represented by the typeglob.
Instead, they store references to each of those things. 

To allow us access to those references, Perl provides what is known as the *foo{THING}
syntax. If we take a typeglob (like *foo) and append a hash-like key selector (like {THING}),
Perl returns the reference in the corresponding slot of the typeglob. The keys are the names
returned by Perl’s built-in ref function (see table 2.1):

$slr_ref = *var{SCALAR};# same as: $slr_ref = \$var
$arr_ref = *var{ARRAY};# same as: $arr_ref = \@var
$hsh_ref = *var{HASH};# same as: $hsh_ref = \%var 
$sub_ref = *var{CODE};# same as: $sub_ref = \&var

In addition, you can use the *foo{THING} syntax to get references to the file handle or
directory handle slot of a typeglob, which are otherwise unreachable:

$hdl_ref = *var{IO}; # reference to IO handle named var

Apart from being arguably more readable, the *foo{THING} syntax is particularly handy
if you have a reference to a typeglob, say $typeglob_ref, and you want a reference to one

“this is $var”

print “this is &var\n”;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

“v” “very”

“a” “active”

“r” “rodent”

*var$typeglob_ref

Figure 2.9 A reference to a typeglob
NONESSENTIAL (BUT VERY USEFUL) PERL 63



of its components, for example, its hash. Without the *foo{THING} syntax, you’d have to
write:

$hsh_ref = \%{*$typeglob_ref};

which (quite appropriately) looks more like you’re cursing. With the *foo{THING} syntax the
same operation becomes slightly more readable and self-documenting:

$hsh_ref = *$typeglob_ref{HASH};

Symbolic references
There’s yet another way to access variables and subroutines via the symbol table: via a symbolic
reference. A symbolic reference is simply a character string containing the name of a variable or
subroutine in a particular package’s symbol table. 

When Perl encounters such a string anywhere that it was expecting to find an ordinary
reference, it simply looks up the corresponding name in the current symbol table and replaces
it with a reference to the appropriate type of thing (scalar, array, subroutine, etc.) For example

package main;

$name = "data"; 

print ${$name};# equivalent to: print $main::data
push @{$name}, $next;# equivalent to: push @main::data, $next
&{$name}();# equivalent to: &main::data()

If the string looks like a fully qualified name, then the appropriate symbol table is used
instead of the current one:

$name = "Remote::Sensing::data"; 
print ${$name};# equivalent to: print $Remote::Sensing::data

$name = "Lt::Commander::data"; 
push @{$name}, $next_gen;# equivalent to: push @Lt::Commander::data, $next_gen

$name = "data"; 
&{"Meta::".$name}();# equivalent to: &Meta::data()

A regular reference can appear as the first argument of the arrow operator (->), so Perl
allows symbolic references in that position too:

$symref = "set"; 

$symref->{type} = "discrete";# equivalent to: $set{type} = "discrete"

$elem_1 = $symref->[0];# equivalent to: $elem_1 = $set[0]

$symref->("jello");# equivalent to: set("jello")

Incidentally, provided you know what type of thing you want to refer to, it’s always pos-
sible to convert a symbolic reference into a regular reference. For example, if $symref contains
the name of a scalar package variable, we can create a normal reference ($ref) to that same
variable as follows:
64 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



$ref = \${$symref};# create an "unsymbolic" reference to a scalar

Likewise, for the other common data types:

$ref = \@{$symref};# create an "unsymbolic" reference to an array
$ref = \%{$symref};# create an "unsymbolic" reference to a hash
$ref = \&{$symref};# create an "unsymbolic" reference to a subroutine

It’s important to remember that, because symbolic references always consult a symbol ta-
ble, they cannot be used to access lexical variables. For example:

package main;

my $grain = "headache";

${"grain"} = "rye";

print $grain;

prints headache, not rye. That’s because, although the lexical variable $grain does hide the
package variable $main::grain from any code that follows,32 Perl looks only at the package
symbol table when resolving a symbolic reference like ${"grain"}. So, ${"grain"} refers
to $main::grain, which is then duly assigned the value "rye". This leaves the lexical
$grain with its original value, which is subsequently printed.

We can even use symbolic references to access the symbol table itself. For example, if we
had a scalar variable $symbol_name, which contained the name of a particular typeglob we
were interested in

$symbol_name = "data";

then we could access that typeglob as *{$symbol_name}, rather than as *{data}. This
seemingly esoteric capability to avoid hard-coded symbol names is actually extremely useful in
certain types of generic programming, as we shall see in chapter 12.

The subtleties of symbolic references can be a genuine headache when invoked acciden-
tally, so the use strict directive (or, more specifically, use strict "refs") makes them
illegal. This is a handy safety feature and no real imposition, since you can always add a no
strict "refs" directive to any block where you’re deliberately using a symbolic reference.

Symbolic references are not widely used in regular Perl and are even rarer in object-
oriented Perl. However, chapter 14 illustrates how symbolic references can be used to help add
persistence to Perl objects.

2.3 THE CPAN
Perhaps the two best features of Perl are its broad and diverse community of devotees and the
extraordinary wealth of the resources they so freely share with one another. Over the years,
hundreds of people have contributed to the Perl language by making available free source
code—for the language itself, and for many modules and example scripts—as well as binary

32 As far as print is concerned, $grain refers to the lexical variable of that name, not the package
variable.
THE CPAN 65



distributions, documentation, FAQs, and information shared through Perl newsgroups. All to
make everyone’s Perl programming life easier. 

That vast wealth of information and tools (over 750 MB of it) is archived in the Com-
prehensive Perl Archive Network, universally known as the CPAN (pronounced “see pan”).
The brainchild of Jarkko Hietaniemi and Andreas König, the CPAN describes itself as “the col-
lected wisdom of the Perl community,” and it fulfils that role admirably. If it’s related to Perl
and it’s worth knowing about or having, it’s almost certainly accessible from the CPAN.

2.3.1 How to access the CPAN

How you access the CPAN depends on what you want to achieve. The usual way to begin is to
explore it “on foot” via the web, starting at the introductory page at http://www.perl.com/
CPAN/index.html. 

When you go to this page, or any page starting http://www.perl.com/CPAN/…, you are
automatically redirected to a mirror of the CPAN, one that is almost certainly not actually
stored at the www.perl.com site. 

The CPAN is an archive network, which means that it is distributed throughout the In-
ternet on a large number of mirror sites (close to 100). Every site contains the complete CPAN
archive, and, with so many spread around the world, you usually don’t have to endure inter-
minable download delays from a distant centralized site.

Of course, it’s still convenient to access the CPAN as if it were centrally located. That way
there’s only one URL to remember. Therefore, www.perl.com helpfully redirects all CPAN re-
quests to a site closer to you, using the mystical CPAN multiplex dispatcher. Better still, if you
don’t like the site that’s automatically chosen for you, you can visit the Multiplexer itself, at
http://www.perl.com/CPAN (note: no trailing slash!). There you can choose an alternative site,
which the multiplexer will remember for next time.

Once you’re at the introductory page, you can discover the ways in which the resources
of the CPAN can be accessed. Specifically, the page directs you to the top-level entries of the
archive—a list of categories under which the CPAN’s contents are indexed. 

It’s worth taking a little time to poke around the regions of the CPAN. Think of it as a
game of rogue or hack: roaming around a labyrinth, looking for unexpected treasure. Later,
when you have a particular dragon to slay, that familiarity with the layout of the CPAN will
help you quickly locate the right weapon and reward you many times over in saved develop-
ment time.

2.3.2 How to search the CPAN

Of course, you may have better things to do with your brain than using it to carry around a
mental map of the CPAN on the off-chance you’ll someday need it to locate a particular
resource. The alternative is to make use of either WAIT–The Great CPAN Search Engine, or
the CPAN Search website.

WAIT is a sophisticated search engine developed by Norbert Gövert and Ulrich Pfeifer,
based on their Wais search engine module. It provides exact, inexact, and even phonetic search-
ing of a subset of the CPAN. Modules and documentation may be located according to a range
of criteria, including module name, author’s name, synopsis, bugs, description, or examples. 
66 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND

http://www.perl.com/CPAN/index.html
http://www.perl.com/CPAN/
http://www.perl.com/CPAN


It also provides Boolean search operators that allow you to specify searches on two or
more criteria, or to exclude certain criteria. For example: find any module whose description
contains "class," but not "multimethod," and whose author is named Damian. The WAIT is avail-
able at http://ls6-www.cs.uni-dortmund.de/ir/projects/SFgate/CPAN/. There’s also the CPAN::
WAIT module (available from http://www.perl.com/CPAN/authors/id/ULPFR/), which grafts
the WAIT functionality on to the CPAN module.

CPAN Search is a search engine maintained by Randy Kobes. It can search the entire
CPAN archive, using exact and prefix-only pattern-matching on a range of criteria including
archive file name; module, script, or package name; module or script description; contents of
module documentation; or author’s name or ID. Like the WAIT, CPAN Search has a forms-
based interface that makes specifying your search criteria easy. It’s available at http://theo-
ry.uwinnipeg.ca/search/cpan-search.html.

2.3.3 How to install modules from the CPAN

Finding the module you need is usually only a small skirmish, a prelude to the main battle of
installing it on your local system. 

Using the CPAN.pm module
By far the easiest way to locate, download, and install modules from the CPAN is to use the
CPAN.pm module. If you’re using Unix, Linux, Solaris, or MacOS, and if you’re fortunate,
someone may already have installed the module on your system, in which case it’s just a mat-
ter of firing it up:

% perl -MCPAN -e shell

and downloading whatever you need. The CPAN module comes with quite extensive docu-
mentation, and is relatively easy to use once you’re set up. If you know the name of the mod-
ule you want, say Text::Balanced, the entire installation process is often as easy as typing

cpan> install Text::Balanced

The CPAN.pm module does the rest.
If you’re using another operating system, or if you try to run the module and get an error

along the lines of

Can't locate CPAN.pm in @INC…

then you’re going to have to install the CPAN.pm module—or else just install the actual mod-
ule you wanted—yourself (see the next section).

The first time you run the module’s interactive shell—that’s what the command
perl -MCPAN -e shell actually does—you will be taken through a configuration process that sets
the necessary defaults to allow the module to automatically download, unpack, build, test, and
install modules for you. 

It’s safe to ignore most of the questions you’ll be asked in this configuration process, and
just go with the module’s suggested configuration. The one question you really do want to an-
swer yourself is the one asking if there are any parameters you want passed to the perl Make-

file.PL command. At very least, you need to tell CPAN.pm to add a PREFIX=some/directory
THE CPAN 67

http://ls6-www.cs.uni-dortmund.de/ir/projects/SFgate/CPAN/
http://www.perl.com/CPAN/authors/id/ULPFR/
http://theory.uwinnipeg.ca/search/cpan-search.html


parameter, so that downloaded modules are installed in your personal module library, rather
than in the global one.33

The some/directory bit should be replaced with the full path name of the directory
containing your personal modules directory (see Setting up a module). For example, if you keep
your own Perl modules in a directory called /users/staff/damian/lib/perl5, then you should tell
the CPAN configuration to add the parameter PREFIX=/users/staff/damian whenever it
calls perl Makefile.PL. To do that, you need to answer the relevant question as follows (but with
your home directory):

Every Makefile.PL is run by perl in a separate process. Likewise we

run 'make' and 'make install' in processes. If you have any parameters

(e.g. PREFIX, INSTALLPRIVLIB, UNINST or the like) you want to pass to

the calls, please specify them here.

If you don't understand this question, just press ENTER.

> PREFIX=/users/staff/damian

Doing it yourself
Compared with using the CPAN.pm module, downloading and installing modules by hand is
complex and tedious. But, if you don’t have access to CPAN.pm, or a friendly sysadmin to
install it for you, you’re going to have to do things by hand.

The general procedure for doing this is always the same:

• Download the file from the CPAN using your favorite browser or ftp program
• Decompress the file and unpack it into a directory
• Build the file
• Test the module
• Install it in your local module library

The problem is that the details of every one of these of these steps vary considerably de-
pending on which operating system you’re using. Fortunately, recent releases of Perl come with
Jon Orwant’s invaluable perlmodinstall documentation (also available from http://
www.perl.com/CPAN/doc/manual/html/pod/perlmodinstall.html).

This document takes you, step-by-step, through the module installation procedure under
Unix, MacOS, Windows 95, Windows NT, DOS, OS/2, VMS, or MVS. Even if you decide to
use CPAN.pm, it’s worth reading through the perlmodinstall document, to better under-
stand what the module is doing for (or occasionally, to) you.

2.4 WHERE TO FIND OUT MORE 
A single chapter such as this can only hope to touch briefly on a relevant subset of Perl. Fortu-
nately, there are a multitude of excellent sources of information about Perl, many of them
freely available. The following are some of the most useful.

33 …to which you usually won’t have write access.
68 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND

http://www.perl.com/CPAN/doc/manual/html/pod/perlmodinstall.html


2.4.1 Essential books

There is now a wide range of books related to Perl, but the three most generally useful are
undoubtedly Learning Perl, Programming Perl, and the Perl Cookbook (see the bibliography for
full details on each). 

Learning Perl, 2nd Edition, by Randal Schwartz and Tom Christiansen, is an excellent in-
troduction to Perl for those with a programming background. It covers the basic features of
the language, but not advanced concepts such as references, closures, or typeglobs.

 If you’re a nonprogrammer (or the “none-too-recently” programmer), you may find An-
drew Johnson’s new book, The Elements of Programming with Perl, a kinder, gentler introduc-
tion, both to programming and to Perl.

Programming Perl, 2nd Edition, by Larry Wall, Tom Christiansen, and Randal Schwartz,
is the “Perl bible.” Co-authored by the inventor of the language, it’s a reference book covering
almost all of Perl’s features and many of its idioms. It’s comprehensive, technically accurate,
authoritative, and entertaining, but it’s aimed at people who are already moderately experi-
enced programmers.

Perl Cookbook, by Tom Christiansen and Nathan Torkington, is a large collection of prac-
tical, but mercifully bite-sized, examples of Perl programming. It covers almost all the common
programming tasks for which the language is used and demonstrates how to solve problems
in native Perl as opposed to transliterating a solution from some other language. This is not
the book from which to learn Perl-the-language; rather it’s the book from which to learn Perl-
the-mindset.

2.4.2 Useful books

The other books recommended here are more specifically targeted at certain areas of Perl
much as this book is focused on its object-oriented features.

Advanced Perl Programming, by Sriram Srinivasan, is a thorough exploration of the deep-
er, darker recesses of the Perl language. It covers many important aspects of Perl that are rel-
evant to advanced object-oriented programming, including references and nested data
structures, typeglobs and symbol tables, closures, modules and packages, ties, and persistence.
It even has a couple of chapters on object orientation itself (though, naturally, not as many or
as varied as this book).

Effective Perl Programming, by Joseph Hall with Randal Schwartz, is a collection of sixty
practical tips and techniques that will improve your understanding and command of idiomatic
Perl. It includes useful advice on object-oriented programming, references, packages, and mod-
ules, as well as an invaluable coverage of Perl’s built-in debugger.

Mastering Regular Expressions, by Jeffrey Friedl, covers exactly that: the nitty-gritty of us-
ing regular expressions in Perl (and elsewhere). Though regular expressions are not directly re-
lated to object orientation,34 it’s difficult to write useful Perl without a good understanding of
the power and the limitations of Perl’s pattern matching features.

MacPerl: Power and Ease, by Vicki Brown and Chris Nandor, and Learning Perl on Win32
Systems, by Randal Schwartz, Erik Olson, and Tom Christiansen, provide excellent introduc-

34 …except in chapter 5 of this book where they actually become objects…
WHERE TO FIND OUT MORE 69



tions to Perl on non-Unix platforms. Although Perl is largely platform independent,35 most
books and other resources default to the Unix-centric view. These books redress that bias for
the benefit of those of us who worship at many altars. Further down that same track is Cross-
Platform Perl, by Eric F. Johnson, which bravely sets out to introduce Perl from a multiplat-
form perspective (Unix and Windows) and succeeds admirably.

2.4.3 The Perl documentation

Perl is a remarkable language in many respects, but perhaps its most underappreciated facet is
the extraordinary amount of high-quality free documentation that comes with it. 

If Perl has been properly installed on your system, you should be able to access the stan-
dard documentation via man or perldoc under Unix, perldoc or your favorite HTML browser
under Windows, or the shuck application on a Mac. Even if they’re not available locally, you
can always find them on the CPAN.

The sections of the documentation most important to understand before embarking on
object-oriented Perl are shown in table 2.2. Each of them is well worth studying, even after
you’ve read this book.

2.4.4 The Perl Journal

The Perl Journal is a quarterly publication, edited by Jon Orwant, devoted entirely to Perl pro-
gramming. Every issue is full of well-written, entertaining, and enlightening articles reflecting
the enormous range of programming techniques and applications areas that Perl encompasses. 

The journal also features regular columns in which leading Perl experts explain the fun-
damentals of the Perl language. Particularly relevant articles in recent back issues include:

35 …and far more so than purportedly platform-independent languages like Java…

Table 2.2 Important Perl documentation

Document Description

perldata: summarizes the basic data types in Perl.

perlsub: describes the various features of Perl subroutines.

perlmod and perlmodlib: explain Perl’s module system, as well as the use of packages, symbol 
tables, and typeglobs.

perlmodinstall: explains how to download and install modules from the CPAN.

perlref and perlreftut: cover references and symbolic references and the various ways of creat-
ing them (i.e., the backslash operator, the anonymous array and anony-
mous hash constructors, sub, etc.) 

perldsc and perllol: discuss the creation and use of hierarchical data structures in Perl: arrays 
of arrays, hashes of hashes, arrays of hashes of arrays, etc.

perltoot: provides a brief but gentle tutorial introduction to object-oriented program-
ming in Perl.

perlobj: is the reference manual for Perl’s object-oriented features 

perlbot: offers a “cookbook” of several programming techniques specific to Perl’s 
unique version of object orientation.
70 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



“Coping with Scoping” by Mark-Jason Dominus (Issue #12), “Threads” by Dan Sugalski (Is-
sue #10), “Understand References Today” by Mark-Jason Dominus (Issue #10), “The Auto-
Loader” by Randy Ray (Issue #6), “Understanding Regular Expressions” by Jeffrey Friedl
(Issues #2, #3, #4), and “Data Hiding” by Jon Orwant (Issue #3).

You can find out more about The Perl Journal at its website: http://www.tpj.com/.

2.4.5 Websites

The main website for Perl is the PERL.COM site (http://www.perl.com/). This site provides
links to just about anything online even tenuously related to Perl: from book reviews to the
latest Perl news, tutorials to mailing lists, where to find commercial support to a litany of Perl
success stories that may help you convince your local Powers-That-Be to let you use Perl in
your next project.

This book also has its own page on the http://www.manning.com/ website. There you
will find the complete source code to every example in the text, as well as an interactive dis-
cussion forum on object-oriented Perl, a query line, and any updates or errata.

2.4.6 Newsgroups

There are four useful Perl-related newsgroups:

• comp.lang.perl.misc: A general-purpose unmoderated newsgroup in which to ask novice
questions (after carefully reading the Perl documentation and FAQs, of course).

• comp.lang.perl.moderated: Another general-purpose group, but moderated and hence
less prone to irrelevance, inanity, or incendiaries. Whether that’s a good thing is, of
course, purely a matter of personal taste. One important advantage of this group is that
the moderators tend to ensure that information posted to it is correct.

• comp.lang.perl.modules: An unmoderated newsgroup devoted to the discussion of the
hundreds of publicly available modules for Perl. When you’ve written your own Perl
module this is where you can announce it and have it discussed. If you’re using a particu-
lar module (from the CPAN or elsewhere) this is where you can ask curly questions
about it.

• comp.lang.perl.announce: A very low traffic, tightly moderated newsgroup dedicated to
announcements of new modules, new source code releases, and the occasional message
regarding Perl-related events in the Real World.

The Perl groups provide an extraordinary amount of useful information and feedback,
and an exceptional opportunity to interact with the designers and implementers of the Perl lan-
guage. They are frequented by a large cross-section of the worldwide Perl community from raw
novices to supreme gurus. 

It’s particularly important, therefore, to be aware of the culture and customs of the various
groups before attempting to post. If nothing else, be sure to read the relevant introductory mes-
sages (e.g., “Welcome - read this first” in comp.lang.perl.moderated). Better still, lurk around
the various groups a little before you post. Read the messages and get a feel for what’s
appropriate.
WHERE TO FIND OUT MORE 71

http://www.tpj.com/
http://www.perl.com/
http://www.manning.com/


2.5 SUMMARY
• Scalars store single values (numbers, strings, or references). Arrays store lists of values.

Hashes store a set of key/value pairs.
• Subroutines are declared with a sub statement. They take any number of arguments,

passed as aliases in the @_ array. Subroutines act like closures, preserving the local context
(i.e., lexical variables) at the point of their declaration.

• A reference represents the location of another variable or value, which is known as the
referent. A symbolic reference represents the name of a package variable. The ref func-
tion can be used to determine the type of referent to which a nonsymbolic reference
refers. 

• Anonymous arrays are created using the […] notation. Anonymous hashes are created
using the {…} notation. Anonymous subroutines are created using the sub keyword
without a subroutine name. All three return a reference to the newly created anonymous
referent.

• The arrow notation may be used to access elements of arrays ($arr_ref->[$index])
or entries of hashes ($hsh_ref->{$key}) via a suitable reference. They may also be
used to call subroutines ($sub_ref->(@args)) .

• Packages provide separate nonhierarchical namespaces. Package variables are universally
accessible, and live in a package’s symbol table. Package variables may be made local,
which temporarily replaces their value in nested scopes until execution reaches the end of
the current scope.

• Lexical variables are declared with a my qualifier. Direct access to lexical variables is
restricted to the lexical scope of block in which they’re declared.

• A typeglob is a symbol table entry. It contains a slot for one instance of each Perl
datatype. When a typeglob is assigned to another, every slot is reassigned. When a refer-
ence is assigned to a typeglob, only the appropriate slot is reassigned.
72 CHAPTER 2  WHAT YOU NEED TO KNOW SECOND



C H A P T E R 3

Getting Started
3.1 Three little rules 73
3.2 A simple Perl class 80
3.3 Making life easier 89
3.4 The creation and destruction of 

objects 96

3.5 The CD::Music class, 
compleat 114

3.6 Summary 117
If you’ve ever used another object-oriented programming language, or been traumatized by
some prior exposure to object orientation, you’re probably dreading tackling object orienta-
tion in Perl—more syntax, more semantics, more rules, more complexity. On the other hand,
if you’re entirely new to object orientation, you’re likely to be equally nervous about all those
unfamiliar concepts, and how you’re going to keep them all straight in your head while you
learn the specific Perl syntax and semantics. 

Relax!
Object-oriented Perl isn’t like that at all. To do real, useful, production-strength, object-

oriented programming in Perl you only need to learn about one extra function, one straight-
forward piece of additional syntax, and three very simple rules.1

3.1 THREE LITTLE RULES
Let’s start with the rules…

1 The three rules were originally formulated by Larry Wall, and appear in a slightly different form in the
perlobj documentation. 
73



3.1.1 Rule 1: To create a class, build a package

Perl packages already have a number of classlike features:

• They collect related code together;
• They distinguish that code from unrelated code;
• They provide a separate namespace within the program, which keeps subroutine names

from clashing with those in other packages;
• They have a name, which can be used to identify data and subroutines defined in the

package.

In Perl, those features are sufficient to allow a package to act like a class. 
Suppose we wanted to build an application to track faults in a system. Here’s how to de-

clare a class named Bug in Perl:

package Bug;

That’s it! Of course, such a class isn’t very interesting or useful, since it has no attributes
or behavior. And that brings us to the second rule…

3.1.2 Rule 2: To create a method, write a subroutine

Methods are just subroutines, associated with a particular class, that exist specifically to oper-
ate on objects that are instances of that class.

Happily, in Perl, a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package acting
as our class.

For example, here’s how we provide an object method to print our Bug objects:

package Bug;

sub print_me
{

# The code needed to print the Bug goes here
}

package Bug;
use strict;

sub new
{
   my ($class) = @_;
   my $objref = {};
    .
    .
   bless $objref, $class;
}

sub print_me
{
   my ($self) = @_;
    .
    .
}

Rule 1:
To create a class,
build a package.

Rule 3:
To create an object,
bless a referent.

Bug.pm

Rule 2
To create a method,
write a subroutine.

Figure 3.1 Three little rules
74 CHAPTER 3 GETTING STARTED



Again, that’s it. The subroutine print_me is now associated with the package Bug, so
whenever we treat Bug as a class, Perl automatically treats Bug::print_me as a method.

Calling the Bug::print_me method involves that one extra piece of syntax—an exten-
sion to the existing Perl “arrow” notation. If you have a reference to an object of class Bug (we’ll
see how to get such a reference in a moment), you can access any method of that object by using
a -> symbol, followed by the name of the method. 

For example, if the variable $nextbug holds a reference to a Bug object, you could call
Bug::print_me on that object by writing:

package main;

# set $nextbug to refer to a Bug object, somehow, and then…

$nextbug->print_me();

Calling a method through an arrow should be familiar to any C++ programmers; for the
rest of us, it’s at least consistent with other Perl usages:

$hsh_ref->{"key"};# Access the hash referred to by $hashref
$arr_ref->[$index];# Access the array referred to by $arrayref
$sub_ref->(@args);# Access the sub referred to by $subref
$obj_ref->method(@args);# Access the object referred to by $objref

The only difference with the last case is that the thing referred to by $objref has many
ways of being accessed, namely, its various methods. So, when we want to access an object, we
have to specify which particular way, or method, should be used.

Just to be a little more flexible, Perl doesn’t actually require that we hard-code the method
name in the call. It is also possible to specify the method name as a scalar variable containing
a string matching the name (i.e., a symbolic reference) or as a scalar variable containing a real
reference to the subroutine in question. For example, instead of:

$nextbug->print_me();

we could write:

$method_name = "print_me";# i.e. "symbolic reference" to some &print_me
$nextbug->$method_name();# Method call via symbolic reference

or:

$method_ref = \&Bug::print_me;# i.e. reference to &Bug::print_me
$nextbug->$method_ref();# Method call via hard reference

In practice, the method name is almost always hard-coded.
When a method like Bug::print_me is called, the argument list that it receives begins

with the object reference through which it was called,2 followed by any arguments that were
explicitly given to the method. That means that calling Bug::print_me("logfile") is not
the same as calling $nextbug->print_me("logfile"). In the first case, print_me is treat-
ed as a regular subroutine so the argument list passed to Bug::print_me is equivalent to:

2 The object on which the method is called is known as the invoking object or, sometimes, the message
target. It is the reference to this object that is passed as the first argument of any method invoked using
the -> notation.
THREE LITTLE RULES 75



( "logfile" )

In the second case, print_me is treated as a method so the argument list is equivalent to:

( $objref, "logfile" )

Having a reference to the object passed as the first parameter is vital, because it means that
the method then has access to the object on which it’s supposed to operate3. Hence you’ll find
that most methods in Perl start with something equivalent to this:

package Bug;

sub print_me
{

my ($self) = shift;
# The @_ array now stores the explicit argument list passed to &Bug::print_me
# The rest of the &print_me method uses the data referred to by $self and
# the explicit arguments (still in @_)

}

or, better still:

package Bug;

sub print_me
{

my ($self, @args) = @_;
# The @args array now stores the explicit argument list passed to &Bug::print_me
# The rest of the &print_me method uses the data referred to by $self and
# the explicit arguments (now in @args)

}

This second version is better because it provides a lexically scoped copy of the argument
list (@args). Remember that the @_ array is magical in that changing any element of it actually
changes the caller’s version of the corresponding argument. Copying argument values to a lex-
ical array like @args prevents nasty surprises of this kind and improves the internal documen-
tation of the subroutine (especially if a more meaningful name than @args is chosen).

The only remaining question is: how do we create the invoking object in the first place?

3.1.3 Rule 3: To create an object, bless a referent

Unlike other object-oriented languages, Perl doesn’t require that an object be a special kind of
recordlike data structure. In fact, you can use any existing type of Perl variable—a scalar, an
array, a hash—as an object in Perl.4

Hence, the issue isn’t so much how to create the object—you create an object exactly as
you would any other Perl variable— but rather how to tell Perl that such an object belongs to

3 There are similar automatic features in all object-oriented languages. C++ member functions have a point-
er called this; Java member functions have a reference called this; Smalltalk methods have the self
pseudo-object; and Python’s methods, like Perl’s, receive the invoking object as their first argument.

4 You can also bless other things, such as subroutines, regular expressions, and typeglobs, but we’ll leave
that for chapter 5.
76 CHAPTER 3 GETTING STARTED



a particular class. That brings us to one extra built-in Perl function you need to know. It’s
called bless, and its only job is to mark a variable as belonging to a particular class. 

The bless function takes two arguments: a reference to the variable to be marked and
a string containing the name of the class. It then sets an internal flag on the variable, indicating
that it now belongs to the class.5

For example, suppose that $nextbug actually stores a reference to an anonymous hash:

$nextbug ={
_id=>"00001",
_type=>"fatal",
_descr=>"application does not compile",

};

To turn that anonymous hash into an object of class Bug we write:

bless $nextbug, "Bug";

And, once again, that’s it! The anonymous hash referred to by $nextbug is now marked
as being an object of class Bug. The variable $nextbug itself hasn’t been altered in any way.
We didn’t bless the reference; we blessed the referent. The scalar didn’t change—only the name-
less hash it refers to has been marked. Figure 3.2 illustrates where the new class membership
flag is set.

You can check that the blessing succeeded by applying the built-in ref function to
$nextbug. Normally, when ref is applied to a reference, it returns the type of that reference.

5 Actually, the second argument is optional, and defaults to the name of the current package. However,
as we’ll see in chapter 6, although omitting the second argument may occasionally be convenient, it’s
never a good idea. It’s better to think of both arguments as being morally required, even if legally
they’re not.

Truck
register()

DumpTruck
register()

Semi
register()

FireTruck
register()

sound_siren()

ArmoredCar
register()

is-a is-a

is-ais-a

Figure 3.2 What changes when an object is blessed

a Before bless($nextbug, "Bug") 
b After bless($nextbug, "Bug")

ba
THREE LITTLE RULES 77



Hence, before $nextbug was blessed, ref($nextbug) would have returned the string
'HASH'. 

Once an object is blessed, ref returns the name of its class instead. So, after the blessing,
ref($nextbug) will return 'Bug'. Of course the object itself still is a hash, but now it’s a hash
that belongs to the Bug class.

The entries of the hash become the attributes of the newly created Bug object. Note that
in the above example each key begins with an underscore. This is the Perl convention for in-
dicating that something is internal to a package, or, in this case, to a class. Here it’s used to
suggest that such attributes and methods should be treated as Not for Public Use.6 

Given that we’re likely to want to create many such Bug objects, it would be more useful
if we had a subroutine that took the necessary information, wrapped it in an anonymous hash,
blessed the hash, and gave us back a reference to the resulting object. And, of course, we might
as well put such a subroutine in the Bug package itself and call it something that indicates its
role. Such a subroutine is called a constructor and generally looks like this:

6 Mind you, it’s only a suggestion. Unlike other object-oriented languages, Perl doesn’t enforce the en-
capsulation of attributes. More on that point shortly.

  

Bug$object in bugprog.pl 
$objref in constructor 

anonymous in both bugprog.pl 
and in the constructor

scalar storing a 
reference

any Perl datatype: 
scalar, 
array,
hash, 

pseudo-hash, 
 regular expression, 

subroutine,
typeglob.object reference

the object

belongs to
class Bug

doesn’t belong 
to any class

package Bug;
use strict;

sub new
{
   my ($class) = @_;
   my $objref = {};
    .
    .
   bless $objref, $class;
}

sub print_me
{
   my ($self) = @_;
    .
    .
}

#! /usr/bin/perl -w

use Bug;
use strict;
         .
         .
         .
my $object = Bug->new(@args);
         .
         .
         .
$object->print_me();
         .
         .
         .

class name

constructor
(class method)

object
method

Bug.pm bugprog.pl

Figure 3.3 Object basics
78 CHAPTER 3 GETTING STARTED



package Bug;

sub new
{

my $class = $_[0];
my $objref ={

_id=> $_[1],
_type=> $_[2],
_descr=> $_[3],
};

bless $objref, $class;
return $objref;

}

When we call Bug::new, we pass the name of the class into which the new object should
be blessed ("Bug"), followed by the ID, type, and description of the bug. Of course, we can
always hard-code the class name into the call to bless, but that loses us some important flex-
ibility that we’ll need later when we start inheriting from classes in chapter 6.

The bless function makes writing constructors like this a little easier by returning the
reference passed as its first argument—that is, the reference to whatever it just blessed into ob-
jecthood. Since Perl subroutines automatically return the value of their last evaluated state-
ment, that means we can condense the definition of Bug::new to:

sub Bug::new
{

bless{ _id => $_[1], _type => $_[2], _descr => $_[3] }, $_[0];
}

This version has exactly the same effects: slot the data into an anonymous hash, bless the
hash into the class specified first argument, and return a reference to the hash.

Regardless of which version we use, whenever we want to create a Bug object, we can just
call:

$nextbug = Bug::new("Bug", $id, $type, $description);

That’s a little redundant, since we have to type “Bug” twice. Fortunately, there’s another
feature of the arrow method-call syntax that solves this problem. If the operand to the left of
the arrow is the name of a class—rather than an object reference—the appropriate class method
of that class is called. More importantly, if the arrow notation is used, the first argument passed
to the method is automatically a string containing the class name. That means that we can re-
write the previous call to Bug::new like this:

package main;

$nextbug = Bug->new($id, $type, $description);

There are other benefits to this notation when your class uses inheritance (chapter 6), so
you should always call constructors and other class methods this way.

Apart from encapsulating the messy details of object creation within the class itself, using
a class method like this to create objects has another big advantage. If we abide by the con-
vention of only creating new Bug objects by calling Bug::new, we’re guaranteed that all such
objects will always be hashes. Of course, there’s nothing to prevent us from manually blessing
THREE LITTLE RULES 79



arrays, scalars, file handles, and so forth, as Bug objects, but life is much easier if we stick to
blessing one type of object into each class.

For example, if we can be confident that any Bug object is going to be a blessed hash, we
can finally fill in the missing code in the Bug::print_me method:

package Bug;

sub print_me

{
my ($self) = @_;

print "ID: $self->{_id}\n";

print "$self->{_descr}\n";

print "(Note: problem is fatal)\n"

if $self->{_type} eq "fatal";

}

3.2 A SIMPLE PERL CLASS
Now, let’s take the three rules explained above, plus bless, plus the arrow notation, and use
them to build a simple, but usable, Perl class. We’ll create a class that can be used to store
information regarding a particular music CD (its name, the artist, publisher, ISBN, number
of tracks, where it’s stored in your extensive collection, etc.) 

3.2.1 The code

The basic class is defined in listing 3.1. Take a few moments and puzzle through the code,
keeping in mind the three rules given above.

Okay, now let’s examine the entire class definition to see what’s going on and, more im-
portantly, why the class is structured as it is.

Declaring the class
The first line is a straightforward application of the first rule. We want a new class to store
information on music CDs, so we create a package called CD::Music. We could have called it
something else, such as Music::CD, but the choice depends on what other related classes we
expect to develop later. We might, for example, expect to create other classes for other types of
CDs (CD::ROM, CD::WORM, CD::DVD, CD::Shiny::Beer::Mat). The common feature
here is the "CD-ishness" of each type of object, and so we make that the more general term in
the package name.

In contrast, if we had intended to develop classes for representing other types of music,
we might have made Music:: the top level of the package name and had Music::CD, Mu-
sic::LP, Music::Internet, Music::Of::The::Spheres, and so on.

Providing a constructor
Having successfully named the class, we ask Perl to be strict with us, which is always a good
idea, no matter what kind of Perl programming we’re doing. (See section 3.3.) 
80 CHAPTER 3 GETTING STARTED



 We next provide a method for creating CD::Music objects. Note that the overall struc-
ture is very similar to the previous Bug::new example. We create an anonymous hash, fill in
the relevant items, bless the hash, and return a reference to it. 

The choice of a hash as the basis of both the Bug class and this one is no coincidence.
Hashes are the usual basis for objects in Perl. That’s because, unlike a scalar, a hash allows us
to store multiple values of various types in the same object. And, unlike an array, a hash allows
us to give each of those values a meaningful tag (i.e., its key). 

Occasionally, for performance or other special reasons, it may be better to implement ob-
jects as something other than hashes. More importantly, Perl 5.005 introduced a new general
purpose data type—the pseudo-hash—which is specially designed for implementing objects.

package CD::Music;
use strict;

sub new
{

my ($class) = @_;
bless{

_name=> $_[1],
_artist=> $_[2],
_publisher=> $_[3],
_ISBN=> $_[4],
_tracks=> $_[5],
_room=> $_[6],
_shelf=> $_[7],
_rating=> $_[8],

}, $class;
}

sub name{ $_[0]->{_name}}
sub artist{ $_[0]->{_artist}}
sub publisher{ $_[0]->{_publisher}}
sub ISBN{ $_[0]->{_ISBN}}
sub tracks{ $_[0]->{_tracks}}

sub location
{

my ($self, $shelf, $room) = @_;
$self->{_room}= $roomif $room;
$self->{_shelf}= $shelfif $shelf;
return ($self->{_room}, $self->{_shelf});

}

sub rating
{

my ($self, $rating) = @_;
$self->{_rating} = $rating if defined $rating;
return $self->{_rating};

}

Listing 3.1 The CD::Music Class
A SIMPLE PERL CLASS 81



In the next two chapters, we’ll look in detail at the pseudo-hash, as well as cases where other
data types make more suitable bases for a class. For now, though, we’ll stick with hashes.

Accessing an object’s read-only data
The CD::Music class declares five methods: CD::Music::name, CD::Music::artist,
CD::Music::publisher, CD::Music::ISBN, and CD::Music::tracks. Each method
simply takes the blessed hash reference, looks up the corresponding attribute in the invoking
object—that is, the appropriate entry in the hash—and returns its value. Such methods are
called accessors because their whole purpose is to provide access to attributes.

These methods provide a means of reading the different entries of the hash, but not of
overwriting them. That restriction makes sense in this example, because the title, artist, pub-
lisher, ISBN, and number of tracks on a standard audio CD never change.

You might wonder why we would bother to declare these methods, expecting users of the
class to write $cdref->name() when they already have a reference to the hash itself—
$cdref—and can just use the normal Perl arrow syntax for accessing a particular entry:
$cdref->{_name}. 

The reason we don’t want to encourage direct access is that those hash entries are collec-
tively implementing the internal data of each object in the class, and one of the cardinal rules
of object orientation is this: Thou shalt not access thy encapsulated data directly, lest thou screwe
it up. You should look back at section 1.2.1 in chapter 1 if you’re not sure why this is an im-
portant rule to honor.

Of course, unlike most other object-oriented languages, which enforce this kind of encap-
sulation, Perl will quite happily allow you to directly access the hash elements if you choose.
But then you’re not playing by the rules, and, when Bad Things happen, you’ll only have your-
self to blame. 

If this philosophy of encapsulation by good manners strikes you as unnervingly insecure,
take heart. Later in the chapter, and more extensively in chapter 11, we’ll explore techniques
for ensuring that your encapsulated data is truly unmolestable.

Accessing read-write data
The remaining two methods—CD::Music::location and CD::Music::rating—are
slightly more complex. They still return the value of the appropriate hash entries, but, before
that, they check their parameter lists to see if any new values have been specified for those ele-
ments. 

For example, if CD::Music::location is called like so

$cdref->location(12)

then it:

• Sets the internal data $cdref->{_shelf} to 12, then
• Leaves the data in $cdref->{_room} unchanged (since no new value was provided),

and finally
• Returns a list of the resulting room and shelf numbers.

Such methods are called mutators because they can change the internal state of an object.
82 CHAPTER 3 GETTING STARTED



The two methods can still be called without any argument (just like the other five accessor
methods), in which case they just return the current value(s) of the relevant object data.

Catching attempts to change read-only attributes
Of course, because users of the CD::Music class can change the location or ratings informa-
tion by passing new values to those two methods, they may well expect to do the same with
CD::Music::name, CD::Music::artist, and so forth. This incorrect generalization could
lead to subtle logical errors in the program, since those read-only methods will simply ignore
any extra parameters they are given.

There are several ways to address this potential source of errors. The most obvious solu-
tion is to resort to brute force, and simply kill any program that attempts to call a read-only
method with arguments. For example:

package CD::Music;
use strict;
use Carp;

sub read_only
{

croak "Can't change value of read-only attribute " . (caller 1)[3]
if @_ > 1;

}

sub name{ &read_only; $_[0]->{_name}}
sub artist{ &read_only; $_[0]->{_artist}}
sub publisher{ &read_only; $_[0]->{_publisher}}
sub ISBN{ &read_only; $_[0]->{_ISBN}}
sub tracks{ &read_only; $_[0]->{_tracks}}

Here, each read-only access method calls the subroutine CD::Music::read_only, pass-
ing its original argument list (by using the old-style call syntax—a leading & and no parenthe-
ses). The read_only subroutine checks for extra arguments and throws an informative
exception if it finds any. Of course, there will always be at least one argument to any method,
namely the object reference through which the method was originally called.

Think of this technique as a form of Pavlovian conditioning for programmers: every time
their code actually attempts to assign to a read-only attribute of your class, their program dies.
Bad programmer!

As enjoyable as it may be to mess with people’s minds in this way, this approach does have
a drawback; it imposes an extra cost on each attempt to access a read-only attribute. Moreover,
it isn’t proactive in preventing users from making this type of mistake; it only trains them not
to repeat it after the fact.

Besides, psychology has a much more subtle tool to offer us, in the form of a technique
known as affordances.7 Affordances are features of a user interface that make it physically or psy-

7 The concept of affordances comes from the work of psychologist James Gibson, and was made popular
by user-interface guru Donald Norman. Norman’s landmark book The Psychology of Everyday Things
(later renamed The Design of Everyday Things) is essential reading for anyone who creates interfaces of
any kind, including interfaces to classes. See the bibliography for details.
A SIMPLE PERL CLASS 83



chologically easy to do the right thing. For example, good designers don’t put handles on un-
latched doors that can only be pushed. Instead, they put a flat plate where the handle would
otherwise be. Just about the only thing you can do with a plate is to push on it, so the physical
structure of the plate helps you to operate the door correctly. In contrast, if you approach a
door with a fixed handle, your natural tendency is to pull, which usually proves to be the right
course of action.

Affordances work well in programming too. In this case, we want to make any attempt
to change read-only object data psychologically awkward. The best way to do that is to avoid
raising the expectation that overwriting this data is even possible. 

For instance, we could change the names of the read-only methods to “get_…” and sep-
arate the two functions of each read-write accessor into distinct “get…” and “set…” methods:

package CD::Music;
use strict;

sub new
{

# as before
}

sub get_name{ $_[0]->{_name}}
sub get_artist{ $_[0]->{_artist}}
sub get_publisher{ $_[0]->{_publisher}}
sub get_ISBN{ $_[0]->{_ISBN}}
sub get_tracks{ $_[0]->{_tracks}}
sub get_rating{ $_[0]->{_rating}}
sub get_location{ ($_[0]->{_room}, $_[0]->{_shelf}) }

sub set_location
{

my ($self, $shelf, $room) = @_;
$self->{_room}= $roomif $room;
$self->{_shelf}= $shelfif $shelf;

}

sub set_rating
{

my ($self, $rating) = @_;
$self->{_rating} = $rating if $rating;

}

Now, the user of our class has no incentive to pass arguments to the read-only methods,
because it doesn’t make sense to do so. And, because no set_name, set_artist, and so on
exist, it’s obvious that these attributes can’t be changed.

Method prototypes
You might be tempted to think that we could have avoided all this psychological manipula-
tion by giving each method a prototype and letting the Perl compiler catch cases where the
wrong number of arguments are passed to a method:
84 CHAPTER 3 GETTING STARTED



package CD::Music;

sub name();
sub rating(;$);
sub location(;$$);
# …etc.

Unfortunately, this idea doesn’t actually work, because Perl doesn’t check prototypes
when a package subroutine is called as a method, using the $objref->method(@args)
syntax. 

There are good reasons why Perl ignores the prototypes of a method but, as they have to
do with inheritance and polymorphism, we’ll defer discussion of them until chapter 6.8 For the
moment, it’s sufficient to remember not to rely on prototypes to safeguard your methods. Be-
cause they won’t.

Accessing class data
So far, apart from constructors, we’ve only looked at the attributes and methods belonging to
individual objects of a class. We may also need to implement attributes and methods shared
by the class as a whole. These class attributes and class methods are typically provided to
access and manipulate information that is not tied to a particular object. 

For example, when using the CD::Music class, we might wish at some point to ascertain
the total number of CD::Music objects created.9 So far, that information is a collective prop-
erty of the class, and so it won’t be stored in any particular object. 

Instead, we could modify the class as follows:

package CD::Music;
use strict;

{
my $_count = 0;
sub get_count{ $_count }
sub _incr_count{ ++$_count }

}

sub new
{

my ($class,@arg) = @_;
$class->_incr_count();
bless{

_name=> $arg[0],
_artist=> $arg[1],
_publisher=> $arg[2],
_ISBN=> $arg[3],

8 Oh, all right. The compiler can’t check the prototypes because all Perl methods are polymorphic so, in
general, it’s not possible to know until run time which subroutine will actually be invoked in response
to a particular method call.

9 That’s not the necessarily the same thing as the number of CD::Music objects currently in existence,
since some objects may have ceased to exist in the interim. We’ll explore that point further in the later
section on Destructors.
A SIMPLE PERL CLASS 85



_tracks=> $arg[4],
_room=> $arg[5],
_shelf=> $arg[6],
_rating=> $arg[7],

}, $class;
}

The extra block just after use strict provides a nested lexical scope within the class.
Within that scope, we declare a lexical variable (my $_count) and initialize it to zero. The my
means that it is only visible within the scope of the current block (i.e., the nested scope). In
object-oriented terms, it’s encapsulated within the block and, therefore, within the CD::Music
class. 

Two methods—CD::Music::get_count and CD::Music::_incr_count—are also
defined in the same block. They have access to this variable, though no other methods or sub-
routines defined anywhere else, including the other methods of CD::Music, are able to access
the variable directly. Access to the methods themselves is not confined to the nested scope. Like
all named Perl subroutines, they are not restricted to the scope in which they are defined but
are globally accessible.

Normally, when we reach the end of a block, any lexical variables declared within it cease
to exist. However, in this case, $_count avoids that end-of-scope annihilation because there
are still two valid references to it outside the block, namely those within the bodies of CD::Mu-
sic::get_count and CD::Music::_incr_count. See the section on Closures in chapter 2
if it’s not clear why $_count goes out of scope, but not out of existence.

In any case, the result is that the CD::Music class now has two extra methods, and those
methods provide the only general access to the variable $_count. The methods themselves are
straightforward: CD::Music::get_count can be used to access the current value of the hid-
den $_count variable, while CD::Music::_incr_count can be used to increment the same
variable. Note that _incr_count’s name starts with an underscore, which is the standard Perl
convention for indicating that it’s intended to be used only within the current package. Al-
though, as usual, Perl in no way enforces that restriction. We’ll come back to that point shortly.

The only other change required is to add a single command to the constructor to incre-
ment the global count every time a new CD::Music object is created. Now, whenever we need
to know how many CD::Music objects have been created, we can call the class method to find
out:

package main;

# Create and use some CD::Music objects, and then…

print "There have been ", CD::Music->get_count(), " CDs created\n";

The more bitterly experienced reader will already be protesting that there is no guarantee
that the number returned by CD::Music::get_count bears any relationship to the actual
number of CD::Music objects created, since the CD::Music::_incr_count method allows
us to manipulate the count to our own nefarious ends:
86 CHAPTER 3 GETTING STARTED



package main;

# Create 100 CD::Music objects, and then…
for $i (1..100)
{

push @cds, CD::Music->new($data[$i]);
}

# double our productivity!
for (1..100)
{

CD::Music->_incr_count();
}

print "There have been ", CD::Music->get_count, " CDs created\n";

There are two answers to that. The simplest response is that calling a subroutine with a
leading underscore that clearly marks it for internal use only just isn’t playing by the rules. Pro-
grammers who do so thoroughly deserve the grief that inevitably results.

A more pragmatic answer is that it’s not difficult to extend the nested scope and use a lex-
ical subroutine reference to remove the dangerous subroutine from public accessibility:

package CD::Music;
{

my $_count = 0;
sub get_count { $_count }
my $_incr_count  = sub { ++$_count };

sub new
{

$_incr_count->();
# etc. as before

}

# Other methods that need to adjust the 
# count value, via $_incr_count, go here

}

# Methods that don't need to adjust
# the count value go here

In this version, the counter increment subroutine is anonymous and only accessible via
a reference stored in the lexical variable $_incr_count. That variable is, in turn, only acces-
sible within the block that starts just after the package declaration, so CD::Music::new has
access to the counter adjustment subroutine, but no code outside the block does. Problem
solved.

Other readers might feel that this level of security is un-Perl-like, and possibly bordering
on the paranoid, especially when we could get the same effect without all that barbed wire:
A SIMPLE PERL CLASS 87



package CD::Music;
{

my $_count = 0;
sub get_count { $_count }

sub new
{

++$_count;
# etc. as before

}

# Other methods that need to directly 
# access $_count value go here

}

# Methods that don't need to directly
# access $_count go here

This simpler solution may be satisfactory in a small application, but, even there, the de-
cision to directly access class attributes is likely to come back and bite you as your code devel-
ops. In general, you are far more likely to future-proof your code if you consistently wrap all
attribute accesses in subroutines. In chapter 6, for example, we will see how things can go hor-
ribly wrong with directly accessible class attributes when classes are inherited.

3.2.2 Using the CD::Music class

Once the class is written, we could go about using it like this:

package main;

# Create an object storing a CD's details
my $cd = CD::Music->new("Canon in D", "Pachelbel",

"Boering Mußak GmbH", "1729-67836847-1",
1,
8,8,
5.0);

# What's the CD called?
print $cd->name, "\n";

# Where would we find it?
printf "Room %s, shelf %s\n", $cd->location;

# Move it to room 5, shelf 3
$cd->location(5,3);

# How many CDs in the entire collection?
print CD::Music->get_count, "\n";

Just as with ordinary Perl subroutines, if a call to a method doesn’t require arguments,
we can omit the trailing empty parentheses after the method name. That is, we can write $cd->
name and CD::Music->get_count, rather than $cd->name() and CD::Music->get_
count(). However, unlike regular Perl subroutines, if a method does take arguments, you have
to put them in parentheses. For example, you can’t treat a method as an operator and write
something like: $cd->location 5, 3; 
88 CHAPTER 3 GETTING STARTED



It’s also worth noting that method calls that return lists—for example, $cd->loca-
tion—start with a $, not a @. This may seem inconsistent at first, but it really isn’t. Only arrays
and slices must be prefixed with a @. Actual lists, such as (1,2,3), and subroutine calls that
return lists, such as caller(), never have such a prefix.

3.3 MAKING LIFE EASIER
We can make the process of creating and using classes much easier in several ways. Putting
them into separate modules is a good start, since it provides an extra level of encapsulation
and a great deal more reusability than cutting-and-pasting. Turning on all the debugging
features is another obvious way to reduce the unexpected. Finally, there’s a useful shortcut that
alleviates the repetitive task of setting up accessor methods.

3.3.1 Class modules

Once we have a usable class, the obvious thing to do is to put it into a module, so that its
functionality is available to any code that might require it. If you’re already familiar with writ-
ing modules, then you’ll be used to the following procedure, as it’s described in chapter 2:

• Create an appropriately named .pm file in an appropriately named subdirectory;
• Put your code in it and make sure the last statement evaluates to true;
• Arrange to import the module’s interface—typically one or more subroutines—into the

package that’s going to use it.

To set up a module containing object-oriented code, the first two steps are exactly the
same: put the code implementing the class into a suitable file and add a 1; after it. Normally,
we’d then set up a list of subroutine names to be exported, either by using the Exporter module
or writing our own import subroutine. The question is: what subroutines should we export from
an object-oriented module? 

And the answer is, absolutely none!
The entire point of building a class is to encapsulate attributes and methods within the

namespace of that class to ensure that they’re accessed in a controlled manner. Exporting a
class’s attributes would compromise that encapsulation, so there’s no reason to export any vari-
ables from an object-oriented module. 

Exporting the methods of a class usually doesn’t make much sense either, since methods
are always supposed to be called through an invoking object, or through the package itself. In
either case, Perl will automatically look for the method in the namespace of the class package,
not the namespace to which subroutines are exported.

For the moment, just remember that you don’t need to export anything from an object-
oriented module (but see chapter 14 for some interesting exceptions).

3.3.2 use strict and the -w flag

Using use strict and the -w flag in serious code should be second nature. Perl’s range of
diagnostics is exceptionally comprehensive, and the compiler is remarkably adept in identify-
ing even the most arcane of semantic mistakes. Even when it guesses wrong, the error
MAKING LIFE EASIER 89



messages it generates will still tell you that something is amiss. By turning on those facilities,
you will save yourself hours of time puzzling over the unexpected behavior of your code.

In object-oriented code, use strict will pick up nasty little traps such as this:10

package CD::Music;

# WARNING: BAD CODE AHEAD…

sub set_location
{

my ($self, @loc) = @_;
$self{_room}||= $loc->[0];
$self{_shelf}||= $loc->[1];
return;

}

Occasionally the -w flag will nag about things that you know are okay in your particular
code. Rather than switching off all warnings, you can temporarily switch off warnings by lo-
calizing the $^W variable:

# This code may generate a warning if "more" is unavailable,
# but it's okay to ignore it…
sub print_paged
{

my ($self) = @_;
local $^W;# Locally reset warning switch 
local *STDOUT;
open STDOUT, "|more" or open STDOUT, ">-";# Might generate warning
$self->print_me;

}
# Warnings are active again from this point in the execution

Be careful, however, since the localized $^W variable propagates into any subroutine called
from CD::Music::print_paged (for example, into CD::Music::print_me). This could
mask other problems elsewhere in your code.

Some people are also reluctant to give up the syntactic liberties that use strict denies
them. Indeed, the documentation on the use strict pragma suggests that, in its full glory,
it is too stringent for casual programming. But, whatever casual programming may be, it is al-
most never object-oriented programming, so it’s a wise move always to include a use strict
at the top of any object-oriented code you create. 

Remember, though, that a use strict pragma only affects code that follows it in the
same scope, so put it near the top of your module. You should also be aware that, although
use strict respects block scopes, it ignores package boundaries. So if you give one package
a use strict, it may also apply to any packages that appear later in the file. 

10 If it’s not immediately obvious what’s wrong in the code, you definitely need to use strict! The
problem is that $self{_room} is accessing an entry in the package variable %CD::Music::self,
not the one in the hash referred to by my $self. Likewise $loc->[0] is attempting to access the
first element of the array referred to by the scalar package variable $CD::Music::loc, not the first
element of my @loc.
90 CHAPTER 3 GETTING STARTED



3.3.3 Automating data member access

Previously, we saw how to create accessor methods to provide access to an object’s data in a
controlled manner. For example, class CD::Music defined the following read-only data
accessors:

package CD::Music;

sub get_name{ $_[0]->{_name}}
sub get_artist{ $_[0]->{_artist}}
sub get_publisher{ $_[0]->{_publisher}}
sub get_ISBN{ $_[0]->{_isbn}}
sub get_tracks{ $_[0]->{_tracks}}
sub get_rating{ $_[0]->{_rating}}
sub get_location{ ($_[0]->{_room}, $_[0]->{_shelf}) }

Even such simple accessors quickly become tedious to write, especially if there are many
of them. Apart from the tedium, it’s easy to be mesmerized into making a mistake, as we just
did with the get_ISBN method above. (It should access $_[0]->{_ISBN}, not $_[0]->{_
isbn}.) Mistakes such as this can be hard to track since the compiler gives no warning of
them, even (alas!) under use strict and -w.

Sometimes a better solution is to provide a single catchall method that can be called in
response to any attempt to call an accessor. Packages already provide the ability to define such
a catchall by defining a subroutine called AUTOLOAD. Since a Perl class is just a package with
delusions of grandeur, it should come as no surprise that we can use AUTOLOAD as a catchall
for methods as well.

For example, we can replace the series of “get_…” methods with the following:

package CD::Music;
use strict;
use vars '$AUTOLOAD';# keep 'use strict' happy

sub AUTOLOAD
{

my ($self) = @_;
$AUTOLOAD =~ /.*::get(_\w+)/# extract attribute name

or croak "No such method: $AUTOLOAD";
exists $self->{$1}# locate attribute

or croak "No such attribute: $1";
return $self->{$1}# return attribute

}

sub get_location { ($_[0]->{_room}, $_[0]->{_shelf}) }

# But don't define the other get_… methods

Now, whenever Perl fails to find a method for an object of class CD::Music, the CD::Mu-
sic::AUTOLOAD method is invoked instead. The AUTOLOAD method itself is simple. It’s in-
voked just like the methods it replaces; that is, with a reference to an object passed as its first
argument. The name of the method actually requested is provided in the $AUTOLOAD package
variable.
MAKING LIFE EASIER 91



Therefore, if the original method call was: $cdref->get_artist(), then the catchall
method CD::Music::AUTOLOAD is called with one argument—the object reference stored in
$cdref—and the package variable $CD::Music::AUTOLOAD contains the string "CD::Mu-
sic::get_artist".

The CD::Music class’s AUTOLOAD first uses a regular expression to locate and extract (as
$1) the name of the actual object attribute being requested. It checks that the requested at-
tribute is in fact present in the object and then it returns the corresponding value.

If that extract-and-lookup process fails for any reason—either because the method name
didn’t have a get_ prefix, or because the corresponding entry didn’t exist in the object hash—
CD::Music::AUTOLOAD gives up and throws an appropriate exception. 

We still need to provide an explicit definition for get_location since it doesn’t fit into
the common structural pattern that AUTOLOAD simulates. Since the AUTOLOAD method for a
class is only called if normal method lookup fails, the explicit version of get_location is
found and called before AUTOLOAD is considered. 

Problems still arise with the above version of AUTOLOAD if the CD::Music class also uses
hash entries to implement nonpublic attributes of an object. For example, if an entry with the
key '_read_count' is used to track how often each object has been read-accessed, then the
previous AUTOLOAD allows that internal data to be accessed via a call to the accessor $cdref->
get__read_count(). We can provide better control by making AUTOLOAD a little smarter:

package CD::Music;
use strict;
use vars '$AUTOLOAD';# Keep 'use strict' happy

{
my %_attrs = 

( _name=> undef,
_artist=> undef,
_publisher=> undef,
_ISBN=> undef,
_tracks=> undef,
_rating=> undef,
_room=> undef,
_shelf=> undef,

);

sub _accessible { exists $_attrs{$_[1]} }
}

sub AUTOLOAD
{

my ($self) = @_;
$AUTOLOAD =~ /.*::get(_\w+)/

or croak "No such method: $AUTOLOAD";
$self->_accessible($1)

or croak "No such attribute: $1";
$self->{_read_count}++;
return $self->{$1};

}

92 CHAPTER 3 GETTING STARTED



In this version, AUTOLOAD checks the requested attribute name against a predefined list
of publicly accessible attributes, rather than simply checking for existence in the object. The
keys of the encapsulated hash %_attrs enumerate the attributes to which AUTOLOAD is allowed
to provide access. Notice that we use the nested scope trick again to encapsulate the internal
data and provide controlled access to it via a method.

In the above example, the values of the %_attrs hash convey no useful information. But
they could. For instance, we can arrange for AUTOLOAD to handle the "set_…" methods of the
class as well. The values of %_attrs can then be used to indicate whether a particular attribute
is read-only or writable as well. That requires further modifications to the above code, as shown
in listing 3.2.

The tests are a little more “Perlified,” but the only significant difference in this version
is that the class method CD::Music::_accessible now checks whether the specified at-
tribute is accessible in the required mode (i.e., 'read' or 'write').

The use of an encapsulated hash to specify the valid attributes of a class and other related
information is a technique commonly used in object-oriented Perl. We’ll see variations on this
approach at the end of this chapter and in chapter 4.

Reducing the cost of autoloading
The convenience of having accessor methods conjured up for us whenever they’re needed
comes at a price. In order to determine that autoloading is required, Perl must first attempt to
locate a suitable method in the current class and fail to do so, invoking the AUTOLOAD instead.
That’s more expensive than just finding the method and calling it. As we’ll see in chapter 6, if
the class also inherits from another class, the search for the correct method becomes even
more expensive, as does locating the appropriate AUTOLOAD method.

Even when the AUTOLOAD method is eventually invoked, it’s less efficient than a hard-
coded method would be. In the CD::Music class, for example, it has to identify the method
with one or two pattern matches, determine whether the method is callable (with another
method call to accessible), and, finally, simulate the method itself. By comparison, a hard-
coded method could simply do its job immediately without any identification or verification
phases.

Worst of all, the CD::Music class never learns from the experience of resorting to auto-
loading. The next time the same method is called, AUTLOAD will be forced to go through the
same expensive lookup–identify–verify sequence all over again.

Fortunately, because Perl provides direct run-time access to a package’s symbol table, it’s
easy to extend an AUTOLOAD method so that all those extra costs are incurred only the first time
that AUTOLOAD is required to implement a particular method. In other words, with surprisingly
little extra effort, we can arrange for AUTOLOAD to teach its class a new method whenever one
is needed:

sub CD::Music::AUTOLOAD
{

no strict "refs";
my ($self, $newval) = @_;

# Was it a get_… method?
MAKING LIFE EASIER 93



if ($AUTOLOAD =~ /.*::get(_\w+)/ && $self->_accessible($1,'read'))
{

my $attr_name = $1;
*{$AUTOLOAD} = sub { return $_[0]->{$attr_name} };
return $self->{$attr_name}

}

# Was it a set_… method? 
if ($AUTOLOAD =~ /.*::set(_\w+)/ && $self->_accessible($1,'write'))
{

my $attr_name = $1;
*{$AUTOLOAD} = sub { $_[0]->{$attr_name} = $_[1]; return };
$self->{$1} = $newval;
return

}

# Must have been a mistake then…
croak "No such method: $AUTOLOAD";

}

Note how similar this version is to the one shown in figure 3.2. The difference is that
here, when AUTOLOAD determines that a valid get_… or set_… accessor has been called, it cre-
ates an optimized version of that accessor (as an anonymous subroutine) and then installs that
accessor in the appropriate symbol table.11

The anonymous subroutine that AUTOLOAD creates is a closure, so it remembers the value
of the lexical $attr_name variable even after that variable goes out of scope. That way, each
subroutine generated by AUTOLOAD is specific to whichever attribute is required for the get or
set operation that AUTOLOAD is currently handling.

By installing the anonymous subroutine in the package’s symbol table in response to a
method call, we have effectively created a new method of the same name within the class. Next
time that method is called, the look-up mechanism will find an entry for it in the symbol table
and immediately call the corresponding subroutine. AUTOLOAD will no longer be required to
handle calls to that particular method, which will now be executed much more quickly.

3.3.4 Documenting a class

Having written the code, the task of building a class is approximately half done. If the class is
to be anything more than a one-off, throw-away convenience, it needs to be documented. 

Perl makes documenting code particularly easy. You can embed documentation written
in the POD markup language right in your module, even interspersing it through the code if
you wish. The perlpod documentation that comes with Perl explains how to document your
code. This section provides a guide on what to document.

When documenting a class, you need to provide users with at least the following infor-
mation:

11 …by assigning it to the typeglob *{$AUTOLOAD}. Since $AUTOLOAD holds the full name of the re-
quired method, it can be used as a symbolic reference into the symbol table. See the section on Symbolic
references in chapter 2.
94 CHAPTER 3 GETTING STARTED



package CD::Music;
use strict;
use vars '$AUTOLOAD';# Keep 'use strict' happy

# constructor and destructor, as before…
# and then…

{
my %_attrs = 

( _name=> 'read',
_artist=> 'read',
_publisher=> 'read',
_ISBN=> 'read',
_tracks=> 'read',
_rating=> 'read/write,
_room=> 'read/write',
_shelf=> 'read/write',

);

sub _accessible
{

my ($self, $attr, $mode) = @_;
$_attrs{$attr} =~ /$mode/

}
}

sub AUTOLOAD
{

my ($self, $newval) = @_;

# Was it a get_… method?
$AUTOLOAD =~ /.*::get(_\w+)/

and $self->_accessible($1,'read')
and return $self->{$1};

# Was it a set_… method? 
$AUTOLOAD =~ /.*::set(_\w+)/

and $self->_accessible($1,'write')
and do { $self->{$1} = $newval; return }

# Must have been a mistake then…
croak "No such method: $AUTOLOAD";

}

Listing 3.2 A smart AUTOLOAD method for the CD::Music class
MAKING LIFE EASIER 95



• The name and purpose of the class.
• The version of the class which the documentation documents.
• A brief synopsis of how the class is used.
• A more extensive description of how the class is used. This should include specific docu-

mentation on how to create objects of the class, what methods those objects provide,
what class methods are available, and any special features or limitations of the class.

• A complete list of diagnostics that the class is likely to generate (whether they be excep-
tions thrown, special values returned, or warning messages generated), plus a description
of likely error conditions that the class will not be able to diagnose itself.

• Any environment variables or files that can—or must—be used.
• Any other modules that the class relies on, and how to obtain them if they’re not avail-

able on the CPAN.
• A list of any known bugs, with suggested workarounds.
• Cross-references to any other relevant documentation.
• A copyright notice.
• The name and contact details of the author or authors.

Listing 3.3 provides a POD skeleton of suitable documentation for a class.

3.4 THE CREATION AND DESTRUCTION OF OBJECTS
The object-oriented features of Perl have been around long enough for many conventions and
idioms to have evolved. We’ve already discussed a number of those that relate to methods and
attributes. In this section, we’ll look at a few conventions that users of your Perl classes will
expect you to observe in regard to the creation and removal of objects.

However, as with many aspects of Perl programming, these matters are customs, not grav-
en in stone. You are free to ignore any or all of them, though that may get your code talked
about.12

3.4.1 Constructors

By convention, each Perl class provides a class method that can be called to produce new
objects of the class. That method is called a constructor (as it is in C++ or Java) and, just as in
the examples above, it is usually called new. Of course, it’s perfectly legitimate to call your
constructor create, make, conjure_forth_from_the_Eternal_Void_I_adjure_thee,
or anything else that’s appropriate for your application, but new has the three distinct advan-
tages of being short, accurate, and predictable.

Some object-oriented programmers prefer to completely separate the process of object
creation from the process of initialization, and so provide two methods: new to create the ob-
ject, and init to set up its internal data. This type of fastidiousness makes sense in other lan-
guages where the process of construction may fail, often with fatal and hard-to-detect
consequences, but it’s usually misplaced and excessively paranoid in Perl. Besides, such behav-
ior has the overwhelming disadvantage of making it inevitable that someone will create an ob-

12 …or worse still, ignored.
96 CHAPTER 3 GETTING STARTED



=head1 NAME

Full::Class::Name - One line summary of purpose of class

=head1 VERSION

This document refers to version N.NN of Full::Class::Name, 
released MMMM DD, YYYY.

=head1 SYNOPSIS

# Short examples of Perl code that illustrate the use of the class

=head1 DESCRIPTION

=head2 Overview

=head2 Constructor and initialization

=head2 Class and object methods

=head2 Any other information that's important

=head1 ENVIRONMENT

List of environment variables and other O/S related information
on which the class relies

=head1 DIAGNOSTICS

=over 4

=item "error message that may appear"

Explanation of error message

=item "another error message that may appear"

Explanation of another error message

etc…

=back

=head1 BUGS

Description of known bugs (and any work-arounds).
Usually also includes an invitation to send the author bug reports.

=head1 FILES

List of any files or other Perl modules needed by the class and a brief 
explanation why.

=head1 SEE ALSO

Cross-references to any other relevant documentation.

=head1 AUTHOR(S)

Name(s)
(email address(s))

=head1 COPYRIGHT

Copyright (c) YYYY(s), Author(s). All Rights Reserved.
This module is free software. It may be used, redistributed
and/or modified under the same terms as Perl itself.

Listing 3.3 Class documentation template
THE CREATION AND DESTRUCTION OF OBJECTS 97



ject and fail to initialize it. Better to put all your object initialization in a single constructor
method.

That’s not to say that you shouldn’t separate the two processes within the constructor. If
your initialization sequence is even moderately complex, you should consider putting it in a
separate method, like so:

package CD::Music;
use strict;

sub new
{

my $self = {};
bless $self, shift;
$self->_incr_count();
$self->_init(@_);
return $self;

}

{
my @_init_mems =

qw( _name _artist _publisher _ISBN _tracks _room _shelf _rating );

sub _init
{

my ($self,@args) = @_;
my %inits;
@inits{@_init_mems} = @args;
%$self = %inits;

}
}

In this version, CD::Music::new performs only the actions associated with object cre-
ation: incrementing the global object count, creating the anonymous hash that implements the
object, blessing that hash into the class. Then the CD::Music::_init method is called to
populate the hash with appropriate values before CD::Music::new returns a reference to the
new object. Note that _init is underscored to indicate that it’s nonpublic. As always, nothing
enforces this distinction except the goodwill of any client code.

The way in which CD::Music::_init goes about populating the hash is interesting. It
first creates a temporary hash (%inits) and immediately generates a “slice” of it (@inits{@_
init_mems}). This slice is then assigned the various arguments _init was passed. Finally, the
now-initialized temporary hash is assigned back to the blessed object being initialized.

This approach offers the advantage that adding another data member to the class is now
simply a matter of adding another element to the secret @_init_mems array—and remember-
ing to pass the correct argument list.

Another way to call a constructor
Perl provides a second syntax for calling a constructor, or any other method belonging to a
class. It’s known as the indirect object syntax, and it’s already familiar to you. We’ll discuss it
here, and then you should tear out this page and eat it, so that you’ll never be tempted to use
the syntax. You’ll see why shortly.
98 CHAPTER 3 GETTING STARTED



The general forms of the syntax are:

methodname OBJECTREF ARGLIST
methodname CLASSNAME ARGLIST
methodname BLOCK ARGLIST

In other words, it’s exactly like the standard print-to-a-file handle syntax:

print STDERR "arg", "u", "mentl", "ist";

So what does that have to do with constructors? Well, the same indirect syntax that we
use for printing is available to call any method. So you can call a constructor like this

my $cd = new CD::Music ("Toccata and Fugue", "J.S.Bach",
"Classic Records", "1456-432443424-2",
6, 2,7, 9.5);

Many programmers prefer this indirect object syntax, at least for constructor calls, since
it’s less densely punctuated and more reminiscent of constructor invocation in several other ob-
ject-oriented languages. 

The indirect object syntax does, however, suffer from the same type of ambiguity prob-
lems that sometimes befuddles print. Provided Perl has already seen the class name before it
reaches the indirect object call, there’s no problem as long as you always use a bareword class
name or a scalar variable as the CLASSNAME element:

use CD::Music;

$CDM = 'CD::Music';

my $cd1 = new CD::Music (@data);# okay
my $cd2 = new $CDM (@data);# okay too

Things don’t go so well if you use a function call in that position:

my $cd3 = new get_classname() (@data);#Compilation error!

So what, (you’re thinking) when am I ever going to do something arcane like that? Well,
you’d be surprised how easy it is. Suppose you were trying to follow good software engineering
practice and factor out a widely used explicit string into a predefined constant:

package main;
use constant CLASS => "CD::Music";

# and later…

new CLASS (@data);

Oops! The constant.pm module works by defining a tiny subroutine called
main::CLASS, like this:

sub main::CLASS() { return "CD::Music" }

Now you do have a function call in the CLASSNAME slot, and the compiler gets confused. In
fact, because it’s looking for a parameter list straight after the function name, the compiler
thinks that you’re trying to call main::CLASS with the argument list (@data), and use the
result as the argument list to a normal subroutine (main::new). In other words, what was
intended to be a CD::Music constructor call is parsed as if it were
THE CREATION AND DESTRUCTION OF OBJECTS 99



main::new( main::CLASS(@data) );

Of course, since the empty prototype for main::CLASS forbids it to take any arguments,
and the main package probably doesn’t have a new subroutine, the compiler rejects the entire
expression (with an obscure error message complaining that unquoted string new may clash

with future reserved word…).
You can use a predeclared pseudo-constant like CLASS, but, to do so, you have to use the

third form the indirect object syntax and put the function call in its own block:

new {CLASS} (@data);

This doesn’t seem all that much clearer than an explicit method call (CLASS->new(@da-
ta)). It’s probably safer to stick with the direct call syntax, which doesn’t have any special
cases.

An even better reason not to use the indirect object syntax is that another inherent am-
biguity exists when a method is called without arguments. For example, consider a call intend-
ed for the CD::Music::get_name method:

package main;

print(get_name $cd);

Now, because the indirect object notation can be used with any method, that should be
identical to

package main;

print($cd->get_name);

And it usually is. The only problem occurs if main happens to have its own subroutine
called get_name. In that case, the compiler assumes you are calling main::get_name without
parentheses around its arguments, as if you’d meant

package main;
 
print( main::get_name($cd) );

Even if you use a bareword, as is commonly the case when calling a constructor, things
can go horribly wrong if the class you want is declared too late in the program. For example

package SeenFirst;
sub new { print "called &SeenFirst::new('$_[0]')\n" }

package main;
sub new { print "called &main::new('$_[0]')\n" }

SeenFirst->new();
new SeenFirst;
 
SeenLater->new();
new SeenLater;

package SeenLater;
sub new { print "called &SeenLater::new('$_[0]')\n" }

The four (supposed) constructor calls actually produce the following output:
100 CHAPTER 3 GETTING STARTED



called &SeenFirst::new('SeenFirst')

called &SeenFirst::new('SeenFirst')

called &SeenLater::new('SeenLater')

called &main::new('SeenLater)

because, at the point where it executes the statement new SeenLater, Perl doesn’t yet know
that SeenLater is a class name. Consequently, Perl doesn’t realize that the call is supposed to
be to an indirect object method, rather than a regular subroutine.

All in all, the seductive intuitiveness of the indirect object syntax probably isn’t worth ei-
ther the burden of remembering when it’s safe to use or the pain of tracking down obscure bugs
like these when it isn’t. Stick with the arrow syntax for all methods, including constructors and
class methods.

Constructor argument lists 
One of the most pleasant features of object-oriented programming is that method calls don’t
generally involve passing a long list of arguments. That’s because most of the data a method
needs is typically already stored in the object on which the method is called. 

Constructors are frequently an exception to this rule, because they exist to convey data 
to an object, rather than extract an object’s data or internally manipulate it. For example, the
constructor for the CD::Music class takes eight arguments, whereas no other method of that
class takes more than two, and the majority take none.

Such argument-laden methods are painful to call because it’s easy to get the argument or-
der wrong or forget an argument. An alternative and safer way to pass data to a constructor is
to pass the argument list as though it were a hash (see Named arguments in chapter 2). 

For example we could rewrite CD::Music::new as follows:

package CD::Music;
use strict;

sub new
{

my ($class, %arg) = @_;
$class->_incr_count();
bless{

_name=> $arg{name},
_artist=> $arg{artist},
_publisher=> $arg{publisher},
_ISBN=> $arg{ISBN},
_tracks=> $arg{tracks},
_room=> $arg{room},
_shelf=> $arg{shelf},
_rating=> $arg{rating},

}, $class;
}

Now, the creation of a new CD::Music object is self-documenting, and the data can be
specified in any convenient order:
THE CREATION AND DESTRUCTION OF OBJECTS 101



my $cd = CD::Music->new(name=> "Piano Concerto 20",
artist=> "Mozart",
rating=> 10,
room=> 5,
shelf=> 1,
publisher=> "Salieri Intl.",
ISBN=> "1426-43235624-2",
);

The use of named arguments is certainly not a universally applied convention, and is oc-
casionally a topic of minor philosophical debate, but the greater verbosity of named arguments
more than pays for itself every time code has to be maintained. As a rule of thumb, if your con-
structor takes more than two or three arguments, it will be far easier to use if those arguments
are named.

Constructor default values 
Did you notice in the previous example that we neglected to specify how many tracks there
were? Of course, even with named parameters, if an argument is accidentally omitted when a
constructor is called, the corresponding internal data will be undefined. That may be a reason-
able default value, especially if it’s a conscious choice, or it may be better to provide explicit
defaults for any missing value:

package CD::Music;
use strict;

sub new
{

my ($class, %arg) = @_;
$class->_incr_count();
bless{

_name=> $arg{name}|| croak("missing name"),
_artist=> $arg{artist}|| "???",
_publisher=> $arg{publisher}|| "???",
_ISBN=> $arg{ISBN}|| "???",
_tracks=> $arg{tracks}|| "???",
_room=> $arg{room}|| "uncataloged",
_shelf=> $arg{shelf}|| "",
_rating=> $arg{rating}|| ask_rating($arg{name}),

}, $class;
}

sub ask_rating { print "What is your rating for $_[0]? "; scalar <> }

The defaults specified in this way may be explicit values, or a particular action (such as throw-
ing an exception, or prompting for missing data). 

The use of the || operator—a common Perl idiom—means that no argument can have
the value 0, since the left-hand side of the operation would then be false, so the default on the
right-hand side would used. If valid values of 0 and other false values like "0", or "" are re-
quired, the above code would have to be uglified with the ternary operator instead:
102 CHAPTER 3 GETTING STARTED



bless{
_name=> defined($arg{name}) ? $arg{name} : croak("missing name"),
_artist=> defined($arg{artist}) ? $arg{artist} : "???",

# etc.

}, $class;

Constructors as object duplicators
We can get even more sophisticated. For example, we can arrange that, whenever the con-
structor is called as an object method (with no arguments), the values for the newly created
object are taken from the existing object through which the constructor was called. In other
words, the constructor can also act like a copy operation.

Note that a constructor call is required. Simple object-to-object assignment won’t do the
trick for several reasons:

• A simple assignment of object references ($objref1 = $objref2) doesn’t copy the ref-
erent. Both variables will end up pointing to the same object.

• A simple assignment of the underlying objects (%$objref1 = %$objref2) won’t assign
the blessing of the original object to the new one, nor will it adjust a class attribute that
keeps count of objects.

• Even if we could assign the objects with their blessings, and have the count correctly
updated, if any of the original object’s attributes themselves contained references, we’d
have the same problem all over again, only at the next level down.

Thus, Perl’s shallow copy semantics frustrates our desire to use simple assignment as a
copying mechanism. 

The way the constructor was previously set up, to copy an object we’d first have to de-
termine its type (using the built-in ref function). We could then create an object of the same
type by calling new via the resulting class name. Finally, we could initialize the newly created
object with a simple hash-to-hash assignment. Like this:

%{$objref2 = ref($objref1)->new()} = %{$objref1};

Provided the object doesn’t contain any nested references, this works quite well. But it’s
not obvious to code, nor easy to understand once coded. Laziness is a cardinal virtue in Perl,
so a custom has developed that when users of a class call a class’s constructor as an object meth-
od, the defaults that the constructor uses are taken from the original object. This means that
the copy operation can be accomplished just by writing

$objref2 = $objref1->new();

To implement that behavior we need one extra tweak in the CD::Music constructor:

package CD::Music;

 {
my $_class_defaults =
{ _name=> "???",

_artist=> "???",
THE CREATION AND DESTRUCTION OF OBJECTS 103



_publisher=> "???",
_ISBN=> "???",
_tracks=> "???",
_room=> "uncataloged",
_shelf=> "",
_rating=> -1,

};

sub _class_defaults{ $_class_defaults }
sub _class_default_keys{ map { s/^_//; $_ } keys %$_class_defaults}

}

sub new
{

my ($caller, %arg) = @_;
my $class = ref($caller);
my $defaults = $class ? $caller : $caller->_class_defaults();
$class ||= $caller;
$class->_incr_count();
my $self = bless {}, $class;
foreach my $attrname ( $class->_class_default_keys )
{

if (exists $arg{$attrname})
{ $self->{"_$attrname"} = $arg{$attrname} }

else
{ $self->{"_$attrname"} = $defaults->{"_$attrname"} }

}
return $self;

}

In this version, CD::Music::new first determines if $caller is an object, in which case
ref($caller) returns a class name. In that case, the default values for the initialization
should come from that object, so $defaults is made to refer to the object, $caller, itself.
If ref($caller) returns an empty string instead, then $caller itself must have stored a class
name. That is, the constructor must have been called as a class method: CD::Music->
new(@data). In that case, the default values are taken from the class itself—$caller->_

class_defaults()—and $class is reassigned the value of $caller (i.e., the class name).
After that point, we are guaranteed that $class stores the class name into which the ob-

ject is to be blessed, and $defaults stores a reference to a hash with entries suitable for use
as default values. That hash may be another object, or it may be the hash referred to by $_
class_defaults, but we no longer care which.

Having blessed an empty hash into the class, all that is required is to initialize that object
by stepping through each valid internal datum—conveniently specified by the keys of the class
defaults. For each key, we strip the leading underscore to generate the external name, $attr-
name, that would have been used to label the corresponding argument to CD::Music::new.
We assign either the argument passed to the constructor, $arg{$attrname}, or, if no suitable
argument was passed, the default value from the hash referred to by $caller, $caller->{"_
$attrname"}.

With a constructor like this, we can now copy an existing object:

my $cdref2 = $cdref1->new();
104 CHAPTER 3 GETTING STARTED



Or we can copy and modify an object in one step:

my $cdref2 = $cdref1->new(name=> "Also Sprach Zarathustra",
artist=> "Strauss");

Or just use the standard defaults

my $cdref2 = ref($cdref1)->new();

This last constructor call doesn’t use the values in the object referred to be $cdref1, be-
cause ref($cdref1) is the name of the object’s class, not a reference to the object itself.

A separate clone method
While many experts view the overloading of constructors as object copiers to be a natural
extension of their functionality, others consider the technique unintuitive, too subtle, and
more likely to produce obscure and hard-to-maintain code. Whether or not that’s the case, it
certainly is true that the code for the constructors themselves is considerably more
complicated.

The alternative is to provide a completely separate method for duplicating objects. Such
a method is typically called clone or copy and would be implemented like this:

package CD::Music;

# constructor as in earlier versions

sub clone
{

my ($self) = @_;
my $class = ref($self);
$class->_incr_count();
bless { %{$self} }, $class;

}

The new clone method reproduces the essential behavior of the CD::Music construc-
tor—incrementing the object count, then blessing a hash as the new object—but requires
much less initialization code, since it can simply copy the contents of the existing object,
%{$self}, on the assumption that it’s already correctly structured. 

However, this approach is not always sufficient, particularly if some of a class’s attributes
are implemented as references. In such cases we need to copy each reference attribute from the
$self object separately. For example, if the "_artist" and "_ISBN" attributes were actually
references to objects of the classes Artist and ISBN (each with its own clone method), then
we would have to implement the CD::Music::clone method like this:

sub clone
{

my ($self) = @_;
my $class = ref($self);
$class->_incr_count();
my $newobj = bless { %{$self} }, $class;
$newobj->{_artist}= $self->{_artist}->clone();
$newobj->{_ISBN}= $self->{_ISBN}->clone();
return $newobj;

}

THE CREATION AND DESTRUCTION OF OBJECTS 105



Whether you decide to provide object cloning facilities implicitly (as part of a standard
constructor), or explicitly (as a separate method), depends on the nature of the application
you’re building, and—more importantly—on the expectations and conventions of those who
may use your code. If you have a choice, it’s probably better to code a separate clone method.
Apart from keeping your individual methods simpler and less prone to bugs, the method’s
name will force client code to be more clearly self-documenting.

3.4.2 Destructors

Most object-oriented languages provide the ability to specify methods that are called automat-
ically when an object ceases to exist. Such methods are usually called destructors and are used
to undo any side-effects caused by the previous existence of an object, including:

• Deallocating related memory (although, in Perl, that’s almost never necessary since refer-
ence counting usually takes care of it for you);

• Closing file or directory handles stored in the object;
• Closing pipes to other processes;
• Closing databases used by the object;
• Updating classwide information;
• Anything else that the object should do before it ceases to exist (such as logging the fact

of its own demise, or storing its data away to provide persistence, etc.).

In Perl, you can set up a destructor for a class by defining an object method called DE-
STROY. The method is automatically called on an object just before that object’s memory is
reclaimed. That happens either as soon as the program loses its last reference to the object—
that is, when the object’s reference count reaches zero—or when the interpreter thread in
which the object was created shuts down. Typically, the destructor is called when the last vari-
able holding a reference to the object goes out of scope or has another value assigned to it.

For example, we could provide a destructor for the CD::Music class like this:

package CD::Music;

sub DESTROY
{

my ($self) = @_;
print "<<here lies the noble '", $self->name(), "'>>\n";

}

Now, every time an object of class CD::Music is about to cease to exist, that object will
automatically have its DESTROY method called, which will print an epitaph for the object. For
example, the following script

package main;
use CD::Music;

open CDDATA, "CD.dat" or die "Couldn't find CD data";
while (<CDDATA>)
{

my @data = split ',', $_;
my $cd = CD::Music->new(@data);
print "Title: ", $cd->name, "\n";
106 CHAPTER 3 GETTING STARTED



} 
print "(end of list)\n";

prints out something like the following

Title: Canon in D

<<here lies the noble 'Canon in D' >>

Title: Toccata and Fugue

<<here lies the noble 'Toccata and Fugue' >>

Title: Concerto in D

<<here lies the noble 'Concerto in D' >>

 Title: The Four Seasons'

<<here lies the noble 'The Four Seasons' >>

 (end of list)

That’s because, at the end of each iteration of the while loop, the variable $cd goes out
of scope, taking with it the only reference to the CD::Music object created earlier in the same
loop. That object’s reference count immediately becomes zero, and, because it was blessed, the
corresponding DESTROY method, CD::Music::DESTROY, is automatically called on the ob-
ject, printing out the “here lies…” message.

Of course, in a real program you want your destructor to bury your CDs, not to praise
them. Rather than printing a valedictory, we could do some useful work in the destructor and,
for example, remedy the bug in the class atrribute that keeps track of the number of CD::Music
objects.

The problem is that the CD count keeps merrily incrementing every time CD::Mu-
sic::new is called, but the count is never decremented, even when CD::Music objects cease
to exist. Technically, it’s a count of how many objects have ever existed, not how many cur-
rently exist. 

Up to this point we’ve had no way of ensuring that the shared count is decreased when-
ever an object vanishes, but now it’s easy:

package CD::Music;
use strict;

{
my $_count = 0;

sub get_count { $_count }
sub _incr_count { ++$_count }
sub _decr_count { --$_count }

}

sub new
{

my $class = ref($_[0]) || $_[0];
$class->_incr_count();
# etc. as before

}

sub DESTROY
THE CREATION AND DESTRUCTION OF OBJECTS 107



{
my ($self) = @_;
$self->_decr_count();

}

We are now guaranteed that the collective object count is correctly updated each time a
CD::Music object is destroyed.

Destructors and circular data structures
Apart from manipulating global attributes like the object count, destructors are rarely needed
in object-oriented Perl. By and large, Perl cleans up after itself so effectively that there’s usually
nothing left for a destructor to do. There is one situation, however, where a destructor is
required to help clean up after objects: reclaiming circular data structures.

Let’s consider a class that represents a network of some kind (i.e., a set of nodes connected
by one-way links). Such a class might be needed for email routing, or traffic monitoring soft-
ware, or in a LAN configuration program, or the finite state machine of a parser, or to imple-
ment a neural net. The Network class would probably look something like this:

package Network;
use strict;

sub new
{

my ($class) = @_;
bless { _nodes => [] }, $class;

}

sub node
{

my ($self, $index) = @_;
return $self->{_nodes}->[$index];

}

sub add_node
{

my ($self) = @_;
push @{$self->{_nodes}}, Node->new();

}

Notice that it makes use of another class, Node. The Node class looks like this:

package Node;
use strict;

{
my $_nodecount=0;
sub _nextid { return ++$_nodecount }

}

108 CHAPTER 3 GETTING STARTED



sub new
{

my ($class) = @_;
bless { _id => _nextid(), _outlinks => [] }, $class;

}

sub add_link_to
{

my ($self, $target) = @_;
push @{$self->{_outlinks}}, Link->new($target)

}

The Node class in turn relies on another class, Link, whose objects represent a single uni-
directional link to another Node. The Link class looks like this:

package Link;
use strict;

{
my $_linkcount=0;
sub _nextid { return ++$_linkcount }

}

sub new
{

my ($class) = @_;
bless{_id=> _nextid(),

_to=> $_[1],
}, $class;

}

Therefore, a Network consists of zero or more Node objects, each of which has an ID
number and a list of references to zero or more outward-going Link objects. Each Link in turn
has an ID number and a reference to the Node at which it terminates. Links act as connectors
between Nodes, Nodes act as end-points of Links, and the Network object acts as a container
for the lot. Figure 3.4(a) illustrates these relationships for a simple three-node network imple-
mented by the following code:

use Network;

my $network = Network->new();

foreach (0..2) { $network->add_node(); }

$network->node(0)->add_link_to($network->node(1));
$network->node(0)->add_link_to($network->node(2));
$network->node(1)->add_link_to($network->node(2));
$network->node(2)->add_link_to($network->node(1));

This kind of interaction among several classes illustrates one of the most important fea-
tures of object-oriented programming: the construction of classes out of the interactions of oth-
er simpler classes. Unfortunately, in this case, it’s in those interactions that the problem arises. 

Suppose that three-node network were created in some nested lexical scope, say, in a
subroutine:
THE CREATION AND DESTRUCTION OF OBJECTS 109



use Network;

sub analyse_network
{

my $network = Network->new();

foreach (0..2) { $network->add_node(); }

$network->node(0)->add_link_to($network->node(1));
$network->node(0)->add_link_to($network->node(2));
$network->node(1)->add_link_to($network->node(2));
$network->node(2)->add_link_to($network->node(1));

# Do analysis here
} 

Everything works fine, until we reach the end of analyse_network, and the lexical variable
$network goes out of scope. At that point, the Network object being referred to by $net-
work has no other references to it, so it also ceases to exist. That, in turn, means that each of
the Node objects in the Network object’s node list has its reference count decremented. We
might assume that those counts go to zero and the Nodes are also removed, but that isn’t the
case, as figure 3.4 illustrates.

The first Node object in the list, $network->node(1), does indeed end up with a zero
reference count and is correctly reclaimed. That decrements the reference counts of the first
two Link objects, causing them to disappear as well. Each of those links has a reference to one
of the remaining Node objects, so their reference counts also decrement. Those counts only
reduce to 1, because each of the two remaining Link objects still contains a reference to a Node
object. At that point, the cascade of destructor calls ceases, since all the remaining objects have
nonzero reference counts.

There’s the problem. From the point-of-view of the rest of the program, the two remain-
ing Nodes and their interconnecting Links are inaccessible, since the rest of the program has
no reference to them. And the memory they occupy will never be reclaimed because their ref-
erence counts are nonzero.

The stubborn Nodes and Links form a cycle, in which each object stores a reference to
some other, which stores a reference to some other, which stores a reference to some other,
which stores a reference back to the first. Such chains of references are self-sustaining, because
even if no other reference exists to any of the objects, every one of them is referred to at least
once. Consequently, their reference counts can never be zero and they can never be reclaimed.13

To avoid this leakage of memory, we need to be able to break the sequence of mutual ref-
erences before losing access to the offending Nodes and Links; in other words, before $net-
work ceases to exist. We can ensure such a break occurs by providing the Network class with
a destructor that explicitly removes the Links between Nodes at the appropriate time:

package Network;

# as before

13 At least, not until the end of the current interpreter thread.
110 CHAPTER 3 GETTING STARTED



a Reference to Network object  
 goes out of scope

refs:0
Network

refs:1
Node

refs:1
Link

refs:1
Link

refs:3
Node

refs:3
Node

refs:1
Link

refs:1
Link

d Link object reclaimed (Node 
 reference counts to to 1)  

refs:0
Network

refs:0
Node

refs:0
Link

refs:0
Link

refs:1
Node

refs:1
Node

refs:1
Link

refs:1
Link

c Node object reclaimed (Link 
 reference counts go to zero)  

refs:0
Network

refs:0
Node

refs:0
Link

refs:0
Link

refs:2
Node

refs:2
Node

refs:1

Link

refs:1

Link

b Network object reclaimed (Node 
 reference count goes to zero) 

refs:0
Network

refs:0
Node

refs:1
Link

refs:1
Link

refs:2
Node

refs:2
Node

refs:1
Link

refs:1
Link

Figure 3.4 Leaking network caused by circular references
THE CREATION AND DESTRUCTION OF OBJECTS 111



sub DESTROY
{

my ($self) = @_;
foreach my $node ( @{$self->{_nodes}} )
{

$node->delete_links();
}

}

package Node;

# as before

sub delete_links
{

my ($self) = @_;
delete $self->{_outlinks};

}

The presence of this destructor solves the problem of reference chains, because, whenever
a Network object is about to cease to exist, its DESTROY method is called. In turn, that DE-
STROY method calls the delete_links method for each Node object in its list.
Node::delete_links eliminates all references to any Link object, which sends those objects’
reference counts to zero and causes them to be collected. 

After a thorough delinking, each node in the original Network object is referred to only
by the Network object itself. When that object finally ceases to exist, the reference counts of
the individual Nodes go to zero, and they are cleaned up as well. Figure 3.5 illustrates the steps
in the new clean-up sequence initiated by the Network destructor.

Destructors and autoloading
There’s one gotcha with destructors—or, more accurately, without them—when we’re using an
AUTOLOAD method. AUTOLOAD is invoked whenever an undefined method is called for the
invoking object. The problem is that whenever includes whenever an object’s destructor is
called.

Normally, when an object goes out of scope, Perl looks for a suitable destructor and, if
it doesn’t find one, simply continues with the rest of the program. However, if the object’s class
has an AUTOLOAD method and the search for a DESTROY method fails, AUTOLOAD will be called
instead.

So, at very least, if you intend to provide a class with an AUTOLOAD but not a DESTROY,
you need to make sure that the AUTOLOAD can handle a destructor call—as well as anything
else it’s supposed to cope with. For example, if we weren’t intending to provide CD::Mu-
sic::DESTROY, we’d need to modify the CD::Music::AUTOLOAD method in Figure 3.5 like
this:

sub CD::Music::AUTOLOAD
{

my ($self, $newval) = @_;

# Was it a destructor call?
112 CHAPTER 3 GETTING STARTED



d &Network::DESTROY ends, 
 Network object reclaimed 

  
 

refs:0
Network

refs:0
Node

refs:0
Link

refs:0
Link

refs:0
Node

refs:0
Node

refs:0
Link

refs:0
Link

c Link objects automatically 
 reclaimed  

 

refs:0
Network

refs:1
Node

refs:0
Link

refs:0
Link

refs:1
Node

refs:1
Node

refs:0
Link

refs:0
Link

b Network::DESTROY called
 (and calls Node::delete_links)

 

refs:0
Network

refs:1
Node

refs:0
Link

refs:0
Link

refs:3
Node

refs:3
Node

refs:0
Link

refs:0
Link

a Reference to Network object 
 goes out of scope 

 

refs:0
Network

refs:1
Node

refs:1
Link

refs:1
Link

refs:3
Node

refs:3
Node

refs:1
Link

refs:1
Link

e Node objects automatically 
 reclaimed

 

refs:0
Network

refs:0
Node

refs:0
Link

refs:0
Link

refs:0
Node

refs:0
Node

refs:0
Link

refs:0
Link

Figure 3.5 Network leakage overcome by implementing destructor
THE CREATION AND DESTRUCTION OF OBJECTS 113



return if $AUTOLOAD =~ /::DESTROY$/;

# Was it a get_… method?
$AUTOLOAD =~ /.*::get(_\w+)/

and $self->_accessible($1,'read')
and return $self->{$1};

# Was it a set_… method? 
$AUTOLOAD =~ /.*::set(_\w+)/

and $self->_accessible($1,'write')
and do { $self->{$1} = $newval; return };

# Must have been a mistake then…
croak "No such method: $AUTOLOAD";

}

Even though CD::Music::AUTOLOAD can now detect and ignore destructor calls, it is
still better to provide a trivial destructor instead:

sub CD::Music::DESTROY
{

# THIS SPACE DELIBERATELY LEFT BLANK
}

Calls to AUTOLOAD are relatively expensive, and we’d prefer not to incur that extra cost every
single time a CD::Music object ceases to exist. 

3.5 THE CD::MUSIC CLASS, COMPLEAT
To round out this first taste of object-oriented Perl, Listing 3.4 shows an updated version of
the CD::Music class, making use of the techniques and automations described in previous sec-
tions of this chapter. In this final version, the default attribute values (from Constructor default
values) and the access specifiers (from Catching attempts to change read-only attributes) are con-
solidated into a single hash (%_attr_data).

package CD::Music;
$VERSION = 1.00;
use strict;
use vars qw( $AUTOLOAD );   # Keep 'use strict' happy
use Carp;

{
# Encapsulated class data

my %_attr_data =#DEFAULTACCESSIBILITY
( _name=> ['???','read'],

_artist=> ['???','read'],
_publisher=> ['???','read'],
_ISBN=> ['???','read'],
_tracks=> ['???','read'],

Listing 3.4 The completed CD::Music class
114 CHAPTER 3 GETTING STARTED



_rating=> [-1,'read/write'],
_room=> ['uncataloged','read/write'],
_shelf=> ["",'read/write'],

);

my $_count = 0;

# Class methods, to operate on encapsulated class data

# Is a specified object attribute accessible in a given mode
sub _accessible
{

my ($self, $attr, $mode) = @_;
$_attr_data{$attr}[1] =~ /$mode/

}

# Classwide default value for a specified object attribute 
sub _default_for
{

my ($self, $attr) = @_;
$_attr_data{$attr}[0];

}

# List of names of all specified object attributes 
sub _standard_keys 
{

keys %_attr_data;
}

# Retrieve object count
sub get_count
{

$_count;
}

# Private count increment/decrement methods
sub _incr_count { ++$_count }
sub _decr_count { --$_count }

}

# Constructor may be called as a class method
# (in which case it uses the class's default values),
# or an object method
# (in which case it gets defaults from the existing object)

sub new
{

my ($caller, %arg) = @_;
my $caller_is_obj = ref($caller);
my $class = $caller_is_obj || $caller;
my $self = bless {}, $class;
foreach my $attrname ( $self->_standard_keys() )
{

THE CD::MUSIC CLASS,  COMPLEAT 115



my ($argname) = ($attrname =~ /^_(.*)/);
if (exists $arg{$argname})

{ $self->{$attrname} = $arg{$argname} }
elsif ($caller_is_obj)

{ $self->{$attrname} = $caller->{$attrname} }
else

{ $self->{$attrname} = $self->_default_for($attrname) }
}
$self->_incr_count();
return $self;

}

# Destructor adjusts class count
sub DESTROY
{

$_[0]->_decr_count();
}

# get or set room&shelf together

sub get_location{ ($_[0]->get_room(), $_[0]->get_shelf()) }

sub set_location
{

my ($self, $room, $shelf) = @_;
$self->set_room($room) if $room;
$self->set_shelf($shelf) if $shelf;
return;

}

# Implement other get_… and set_… methods (create as necessary)

sub AUTOLOAD
{

no strict "refs";
my ($self, $newval) = @_;

# Was it a get_… method?
if ($AUTOLOAD =~ /.*::get(_\w+)/ && $self->_accessible($1,'read'))
{
my $attr_name = $1;
*{$AUTOLOAD} = sub { return $_[0]->{$attr_name} };
return $self->{$attr_name}

}

# Was it a set_… method? 
if ($AUTOLOAD =~ /.*::set(_\w+)/ && $self->_accessible($1,'write'))
{
my $attr_name = $1;
*{$AUTOLOAD} = sub { $_[0]->{$attr_name} = $_[1]; return };
$self->{$1} = $newval;
return

}

116 CHAPTER 3 GETTING STARTED



# Must have been a mistake then…
croak "No such method: $AUTOLOAD";

}

1;  # Ensure that the module can be successfully use'd

3.6 SUMMARY
• A Perl class is just a package containing subroutines that implement methods.
• Any of Perl’s standard data types—hash, array, scalar, typeglob, subroutine, regex—may

be used as an object.
• To convert something to an object, we use the bless function to associate the thing

with the appropriate package. Always use the two-argument form of bless.
• A constructor is just a method that blesses an object, initializes it, and returns a reference

to it.
• A destructor is a special method called DESTROY that is automatically called when an

object is about to be garbage-collected. Destructors are rarely needed in Perl, except
when circular data structures are involved.

• Accessors are methods that provide read or write access to an attribute. It is much safer to
encapsulate attributes in accessors than to access them directly.

• To create class attributes, use a lexical variable declared in some nested block within the
package. Define accessors for the variable within the same nested block.

• An AUTOLOAD method can provide a "catchall" or generic method for a class. Alterna-
tively, AUTOLOAD may create and install a suitable method at run time. When using auto-
loaded methods, it’s a good idea to provide a destructor, even if it doesn’t do anything.
SUMMARY 117



C H A P T E R 4
Blessing arrays and scalars

4.1 What’s wrong with a hash? 118
4.2 Blessing an array 119
4.3 Blessing a pseudo-hash 126
4.4 Blessing a scalar 136
4.5 Summary 143
As the last chapter illustrated, you can build objects in Perl with little more than a hash and a
blessing. But one of Perl’s defining characteristics is flexibility, and in keeping with its unoffi-
cial motto—There’s more than one way to do it—you can just as easily bless any other Perl data
type into objecthood. This chapter examines cases where blessing something other than a hash
may be appropriate.

4.1 WHAT’S WRONG WITH A HASH?
Hashes are well suited to act as the basis for objects. They can store multiple values of differ-
ing types, they give each value a descriptive label, they can be expanded to store additional
items at need,1 and they can be made hierarchical (by storing references to other anonymous
hashes in an entry).

Hashes are usually a good choice for implementing class objects, but they’re by no means
perfect. For a start, they are a comparatively expensive way to store collections of data, occu-

1 This will come in handy in chapter 6 when we look at class inheritance.
118



pying more space than an equivalent array, and providing slower access as well. Often those
small overheads are insignificant, but, occasionally (such as when large numbers of objects are
involved, or when a much simpler data structure would do just as well), the difference in per-
formance or style matters.

A more serious problem with hashes has to do with an otherwise convenient feature they
possess called autovivification. Autovivification is the name for what happens when you at-
tempt to assign a nonexistent entry of a hash. Rather than complaining, Perl automatically cre-
ates the missing hash entry for the key you specified.

And that’s the problem. If you have a reference to a hash-based object, say, $objref, and
you’re using an attribute such as $objref->{_weirdness_factor}, then chances are that
somewhere in the heat of coding, you’ll accidentally write something like $objref->
{_wierdness_factor}++.

The first time that code is executed, Perl won’t complain about the spelling mistake or
the fact that it causes your code to access a nonexistent entry. Instead, it will try to be helpful:
autovivifying the new hash entry, then silently converting its undef value to zero, then incre-
menting it to 1. Thereafter, you’ll spend about a week trying to work out why that increment
operator seems to increase the real world’s weirdness factor, but not $objref’s.

4.2 BLESSING AN ARRAY
Let’s start with the obvious first candidate for an alternative to hashes. Arrays provide almost
all the advantages of hashes and then throw in a few more. Just like hashes they can store mul-
tiple values of differing types. They also can be hierarchical and expanded as necessary. And
arrays have a distinct performance advantage, both in using less memory and providing faster
access to elements.

Just about the only drawbacks to using arrays instead of hashes are that they still autoviv-
ify (we’ll see a solution to that problem in the next section), and you lose the readable object
attribute labels provided by the keys of a hash. For example, it’s much harder to pick the bug in:

sub Projectile::get_velocity
{

my ($self) = @_;
return $self->[2]/$self->[11];

}

than in the equivalent hash-based method:

sub Projectile::get_velocity
{

my ($self) = @_;
return $self->{_flight_time}/$self->{_flight_distance};

}

Using names instead of numbers makes it obvious that we’re calculating delay (in sec-
onds/foot), instead of velocity (in feet/second). Of course, it’s relatively straightforward to
avoid the pitfalls of such meaningless index numbers, by predefining some appropriate con-
stants—and fixing the bug, of course:

package Projectile;
BLESSING AN ARRAY 119



use strict;

use constant FLIGHT_TIME=> 2;
use constant FLIGHT_DISTANCE=> 11;

sub get_velocity
{

my ($self) = @_;
return $self->[FLIGHT_DISTANCE]/$self->[FLIGHT_TIME];

}

Reimplementing CD::Music
Figure 4.1 shows an array-based reimplementation of the CD::Music class from chapter 3.

After the usual preliminaries—package, version, strictness—the eight object attributes of
the class are associated with eight consecutive array indices via use constant statements. This
actually creates eight tiny functions in the CD::Music namespace, but Perl’s optimizer is smart
enough to replace all future calls to any of them with the constant value they return. In accor-
dance with the standard Perl conventions, the constants are all upper-case. 

package CD::Music;
$VERSION = 1.10;
use strict;
use Carp;

use constant NAME=> 0;

use constant ARTIST=> 1;

use constant PUBLISHER=> 2;

use constant ISBN=> 3;

use constant TRACKS=> 4;

use constant ROOM=> 5;

use constant SHELF=> 6;

use constant RATING=> 7;

# Create a mapping from previous hash keys to array indices

# (this is needed to provide hash-like arguments for new)

my %_index_for;

@_index_for{qw(name artist publisher ISBN tracks rating room shelf)}

= (NAME,ARTIST,PUBLISHER,ISBN,TRACKS,RATING,ROOM,SHELF);

# Set up the default data (same as in the hash version, but more concise)

my @_default_data;

@_default_data[ NAME,ARTIST,PUBLISHER,ISBN,TRACKS,RATING, ROOM,SHELF ]

= ('???','???','???',0,'???',-1,"uncataloged","" );

{
# Private class attribute, as in the hash version
my $_count = 0;

# Retrieve object count

Listing 4.1 The CD::Music class implemented via arrays
120 CHAPTER 4 BLESSING ARRAYS AND SCALARS



sub get_count { $_count; }

# Private count increment/decrement methods
sub _incr_count { ++$_count }
sub _decr_count { --$_count }

}

# Constructor may be called as a class method

sub new
{

my ($caller, %arg) = @_;
my $caller_is_obj = ref($caller);
my $class = $caller_is_obj || $caller;
no strict "refs";

my $self = bless [], $class;

foreach my $member ( keys %_index_for )

{

my $index = $_index_for{$member};

if (exists $arg{$member})

{ $self->[$index] = $arg{$member} }

elsif ($caller_is_obj)

{ $self->[$index] = $caller->[$index] }

else

{ $self->[$index] = $_default_data[$index] }

}
$self->_incr_count();
return $self;

}

# Destructor adjusts class count
sub DESTROY
{

$_[0]->_decr_count();
}

# get or set room&shelf in one method

sub get_location{ ($_[0]->get_room(), $_[0]->get_shelf()) }

sub set_location
{

my ($self, $room, $shelf) = @_;
$self->set_room($room) if $room;
$self->set_shelf($shelf) if $shelf;
return;

}

# Implement all the other get_… and set_… methods,

sub get_name{ return $_[0]->[NAME]}
BLESSING AN ARRAY 121



sub get_artist{ return $_[0]->[ARTIST]}

sub get_publisher{ return $_[0]->[PUBLISHER]}

sub get_ISBN{ return $_[0]->[ISBN]}

sub get_tracks{ return $_[0]->[TRACKS]}

sub get_room{ return $_[0]->[ROOM]}

sub get_shelf{ return $_[0]->[SHELF]}

sub get_rating{ return $_[0]->[RATING]}

sub set_room{ $_[0]->[ROOM] = $_[1]}
sub set_shelf{ $_[0]->[SHELF] = $_[1]}
sub set_rating{ $_[0]->[RATING] = $_[1]}

Apart from ensuring that access speed to an array element is not compromised, these
functions can promote better user respect for encapsulation, because they must be fully qual-
ified if used outside the CD::Music class. For example, code like:

package main;
use CD::Music;

# and later…

$cd->[TRACKS]++;

will almost certainly cause an exception to be thrown.2

Of course, there’s nothing to stop the miscreant from writing:

$cd->[CD::Music::TRACKS]++;

or just:

$cd->[4]++;

The added security, therefore, relies entirely on Laziness, which is very poor security indeed. 
The constructor of the array-based version is also a little different. As with the previous

hash-based version, we’d like it to take a hash-like argument list, provide default values for un-
initialized attributes, and also be usable as an object method for copying. 

To enable hash-like arguments to be used, we need to provide a mapping from the keys
to the corresponding array indices. That’s the purpose of the lexical %_index_for hash. For
compactness, we initialize %_index_for via a hash slice (@_index_for{…}).

Because the default data will be used to initialize an array-based object, it’s more efficient
to store that data in an array (@_default_data). Again, to provide compactness without loss
of readability, we initialize using a slice—an array slice this time. The same effect could have
been achieved in a single line:

my @_default_data = (('unknown') x 5, -1, 'uncataloged', '');

but the two lines saved don’t justify the serious loss of clarity and maintainability.
The constructor itself is identical in structure to that of the hash-based version. It still

steps through each attribute name and assigns to that attribute either the corresponding value
in the %arg hash, or the corresponding attribute from the invoking object, or the default value.

2 Unless there’s also a subroutine &main::TRACKS defined, in which case anything might happen.
122 CHAPTER 4 BLESSING ARRAYS AND SCALARS



The only other change needed is to reimplement most of the attribute accessor methods,
so that they use array accesses instead of hash lookups. Note, however, that the get_location
and set_locations methods are unchanged, since they rely on the public interface of the
class (which, of course, is why they were implemented that way in the first place).

The accessor methods are each coded explicitly, rather than defining a single AUTOLOAD
function to handle them all. The reason is performance. The whole point of reimplementing
CD::Music objects as arrays was to improve their access speed. Using AUTOLOAD would com-
promise that objective. To see why, let’s implement the AUTOLOAD version and examine its
performance:

my $_readable = 'name|artist|publisher|ISBN|tracks|rating|room|shelf';
my $_writable = 'rating|room|shelf';

sub AUTOLOAD
{

my ($self, $newval) = @_;
if ($AUTOLOAD =~ /.*::get_($_readable)/o)
{

return $self->[$_index_for{$1}];
}
elsif ($AUTOLOAD =~ /.*::set_($_writable)/o)
{

$self->[$_index_for{$1}] = $newval;
return;

}
croak "No such method: $AUTOLOAD";

}

Even this heavily optimized version will require on average 1.5 pattern matches, a hash
lookup, and an array access. That’s much more expensive than the single array access of the
explicitly coded accessors. 

4.2.1 An array-specific example—iterators

The decision to reimplement CD::Music using arrays was based entirely on the desire to
improve space efficiency and speed of access. Sometimes, however, the actual purpose of a
class naturally suggests an array implementation.

For example, consider the problem of iterating through a Perl hash. In most cases, of
course, there is no problem. You just use the built-in each function:
%desc = (blue => "moon", green => "egg", red => "Baron" );

while ( ($key,$value) = each %desc )
{

print "$value is $key\n";
}

The problem appears when you want to nest iterations of the same hash:

while ( ($key1,$value1) = each %desc )
{

while ( ($key2,$value2) = each %desc )
{

BLESSING AN ARRAY 123



print "$value2 is not $key1\n"
 unless $key1 eq key2;

}
}
print "(finished)\n";

This isn’t going to behave in the way you might expect, because the each function relies
on the hash it’s iterating to keep track of the next available key. That means that the two nested
calls to each are both incrementing the same cursor stored inside %desc. 

The outer loop starts with each returning the "blue"=>"moon" pair. The inner loop it-
erates through the remaining two pairs, before returning an empty list that halts the inner loop.
When each returns that empty list, it also resets the cursor inside %desc, so next time through
the outer loop, each finds itself back at the "blue"=>"moon" pair. Thus the entire process
repeats…and repeats…and repeats…

An object-oriented solution to this problem would be to replace the calls to each with
methods calls on special iterator objects:

$iter1 = Iterator->new(%desc);
while ( ($key1,$value1) = $iter1->each() )
{

$iter2 = Iterator->new(%desc);
while ( ($key2,$value2) = $iter2->each() )
{

print "$value2 is not $key1\n"
unless $key1 eq key2;

}
}

The implementation of the Iterator class is simple enough that it can be done quite in-
formally:

package Iterator;
$VERSION = 1.00;
use strict;

sub new
{

my ($class,@data) = @_;
@data = @$class if !@data && ref($class);
bless [ @data ], ref($class)||$class;

}

sub each
{

my ($self) = @_;
my @next = splice @$self, 0, 2;
return wantarray? @next : $next[0];

}

The class consists of only two methods: a constructor and an iteration method. The con-
structor takes the contents of a hash, which have been flattened into the @_ array, and copies
them into a new anonymous array object, which is then blessed into the Iterator class.
124 CHAPTER 4 BLESSING ARRAYS AND SCALARS



The iteration method extracts the first two elements in the array object using a splice.3

Since the built-in each function returns different values in list and scalar contexts, Itera-
tor::each consults the wantarray function to determine whether it has been called in a list
or nonlist context. If it was called in a list context, Iterator::each returns the pair of ele-
ments—key and value—it extracted from the list. In a scalar context, it returns only the key. 

The constructor’s blessing uses ref($class)||$class as the class name. This allows
the constructor to be called as either a class method (Iterator->new(%hash)) or an object
method ($iter->new(%hash)). 

More interestingly, if the constructor is called as an object method and no hash entries
are passed to it, Iterator::new uses the current contents of the existing Iterator object
(@$class) as the set of values the new Iterator object is to iterate over. That would allow us,
for example, to generate all two-entry permutations of a multientry hash:

sub permute_pairs
{

$entry1 = Iterator->new(@_);# iterate entire hash
while (@entry1 = $entry1->each)
{

$entry2 = $entry1->new();# iterate what's left of $entry1
while (@entry2 = $entry2->each)
{

push @permutations, { @entry1, @entry2 };
}

}
return @permutations

}

Of course, even in the case of the Iterator class, which lends itself so readily to an array
implementation, nothing exists to prevent us from using a hash except efficiency consider-
ations:

package Iterator;
$VERSION = 2.00;
use strict;

sub new
{

my $class = shift;
@_ = %$class if !@_ && ref($class);
bless { @_ }, ref($class)||$class;

}

sub each
{

my ($self) = @_;
each %$self;

}

3 …which is more efficient than my @next = (shift @$self, shift @$self)
BLESSING AN ARRAY 125



In this case we’re effectively duplicating each hash we wish to iterate (in new) and then
iterating it in the normal way (in each).

4.2.2 Where to find out more

The constant.pm module is part of the standard Perl distribution and includes its own docu-
mentation. Autovivification is described in the perlref documentation (under “Using refer-
ences”) and also mentioned in perlfaq4.

4.3 BLESSING A PSEUDO-HASH
Neither a hash nor an array seems to provide the ideal basis for a Perl object. Hash entries are
accessed by comprehensible keys, but hashes are big and slow. Arrays are compact and fast,
but the use of integer indices can lead to obscure code. Both approaches are prone to autoviv-
ification-induced bugs. Ideally, we’d like the best of both worlds—fast access, compact stor-
age, readable tags, and no autovivification. 

4.3.1 A pseudo what???

As of Perl release 5.005, that wish has been granted in the form of a new and experimental4

data structure called a pseudo-hash, which is really just an array reference pretending to be a
hash reference. 

To maintain the pretense, the array actually being referred to must have a reference to a
real hash as its first element. That real hash is used to map key names onto array indices. In
other words, a pseudo-hash has a structure like that shown in figure 4.1 and is declared like
this:

my $pseudo_hash = [ {a=>1,b=>2,c=>3}, "val a", "val b", "val c" ];

Such an array can still be accessed as an array, by specifying a numeric index in square
brackets:

$pseudo_hash->[1];

It can also be accessed as if it were a hash by using one of the specified keys in curly braces:

$pseudo_hash->{"a"};

Whenever Perl encounters an array reference being used as a hash reference in this way,
it translates the expression to something equivalent to the following:

$pseudo_hash->[$pseudo_hash->[0]->{"a"}];

In other words, it first retrieves the hash reference stored in element zero of the array
($pseudo_hash->[0]). It then uses that hash to look up the index corresponding to the
specified key ($pseudo_hash->[0]->{"a"}), and finally it uses that index to access the
appropriate element in the original array ($pseudo_hash->[$pseudo_hash->[0]->
{"a"}]). 

4 Hence, if you’re currently using a later version of Perl, you may need to check in the perlref documen-
tation to see whether the details presented in this section are still correct.
126 CHAPTER 4 BLESSING ARRAYS AND SCALARS



Limitations of a pseudo-hash
If the first element of a pseudo-hash array isn’t a hash reference:

my $pseudo_hash = [ "not a hash ref", "val a", "val b", "val c" ];

# and later…

$pseudo_hash->{"a"} = $newval;

the program throws an exception with the message: can't coerce array into hash. If the first
element is a hash reference, but the corresponding hash doesn’t contain the given key

my $pseudo_hash = [ {a=>1,b=>2,c=>3}, "val a", "val b", "val c" ];

# and later…

$pseudo_hash->{"z"} = $newval;

the program throws an exception with the message: no such array field.5 In other words,
unlike a real hash, pseudo-hash entries aren’t autovivifying; they don’t spring into existence the
first time you attempt to access them. 

You can add new entries to a pseudo-hash, but it’s a two-step procedure (see figure 4.2).
First, you add a new key-to-index mapping:

$pseudo_hash->[0]->{"z"} = @{$pseudo_hash}; 

which maps the key “z” onto the first unused index in the pseudo-hash array. After that, you
can access the new entry directly, to assign it a value:

$pseudo_hash->{"z"} = "value z";

Of course, if your stomach is strong enough, you can do those two steps in a single
statement:

5 The reason it refers to a field instead of an entry will become clear in a moment.

$pseudo_hash

“val a” “val b” “val c”

“a” 1

“c” 3

“b” 2

Figure 4.1 The structure of a pseudo-hash
BLESSING A PSEUDO-HASH 127



$pseudo_hash->[$pseudo_hash->[0]->{"z"} = @{$pseudo_hash}] = "value z";

4.3.2 Advantages of a pseudo-hash

The awkwardness of having to manually add new keys to a pseudo-hash is actually a useful
property, because it helps to prevent hard-to-detect bugs that can easily find their way into
classes built on ordinary hashes. Consider the Transceiver class defined in listing 4.2. The
class provides sentinel methods (start_transmit and end_transmit, start_receive
and end_receive) that may be used to ensure that transmission and reception do not overlap.

The problem is that the Transceiver::transmit method has accidentally been coded
to check the status of the hash entry $self->{recieve}, instead of $self->{receive}.
The first time it does so, this nonexistent entry will produce a value of undef. Hence, the un-
less test will never fail and transmission will always be allowed, no matter what the current
state of reception is.

If we implement Transceiver objects as pseudo-hashes instead:

package Transceiver;
use strict;

sub Transceiver::new
{

my $class = ref($_[0])||$_[0];
my $self = [ {receive=>1, transmit=>2} ];
$self->{transmit} = 0;
$self->{receive} = 0;
bless $self, $class;

}

# etc. as before

$pseudo_hash

“val a” “val b” “val c”

“a” 1

“c” 3

“b” 2

“z” 4

“a” 1

“c” 3

“b” 2

“z” 4

$pseudo_hash

“val a” “val b” “val c” “val z”

Figure 4.2 Extending a pseudo-hash 

a The pseudo-hash’s mapping extended

b The pseudo-hash’s data extended

a b
128 CHAPTER 4 BLESSING ARRAYS AND SCALARS



then the first time Transceiver::transmit is called, we get an exception indicating No

such array field…, which will eventually lead us to the misspelled key.

4.3.3 The worst of both worlds?

That’s all very useful, but when you first read that:

$pseudo_hash->{"a"};

is equivalent to:

$pseudo_hash->[$pseudo_hash->[0]->{"a"}];

package Transceiver;
$VERSION = 1.00;
use strict;

sub new
{

my $class = ref($_[0])||$_[0];
my $self = { receive=>0, transmit=>0 };
bless $self, $class;

}

sub start_transmit
{

my ($self) = @_;
++$self->{transmit} unless $self->{recieve};
return $self->{transmit};

}

sub end_transmit
{

my ($self) = @_;
--$self->{transmit};

}

sub start_receive
{

my ($self) = @_;
++$self->{receive} unless $self->{transmit};
return $self->{receive};

}

sub end_receive
{

my ($self) = @_;
--$self->{receive};

}

Listing 4.2 A simple hash-based transceiver class
BLESSING A PSEUDO-HASH 129



you may notice a slight flaw in the pseudo-hash concept. Sure, it enables you to use an array
like a hash, but to do so requires that you use a real hash as well. Worse still, to access a
pseudo-hash entry requires both a hash lookup and an array lookup. So now we’re using more
than twice as much overhead6—an array + a hash + a reference—to access elements less than
half as fast—an array access + a hash access + another array access. Rather than the best of
both worlds, don’t we have the worst?

If that were all there was to pseudo-hashes, you’d be quite correct. Fortunately, Perl pro-
vides a standard module called fields.pm that, along with some compile-time support, rescues
the whole pseudo-hash concept.

4.3.4 Compile-time support for run-time performance

Like pseudo-hashes, the fields.pm module was introduced in Perl 5.005 as an experimental
feature. When you import it into a class, via a use fields statement, you must also provide a
list of the names of the object attributes (or fields) that you’re going to use in that class:

use fields qw( field names here );

This procedure:

• Informs the Perl compiler that those are the only valid names that may be accessed in
objects of the class.

• Creates a package hash named %FIELDS with an entry for each named field. The entries
have consecutive integer values, starting at 1.

• Causes the Perl compiler to translate any pseudo-hash accesses (i.e., to any of the named
fields) into direct array accesses.

For example, adding the statement

package Transceiver;
use strict;
use fields qw( receive  transmit );

does the following: 

• Informs the Perl compiler that only receive and transmit are valid hash keys for
Transceiver objects and enforces that constraint at compile-time by throwing an excep-
tion if access to any other key is attempted.

• Creates the hash %Transceiver::FIELDS and initializes it to (receive=>1, trans-
mit=>2), or possibly vice versa.

• Causes the Perl compiler to identify and replace any access to a pseudo-hash of the form
$transceiver_ref->{receive} with the direct array access $transceiver_ref->
[1]. Likewise, $transceiver_ref->{transmit} is replaced with the direct array
access $transceiver_ref->[2]

6 Of course, it’s only the internal overheads of storage that increase. Whether or not these increased over-
heads represent a significant extra cost will depend on the size of the actual data, which is only stored
once.
130 CHAPTER 4 BLESSING ARRAYS AND SCALARS



That neatly solves the performance problem. All pseudo-hash accesses can be coded with
the readability of hash accesses, but are now executed with the performance of array accesses.
It also improves on the solution to misspelled attribute names, since they are now caught at
compile time, rather than run time. The %Transceiver::FIELDS hash even makes it more
efficient to implement the pseudo-hashes for Transceiver objects. Every Transceiver
pseudo-hash can now use a reference to that single hash as its first element:

sub Transceiver::new
{

my $class = ref($_[0])||$_[0];
no strict "refs";
my $fields_ref = \%{"${class}::FIELDS"};
my $self = [ $fields_ref ];
$self->{transmit} = 0;
$self->{receive} = 0;
bless $self, $class;

}

Transceiver::new has to contort a little to get the full name of the %FIELDS array (i.e.,
the array belonging to the class into which it’s blessing the new object).

 We could probably get away with saying

my $fields_ref = \%FIELDS;

but that short cut would come back to torment us if we ever decided to inherit from Trans-
ceiver (see chapter 6).

Having set up the blessed pseudo-hash, only one question remains: just how does Perl
know at compile time that a particular variable is referring to a Transceiver object, when the vari-
able isn’t assigned a value until run time?

4.3.5 Typed lexicals

Glad you asked. The answer is that you have to tell Perl as part of the declaration of the
variable. Perl 5.005 introduced an extension to the lexical variable declaration syntax for that
purpose.7

The new syntax has the forms:

my Classname $variable_name;
my Classname ($variable_name1, $variable_name2, $etc);

In other words, the new syntax is exactly like the regular lexical syntax, except you put a class
name straight after the my. The class name can be the name of any package that Perl knows
about at that point, but not one that’s first mentioned later in the program.

Variables declared using this new my syntax are known as typed lexicals, as opposed to the
usual untyped lexicals created by the standard my statement. Of course, they are not typed in
the sense that variables in statically typed languages, such as C++ or Modula-3, are typed. You
can still assign regular Perl strings to them, or numbers, or unblessed hash references, or

7 Note, however, that there’s no equivalent mechanism for package variables, not even local ones.
BLESSING A PSEUDO-HASH 131



references to objects of other types, or anything else you like. They’d be more accurately de-
scribed as classified lexicals, since the new my syntax associates them with a particular class. 

Declaring a typed lexical variable, such as my Transceiver $t, merely informs Perl that
the variable is supposed to be used to refer to pseudo-hash-based objects of the specified class.
With that information, the compiler can watch for hash-like accesses through that variable, for
example $t->{transmit} or $t->{receive}. 

When it finds such an access, the compiler looks for the requested field name in the
%FIELDS package hash of the same class—for example, it looks in %Transceiver::FIELDS
for any accesses via $t. If the key is not present in the %FIELDS hash, the compiler immedi-
ately throws a No such field… exception. If the key is found, the compiler converts the pseudo-
hash access to a direct array access. For example, $t->{transmit} is converted to $t->[2]. 

So, if we intend to use pseudo-hashes and want compile-time checking, we need to “type”
the my variables we use to refer to objects. Listing 4.3 shows the Transceiver class, modified
accordingly.

Of course, all this sexy compile-time optimization and checking only occurs if you use
the “typed” my syntax. If you leave out the class name, the code still works, but there’s no op-
timization of pseudo-hash accesses, and the field name checking occurs only at run-time:

my Transceiver $t1 = Transceiver->new();
my $t2 = Transceiver->new();

print $t1->{receive}; # optimized and checked at compile-time
print $t2->{receive}; # unoptimized, checked at run-time

Hence, although using pseudo-hashes and the fields.pm module engenders a warm feeling
of code reliability, that assurance depends entirely on the consistent use of typed lexicals. In
other words, it’s still a matter of programmer discipline. More secure approaches to attribute
access control are presented in chapter 11.

4.3.6 Yet another version of CD::Music

Listing 4.4 presents still another version of the CD::Music class, this time implemented using
pseudo-hashes and the fields.pm module. In keeping with the hybrid nature of the pseudo-
hash, it reads like an amalgam of the hash-based and array-based solutions presented in
listing 3.4 and listing 4.1 respectively.

The pseudo-hash version declares its eight fields at the beginning of the class. This im-
plicitly sets up the %CD::Music::FIELDS hash with an appropriate mapping of these field
names to array indices.

The constructor creates the pseudo-hash-based object by blessing an anonymous array
containing only a reference to the %FIELDS hash. The actual fields of this pseudo-hash are ini-
tialized by copying either the caller pseudo-hash (if there was one) or the hash of default values.
The constructor’s hash-like arguments are then processed one at a time. The availability of the
%FIELDS hash makes validity checking of argument tags considerably easier than in previous
versions of the class.
132 CHAPTER 4 BLESSING ARRAYS AND SCALARS



The only other notable difference from earlier versions is that each accessor method is ex-
plicitly coded, and accesses the pseudo-hash object through a typed lexical. This allows Perl to
check and optimize the accesses at compile time.

package Transceiver;
$VERSION = 2.00;
use strict;
use fields qw( transmit receive );

sub new
{

my $class = ref($_[0])||$_[0];
no strict "refs";
my Transceiver $self = [ \%{"${class}::FIELDS"} ];
$self->{transmit} = 0;
$self->{receive} = 0;
bless $self, $class;

}
sub start_transmit
{

my Transceiver ($self) = @_;
++$self->{transmit} unless $self->{receive};
return $self->{transmit};

}

sub end_transmit
{

my Transceiver ($self) = @_;
--$self->{transmit};

}

sub start_receive
{

my Transceiver ($self) = @_;
++$self->{receive} unless $self->{transmit};
return $self->{receive};

}

sub end_receive
{

my Transceiver ($self) = @_;
--$self->{receive};

}

Listing 4.3 A pseudo-hash-based transceiver class with compile-time checking
BLESSING A PSEUDO-HASH 133



package CD::Music;
$VERSION = 1.20;
use strict;
use Carp;

use fields qw(_name _artist _publisher _ISBN _tracks _room _shelf _rating );
use vars qw( %FIELDS );

my %_default_data; 
@_default_data{qw(_name _artist _publisher _ISBN _tracks _rating _room _shelf )}

= ('???','???','???',0,'???',-1,"uncataloged","");

{
# Private class attribute
my $_count = 0;

# Retrieve object count
sub count { $_count; }

# Private count increment/decrement methods
sub _incr_count { ++$_count }
sub _decr_count { --$_count }

}

# Constructor may be called as a class method or an object method

sub new
{
my ($caller, %arg) = @_;
my CD::Music $caller_is_obj = ref($caller);
my $class = $caller_is_obj || $caller;
my CD::Music $self = bless [\%FIELDS], $class;

my %defs = $caller_is_obj ? %$caller : %_default_data;
@$self{keys %defs} = values %defs;

my ($field,$value);
while (($field,$value) = each %arg)
{
croak "Invalid argument to &CD::Music::new: $field"

unless (exists $FIELDS{"_$field"});
$self->{"_$field"} = $value;
}

$self->_incr_count();
return $self;

}

# Destructor adjusts class count
sub DESTROY
{

Listing 4.4 The CD::Music class implemented via pseudo-hashes
134 CHAPTER 4 BLESSING ARRAYS AND SCALARS



$_[0]->_decr_count();
}

# get or set room&shelf together

sub get_location { ($_[0]->get_room(), $_[0]->get_shelf()) }

sub set_location
{

my ($self, $room, $shelf) = @_;
$self->set_room($room) if $room;
$self->set_shelf($shelf) if $shelf;
return;

}

# Implement all the other get_… and set_… methods,

sub get_name{ my CD::Music $self = $_[0]; return $self->{_name}}
sub get_artist{ my CD::Music $self = $_[0]; return $self->{_artist}}
sub get_publisher{ my CD::Music $self = $_[0]; return $self->{_publisher}}
sub get_ISBN{ my CD::Music $self = $_[0]; return $self->{_ISBN}}
sub get_tracks{ my CD::Music $self = $_[0]; return $self->{_tracks}}
sub get_room{ my CD::Music $self = $_[0]; return $self->{_room}}
sub get_shelf{ my CD::Music $self = $_[0]; return $self->{_shelf}}
sub get_rating{ my CD::Music $self = $_[0]; return $self->{_rating}}

sub set_room{ my CD::Music $self = $_[0]; $self->{_room} = $_[1]}
sub set_shelf{ my CD::Music $self = $_[0]; $self->{_shelf} = $_[1]}
sub set_rating{ my CD::Music $self = $_[0]; $self->{_rating} = $_[1]}

1;  # Ensure that the module can be successfully use'd

4.3.7 Where to find out more

Pseudo-hashes are described briefly in the perlref documentation (under Pseudo-hashes: Using
an array as a hash). Their use as the basis for classes is also described in the documentation for
the standard fields.pm module.

For other, more robust approaches to the encapsulation and existence checking of object
attributes, see chapter 11.

4.4 BLESSING A SCALAR
You almost never see a Perl class based on a blessed scalar value. Although there are several
good reasons for that, a scalar can occasionally prove to be the best choice for implementing
an object. This section looks at two such cases.

4.4.1 Why not bless a scalar?

The main reason that a scalar so rarely forms the basis of a Perl class is that classes rarely store
only a single piece of information. One of the main reasons for building a class is to bind
together a set of related attribute values and provide controlled access to them. If the data is
BLESSING A SCALAR 135



really only a single datum, then building an object-oriented shell around it usually seems like
serious overkill.

In Perl, we can’t even use the excuse that data ought to be encapsulated, since Perl’s en-
capsulation is almost entirely voluntary. If we have blessed a scalar and are passing around a
reference to it (as $sref), there’s absolutely nothing to prevent any part of the program from
ignoring the lovely controlled object-oriented interface we provided and manipulating the un-
derlying scalar directly:

$$sref = undef; # Bwah-ha-ha-ha!!!

What’s more, in those few cases where an object does possess a single value, it’s just as easy
to go with a more familiar hash-based implementation, using only a single entry. Allocating
an entire hash to store a single value may be considerably less efficient, both in terms of mem-
ory usage and access speed, but it has the advantages of:

• Familiarity to the implementer. The selection of a hash as the underlying object represen-
tation is often the automatic choice and, frequently, not even a conscious one. 

• Familiarity to others. A better reason for choosing a hash when a scalar would suffice is
that the hash-based implementation is also likely to be far more familiar to anyone else
attempting to understand or modify the code.

• Readability. If nothing else, storing the single value as a hash entry means that the value
has to be given a meaningful key, which ought to improve the code’s readability.

• Extensibility in subclasses. As we shall see in the next chapter, a class cannot usually
assume that an internal representation sufficient to its own needs will serve derived
classes equally well.

4.4.2 An object-oriented password

Despite all those factors against the practice, there’s nothing immoral or illegal about blessing
a scalar. In most cases, it’s even slimming.8 For example, listing 4.5 illustrates the simple case
of a class that implements an encrypted password as a single scalar string. 

The only tricky part about using scalars as objects is creating one in the first place. Unlike
arrays and hashes, scalars are not provided with a special syntax for creating anonymous in-
stances. There’s no scalar syntax corresponding to […], which creates anonymous arrays, or
to {…}, which creates anonymous hashes. Instead, we have to hijack a lexical variable, for ex-
ample, $pw in the Password constructor.

The constructor takes a text string as its argument, randomly creates a salt value,9 encrypts
the string with a call to the built-in crypt function, assigns the encrypted version to a lexical
variable $pw, and blesses $pw into the class. 

The important point to understand is that, even though $pw is a lexical, it does not cease
to exist at the end of the call to Password::new. That’s because bless returns a reference to
$pw, and that reference is then returned as the result of new. 

8 “Reads faster, less memory!”
9 The crypt function implements a family of related one-way encryption schemes. The actual scheme
crypt uses is determined by a two-character “salt” string passed as its second argument.
136 CHAPTER 4 BLESSING ARRAYS AND SCALARS



Assuming the reference is immediately assigned to a variable in some outer scope

my $password = Password->new("fermat");

then the number of live references to the scalar remains greater than zero, and the blessed lex-
ical scalar escapes destruction at the end of the scope in which it was declared.

The verify method is equally straightforward. It encrypts the candidate string and com-
pares the result to the password string (i.e., to the invoking object itself). This process takes
advantage of the fact that the first two letters of a crypt’ed string are identical to the salt with
which the original call to crypt was seasoned. 

Accessing the object’s data is slightly different when the object is a scalar. We can’t use
the arrow notation to access an entry or an element as we do with references to hashes or arrays.
With a scalar-based object, we need to explicitly dereference the scalar reference. Thus, the sin-
gle value stored in the object referred to by $self is always accessed as $$self. 

The class could be used like so:

use Password;

print "Enter password: ";
my $password = Password->new(scalar <>);

# and later…

while (<>)
{

last if $password->verify($_);
print "Sorry. Try again: ";

}

package Password;
$VERSION = 1.00;
use strict;

my @salt = ("A".."Z","a".."z","0".."9","/",".");

sub new
{

my ($class, $cleartext) = @_;
my $salt = $salt[rand @salt].$salt[rand @salt];
my $pw = crypt($cleartext,$salt);
return bless \$pw, ref($class)||$class;

}

sub verify
{

my ($self, $candidate) = @_;
my $salt = substr($$self,0,2);
return crypt($candidate,$salt) eq $$self;

}

Listing 4.5 A scalar-based password class
BLESSING A SCALAR 137



It could reasonably be argued that the use of object orientation in this implementation
is needlessly ostentatious. However, good software engineering practice suggests that the me-
chanics of password creation and verification should be encapsulated in subroutines. Suppose,
for example, that we later decide that the crypt algorithm is insufficiently secure and that
MD5 or PGP or SHA must be used instead? Clearly, we don’t want raw calls to crypt spread
throughout the code to be hunted down and changed one at a time.

It is interesting to reflect that the code required to package password creation and veri-
fication routines in a non-object-oriented manner (see listing 4.6) is almost indistinguishable
from the object-oriented version. Often, the decision to package simple functionality like this,
as either a class or as a set of distinct subroutines, will be based on cultural considerations or
personal preferences. In particular, if the rest of the system is object-oriented, then the pass-
word verification component ought to be as well, even if the purists on either side sneer.

4.4.3 A bit-string class

Occasionally, objects of a class need to store multiple data, but a scalar implementation is still
the best choice. Consider the Bit::String class shown in listing 4.7.

Bit sets are optimally stored at a density of 1 byte per 8 bits. In comparison, an array im-
plementation of a bit set is appallingly wasteful at 4 bytes or more per bit. The solution is to
pack the bits away into a character string using Perl’s built-in pack and vec functions. As the
name suggests, the pack function loads an array of values tightly into a single multibyte string.
The vec function can then be used to treat such a string as a vector of unsigned integers, each
of a certain width. By setting that width to 1, the individual bits of consecutive bytes of a string
can be directly addressed. 

package NonOO::Password;
$VERSION = 1.00;

use strict;

my @salt = ("A".."Z","a".."z","0".."9","/",".");

sub new
{

my ($cleartext) = @_;
my $salt = $salt[rand @salt].$salt[rand @salt];

my $pw = crypt($cleartext,$salt);
return $pw;

}

sub verify

{
my ($password, $candidate) = @_;

my $salt = substr($password,0,2);
return crypt($candidate,$salt) eq $password;

}

Listing 4.6 A scalar-based Password package
138 CHAPTER 4 BLESSING ARRAYS AND SCALARS



The constructor for the Bit::String class builds a bit-string in a lexical scalar ($bs), by
mapping its arguments onto a list of 1’s and 0’s (i.e., map {$_?1:0} @_[1..$#_]). It then
joins those binary values into a single string ($initbits) and, finally, packs that string into

package Bit::String;
$VERSION = 1.00;
use strict;

sub new
{

my $class = ref($_[0])||$_[0];
my $initbits = join '', map {$_?1:0} @_[1..$#_];
my $bs = pack 'b*', $initbits;
bless \$bs, $class;

}

sub get
{

my ($self, $bitnum) = @_;
return vec($$self,$bitnum,1);

}

sub set
{

my ($self, $bitnum, $newval) = @_;
vec($$self,$bitnum,1) = $newval?1:0;

}

sub bitcount
{

8 * length ${$_[0]};
}

sub complement
{

my ($self) = @_;
my $complement = ~$$self;
bless \$complement, ref($self);

}

sub print_me
{

my ($self) = @_;
for (my $i=0; $i < $self->bitcount(); $i++)
{
print $self->get($i);
print ' ' unless ($i+1)%8;
print "\n" unless ($i+1)%64;

}
print "\n";

}

Listing 4.7 A simple bit-string class
BLESSING A SCALAR 139



the bits of the scalar string $bs. That packed string is blessed as the Bit::String object, and a
reference to it returned from the constructor.

For example, suppose we create a Bit::String like this:

my $is_lucky = Bit::String->new(0,"yes",0,1,undef,'',"0","lucky 7","",0);

The map operation will convert this haphazard series of arguments into the standardized list of
Boolean values (0,1,0,1,0,0,0,1,0,0). The join converts this to a single string:
"0101000100", which pack finally reduces to two bytes: "\212\000".10

Once the bit-string is packed and blessed, both accessor methods use the vec function
to access the individual bits. As with the Password objects discussed in the previous section,
the value of scalar bit-string is retrieved by directly dereferencing the object reference in
$self—that is, accessing $$self—rather than via the arrow operator.

The Bit::String::get method passes this dereferenced value to vec, along with the
requested bit number, and a third argument of 1, indicating that the bit-string is to be inter-
preted as a series of one-bit values. The result vec returns is the value of the corresponding bit,
zero-padded out to the native integer format. It’s also important to remember (and document)
that bit indices start at zero:

print $is_lucky->get(12); # Is the number 13 lucky?

Bit::String::set converts the value it is given to a standardized bit value (1 or 0) and
assigns that value to the appropriate bit within the string:11

$is_lucky->set(6,0); # Make 7 unlucky

The conversion of values to a standard 1-or-0 format is critical, since the call to vec ex-
amines only the lowest bit of the numeric value assigned to it.12 That means that true values
that are even (2, "2", etc.) are treated as a zero bit. Worse still, true values that are nonnumeric,
such as true, add insult to injury by producing an Argument "true" isn’t numeric… warning13

before defaulting to zero.
Using the vec function to control bit-level access into the bit-string is not only highly

efficient, it’s extremely robust. In particular, if we attempt to access a bit that’s outside the
range of bits stored in the string—that is, a bit index greater than $self->bitcount()-1—
vec will automatically grow the string to the required length, padding each new byte with

10 You may have noticed that the octal value 212 actually corresponds to the sequence of bits 010001010,
which is the reverse of the original sequence. That’s because pack 'b*' packs individual bytes “most-
significant-bit-first” (i.e., right-to-left), but packs successive bytes like characters of a string (i.e., left-
to-right). Fortunately, this odd packing scheme is exactly what the vec function expects, so, in the best
traditions of object-orientation, we can completely ignore the idiosyncrasies of this internal represen-
tation, as long as we use the standard interface (i.e., vec).

11 The vec function is magical in the same way as the more familiar substr. Assignments to a call to
vec actually change part of the original string passed to vec.

12 In general, an assignment vec($str,$elemnum,$bitwidth) = $value converts $value to a nu-
meric value and then assigns the bottom $bitwidth bits of that value to the appropriate place in
$str.

13 Unless, of course, you elected to fly blind and didn’t use the -w flag.
140 CHAPTER 4 BLESSING ARRAYS AND SCALARS



zeroes. This useful behavior works both on read accesses and assignments, and substantially de-
creases the complexity of the Bit::String accessor functions.

The Bit::String::bitcount method again dereferences the object reference through
which it is invoked. Note the use of curly braces in this case, since an unbracketed $$_[0]
would be misinterpreted as ($$_)[0], which certainly isn’t the object referred to by the first
argument. The bit count is easy to compute, since each character in the bit-string holds 8 bits.

The Bit::String::print_me method is useful for debugging. It prints out the entire
bit-string, with bits grouped in eight 8-bit bytes per line. In good object-oriented style, it reuses
the public interface of the class, thereby isolating itself from any subsequent changes in imple-
mentation. Such I/O methods are usually good candidates for the insulated approach, since
their execution is typically constrained by the performance to the I/O pipeline, which swamps
the extra cost of the additional method calls.

The Bit::String class also provides a method for generating the complement of a bit-
string, which is returned as a separate Bit::String object. The Bit::String::complement
method takes advantage of the smart semantics of Perl’s complement operator (~), which
performs a bit-wise complement on each byte when applied to a character string. 

The scalar Bit::String object created by Bit::String::complement is obtained by de-
claring a lexical scalar variable, $complement, within the scope of the method. Because the
complement method returns a blessed Bit::String object, we can chain method calls as follows:

print "$n is unlucky\n" if $is_lucky->complement()->get($n);

This works because -> is a left-associative binary operator, so the if condition is equiv-
alent to

( $is_lucky->complement() )->get($n)

Since Bit::String::complement returns reference to a Bit::String object, that return value
can in turn have any Bit::String method called through it. In contrast, using Perl’s comple-
ment operator directly

my $isnt_lucky = ~$$is_lucky;
print $isnt_lucky->get(7);

doesn’t work, and complains: Can't call method "get" on unblessed reference…. In this case,
even though the scalar referred to by $isnt_lucky contains a string with the right bit pat-
tern, that scalar hasn’t been blessed into the Bit::String class.

Of course, it’s not unreasonable to expect to be able to apply the complement operator
directly to a Bit::String object. In fact, we’d like to be able to apply all the bit-wise operators
directly to the Bit::String references, like so:

my $is_prime = Bit::String->new(0,1,1,0,1,0,1,0,0,0,1);
my $isnt_lucky = ~$$is_lucky;
my $unlucky_prime = $isnt_lucky & $is_prime;
my $unlucky_composite = ~($is_prime | $is_lucky);

Chapter 10 explains exactly how to achieve this.

4.4.4 Where to find out more

The crypt, pack, and vec functions are all described in the perlfunc documentation. 
BLESSING A SCALAR 141



For more information on various one-way encryption schemes such as crypt, MD5, PGP
and SHA (also known in cryptography circles as message digests or hashes) see http://dir.ya-
hoo.com/Computers_And_Internet/Security_And_Encryption/Cryptography/.

4.5 SUMMARY
• Hashes are the usual basis of objects. When in doubt, use a hash.
• Arrays generally provide better access speed. Use constants to give attributes logical

names.
• Arrays may also be a better choice if the objects being implemented have a fundamen-

tally listlike structure or function.
• Pseudo-hashes provide the convenience of hash-like access with the performance of

array-like access, but only if we use typed lexicals to access them. 
• Occasionally, an object may be most efficiently implemented as a blessed scalar. 
142 CHAPTER 4 BLESSING ARRAYS AND SCALARS

http://dir.yahoo.com/Computers_And_Internet/Security_And_Encryption/Cryptography/


C H A P T E R 5

Blessing other things
5.1 Blessing a regular expression 143
5.2 Blessing a subroutine 151

5.3 Blessing a typeglob 158
5.4 Summary 166
Although they’re the usual choice, variables—hashes, arrays, and scalars—aren’t the only
things that can be used as the basis of objects in Perl. In this chapter, we’ll see how to build
objects from things as improbable as regular expressions, anonymous subroutines, and raw
symbol table entries.

5.1 BLESSING A REGULAR EXPRESSION
Perl 5.005 introduced a new mechanism that enables precompiled regular expressions to be
created. These regular expressions are just as blessable as any other Perl data type and can be
used to give Perl’s powerful pattern matching features an object-oriented slant.

5.1.1 The qr operator

One of the most useful features of Perl regular expressions is that, like double-quoted strings,
they’re interpolated at run time. This means that it’s possible to set up loops like this:

@patterns =(
'(\w*(cat))',
'(\w*(dog))',
'(\w*(fish))',

);
143



while (<>) # Get a word…
{

foreach $pattern ( @patterns )# Then try each pattern…
{

if (/$pattern/)# If it matches…
{

print "a $1 is a kind of $2\n";# Say so…
last;# …and go on to next word

}
}

}

In the inner loop, each pattern string in @patterns gets sequentially converted into a
regular expression and matched against the current input line. When a large number of pat-
terns is involved, this approach is a definite win in maintainability, since the actual matching
code is kept small no matter how many patterns are eventually added to the @patterns array.

But the price for this ease of maintenance is high. Every time round the foreach loop,
the current value of $pattern is reinterpolated into the regular expression. So, for every iter-
ation, the current contents of $pattern has to be re-parsed to determine the components of
the regular expression, re-checked to ensure that the regular expression is valid, and re-con-
verted into Perl’s internal “table-driven” representation for regular expressions. 

That takes time, and makes the loop much slower than if a separate match for each pat-
tern had been separately coded:

while (<>)
{

/(\w*(cat))/and print "a $1 is a kind of $2\n" and next;
/(\w*(dog))/and print "a $1 is a kind of $2\n" and next;
/(\w*(fish))/and print "a $1 is a kind of $2\n" and next;

}

In this hard-coded version, each pattern would only be parsed, checked, and converted
once—at compile time—no matter how many times each match is attempted. That makes it
about six times faster than the version with interpolated patterns.

There are clever tricks that allow a table of patterns to be matched efficiently, but as of
Perl 5.005, it’s possible to have the convenience of the interpolated solution with (almost) the
speed of the hard-coded alternative. The feature that makes this possible is a new quote-like
operator: qr. 

Just as the qq{…} operator converts its single argument into an interpolated string literal,
so the qr{…} operator takes its single argument and converts it into a Perl regular expression.
That is, qr{…} acts like just the initial stages of an m{…} matching operator, in that it compiles
a regular expression, but doesn’t actually match it against anything. 

Instead, it returns a reference to the compiled regular expression. So a statement like:

$rxref = qr{[A-Za-z_][A-Za-z0-9_]*};

causes $rxref to contain a reference to a regular expression that will match any Perl identi-
fier. The reference in $rxref can then be interpolated into pattern matches and substitutions
just like a string, except that when it is interpolated, the regular expression doesn’t need to be
reparsed, rechecked, or recompiled:
144 CHAPTER 5 BLESSING OTHER THINGS



$pattern_string= qq{[A-Za-z_]\w*};# Make a pattern string
$regex_reference= qr{[A-Za-z_]\w*};# Make a regex reference

$str =~ m/$pattern_string/;# Interpolate string, recompile regex, then match
$str =~ m/$regex_reference/;# Interpolate precompiled regex, then match

That means we could rewrite the earlier example like this:

@regexes =(
qr /(\w*(cat))/,# Note:as with q or qq, 
qr {(\w*(dog))},# you can use any 
qr |(\w*(fish))|,# delimiters for qr

);

while (<>)
{

foreach $regex ( @regexes )
{

/$regex/ and print "a $1 is a kind of $2\n" and last;
}

}

This version is nearly 70 percent as fast as the hard-coded one, but much easier to maintain
for large numbers of regular expressions.

5.1.2 Why an object-oriented regular expression class?

At first glance, there would seem to be little justification for wrapping the wolf of regular
expressions in the sheep’s clothing of a class. Pattern matching is such an integral part of Perl,
it seems odd to want to encapsulate and abstract it.

The obvious response is that, although regular expressions are at the heart of Perl’s charm,
they are also largely responsible for its reputation as a language built from line-noise. The com-
bination of the terse and symbol-ridden syntax for patterns, the standard choice of /…/ de-
limiters, and the unfamiliarity of the =~ and !~ operators, can make a raw pattern match look
obscure. Much can be said for replacing something that looks like comic-book profanity:1

($tmp=$@)=~s/,(.*),//s and $_.="$tmp:$1" for (@_);

with a more readable object-oriented syntax:

use English;
use Regexp;

my $middle = Regexp->new(',(.*),',SINGLE_LINE);
foreach (@ARGS)
{

$middle->substitute($tmp=$EVAL_ERROR,"") and
$ARG .= "$tmp:".$middle->backref(1);

}

1 It actually says: for each element of the current subroutine’s argument list, take a copy of the last error mes-
sage, locate anything between two commas, and, if something suitable is found, move the bit between the
commas to the end of the copy of the error message and append the result to the original argument.
BLESSING A REGULAR EXPRESSION 145



Sure it’s longer to type, but it’s also much less cryptic to read. And good code is always read far
more frequently than it’s written.

The Regexp module actually exists; you can download it from the CPAN. It provides just
such an object-oriented interface to Perl regular expressions, although, as of release 0.004, the
Regexp module doesn’t provide a Regexp::substitute method like the one used above. 

Fortunately, that’s no real problem in object-oriented Perl, since we can easily install one
ourselves:

package Regexp;# Reopen the class…

sub substitute# …and add in a substitute method
{

my ($self, $string, $substitution) = @_;
$self->match($string) or return;
$_[1] = $self->prematch . $substitution . $self->postmatch;
return $_[1];

}

The new method returns undef or an empty list if the substitution fails. Otherwise, it
replaces the matched substring of the original string with the specified substitution text. The
newly added member is careful to respect the public interface of the Regexp class and doesn’t
try to access the $self object’s private attributes directly. That way, when version 0.005 of
the Regexp module appears, Regexp::substitute will still work.2

A slight variation on the theme could also provide the standard /g global substitution
behavior:

sub Regexp::substitute_all
{

my ($self, $string, $substitution) = @_;
$self->match($string) or return;
my $newstring = "";
while ($self->match($string))
{

$newstring .= $self->prematch . $substitution; 
$string = $self->postmatch;
last unless $string;

}
return $_[1] = $newstring . $string;

}

5.1.3 Designing a different regular expressions mechanism

Whether or not you’re convinced by the maintenance advantages of an object-oriented syntax
for pattern matching, a much better reason exists for creating an object-oriented regular
expression class: who says that such a class must have the same semantics as Perl’s built-in
operations? 

2 Provided, of course, that Nick, Ilya, and Graham (who wrote the Regex module) play by the rules and
don’t change its public interface!
146 CHAPTER 5 BLESSING OTHER THINGS



The design of Perl’s pattern matching semantics makes certain tradeoffs and compromises
that make some things easy to do with regular expressions and other things more difficult. The
design of a regular expression class could easily incorporate different choices and provide a dif-
ferent feature set.

For example, standard Perl pattern matching has the following features and tradeoffs:

• Matches and substitutions are operations;
• Substitutions change the contents of the variable being substituted (so it’s more compli-

cated to create a substituted string without changing the original);
• Substrings that match parenthesized subpatterns are returned in the read-only variables:

$1, $2, etc;
• Substrings that match the full pattern and its preceding and following text are also

returned in variables: $&, $`, and $';
• Indices of the substring that matched the full pattern are difficult to obtain—the start of

the matching substring of $string is at index length($`); the end is at index
pos($string)-1 or length($`.$&)-1).

Listing 5.1 shows a class that changes every one of these behaviors. The AltRegex class is based 
on a blessed regular expression, and its methods return references to objects of another class, 
AltRegex::Match (see listing 5.2). 

Using the AltRegex class:

• Matches and substitutions are now method calls;
• Substitutions do not affect the contents of the variable being substituted;
• Substrings that match parenthesized subpatterns are returned as attributes of an

AltRegex::Match object;
• Substrings that match the full pattern and its preceding and following text are also

returned as attributes of a AltRegex::Match;
• Indices of the substring that matched the full pattern are easily obtained via method

calls.

This is a different approach to pattern matching. For example, the line-noise example

($tmp=$@)=~s/,(.*),//s and $_="$tmp:$1" for (@_);

would now be implemented as

use English;
use AltRegex;

my $middle = AltRegex->new(',(.*),');
foreach (@ARGS)
{

$match = $middle->substitute($EVAL_ERROR) and
$ARG .= $match->result.":".$middle->subpatterns(0);

}

There’s now no need for a temporary variable to shield $EVAL_ERROR from the effects of the
substitution.
BLESSING A REGULAR EXPRESSION 147



Better still, because each AltRegex object is just a blessed qr/…/ regular expression, such
objects can still be used with standard Perl pattern matching semantics. For example

my $regex = AltRegex->new("cie");

$corrected = $regex->substitute($original, "cei")->result;# new semantics

($corrected = $original) =~ s/$regex/cei/; # old semantics

5.1.4 A closer look at the two classes

Using the qr operator, the AltRegex constructor converts the pattern passed to it into a pre-
compiled regular expression. That regular expression is immediately blessed as an object of the
class, and a reference to it is returned. The eval around bless is necessary because the string
passed to the constructor might not be a valid Perl pattern. In that case, the qr operator

package AltRegex;
$VERSION = 1.00;
use strict;
use AltRegex::Match;

sub new
{

my ($class, $pattern) = @_;
eval { bless qr/$pattern/, ref($class)||$class };

}

sub match
{

my ($self, $str) = @_;
my @subpatterns = ($str =~ $self) or return;
return AltRegex::Match->new(@subpatterns,$`,$&,$',$str);

}

sub substitute
{

my ($self, $str, $subs) = @_;
my @subpatterns = ($str =~ $self) or return;
$str =~ s/$self/$subs/;
return AltRegex::Match->new(@subpatterns,$`,$&,$',$str);

}

sub substitute_all
{

my ($self, $str, $subs) = @_;
$str =~ s/$self/$subs/g;
return AltRegex::Match->new($`,$&,$',$str);

}

Listing 5.1 A regular expression class with alternative semantics
148 CHAPTER 5 BLESSING OTHER THINGS



throws an exception. The eval catches that exception and converts it to a (less aggressive)
undef, which is the normal return value used to indicate a constructor has failed. We can
then test for success like this:

package AltRegex::Match;
$VERSION = 1.00;
use strict;
 
sub new
{

my $class = shift;
my ($pre, $match, $post, $result) = splice @_, -4;
bless{_result=> $result,

_match=> $match,
_pre=> $pre,
_post=> $post,
_subpatterns=> [@_],

}, ref($class)||$class;
}

sub result{ return $_[0]->{_result}}
sub match{ return $_[0]->{_match}}
sub prematch{ return $_[0]->{_pre}}
sub postmatch{ return $_[0]->{_post}}

sub from
{

my ($self) = @_;
$self->{_from} = length($_[0]->{_pre})
unless defined $self->{_from};

return $self->{_from}
}

sub to
{

my ($self) = @_;
$self->{_to} = $self->from + length($self->{_match}) - 1
unless defined $self->{_to};

return $self->{_to}
}

sub subpatterns
{

my ($self, $index) = @_;
return $self->{_subpatterns}[$index] if defined $index;
return @{$self->{_subpatterns}};

}

Listing 5.2 The AltRegex::Match helper class
BLESSING A REGULAR EXPRESSION 149



my $regex;
print "Enter a pattern: ";
print "Try again: " until $regex = AltRegex->new(scalar <>);

The remaining methods of the class implement the standard operations on a regular ex-
pression: matching, single substitution, and multiple substitution. The single substitution
method captures the set of bracketed subpatterns ($1, $2, etc.), which the normal Perl s///
operator does not. 

For each matching operation, if the operation fails, undef is immediately returned. If the
operation succeeds, information derived from the match is packed into an AltRegex::Match
object and returned. 

The AltRegex::Match class collects information provided to it inside a standard hash-
based object. That information is then available through the methods of the class. Classes like
AltRegex::Match are often called helper classes because they exist solely to support the opera-
tions of another class. The AltRegex:: prefix provides a handy hint about the subordinate status
of the class, as well as a useful way of conserving namespace.

The AltRegex::Match::from and AltRegex::Match::to methods are interesting
to consider. They are examples of what is known as a memoized computed attribute. When an
AltRegex::Match object is initially constructed, it doesn’t store explicit values for these two at-
tributes. Their values are computed only if they are requested, via a call to the corresponding
method. However, once computed, they are subsequently stored—or memoized—in the ob-
ject, so that the computation need never be repeated. 

It’s also worth noting that deferring the computation of such values until they are needed
and then storing them may not actually result in better performance. In fact, deferring the
computation is only a win if there’s a good chance the attribute will never be accessed. Likewise,
memoizing the computed value only makes sense if the cost of computation is greater than the
cost of checking whether the value is already known. 

The implementation of the AltRegex::Match::subpatterns method is also instruc-
tive. If the method is called with an argument, it returns just the text that matched the specified
subpattern:

print $regex->match($string)->subpatterns(0); # just print $1

In other words, it takes the role of $1, $2, etc., except that the indices start at zero. On
the other hand, when the method is called without any arguments, it returns the complete list
of all the parenthesized subpatterns from the match it represents:

$match = $regex->match($string);
foreach $subpattern ($match->subpatterns)
{

print "matched ($subpattern)\n";
}

Whether this overloading of functionality is considered elegant or obscure is largely a
matter of personal taste. The alternative is to provide separate methods for each task perhaps
get_subpattern and get_all_subpatterns.

The obvious choices for naming these two methods—subpattern and subpatterns—
are not appropriate, as it is inevitable that some clever person will immediately go and write
150 CHAPTER 5 BLESSING OTHER THINGS



$match = $regex->match($string);
print "matched ($_)\n"

foreach ($match->subpattern);

and, for want of a single letter, will miss most of the data. That’s because the call to
$match->subpattern is equivalent to $match->subpattern(undef), and the undef is
silently converted to zero when used as an array index inside subpattern. Consequently only
the first matched substring is returned.

5.1.5 On the separation of Search and State

The class-plus-helper approach provides a uniform interface to all matching operations and a
clean separation between the matching processes and the results of those processes. Notice
how small and focussed each class is. That makes them easier to build, debug, and maintain.

For example, the separation means that we could add extra matching methods to Alt-
Regex (say, AltRegex::conditional_match or AltRegex::substitute_last), without
affecting the retrieval of matching information from AltRegex::Match. Likewise, if we wished
to provide AltRegex::Match with additional methods for retrieving matching information (for
example, AltRegex::Match::pre_and_post or AltRegex::Match::match_len), there
would be no need to alter the matching mechanisms in AltRegex. 

More importantly, the separation of process (AltRegex) and result (AltRegex::Match)
means that, when either is modified, the amount of client code that also needs to be changed
is kept to a minimum. 

5.1.6 Where to find out more

You can read about the new qr operator in the standard perlop documentation (under Quote
and Quote-like Operators). 

Helper classes are described in most good texts on object-oriented programming tech-
niques (Design Patterns or Object-Oriented Software Design, for example).

For a deeper discussion of many aspects of pattern matching see Mastering Regular Ex-
pressions by Jeffrey Friedl.

5.2 BLESSING A SUBROUTINE
Using a subroutine as an object may seem contradictory or, at best, arcane. Surely, the subrou-
tine is the natural enemy of the object? A subroutine isn’t even a thing in the usual sense. It’s
certainly not data like a hash, or an array, or even a precompiled regular expression. 

5.2.1 So, how can a subroutine be an object?

It’s easiest to see how we can treat a subroutine like an object by considering an example. Take
the hash iterator class described in chapter 4. Here’s a version pared to its essentials:

package Iterator;
$VERSION = 2.01;
use strict;
BLESSING A SUBROUTINE 151



sub new
{

my ($class, %data) = @_;        # get class name and copy hash
my $hashref = \%data;              # get reference to copy of hash
bless $hashref, ref($class)||$class;# Bless the copy

}

sub each
{

my ($self) = @_;
each %$self;# Iterate the copy

}

In this simplifed version, the constructor builds an anonymous hash containing a copy
of the original hash’s data and blesses that anonymous hash as the new Iterator object. Then
the Iterator::each method provides a means to iterate through the blessed hash.

Now, let’s turn the Iterator class inside-out:

package Iterator;
$VERSION = 3.00;
use strict;

sub new
{

my ($class, %data) = @_;# get class name and copy hash
my $subref = sub { each %data };# Wrap a sub around the copy
bless $subref, ref($class)||$class;# Bless the sub

}

sub each
{

my ($self) = @_;
$self->();# Call the sub

}

In the new version, the constructor still builds a lexical copy, %data, of the original hash’s
data, but now it creates an anonymous subroutine that can iterate through that lexical hash.
It is this subroutine, not the data itself, that is blessed to become the Iterator object. Now, when
Iterator::each needs to iterate the data, it merely calls the anonymous subroutine. This
works because the anonymous subroutine is a closure and has ongoing access to any lexical vari-
ables, such as %data, that existed when the subroutine was created. 

Both versions of the Iterator class provide the same functionality through the same in-
terface.3 The only difference is that, in the second version, the object is a subroutine with access
to the data, rather than a copy of the data itself. 

And that’s why a subroutine can be an object—because an object isn’t data, it’s something
that provides access to data. Normally, we use a hash or an array as an object and that access
is provided by the ->{…} or ->[…] syntax. But, in Perl, subroutines can also provide access

3 That’s the whole point of the object-oriented approach.
152 CHAPTER 5 BLESSING OTHER THINGS



to data; specifically, to any lexical that was in scope when the subroutine was created. There-
fore, subroutines can be used as objects.

5.2.2 Why objectify a subroutine?

Okay, so a subroutine can act like an object. Why would we ever bother with something so
obscure? To answer that entirely reasonable question, let’s consider a larger and more realistic
example.

Suppose we wished to build a class to represent the lexical analyzer (or lexer) in an input
parsing system. A lexical analyzer is normally just a subroutine that takes an input string and
breaks it up into a sequence of tokens. A token is simply a substring of the original input with
an associated label indicating what role it plays in the string. For example, given the string
"That which does not kill us, makes us stronger", a lexer might return the fol-
lowing list:

(
"That"=>DEM_PRONOUN,
"which"=>REL_PRONOUN,
"does"=>AUXILIARY_VERB,
"not"=>NEGATION,
"kill"=>VERB,
"us"=>PERS_PRONOUN,
","=>COMMA,
"makes"=>VERB,
"us"=>PERS_PRONOUN,
"stronger"=>ADJECTIVE,

) 

In other words, a lexer breaks up some input text and identifies the parts, so that they can
be interpreted by a program. Another typical use of a lexer would be in identifying which parts
of an HTML document are content, and which are mark-up tags.

In some situations, it may be useful, or necessary, to provide a number of distinct lexers
for the same parser. For example, a compiler like gcc, which handles several different languages,
may need to label the parts of a program differently depending on which language is used. For
instance: "class" is a reserved word in C++, part of a compiler directive in Objective C, and
an ordinary identifier in C, and gcc has to deal with all three cases correctly. The easiest way
to do so is to provide separate lexers for each language and select the correct one for the par-
ticular source code. 

In such cases, turning each lexer into an object is a good idea because, instead of passing
numerous subroutine references about, we can pass objects instead. This is good psychology,
since most programmers will find objects far more familiar and comprehensible than references
to anonymous subroutines. 

More importantly, turning a lexing subroutine into an object enables us to provide a
range of ways to call that subroutine (i.e., different methods of the object). For example, at dif-
ferent points in the parsing process the lexer may be asked to

• Determine the next single token in the input string, remove it from that string, and
return it (token extraction);
BLESSING A SUBROUTINE 153



• Determine the next single token in the input string, and return it without removing it
from the input string (look ahead);

• Extract successive tokens from the input string and throw them away, until a certain
token is encountered (resynchronization);

• Extract the next line of text from the input string, split it into a list of tokens, and return
all of them at once (line tokenization);

• Split the entire input string into a list of tokens and return all of them at once (full
tokenization).

An object-oriented lexer could provide a separate method corresponding to each of these
tasks.

5.2.3 A lexer object

Listing 5.3 shows a Lexer class built along the lines described above.

package Lexer;
$VERSION = 1.00;
use strict;
use Carp;

sub new
{

my ($class, @token_defs) = @_;
my $code = '';
while (my ($pattern, $token) = splice @token_defs, 0, 2 )
{

$code .= '$_[0] =~ s/\A\s*?('.$pattern.')// ';
$code .= ' and return ("$1", '."'$token');\n";

}
$code .= '$_[0] =~ s/\A\s*(\S)// and return ("$1",""); ';
$code .= 'return;';

my $sub = eval "sub { $code }" or _croak_cleanly($@);
bless $sub, ref($class)||$class;

}

sub _croak_cleanly
{

$_[0] =~ m{/\\A\\s\*\((.*)\)/(.*) at .*}s;
croak "/$1/$2";

}

sub extract_next
{

$_[0]->($_[1]);
}

sub lookahead

Listing 5.3 An object-oriented lexer class
154 CHAPTER 5 BLESSING OTHER THINGS



{
my ($self, $str) = @_;
my @next = $self->($str);
return wantarray ? @next : $next[0];

}

sub extract_to
{

my ($self) = @_;
my @tokens = ();
while (my @token_and_type = $self->($_[1]))
{

push @tokens, @token_and_type;
last if defined($_[2]) && $token_and_type[1] eq $_[2];

}
return @tokens;

}

sub resync_after
{

$_[0]->extract_to($_[1], $_[2]);
return;

}

sub extract_all
{

$_[0]->extract_to($_[1],undef);
}

The constructor takes a list of alternating patterns and token types, all specified as strings,
and builds a string ($code) containing Perl statements. These statements define an anonymous
subroutine that uses those tokens to parse input. 

For example, if a Lexer object was created like this:

my $lexer = Lexer->new('\n'=>'NL',
'\d+'=>'DIGITS',
'\w+'=>'WORD',
';'=>'SEMICOLON',
'[^\d\w]+'=>'OTHER',

);

then the constructor would assemble the following string in $code:

'sub 
{

$_[0] =~ s/\A\s*?(\n)//and return ("$1", 'NL'); 
$_[0] =~ s/\A\s*?(\d+)//and return ("$1", 'DIGITS'); 
$_[0] =~ s/\A\s*?(\w+)//and return ("$1", 'WORD'); 
$_[0] =~ s/\A\s*?(;)//and return ("$1", 'SEMICOLON'); 
$_[0] =~ s/\A\s*?([^\d\w]+)//and return ("$1", 'OTHER'); 

$_[0] =~ s/\A\s*(\S)//and return ("$1", "");#default case
BLESSING A SUBROUTINE 155



return;
 }'

which is close to what you might write yourself if you were building the lexer by hand. 
Each of the patterns has the smallest possible amount of leading white space removed dur-

ing matching (\A\s*?…), so it’s still possible to specify tokens that explicitly match white space
characters. If a pattern matches, the matching text is returned, along with a string indicating
which token succeeded.

The default case in the second last line is added automatically. It matches any single non-
space character if no other token seems appropriate. The final return is there to catch the spe-
cial case where the string is empty.

Having built this code text, the constructor eval’s it into a real live Perl subroutine. If
the eval fails, it must be because one of the patterns is invalid. In that case the constructor
calls the utility subroutine Lexer::_croak_cleanly, which tidies up the error message in
$@ before throwing an exception.

If all patterns are valid, the eval will succeed, and $sub will contain a reference to an
anonymous lexing subroutine like the one shown above. The constructor then takes this sub-
routine and blesses it, thereby making it a Lexer object.

The remaining methods of the class use the subroutine object (i.e., $self) to implement
the different lexing behaviors described in the previous section. The simplest behavior is to ex-
tract the next token from a given string. Lexer::extract_next implements this behavior by
calling the blessed subroutine with the argument it is given. Therefore, a call to

($token, $type) = $lexer->extract_next($data);

invokes the lexing subroutine on the string $data, to extract the next token and return it (and
its type). If the subroutine fails to find a matching token in the data, it returns an empty array,
so the code can also be used in a loop:

while ( ($token, $type) = $lexer->extract_next($data) )
{

# Do something with $token according to its $type
}

The Lexer::lookahead method also invokes the blessed subroutine, but passes it a
temporary copy of the input string, instead of the string itself. This means that the next token
is extracted from the copy, and so the original input string is unchanged:

if ( ($lexer->lookahead($data))[1] eq 'NL' )
{

# Do something that should happen just before an end of line
}

Instead of extracting one token at a time, we might prefer to process the contents of $da-
ta line-by-line or statement-by-statement. The Lexer::extract_to method supports this
approach. It takes the string to be lexed, followed by the name of a token type, and returns a
list of (token,type) pairs, up to and including the first token whose type matches the second
argument. For example
156 CHAPTER 5 BLESSING OTHER THINGS



# process first three lines line-by-line…
for (1..3)
{

my @tokens_and_types = $lexer->extract_to($data, 'NL');
process_line(@tokens_and_types);

}

# process remaining lines statement-by-statement…
while ($data)
{

my @tokens_and_types = $lexer->extract_to($data, 'SEMICOLON');
process_statement(@tokens_and_types);

}

Lexer::resync_after provides a handy way of skipping past errors. It behaves exactly
like extract_to, except that it throws away the tokens it extracts. A typical use might be

unless ( process_line($lexer->extract_to($data, 'NL')) )
{

warn "Error near " . ($lexer->lookahead($data))[0];
$lexer->resync_after($data,'SEMICOLON');

}

Finally, Lexer::extract_all, provides a way to tokenize an entire string in one step.
Both Lexer::resync_after and Lexer::extract_all make use of Lexer::

extract_to, which simplifies them and isolates potential bugs to that one method. 

5.2.4 Example: A simple pretty-printer

Listing 5.4 shows a typical application of the Lexer class—a pretty-printer for a (very small)
subset of Perl. The code itself is simple and almost declarative in style, which makes it easy to
add extra tokens and their associated printing rules.

The Lexer object is set up, as before, by passing a list of pattern=>type pairs to Lexer:
:new. The program sucks up all of the text on STDIN, and sets the indentation level to zero.
Finally, the pretty-printing code iterates through each token that the lexer extracts from the
input data, determines the token’s type, and prints out the token with the appropriate
formatting.

The specified formatting causes semicolons and newlines to insert a newline and reapply
the current level of indentation (i.e. "\t" x $indent). Curly braces insert newlines and in-
dentation too, but they also increment or decrement the indentation level appropriately. Any
“#” encountered is treated as a comment introducer, and the remainder of the same line is
skipped with a call to the resync_after method. Other tokens are printed as is with only
minimal white space between them.

5.2.5 Where to find out more

Chapter 7 develops a more sophisticated version of the Lexer class, with polymorphic tokens.
Perl’s anonymous subroutines are explained in chapter 2. They are also described in the

standard perlsub and perlref documentation. The closure behavior of subroutines is explained
in detail in chapter 4 of Advanced Perl Programming.
BLESSING A SUBROUTINE 157



A similar, but simpler and non-object-oriented, approach to building processors for sets
of regular expressions is described in perlfaq6 and, in more depth, in chapter 6 of Perl Cook-
book. If you’re interested in more general lexing and parsing, especially of the object-oriented
variety, you may want to look at the Parse::RecDescent, Parse::Yapp, byacc-perl, and Parse::
Lex packages, all available from the CPAN. 

The perltoot tutorial describes (in a section titled Closures as Objects) an entirely different
use for blessed subroutines, namely to implement a strong form of encapsulation. This pow-
erful and elegant technique is explained in detail in chapter 11. 

5.3 BLESSING A TYPEGLOB
By this point, the rules of the game should be clear: if you can take a reference to it, you can
bless it into a class. As a final variation on this theme, we’ll bless a typeglob to create an object

package main;
use Lexer 1.00;

# What symbols are understood…

my $lexer = Lexer->new('\d+'=> 'NUMBER',
'\$\w+'=> 'VARIABLE',
'\w+'=> 'IDENTIFIER',
'=|<'=> 'OPERATOR',
'\('=> 'LB',
'\)'=> 'RB',
'\{'=> 'LCB',
'\}'=> 'RCB',
','=> 'COMMA',
';'=> 'SEMICOLON',
'\n'=> 'NL',

);

# The pretty-printer itself...

my $indent = 0;
my $input = join '', <>;
my $token;
while ( ($token, $_) = $lexer->extract_next($input) )
{

if (/SEMICOLON/) {print ";\n", "\t" x $indent }
elsif (/NL/) {print "\n", "\t" x $indent }
elsif (/LCB/) {print "\n", "\t" x $indent++, "{\n", "\t" x $indent}
elsif (/RCB/) {print "\n", "\t" x --$indent, "}\n", "\t" x $indent}
elsif (/HASH/) { print "\n", "\t" x $indent;

$lexer->resync_after($input,'NL') }
else {print "$token " }

}

Listing 5.4 A simple pretty-printer
158 CHAPTER 5 BLESSING OTHER THINGS



that acts like a paged filehandle. Actually, far from being an arcane anomaly, blessing a type-
glob is a common operation in Perl. Every time you use any of the IO:: modules (IO::Handle,
IO::File, IO::Pipe, etc.), you’re doing exactly that. An IO::File object, for instance, is just a
typeglob that has been blessed into the IO::File package. 

It’s enlightening to read through the IO:: modules to see how they go about wrapping
Perl’s endearingly messy I/O features in tidy objects. 

5.3.1 Paging STDOUT

It’s common to want to “page” the output of a program so that it appears a screenful at a time.
For example, if a program is printing help information, we’d like that information to appear
gradually (and under our control), instead of in a scrolling blur. 

It’s relatively easy to set up STDOUT so that it pages correctly:

{
local *STDOUT;
open STDOUT, "|more" or die "Can't connect to pager (more)";

# Any print to STDOUT in the rest of the block will be paged.
# For example:
foreach my $i (1..100)
{

print "$i\n";# Each line is paged through more(1)
}

}
print "done\n";  # Unpaged

Some subtleties here are worth mentioning. Firstly, the localization of STDOUT ensures
that the paging doesn’t permanently interfere with the standard output filehandle. We could,
of course, simply use a different global filehandle name, but, in a large system, it might be dif-
ficult to be sure that we’re not trampling on someone else’s I/O. 

More importantly, if we used another filehandle, we would have to remember to close
it explicitly:

open PAGER, "|more" or die "Can't connect to pager (more)";

# Any print to PAGER in the rest of the block will be paged
# For example:
foreach my $i (1..100)
{

print PAGER "$i\n";# Each line is paged through more(1)
}

close PAGER;

print "done\n";  # Unpaged

The close sends an end-of-file message to the paging program—which is running as a child
process—and ensures that the main program waits for the pager to finish. Without that
BLESSING A TYPEGLOB 159



implicit wait, the main program terminates after completing the print operations, causing
all its child processes, including the pager, to finish prematurely.4

If instead we choose to localize STDOUT, it’s important to embed the paged I/O in a block,
so that the normal STDOUT will be restored after the paging is complete. The nested scope also
ensures that the pipe between the main program and the pager is closed properly at the end
of the block when the local filehandle is cleaned up. Otherwise, we would again have to re-
member to issue an explicit close. 

5.3.2 A multiprocess pager class

Of course, even if you can remember and cater for all of these issues, if the nominated pager
program isn't available—if you're not running on a Unix-ish system—the program will die a
horrible death without printing anything useful.5 To avoid this nonportability, we can build a
class that encapsulates a paging filehandle, but doesn’t rely on external paging programs at all.
Listing 5.5 shows the complete IO::Pager class suitable for any system that implements the
built-in fork function.

package IO::Pager;
$VERSION = 1.00;
use strict;
use Carp;
use Symbol;
 
sub new
{

my $class = shift;
my %args = (lines=>23, prompt=>"--More--", endprompt=>"--No more--", @_);
my ($self, $KEYBOARD) = ( gensym, gensym );
open $KEYBOARD, "<&STDIN" or croak "lost contact with keyboard";
my $pid = open $self, "|-";
croak "Could not create pager" unless defined $pid;
_page($KEYBOARD,%args) unless $pid;
return bless $self, $class;

}

sub _page
{

my ($KEYBOARD,%args) = @_;
$| = 1;
while (<>)
{

4 This can be a trap even for experienced programmers, who may be tempted to insert an explicit wait
to ensure that the pager gets a chance to finish. That doesn’t work because, without the end-of-file sent
by close, the pager waits for more input from the main program, while the main program waits for
the pager to terminate.

5  Hmmm, that is similar to the standard help behavior on certain systems.

Listing 5.5 The pager class
160 CHAPTER 5 BLESSING OTHER THINGS



print;
_prompt($args{prompt},$KEYBOARD) || last

unless $. % $args{lines};
}
_prompt($args{endprompt}, $KEYBOARD);
exit;

}

sub _prompt
{

print $_[0];
return (readline(*{$_[1]}) !~ /^q/i); # Return false if user types 'q'

}

sub close
{

close $_[0];
}

sub print
{

my ($self) = @_;
print $self (@_);

}

sub DESTROY
{

$_[0]->close;
}

1;

The constructor does most of the work required to set up the paging mechanism. It first
parses the argument list, extracting the class name and the configuration arguments. The ar-
guments are passed as a hash-like list of tags and values. These tags/value pairs are

• lines => $num, which specifies how many lines should be shown per page before paus-
ing and prompting to continue;

• prompt => $str, which specifies the string to be printed at each pause;
• endprompt => $str, which specifies a separate string to be printed once all the data

has been paged out.

The defaults are interpolated into the %args hash before the constructor arguments, so
that the arguments take precedence. The default values are the standard ones for more. Con-
sequently, the following produces a more-ish paging filehandle:

my $PAGER = IO::Pager->new();
BLESSING A TYPEGLOB 161



In contrast, this constructor call:

my $PAGER = IO::Pager->new(prompt=>": ", endprompt=>"(END)");

creates a pager that mimicks less.
Having determined the style of paging required, the constructor creates two local

typeglobs:

my ($self, $KEYBOARD) = (gensym, gensym);

The Symbol::gensym subroutine is a handy utility subroutine that returns a reference to an
anonymous typeglob. 

Once the two new typeglobs have been created, they are both immediately used, although
in very different ways. The filehandle in the $KEYBOARD typeglob is connected to the same in-
put stream as STDIN, via an open $KEYBOARD, "<&STDIN". This filehandle will be used to
provide the paging process with access to the original input stream, so that it can receive replies
to its paging prompts.

 This will be necessary because the paging process is created—in the very next state-
ment—by opening the filehandle in $self’s typeglob with the magical "|-" output pipe. This
open causes the main program to fork and create a pipe to the new child process. That child
process has its input stream (i.e. STDIN) connected to one end of the pipe, and the filehandle
inside $self is connected to the other. Hence, anything written to the $self filehandle will
appear on the standard input of the child process. The child process needs its own copy of the
original STDIN (inside $KEYBOARD), since its own STDIN has been taken over by the inter-pro-
cess pipe.

The forking open returns zero to the new process and nonzero to the original one. In the
child process—where the condition unless $pid is true—the IO::Pager::_page subrou-
tine is called to begin the paging process. In the parent process, the unless $pid condition
is false, so control skips to the last line of the constructor where the writable end of the inter-
process pipe (stored in $self’s typeglob) is blessed as an object of the class, and returned.

The upshot of all that fancy footwork is that the original process that calls IO::Pager:
:new receives a reference to a blessed typeglob containing a filehandle. That filehandle is con-
nected to a pipe that leads to the STDIN of another process currently executing the IO::Pag-
er::_page subroutine. Figure 5.1 illustrates that long chain of connections.

Perl’s built-in print function is quite smart and knows that, if we give it a typeglob ref-
erence (blessed or not), it should send its output to the filehandle inside that typeglob. Now
we can write

my $PAGER = IO::Pager->new();
print $PAGER ($long, $text, $to, @be_paged_out);

and print sends the output text to the filehandle referred to by $PAGER. That filehandle
routes the text through the pipe and into the STDIN of the child process. All that is then
required is to arrange for the child process to grab that incoming data and page it out.

Recall that the constructor left the child process executing the IO::Pager::_page sub-
routine. Not surprisingly, that subroutine does nothing but read lines from its STDIN, print
them to its STDOUT, and prompt whenever the line count reaches a multiple of a screenful (that
is, when $. % $args{lines} is zero).
162 CHAPTER 5 BLESSING OTHER THINGS



The helper subroutine IO::Pager::_prompt uses the filehandle in $KEYBOARD to col-
lect feedback. Reading from STDIN would not have the desired effect, since it’s now connected
to the interprocess pipe, not the keyboard. 

The _prompt subroutine also returns a Boolean value indicating whether the user typed
q (or Q) in response to the paging prompt. This is caught in _page’s while loop, allowing
paging to terminate early if a quit is requested. It’s easy to imagine _prompt and _page han-
dling a much richer set of interactive commands (back-up, save, find, etc.) in a similar manner.

The IO::Pager::print and IO::Pager::close methods exist only to provide an ob-
ject-oriented interface for these two standard activities. Their presence makes the following
pairs of statements equivalent:

print $PAGER @data;
$PAGER->print(@data);

close $PAGER;
$PAGER->close();

The first version of each of these pairs is not an indirect object method call, but rather a
normal call to Perl’s built-in print or close function. In this case, of course, the effect is iden-
tical, but it illustrates once again why the indirect object syntax is best avoided.

Finally, the class destructor (IO::Pager::DESTROY) ensures that the filehandle in the
blessed typeglob is properly closed before it is finally relinquished. As explained above, the im-
plicit wait that this close performs prevents the main process from terminating prematurely
and killing the pager process before all the output has been paged.

Using the IO::Pager class, the earlier paging example now becomes

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

$PAGER
SCALAR

ARRAY

HASH

CODE

IO

FORMAT

*STDIN

Parent process Child process

IO::Pager

Figure 5.1 The internal structure of an IO::Pager object
BLESSING A TYPEGLOB 163



use IO::Pager;

{
my $PAGER = IO::Pager->new();

# Any print to $PAGER in the rest of the block will be paged
# For example:
foreach my $i (1..100)
{

print $PAGER "$i\n"; # Each line is paged through &IO::Pager::_page
}

}
print "done\n";  # Unpaged

Note in particular that, because the paging typeglob is now blessed into a class with a de-
structor, there is no need to remember the vital call to close. It is now automatically invoked
by the object’s destructor when the reference finally goes out of scope.

5.3.3 A threaded pager class

With a little more effort, the IO::Pager class could use Perl’s built-in threads,6 rather than sep-
arate O/S processes. Figure 5.6 illustrates the variation. Naturally, this version of the class pro-
vides exactly the same interface as the nonthreaded version.

package IO::Pager;
$VERSION = 2.00;
use strict;
use Carp;
use Symbol;
use Thread 'async';

sub new
{

my $class = shift;
my %args = (lines=>23, prompt=>"--More--", endprompt=>"--No more--", @_);
my ($READHANDLE, $WRITEHANDLE) = (gensym, gensym );
pipe $READHANDLE, $WRITEHANDLE or die;
my $self = bless $WRITEHANDLE, $class;
my $thread_ref = async { _page($READHANDLE,%args) };
*$self = \$thread_ref;
return $self;

}

sub _page

6 Perl’s thread facilities are still experimental. The thread-specific details in this section may have
changed if you’re using a version of Perl later than 5.005.

Listing 5.6 The Pager class (threaded)
164 CHAPTER 5 BLESSING OTHER THINGS



{
my ($input,%args) = @_;
while (readline *$input)
{

print;
_prompt($args{prompt}) || last

unless $. % $args{lines};
}
_prompt($args{endprompt});

}

sub _prompt
{

print $_[0];
return (<> !~ /^q/i);  # Return false if user types 'q'

}

sub close
{

close $_[0];
${*{$_[0]}}->join;

}

sub print
{

my ($self) = @_;
print $self (@_);

}

sub DESTROY
{

$_[0]->close;
}

1;

The overall structure and operation of the threaded IO::Pager class is unchanged from the
multiprocess version. It still connects the two parallel flows of control, the main program and
the pager, with a pipe, but now the pipe is explicitly created by calling the built-in pipe func-
tion on two anonymous typeglobs. 

The typeglob storing the writable end of the pipe is immediately blessed as the pager ob-
ject. The readable end of the pipe is passed to _page, which is invoked in a separate thread
via the Thread::async subroutine. Thread::async returns a reference to a Thread object,
temporarily stored in the lexical $thread_ref.

This Thread object will be needed later, so we need to keep it warm and dry in the in-
terim. The SCALAR slot of the now-blessed typeglob, $self, is the ideal place. The assignment
that accomplishes this, *$self = \$thread_ref, may look arcane, but it’s just a standard
BLESSING A TYPEGLOB 165



typeglob assignment, placing a reference into a scalar to the appropriate slot of the typeglob
referred to by $self. 

Both the writable end of the interthread pipe and the reference to the pager thread itself
are now stored in the one blessed typeglob, which is finally returned to the main program.

Meanwhile the _page subroutine is running in a separate thread, waiting to read lines
from the readable end of the pipe (note: not from STDIN in this version). Once again it prints
batches of lines and issues a prompt. Because the paging thread takes its input directly from
the pipe, STDIN is still attached to the keyboard, so the threaded version of _prompt can obtain
feedback with a simple diamond operation (<>).

The only other difference in the threaded version is in the IO::Pager::close method.
It still performs a built-in close on the pipe, thereby sending the pager thread the necessary
end-of-file. However, because the pager is no longer running in a child process, the close
doesn’t issue an implicit wait to allow the pager to finish. 

Instead, we need to tell the main thread to pause until the pager thread finishes. This is
done by calling the Thread::join method on the Thread object representing the pager
thread. Fortunately, the constructor cached a reference to that Thread object in the scalar slot
of the blessed typeglob. All we need to do is access that reference and call join through it. 

Accessing the reference is a little ugly, as we have to write: ${*{$_[0]}}. This means:
take the first argument, $_[0], dereference it to a typeglob, *{$_[0]}, and select the scalar
slot, ${*{$_[0]}}. The curly braces are required because, without them, $*$_[0] would be
interpreted as $* $_[0], which is both invalid (missing operator before $_[0]), and deplorable
(use of $* variable is deprecated). Fortunately, since the visually offensive, but syntactically ac-
ceptable, version is hidden away in a method, no one else need ever know our shame.

5.3.4 Where to find out more

Typeglobs and their filehandles are challenging to understand, but are discussed at length in
chapter 2. They are also widely mentioned in the standard Perl documentation in the files:
perldata (Typeglobs and Filehandles), perlmod (Symbol Tables), perlop (I/O Operators), perlref

(Making References), and perlsub (Passing Symbol Table Entries). For an excellent tutorial on
typeglobs, see chapter 3 of Advanced Perl Programming.

Threads are a recent and still experimental addition to Perl. The standard perl documen-
tation perlthrtut provides an good overview. The specifics of their use are described in the doc-
umentation of the Thread.pm module.

5.4 SUMMARY
• The qr operator builds a precompiled regular expression. Such regular expressions may

be blessed as objects. 
• Blessing a regular expression makes it possible to build efficient object-oriented pattern

matchers, possibly with different semantics from Perl’s built-in regular expressions.
166 CHAPTER 5 BLESSING OTHER THINGS



• A subroutine may also be blessed as an object. Such subroutines will typically be eval’d
into existence according to a predefined template. 

• Alternatively, blessed subroutines may be created as anonymous closures, to restrict
access to lexical variables.

• A typeglob is really just a special type of container, and may also be blessed. Typically,
this is done so that the filehandle within the typeglob can be used as an object.
SUMMARY 167



C H A P T E R 6

Inheritance
6.1 How Perl handles inheritance 168
6.2 Tricks and traps 178
6.3 Example: Inheriting the CD 

class 193

6.4 Where to find out more 201
6.5 Summary 202
As the previous three chapters illustrate, you can build complex and useful classes without ever
venturing into the darker waters of inheritance. However, Perl does provide good support for
this important object-oriented programming technique. In this chapter, we’ll explore how to
build classes and class hierarchies that take advantage of the power that inheritance offers. 

6.1 HOW PERL HANDLES INHERITANCE
Perl’s approach to inheritance is typically low-key and uncomplicated. Packages acting as
classes simply announce their allegiance to another class and dynamically inherit that class’s
methods. Perl also provides standard methods that all classes inherit and a small dose of syn-
tactic sugar to make rewriting inherited methods easier. Let’s start with the pledge of alle-
giance…

6.1.1 The @ISA array

A class informs Perl that it wishes to inherit from another class by adding the name of that
other class to its @ISA package variable. For example, the class PerlGuru could specify that it
wishes to inherit from class PerlHacker as follows:

package PerlGuru;
@ISA = ( "PerlHacker" );
168



That’s it. From that point on, whenever Perl needs to determine if PerlGuru has any in-
herited methods, it checks the contents of the array @PerlGuru::ISA. Any package whose
name appears in that array is considered to be a parent class of PerlGuru. Of course, since it’s
an array, we can have many class names in @PerlGuru::ISA, allowing the class to inherit
methods from more than one parent:

package PerlGuru;
@ISA = qw( PerlHacker LanguageMaestro Educator PunMeister );

And, of course, if those four parent classes also inherited from other classes:

package PerlHacker;
@ISA = qw( Programmer Obfuscator );

package PunMeister;
@ISA = qw( Writer Humorist OneSickPuppy );

then PerlGuru would also inherit methods from those grandparents. All this inheritance cre-
ates the hierarchy shown in figure 6.1.

6.1.2 What inheritance means in Perl

Inheritance in Perl is a much more casual affair than in other object-oriented languages. In
essence, inheritance means nothing more than: if you can’t find the method requested in an
object’s blessed class, look for it in the classes that the blessed class inherits from. 

In other words, if we call:

my $guru = PerlGuru->new();

# and later…

my $question = <>;
print $guru->answer($question);

then, if class PerlGuru doesn’t provide a PerlGuru::answer method, Perl searches the par-
ent classes (as specified by the current value of the @PerlGuru::ISA array). The parents are

Programmer Obfuscator Writer Humorist OneSick-
Puppy

PerlGuru

EducatorLanguage-
Maestro

PerlHacker PunMeister

Figure 6.1 PerlGuru’s inheritance hierarchy
HOW PERL HANDLES INHERITANCE 169



searched in a depth-first recursive sequence,1 so Perl looks for one of the following (in this
order):

1 &PerlGuru::answer (look in the actual class of $guru),
1.1 &PerlHacker::answer (look in the class specified by the first entry in the variable 

@PerlGuru::ISA),
1.1.1 &Programmer::answer (look in the class specified by the first entry in the 

variable @PerlHacker::ISA)
1.1.2 &Obfuscator::answer (look in the class specified by the second entry in 

the variable @PerlHacker::ISA),
1.2 &LanguageMaestro::answer (look in the class specified by the second entry in 

the variable @PerlGuru::ISA),
1.3 &Educator::answer (look in the class specified by the third entry in the variable 

@PerlGuru::ISA),
1.4 &PunMeister::answer (look in the class specified by the fourth entry in the 

variable @PerlGuru::ISA),
1.4.1 &Writer::answer (look in the class specified by the first entry in the 

variable @PunMeister::ISA),
1.4.2 &Humorist::answer (look in the class specified by the second entry in the 

variable in @PunMeister::ISA),
1.4.3 &OneSickPuppy::answer (look in the class specified by the third entry in 

the variable @PunMeister::ISA).

 If any of these methods is defined, the search terminates at once and that method is im-
mediately called.2 This process of searching for the right method to call is known as method
dispatch.

If you’re used to the complicated inheritance semantics in another object-oriented lan-
guage, it’s important to realize that inheritance in Perl is merely a way of specifying where to
look for a method and nothing else! There is no direct inheritance of attributes—unless you ar-
range for it—nor any hierarchical calling of constructors or destructors—unless you explicitly
write those methods that way—nor any compile-time consistency checks of the interface or im-
plementation of derived classes. 

This process of finding the correct method to call also explains why Perl ignores any pro-
totype associated with a method (see chapter 3), and why you can’t use prototypes to constrain
the number of arguments given to a method. The prototype check occurs when the code is be-
ing compiled, but, at that point, the compiler has no idea which of the many potential answer

1 Sean M. Burke’s Class::ISA module, available from the CPAN, allows you to extract the exact sequence
in which a class’s parents are searched as a list of class names.

2 When looking in a parent class, Perl checks the left-most parent first, and then the left-most parent of
that class, and the left-most parent of that class and so forth. Hence, if a class’s left-most great-great-
great-grandparent has a method of the right name (e.g., answer), that method will be called, even if
another of the object’s direct parents also has a suitable method. In other words, you don’t necessarily
get the method that is “closest” up the inheritance hierarchy; you get the method that was inherited
through the left-most inheritance chain. This is known as “left-most ancestor wins.”
170 CHAPTER 6 INHERITANCE



subroutines will actually be called since the choice will depend on the contents of the various
@ISA arrays at the time the method is actually called. So the compiler has no way of determin-
ing which subroutine’s prototype to check the argument list against.

6.1.3 Where the call goes

The exact semantics of where, and in what order, Perl looks for a method are relatively
straightforward, but warrant a brief discussion. 

The rules for handling a call such as $obj->method() can be summarized as follows:

1 If the class into which $obj’s referent is blessed (say, MyClass) has a subroutine method,
call that.

2 Otherwise, if MyClass has an @ISA array, step through each parent class in that array and
apply steps 1 and 2 to it; that is, recursively search in depth-first, left-to-right order up
the hierarchy. If a suitable method subroutine is found in any package in the hierarchy,
call that.

3 Otherwise, if the UNIVERSAL3 class has a subroutine method, call that.

4 Otherwise, if MyClass has an AUTOLOAD method, call that.

5 Otherwise, if one of the ancestral classes of $obj’s referent—once again searched in
depth-first, left-to-right order—has an AUTOLOAD method, call that.

6 Otherwise, if the UNIVERSAL class has an AUTOLOAD method, call that.

7 Otherwise, give up and throw an exception: Can’t locate object method "method" via

package "MyClass".

Once a suitable method has been found for an object of a particular class, a reference to
it is cached within the class. Thereafter, any subsequent call to the same method through ob-
jects of the same class doesn’t need to repeat the search. Instead, it uses the cached reference
to go directly to the appropriate method. 

If the class’s @ISA array, or that of any of its ancestors, is modified, or if new methods
are defined somewhere in the hierarchy, the cached method may no longer be correct. In such
cases, the cache is automatically cleared. The next method call simply does a new search and,
recaches the resulting subroutine reference. 

6.1.4 Constructors and inheritance

Because constructors for Perl classes are regular methods, they are inherited in the way
described above. That is, if a class doesn’t provide a constructor itself, then attempting to call
its constructor will send Perl searching up its inheritance hierarchy, looking for a suitably
named method in an ancestor class. The first, and only the first, matching method in any
inherited class will be called. 

For example, given the following code:

3  …which is described in section 6.2.
HOW PERL HANDLES INHERITANCE 171



package PerlHacker;
@ISA = qw( Programmer Obfuscator );

sub new
{

my ($class, %args) = @_;
bless{_name=> $args{name},

_alias=> $args{moniker},
_langs=> $args{languages}

}, ref($class)||$class;
}

package PunMeister;
@ISA = qw( Writer Humorist OneSickPuppy );

sub new
{

my ($class, %args) = @_;
bless{_name=> $args{name},

_pun_gent=> $args{pun}
}, ref($class)||$class;

}
package PerlGuru;
@ISA = qw( PerlHacker PunMeister );

then an attempt to create a new PerlGuru object

my $guru = PerlGuru->new(name=>"Tom",
languages=>["English","Latin","Greek"],
pun_gent=>"Metaclassical tools");

searches for PerlGuru::new and, failing to find it, looks next for PerlHacker::new. Since
this method exists, it is immediately called. As usual, the first argument is the name of the
class through which it was called (not the class to which the method actually belongs). Hence,
the $class variable is initialized with the string "PerlGuru", not "PerlHacker". 

This is different from the constructor behavior of most other object-oriented languages,
where the constructor of every ancestral class is called when an object is created.

More importantly, we finally see why it’s essential to always use the two-argument form
of bless. If the PerlHacker class had used the one-argument form

sub new
{

my ($class, %args) = @_;
bless{ _name => $args{name},

_alias=> $args{moniker},
_langs=> $args{languages}

};
}

then the object returned by PerlGuru->new(@args) would have been a PerlHacker object,
instead of a PerlGuru. The one-argument form always blesses into the current package, not
the package through which the constructor was called.
172 CHAPTER 6 INHERITANCE



Fortunately, we did use the two-argument bless, so the call to PerlHacker::new cre-
ates an anonymous hash and correctly blesses it into the class specified by the first argument
(that is, into the PerlGuru class).

Of course, in creating that object, PerlHacker::new only initialized entries for
"_name", "_alias", and "_langs". The entries for "_pun_gent" (needed by the methods
inherited from class PunMeister) or any other attributes that the PerlGuru class might itself
require remain undefined.

To solve this problem it’s necessary to plan ahead in setting up the ancestral classes. The
typical solution, which works for both single- and multiple-inheritance hierarchies, is to sep-
arate object creation from object initialization, as discussed in chapter 3. For example, we could
rewrite the various classes as shown in listing 6.1.

The key to the solution is the class _Initializable (note the underscore, indicating a private
or secret purpose). This class provides a generic constructor, which creates an empty hash-
based object of whatever class is requested. Any class that inherits from _Initializable as its left-
most parent, inherits this generic constructor and, therefore, doesn’t need to provide its own. 

The clever bit is that, having created that empty object, _Initializable::new then
calls its _init method. Because the object is blessed into the derived class—as named by the
value of $class—the search for the _init method starts back at the original derived class,
not at class _Initializable. 

Now, all we have to do is make sure that each class in the hierarchy provides a suitable
_init method and that the _init methods of derived classes call those of their parents as well
(as in PerlGuru::_init). 

With this arrangement, if we call PerlGuru->new(%args), the following sequence of
events takes place:

1 Perl looks for &PerlGuru::new, and doesn’t find it.

2 The search moves to the left-most parent class. _Initializable::new is found.

3 _Initializable::new creates the empty hash and blesses it into class PerlGuru.

4 _Initializable::new then calls the _init method of the newly blessed object.

5 That call invokes PerlGuru::_init.

6 PerlGuru::_init calls PerlHacker::_init on the blessed hash (see below for an
explanation of the qualified method arrow syntax), which initializes the PerlHacker-ish
attributes of the PerlGuru object.

7 PerlGuru::_init calls PunMeister::_init on the blessed hash, which initializes
the PerlMeister-ly attributes.

8 Finally, PerlGuru::_init initializes its own attributes.

Note the variation of the method call syntax used to invoke PerlHacker::_init and
PunMeister::_init. Normally, when a method is called using the arrow notation, Perl starts
looking for the method in the class into which the object is blessed (that is, in the class whose
name is returned by ref($_[0]). If the method name is fully qualified with a leading class
name, Perl ignores the class of the object and starts the search in the namespace of the qualifier
HOW PERL HANDLES INHERITANCE 173



instead. This enables us, for example, to call PerlHacker::_init directly on the PerlGuru
object ($self->PerlHacker::_init). 

package _Initializable;
use strict;

sub new

{
my ($class, %args) = @_;

my $self = bless {}, ref($class)||$class;
$self->_init(%args);

return $self;
};

package PerlHacker;

@PerlHacker::ISA = qw( _Initializable Programmer Obfuscator );

sub _init
{

my ($self, %args) = @_;
$self->{_name}= $args{name};

$self->{_alias}= $args{moniker};
$self->{_langs}= $args{languages};

}

package PunMeister;
@PunMeister::ISA = qw( _Initializable Writer Humorist OneSickPuppy );

sub _init

{
my ($self, %args) = @_;

$self->{_name}= $args{name};
$self->{_pun_gent}= $args{pun};

}

package PerlGuru;

@PerlGuru::ISA = qw( _Initializable PerlHacker PunMeister );

sub _init
{

my ($self, %args) = @_;
$self->PerlHacker::_init(%args);

$self->PunMeister::_init(%args);
$self->{_acolytes}= $args{followers};

$self->{_philosophy}= $args{manifesto};
}

Listing 6.1 Separating creation and initialization
174 CHAPTER 6 INHERITANCE



It’s important to understand that, even with this qualification, the search process only
starts looking in the qualifier’s namespace. For example, if PerlHacker::_init didn’t exist,
Perl would look for a suitable _init method in the ancestral classes of PerlHacker. 

The success of this separation of creation and initialization requires that _Initializable be
the left-most ancestor of each class or, at least, that no class inherited before _Initializable pro-
vides a new constructor.4 It also requires that the parental _init methods invoke the _init
methods of their parents in turn.

6.1.5 Diamonds are forfended

Even when all those conditions are met, one case requires extra care: when the class hierarchy
contains a diamond pattern (see the section on Multiple inheritance in chapter 1). 

If a derived class inherits from an ancestor via two distinct paths, propagating _init calls
up the class hierarchy will result in the ancestral _init function being called twice on the same
object. At best, that’s needlessly inefficient; at worst, it might cause subtle errors. For example,
suppose the ancestral class’s _init was responsible for incrementing a classwide object count.
Any object inheriting the ancestor in a diamond pattern would be counted twice.

The solution is mercifully simple. We arrange for each object to keep track of those ini-
tializers it has visited and short circuit any second, or subsequent, visits to them. For example,
if the PerlGuru class were a likely candidate for repeated initializations (that is, if we expected
it to be at the top of a diamond inheritance pattern), we could protect it like this:

package PerlGuru;

sub _init
{

my ($self, %args) = @_;
return if $self->{_init}{__PACKAGE__}++;
$self->PerlHacker::_init(%args);
$self->PunMeister::_init(%args);
$self->{_acolytes}= $args{followers};
$self->{_philosophy}= $args{manifesto};

}

The first time PerlGuru::_init is called, its $self->{_init}{PerlGuru} attribute
doesn’t exist, so the if statement fails, and the initialization proceeds. However, in the process,
the trailing increment operator causes the attribute to be autovivified. The resulting undef val-
ue of the attribute is then treated as a zero and incremented. Next time PerlGuru::_init
is called, the attribute will be true, so the if will succeed, and the unwanted repeat initializa-
tion will be thwarted.

Of course, since any class can be inherited, it’s impossible to know in advance which class-
es will eventually suffer from diamond-induced reinitializations. If the problem seems likely
(and often it won’t), the same protective line of code could be added to the start of every _init
method in the hierarchy.

4 Classes like _Initializable, which are used in this way and exist solely to confer some special low-level
behavior on other classes, are often called mixins.
HOW PERL HANDLES INHERITANCE 175



6.1.6 Destructors and inheritance

As you might expect, the same complications beset the automatic call of object destructors. 
Since DESTROY is just a method belonging to the class, it’s dispatched in the same way—

by searching up the inheritance tree for the first applicable method. Once that method is found
and invoked, the call ends. No other applicable method higher up the inheritance tree is sub-
sequently called.

So, if both PerlGuru and PunMeister define a destructor, when a PerlGuru object goes
out of scope, only PerlGuru::DESTROY will be automatically called. If we need the base class
destructors to be called as well, we must arrange for it ourselves:

package PerlGuru;

sub DESTROY
{

my ($self) = @_;

# Avoid problems with diamond inheritance
return if $self->{DESTROY}{__PACKAGE__}++;

# Do whatever clean-up a PerlGuru requires
# Then clean up the base classes…
$self->PerlHacker::DESTROY();
$self->PunMeister::DESTROY();

}

This technique works reasonably well, but has the disadvantage that we have to hard-code
information about the inheritance hierarchy within the destructor call. This is unfortunate. If
the inheritance relationships of a class change during development, we must now remember
to update the destructor accordingly. Thus, in larger systems, this approach is a source of extra
maintenance and, probably, of extra bugs as well.

There are at least two alternative solutions that reduce or eliminate the problem of in-
voking base class destructors. The most obvious is to replace the explicit calls to base class de-
structors with a more general loop:

package PerlGuru;

sub DESTROY
{

my ($self) = @_;
# Do whatever clean-up a PerlGuru requires
# Then clean up the base classes…
foreach my $parent ( @ISA )
{

next if $self->{DESTROY}{$parent}++;
my $destructor = $parent->can("DESTROY");
$self->$destructor() if $destructor;

}
}

176 CHAPTER 6 INHERITANCE



In this version,5 we step through the class’s inheritance list. For each direct parent of the
class, we first check whether the parental destructor has already been called (that is, whether
it’s part of a diamond inheritance pattern). If so, we move straight on to the next parent. Oth-
erwise, we find a reference to the correct parental destructor—using the can method (see sec-
tion 6.2.2)—and call that destructor on the object if the destructor exists. 

Now, if we subsequently change the inheritance hierarchy for PerlGuru, the destructor
will still ensure that the destructors of all its base classes are correctly called. The same tech-
nique (and the same code) can be used in the destructors of any class in any hierarchy to ensure
that all ancestral destructors are also called.

An alternative solution takes advantage of Perl’s own destructor-calling mechanism. This
approach is only feasible if a hierarchy does not use multiple inheritance. Since single inherit-
ance is by far the most common type used, that’s rarely a problem.

Rather than having derived class destructors explicitly call the destructor of their solitary
base class, we can simply re-bless the object within its destructor. For example

package Hominidae;
sub DESTROY
{

# Clean up Family-related information here
}

package Homo;
@ISA = ( "Hominidae" );

sub DESTROY
{

my ($self) = @_;
# Clean up Genus-related information here
bless $self, $ISA[0];

}

package Neanderthalensis;
@ISA = ( "Homo" );

sub DESTROY
{

my ($self) = @_;
# Clean up Species-related information here
bless $self, $ISA[0];

}

package Sapiens;
@ISA = ( "Homo" );

sub DESTROY
{

my ($self) = @_;

5 The destructor call loop could be written more compactly and idiomatically as

$_ && $self->$_() for (map { !$self->{DESTROY}{$_}++ && $_->can("DESTROY")} @ISA);

but those who have to understand and maintain your code will probably not appreciate it.
HOW PERL HANDLES INHERITANCE 177



# Clean up Species-related information here
bless $self, $ISA[0];

}

In this class hierarchy, each class’s destructor performs whatever cleanup is required and
then reblesses the object being destroyed as an object of its base class (that is, $ISA[0]). Be-
cause each object in Perl has only a single scalar value indicating its class, reblessing an object
means that it ceases to belong to its former class and becomes, instead, an object of the newly
specified class.

When the destructor ends, the last reference to the reblessed object—the reference in the
lexical variable $self—is lost. The object’s newly acquired destructor—the one from the base
class into which it was just blessed—is invoked, and the chain of destruction continues.

Unfortunately, this technique doesn’t generalize to cases of multiple inheritance because
we can only bless the object into a single class at a time. Consequently, when the current de-
structor ends, we can only leave the object in a state that will cause one of its ancestral destruc-
tors to be called.

6.2 TRICKS AND TRAPS
If you’re building anything but the simplest inheritance hierarchies, there are some extra lan-
guage features and programming techniques that will either make development a dream or a
nightmare—depending on whether you know about these features or merely stumble over
them in some dark corner of your code.

6.2.1 The isa() method 

As the earlier sections illustrate, the effects of inheritance can be multiple and cumulative.
These effects can make it a little tricky to check whether a given object—say, $hacker_ref—
has inherited from a given class—say, Programmer. We can write a subroutine to perform this
check for us by emulating the depth-first way that the method dispatch mechanism searches
the inheritance hierarchy. For example:

sub inherits
{

# Get object, name of prospective ancestor, and name of object's class…
my ($caller, $target_name) = @_;
my $class_name = ref($caller)||$caller;

# trivial match if object is actually of requested type…
return 1 if $class_name eq $target_name;

# otherwise recursively check each parent of object's class
no strict "refs";
foreach my $parent (@{"${class_name}::ISA"}) 
{

return 1 if inherits($parent, $target_name); 
}

# if no ancestor's match, then fail
178 CHAPTER 6 INHERITANCE



return;
}

# and later…

if ( inherits($hacker_ref, "CyberGeek") )
{

# Do something CyberGeeky with $hacker_ref
}

In other words, one class inherits from another either if:

• It’s the same class (the trivial case), or
• One of its parents inherits from the specified class (the recursive case).

The need to determine whether an object has inherited from another is sufficiently com-
mon that Perl automatically provides a method to every object (we’ll see how shortly) to do
this check. The method is called isa, and it’s used like this:

if ( $hacker_ref->isa("Programmer") )
{

# Do something Programmerish with $hacker_ref
}

The isa method differs from the inherits subroutine shown above in two important
respects. Firstly, it is hard-coded into the Perl executable, so it’s much quicker than inherits
would be. More importantly, for even greater speed isa memoizes its return values. That is,
once isa has returned an answer for a particular object/class-name pair, it always returns the
same answer for the same pair. 

So any sneaky mucking about you might do with a class’s @ISA array may not be reflected
by the results isa subsequently returns. For example

@PerlHacker::ISA = ( "CyberGeek" );
print $hacker_ref->isa("CyberGeek"); # prints 1
@PerlHacker::ISA = ();
print $hacker_ref->isa("CyberGeek"); # also prints 1 (!)

The second call to isa behaves unexpectedly because isa remembers the first answer it
gives for any specific object/class-name pair (e.g., $hacker_ref/CyberGeek) and regurgitates
that same answer ever after, no matter what happens to the actual hierarchy involved. 

6.2.2 The can() method

Sometimes we don’t actually care what class an object belongs to, only whether it can perform
a certain behavior; that is, whether it has a particular method. To this end, Perl automatically
provides another universal method, can, which returns true only if an object or class can call
the method requested:

if ( $hacker_ref->can("hand_optimize_assembler") )
{

# Safe to call…
$hacker_ref->hand_optimize_assembler($code);

}

TRICKS AND TRAPS 179



The true value that the can method returns is actually a reference to the method that it
is being asked about. In other words, if the method exists, can returns a reference to it.

That leads to an elegant solution if you need to call one of several alternative methods,
but you’re not sure which one is available through a specific object. For example, here’s a ge-
neric compression subroutine that takes advantage of whichever compression algorithm a par-
ticular data object supports:

sub reduce
{

my ($data_obj) = @_;
my $reduce=$data_obj->can("zip")

|| $data_obj->can("compress")
|| $data_obj->can("compact");

return $data_obj->$reduce() if $reduce;
die "data object does not provide compression method";

}

The subroutine first looks for a suitable compression algorithm, by calling can with the
possible alternatives. If the data object has a method zip, the first call to can will succeed and
return a reference to that method. Otherwise, the first call to can will fail and the second call
to can will look for a compress method instead. Failing that, a third call will search for a com-
pact method. Failing that, the entire expression will evaluate to false. Consequently, $reduce
will contain either a reference to a suitable compression method or a false value.

If $reduce isn’t false, the subroutine calls the appropriate compression method through
the reference in $reduce. Note the use of the “->$method_ref” syntax for this purpose.

The can method uses the same recursive look-up algorithm as normal method dispatch.
If the class into which an object is blessed doesn’t have a method of the name requested, can
checks each of the parent classes (recursively) to see if the object inherited a method from one
of them. More importantly, if two or more of those classes had suitable method, can will return
the left-most one. That is, can returns the one belonging to the ancestral class that appears ear-
liest in the @ISA arrays of the various parent classes of the object. 

For example, consider the inheritance hierarchy shown in figure 6.2, as specified by the
following code:

package Coder;
sub write { … }

package Documenter;
sub write { … }
sub read { … }

package Programmer;
@ISA = qw( Coder Documenter );

package Obfuscator;
sub write { … }
sub read { … }

package PerlHacker;
@ISA = qw( Programmer Obfuscator );
180 CHAPTER 6 INHERITANCE



sub new { … }

package main;
my $hacker = PerlHacker->new();
my $write_method = $hacker->can("write");

The call to $hacker->can("write") returns a reference to Coder::write, rather than
Documenter::write or Obfuscator::write. This is because the class Coder is to the left
of class Documentor in @Programmer::ISA and also to the left of class Obfuscator (because
Programmer is to the left of Obfuscator in @PerlHacker::ISA). Figure 6.3 illustrates the
inheritance paths for the PerlHacker::write and PerlHacker::read methods.

Unlike isa, can doesn’t memoize its results. It uses the normal method caching mecha-
nism, so run-time changes to the inheritance hierarchy will be reflected in the results it returns.

Obfuscator
write()
read()

Coder
write()

Programmer
write()
read()

Documenter
write()
read()

PerlHacker
write()
read()
new()

Figure 6.2 PerlHacker’s inheritance hierarchy

Obfuscator
write()
read()

Coder
write()

Programmer
write()
read()

Documenter
write()
read()

PerlHacker
write()
read()
new() Figure 6.3 Inheritance of read and write 

in PerlHacker’s inheritance hierarchy
TRICKS AND TRAPS 181



6.2.3 The UNIVERSAL package

Both the isa and can methods are available in every class because they are defined in the spe-
cial class UNIVERSAL. UNIVERSAL is a package like any other, except that (as indicated in
section 6.1.2), method calls are automatically dispatched to UNIVERSAL if they cannot be
handled by any package in an object’s explicit inheritance hierarchy. It’s as if every Perl class
automatically inherits UNIVERSAL, except you don’t have to put the name UNIVERSAL in
any @ISA array. Apart from UNIVERSAL::isa and UNIVERSAL::can, the UNIVERSAL pack-
age also provides the VERSION method mentioned in chapter 2 (see Version control in mod-
ules).

More interestingly, you can add any other methods or class attributes you wish to UNI-
VERSAL—as long as you’re careful not to step on anyone else’s toes. For example, if you wanted
every object of any class to provide a debug method, you might write

use Data::Dumper;# Gurusamy Sarathy's very useful CPAN module
# (see Chapter 14 for a full description)

sub UNIVERSAL::debug
{

my ($package, $file, $line) = caller();
my $subroutine = (caller(1))[3] || $package;
print STDERR"In $subroutine ($file:$line):\n",

Data::Dumper->Dump( [$_[0]] );
}

Now every object in any class automatically has a debug method:

my $hacker= PerlHacker->new();
my $boyfriend= Neanderthalensis->new();
my $music= CD::Music->new(@White_Album_data);

$hacker->debug();
$boyfriend->debug();
$music->debug();

There are few types of methods that warrant this kind of global distribution, mainly be-
cause few methods have the kind of universal applicability that isa or can or debug offer. Of-
ten, if you have a method that a set of related classes should provide, it’s better to put that
method in the base class of the class hierarchy.

Occasionally, we may need to ensure that a class uses the default behaviors specified by
UNIVERSAL in preference to those specified by its immediate ancestors. To achieve this, we
need to explicitly add UNIVERSAL to the list of inherited classes in the new class’s @ISA array:

package PrefersGeneric;
@ISA = qw( UNIVERSAL Parent1 Parent2 );

Now, when a method, such as debug, is called on a PrefersGeneric object and the method
is not found in PrefersGeneric, the UNIVERSAL package will be searched first instead of last.
182 CHAPTER 6 INHERITANCE



6.2.4 The SUPER pseudo-package

The delegation of initializer or destructor calls to parent classes (as demonstrated in the previ-
ous sections on constructors and destructors) is a relatively common operation when using
inheritance.

It’s often the case that, when specifying a new method in a derived class, we would like
to reuse the functionality provided by the same method in a base class, rather than just replace
it. For example, to debug a class that represents quoted sections of a mail message, we might
define its dump_me method to first call the dump_me method of its parent class and then per-
form whatever additional dumping is required by the derived class.

To do that we could write

package QuotedMessage;
@ISA = qw( Message );

sub dump_me
{

my ($self) = @_;
$self->Message::dump_me();# Delegate to parent… 
print STDERR "indent: $self->{_indent}\n";# …and then do the
print STDERR "quoter: $self->{_quote_symbol}\n";# rest locally.

}

This approach is maintenance-friendly because it eliminates duplication of code between
base and derived classes by reusing inherited functionality. The only drawback is that the tech-
nique requires us to hard-code the parent class’s name in at least two places—in the @ISA array
and (as part of) the invocation of the ancestral dump_me method. Indeed, it’s possible that the
name of the parent class will be hard-coded in numerous places within the class if several meth-
ods use this same delegation technique. That’s maintenance unfriendly because, if the inher-
itance hierarchy ever changes,6 we’ll have to hunt-and-destroy all those hard-coded names.

Perl anticipates and solves this problem by supplying a special package identifier, SUPER,
which can be used instead of the name of a parent class. For example:

sub dump_me
{

my ($self) = @_;
$self->SUPER::dump_me();# Delegate to parent… 
print STDERR "indent: $self->{_indent}\n";# …and then do the
print STDERR "quoter: $self->{_quote_symbol}\n";# rest locally.

}

SUPER isn’t actually a generic name for the parent class of the current class. In other
words, it’s not a synonym for Message in the example above. Rather, it’s a signal to the method-

6 You might think that fundamental changes in inheritance relationships would be rare, but they can
occur surprisingly often. The typical case is one where additional functionality has to be added to a
system. Often the most effective means of doing so is to introduce an intermediate class between exist-
ing classes. Typically, such an intermediate class is used to abstract some part of the derived class’s func-
tionality, which is then shared by other new classes that inherit from the intermediate. For instance,
we might eventually need to insert an IndentedMessage class between Message and QuotedMessage.
TRICKS AND TRAPS 183



dispatching mechanism, telling it to start searching for a method in the parent classes of the
current class. In other words, start looking in the parents of the class in which the current meth-
od is defined, not in the parent classes of the invoking object’s class. Hence, SUPER is relative
to the current method, not to the object through which the SUPER’d method is being invoked.
This distinction is important when a derived class object uses an inherited method that calls
some other method via SUPER. The example given in section 6.3.3 illustrates this important
distinction.

Calling $self->SUPER::dump_me() still works unambiguously under multiple inher-
itance, even if two or more parent classes provide a dump_me method. Under those circum-
stances, the call simply invokes the left-most inherited method. That is, the call invokes the
first method encountered by the recursive search of the dispatching mechanism, having ig-
nored the current class.

 Of course, there’s no guarantee that the leftmost ancestral dump_me is what’s wanted.
Frequently, it isn’t. Often what’s desired is to invoke all the ancestral methods of a certain
name. In that case, the usual solution is the same one we used to call multiply inherited de-
structors:

sub dump_me
{

my ($self) = @_;
foreach my $parent ( @ISA )
{

my $ancestral_dump_me = $parent->can("dump_me");
$self->$ancestral_dump_me() if $ancestral_dump_me;

}
print STDERR "indent: $self->{_indent}\n";
print STDERR "quoter: $self->{_quote_symbol}\n";

}

Or, more concisely

sub dump_me
{

my ($self) = @_;
$self->$_() for ( map {$_->can("dump_me")||()} @ISA );
print STDERR "indent: $self->{_indent}\n";
print STDERR "quoter: $self->{_quote_symbol}\n";

}

Either way, we iterate through the list of parental classes, and determine whether each par-
ent can respond to a dump_me call. If so, we call that method directly, through the subroutine
reference returned by can. The “…||()” in the map block of the second version ensures that
parents that can’t respond to a dump_me call are quietly ignored. The map block is evaluated
in an array context so the empty array interpolates to nothing. A common mistake is to write
something like map { ($_->can("dump_me"))} @ISA in the hope that the listifying paren-
theses will somehow eat the undef returned whenever &can fails, and thereby avert a nasty ex-
ception when undef is used as a subroutine reference. Unfortunately, that doesn’t happen,
since the one-element list (undef) is not the same as the empty list ().
184 CHAPTER 6 INHERITANCE



6.2.5 Implementing abstract methods

Chapter 1 discussed the concept of abstract methods, which are placeholders in a parent class
for methods that child classes are expected to implement. Abstract methods are also a useful
means of ensuring that the abstract base classes in hierarchy are never used to directly create
objects.

It’s easy to define an abstract method in a Perl class. We simply define the method nor-
mally and ensure that its code throws a suitable exception. For example, each class in the Perl-
Hacker hierarchy shown earlier is supposed to have a write method. We can ensure that every
class in the hierarchy does have such a method by making each inherit from a suitable abstract
base class with an abstract write method:

package Has_Write;
sub write
{

my ($self) = @_;
my $class = ref($self);
croak "someone used an (abstract) Has_Write object"

if $class eq 'Has_Write';
croak "call to abstract method ${class}::write";

}

# and later…

package Programmer;
@ISA = qw( Coder Documenter Has_Write);
 
 package Obfuscator;
@ISA = qw(Has_Write);
sub write { … }

package PerlHacker;
@ISA = qw( Obfuscator Programmer );
sub new { … }

# etc…

Now, any class that inherits write from Has_Write without redefining it causes an ex-
ception to be thrown if that method is ever called. For example:
call to abstract method Programmer::write

Furthermore, if we ever accidentally create a Has_Write object and call its write method, we
get a different exception:
someone used an (abstract) Has_Write object

The PerlHacker class didn’t need to redefine write, because it inherited the redefined
version from Obfuscator. But, if PerlHacker inherited Programmer before Obfuscator, then
the abstract version of write would be left-most and would take precedence. That’s also why
Has_Write is specified last in each inheritance list. If any other ancestral class redefines the ab-
stract method, the availability of that nonabstract version cancels the need for an error message.
TRICKS AND TRAPS 185



In other words, abstract methods don’t have to be redefined at every level of the hierarchy, just
at the first nonabstract level of the left-most inheritance path.

Of course, if we intend to create many abstract methods, explicitly coding the various tests
and exception generators in each abstract method would quickly become tedious. In such cases,
we can instead create a utility method like this:

sub METHOD::ABSTRACT
{

my ($self) = @_;
my $object_class = ref($self);
my ($file, $line, $method) = (caller(1))[1..3];
my $loc = "at $file, line $line\n";
die "call to abstract method ${method} $loc";

}

Because this method will be called from the actual abstract method (see below), we extract the
call location and method name from one level further up the call tree than usual, via
caller(1).

We can then use calls to the METHOD::ABSTRACT method to declare each abstract
method: 

package Truck;

sub register{ ABSTRACT METHOD @_ }
sub tranfer_owner{ ABSTRACT METHOD @_ }
sub safety_check { ABSTRACT METHOD @_ }
# etc.

And, yes, we are using the dreaded indirect object syntax here. Occasionally, we must let Good
Sense defer to Aesthetic Sensibility.

6.2.6 Naming attributes of derived classes

One nasty little problem that can occasionally occur in complex class hierarchies is a collision
of attribute names from two or more classes. Consider the two related classes shown in
listing 6.2.

Objects of the base class Settable have a flag attribute called "_set", that may be set or
reset by the Settable::new constructor and by the Settable::set method. Collection ob-
jects inherit this settable flag and also need to store the anonymous array of values representing
a collection. The problem is that Collection uses an attribute called "_set" to store a reference
to that array. 

Unfortunately, since the objects that Collection creates are implemented as ordinary
hashes, each object can have only a single entry with the key "_set". That means that Col-
lection objects will attempt to use the same entry for both purposes. The Settable::new con-
structor first initializes the entry with the status of the settable flag. The Collection::new
constructor immediately replaces that value with a reference to the collection’s anonymous ar-
ray. Any subsequent call to the inherited Settable::set method then wipes out that array.
186 CHAPTER 6 INHERITANCE



You might think that a problem like this is easily identified and overcome by judicious
(re-)selection of names, but that’s not always the case. Sometimes, for example, we may wish
to inherit from a class written by someone else, perhaps one we downloaded from the CPAN.
In that case, the code may be extensive or hard to understand, and it may be difficult to pin-
point every attribute that a base class uses and avoid those names in the derived class.

Remember, too, that one of the selling points of object orientation is the ability to reuse
and extend existing classes without worrying about implementation details like this. This col-
lision of attribute names makes that much more difficult. 

Worse still, the potential for such collisions sets up a dependency in the other direction
as well. Even if we carefully select attribute names for our derived class to avoid those already
used by its base class(es), unless we control the code for those base classes, we have no guarantee
that their implementation details won’t change in the future. If that happens, the base class
may introduce a new attribute that collides with ours.

package Settable;

sub new
{

my ($class, $set) = @_;
my $self = { _set => $set };# Was flag set?
return bless $self, $class;

}

sub set
{

my ($self) = @_;
$self->{_set} = 1; # Set flag

}

package Collection;
@ISA = qw( Settable );

sub new
{

my ($class, %items) = @_;
my $self = $class->SUPER::new();
$self->{_set} = { %items };# Set of items in collection
return $self;

}

sub list
{

my ($self) = @_;
print keys %{$self->{_set}};# List items in collection

}

Listing 6.2 When attributes collide
TRICKS AND TRAPS 187



Because Perl provides no built-in answer to this problem, tradition is once again called
upon to cover the gaps left by law. In other words, an unenforced but widely used cultural so-
lution has arisen. 

That solution is to prefix any attribute in a class with the name of the class, or sometimes,
with a unique contraction of it. So, the "_set" attribute used by the Settable class becomes
“Settable_set", while the "_set" attribute required by the Collection class becomes
“Collection_set". Listing 6.3 illustrates the full set of changes required to fix the problems
in listing 6.2.

The two attributes now have completely different names, at least as far as the underlying
blessed hash is concerned. And, because every class name is distinct, we are immediately guar-
anteed that inherited attributes won’t collide with any attributes we define in our new class. 

Of course, that assumes that everyone plays by the rules and names their attributes in this
way. Within a single project, that much discipline is usually easy to enforce, but, if you’re using

package Settable;

sub new
{

my ($class, $set) = @_;
my $self = { Settable_set => $set };# Was flag set?
return bless $self, $class;

}

sub set
{

my ($self) = @_;
$self->{Settable_set} = 1; # Set flag

}

package Collection;
@ISA = qw( Settable );

sub new
{

my ($class, %items) = @_;
my $self = $class->SUPER::new();
$self->{Collection_set} = { %items };# Set of items in collection
return $self;

}

sub list
{

my ($self) = @_;
print keys %{$self->{Collection_set}};# List items in collection

}

Listing 6.3 Disaster averted
188 CHAPTER 6 INHERITANCE



externally written base classes, no such guarantees exist. Nevertheless, even in that case, prefixing
your own attributes with their class name will substantially reduce the chance of collisions.

Chapter 11 revisits this issue and describes a module that enables you to automatically
enforce attribute name prefixing. The module can even correctly resolve collisions of unpre-
fixed attribute named under some circumstances.

6.2.7 The empty subclass test

Setting up a base class so it can be successfully inherited is not always straightforward. We
need to be careful to use the two-argument form of bless so that the constructor can be
reused by derived classes. We need to ensure that the class name isn’t inappropriately hard-
coded in any method that might later be called on a derived-class object. We also want to be
careful that class attributes aren’t directly accessed where a derived-class object might happen
across them (see the section on Accessing class data in chapter 3). 

If the base and derived classes are both complex, it can be difficult to ensure that the in-
heritance has been accomplished safely and no nasty surprises lurk in an obscure method.

One relatively easy way to verify the inheritability of a base class is known as the empty
subclass test. This test works by deriving a class from the base class being evaluated, but not
adding any extra attributes or methods. We then use an object of the derived class as if it were
a base class object and look for any behavioral disorders or other anomalies. 

For example, if we wished to check that the Bit::String class (from chapter 4) can be safely
inherited,7 we might set up the following test:

use Bit::String;

# set up a gruelling workout for Bit::String objects…
sub test_bitstring
{

my ($bitstring) = @_;
eval { $bitstring->set(7,1); 1 }or warn $@;
eval { $bitstring->set(5,0); 1 }or warn $@;
eval { $bitstring->get(7) }or warn $@;
eval { !$bitstring->get(5) }or warn $@;
# put other suitable tests of a Bit::String in here

}

# make sure a normal Bit::String object passes the test…
test_bitstring( Bit::String->new() );

# derive an "empty" class from Bit::String…
@Bit::String::Derived::ISA = ( 'Bit::String' );

# now see if a derived object passes the same test…
test_bitstring( Bit::String::Derived->new() );

The test_bitstring subroutine should be set up to test every possible behavior of a
Bit::String object, and can typically be adapted from the test code used during development

7  It can be.
TRICKS AND TRAPS 189



and maintenance of the Bit::String class. We then ensure the test code really is appropriate by
passing it an actual Bit::String object. 

Next, we (implicitly) create a class—Bit::String::Derived—deriving it from Bit::String by
putting Bit::String’s name in the @Bit::String::Derived::ISA array. Since the new class
has no methods (or anything else) defined, every method call on a Bit::String::Derived object
will be passed straight back to the appropriate method in the parental Bit::String class. In other
words, a Bit::String::Derived should act exactly like a Bit::String. Only the ref function
should be able to tell the difference.

Hence, if the Bit::String class was properly set up for inheritance, every test that succeeded
on a Bit::String object should also succeed on a Bit::String::Derived object. And that’s precisely
what we test in the second call to test_bitstring. 

If the test is comprehensive and both test runs produce identical results, we can be rea-
sonably confident that other nontrivial classes derived from the Bit::String class will also work
correctly—at least, as far as their Bit::String-iness is concerned.

6.2.8 Inheritance and pseudo-hashes 

In chapter 4 we saw how the fields.pm module can be used to simplify the creation of classes
based on pseudo-hashes, for example the Transceiver class shown in figure 4.3.

But complications arise when we wish to derive a class from one that uses pseudo-hashes.
Suppose, for example, we want to create a class representing a transceiver with a finite number
of simultaneous transmission channels:8

package Limited_Transceiver;
$VERSION = 1.00;
@ISA = qw ( Transceiver );

sub new
{

# Delegate construction of object to parent class…
my Limited_Transceiver $self = Transceiver::new(@_);

# Add new key to pseudo-hash (if not already there) and initialize…
$self->[0]->{_channels} = @{$self} 

unless exists $self->[0]->{_channels};
$self->{_channels} = $_[1];
return $self;

}

sub start_transmit
{

my Limited_Transceiver $self = shift;
++$self->{transmit}

unless$self->{receive} ||
$self->{transmit} > $self->{_channels};

return $self->{transmit};
}

8 Because Transceiver::start_transmit increments the invoking object’s transmission counter
with no upper bound, the original Transceiver class allows any number of simultaneous transmissions.
190 CHAPTER 6 INHERITANCE



Unfortunately, this doesn’t work, even though we were careful to explicitly add the new
attribute ("_channels"). The problem is that the Transceiver::new constructor sets up
the blessed pseudo-hash with a reference to the appropriate %FIELDS hash—namely,
\%{"${class}::FIELDS"}—in its first element. That means that each newly blessed
Limited_Transceiver pseudo-hash starts with a reference to %Limited_Trans-

ceiver::FIELDS. This is a problem since the hash that knows about the "transmit" and
"receive" fields is %Transceiver::FIELDS. 

Besides, the derived constructor is just plain ugly.
Fortunately, Perl provides the small but essential amount of support needed to correctly

and easily set up classes derived from a pseudo-hash-based class. The module base.pm, which
is also part of the standard distribution, allows you to specify that a given class inherits from
some other class also based on a pseudo-hash class. It then ensures that the correct %FIELDS
hash is appropriately initialized.

Using base.pm, the Limited_Transceiver class would be declared as follows:

package Limited_Transceiver;
$VERSION = 2.00;
use baseqw ( Transceiver );
use fieldsqw ( _channels );

sub new
{

# Delegate construction of object to parent class…
my Limited_Transceiver $self = Transceiver::new(@_);

# initialize…
$self->{_channels} = $_[1];
return $self;

}

sub start_transmit
{

my Limited_Transceiver $self = shift;
++$self->{transmit}

unless$self->{receive} ||
$self->{transmit} > $self->{_channels};

return $self->{transmit};
}

The use base directive has two effects. It pushes the string "Transceiver" onto the
@Limited_Transceiver::ISA array, thereby ensuring that class Limited_Transceiver in-
herits the necessary methods from class Transceiver. It also sets up the
%Limited_Transceiver::FIELDS hash by copying %Transceiver::FIELDS, thereby en-
suring that Limited_Transceiver also inherits the necessary fields from Transceiver. 

The use base directive can be given several base classes at once. In other words, the new
class may make use of multiple inheritance. Each parent class is pushed onto the new class’s
@ISA array, and, if the current parent has a %FIELDS hash, its fields are added to the new class’s
%FIELDS hash. However, the base.pm module currently allows only one such base class to do-
nate fields to the new class.
TRICKS AND TRAPS 191



As an added feature, base.pm uses some other internal chicanery to ensure that any field
whose name begins with an underscore is treated as inaccessible in derived classes, provided it
is accessed through a typed lexical. In other words, if we derive another class from
Limited_Transceiver:

package Unreliable_Transceiver;
use baseqw ( Limited_Transceiver );
use fieldsqw ( unreliability );
 
sub new
{

my Unreliable_Transceiver $self = Limited_Transceiver::new(@_);
$self->{unreliability} = $_[2];
return $self;

}

sub start_transmit
{

my Unreliable_Transceiver $self = shift;
++$self->{transmit}

unless$self->{receive} ||
$self->{transmit} > $self->{_channels} ||
rand(100) < $self->{unreliablity};

return $self->{transmit};
}

we get a compile-time error: No such field "_channels" in variable $self of type

Unreliable_Transceiver… because the "_channels" field is treated as private to class
Limited_Transceiver when accessed through the typed lexical $self.

That’s nice, but it isn’t true encapsulation. The handy message disappears if we forget to
type the lexical and instead write

sub start_transmit
{

my $self = shift;
++$self->{transmit}

unless$self->{receive} ||
$self->{transmit} > $self->{_channels} ||
rand(100) < $self->{unreliablity};

return $self->{transmit};
}

Worse still, the code works, because the "_channels" field really is still part of the pseu-
do-hash, and run-time accesses don’t check accessibility. Once again, the message is that pseu-
do-hashes do provide temporary relief from object-oriented headaches, but only if used strictly
as directed.9

9 If pain persists, see Chapter 11.
192 CHAPTER 6 INHERITANCE



6.3 EXAMPLE: INHERITING THE CD CLASS
We now have seen more than enough to effectively build a class hierarchy based on the
CD::Music class. For example, we can build a new class specifically geared to storing classical
music. Such a class is shown in listing 6.4.

6.3.1 Applied Laziness

This new class inherits from the hash-based version of CD::Music shown in listing 3.4, and
uses several of the techniques described above to minimize the amount of code required. In
fact, it’s quite remarkable how little code it actually requires: no constructor or destructor of
its own, no attribute accessors (or AUTOLOAD), no need to alter the inherited object counting
mechanisms.

Much like the CD::Music class, CD::Music::Classical encapsulates a private class at-
tribute, %_attr_data, that describes the new object attributes that it will offer, as well as their
default values. As in the base class, this information is accessed via three class methods:
_accessible, _default_for, and _standard_keys.

However, these derived versions of the methods don’t just check their own class’s
%_attr_data attribute. Where necessary—that is, if they fail to find what they’re looking for
locally—they also try the corresponding method from the base class. This delegation on failure
is vital because it allows all other methods inherited from CD::Music to be used directly in
CD::Music::Classical.

Take the CD::Music constructor for example:

package CD::Music;

# …etc…

sub new
{

my ($caller, %arg) = @_;
my $caller_is_obj = ref($caller);
my $class = $caller_is_obj || $caller;
my $self = bless {}, $class;
foreach my $attrname ( $self->_standard_keys() )
{

my ($argname) = ($attrname =~ /^_(.*)/);
if (exists $arg{$argname})

{ $self->{$attrname} = $arg{$argname} }
elsif ($caller_is_obj)

{ $self->{$attrname} = $caller->{$attrname} }
else

{ $self->{$attrname} = $self->_default_for($attrname) }
}
$self->_incr_count();
return $self;

}

CD::Music::Classical can inherit and use this method without modification. The initial
blessing works correctly because CD::Music::new uses the two-argument form of bless.
EXAMPLE: INHERITING THE CD CLASS 193



use CD::Music 1.00;

package CD::Music::Classical;
@ISA = qw( CD::Music );
$VERSION = 1.00;
use strict;

{
# Encapsulated class data

my %_attr_data = #DEFAULTACCESSIBILITY
( _composer=> ['???','read'],

_orchestra=> ['???','read'],
_conductor=> ['???','read'],
_soloist=> [undef,'read'],

);

# Class methods, to operate on encapsulated class data

# Is a specified object attribute accessible in a given mode
sub _accessible
{

my ($self, $attr, $mode) = @_;
return $_attr_data{$attr}[1] =~ /$mode/ if exists $_attr_data{$attr};
return $self->SUPER::_accessible($attr,$mode);

}

# Classwide default value for a specified object attribute 
sub _default_for
{

my ($self, $attr) = @_;
return $_attr_data{$attr}[0] if exists $_attr_data{$attr};
return $self->SUPER::_default_for($attr);

}

# List of names of all specified object attributes 
sub _standard_keys
{

my ($self) = @_;
($self->SUPER::_standard_keys(), keys %_attr_data);

}
}

1;  # Ensure that the module can be successfully use'd

Listing 6.4 Deriving from the CD::Music class
194 CHAPTER 6 INHERITANCE



Therefore, when it is called as CD::Music::Classical->new(@data), CD::Music::new
blesses the new object, $self, into class CD::Music::Classical.

The foreach loop used to initialize the attributes of the new object also works without
change. Because it calls the class method _standard_keys via $self, and because $self is
of class CD::Music::Classical, the method dispatch mechanism begins searching in that class
and, hence, correctly invokes CD::Music::Classical::_standard_keys. And because
that method has been set up to return the keys of attributes belonging to CD::Music::Classical,
plus those inherited from CD::Music, the initialization loop is guaranteed to set up both in-
herited and newly specified attributes, even though the loop itself was designed and coded be-
fore CD::Music::Classical was even conceived.

Likewise, the calls to $self->_default_for($membername) within the initialization
loop invoke the derived method CD::Music::Classical::_default_for, rather than in-
herited method CD::Music::_default_for. In this case, if the attribute in question is spe-
cific to the derived class, the method immediately returns a value. Otherwise, it delegates the
task of locating a default value to the corresponding method back in its base class.

In a similar manner, the inherited CD::Music::AUTOLOAD method:

sub AUTOLOAD
{

no strict "refs";
my ($self, $newval) = @_;
if ($AUTOLOAD =~ /.*::get(_\w+)/ && $self->_accessible($1,'read'))
{

my $attr_name = $1;
*{$AUTOLOAD} = sub { return $_[0]->{$attr_name} };
return $self->{$attr_name}

}
if ($AUTOLOAD =~ /.*::set(_\w+)/ && $self->_accessible($1,'write'))
{

my $attr_name = $1;
*{$AUTOLOAD} = sub { $_[0]->{$attr_name} = $_[1]; return };
$self->{$1} = $newval;
return

}
croak "No such method: $AUTOLOAD";

}

by virtue of its foresightful use of calls to $self->_accessible, can correctly handle
requests for access to attributes of the derived class. When AUTOLOAD is invoked:

print $classic->get_composer();
print $classic->get_ISBN();

within CD::Music::AUTOLOAD, the $self object is of class CD::Music::Classical, so the
method CD::Music::Classical::_accessible is called, regardless of whether the
requested attribute originates in CD::Music or CD::Music::Classical. To ensure that accessi-
bility can be correctly established for attributes of both classes, CD::Music::Classi-
cal::_accessible first checks the %_attr_data hash of CD::Music::Classical then
delegates to CD::Music::_accessible if necessary.
EXAMPLE: INHERITING THE CD CLASS 195



That even a metamethod like AUTOLOAD can provide this high level of forward-compat-
ibility with yet-to-be-declared derived classes is strong testament to the power of object orien-
tation, and to the elegant simplicity with which Perl implements it.

The simplicity of the CD::Music::Classical class also reinforces the critical importance of
good object-oriented design and appropriate programming discipline. The task of deriving
from CD::Music would have been considerably harder if its constructor, its AUTOLOAD’ed ac-
cessors, and its other methods were littered with direct accesses to class attributes, or if they
used a one-argument bless.

6.3.2 Class data access revisited

Up to this point, the repeated exhortation never to access class data directly, but rather always
through a class method, probably just seemed like normal object-oriented paranoia (Don’t
handle the attributes! Look not on the Face of the Data!). Now that inheritance is involved, we
can begin to see the value of the admonition.

Accessing the right class attribute
Every class derived from CD::Music may end up calling CD::Music::new as its own con-
structor. That was why we used the two-argument form of bless: to ensure that the con-
structor put the new object into the new (derived) class, rather than just into CD::Music.

A similar problem of ownership can occur with the object counter class attribute. In the
previous section, we ignored it on the assumption that, since a CD::Music::Classical object is-
a CD::Music object, the creation of every new CD::Music::Classical should still increment the
overall count. It’s likely that we would want the encapsulated $_count variable for CD::Music
objects to increment in this way, but it’s by no means certain. We might, for example, prefer
the secret $_count variable associated with CD::Music::Classical to increment instead.

Fortunately, because the count is accessed through a method, rather than directly, we can
easily arrange for CD::Music::Classical objects to increment and decrement the appropriate
counters:

package CD::Music::Classical;
@ISA = qw( CD::Music );
# etc…
 
{

my $_count = 0; # counter for derived objects (only)

sub get_count { return $_count }

sub _incr_count
{

my ($self) = @_;
++$_count;
$self->SUPER::_incr_count();

}

sub _decr_count
{

196 CHAPTER 6 INHERITANCE



my ($self) = @_;
--$_count;
$self->SUPER::_decr_count();

}

# Other class attributes as before
}

Now, when we create a new CD::Music::Classical:

my $classic = CD::Music::Classical->new(@data);

the following sequence occurs:

1 The method dispatch mechanism looks for CD::Music::Classical::new. There’s no
such method, so the dispatch mechanism looks for it in the parent class, finds CD::Mu-
sic::new, and invokes it.

2 CD::Music::new runs. It creates the new object, blesses it into class CD::Music::Classi-
cal, initializes it, and, finally, calls $self->_incr_count().

3 The method dispatch mechanism now looks for the derived method CD::Mu-
sic::Classical::_incr_count—not CD::Music::_incr_count—because the
search always starts in the class of $self, not the class that owns the current method.

4 CD::Music::Classical::_incr_count exists, so it is executed. It increments the
class attribute stored in the lexical variable $_count—that is, the my $_count declared
in the same block as CD::Music::Classical::_incr_count. It then calls the inher-
ited method CD::Music::_incr_count, via the SUPER pseudo-package.

5 CD::Music::_incr_count executes and increments the parental lexical variable
$_count—that is, the my $_count declared in the same block as CD::Mu-

sic::_incr_count.

Similarly, when the inherited CD::Music destructor is invoked just before the CD::Mu-
sic::Classical object ceases to exist, the call to $_[0]->_decr_count() in CD::Music::DE-
STROY invokes CD::Music::Classical::_decr_count. This method first decrements the
shared $_count attribute belonging to CD::Music::Classical, and calls CD::Mu-

sic::_decr_count to adjust CD::Music’s counter as well.
If we prefer, the redefined counter increment and decrement methods in CD::Mu-

sic::Classical can omit the calls to $self->SUPER::_incr_count() and $self->SU-
PER::_decr_count(), and thereby not participate in the overall CD::Music count. The
point is, having originally accessed base class count attribute via methods, we now have the flex-
ibility to change how that attribute is accessed in derived classes.

The definition of CD::Music::Classical::get_count is also important. It ensures
that if we write something like:

print CD::Music::Classical->get_count();

or:

print $classic->get_count();
EXAMPLE: INHERITING THE CD CLASS 197



the correct count—the one that counts only CD::Music::Classical objects—is returned.
Without the redefinition, the method dispatch algorithm searches up the hierarchy and
invokes the inherited CD::Music::get_count, and the count of classical CDs is
inaccessible.

Of course, even with this redefinition, the overall count of CD::Music objects is still avail-
able via:

print CD::Music->get_count();

and even through individual CD::Music::Classical objects:

print $classic->CD::Music::get_count();

6.3.3 An alternative solution

Sometimes a class attribute is used solely for housekeeping inside the class or to facilitate com-
munication between objects of the class. In such cases, the flexibility and security offered by
restricting access through methods may not be needed, and the cost of a method dispatch plus
a function call per access may be unacceptable. There is an alternative solution that can pro-
vide direct access to the class attribute, but still offer limited flexibility in selecting which
class’s attribute is accessed.

The technique10 relies on making the class attribute accessible via each object of the class.
For example, we can rework original CD::Music class like this:

package CD::Music;
 
{

my $_count = 0;
sub get_count{ $_count }

sub new
{

my ($class) = @_;

# blessing and initialization here

$self->{_count} = \$_count;
${$self->{_count}}++;
return $self;

}
}

sub DESTROY
{

my ($self) = @_;
${$self->{_count}}--;

}

In this version, each object is given an additional "_count" attribute, which stores a ref-
erence to the (shared) class attribute $_count. Now, any method that needs to access the class

10 …suggested by Tom Christiansen in the standard perltoot documentation…
198 CHAPTER 6 INHERITANCE



attribute (such as CD::Music::DESTROY) can do so directly through any object of the class.
Note that because $self->{_count} is a reference to the class attribute, we must explicitly
dereference it: ${$self->{_count}}.

The benefits of this approach become clearer when a class is derived from CD::Music.
Derived classes can provide their own constructor and use it to change the reference stored in
each derived object’s "_count" attribute:

package CD::Music::Classical;
@ISA = qw( CD::Music );
 
{

my $_count = 0;

sub get_count { return $_count }

sub new
{

my $self = $_[0]->SUPER::new(@_[1..$#_]);

${$self->{_count}}--;
$self->{_count} = \$_count;
${$self->{_count}}++;

return $self;
}

}

Short as it is, the CD::Music::Classical::new constructor warrants an explanation.
The first line invokes the CD::Music::new constructor, passing it the name of the class being
created ($_[0]) and an array slice containing the other constructor arguments
(@_[1..$#_]).11 $_[0] might contain the class name CD::Music::Classical, or it may hold
the name of an even more-derived class that has inherited CD::Music::Classical::new.
As explained above, regardless of the class of the object through which it is invoked, the method
SUPER::new refers to the new method inherited from a parent of the current class (i.e.,
CD::Music::Classical).

Having delegated the construction task to CD::Music::new and received a reference to
the newly created object, the CD::Music::Classical::new constructor proceeds to rewire
the object by replacing the reference in its "_count" attribute—the reference to the CD::Mu-
sic counter—with a reference to the CD::Music::Classical counter. Prior to replacing the orig-
inal reference, CD::Music::Classical::new must be careful to decrement the original
CD::Music counter, in order to keep the respective counts correct.

Once a reference to the correct counter has been installed, it is immediately used to in-
crement that counter. Of course, it would be marginally more efficient at that point simply to
increment $_count directly to save a hash lookup and a dereference operation, but the version
shown above more clearly illustrates the symmetry of the process. Where the cost does not

11 At the cost of slightly more obscurity (but considerably less line noise) the constructor call:
$_[0]->SUPER::new(@_[1..$#_]) could also be written: shift()->SUPER::new(@_)
EXAMPLE: INHERITING THE CD CLASS 199



differ greatly, this style of programming is beneficial in the long run. It prompts the reader to
ponder and gain a better understanding of what’s going on.12 

The reason for messing about with references like this can be seen whenever another in-
herited method needs to access a class’s counter attribute. For example, the inherited CD::Mu-
sic::DESTROY method still works correctly when called on a CD::Music::Classical object.
This is because CD::Music::DESTROY doesn’t access the $_count class attribute directly,
which would erroneously cause the destructor to always decrement the counter for CD::Music,
regardless of the type of object being destroyed. 

Instead, the inherited destructor accesses the counter through the reference in each ob-
ject’s "_count" attribute. For CD::Music objects, this reference is to the counter for CD::Mu-
sic, whereas for CD::Music::Classical objects, the reference is to the CD::Music::Classical
counter. Because the "_count" attribute of any object always refers to the appropriate class
attribute for that type of object, the correct class attribute is always decremented, even though
the destructor code never changes.

This technique is clearly faster because it avoids method calls. At first glance it also seems
more limited because we are now restricted to a single accessible counter per object. A small
tweak allows us to have our cake (multiple counters…) and eat it too (…accessed quickly):

package CD::Music;
 
{

my $_count = 0;
sub get_count{ $_count }

sub new
{

my $class = $_[0];

# blessing and initialization here (as before)

$self->{_count} = [ \$_count ];
$_count++;
return $self;

}
}

sub DESTROY
{

my ($self) = @_;
foreach my $counter ( @{$self->{_count}} )
{

--$$counter;
}

}

12 For example, in this case they are likely to ask themselves why we decrement and, then, almost imme-
diately reincrement ${$self->{_count}}, which will, in turn, draw attention to the significance of
the intervening line of code.
200 CHAPTER 6 INHERITANCE



package CD::Music::Classical;
@ISA = qw( CD::Music );
 
{

my $_count = 0;
sub get_count { return $_count }

sub new
{

my $self = $_[0]->SUPER::new(@_[1..$#_]);

push @{$self->{_count}}, \$_count;
$_count++;

return $self;
}

}

In this variation, the "_count" attribute stores an array of references to counters. The
array is created and initialized in CD::Music::new. Each derived class is then free to add an-
other reference to a counter if necessary (as does CD::Music::Classical::new). Each
counter is properly adjusted when an object ceases to exist because the inherited destructor
carefully walks through the object’s "_count" array, decrementing each counter in turn. The
count of the actual class of an object is always directly available as

$count = ${$cd->{_count}->[-1]};

It is interesting to compare the technique shown here with the use of methods to provide
access to class data (as described in the previous sections). Although this technique provides
better performance, it is also more complicated and subtle and, hence, likely to be harder to
code and maintain. It also increases the size of each object slightly, a result which may become
significant in large systems running on small machines. 

More importantly, without additional layers of cleverness (see chapter 11), the presence
in every object of a reference to the class attribute undoes the enforced encapsulation provided
by the use of a lexical. In small systems where good manners is sufficient to ensure an unen-
forced interface is respected, there may not be an issue.13 In large systems, it’s an invitation to
future grief.

All in all, unless maximal speed is a vital consideration, using methods to encapsulate and
access class data seems the cleanest and most robust approach.

6.4 WHERE TO FIND OUT MORE
The standard perlobj and perltoot documentation both describe Perl’s inheritance semantics,
and the use of the UNIVERSAL package and its can and isa methods. The base.pm module
comes standard with Perl.

Sean M. Burke’s Class::ISA module is available from the CPAN, in the directory http://
www.perl.com/CPAN/authors/id/S/SB/SBURKE/.

13 Just remember that, in time, almost all useful small systems grow into essential large systems.
WHERE TO FIND OUT MORE 201

http://www.perl.com/CPAN/authors/id/S/SB/SBURKE/


6.5 SUMMARY
• The parents of a class are specified by the run-time contents of the class’s @ISA array.
• In Perl, inheritance merely tells the dispatch mechanism where else to look if an object’s

own class doesn’t provide a requested method. Attributes are not inherited.
• When searching for a suitable method, the class hierarchy is searched in a depth-first,

left-to-right order.
• Only the most-derived constructor and destructor are called for each object. If inherited

constructors or destructors are also required, that must be arranged manually.
• The UNIVERSAL package is the implicit ancestor of all other classes. It provides the isa

and can methods, which allow inheritance relationships and class interface features to be
queried at run-time.

• Invoking a method from the SUPER pseudo-package causes the method dispatch mecha-
nism to start searching in the parents of the current method’s class.

• When building or using class hierarchies, it may be necessary to prefix attribute names
with their class names to avoid conflicts with inherited attributes.

• The empty subclass test is a useful way of checking the inheritability of a base class.
202 CHAPTER 6 INHERITANCE



C H A P T E R 7

Polymorphism
7.1 Polymorphism in Perl 203
7.2 Example: Polymorphic methods for 

the Lexer class 205
7.3 The simple pretty-printer 

objectified 208

7.4 Using interface polymorphism 
instead 210

7.5 Where to find out more 212
7.6 Summary 213
Those of us who hate having injections usually appreciate when our doctor says: “Okay, I’ll
count to 3: …1…2…<jab!>…3”, and the nastiness is over before it begins. 

Guess what.
If you’ve been apprehensive about this chapter—either because you’ve heard polymor-

phism is “difficult” or because you’ve had trouble with it in other languages—you can relax.
The nastiness is over. You’ve already seen everything you need to know about polymorphism
in the past four chapters. This chapter merely re-presents those ideas in the accepted jargon
and extends them a little.

7.1 POLYMORPHISM IN PERL
Some object-oriented languages have special syntaxes and a long list of rules, constraints, and
conditions on the use of polymorphic methods. As you will have realized by now, Perl has a
different attitude.

In Perl, every method of every class is potentially polymorphic as a direct consequence
of the way that methods are automatically dispatched up the class hierarchy. There’s no special
syntax, no requirement for type-compatibility of method arguments, no need for inheritance
relationships between classes. Just define your method, redefine it in any derived classes that
need to act differently, and, without even knowing it, you’re polymorphizing.
203



7.1.1 Interface polymorphism

Suppose we have an object reference—say, $datum—and we call some method—say,
print_me—on it:

foreach my $datum ( @data )
{

$datum->print_me();
}

 The method dispatch mechanism determines the class of the invoking object $datum
and looks in the corresponding package for a method of the appropriate name. Provided the
object belongs to a class with a method named print_me, the method call succeeds and action
is taken. That action depends on the class of the invoking object, even though the call syntax
is always the same. 

The elements in the @data array might have been blessed into completely unrelated
classes:

my @data =(
GIF_Image->new(file=>"camelopard.gif", format=>"interlaced"),
XML::File->new("./lamasery.xml"),
PGP_Coded->new("Software is *not* a munition!"),
HTTP::Get->new("http://www.perl.org/news.html"),
Signature->new(),

);

but the same method call—$datum->print_me()—handles them all appropriately, so long
as each object’s class’s interface provides a print_me method. Because this form of polymor-
phic dispatch requires only that an invoking object has the appropriate interface, it’s known as
interface polymorphism.

7.1.2 Inheritance polymorphism

Of course, the dispatch mechanism also has a fall-back strategy if the class of the invoking
object doesn’t provide a matching method. As explained earlier, it immediately searches
through the object’s ancestor classes for an inherited method with the correct name.

This means that, if the object belongs to a class that inherits a method named print_me,
the method call succeeds and action is taken. Once again, that action depends on the class of
the invoking object or, more accurately, on the “genealogy” of that class, even though the call
syntax is still always the same. Because this form of polymorphic dispatch requires not only that
an invoking object has the appropriate interface, but also that it belongs to a particular class
hierarchy, it’s known as inheritance polymorphism.

We’ve already seen the use of this form of polymorphism in the previous chapter. When
we redefined the _accessible, _default_for, _standard_keys, and _incr_count
methods of class CD::Music::Classical, we were actually making future calls to these methods
polymorphic. If called through a CD::Music object, they produce the original behavior; if
called through a CD::Music::Classical object, the new behavior is invoked. 

It doesn’t matter that the calls to these methods originate in the base class’s constructor
(CD::Music::new). The whole point of genuine polymorphism is that methods are
204 CHAPTER 7 POLYMORPHISM

http://www.perl.org/news.html"


dispatched according to the class to which the invoking object belongs, not the class that the
current subroutine belongs to.1

7.2 EXAMPLE: POLYMORPHIC METHODS FOR THE LEXER 
CLASS
The use of polymorphism in deriving the CD::Music::Classical class was sneaky on a number
of levels. To better see Perl’s polymorphism in action, let’s take a more straightforward and
typical example. 

Listing 5.4 showed a pretty-printer class built with the subroutine-based Lexer class pre-
sented in listing 5.3. The Lexer class was object-oriented, but the tokens it returned were not.
They were simply pairs of strings representing the value and identified type of a particular in-
put. The pretty-printer used that type information to process each token value like so:

while ( ($token, $_) = $lexer->extract_next($input) )
{

/SEMICOLON/&&print";\n", "\t" x $indent
or /NL/&&print"\n", "\t" x $indent
or /LCB/&&print"\n", "\t" x $indent++

&& print"{\n", "\t" x $indent;
or /RCB/&&print"\n", "\t" x --$indent

&& print"}\n", "\t" x $indent
or /HASH/&&print"\n", "\t" x $indent

&& $lexer->resync_after($input,'NL') 
or print "$token ";

} 

The presence of what amounts to a case statement in any object-oriented code is usually
a sign that the object orientation has broken down, and a chance to apply polymorphism has
been missed. So when we see the pretty-printer testing token types and selecting actions in re-
sponse, alarm bells should be ringing.

A little further thought about the nature of tokens reveals the problem. Chapter 5 defined
a token as: a substring of the original input, with an associated label indicating what type of token
it is. A value with an associated type…sounds a lot like an object, huh?

And, of course, a token is just like an object. We can easily redesign the Lexer class so that,
instead of returning a value string and a type string for each token, the lexer blesses the value
string into the class indicated by the type string and returns the resulting object. Listing 7.1
illustrates this variation.

1 This is a major difference between object-oriented Perl and statically typed languages like C++. In such
languages, within a constructor method inherited from a base class, the invoking object (i.e., this) is
treated as belonging to the base class, regardless of its actual type. In fact, calls to polymorphic methods
from within a base class constructor are always dispatched to the base class version of the method (to
the frequent mystification and annoyance of C++ programmers).
EXAMPLE:  POLYMORPHIC METHODS FOR THE LEXER CLASS 205



package Lexer;
$VERSION = 2.00;
use strict;
use Carp;

sub new
{

my $class = shift;
my $code = '';
while (my ($pattern, $token) = splice @_, 0, 2 )
{
$code .= '$_[0] =~ s/\A\s*?('.$pattern.')// ';
$code .= ' and return bless \"$1", '."'$token';\n";

}
$code .= '$_[0] =~ s/\A\s*(\S)// and return \"$1"; ';
$code .= 'return undef;';

my $sub = eval “sub { $code }" or _croak_cleanly($@);
bless $sub, ref($class)||$class;

}

sub _croak_cleanly
{

$_[0] =~ m{/\\A\\s\*\((.*)\)/(.*) at .*}s;
croak “/$1/$2";

}

sub extract_next
{

$_[0]->($_[1]);
}

sub lookahead
{

my ($self, $str) = @_;
$self->($str);

}

sub extract_to
{

my ($self) = @_;
my @tokens = ();
while (defined(my $token = $self->($_[1])))
{
push @tokens, $token;
last if defined($_[2]) && $token->isa($_[2]);

}
return @tokens;

}

Listing 7.1 An object-oriented Lexer class with object-oriented tokens
206 CHAPTER 7 POLYMORPHISM



sub resync_after
{

$_[0]->extract_to($_[1], $_[2]);
return;

}

sub extract_all
{

$_[0]->extract_to($_[1],undef);
}

Note how easy it is to replace value/type pairs with blessed token objects. We actually only
have to change two lines from the original class, making small changes in the subroutine that
implements the lexer. 

The first of those small changes causes each generated rule in the lexer subroutine to re-
turn a string-based object—that is, a blessed reference to a string: 

return bless \"$1", 'TOKEN_TYPE';# Lexer version 2.00

instead of a (value,type) pair:

return ("$1", 'TOKEN_TYPE'); # Lexer version 1.00

The second change causes the default case to return an unblessed reference to an anony-
mous string:

return \"$1";

instead of a (value,untyped) pair:

return ("$1", '');# Lexer version 2.00

The generated lexer now returns a single reference per token. That reference is either to
a string blessed into a class (indicating an expected token type), or else to an unblessed string
(indicating an unknown). The classes that tokens are blessed into are specified by the token
type names originally passed to Lexer::new.

At first glance, this has only made things worse. We now require an extra call to ref to
ascertain the token type (if any). We also have to remember to dereference the reference in
$token when printing it:

while ( $token = $lexer->extract_next($input) )
{

$_ = ref($token);# What kind of token is it?

/SEMICOLON/&&print";\n", "\t" x $indent
or /NL/ && print"\n", "\t" x $indent
or /LCB/&& print"\n", "\t" x $indent++, "{\n", "\t" x $indent
or /RCB/&& print"\n", "\t" x --$indent, "}\n", "\t" x $indent
or /HASH/&&print"\n", "\t" x $indent

&& $lexer->resync_after($input,'NL') 
or print "$$token ";

} 
EXAMPLE:  POLYMORPHIC METHODS FOR THE LEXER CLASS 207



But the move to object-oriented tokens opens up the possibility of an entirely different solu-
tion, one both simpler and more robust.

7.3 THE SIMPLE PRETTY-PRINTER OBJECTIFIED
The whole point of polymorphism is that, if we have a series of classes that can all respond to
some method call, each of those classes can do something different in response to that call. So,
rather than coding up a series of type tests and associated pretty-printing actions, we can just
give each token class a pretty_print method, and polymorphically invoke that method on
each token.

Listing 7.2 shows the pretty-printer from listing 5.4, revised to make use of polymor-
phism. Each token type now inherits from the Pretty_Token class, which provides a default
pretty_print method that prints the token with a single space after it. The token types that
need more specialized printing behaviors, such as Semicolon, NL, LCB, and RCB, simply re-
define their own versions of pretty_print to implement those behaviors. 

package main;
use Lexer 2.00;

my $lexer = Lexer->new('\d+'=> 'NUMBER',
'\$\w+'=> 'VARIABLE',
'\w+'=> 'IDENTIFIER',
'=|<'=> 'OPERATOR',
'\('=> 'LB',
'\)'=> 'RB',
'\{'=> 'LCB',
'\}'=> 'RCB',
','=> 'COMMA',
';'=> 'SEMICOLON',
'\n'=> 'NL',
'\S'=> 'UNKNOWN',

);

# The hierarchy of tokens...

@NUMBER::ISA= ( “Pretty_Token" );
@VARIABLE::ISA= ( “Pretty_Token" );
@IDENTIFIER::ISA= ( “Pretty_Token" );
@OPERATOR::ISA= ( “Pretty_Token" );
@LB::ISA= ( “Pretty_Token" );
@RB::ISA= ( “Pretty_Token" );
@LCB::ISA= ( “Pretty_Token" );
@RCB::ISA= ( “Pretty_Token" );
@COMMA::ISA= ( “Pretty_Token" );
@SEMICOLON::ISA= ( “Pretty_Token" );
@NL::ISA= ( “Pretty_Token" );
@UNKNOWN::ISA= ( “Pretty_Token" );

Listing 7.2 A simple object-oriented pretty-printer
208 CHAPTER 7 POLYMORPHISM



# How to print tokens...
# Each print method is called as: $token->pretty_print($level)

sub Pretty_Token::pretty_print
{ print “${$_[0]} “ }# default behaviour

sub SEMICOLON::pretty_print
{ print “;\n", “\t" x $_[1] }

sub NL::pretty_print
{ print “\n", “\t" x $_[1] }

sub LCB::pretty_print
{ print “\n", “\t" x $_[1]++;
  print “{\n", “\t" x $_[1];  }

sub RCB::pretty_print
{ print “\n", “\t" x --$_[1];
  print "}\n", "\t" x $_[1];  }

# The pretty-printer itself...

my $level = 0;
my $input = join '', <>;
foreach my $token ( $lexer->extract_all($input) )
{

$token->pretty_print($level);
}

Having set up the necessary methods, the entire pretty-printing loop reduces to a single
polymorphic method call: $token->pretty_print($level). That call causes the method
dispatch mechanism to look at the type of the object referred to by $token and search up the
inheritance tree for a matching pretty_print method. In this case, the dispatch mechanism
either finds the method in the class itself (for tokens of type Semicolon, NL, LCB, or RCB) or
in the Pretty_Token base class (for tokens of other type).

Apart from the improvement in modularity—and thus, in maintainability—this object-
oriented version of the pretty-printer may even be faster than the previous version in some cir-
cumstances, especially for more realistic examples involving a large number of distinct token
types—say fifty or more. That’s because, if there are T distinct token types, the case statement
version has to compare the type string against an average of T/2 token types, whereas the poly-
morphic version has to search at most two classes before finding the correct pretty_print
method. 

Of course, the individual tests are much cheaper than even a single method dispatch.
However, while the total cost of the tests increases linearly with the number of token types
used, the method dispatch process never gets more expensive, no matter how many token classes
are added to the hierarchy.
THE SIMPLE PRETTY-PRINTER OBJECTIFIED 209



7.4 USING INTERFACE POLYMORPHISM INSTEAD
The pretty-printer shown in figure 7.2 uses inheritance polymorphism to select the appropri-
ate behavior in response to a given token. That is, all token types are related because every
token class is derived from the Pretty_Token base class. So, every token object is guaranteed to
have a pretty_print method—either its own or the one it inherits from Pretty_Token.

Inheritance polymorphism simplifies the main processing loop. We can call the
pretty_print method on every token, confident that an appropriate behavior will result. But
it has a down-side in that it requires an explicit specification of the inheritance relationships
between the token classes and the Pretty_Token base class. If the system is large or likely to
be maintained for a long time, or if the system requires other default behaviors (which could
be added to the base class), that extra effort is reasonable. For a smaller or throw-away appli-
cations, it’s just tedious. 

Listing 7.3 shows another object-oriented pretty-printer, this one implemented using in-
terface polymorphism instead. In this version, there’s no relationship between the token classes.
In fact, there is no ancestral Pretty_Token class at all. Instead of defaulting to Pretty_Token:
:pretty_print, the polymorphic call to pretty_print either succeeds—if the token is of
a class whose interface offers a pretty_print method—or fails—if the token is of some other
class, which doesn’t.

That failure is indicated by throwing an exception (with a message such as: can’t locate

object method "pretty_print" via package "Identifier"). Rather than letting that exception kill
the program, we catch it in an eval block, then resort to the default behavior explicitly.

There are plenty of other alternatives.2 We can avoid the extra cost of the exception by
working out beforehand whether the token will be able to handle the method call:

foreach my $token ( $lexer->extract_all($input) )
{

if ( $token->can("pretty_print") )
{ $token->pretty_print($level) }

else
{ print "$$token "; }

}

Or we can make sure that every class can handle a request to pretty_print, by adding
the default version of that method to class UNIVERSAL:

sub UNIVERSAL::pretty_print { print "${$_[0]} " }

# then later…

foreach my $token ( $lexer->extract_all($input) )
{

$token->pretty_print($level);
}

2 …this is Perl, after all.
210 CHAPTER 7 POLYMORPHISM



Of course, by resorting to the Mother Of All Classes, we have now effectively slipped back
into inheritance polymorphism. Unfortunately, we’ve also given every other object in our pro-
gram a pretty_print method. 

As a final alternative, we can abuse the method dispatch mechanism like this:

package main;
use Lexer 2.00;

my $lexer = Lexer->new('\d+'=> 'NUMBER',
'\$\w+'=> 'VARIABLE',
'\w+'=> 'IDENTIFIER',
'=|<'=> 'OPERATOR',
'\('=> 'LB',
'\)'=> 'RB',
'\{'=> 'LCB',
'\}'=> 'RCB',
','=> 'COMMA',
';'=> 'SEMICOLON',
'\n'=> 'NL',
'\S'=> 'UNKNOWN',

);

# How to print tokens...
# Each print method is called as: $token->pretty_print($level)

sub SEMICOLON::pretty_print
{ print ";\n", "\t" x $_[1] }

sub NL::pretty_print
{ print "\n", "\t" x $_[1] }

sub LCB::pretty_print
{ print "\n", "\t" x $_[1]++;
  print "{\n", "\t" x $_[1];  }

sub RCB::pretty_print
{ print "\n", "\t" x --$_[1];
  print "}\n", "\t" x $_[1];  }

# The pretty-printer itself...

my $level = 0;
my $input = join '', <>;
foreach my $token ( $lexer->extract_all($input) )
{
eval { $token->pretty_print($level) } or print "$$token ";

}

Listing 7.3 A simple object-oriented pretty-printer via interface polymorphism
USING INTERFACE POLYMORPHISM INSTEAD 211



foreach my $token ( $lexer->extract_all($input) )
{

my $method_ref =$token->can("pretty_print")
|| sub { print "${$_[0]} " };

$token->$method_ref($level);
}

In this little foray into the Dark Side, we invoke the method dispatch mechanism, via the can
method, to determine the correct polymorphic method for the object. If no suitable method is
found, can returns undef, causing the right-hand side of the || to be selected. In that case,
we use an anonymous subroutine to invent a suitable method on the spot! 

Having decided how to handle the call, we invoke the appropriate method, or method
substitute, through the reference in $method_ref. Perl doesn’t care that the method invoked
is sometimes just a nameless subroutine, as long as it gets the job done. 

7.5 WHERE TO FIND OUT MORE
The perlobj and perltoot documentation both discuss the polymorphic effects of Perl’s method
dispatch semantics. The perlbot documentation also illustrates some useful tricks with inherit-
ance.

7.6 SUMMARY
• Polymorphism is an inevitable consequence of Perl’s method dispatch mechanism. Every

method in every class is potentially polymorphic.
• Interface polymorphism only requires that objects provide a specific method.
• Inheritance polymorphism additionally requires that objects belong to classes in a com-

mon hierarchy.
• Polymorphic method calls are more expensive than explicit tests, but the cost of a poly-

morphic selection is constant, whereas the cost of explicit tests grows linearly.
212 CHAPTER 7 POLYMORPHISM



C H A P T E R 8

Automating class creation
8.1 The Class::Struct module 213
8.2 The Class::MethodMaker 

module 222

8.3 Where to find out more 234
8.4 Summary 235
After you’ve built a few object-oriented programs in Perl (maybe even just one), you realize
that a great deal of the code required to implement any class is low-level, straightforward,
repetitive, and just plain tedious to write. Fortunately, many Lazy programmers have already
trodden those same wearisome paths, and the very Laziest of them have created tools to
reduce the effort. This chapter looks at the two most widely used of those tools: the Class::
Struct and Class::MethodMaker modules.

8.1 THE CLASS::STRUCT MODULE
The tedious part of constructing a class is usually the setting up of the constructor and acces-
sor methods, especially if the constructor does nothing more than initialize the attributes of
the class. If your classes have reasonably simple attributes, and you’re not planning to use
inheritance, Jim Miner’s standard Class::Struct module1 can save you a great deal of effort. 

8.1.1 Creating classes

Class::Struct exports a single subroutine, struct, which you then use to specify a set of
attributes that a particular class is to possess. Class::Struct generates and compiles some Perl
code that sets up an appropriate constructor and accessors for the nominated class.

1 …which is a rewrite of Dean Roehrich’s Class::Template module, which, in turn, was based on a de-
sign by Tom Christiansen.
213



For example, if we wanted to specify the Bug class from chapter 3 with scalar attributes
id, type, and desc, we could set it up like so:

use Class::Struct;

struct Bug =>
{

id => '$',
type=> '$',
desc=> '$',

};

Class::Struct then generates code equivalent to the package shown in listing 8.1. The con-
structor creates an appropriate entry for each attribute in the underlying hash and blesses the
hash into the Bug class.

Each accessor generated for class Bug is a method with the same name as the attribute it
accesses. Each method can take a single argument, which it treats as a new value to be assigned
to the attribute. If no argument is passed, the accessor returns the attribute’s current value.

The struct subroutine can take a variety of argument types, allowing us to set up dif-
ferent implementations for different classes. As the code in listing 8.1 indicates, the example
above sets up the Bug class so that Bug objects are implemented as hashes. The struct sub-
routine knows to base the class on hashes because the attribute set has been passed in an anon-
ymous hash. 

If, on the other hand, we pass the attribute specifications in an anonymous array:

struct Bug =>
[

id => '$',
type=> '$',
desc=> '$',

];

then struct sets the class up based on arrays instead. In other words, it generates the code
shown in listing 8.2.

We can also create an array-based class by omitting the class name entirely and passing
the attributes as a list (i.e., in parentheses). In that case, struct installs the constructor and
accessors into the current package. Hence, we can rewrite the previous example as

package Bug;
use Class::Struct;

struct
(

id => '$',
type=> '$',
desc=> '$',

);

This form is particularly useful when we need to define other methods for a class, in ad-
dition to those created by struct.
214 CHAPTER 8 AUTOMATING CLASS CREATION



8.1.2 Attribute types

The new class’s attribute set is passed as a series of key=>value pairs regardless of whether it
is passed in a hash or an array. Each key specifies the name of one attribute. The correspond-
ing value specifies the type of that attribute. The possible types are '$', '@', '%', or a class
name. These types indicate whether the attribute is (respectively) a scalar, an array, a hash, or
an object of the specified class.

Therefore, if we want the desc attribute to store a list of values and the id attribute to be
a hash, we can write:

package Bug;
use Carp;

sub new
{

my $self = {};
$self->{'id'} = undef;
$self->{'type'} = undef;
$self->{'desc'} = undef;
bless $self;

}

sub id
{

my ($self, $newval) = @_;
croak 'Too many arguments to id' if @_ > 2;
$self->{'id'} = $newval if @_ > 1;
return $self->{'id'};

}

sub type
{

my ($self, $newval) = @_;
croak 'Too many arguments to type' if @_ > 2;
$self->{'type'} = $newval if @_ > 1;
return $self->{'type'};

}

sub desc
{

my ($self, $newval) = @_;
croak 'Too many arguments to desc' if @_ > 2;
$self->{'desc'} = $newval if @_ > 1;
return $self->{'desc'};

}

Listing 8.1 Equivalent code generated by the Class::Struct module
THE CLASS: :STRUCT MODULE 215



struct Bug =>
{

id => '%', # id attribute refers to a hash
type=> '$',
desc => '@', # desc attribute refers to an array

};

Doing so changes the nature of the constructor and the accessors for the two changed at-
tributes. The new code generated for them is shown in listing 8.3. Note that we’ve returned
to the hash-based version of Bug objects so you should compare this version to listing 8.1. The
accessors id and desc now take up to two arguments: a key or index to be looked up and a
new value to be assigned. If neither is given, the accessor simply returns a reference to the hash

package Bug;
use Carp;

sub new
{

my $self = [];
$self->[0] = undef;
$self->[1] = undef;
$self->[2] = undef;
bless $self;

}

sub id
{

my ($self, $newval) = @_;
croak 'Too many arguments to id' if @_ > 2;
$self->[0] = $newval if @_ > 1;
return $self->[0];

}

sub type
{

my ($self, $newval) = @_;
croak 'Too many arguments to type' if @_ > 2;
$self->[1] = $newval if @_ > 1;
return $self->[1];

}

sub desc
{

my ($self, $newval) = @_;
croak 'Too many arguments to desc' if @_ > 2;
$self->[2] = $newval if @_ > 1;
return $self->[2];

}

Listing 8.2 Equivalent array-based code generated by the Class::Struct module
216 CHAPTER 8 AUTOMATING CLASS CREATION



or array that implements the entire attribute. If a key or index is given, the accessor returns the
value of that particular entry or element of the attribute. If a new value is also given, that new
value replaces the existing value for the specified entry or element.

Sometimes, it’s useful to have accessors that return a reference to what they access, rather
than a copy of its value. We can tell struct to generate such an accessor by prefixing the at-
tribute’s type specifier with an asterisk:

package Bug;
use Carp;

sub new
{

my $self = {};
$self->{'id'} = {};
$self->{'type'} = undef;
$self->{'desc'} = [];
bless $self;

}

sub id
{

my ($self, $key, $newval) = @_;
croak 'Too many arguments to id' if @_ > 3;
$self->{'id'}->{$key} = $newval if @_ > 2;
return $self->{'id'}->{$key} if @_ > 1;
return $self->{'id'};

}

sub type
{

my ($self, $newval) = @_;
croak 'Too many arguments to type' if @_ > 2;
$self->{'type'} = $newval if @_ > 1;
return $self->{'type'};

}

sub desc
{

my ($self, $index, $newval) = @_;
croak 'Too many arguments to desc' if @_ > 3;
$self->{'desc'}->[$index] = $newval if @_ > 2;
return $self->{'desc'}->[$index] if @_ > 1;
return $self->{'desc'};

}

Listing 8.3 Bug class code with different types of attributes
THE CLASS: :STRUCT MODULE 217



struct Bug =>
{

id => '%',
type=> '*$', # type attribute value returned by reference
desc=> '@',

};

The Bug::type accessor now returns a reference to the type attribute, rather than a copy
of its value, allowing us to write

$type_ref = $bug->type;

# and later…

${$type_ref} = "serious"; # same as: $bug->type("serious)

In a similar way, we can arrange for Bug::id and Bug::desc to return references to their
individual entries or elements by specifying their types as '*%' and '*@' respectively. Of
course, this approach violates the encapsulation of the Bug class by exposing the implementa-
tion of the type attribute, so it’s almost certainly a Bad Idea.

8.1.3 Hierarchical class structures

The type specifier for an attribute can also be the name of some other class, perhaps one also
built using Class::Struct. For example

struct BugType => 
{

category=> '$',
severity=> '$',
hardware=> '$',

};

struct Bug =>
{

id => '%',
type=> 'BugType', # type attr refers to BugType object
desc=> '@',

};

Now, the type attribute of a Bug object stores a reference to a BugType object. That nested
object is automatically set up by Bug::new, which calls BugType->new() to create it. There-
after, the Bug::type accessor returns a reference to the embedded object whenever it’s called.
To access the severity attribute within the type attribute, we would write

print "severity was: ", $bug->type->severity;

As with any other kind of accessor, if the Bug::type accessor is called with an argument,
the existing BugType object is replaced by that argument. The accessor also checks that the ar-
gument is in fact a reference to a BugType object. Otherwise, an exception is thrown indicating
the type mismatch. For example

$type = BugType->new();
$type->category("dumb user error");
$type->severity("fatal");
218 CHAPTER 8 AUTOMATING CLASS CREATION



$type->hardware(0);

$bug->type($type);# okay, previous object replaced

$bug->type("unknown")# will die with "type argument is wrong class"

8.1.4 Initializing objects

The constructor provided to a class by struct takes no arguments and does only the most
rudimentary initialization: scalar attributes remain undefined; array and hash attributes are
initialized with an empty list; and class attributes have their constructor called with no argu-
ments.2

In order to initialize a Bug object nontrivially, we’re going to have to provide our own
initialization method. For example

sub Bug::init
{

my ($self, %args) = @_;
$self->id($args{id});
$self->desc($args{desc} || "No description");
$self->type->category($args{category} || "unknown");
$self->type->severity($args{severity} || "unknown");
$self->type->hardware($args{hardware});
return $self;

}

We can use that method immediately after the constructor like so:

my $bug = Bug->new->init(id=> "0123",
category=> "dumb user error",
severity=> "",
hardware=> 1,
desc=> "broken 'cup holder'");

Note that init returns a reference to the object on which it’s called, so that it can be chained
after the constructor in this way.

8.1.5 Inheritance and generated classes

If we look back at the constructor methods generated by struct (for example, in figure 8.1),
we notice that each constructor generated by Class::Struct uses the one-argument version of
bless. That’s unfortunate because it means you can’t derive a new class from a struct-gen-
erated class without having to reimplement the constructor in the derived class.3

For example, if we tried to trivially derive from the Bug class:

package FixedBug;
@ISA = qw( Bug );

2 A patch that allows generated constructors to take initializer lists has been submitted, so you may find
that it’s possible to initialize objects directly now.

3 A patch that fixes this problem has also been submitted, so this difficulty may soon disappear.
THE CLASS: :STRUCT MODULE 219



and then created a FixedBug object:

my $all_better_now = FixedBug->new();

the object created is actually blessed into the Bug class because the inherited Bug::new con-
structor was called, and it blessed the new object with only one argument. 

To overcome this problem, we need to define a new constructor in the derived class that
reblesses the new object correctly:

sub FixedBug::new
{

my ($class) = @_;
my $self = Bug->new();
bless $self, $class;

}

FixedBug::new uses the two-argument form of bless to avoid propagating the same prob-
lem to any classes derived from FixedBug.

It’s also important to note that Class::Struct is designed to generate classes that don’t in-
herit from anything else. In fact, the module goes to extreme lengths to make sure you don’t
try to add any names to a generated class’s @ISA array, and will throw an exception if you try.
The Class::MethodMaker module described in the next section provides an alternative ap-
proach that does allow you to autogenerate classes in the middle of a hierarchy.

8.1.6 A full example—automating the CD::Music class

Listing 8.4 shows the CD::Music class, implemented using the Class::Struct module. It is
interesting to compare this version with those shown in chapter 3. Although the total amount
of code has been reduced, we still have to provide some components—the class attribute
$_count, the initialization method, and the location accessor—by hand.

Class::Struct provides no facilities for automating the creation of class attributes, so the
implementation of the shared $_count attribute as a lexical is the same as in previous versions
of the class. 

The initialization method is interesting in that it uses a symbolic reference to call the ap-
propriate accessor ($self->$attr(…)) for each initialization value. In other words, it iterates
through each key in the hash-like argument list and uses that key as the name of an accessor
method to call, passing the corresponding initializer value ($args{$attr}) to that accessor.
This approach is slower than a straight initialization:

sub init
{

my ($self, %args) = @_;
%{$self} = %args;
return $self;

}

but has the important advantage that it catches any spurious initialization attempts. If the
wrong attribute name is used, there will be no corresponding accessor. If the wrong type of
initialization value is specified, the accessor will detect it.
220 CHAPTER 8 AUTOMATING CLASS CREATION



package CD::Music;
$VERSION = 3.00;
use strict;
 
use Class::Struct;

{
# Retrieve and manipulate class attribute: object count
my $_count = 0;
sub count { $_count }
sub _incr_count { ++$_count }
sub _decr_count { --$_count }

}

# define constructor and accessors 
struct
(

name => '$',artist=> '$',
publisher=> '$',ISBN=> '$',
tracks=> '$',rating=> '$',
room => '$',shelf=> '$',

);

# define initialization
sub init
{

my ($self, %args) = @_;
foreach my $attr (keys %args)
{

no strict "refs";
$self->$attr( $args{$attr} );

}
$self->_incr_count();
return $self;

}

# destructor adjusts object count
sub DESTROY { $_[0]->_decr_count() }

# get or set room and shelf together
sub location
{

my ($self, $room, $shelf) = @_;
$self->room($room) if $room;
$self->shelf($shelf) if $shelf;
return ($self->room, $self->shelf);

}

Listing 8.4 An “automated” version of the CD::Music class using Class:Struct
THE CLASS: :STRUCT MODULE 221



8.2 THE CLASS::METHODMAKER MODULE
Class::Struct is quite adequate for creating simple class structures. Class:Struct also has the
important advantage of coming standard with the Perl distribution (so you can be sure every-
one else has it too). However, if we need to generate classes with more complex and sophisti-
cated interfaces, Class::Struct’s limitations soon become apparent. 

Filling that gap is Peter Seibel’s CPAN module: Class::MethodMaker. It provides all of
the features offered by Class::Struct—albeit, with a slightly different interface—and a great
many more besides.

To use Class::MethodMaker to specify a class, we load the module and pass a list of
key =>value pairs to the use statement. Each pair specifies a list of methods to make within the
current package. In other words, the usage is conceptually similar to calling Class::Struct:
:struct with no class name and a parenthesized attribute list. The difference is that, whereas
with Class::Struct each key is the name of an accessor method, and each value is a type specifier,
in Class::MethodMaker, each key is a method type specifier, and each value is a method name
or a list of method names. 

For example to generate the basic Bug class used as an example in the previous section,
we can write:

package Bug;

use Class::MethodMaker
get_set=> [ 'id', 'type', 'desc' ],
new=> 'new';

This specifies that Bug::id, Bug::type, and Bug::desc are get/set accessors for scalar
attributes and Bug::new is a constructor.

Alternatively, we can load the module with a single argument: "-sugar". In that case,
Class::MethodMaker sets up a special class method, methods::make, that allows us to define
classes somewhat more poetically:4

use Class::MethodMaker '-sugar';

package Bug;

make methods
get_set=> [ 'id', 'type', 'desc' ],
new=> 'new';

Class::MethodMaker offers eighteen different ways of creating methods for a class. The
following subsections describe the most important of them.

4 Once again we’re using the dreaded indirect object syntax because it makes the resulting code look
prettier, and because it’s consistently described that way in Class::MethodMaker’s documentation. It’s
still a bad idea, though.
222 CHAPTER 8 AUTOMATING CLASS CREATION



8.2.1 Constructors

All classes created using Class::MethodMaker are based on blessed hashes. However, unlike
Class::Struct, the module does not automatically create a constructor for the new class it’s
building. Instead, we have to explicitly request one. 

The easiest way to do that is to use the "new" specifier as a key argument to use Class:

:MethodMaker. As shown above, the "new" specifier takes a string value indicating the actual
name of the constructor. For example, if we want a constructor called enbug, instead of new,
we specify:

package Bug;
use Class::MethodMaker

new=> 'enbug';

Thereafter, we can create Bug objects like so:

$next_bug = Bug->enbug();

It is also possible to create two or more identical constructors at the same time, perhaps
to cater to a multilingual environment:

package Bug;
use Class::MethodMaker

new=> ["new", "nouveau", "neue", "tsukuru", "chu"];

Whatever we call it—let’s stick with new for the time being—the constructor created
looks like this:

sub Bug::new
{

my ($class) = @_;
my $self = {};
bless $self, $class;

}

Note, in particular, that this constructor uses a two-argument blessing to create objects.
Therefore, classes created using Class::MethodMaker can be inherited without redefining their
constructor, unlike those built using Class::Struct.

Of course, a trivial constructor such as the one created by the "new" specifier is of limited
use. We almost certainly need to define an init method to load some useful attribute values,
as we did for Class::Struct. To support this need, Class::MethodMaker can also create con-
structors that automatically call such a method; we just specify "new_with_init" instead of
"new": 

package Bug;
use Class::MethodMaker

new_with_init=> 'new';

Now, the generated constructor looks like this:

sub Bug::new
{

my ($class, @args) = @_;
my $self = {};
bless $self, $class;
THE CLASS: :METHODMAKER MODULE 223



$self->init(@args);
return $self;

}

That is, the constructor passes any extra arguments it receives to the newly created object’s
init method. 

Of course, it would be even better if we didn’t have to write init at all. Class::Method-
Maker encourages this with the "new_hash_init" specifier:

package Bug;
use Class::MethodMaker

new_hash_init=> 'new';

This version produces a constructor like this:

sub Bug::new
{

my ($class, %args) = @_;
my $self = {};
bless $self, $class;
foreach my $attribute (keys %args)
{

$self->$attribute($args{$attribute});
}
return $self;

}

This form of the constructor expects a list of attribute=>value pairs. Once the new object
is blessed, the constructor loops through each attribute name (in $attribute) and calls the
corresponding accessor method for that attribute ($self->$attribute(…)), passing the cor-
responding initialization value from the argument list ($args{$attribute}).

8.2.2 Scalar attributes

Scalar attributes are probably the most commonly needed components of a class. As shown
above, the "get_set" key can be used to generate such attributes and the necessary accessors
for them. The value for this key must be either a single string—indicating the name of one
such scalar attribute—or a reference to an array of such strings—indicating one or more scalar
attributes.

For each specified attribute, Class::MethodMaker creates two methods: a “get-or-set” ac-
cessor, which is exactly like the scalar accessors created by Class::Struct; and a “clear” method,
which resets the value of the scalar to undef. For example, given the specification:

package Bug;
use Class::MethodMaker

get_set=> [ qw( id type desc ) ];

or its exact equivalent

package Bug;
use Class::MethodMaker

get_set=> 'id',
get_set=> 'type',
get_set=> 'desc';
224 CHAPTER 8 AUTOMATING CLASS CREATION



Class::MethodMaker generates the methods:

sub Bug::id
{

my ($self, $new) = @_;
defined($new) and $self->{'id'} = $new;
return $self->{'id'};

}

sub Bug::clear_id
{

my ($self, $new) = @_;
$self->{'id'} = undef;

}

as well as structurally identical methods for Bug::type, Bug::clear_type, Bug::desc,
and Bug::clear_desc. Because the accessor uses defined to test for an argument, it can’t
be used to set an attribute to undef. Hence, the need for the clear_… methods.

8.2.3 Grouped scalar attributes

Sometimes, sets of attributes fall into logical groups. The "grouped_fields" specifier gen-
erates scalar attributes just like "get_set", except that it also generates methods that return
the complete list of attributes for each specified group. The value for this key must be a refer-
ence to an array of group=>[attributes] pairs. For example:

package Personal_Details;
use Class::MethodMaker

grouped_fields=>[
required => [qw(name address email)],
optional => [qw(phone fax age)],

];

This specification creates “get/set” and “clear” accessors for the six scalar attributes and
also generates two extra methods:

sub Personal_Details::required { return ('name', 'address', 'email') }
sub Personal_Details::optional { return ('phone', 'fax', 'age') }

We might use those methods to simplify the task of prompting for data for an object:

sub Personal_Details::prompt_data
{

my ($self) = @_;
foreach my $group ( qw(required optional) )
{

foreach my $attribute ( $self->$group() )
{

print "Enter your $attribute ($group): ";
print "Try again: " until <> =~ /^(.*\S.*)$/ || $group !~ /required/;
$self->$attribute($1);

}
}

}

THE CLASS: :METHODMAKER MODULE 225



Because we’re stepping through the two attribute lists returned by Personal_Details:
:required and Personal_Details::optional, if we subsequently add another attribute
to either group or add another group entirely, the prompt_data method still works correctly.

8.2.4 Flaglike attributes

Some attributes of classes act as nothing more than Boolean flags, their values indicating only
whether specific conditions or properties are true for a given object. It’s wasteful to devote an
entire hash element to each flag, so Class::MethodMaker provides the "boolean" key, which
allows us to create single-bit attributes.

For example, we might declare:

package Employee;
use Class::MethodMaker

new=>"new",
boolean=>[ qw(is_permanent part_timer is_manager) ];

For each specified "boolean" attribute, Class::MethodMaker creates a set_… accessor,
a clear_… accessor, and a combined “get/set” accessor. For example, set_is_permanent,
clear_is_permanent, is_permanent, and so on. The “set” and “clear” accessors switch the
corresponding bit-flag on or off. The “get/set” accessor sets or clears the bit-flag, depending
on the truth value of its argument (if any), and returns the value of the flag. 

8.2.5 Keylike attributes

Often we need to locate a particular object according to the value of one of its attributes. (For
example, find the soldier with serial number: US000001, or find the CD with ASIN:
B000002KYR, etc.) In other words, we want a particular attribute to act as a unique key
among all objects of a given class.

We can create such an attribute using the "key_attrib" specifier:

package Soldier;
use Class::MethodMaker

get_set=> [ qw( name rank ) ],
key_attrib=> 'serial_num';

Attributes specified using "key_attrib" have “get/set” and “clear” accessors, just like
those specified using "get_set". However, for each key attribute, Class::MethodMaker also
creates a class method, find_…, that takes a list of key values for that attribute and returns a
list of references to objects whose attributes have those key values. For example

($monty, $patton) = Soldier->find_serial_num("GB000001", "US000001")

Class::MethodMaker automatically takes care of tracking any objects that have
"key_attrib" attributes. In addition, each accessor method ensures that every object’s cor-
responding key is unique. Whenever an object’s key atrribute is changed, for example:

$zhukov->serial_num("CCCP000001");

# and later…

$monty->serial_num("CCCP000001");
226 CHAPTER 8 AUTOMATING CLASS CREATION



the object that previously had that key value has its key attribute reset to undef. That is, after
the two attribute assignments above, the "serial_num" attribute of the object referred to by
$zhukov would have the value undef. No warning is issued when this happens, so it’s often a
good idea to check whether a key is already in use before assigning it:

$monty->serial_num("CCCP00001")
unless Soldier->find_serial_num("CCCP00001");

This check works because, when there is no object with the specified key, find_… returns
an empty list. However, that’s not always the desired behavior. Sometimes it is useful if the
search actually creates a matching object if one doesn’t already exist.5 Class::MethodMaker al-
lows us to define key attributes whose corresponding find_… method works in just that way,
by using the "key_with_create" specifier instead of using "key_attrib". For example:

package Encryption::Key;
use Class::MethodMaker

new=> "new",
boolean=> 'used',
key_with_create=> 'key';

sub unused_key
{

my ($class, $bitstring) = @_;
my $key = Encryption::Key->find_key($bitstring);
return undef if $key->used;
return $key;

}

The unused_key method looks for an existing Encryption::Key object with the specified
key attribute. The find_key method either locates such an object or automatically creates a
new one with the requested key by calling the method Encryption::

Key->new()->key($bitstring)). The unused_key method checks if the key has been
used and returns undef if it has. Otherwise, the method returns a reference to the appropriate
Encryption::Key object.6

8.2.6 Nonscalar attributes

The "grouped_fields" specifier shown earlier sets up a logical grouping of a set of scalar
attributes, which are otherwise completely separate. If we want a physical grouping of scalar
attributes, we can use the "struct", "hash", or "list" keys instead.

The "struct" key sets up a single attribute that is an array of scalar slots. For each slot
in this array, a “get/set” and a “clear” accessor is generated (exactly like all the other scalar ac-
cessors we’ve seen so far). In addition, a method called struct is generated, which can get or
set the complete array at once. 

5 In the same way that “missing” entries of a hash are autovivified when they are needed.
6 The trick, of course, is that the “used” flag of any newly created Encryption::Key object will, by default,

be initialized to false. This ensures that, if the key has never been used before, unused_key will auto-
matically create, and successfully return, a suitable Encryption::Key object.
THE CLASS: :METHODMAKER MODULE 227



On the other hand, sometimes we need one or more attributes, each of which is a separate
array. For example, we might be implementing a scheduling object with assorted priority
queues. The "list" specifier provides a means of creating a single attribute which acts like
an array:

package Scheduler;
use Class::MethodMaker

new=> "new",
list=> [qw( priority_queue normal_queue standby_queue)];

In a similar way, Class::MethodMaker also allows us to define attributes that are hashes,
using the "hash" specifier. 

8.2.7 Class attributes

All of the attributes described above are object attributes; their values are particular to individ-
ual objects. Class::MethodMaker also allows us to create hash attributes that are class
attributes (that is, their values are shared by every object of a given class). Such shared hash
attributes are specified using the "static_hash" specifier.

Class::MethodMaker doesn’t provide a means of defining shared scalar or array attributes,
but we can always use an entry in a shared hash attribute to store such a scalar or array value.
For example:

package Bug;
use Class::MethodMaker

static_hash => 'database';

Bug->database(queue=>[]);

# and later…

if ( Bug->database('status') eq 'locked' )
{

warn "Can't create new bug reports. DB is locked";
push @{Bug->database('queue')}, $request; 

}

8.2.8 Nested objects as attributes

Like Class::Struct, Class::MethodMaker supports nested blessed objects as attributes. To set
up such object attributes, we use the "object" specifier. Let’s reimplement the same nested
BugType example we used earlier. We’ll use the "-sugar" option to avoid repeated re-use of
Class::MethodMaker:

use Class::MethodMaker "-sugar";

package BugType;
make methods

new_hash_init=> 'new',
get_set =>['category', 'severity', 'hardware'];
228 CHAPTER 8 AUTOMATING CLASS CREATION



package Bug;
make methods

new=> 'new',
get_set=> ['id', 'desc'],
object=> [ BugType => 'type'];

The value associated with the "object" specifier is an anonymous array of class-
name=>definition pairs—we only used one such pair, BugType=>'type', in the above
example.

The definition component of each of those pairs may be a single string (as above), in-
dicating the name of the attribute object; or a list of strings, indicating the names of one or
more attribute objects of the specified class; or a hash (see below).

For each attribute object specified in this way, Class::MethodMaker creates a “get/set” ac-
cessor method with the same name as the attribute (e.g., type in the above example). If it is
called without any arguments, the accessor returns a reference to the nested object. If it is called
with arguments, the accessor checks whether the first argument is a reference to another object
of the appropriate type, in which case it replaces the existing nested attribute. Otherwise, the
accessor assumes that the entire argument list should be passed to the constructor for the ob-
ject’s class to create a new object to replace the current one:

my $bug = Bug->new();

# Set up a new nested BugType object…
$bug->type( BugType->new(category=>"power", severity=>"meltdown") );

# or, exactly the same…
$bug->type( category=>"power", severity=>"meltdown" );

# $bug->type() returns an object reference we can use…
print $bug->type()->category();
$bug->type()->hardware(1);

Class::MethodMaker also provides a way to specify that the methods of a nested object
should also be directly accessible through the surrounding object. For example, to print out
all the information in a Bug object we currently have to write

print$bug->id, $bug->desc,
$bug->type->category, $bug->type->severity, $bug->type->hardware;

We can, however, set up the type attribute so that calls to its accessors can be made di-
rectly on the $bug object itself and then automatically forwarded to the nested attribute. To
do so, we use the third form of object definition where the associated specification is a hash:

package Bug;
make methods

new=>'new',
get_set=>['id', 'desc'],
object=>[ BugType =>

{
slot=> 'type',
forward=> [qw(category severity hardware)],
}

];
THE CLASS: :METHODMAKER MODULE 229



The hash has two entries: one for the key "slot", which specifies the attribute object’s
name; and one for the key "forward", which specifies an anonymous array of method names.
For each method name in this array, Class::MethodMaker installs a method in the class being
generated—Bug in this example. That method forwards its arguments to the same method
name called on the nested attribute object. In other words, with the above definition we can
now use $bug->category() as a synonym for $bug->type->category(). The full print-
out of Bug data becomes:

print$bug->id, $bug->desc,
$bug->category, $bug->severity, $bug->hardware;

The advantage of this delegation of methods to nested objects becomes obvious if the
nesting is several levels deep. For example

print $bug->seriousness();

is clearly preferable to:

print $bug->type->severity->relative->seriousness();

Delegation is also useful if we later decide that a scalar attribute like id needs to be re-
implemented as a nested object, because its semantics suddenly became more complex. For ex-
ample, if we were merging two bug-tracking systems that used different ID numbering
schemes, we might write something like this:

package BugID;
make methods

new=> 'new',
get_set=>['id_system_A', 'id_system_B'];

sub id { return $self->id_system_A || convert($self->id_system_B) }

package Bug;
make methods

new=>'new',
get_set=>'desc',
object=>[BugType=> 'type',# as before

BugID=>{slot=> 'id_obj',
forward=> 'id',
}

];

Now, any existing calls to $bug->id()distributed throughout the code are automatically
forwarded to $bug->id_obj->id(), ensuring that all IDs are properly converted into a stan-
dard format. Without the "forward" specification, any place in the code that formerly called
$bug->id() would now throw an exception.7

7 Similar delegation techniques can, of course, be used just as effectively in class code that has been writ-
ten manually. As we have already seen, by encapsulating methods in attributes (whether coded by hand
or generated by a module like Class::MethodMaker), we can insulate client code from changes in im-
plementation details. Then, rather than locating and correcting a large number of (now-invalid) access-
es to a changed attribute, we can just rewrite the affected accessor method to compensate.
230 CHAPTER 8 AUTOMATING CLASS CREATION



8.2.9 Subroutines as attributes

Occasionally, we may want to create attributes that store subroutine references. For example,
we may need to specify a particular sorting subroutine, which may be different for each object
of a class. We can do this using a regular scalar attribute:

package List;
use Class::MethodMaker

new_hash_init=> 'new',
list=> 'data',
get_set=> 'sort_order';

# and later create lists sorted in various ways…

$fwd_val = List->new(sort_order => sub { $a->val <=> $b->val});
$rev_val = List->new(sort_order => sub { $b->val <=> $a->val});
$fwd_id  = List->new(sort_order => sub { $a->id <=> $b->id});

# and later still change the sort order for one of the lists..

$fwd_id->sort_order( sub { $a->id cmp $b->id} );

To actually sort such lists we can provide a sort method that accesses the subroutine ref-
erence by calling the “get/set” accessor without an argument:

sub List::sorted
{

my ($self) = @_;
return sort { $self->sort_order->() } $self->data();

}

Class::MethodMaker simplifies this task slightly by allowing us to define codelike at-
tributes, using the "code" specifier:

package List;
use Class::MethodMaker

new_hash_init=> 'new',
list=> 'data',
code=> 'sort_order';

The semantics of the resulting “get/set” accessor are different from those of an accessor
for a normal scalar attribute. If the accessor is called with a code reference as its first argument

$fwd_id->sort_order( sub { $a->id cmp $b->id} );

it still replaces the code reference in the attribute with that argument. However, when called
with any other argument list (including an empty list), the accessor actually calls the subrou-
tine referred to by the current code reference, passing it the same argument list. Therefore, the
List::sorted method can now be written like so:

sub List::sorted
{

my ($self) = @_;
return sort { $self->sort_order() } $self->data();

}

THE CLASS: :METHODMAKER MODULE 231



The "code" attribute effectively becomes a customized method, one that belongs
uniquely to a single object rather than to its class. Unlike a regular method, when it’s called,
this customized pseudo-method doesn’t receive a reference to the invoking object as its first ar-
gument. That doesn’t matter for the sort_order attribute shown above, but, in other cases,
it might.

To cater to those other cases, Class::MethodMaker also offers the "method" specifier,
which acts like "code" except that the resulting customized method does receive a reference
to the invoking object as its first argument. For example, we might want to create an Image
class that dynamically selects its storage format depending on the size of an image. That is,
smaller images are stored as bitmaps, larger images as JPEGs:

package Image;
use Class::MethodMaker

new_with_init=> 'new',
new_hash_init=> '_setup',
get_set=> [qw(width height)],
method=> 'store';

sub store_bitmap { … } 
sub store_JPEG   { … } 

sub init
{

my ($self, %args) = @_;
$self->_setup(%args);
if ($self->width * $self->height > 1000)

{ $self->store(\&Image::store_JPEG) }
else

{ $self->store(\&Image::store_bitmap) }
}

# and later…

$image->store();# store in the appropriate format

The init method sets up the customized store method to invoke either the
store_JPEG or the store_bitmap method, depending on the overall size of the image. More
importantly, when either of those methods is actually invoked—that is, when store is
called—it is invoked as a method, with the invoking object passed as its first argument.

Note, too, that we had Class::MethodMaker create a method (_setup) to handle any
hash-like initializers passed to init. This trick is handy whenever you want to use both the
standard hash-like initialization offered by the "new_hash_init" specifier and the init-
based initialization offered by "new_with_init".

8.2.10 Abstract methods

Class::MethodMaker makes it easy to create abstract methods. The "abstract" specifier
takes a string—or an anonymous array of strings—specifying the names of any abstract meth-
ods for the current package. 
232 CHAPTER 8 AUTOMATING CLASS CREATION



Abstract methods declared in this way don’t have to be accessors. For example, we can
use the Class::MethodMaker module to set up abstract methods for the Truck class (as sug-
gested in section 6.2.5):

package Truck;
use Class::MethodMaker

 abstract => [qw(register tranfer_owner safety_check)];

Each of the named methods is set up to throw an exception immediately. For example,
if class FireTruck inherited Truck::register without redefining it, any attempt to call reg-
ister on a FireTruck object would produce the following exception:
Can't locate abstract method "register" in Truck called from FireTruck

8.2.11 Inheritance and generated classes

Class::MethodMaker is much more accommodating than Class::Struct when it comes to
inheritance. 

The constructors created by Class::MethodMaker use the two-argument form of bless,
so it’s possible to inherit from classes built using Class::MethodMaker without redefining a
constructor in those derived classes.

Moreover, Class::MethodMaker doesn’t care whether the package it’s currently building
inherits from other classes as well. It’s possible to use Class::MethodMaker to extend the in-
terface of a derived class (even when the class is derived from other classes that also use Class:
:MethodMaker to create some of their methods). 

For example, we can easily derive the FixedBug class from Class::MethodMaker imple-
mentation of the Bug class and then use Class::MethodMaker to add extra attributes to Fixed-
Bug:

package Bug;
use Class::MethodMaker

new_hash_init=> 'new',
get_set=> [ qw( id type desc ) ];

package FixedBug;
@ISA = qw( Bug );
use Class::MethodMaker

get_set=> [ qw( date_fixed repairer ) ];

8.2.12 A full example: reautomating the CD::Music class

Listing 8.5 shows the CD::Music class implemented using Class::MethodMaker.
Note that by calling _init_args from the init method, we’re using the “dual con-

structor” trick from Subroutines as attributes above. We also use a shared hash attribute, counter,
to store the classwide object counter. 

Apart from the class methods and destructor method needed to control that counter, and
the special location method, Class::MethodMaker allows us to automate the entire coding
of the CD::Music class. 

Compared to the Class::Struct-based version shown in figure 8.4, Class::MethodMaker’s
ability to define class attributes and to build dual constructors enables us to write marginally
THE CLASS: :METHODMAKER MODULE 233



less code, but apart from the noticeably simpler init method, the gain is not significant in
this case. However, if we intend to inherit from CD::Music, Class::MethodMaker is the clear
choice. 

8.3 WHERE TO FIND OUT MORE
The Class::Struct module comes standard with Perl. The Class::MethodMaker module is
available from the CPAN at: http://www.perl.com/CPAN/authors/id/PSEIBEL/. Both come
with their own (brief) documentation.

The perltoot documentation also describes the Class::Struct module under the subhead-
ing Metaclassical tools.

package CD::Music;
$VERSION = 4.00;
use strict;
 
use Class::MethodMaker

new_with_init=> 'new',
new_hash_init=> '_init_args',
static_hash=> 'counter',
get_set=> [qw(name artist publisher ISBN

tracks rating room shelf )];

sub count{ $_[0]->counter('count') }
sub _incr_count{ $_[0]->counter(count=>$_[0]->counter('count')+1) }
sub _decr_count{ $_[0]->counter(count=>$_[0]->counter('count')-1) }

sub init
{

my ($self, %args) = @_;
$self->_init_args(%args);
$self->_incr_count();
return $self;

}

# destructor adjusts object count
sub DESTROY { $_[0]->_decr_count() }

# get or set room and shelf together
sub location
{

my ($self, $room, $shelf) = @_;
$self->room($room) if $room;
$self->shelf($shelf) if $shelf;
return ($self->room, $self->shelf)

}

Listing 8.5 “Automated” version of CD::Music class using Class::MethodMaker
234 CHAPTER 8 AUTOMATING CLASS CREATION

http://www.perl.com/CPAN/authors/id/PSEIBEL/


8.4 SUMMARY
• The Class::Struct and Class::MethodMaker modules provide two alternatives for auto-

matically generating classes at run time. This can make development and maintenance
easier and increase the robustness of a program. 

• Class::Struct can build classes based on hashes or arrays.
• It also provides a simple constructor for each class.
• Classes built with Class::Struct can neither inherit from other classes, nor (easily) be

inherited from themselves.
• Class::MethodMaker always builds classes based on hashes.
• Class::MethodMaker can generate a wide range of attribute accessors, constructors,

search mechanisms, and abstract methods.
• Both modules can generate accessors for attributes of scalar, array, hash, and object types.

Class::MethodMaker also supports Boolean, codelike, and methodlike attributes.
SUMMARY 235



C H A P T E R 9

Ties
9.1 A jacketing tie required 236
9.2 Tie-ing a scalar 238
9.3 Tie-ing a hash 243
9.4 Tie-ing an array 249
9.5 Tie-ing a filehandle 257

9.6 Inheriting from a tie-able 
package 264

9.7 Tied variables as objects 267
9.8 Where to find out more 276
9.9 Summary 276
In most languages that provide built-in data types, the behavior of those types is fixed. It’s a
case of “love me, love my built-in semantics!” Perl rejects this linguistic fascism by allowing us
to alter the implementation and behavior of its fundamental data types: scalars, arrays, hashes,
and filehandles. The key to this unusual liberty is the built-in tie function.

9.1 A JACKETING TIE REQUIRED
The tie function associates a specific variable or handle with an underlying data structure
and a set of subroutines from a particular package. Those subroutines then mimic the behav-
ior of that variable: assignment, retrieval of value, indexing (of arrays and hashes), iteration (of
hashes), printing or reading (by filehandles). Once the variable is tied to the package contain-
ing those subroutines, they are called whenever the variable is accessed, replacing the standard
interface for the particular variable. It’s yet another form of polymorphism, but one applied to
the intrinsic behaviors of Perl’s standard data types.

If associating variables with packages and using package subroutines as an interface
sounds very much like using an object and its methods, there’s a good reason: it’s exactly like
using an object and its methods. Just like an object’s methods, the subroutines in the package
to which a variable is tied implement the interface of that variable. 
236



The only difference is that, whereas a regular object’s interface is user-defined and flexible
(you can create methods with any name and argument list you like), a variable’s interface is
predetermined and fixed. For example, for a scalar only two methods are necessary: fetch my
value and store my value. Nevertheless, Perl’s tie mechanism is just a specialized form of object
orientation.

Here’s another way to think about tie-ing: according to Hollywood, the main occupa-
tions of extraterrestrial alien species appear to be:

• Finding their way inside unsuspecting humans;
• Hollowing out a little nest (usually by devouring inconvenient and unnecessary internal

organs like the brain);
• Using the resulting human shell as a disguise to blend into Earth society for nefarious

purposes. 

Tie-ing a variable is just like that. The package that a variable is to be tied to provides a
special method that eats the original variable’s brain and installs a blessed object, the imple-
mentation object, in its place. The implementation object then provides any internal storage re-
quired by the variable, as well as methods that simulate the variable’s normal behavior. 

A tied variable becomes a “shell”: it looks like a regular variable, it’s accessed like a regular
variable—but it acts like a space alien.

9.1.1 Limitations of tie-ing

There are two important limitations on tied variables and, hence, two major reasons we might
choose not to use them. The first reason is performance. Tie-ing is just object-oriented pro-
gramming in another guise. The subroutines that implement the behavior of a tied variable
are called as methods. 

That means, for example, the full polymorphic dispatch process is performed every time
the value of a tied variable is retrieved or set. That imposes a substantial overhead on such op-
erations compared to the heavily optimized performance of the hard-coded routines that im-
plement an untied variable. 

Just how big a performance hit you’ll take for tie-ing a variable depends on the hardware
you’re using, and the sophistication of the new tied behavior. Generally, operations on a tied
variable tend to be five to ten times slower. Of course, that’s compensated for by the extra be-
haviors a tied variable may provide—which you’d have to perform separately anyway. Whether
that represents an acceptable tradeoff depends on how much speed you’re willing to give up
in return for easier coding and increased maintainability.

The second significant limitation on tie-ing has to do with the evolving nature of Perl and
the capabilities of the tie mechanism in particular. Until release 5.004, Perl couldn’t tie file-
handles at all. The interface is still incomplete as of release 5.005. For instance, there’s still no
way to intercept write operations on a tied filehandle. Similarly, earlier releases of Perl didn’t
fully support tie-ing of arrays. 

Whether this limitation on the completeness of ties is a problem will depend entirely on
what you’re trying to achieve, as well as what release of Perl you’re using. The problem is
A JACKETING TIE REQUIRED 237



diminishing over time and will eventually disappear altogether, but that’s of little comfort if
you need a missing feature today.

9.2 TIE-ING A SCALAR
The simplest thing to tie is a scalar. To do so we simply write

tie $var, "Package::Name";

This associates a set of methods defined in the Package::Name package with the behaviors
of the scalar $var. Those methods must have standard names: TIESCALAR, FETCH, STORE,
and DESTROY. 

The TIESCALAR method is invoked when the tie function is called on a scalar variable.
It is used to create a new implementation for that scalar (i.e., to eat its brain). When the scalar
is tied to a package, that package’s TIESCALAR is passed the same set of arguments given to
tie, except for the leading variable itself. Therefore, the above tie statement results in a call
Package::Name->TIESCALAR(). If we tie the variable like this:

tie $var, "Package::Name", $any, $other, @args 

the extra arguments are passed to TIESCALAR, and the call becomes Pack-

age::Name->TIESCALAR($any, $other, @args).
TIESCALAR’s job is to create a new object of the appropriate class and return a reference

to it. That object implements the internal state of the original variable. The blessed object itself
can be any kind of object: another scalar, a hash, a closure, a typeglob, and so forth.

The FETCH method is called whenever the value of $var is requested—by printing, as-
signing, or incrementing it. FETCH is passed a single argument: a reference to the variable’s im-
plementation object (i.e, one created by TIESCALAR). The value that FETCH returns is used as
the variable’s value.

The STORE subroutine is called whenever $var’s value is updated, via an assignment or
increment or decrement. STORE is passed two arguments: a reference to the implementation
object and the new value to be assigned. It’s not expected to return a value; if it does, the value
is ignored.

Like the destructor of an object, the DESTROY method is called if $var ceases to exist;
that is, if its reference count reaches zero. It is called on the implementation object, not on
$var itself, and may be used to tidy up any internal implementation details. Often it’s not
needed at all.

9.2.1 Untie-ing a scalar

There’s another way in which a tied scalar’s destructor may be invoked. It’s possible to explic-
itly break the connection between a scalar and its tied implementation, using the built-in
untie function:

untie $var;

After this statement is executed, the $var variable is once again a regular scalar, with the
value undef. It’s now completely unaffiliated with the package to which it was formerly tied.
238 CHAPTER 9 TIES



Because that connection is severed, the variable no longer secretly houses its former implemen-
tation object. That usually means that the implementation object is no longer referred to any-
where in the program, so its destructor is called.

Generally speaking, untie-ing a tied variable is only important if the implementation
object takes up a large amount of memory or has a nontrivial destructor that needs to be called.

9.2.2 A simple example

Let’s see how those methods work together. Suppose we want a variable that automatically
increments its value every time that value is examined, and that can only be assigned larger
values than its current value. Such a monotonically increasing variable might be useful for
allocating unique ascending ID numbers for processes, user IDS, or bar codes. 

We could create a package implementing such a variable like so:

package Incremental;

sub TIESCALAR
{

my ($class) = @_;
my $implementation = 0;
bless \$implementation, $class;

}

sub FETCH
{

my ($implementation) = @_;
return ++${$implementation};

}

sub STORE
{

my ($implementation, $newval) = @_;
croak "non-ascending assignment" unless ${$implementation} <= $newval;
${$implementation} = $newval;

}

sub DESTROY
{

# Nothing to be done in this case
}

The constructor (Incremental::TIESCALAR) declares a lexical variable ($implemen-
tation), blesses it into the package specified by the first argument (that is, Incremental), and
returns a reference to the resulting object. That object is then installed as the implementation
of the scalar being tied, as shown in figure 9.1.

When the value of that tied scalar is next requested, a reference to the implementation
object is passed to Incremental::FETCH, which dereferences it (${$implementation}),
increments it (++${$implementation}), and returns the incremented value. Hence, every
time the tied variable’s value is queried, that value increments.
TIE-ING A SCALAR 239



When a new value is assigned to the tied scalar, the STORE method is called. It first checks
that the value is no less than the current value to ensure the variable remains “unidirectional.”
If the value is acceptable, the reference to the implementation object is deferenced, and the new
value is assigned to the underlying scalar object.

The destructor is trivial (and would be omitted in real code), since there is nothing for
it to do. When the tied variable’s reference count becomes zero, the variable is destroyed. The
only reference to implementation object is also lost, causing the implementation object itself
to be destroyed. That invokes the Incremental::DESTROY destructor, which in this case
doesn’t need to do any special cleanup of the implementation object.

To actually create and use an incremental scalar, we can write the following:

package main;# or wherever

tie $incr, "Incremental";# associate $incr with Incremental package

print $incr;# calls Incremental::FETCH, prints 1
print $incr;# calls Incremental::FETCH, prints 2
print $incr;# calls Incremental::FETCH, prints 3

$incr = 100;# calls Incremental::STORE

$incr += 100;# calls Incremental::FETCH, which returns 101
# then Incremental::STORE, which stores 201

$incr++;# calls Incremental::FETCH, which returns 202
# then Incremental::STORE, which stores 203

$next = $incr++;# calls Incremental::FETCH, which returns 204
# then Incremental::FETCH, which returns 205
# then Incremental::STORE, which stores 206
# $next is assigned 204

++$incr;# calls Incremental::FETCH, which returns 207
# then Incremental::STORE, which stores 208

$next = ++$incr;# calls Incremental::FETCH, which returns 209

$incr

“edible”

$incr

0
Incremental

$implementation

Figure 9.1 What happens when a scalar is tied

a Before tie $incr, ”Incremental”; 

b After tie $incr, ”Incremental”;

a b
240 CHAPTER 9 TIES



# then Incremental::STORE, which stores 210
# then Incremental::FETCH, which returns 211
# $next is assigned 211

Any access or assignment to $incr’s value calls the Incremental::FETCH and Incre-
mental::STORE methods, as expected. The add-assignment operator (+=) calls both Incre-
mental::FETCH and Incremental::STORE—first retrieving the current value of the
implementation object (after incrementing it, of course) , then adding 100, then storing the
sum back into the implementation object. Operations involving -=, *=, /= or any other as-
signment operator do the same, although they may fail if the new value is less than the current
value (e.g., $incr *= -1, $incr /= 2, $incr &= 0x0001, etc.).

The unary increment operator (++) is an interesting case. When used as a pure increment
operator—that is, if the return value of the operation is ignored—it calls FETCH to get the cur-
rent value, adds 1 to it, and then calls STORE to store the incremented value. On the other
hand, if the return value of the preincrement is used—for example, assigned to $next—then
the operator calls FETCH a second time to return the pre-incremented value.

Similar sequences occur for the postincrement operator. If the operation’s value isn’t
used, there is one call to FETCH, followed by one call to STORE. If the operation’s value is used,
it calls FETCH (to receive the value before increment), calls FETCH again (to retrieve the value
to be incremented), then calls STORE (to save the incremented value). The value returned by
the first of the two FETCH calls becomes the value returned by the operation.

9.2.3 Implementing a scalar using a nonscalar

Although the previous example used a scalar as the implementation object for a tied scalar,
there’s no reason that any tied variable has to be implemented by an implementation object of
the same type. Except for the loss of efficiency involved, we might have chosen to bless an
array or a hash as the implementation object. 

For example, in large applications, package variables are dangerous because of their high
degree of visibility. In the section on Lexical variables in chapter 2, we saw how a commonly
used package variable like $i can be contaminated by reuse in two or more subroutines. Any
package variable is susceptible to this form of unintended coupling, and in a large program, it
can be difficult to locate the source of the corruption. The Track package shown in listing 9.1
provides a simple way of finding the source of the problem.

The idea is simple. To mark a scalar package variable—say, $critical_temp—for
tracking, we write:

Track->scalar($critical_temp);

This has no discernable effect on the variable1 until we call:

Track->debug($critical_temp);

at which point the file, line, and package where the current value of $critical_temp was
assigned is dumped to STDERR. The idea is to start tracking the problem variable at a point

1 …even though an alien has eaten its brain and is now living inside it.
TIE-ING A SCALAR 241



where its value is still correct and debug it at the point where an incorrect value is first
detected.

The Track::scalar method is the key to the whole process. It ties the variable passed
as its argument—namely the variable aliased to $_[1]—to the Track class, passing the original
value of the variant—$_[1] again—to the TIESCALAR constructor. 

The constructor builds an anonymous hash with a 'val' entry to store the scalar’s value
and a 'src' entry to store a list of values indicating where the value was assigned. Specifically,
the 'val' entry is assigned the current value of the variable, while the 'src' entry is assigned
the package name, file name, and line number corresponding to the original call to

package Track;
$VERSION = 1.00;
use strict;
 
sub TIESCALAR
{

my ($class, $val) = @_;
bless { val => $val, src => [caller(1)] }, $class

}

sub FETCH
{

my ($impl) = @_;
return $impl->{val};

}

sub STORE
{

my ($impl, $newval) = @_;
$impl->{val} = $newval;
$impl->{src} = [caller];

}

sub scalar
{

tie $_[1], $_[0], $_[1];
}

sub debug
{

my $impl = tied($_[1]);
my ($cur_pkg, $cur_file, $cur_line) = caller;
my ($src_pkg, $src_file, $src_line) = @{$impl->{src}};

print STDERR"At $cur_file line $cur_line in package $cur_pkg the\n",
"tracked variable has the value $impl->{val}, which was\n",
"assigned at $src_file line $src_line in package $src_pkg\n";

}

Listing 9.1 A package for variable tracking
242 CHAPTER 9 TIES



Track::scalar.2 Finally, the hash is blessed and a reference to it is returned as the new im-
plementation object for the original scalar variable. Figure 9.2 shows a before-and-after shot of
the effect.

After a variable has been tied in this way, all subsequent assignments to that variable must
go through the Track::STORE method. That method assigns the new value to the 'val' en-
try of the implementation hash, but also assigns the context information returned by caller
to the 'src' entry. That way, the location of the most recent assignment to a variable tied to
Track is always stored within the implementation object.

However, because that information is hidden away inside the shell of the tied variable,
the Track::debug method has a problem. How can it access that encapsulated data to print
it out? The solution is provided by another built-in Perl function called tied, which takes a
variable and returns a reference to its implementation object (or undef if the variable wasn’t
tied at all). Therefore, the debug method first calls tied to expose the underlying hash im-
plementing the variable, then prints the information in that hash.

Essentially the same process is performed automatically for calls to FETCH and STORE:

$t = $critical_temp; # same as: $t = tied($critical_temp)->FETCH()

$critical_temp = 100; # same as: tied($critical_temp)->STORE(100)

In fact, this is how these methods receive the implementation object as their first argument.

9.3 TIE-ING A HASH
It’s as easy to tie a hash variable to a package, as it is to tie a scalar. The only difference is that
a package to which hashes are tied has to provide more methods, since a hash has a more com-
plicated interface than a scalar. The methods needed to implement that interface are shown in
table 9.1.

2 Within TIESCALAR, we call caller with the argument 1 to make it skip back up one level of nested
subroutine calls past the call to TIESCALAR itself and report on the original call to Track::scalar.

$critical_temp

1000

$critical_temp

“val” 1000

“src” “main” “demo.pl” 12

Track

Figure 9.2 Before and after tie-ing a scalar to the Track package

a Before Track->scalar($critical_temp); 
b After Track->scalar($critical_temp);

ba
TIE-ING A HASH 243



Table 9.1 Methods for tie-ing a hash

Method Purpose

TIEHASH called when a hash is tied to the package. It works exactly as TIESCALAR did 
for tied scalars, in that it receives the arguments to tie that appeared after the 
variable name and is expected to return a reference to a blessed implementa-
tion object.

FETCH called whenever a particular element of the hash is requested (i.e., using the 
$hash{$key} or $hash_ref->{$key} notations). Unlike the FETCH method 
of a scalar, it is passed two arguments: a reference to the implementation 
object and a string containing the specified key. The value it returns is used as 
the value of the corresponding entry in the hash.

STORE called whenever a value is assigned to a particular element of the hash (i.e., 
using the $hash{$index} = $val or $hash_ref->{$index} = $val 
notations). It is passed three arguments: a reference to the implementation 
object, a string containing the specified key, and the new value to be placed in 
the corresponding entry. It’s not expected to return a value.

EXISTS called whenever the exists function is applied to an entry of the tied hash 
(e.g., in code such as: next if exists $hash{$key}). It is passed a refer-
ence to the implementation object and a string containing the specified key. It is 
expected to return the appropriate true or false value.

DELETE called whenever the delete function is applied to an entry of the tied hash 
(e.g., in code such as: delete $hash{$key}). It’s passed a reference to the 
implementation object, followed by a string containing the key of the entry to 
delete. The value it returns is used as the result of the delete operation. If 
delete is used to delete two or more keys of a tied hash at the same time 
(e.g., delete @hash{$key1, $key2, $etc}), the DELETE method is called 
once for each key.

CLEAR called whenever the entire hash is reset using the %hash = () notation. It’s not 
expected to return a value.

FIRSTKEY called when the “first” key of a hash is required. That is, when the built-in each 
function is first called on the tied hash, or at the beginning of a call to the built-in 
keys or values functions. FIRSTKEY is passed a reference to the implemen-
tation object and is expected to reset the tied hash’s internal iterator (or rather 
the implementation object’s simulation of that iterator). The value it returns is 
assumed to be the “first” key of the hash.

NEXTKEY called every time another iterated key is required from the tied hash. That is, it 
is invoked every time (except the first) that the built-in each function is called 
or repeatedly during the execution of a call to keys or values. NEXTKEY is 
passed a reference to the implementation object and a string containing the 
most recent key iterated (i.e., the key “before” the expected next key). The 
value returned is assumed to be the “next” key of the hash. The subroutine 
should arrange to return undef after all keys have been iterated.

DESTROY the tied hash’s destructor, which is called when the tied hash ceases to exist. It 
is passed a reference to the implementation object. It is not expected to return 
a value.
244 CHAPTER 9 TIES



9.3.1 Example: case-insensitive hashes

So let’s create a hash with case-insensitive keys. That is, we’ll implement a package called
Insensitive::Hash that can be tied to a hash, and which implements access methods that
ignore the case of the keys passed to them. 

That will allow us to store a value in the entry for the key 'cat'—for example,
$tiedhash{cat} = "meow"—but retrieve it as $tiedhash{CAT}, remove it with
delete $tiedhash{Cat}, or check on its existence via exists $tiedhash{CaT}, and so
on. Such a facility may seem to be of dubious utility, but it might be handy in analyzing a text
where we don’t care whether the word cat appears as 'cat' or 'Cat':

tie %count, "Insensitive::Hash";
$count{$1}++ while $text =~ m/(\S+)/g;

Alternatively, we might use an insensitive hash as a cache for browser search requests or
as a symbol table for a programming or specification language with case-insensitive keywords.
Listing 9.2 shows the implementation of the Insensitive::Hash package.

package Insensitive::Hash;
$VERSION = 1.00;
use strict;

sub TIEHASH
{

my ($class) = @_;
bless {}, $class;

}

sub FETCH
{

my ($impl, $key) = @_;
return $impl->{lc $key}->{value};

}

sub STORE
{

my ($impl, $key, $newval) = @_;
$impl->{lc $key} = {key=>$key, value=>$newval};

}

sub EXISTS
{

my ($impl, $key) = @_;
return exists $impl->{lc $key};

}

sub DELETE
{

my ($impl, $key) = @_;
my $deleted_val = delete $impl->{lc $key};

Listing 9.2 A package for case-insensitive hashes
TIE-ING A HASH 245



return $deleted_val->{value} if $deleted_val;
}

sub CLEAR
{

my ($impl) = @_;

%{$impl} = ();
}

sub FIRSTKEY
{

my ($impl) = @_;
keys %{$impl};
my $first_key = each %{$impl};
return undef unless defined $first_key;
return $impl->{$first_key}->{key};

}

sub NEXTKEY
{

my ($impl, $nextkey) = @_;
my $next_key = each %{$impl};
return undef unless defined $next_key;
return $impl->{$next_key}->{key};

}

An insensitive package
The implementation object for the case-insensitive hash is another hash. The keys in that hash
are lower-cased versions of the actual keys used. The value for each key is a reference to yet
another hash, which stores the original (case-sensitive) key, and—finally!—the entry’s actual
value. When it’s up and running, a hash tied to the Insensitive::Hash package has an internal
structure like that shown in figure 9.3.

The interface code that Insensitive::Hash uses to accomplish all that is surprisingly
simple. The code just blesses an empty anonymous hash into its class. Since, initially, no entries
exist, we don’t need the more complex hash of hashes structure yet.

The STORE method sets up that nested structure by converting the key to be stored to
lowercase (lc $key), finding the corresponding entry in the implementation object
($impl->{lc $key}), and assigning it a reference to a new anonymous hash. That new hash
stores the actual key passed and the new value for the entry ($impl->
{lc $key} = {key=>$key, value=>$newval}).

Once such a structure is set up, the FETCH method can easily retrieve the value for a given
key by first making it case insensitive (lc $key), using that version as a key into the imple-
mentation object ($impl->{lc $key}), and retrieving the 'value' entry though the result-
ing hash reference ($impl->{lc $key}->{value}).
246 CHAPTER 9 TIES



A key exists in the tied hash if its lower-case version exists in the implementation object,
so the existence test in EXISTS simply lowers the case of the specified key and checks for a cor-
responding entry in the implementation object.

Deleting a key would normally be equally simple—merely delete the corresponding
lower-case key in the implementation object—except that we also want to return the value of
the deleted entry (in keeping with the normal behavior of delete). To do that, we have to
take the hash reference returned by deleting the lower-cased key from the implementation ob-
ject and access its 'value' entry. Of course, if the key doesn’t exist in the hash, the delete
returns undef, so there’s no need to do anything in that case.

Clearing the entire hash is simple. We just clear the implementation object by derefer-
encing our reference to it ($impl) to get the actual hash itself (%{$impl}) and assigning an
empty list to that hash.

Supporting an iterator for the hash with FIRSTKEY and NEXTKEY is the trickiest part of
the package. Assuming that we want to return the actual (case-sensitive) keys under which each
entry was stored, we need to return the 'key' value of the anonymous hash referred to by each
entry of the implementation object. 

To get the first such key, in FIRSTKEY we reset the implementation hash’s own iterator
by calling keys %{$impl}. We retrieve the first lower-cased key with a call to
each %{$impl}. If that call returns undef, it means that there was no first key—in other
words, the implementation hash is empty. So we likewise return undef to indicate that the tied
hash itself is empty. If there was a first key, we return the value of the corresponding 'key'
field ($impl->{$first_key}->{key}).

Finding the next key of a tied hash in NEXTKEY is almost exactly the same as finding the
first. Once again, we call each %{$impl} to iterate through the implementation hash; once
again we check for an undefined result, indicating no more keys are available; once again, we
extract the 'key' field and return it. The only difference is that, unlike in FIRSTKEY, we don’t

"cat"

"fish"

"dog"

Insensitive::Hash

"key" "Cat"

"value" "meow"

"key" "fISh"

"value" "burble"

"key" "dog"

"value" "woof"

Figure 9.3 The internal 

structure of a tied hash
TIE-ING A HASH 247



reset the implementation hash’s iterator before calling each on it. Therefore, we keep stepping
though the implementation hash’s keys each time NEXTKEY is called.

An insensitive application
We can use the Insensitive::Hash package to build an automatic indexing mechanism for text.
Let’s assume that each page in the text is delimited by a pair of matched tags: <PAGE>…</

PAGE>. We’ll use the Text::Balanced module3 to extract and index a page at a time. Once we
have the Insensitive::Hash package written, the full code of the indexing application is
remarkably short:

use Insensitive::Hash;
use Text::Balanced 'extract_tagged';
 
# open file and load complete text
open TEXTFILE, shift(@ARGV) or die "Usage: index <textfile>\n";
local $/;
$text = <TEXTFILE>;

# create case-insensitive hash
tie %xref, "Insensitive::Hash";

# extract each page in turn…
while (my $page = extract_tagged($text,'<PAGE>'))
{

$page_num++;
# for each word, record that it's on the current page
$xref{$1} = { %{$xref{$1}||{}}, $page_num => 1 }

while $page =~ m/\G\s*(\S+)/g;
}

# for each word that was found…
foreach my $word (sort keys %xref) 
{

# extract, sort and print the list of pages where the word appeared
print ucfirst lc $word, ": ";
@page_list = sort {$a<=>$b} keys %{$xref{$word}};
print join(",",@page_list), "\n";

}

Of course, the same application implemented using an ordinary hash is not appreciably
longer than the version above. In fact, the only difference is that every place where we access
any entry of the %xref hash or retrieve its keys, we need to explicitly apply lc to the key in-
volved. 

The disadvantage in that case is that we’re only human and, if we miss one such point
of access, an entry with a mixed-case key may immediately autovivify and cause the corre-
sponding page number to be lost. Alternatively, the two (or more) separate entries for the same

3 Available from the CPAN in the directory http://www.perl.com/CPAN/authors/id/DCONWAY/
248 CHAPTER 9 TIES

http://www.perl.com/CPAN/authors/id/DCONWAY/


word may result in the program printing out a series of annoyingly distinct index lists for the
same word.

9.4 TIE-ING AN ARRAY
A package suitable for tie-ing an array has to be even more sophisticated than one for tie-ing a
hash. Once again, we create a package with specially named methods that implement the new
behavior of the tied array, but this time thirteen (!) methods are required, as shown in
table 9.2.

Table 9.2 Methods for tie-ing an array

Method Purpose

TIEARRAY called when an array is tied to the package. Like TIESCALAR and TIEHASH, it 
receives the arguments to tie that appeared after the variable name, and is 
expected to return a reference to a blessed implementation object.

FETCH called whenever a particular element of the array is requested (i.e., using the 
$array[$index] or $array_ref->[$index] notations). It’s passed two 
arguments: a reference to the implementation object and the specified index. 
The value it returns is taken to be the value of the corresponding element.

STORE called whenever a value assigned to particular element of the array is requested 
(i.e., $array[$index] = $val or $array_ref->[$index] = $val). It’s 
passed three arguments: a reference to the implementation object, the index of 
the element to be assigned to, and the new value to be stored. It’s not 
expected to return a value.

FETCHSIZE called whenever the entire array is evaluated in a scalar context (e.g., in code 
such as: $count = @array or while ($i<@array) {…}). It’s passed a 
reference to the implementation object and is expected to return an integer cor-
responding to the array’s current size.

STORESIZE called whenever the actual size of an array is explicitly altered (e.g., in code 
such as: $#array = 1000). It is passed a reference to the implementation 
object and the new size (i.e., 1001 for the example). It’s not expected to return 
a value.

EXTEND called just before the actual size of a tied array is implicitly altered. For example, 
before executing an array-to-array assignment statement such as: 
@tied_array = @some_other_array, Perl would call EXTEND, passing it a 
reference to the implementation object for @tied_array, as well as the length 
of @some_other_array. This constitutes a friendly warning to the implemen-
tation object that it might want to preallocate an appropriate amount of extra 
space to avoid the need to separately reallocate space for each of the calls to 
STORE that will immediately follow. The name is somewhat of a misnomer, 
since the size that is passed may actually be smaller than the present size of the 
array (if @some_other_array is shorter). Calls to EXTEND are not expected to 
return values.

CLEAR called whenever the entire array is reset using the @array = () notation. It’s 
not expected to return a value.
TIE-ING AN ARRAY 249



9.4.1 Example: a base/codon array

Suppose we need to access an extremely long sequence of genetic information stored in a file.4

Given the immense size of a typical genome—well over 3 gigabytes in plaintext or just under
1 gigabyte when encoded—we will need to store the actual array of data on disk. However, for
coding purposes, it is convenient if we can pretend that the data is actually stored internally in
a regular Perl array. Obviously, a tied array is the ideal way to implement this masquerade.

As an added complication, sometimes we will want to treat the genetic data as an array
of single characters—called bases—and, sometimes, as an array of three-character groups—
called codons. For example, to simulate DNA-to-protein translation, we first need to walk an
RNA polymerase enzyme down the DNA sequence base-by-base to create a messenger RNA
(mRNA) strand. Then, we need to march a ribosome along the mRNA strand three bases at
a time, codon-by-codon, and match up transfer RNA (tRNA) fragments to each codon to
build a polypeptide.5 

The Genome::Array package
It would be handy if we could use the same package to generate one-at-a-time and three-at-a-
time genome arrays. Listing 9.3 illustrates such a package: Genome::Array. It uses a hash as
the underlying implementation object for each array, and provides each of the thirteen
required interface methods.

PUSH and UNSHIFT called whenever the built-in push or unshift functions are called on a tied 
array. Each is passed a reference to the implementation object, followed by the 
list of values to be pushed or unshifted onto the array. Neither is expected to 
return a value.

POP and SHIFT called whenever the built-in pop or shift functions are called on a tied array. 
Each is passed a reference to the implementation object and is expected to 
return a scalar value that is treated as the popped or shifted value.

SPLICE called whenever the built-in splice function is called on a tied array. It is 
passed a reference to the implementation object, followed by the offset at 
which the splicing is to be done and the number of elements to be spliced out. 
Any remaining arguments are the new values to be spliced in. It is expected to 
return a list of the spliced-out elements.

DESTROY the tied array’s destructor. It is called when the tied array ceases to exist and is 
passed a reference to the implementation object. It’s not expected to return a 
value.

Table 9.2 Methods for tie-ing an array (continued)

Method Purpose

4 …perhaps we’re aliens assessing the bio-compatibility of the human brain.
5 Don’t let all that salacious genetics talk upset you. All we want is an array that sometimes clumps the

same data one-character-per-element and sometimes three-characters-per-element.
250 CHAPTER 9 TIES



package Genome::Array;
$VERSION = 1.00;
use strict;

use Carp;
use Symbol;
use Fcntl;

sub TIEARRAY
{

my ($class, $file, $grouping) = @_;
my $filehandle = gensym();
sysopen $filehandle, $file, O_RDWR|O_CREAT
 or croak "Could not open genome file";

bless 
{
group => $grouping,
file  => $filehandle,

}, $class;
}

sub DESTROY
{

my ($impl) = @_;
close $impl->{file} or carp "Couldn't close genome file";

}

sub FETCH
{

my ($impl, $index) = @_;
my $element;

# find the right offset in the file and then read in 
# and return one grouping of chars (i.e. a single element)
sysseek($impl->{file}, $index*$impl->{group},0) &&
sysread($impl->{file}, $element, $impl->{group});
return $element

}

sub STORE
{

my ($impl, $index, $newval) = @_;

# ensure data is the right size
croak "Bad sized data: '$newval'"
unless length($newval) == $impl->{group};

# ensure file is the right size
my $oldsize = $impl->FETCHSIZE();
my $newsize = $index+1;

Listing 9.3 A package for accessing genome data
TIE-ING AN ARRAY 251



if ($newsize > $oldsize)
{
my $fill_len = $newsize - $oldsize;
croak "Couldn't extend genome file"
unless sysseek($impl->{file}, 0, 2)
   and syswrite($impl->{file}, "\0" x $fill_len, $fill_len);

}

# seek to the correct position in file and overwrite data
croak "Couldn't write genome file"
unless sysseek($impl->{file}, $index*$impl->{group}, 0)
   and syswrite($impl->{file}, $newval, $impl->{group});

}

sub FETCHSIZE
{

my ($impl) = @_;
return (-s $impl->{file})/$impl->{group};

}

sub PUSH
{

my ($impl, $newval) = @_;
$impl->STORE($newval, $impl->FETCHSIZE());

}

sub POP
{

my ($impl) = @_;
my $element;

# seek to end of file minus one element and remember the position
my $new_end = sysseek($impl->{file}, -$impl->{group}, 2)
or return undef;

# read in last element or throw exception
croak "Couldn't pop genome file"
unless sysread($impl->{file}, $element, $impl->{group})
   && truncate($impl->{file}, $new_end);

return $element; 
}

sub CLEAR 
{

my ($impl) = @_;
truncate($impl->{file}, 0)
or croak "Couldn't clear genome file";

}

sub STORESIZE
{

my ($impl, $newsize) = @_;
252 CHAPTER 9 TIES



my $oldsize = $impl->FETCHSIZE();

# either truncate the file if it's shrinking
if ($newsize < $oldsize)
{
truncate($impl->{file}, $newsize * $impl->{group})
or croak "Couldn't clear genome file"; 

}
else # extend it since it's growing
{
my $fill_len = $newsize - $oldsize;
croak "Couldn't extend genome file"
unless sysseek($impl->{file}, 0, 2)
   and syswrite($impl->{file}, "\0" x $fill_len, $fill_len);

}
} 

sub EXTEND{ shift()->STORESIZE(@_) }

sub UNSHIFT{ croak "No monkeying with the DNA!" }
sub SHIFT { croak "No monkeying with the DNA!" }
sub SPLICE{ croak "No monkeying with the DNA!" }

The Genome::Array::TIEARRAY method sets up the implementation hash with a
'group' entry that specifies the number of bases to be stored by each element (1 or 3 being
the likely candidates) as well as a 'file' entry holding a reference to an anonymous typeglob
(generated using Symbol::gensym). The filehandle in the typeglob is connected via sysopen
to the file where the actual data is stored. The file is opened for both reading and writing and
will be created if it doesn’t already exist.

The Genome::Array destructor (DESTROY) is nontrivial in this case, since it’s useful to ex-
plicitly close the genome file as soon as it is no longer needed.

The FETCH method first positions the implementation object’s filehandle to the appro-
priate point in the file, then reads the correct number of characters into the lexical scalar $el-
ement. The appropriate file position is the requested index multiplied by the grouping factor.
That is, codon N will start at position 3N, since each codon takes 3 characters. The correct
number of characters to be read is simply the grouping factor itself—1 for bases, 3 for codons.
If anything goes wrong with the seeking or reading—the likeliest problem being trying to index
past the end of the file—the method returns undef. Otherwise the method returns the data
it retrieved into $element.

As we might expect, the STORE method does essentially the opposite of FETCH. It checks
that the new value to be stored is the right length and then verifies that the file holds that many
elements. If not, it extends the file by seeking to its end and appending a suitable number of
null characters. Finally, it seeks to the appropriate position in the file—again, given by the in-
dex multiplied by the grouping factor—and writes the appropriate number of characters.

Fetching the size of the entire array (via FETCHSIZE) is also straightforward—it’s just the
length of the file divided by the grouping factor.
TIE-ING AN ARRAY 253



Pushing elements is particularly easy, since it’s effectively just an assignment to the (no-
tional) element immediately after the current end of the array. Hence, it is possible to imple-
ment the PUSH method using calls to FETCHSIZE and STORE. 

Popping an element is somewhat more complex, since it requires us to also truncate the
file—to physically remove the last element once it’s retrieved. POP first seeks to a position one
grouping before the end of the file (the trailing 2 argument signifies “from the end”) and
records that position in $new_end. It then sysreads the appropriate grouping of characters
into $element and truncates the file at the previously recorded position using the built-in
truncate function. Clearing the entire array is even easier. CLEAR just truncates the file from
position zero, leaving nothing.

package main;
use Genome::Array;

$stop_code = qr/UAA|UAG|UGA/;# End markers for codon sequences

# Connect arrays to DNA data and mRNA data (treat each base separately)
tie @DNA, 'Genome::Array', "DNA.dat", 1;
tie @mRNA, 'Genome::Array', "mRNA.dat", 1;

POLYMERASE: foreach $base ( @DNA )# Read DNA file one base at a time
{

$base =~ tr/ACGU/UGCA/;# Find complement of original base
push @mRNA, $base;# Write mRNA file one base at a time

}

# Connect another array to the mRNA data (treat bases three at a time)
tie @codons, 'Genome::Array', "mRNA.dat", 3;

# Mess about with a codon (maybe add fur and whiskers?)
$codons[1023043] = 'CAT';
 
# interpret codons to build a protein
RIBOSOME: for (my $i=0; $i<@codons; $i++)
{

if ($codons[$i] !~ /$stop_code/)
{

# add another amino acid as specified by the current codon
$polypeptide .= find_tRNA($codons[$i]); 

}
else
{

# at end of a codon sequence release and reset the amino acid chain
express_protein($polypeptide);
$polypeptide = ""; 

}
}

Listing 9.4 Building proteins from DNA
254 CHAPTER 9 TIES



When the tied array receives a STORESIZE or EXTEND request,6 two possible courses of
action exist. If the new size is smaller than the existing size, a truncate is required. Sizes are
specified in terms of number of elements, so we have to multiply by the grouping factor to de-
termine the corresponding number of chars to keep. On the other hand, if the new size is larger
than the current size, we have to extend the file from the end (as in STORE) by appending the
appropriate number of nulls ($newsize - $oldsize).

Incidentally, this package is a case where the hints offered by SETSIZE and EXTEND are
particularly valuable. Individual append operations on a file are relatively expensive, so if we
can anticipate a series of such appends and consolidate them into a single large syswrite op-
eration, we’ll have improved the tied hash’s performance considerably.

The remaining access methods are all set up to throw cautionary exceptions when in-
voked. Shifting and unshifting involve adding text to the start of a file. Splicing requires arbi-
trary insertions and deletions of text somewhere within the file. On almost any common file
system, adding data to the beginning or middle of a text file is expensive, since it generally re-
quires rewriting the entire file. For gigabyte-length files, that’s infeasible, so the operations are
made invalid.

Applied genetics 101
Once the hard work of setting up the Genome::Array package is done, accessing and manipu-
lating DNA data is straightforward. For example, listing 9.4 illustrates a simple program for
expressing the proteins encoded in DNA.

The program first ties two genetic information files to separate arrays—@DNA and @mRNA.
Figure 9.4 shows the internal structure of the @DNA array. The @mRNA array will be be identical
except the filehandle would be connected to a different file. The trailing 1 argument means that
the arrays are set up to treat each file as a sequence of single-character elements. 

6 …since the semantics of either method are the same in this case, EXTEND has been implemented en-
tirely in terms of STORESIZE…

[0] [1] [2]

“file”

1

Genome::Array

“group”

filehandle
to DNA.dat

@DNA

[0] [1] [2]

“file”

3

Genome::Array

“group”

filehandle
to mRNA.dat

@codons

Figure 9.4 The tied @DNA 

and @codons arrays
TIE-ING AN ARRAY 255



The POLYMERASE: loop walks through each base in the @DNA array—that is, each single
character in the DNA.dat file—and pushes its complementary base7 onto the end of the
@mRNA array—in other words, appends it to the mRNA.dat file.

Next, we tie a second array, @codons, to the mRNA.dat file (see figure 9.4 again). This
array treats the data in the file as a sequence of three-base elements. Once the array is tied, these
three-letter codons are directly accessible. To demonstrate this, the program changes the
1,023,044th codon to the base sequence C-A-T.8

Finally, we interpret and translate the codons into amino acids. The RIBOSOME: loop
walks through each codon in the mRNA strand, matching tRNA fragments to each codon and
assembling their associated amino acids into a polypeptide sequence. Each time the loop en-
counters a stop code,9 it releases the completed polypeptide, which automatically folds itself
up into a protein.

9.5 TIE-ING A FILEHANDLE
Apart from tie-ing new implementations to the three standard types of Perl variable, Perl also
supports tie-ing a filehandle to a package. Such support isn’t as polished as that for variables,
but it does provide the basics for overriding the I/O behavior of a filehandle.

As you might expect by now, the methods that you need to define correspond to the op-
erations that can be performed on a regular filehandle (see table 9.3).

7 'A' ➝ 'U', 'U' ➝ 'A', 'C' ➝ 'G', 'G' ➝ 'C'.
8 …which, despite the optimistic comment, is unlikely to confer feline properties on the resulting pro-

tein.
9 …any of the codons 'UAA', 'UAG', or 'UGA', which act like semicolons between instructions in the

genetic programming language…

Table 9.3 Methods for tie-ing a filehandle

Method Purpose

TIEHANDLE called whenever a filehandle or typeglob is tied to the package. Like the other 
TIE… constructors, it receives any extra arguments to tie that appeared after 
the filehandle itself. It’s expected to return a reference to a blessed implemen-
tation object (which is usually a standard filehandle).

WRITE called whenever the tied filehandle is written to via the low-level built-in 
syswrite function. It’s passed a reference to the implementation object, fol-
lowed by the character string to be written, the number of characters to output, 
and the offset within the string at which to start. In other words, it receives a 
reference to the implementation object plus the normal arguments of a 
syswrite call. The value it returns is assumed to be the number of bytes actu-
ally written.

PRINT and PRINTF called whenever the tied filehandle is written to via the high-level built-in print 
and printf functions respectively. Both functions are passed a reference to 
the implementation object, followed by the argument list of the original call (i.e., 
the values to be printed, or the format and values to be printf’ed). Both meth-
ods are expected to return a true value on success and undef on failure.
256 CHAPTER 9 TIES



As you can see, the implementation of a replacement interface for a tied handle is incom-
plete. For a start, without an OPEN method, there’s no way to open—or reopen—a tied han-
dle10 using the built-in open or sysopen functions. If that functionality is required, we
typically either incorporate it into the TIEHANDLE method (and use tie instead of open):

tie *FILE, SomePackage, "<filename";

Or else, we provide our own open method and use the tied function to access it:

tie *FILE, SomePackage;

# and later…

tied(*FILE)->open("<filename");

The same problem arises with other built-in I/O functions, including eof, fileno,
seek, select, sysseek, tell, truncate, and write. The only solution for those instances
is to provide your own methods and call them through tied. 

9.5.1 An example: filtered filehandles

Occasionally it’s useful to apply a filter to an input or output stream, or, sometimes, to both.
For example, we might wish to filter out nonprinting characters from an output stream sent to

READ called whenever the tied filehandle is read from via the low-level built-in read 
or sysread function. It’s passed a reference to the implementation object, fol-
lowed by an alias to the scalar variable to be read into, the number of characters 
to read, and the offset within the variable at which to place the input characters. 
In other words, it receives a reference to the implementation object plus the 
normal arguments of a sysread or read call. The value it returns is assumed 
to be the number of bytes actually read. Because the destination variable is 
passed as an alias, you need to be careful to store the input in $_[1].

GETC called whenever the tied filehandle is used as the argument to the built-in getc 
function. It’s passed a reference to the implementation object, and is expected 
to return the next character of input, or undef if there is none.

READLINE called whenever the tied filehandle is read from using the “diamond” notation 
(i.e., $nextline = <TIED_HANDLE>) or the built-in readline function. It’s 
passed a reference to the implementation object and is expected to return the 
next line of input, or undef if there is none.

CLOSE called whenever the tied filehandle is closed using the built-in close function. 
It’s passed a reference to the implementation object and is expected to return a 
true value if the close was completed, or undef if the close fails.

DESTROY the destructor for the tied filehandle. It is called when the tied filehandle’s 
implementation object is about to cease to exist and is passed a reference to 
that implementation object. It’s not expected to return a value.

10 …and attempting to do so will have no effect and—worse—will generate no warnings.

Table 9.3 Methods for tie-ing a filehandle (continued)

Method Purpose
TIE-ING A FILEHANDLE 257



a terminal, to disarm unexpected terminal control codes. Or we might want to fold all upper-
case letters to low-case to render input case-insensitive. Or we might be dealing with EBCDIC
data and need to convert it to Perl’s native ASCII on input and then back to EBCDIC on
output.

Each of these tasks could be performed by passing the data through a suitable subroutine
after reading it in or before writing it back out. That can become messy if I/O occurs through-
out a program, or we’re using the full range of Perl’s I/O mechanisms.

An alternative is to create a tie-able package that applies the appropriate filters to any sup-
ported I/O operation through a specific filehandle. Then, we set up the filehandle with the ap-
propriate filters, and any kind of I/O on it automatically does the necessary filtering as well.
Listing 9.5 illustrates such a package: Filtered.

package Filtered;
$VERSION = 1.00;

use strict;
use Carp;
use Symbol;

sub _no_filter { return $_[0]; }

sub TIEHANDLE
{

my ($class, %args) = @_;
my $handle = gensym();
my $impl = bless { handle => gensym() }, $class;
$impl->OPEN(%args);
return $impl;

}

sub OPEN
{

my ($impl, %args) = @_;
open $impl->{handle}, $args{file}

or croak "Could not open '$args{file}'";
$impl->{in_filter}= $args{in}  || \&_no_filter,
$impl->{out_filter}= $args{out} || \&_no_filter,

}

sub SEEK
{

my ($impl, $position, $whence) = @_;
return sysseek($impl->{handle}, $position, $whence);

}

sub WRITE
{

my ($impl, $buffer, $length, $offset) = @_;

Listing 9.5 A package for filtered I/O
258 CHAPTER 9 TIES



$buffer = substr($buffer, $offset||0, $length);
$buffer = $impl->{out_filter}->($buffer);
syswrite($impl->{handle}, $buffer, length($buffer), 0);

}

sub PRINT
{

my ($impl, @data) = @_;
my $filter = $impl->{out_filter};
@data = map { $filter->($_) } @data;
print { $impl->{handle} } @data;

}

sub PRINTF
{

my ($impl, $format, @data) = @_;
my $filter = $impl->{out_filter};
print { $impl->{handle} } $filter->(sprintf $format, @data);

}

sub READ
{

my ($impl, $data, $length, $offset) = @_;
my $result = sysread($impl->{handle}, $data, $length);
substr($_[1],$offset||0,$length) = $impl->{in_filter}->($data);
return $result;

}

sub GETC
{

my ($impl) = @_;
$impl->{in_filter}->(getc $impl->{handle});

}

sub READLINE
{

my ($impl) = @_;
$impl->{in_filter}->(scalar readline(*{$impl->{handle}}));

}

 sub CLOSE
{

my ($impl) = @_;
close $impl->{handle};

}

The implementation object for a Filtered filehandle is a hash. That hash stores a reference
to a typeglob, which contains the actual filehandle used for I/O, and two subroutine references,
which specify the desired filtering behavior. Figure 9.5 shows the resulting internal structure.
TIE-ING A FILEHANDLE 259



The Filtered::TIEHANDLE method sets up the implementation object. It is passed the
name of the package, followed by a set of named arguments indicating the file to be opened,
and the filters to be used. TIEHANDLE first creates an anonymous typeglob (using Sym-
bol::gensym) and places it in an anonymous hash, which is blessed as the new implementa-
tion object. To open the file, TIEHANDLE calls the OPEN method, passing it the named
argument.

OPEN opens the filehandle stored in the implementation hash to the file specified by the
"file" argument. If that succeeds, OPEN adds the references to the two filter subroutine ref-
erences—the named arguments "in" and "out"—to the implementation object. If either of
these subroutine references is undef, the default filter no_filter is used instead.

Keep in mind the caveat about OPEN mentioned in the previous section: a tied filehandle
will ignore its own OPEN method if you pass that filehandle to the built-in open function. So,
if FILE is a tied filehandle and we want to reopen it—say, to filter the file data2.txt into all
lower-case—we can’t write:

open FILE, file=>"data2.txt", in=>\&lower_case;

Instead we have to write:

tied(*FILE)->OPEN(file=>"data2.txt", in=>\&lower_case);

If some future version of Perl does finally enable tied filehandles to recognize and make
use of an OPEN method, the arguments that method will require will be the same as for the
built-in open function, not the ones we’re using here. Hence, the OPEN method shown in
figure 9.5, and the one shown later, in figure 9.17, may not be forward-compatible.

The same restrictions are true of the SEEK method. It merely uses the built-in seek func-
tion to reposition the filehandle stored within the implementation object. But, to call it, we
have to write

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

*FILE

filehandle

to data2.txt

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

“in_filter”

“out_filter”

“handle”

Filtered

my ($text) = @_;

$text =~
  tr[\0-\037\177][]d;

return $text;

my ($text) = @_;

$text =~
  tr[A-Z][a-z];

return $text;

Figure 9.5 A typeglob tied 

to the Filtered package
260 CHAPTER 9 TIES



tied(*FILE)->SEEK(0,0);# Seek tied filehandle back to start of file

since the tie mechanism won’t translate a call to the built-in seek when applied to a tied
filehandle. 

As indicated above, the full set of missing interface components—those that tied filehan-
dles don’t support—is extensive. Later, in section 9.7, we’ll see a partial solution to this problem.

Fortunately, the remaining methods in the package are recognized by the tie mechanism
and do work as expected. They simply interpose the appropriate filter between the program
and the implementation object’s filehandle. For output methods (WRITE, PRINT, PRINTF) that
means applying the output filter—the subroutine whose reference is stored in $im-
pl->{out_filter}—to the data and calling the appropriate built-in output function. In the
case of PRINT, that requires us to map the filter across the array of input data. 

For input methods (READ, GETC, READLINE), filtering means calling the corresponding
built-in function to retrieve the data, then applying the input filter—the subroutine whose ref-
erence is stored in $impl->{in_filter}—to that data before it is returned. For the READ-
LINE method, we had to ensure that readline was called in a scalar context so that it only
reads the a single line of input.

Filtering I/O
Having set up this framework for I/O filtering, we can now easily implement the assorted fil-
tering schemes suggested above. For example, to filter out non-printing characters from an
output stream, we set up our stream like so:

use Filtered;

sub expurgate_unprintable 
{

my ($text) = @_;
$text =~ tr[\0-\011\013-\037\177][]d;# delete non-printing chars
return $text;

}

tie *TERMINAL, Filtered, file=>">-", out=>\&expurgate_unprintable;

after which any output operation (i.e., a syswrite, print, or printf) through the TERMI-
NAL filehandle removes all non-printable characters.

To fold upper-case letters to lower-case on input, we can use an anonymous subroutine
and write the following:

use Filtered;

tie *STDIN, Filtered, file=>"-", in => sub { $_ = shift; tr/A-Z/a-z/; $_ };

Now, any data read from STDIN, via sysread, getc, or <>, is guaranteed to appear in lower
case.

If we already have a suitable filtering subroutine, connecting it to a filehandle is just as
easy. For example, to read EBCDIC data files as ASCII, then replace any occurrence of the word
“mainframe” with “PC,” and write the ASCII back as EBCDIC, we can make use of Chris
Leach’s handy Convert::EBCDIC CPAN module:
TIE-ING A FILEHANDLE 261



use Convert::EBCDIC;
use Filtered;

# open EBCDIC file…
tie *FILE, Filtered, file=>"<bigblue.dat", in=>\&ebcdic2ascii;

# process ASCII-fied data…
local $/;
$text = <FILE>;# read entire EBCDIC file as ASCII
$text =~ s/mainframe/PC/g;

# reopen EBCDIC file…
close FILE;
tie *FILE, Filtered, file=>">bigblue.dat", out=>\&ascii2ebcdic;
print FILE $text;# write ASCII $text AS EBCDIC

9.6 INHERITING FROM A TIE-ABLE PACKAGE
Because the subroutines in a tie-able package like Insensitive::Hash or Genome::Array are
really methods, we can use inheritance and polymorphism to reduce the cost of building and
maintaining packages to support tied variables.

For example, suppose a package provided all the methods necessary to implement a tied
hash that exactly mimicked a regular hash. We might subsequently need to implement a hash
that had one nonstandard feature, for example, one that iterates its keys in alphabetical order.
Our new package could inherit from the standard hash package, and we could just define new
FIRSTKEY and NEXTKEY methods in the derived package to override the inherited versions and
implement the extra functionality.

Such a standard hash package already exists and is distributed with every copy of Perl. It’s
called Tie::StdHash, and it’s available as part of the Tie::Hash module that comes with the
standard Perl distribution. Likewise, there are Tie::StdScalar and Tie::StdArray, which imple-
ment inheritable packages implementing tie-able versions of those other data types.

There are many other Tie::… modules in the CPAN. They cover an enormous variety of
purposes, for example:

• Tie::RefHash, which allows you to use references as keys to a hash,
• Tie::DBM, which allows you to tie a hash to a DBM database file,
• Tie::Dir, which allows you to access and modify the files in a directory via a hash,
• Tie::STDERR, which allows you to tie STDERR to a file or a process,
• Tie::Cache, which implements a fixed-size least-recently-used cache.

9.6.1 Example: sorted hashes

Let’s take the Tie::StdHash package and modify it to create a tied hash whose keys are always
sorted.11 Listing 9.6 shows the surprisingly small code required.

11 We don’t actually need to, since there are at least two CPAN modules – Tie::IxHash and Tie::LLHash
– that already do more or less the same job. However, building your own is always more instructive.
262 CHAPTER 9 TIES



The SortedHash package inherits from Tie::StdHash by adding that package’s name to
its @ISA array. Now, whenever a call to FETCH or STORE or DELETE, and so forth. is received
by an object implementing a SortedHash, that call is passed up the inheritance hierarchy to
Tie::StdHash::FETCH, Tie::StdHash::STORE, and so on. 

To give the hash the illusion of ordered storage, all we need to do is ensure that FIRSTKEY
and NEXTKEY return keys in an appropriately sorted sequence. Since the inherited
Tie::StdHash::FIRSTKEY and Tie::StdHash::NEXTKEY methods reproduce the normal,
apparently random ordering of key iteration, we have to arrange for them to be replaced by
smarter versions. That’s easy to do. We just define the appropriate replacements in the derived
package, where they will be seen and selected in preference to the inherited versions.

Actually arranging for the keys to be returned in the appropriate sequence is also easy, but
perhaps not entirely obvious. The trick is to have FIRSTKEY build a sorted list of the hash’s
keys and cache that list so NEXTKEY can repeatedly pull keys from it as they are required.

package SortedHash;
$VERSION = 1.00;

use Tie::Hash;
@ISA = qw( Tie::StdHash );

use strict;

{
my %key_cache = ();

sub FIRSTKEY
{

my ($impl) = @_;
delete $key_cache{$impl};
$key_cache{$impl} = [sort keys %$impl];
return shift @{$key_cache{$impl}};

}

sub NEXTKEY
{

my ($impl) = @_;
return shift @{$key_cache{$impl}};

}

sub DESTROY
{

my ($impl) = @_;
delete $key_cache{$impl};

}
}

Listing 9.6 A package for sorted hashes
INHERITING FROM A TIE-ABLE PACKAGE 263



The only problem is where to cache the sorted key list. We could potentially cache it back
in the hash itself, under a special key (perhaps "\0\0\0\0\0\0\0\0\0", or "paynoatten-
tiontothemanbehindthecurtain", or something equally improbable), but that’s both ugly
and likely to introduce subtle bugs. Instead, we cache the list in a private lexical hash
(%key_cache), which is visible only to FIRSTKEY and NEXTKEY. 

Each entry of %key_cache stores the sorted key list of one SortedHash object. The list
is stored in the entry whose key is the stringified value of a reference to the implementation
object. In other words, the list is stored under the key that results when the corresponding ob-
ject’s memory address is treated as a string. References can’t generally be used as hash keys in
this way—the stringification prevents them from being later reused as references—but they’re
okay here because all we need is a reproducible and unique key for each implementation object.
A stringified reference certainly provides that.

FIRSTKEY does most of the work. It computes a sorted list of the keys in the implemen-
tation object—sort keys %$impl—puts that list into an anonymous array—
[sort keys %$impl]—and, finally, assigns a reference to that array to the appropriate entry
in the cache—$key_cache{$impl} = [sort keys %$impl]. Once this sorted list is set
up, both FIRSTKEY and NEXTKEY iterate it by simply shifting off the first remaining element
and returning it.

Finally, the SortedHash class needs a destructor to remove the cache entry for a tied hash
when that hash ceases to exist. Without this destructor, the cache would preserve the cached
key lists for all defunct hashes. Such lists would never be accessed again, so leaving them around
would constitute a memory leak.

9.6.2 Another example: micro-tracked scalars

Of course, there’s no rule that says we can only inherit from standard packages or those from
the CPAN. Listing 9.7 shows a package (MicroTrack) derived from the Track package in
listing 9.1. This package provides the same features as Track, except that now every storage
operation is immediately reported.

Note how easy it was to create this new package. All we needed to do was replace the in-
herited STORE method with one that first reports to STDERR, then performs the necessary stor-
age by converting itself into the inherited STORE using the goto &subroutine syntax.

Storing the data using goto &{$impl->can("SUPER::STORE")}, rather than the
more obvious $impl->SUPER::STORE($newval), is essential here because the ancestral stor-
age method that will be called (i.e., Track::STORE) uses caller to determine where an as-
signment actually took place. If we had called SUPER::STORE as a regular method, then the
call to caller inside Track::STORE would mistakenly identify MicroTrack::STORE as the
source of the assignment since it would become the immediate caller. 

The goto & syntax, however, causes MicroTrack::STORE to first locate the ancestral
STORE method—$impl->can("SUPER::STORE")—and then be transformed into a call to
that method—goto &{$impl->can("SUPER::STORE")}. As a result, the context that
called MicroTrack::STORE is used as the calling context for Track::STORE. So caller re-
turns the correct information in the ancestral STORE method.
264 CHAPTER 9 TIES



9.7 TIED VARIABLES AS OBJECTS
A tied variable (or filehandle) can be used anywhere a regular variable (or filehandle) can be
used, as long as the package to which it’s tied provides methods to implement the necessary
interface. One such place where a tied variable can replace a normal one, is as the implemen-
tation mechanism of a Perl class. That is, we can bless a tied variable to create an object.

9.7.1 A DNA class

For example, suppose we were designing a DNA::Sequence class. We might want to create
DNA::Sequence objects storing specific genetic codes, and apply methods such as mutate,
recombine, fingerprint, and so forth. to them. To build such objects, we are obviously
going to bless an array (storing bases or codon sequences). Given the extended nature of such
sequences, it would be handy if the array could use disk storage for the data. Clearly, the array
we’re going to bless as a DNA::Sequence object should be one we’ve already tied to the
Genome::Array package.

Listing 9.8 shows an implementation of the DNA::Sequence class. The only mention of
the Genome::Array package is in the DNA::Sequence::new constructor. The constructor de-
clares a lexical array (@self), which it immediately ties to the Genome::Array package. The
arguments to tie ensure that the underlying Genome::Array is connected for read/write access
to the file specified by the constructor’s argument and that the array data is grouped with one
base per element. Finally, the constructor takes a reference to the lexical array, \@self, and
uses it to bless the array into the DNA::Sequence class. DNA::Sequence objects can now be
created in the usual object-oriented manner:

my $dna = DNA::Sequence->new("dna.data");

and the resulting object has an internal structure as shown in figure 9.6.

package MicroTrack;
$VERSION = 1.00;

use Track;
@ISA = qw( Track );

use strict;
 
sub STORE
{

my ($impl, $newval) = @_;
my ($cur_pkg, $cur_file, $cur_line) = caller;
print STDERR"At $cur_file line $cur_line in package $cur_pkg the\n",

"tracked variable was assigned the value $newval\n";
goto &{$impl->can("SUPER::STORE")};

}

Listing 9.7 A package for fine-grained variable tracking
TIED VARIABLES AS OBJECTS 265



The methods of the DNA::Sequence class can completely ignore the fact that their un-
derlying array object, @{$self}, is actually tied to an external data file. For example, the mu-
tate method simply iterates through the number of requested mutations, arbitrarily replacing

package DNA::Sequence;
$VERSION = 1.00;
use strict;

use Genome::Array;

sub new
{

my ($class, $datafile) = @_;
my @self;
tie @self, Genome::Array, "+<$datafile", 1;
bless \@self, $class;

}

sub mutate
{

my ($self, $changes) = @_;
while ($changes-->0)
{

$self->[rand @$self] = substr("ACGT",rand(4),1);
}

}

sub recombine
{

my ($self, $other, $newfile) = @_;
my $combined = DNA::Sequence->new($newfile);
for (my $i=0; $i<@{$self} && $i<@{$other}; $i++)
{

$combined->[$i] = (int rand 2) ? $self->[$i] : $other->[$i];
}
return $combined;

}

sub fingerprint
{

my ($self) = @_;
my $fingerprint = 0;
foreach my $base ( @{$self} )
{

$fingerprint = (($fingerprint<<1) + ord($base)) % 1e6; 
}
return $fingerprint;

}

Listing 9.8 A class built on top of a tied array
266 CHAPTER 9 TIES



a random element in the blessed array referred to by $self with a random base specifier. The
code is identical if DNA::Sequence objects are implemented using a real Perl array, rather than
one tied to the Genome::Array package.

Likewise, the recombine method crossbreeds two DNA sequences by creating a new
DNA::Sequence object—referred to by $combine—and walking through the elements of two
existing sequences—the invoking object and the one referred to by $other. For each element,
recombine randomly selects the base value from one or the other and stores that value in the
new object. Once again, the code treats each object as a simple blessed array without reference
to its internal implementation as a disk file.

The obvious advantage of this “tie-then-bless” approach is that the implementation of the
DNA::Sequence class becomes simple. The class’s methods need only implement manipula-
tions of the genetic data, without worrying about the complexities of shifting to and from data
files.

The less obvious advantage of this approach is that, by isolating the storage considerations
from the manipulation behavior, it becomes easy to migrate the code when the underlying stor-
age mechanism changes. For example, if we were suddenly given access to a computer with 100
gigabytes of RAM, we might prefer to do all our genetic meddling in-memory to increase the
speed of our algorithms. To do so, we could derive a new class from DNA::Sequence, which
uses a normal array instead of a Genome::Array:

package DNA::Sequence::InMemory;
@ISA = qw( DNA::Sequence );

sub new
{

my ($class, $datafile) = @_;
open DATA, $datafile or croak "Couldn't load data";
my @self = split //, <DATA>;
bless \@self, $class;

}

The DNA::Sequence::InMemory::new constructor sets up its objects as blessed arrays
with one character per element, just as DNA::Sequence::new did. All other methods inher-
ited from DNA::Sequence then continue to work unchanged (only considerably faster). Of

[0] [1] [2]

“file”

1

Genome::Array

“group”

filehandle
to dna.data

@self

$dna

DNA::Sequence

Figure 9.6 Internal 

structure of a 

DNA::Sequence object
TIED VARIABLES AS OBJECTS 267



course, the drawback here is that we also lose the automatic storage on disk of any changes to
the DNA data. 

9.7.2 Object-oriented tied filehandles

In chapter 5 we saw how a filehandle in a typeglob could be blessed as an object to provide
asynchronous paging of output. There’s nothing to prevent us from also blessing a filehandle
already tied to another package. In fact, doing so would solve a problem with tied filehandles.

That problem is the missing bits of the tied filehandle interface: OPEN, SEEK, TRUNCATE,
and so on. Because Perl doen’t recognize those methods as providing the implementation for
the built-in open, seek, and truncate functions, we have to resort to using tied to unpack
the tied filehandle’s implementation object and call its methods directly:

tie *FILE, Filtered, file=>">data.txt", out=>\&lower_case;

# and later…

tied(*FILE)->seek(0,0);

If, however, the filehandle had been blessed as an object—say of class IO::Filter—and was
thereafter accessed through a reference—say, $file—we could ensure that the class provided
an appropriate seek method, allowing us to write:

my $file = IO::Filter->new(file=>">data.txt", out=>\&lower_case);

# and later…

$file->seek(0,0);

Best of all, because the built-in I/O functions accept a filehandle reference instead of a
filehandle, we can still use the object-oriented filehandle like a normal filehandle:

print $file "This WILL all be in lower case!\n";

Listing 9.9 shows the surprisingly compact implementation of the IO::Filter class. The
IO::Filter::new constructor creates a new anonymous typeglob, using Symbol::gensym,
and then ties it to the Filtered package, which takes care of opening the actual file. Finally, the
constructor blesses the tied typeglob into the IO::Filter class. That produces an arrangement
like the one shown in figure 9.7.

Since the resulting object is a typeglob reference, it can be used directly in I/O statements:

my $file = IO::Filter->new(file=>">data.txt", out=>\&lower_case);

print $file "This will be written to data.txt\n";
syswrite $file, "ditto", 5, 0;

And, because the typeglob $file refers to is tied to the Filtered package, those I/O operations
are appropriately filtered. Better still, the typeglob reference is a blessed object, so we can also
call methods on it directly:

$file->print("This will be filtered and then written to data.txt\n");
$file->seek(-1, 2);
$file->write("ditt-OO", 7, 0);
268 CHAPTER 9 TIES



Of course, the IO::Filter class doesn’t actually have a print, seek, or write method.
Instead, it uses a single AUTOLOAD method to forward any such call directly to the implemen-
tation object of the tied filehandle. AUTOLOAD first massages the method name in $AUTOLOAD
by removing any package prefix and converting what’s left to upper-case (in order to match
the method names of the Filtered package). It then exposes the implementation object—

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

filehandle
to data.txt

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

“in_filter”

“out_filter”

“handle”

Filtered

my ($text) = @_;

$text =~
  tr[A-Z][a-z];

return $text;

IO::Filter

$file

Figure 9.7 Internal 

structure of an 

IO::Filter object

package IO::Filter;
$VERSION = 1.00;
use strict;

use Symbol;
use Filtered;
 
sub new
{

my ($class, %args) = @_;
my $self = gensym();
tie *{$self}, "Filtered", %args;
bless $self, $class;

}

sub AUTOLOAD
{

use vars qw( $AUTOLOAD ); # Keep use strict happy 
my ($self, @args) = @_;
$AUTOLOAD =~ s/.*:://;
$AUTOLOAD =~ tr/a-z/A-Z/;
tied(*{$self})->$AUTOLOAD(@args);

}

Listing 9.9 An object-oriented wrapper for the Filtered package
TIED VARIABLES AS OBJECTS 269



tied(*{$self}—and calls the appropriate interface method through the symbolic reference
left in $AUTOLOAD.

This is convenient, but relatively slow. Execution speed is not often an issue with I/O
mechanisms, since the actual I/O process is usually much slower, but if it were, we could re-
place the AUTOLOAD method with an set of simple methods:

sub open{ tied(*{shift()})->OPEN(@_) }
sub seek{ tied(*{shift()})->SEEK(@_) }
sub write{ tied(*{shift()})->WRITE(@_)}
sub print{ tied(*{shift()})->PRINT(@_)}
sub getc{ tied(*{shift()})->GETC(@_) }

# etc., etc.

Either way, the overall result is that we can now use an IO::Filter object as a normal file-
handle reference, at least for those I/O functions that the tie mechanism recognizes. Or we can
invoke the same filtered I/O behavior using the object-oriented interface provided by
IO::Filter.

9.7.3 Blessing and tie-ing to the same package

So now we have filehandles tied to the Filtered package and, at the same time, blessed into the
IO::Filter package. The next question is obvious:12 do we actually need the two separate pack-
ages, or can we do it all with just one? The answer, of course, is that, no, we don’t and yes, we
can. What’s not so clear, however, is whether we should.

Listing 9.10 shows a single class (IO::Filtered) that provides the complete implementa-
tion for both tied and object-oriented filtering filehandles. Note that it is little more that the
concatenation of the methods of the packages Filtered and IO::Filter, with some slight adjust-
ments for the change in package names. In particular, the IO::Filtered::new constructor
now ties its filehandle to the package specified by $class—that is, nominally to IO::Fil-
tered—and blesses it into the same package.

package IO::Filtered;
$VERSION = 1.00;

use strict;
use Carp;
use Symbol;

sub _no_filter { return $_[0]; }

sub TIEHANDLE
{

my ($class, %args) = @_;
my $handle = gensym();

12 Well, okay, maybe only obvious to a certain kind of masochist.

Listing 9.10 A single package for tied or object-oriented filtered I/O
270 CHAPTER 9 TIES



my $impl = bless { handle => gensym() }, $class;
$impl->OPEN(%args);
return $impl;

}

sub OPEN
{

my ($impl, %args) = @_;
open $impl->{handle}, $args{file}

or croak "Could not open '$args{file}'";
$impl->{in_filter}= $args{in}  || \&_no_filter,
$impl->{out_filter}= $args{out} || \&_no_filter,

}

sub SEEK
{

my ($impl, $position, $whence) = @_;
return sysseek($impl->{handle}, $position, $whence);

}

sub WRITE
{

my ($impl, $buffer, $length, $offset) = @_;
$buffer = $impl->{out_filter}->($buffer);
syswrite($impl->{handle}, $buffer, $length, $offset||0);

}

sub PRINT
{

my ($impl, @data) = @_;
my $filter = $impl->{out_filter};
@data = map { $filter->($_) } @data;
print { $impl->{handle} } @data;

}

sub PRINTF
{

my ($impl, $format, @data) = @_;
my $filter = $impl->{out_filter};
print { $impl->{handle} } $filter->(sprintf $format, @data);

}

sub READ
{

my ($impl, $data, $length, $offset) = @_;
my $result = sysread($impl->{handle}, $data, $length);
substr($_[1],$offset||0,$length) = $impl->{in_filter}->($data);
return $result;

}

sub GETC
{

my ($impl) = @_;
TIED VARIABLES AS OBJECTS 271



$impl->{in_filter}->(getc $impl->{handle});
}

sub READLINE
{

my ($impl) = @_;
$impl->{in_filter}->(scalar readline *{$impl->{handle}});

}

 sub CLOSE
{

my ($impl) = @_;
close $impl->{handle};

}

sub new
{

my ($class, %args) = @_;
my $self = gensym();
tie *{$self}, $class, %args;
bless $self, $class;

}

sub AUTOLOAD
{

use vars qw( $AUTOLOAD ); # Keep use strict happy 
my ($self, @args) = @_;
$AUTOLOAD =~ s/.*:://;
$AUTOLOAD =~ tr/a-z/A-Z/;
tied(*{$self})->$AUTOLOAD(@args);

}

We can now choose to explicitly tie filehandles to IO::Filtered:

$tiedfile = \*FILE;
tie *{$tiedfile}, "IO::Filtered", file=>">passwd", out=>\&encrypt;

or to bless them into that package

$blessedfile = IO::Filtered->new(file=>">passwd", out=>\&encrypt);

Figure 9.8 shows the internal physical structure of an object blessed into the IO::Filtered
class. Notice that it is virtually identical to the structure of an IO::Filter object (figure 9.7), the
only difference being that now both the tied object and its implementation object are blessed
into the same class—IO::Filtered. However, that physical similarity is misleading because the
two alternatives have different internal logical structures, as figure 9.9 illustrates.

Although both the blessed and the tied versions are suitable for standard I/O operations
such as

print $tiedfile "sEcrEtpAsswOrd";
print $blessedfile "sEcrEtpAsswOrd";

only the blessed version allows us to call IO::Filtered methods using the arrow notation:
272 CHAPTER 9 TIES



$blessedfile->print("sEcrEtpAsswOrd");

That’s because a variable or filehandle that is only tied to a package is not considered to
be an object belonging to that package. So, if we wrote

$tiedfile->print("sEcrEtpAsswOrd");

we would incur a fatal run-time error:
Can't call method "print" on unblessed reference

That’s because the typeglob to which $tiedfile refers is not blessed into IO::Filtered; the
typeglob is merely tied to the package.

In other words ref($tiedfile) returns the string "GLOB", not "IO::Filtered".13 In
a similar way, a call to tied($blessedfile) returns undef, since the reference in
$blessedfile isn’t tied to anything (even though the thing it refers to is). 

Those distinctions are important to bear in mind because they highlight one of the draw-
backs of using a single class to both tie and bless objects. Some of the IO::Filtered package’s
methods, such as OPEN, READ, PRINT, expect a first argument, $impl, that is a reference to
the implementation object of something tied to the IO::Filtered package. Others, such as open,
read, print expect a first argument, $self, that is a reference to something blessed into
IO::Filtered.14 

Consequently, some of IO::Filtered’s methods can’t be directly called on an object blessed
into that class. For example, if someone were accidentally to write

$blessedfile->PRINT("sEcrEtpAsswOrd");

they’d receive the fatal (and less-than-helpful) error message:

13 Remember that the entire point of the tie mechanism was to hide the fact that a variable or filehandle
is actually implemented via some package, so $tiedfile has to pretend to refer to a regular typeglob.

14 The truly nasty bit is that both the implementation object and the regular object are blessed into
IO::Filtered. However, the implementation object is a blessed typeglob, whereas the regular object is a
blessed hash. It might help to stare at figure 9.8 again at this point.

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

filehandle
to passwd

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

“in_filter”

“out_filter”

“handle”

IO::Filtered

my ($text) = @_;

$text =
  crypt($text,”QX”);

return $text;

IO::Filtered

$blessedfile

Figure 9.8 Internal 

structure of an 

IO::Filtered object
TIED VARIABLES AS OBJECTS 273



Not a HASH reference

All of which just emphasizes the more significant problem with tie-ing and blessing things
to the same package: trying to understand the multiple relationships between the blessed and
tied bits makes your head hurt. 

The technique of blessing a tied filehandle is subtle enough when the components are in
separate packages. When a single package has to cater to all three levels—“regular” blessing,
tie-ing, and implementation blessing—the code becomes that much harder to understand and
predict. All in all, it’s almost certainly best to tie and bless using separate packages.

9.8 WHERE TO FIND OUT MORE
The perltie documentation describes the tie mechanism and the way in which Perl datatypes
may be tied. Advanced Perl Programming also devotes a chapter to the topic.

is-a

IO::Filter
&new

&AUTOLOAD

Filtered
&TIEHANDLE

&PRINT
&READLINE

etc.
&DESTROY

scalar
tied

typeglob
implementation

hash
real

typeglobrefers to implemented 
by

uses

is-atied to

delegates to

IO::Filtered
&TIEHANDLE

&PRINT
&READLINE

etc.
&DESTROY

&new
&AUTOLOAD

is-a

scalar tied
typeglob

implementation
hash

real
typeglobrefers to implemented 

by
uses

is-atied to

delegates to

Figure 9.9 Comparative anatomy of IO::Filter and IO:Filtered objects
274 CHAPTER 9 TIES



The CPAN has a directory devoted entirely to modules that make tie-ing easier: http://
www.perl.com/CPAN/modules/by_module/Tie/. The Convert::EBCDIC module is also avail-
able from the CPAN in the directory http://www.perl.com/CPAN/authors/id/CXL/.

Johan Vromans’ Text::Filter module is an industrial strength version of the IO filtering
packages described in this chapter. It’s available from http://www.perl.com/CPAN/authors/id/
JV/.

9.9 SUMMARY
• Tie-ing a variable or filehandle (using the tie function) replaces its internals with a user-

defined implementation object.
• The implementation object must be blessed into a class that provides the methods

needed to simulate the standard variable or filehandle interface.
• Once the variable or filehandle is tied, operations on it call the corresponding method on

the implementation object.
• Tied variables and filehandles can also be subsequently blessed as objects. However, it’s

generally not a good idea to bless them into the same class to which they’re tied.
• Tied variables and filehandles can be untied using the untie function. They revert to

their normal behavior, but not their previous value. If no other references to the untied
implementation object exist, its destructor is called.
SUMMARY 275

http://www.perl.com/CPAN/modules/by_module/Tie/
http://www.perl.com/CPAN/authors/id/CXL/
http://www.perl.com/CPAN/authors/id/JV/


C H A P T E R 1 0

Operator overloading
10.1 The problem 276 10.4Circumventing undesired reference 

10.2 Perl’s operator overloading 

mechanism 278
10.3 Example: A Roman numerals 

class 284

semantics 291
10.5The use and abuse of operators 292
10.6Where to find out more 295
10.7Summary 295
One aspect of object-oriented programming that seems to turn some people away is the con-
stant need to call methods on objects, rather than manipulating the objects directly. It’s not so
much the efficiency of so many subroutine calls (although that can be a concern too); it’s the
sheer ugliness of the resulting code.

10.1 THE PROBLEM
Take Mark Biggar’s standard Math::BigFloat module for example.1 Math::BigFloat objects
store floating point numbers as character strings and provide a range of methods for manipu-
lating those string representations: fneg to negate them, fadd to add them, fmul to multiply
them, and so forth.

We can use those methods to work out some calculation involving large numbers, such
as the estimated difference in per-capita gross domestic product between China and the USA
in 1998.2 Given the most recent available statistics (for 1997):

%China = 

1 Not that there’s anything inherently wrong with the Math::BigFloat package! On the contrary, it’s
well-implemented and very useful. We’re just going to use it inappropriately in order to make a point
about method-based operations in general.

2 US $25,814.89, in case you actually needed to know.
276



(

pop=> Math::BigFloat->new("1 221 591 778"),# people
gdp=> Math::BigFloat->new("3 390 000 000 000"),# US dollars

pop_incr=> Math::BigFloat->new("1.0093"),# annual % change
gdp_incr=> Math::BigFloat->new("1.097"),# annual % change

);

%USA = 
(

pop=> Math::BigFloat->new("267 954 764"),# people
gdp=> Math::BigFloat->new("7 610 000 000 000"),# US dollars

pop_incr=> Math::BigFloat->new("1.0087"),# annual % change
gdp_incr=> Math::BigFloat->new("1.024"),# annual % change

);

the following calculation is required:

$diff =Math::BigFloat->new((Math::BigFloat->new((Math::BigFloat->

new((Math::BigFloat->new($China{gdp}->fmul($China{gdp_incr}))
)->fdiv(Math::BigFloat->new($China{pop}->fmul($China{pop_incr}

)))))->fsub(Math::BigFloat->new((Math::BigFloat->new($USA{gdp}
->fmul($USA{gdp_incr})))->fdiv(Math::BigFloat->new($USA{pop}->

fmul($USA{pop_incr})))))))->fabs());

Yuck. Even breaking up the computation doesn’t help the readability much:

$cpop= Math::BigFloat->new( $China{pop}->fmul($China{pop_incr}));
$cgdp= Math::BigFloat->new( $China{gdp}->fmul($China{gdp_incr}));

$upop= Math::BigFloat->new( $USA{pop}->fmul($USA{pop_incr}));
$ugdp= Math::BigFloat->new( $USA{gdp}->fmul($USA{gdp_incr}));

$cgdp_pc= Math::BigFloat->new( $cgdp->fdiv($cpop));
$ugdp_pc= Math::BigFloat->new( $ugdp->fdiv($upop));

$sdiff= Math::BigFloat->new( $cgdb_pc->fsub($ugdb_pc));
$diff= Math::BigFloat->new( $sdiff->fabs());

The standard method-based object-oriented interface just doesn’t work here, because the
numerous method calls drown the meaning of the code in a sea of arrows, parentheses, and
constructors. What we’d really like to be able to write is something like:

$diff =

abs(($China{gdp} * $China{gdp_incr}) / ($China{pop} * $China{pop_incr})
- ($USA{gdp} * $USA{gdp_incr}) / ($USA{pop} * $USA{pop_incr}) );

which is at least decipherable by normal humans.
To make that possible, we have to be able to change the meaning of operations such as

$cpop * $cpop_incr, or $cgdp_pc - $ugdp_pc, or abs($sdiff) on objects of a given
class. Fortunately, Perl provides a simple mechanism to do exactly that.

Changing the way Perl’s built-in operators behave when applied to a user-defined type
is known as operator overloading. Through overloading, operators can be given new semantics
when applied to objects of a specific class. For example, given

$six = Math::BigFloat->new("6");
$seven = Math::BigFloat->new("7");

$forty_two = $six * $seven;
THE PROBLEM 277



Perl might normally attempt to multiply the integer representations of the two references
stored in $six and $seven; that is, the internal memory addresses of the two Math::BigFloat
objects. That’s unlikely to produce the desired result. 

However, by overloading the multiplication operator, we can arrange for the multiplica-
tion of any two Math::BigFloat objects to produce a new Math::BigFloat object containing the
correct value.3

10.2 PERL’S OPERATOR OVERLOADING MECHANISM
Ilya Zakharevich’s overload.pm module, which comes with the standard Perl distribution,
provides access to Perl’s built-in mechanism for overloading operators. To overload operators
for a given class, you use the module, passing the use statement a list of operator/implemen-
tation pairs:

package Math::BigFloat;

use overload"*"=> \&fmul, 
"+"=> "fadd",

"neg"=> sub { Math::BigInt->new($_[0]->fneg()) };

Each pair consists of a keyword—which specifies the operator that is to be overloaded—
and a subroutine reference—which specifies a subroutine that is to be invoked when the spec-
ified operator is encountered. 

The keyword must be one from the list shown in table 10.1. These are the only operators
that may be overloaded. Note that simple assignment isn’t one of them (more on that later).
The subroutine reference may either be a reference to a named subroutine, a symbolic reference
(i.e., the name of the subroutine), or a reference to an anonymous subroutine. The three al-
ternatives may all be used in the same use overload statement.

The implementation subroutine is called any time a reference to an object of the corre-
sponding class (in the above examples, Math::BigFloat) is an operand of the corresponding op-
erator. If the operation was specified as a subroutine reference, it’s called as a nonmethod
subroutine. If it is specified as a symbolic reference (i.e., a name), it is called as a method. 

In other words, if $six and $seven store Math::BigFloat objects, and multiplication, ad-
dition, and negation are overloaded as shown above, the following series of operations:

$six * $seven;
$six + $seven;

-$six;

is automatically translated to:

Math::BigFloat::fmul($six,$seven,"");

$six->fadd($seven,"");
(sub { Math::BigInt->new($_[0]->fneg()) })->($six,undef,"");

3 The Math::BigFloat module actually does overload the basic arithmetic operators in this way, so oper-
ations on Math::BigFloat objects do work as expected.
278 CHAPTER 10 OPERATOR OVERLOADING



Regardless of how it is invoked, each implementation subroutine is called with three
arguments:

1 The first operand of the operation

2 The second operand of the operation (or undef if the operation is unary, as for fneg
above)

3 A flag indicating whether the operands were reversed.

The flag is needed because—as in all other object methods—the first argument must be
a reference to an object of the appropriate class—in this case a reference to a Math::BigFloat.
If Perl detects an operation such as:

6 + $seven;

it obviously can’t translate that to:

6->fadd($seven,"");# huh?

so it translates it to:

$seven->fadd(6,1);

Table 10.1 Overloadable operations in perl

Category Operators/Keywords Notes

Arithmetic "+" "-" "*" "/" "%" "**"  
"x" "."

"neg"

"neg" implements unary negation. There is no 
overloading for unary identity (i.e., +$obj).

Bitwise "<<" ">>"
"&" "|" "^"

"~"

"^" is bitwise exclusive OR, not exponentiation.

Assignment "+=" "-=" "*=" "/="
"%=" "**=" "<<=" ">>=" 
"x=" ".="

"++" "--"

"++" and "--" are mutators and their handler is 
expected to actually change the value of its first 
argument (e.g., $_[0]->{val}++ for "++"). 
Handlers for other assignment operators may alter 
the first argument, but it is then overwritten by the 
return value.

Comparison "<" "<=" ">" ">=" "=="
"!=" "<=>"
"lt" "le" "gt" "ge" "eq" "ne"
"cmp"

All other operators may be automatically generated 
from the "<=>" and "cmp" operators.

Built-in 
functions 

"atan2"

"cos" "sin" "exp" "abs" "log"
"sqrt"

These override the equivalent built-in function for a 
specific class only.

Conversions q{""} "0+" "bool" Automatically called when the context requires a 
string, number, or boolean.

Pseudo-
operators

"nomethod" "fallback" "=" "=" does not overload the assignment operation.
PERL ’S OPERATOR OVERLOADING MECHANISM 279



and sets the third argument to a true value, to indicate that the arguments had to be reversed.
Notice that in all the earlier examples, this argument was "" (i.e., false), since the first operand
was always a Math::BigNum, so the arguments didn’t need to be reversed. 

Hence, for operations where the order of the operands matters (for example, in subtrac-
tion or division), it’s common to see implementation subroutines structured like this:

sub subtract
{

my ($op1, $op2, $reversed) = @_;
($op2,$op1) = ($op1,$op2) if $reversed;

# then perform $op1 - $op2 as appropriate
}

use overload "-" => \&subtract;

Bear in mind that problems may arise if both operands of a binary operator are references
to objects. If the object’s classes have both overloaded the operator, it’s the overloading in the
first operand’s class that is invoked. In such cases, it may be necessary to resort to multiple dis-
patch techniques (see chapter 13) to ensure that the appropriate subroutine is invoked regard-
less of the order of operands.

10.2.1 “Automagic” operators

The overload.pm module knows about the normal relationships between operations and takes
advantage of them to get its job done. For example, given an implementation for a binary "-"
operator, overload can automatically build a "-=" operator (since $x-=$y is normally equiva-
lent to $x=$x-$y), a unary "neg" operator (since -$x is usually equivalent to 0-$x), and a "-
-" operator (since $x-- is equivalent to ($x, $x=$x-1)[0], and --$x is equivalent to
$x=$x-1).

Likewise, if we provide an implementation for the three-way comparison operator
("<=>"), the overload module will figure out implementations for all other comparison oper-
ators: $x < $y (implemented as ($x<=>$y)<0), $x >= $y (implemented as
($x<=>$y)>=0), $x == $y (implemented as ($x<=>$y)==0), $x != $y (implemented as
($x<=>$y)!=0), and so forth.

These extra overloaded operators are only generated if they are not specifically defined for
a package. That is

package Math::BigFloat;

use overload

"-"=> sub { Math::BigFloat->new( $_[0]->fsub($_[1]) ) },
"neg"=> sub { Math::BigFloat->new( $_[0]->fneg() ) };

will cause overload to autogenerate implementations for the operators "-=" and "--", but
use the defined implementation for "neg", rather than generate one from "-".

Whether to provide explicit implementations for every operator or let overload mecha-
nism build them itself is largely a choice between expediency and efficiency. Autogenerated op-
erator implementations are rarely as efficient as those you can write yourself, but the difference
280 CHAPTER 10 OPERATOR OVERLOADING



in performance may not warrant the extra effort required to hand-code implementations for
every variant of a single underlying operation such as subtraction.

10.2.2 Fallback operations

Occasionally, the autogeneration of certain operators may be undesirable. For example, a par-
ticular class, say DayOfTheWeek, may define a subtraction operation—to determine the
interval between two days—but not a negation operation ("anti-Thursday"?) In that case, it
may be important to prevent the autogeneration of the "neg" operator.

The obvious solution is to manually define a "neg" operator:

package DayOfTheWeek;

use overload

"-"=> \&delta,
"neg"=> sub { croak "Can't negate a day!" };

This eliminates the problem, but is tedious if many automagic operators have to be pro-
hibited. A better solution in that case is to take advantage of the special "nomethod" and
"fallback" pseudo-operators. 

If we define an operator implementation for the pseudo-operator "nomethod", the cor-
responding subroutine is used as a last-resort implementation for operators. Consequently, a
"nomethod" operator is like an AUTOLOAD subroutine for operations. 

Normally, an operator implementation is looked for in the following order:

1 Check whether the required operator was explicitly overloaded. If so, call the corre-
sponding subroutine.

2 Otherwise, check whether an implementation for the required operator can be generated
automatically from some other(s). If so, create it and call it.

3 Otherwise, check whether the "nomethod" operator is defined. If so, call the corre-
sponding subroutine.

4 Otherwise throw an exception.

This order works to maximize the chances that a useful implementation will be called for
every operator, but it won’t help us when our aim is to prevent “automagic” generation since
the "nomethod" implemention isn’t tried until after the automagic is attempted.

Fortunately, the above order can be altered by defining a value for the pseudo-operator
"fallback". If "fallback" is undefined (either never specified, or else assigned the value
undef), the search sequence described above is used. If "fallback" is defined and true, the
sequence is the same as above, except that, instead of throwing the exception, the operation
reverts to the standard Perl behavior for the operator in question. If "fallback" is defined
but false, autogeneration of operators is disabled and the sequence is:

1 Check whether the required operator was explicitly overloaded.

2 Otherwise, check whether the "nomethod" operator is defined.

3 Otherwise, throw an exception.
PERL ’S OPERATOR OVERLOADING MECHANISM 281



We can therefore prevent the autogeneration of any unimplemented operators for the
DayOfTheWeek class like this:

package DayOfTheWeek;

use overload
"-"=> \&delta,

"fallback"=> 0,# switch off autogeneration
"nomethod"=> sub { croak "Operator $_[3] makes no sense" };

The arguments passed to the "nomethod" subroutine are the same three (left operand,
right operand, reversal flag) passed to an actual operator implementation subroutine, plus a
fourth argument specifying the name of the operator requested. So, an operation such as

my $day_of_week = DayOfTheWeek->new(4);

# and later…

-$day_of_week;

calls the anonymous subroutine specified for "nomethod", with the argument list ($day_
of_week,undef,"","neg") and causes a suitably informative exception to be thrown.

10.2.3 Specifying conversion operations

Another feature of the overload.pm module is the ability to redefine the way in which an
object is converted in a string, numeric, or Boolean context. 

To specify how an object is to be converted to a string, we overload its "\"\""—or
“stringification"—operator.4 The subroutine associated with this overloaded operator is called
whenever an object of the corresponding class is used in a context that requires a string. For
example, we can define a stringification operator for the DayOfTheWeek class:

package DayOfTheWeek;

my @_day_name = qw(Sun Mon Tue Wed Thu Fri Sat);

use overload
q{""} => sub { $_day_name[$_[0]->{val}] };

The anonymous subroutine that implements the conversion looks up the element whose
index is $_[0]->{val}. That’s because the first argument to the subroutine is, as usual, a ref-
erence to the object in question. 

The anonymous subroutine associated with q{""} is invoked whenever a reference to a
DayOfTheWeek object is used in a context where a string is expected. The value it returns is
then used as the string. For example:

my $day_of_week = DayOfTheWeek->new(4);\

4 The operator’s name consists of two adjacent quotation marks and could more appealingly be specified
as '""' or q{""}. Perversely, it rarely seems to be written any way except "\"\"". For clarity, we’ll
use q{""} instead.
282 CHAPTER 10 OPERATOR OVERLOADING



# and later…

print $day_of_week, "\n";

print "($day_of_week)\n";

would print
Thu

(Thu)

since being passed directly to print or interpolated into a string are both situations in which
stringification is applied. Other such contexts include:

• Being concatenated (e.g., $day_of_week . "day"), unless the "." operator has also
been redefined,

• Being used as a hash key (e.g., $menu{$day_of_week}).

In a similar way, it’s also possible to specify an automatic conversion performed whenever
an object reference is used in a context that requires a number. For example:

package DayOfTheWeek;

my @_day_name = qw(Sun Mon Tue Wed Thu Fri Sat);
use overload

q{""}=> sub { $_day_name[$_[0]->{val}] },"0+"=> sub { $_[0]->{val} };

The "0+" entry specifies a subroutine to be invoked when a numeric value is expected
and an object reference is given. For example:

print "#" x $day_of_week

will now print:
####

because the right operand of an x operator is expected to be an integer. However, if Day-
OfTheWeek had explicitly overloaded the "x" operator, that implementation subroutine
would have been called instead. 

Other contexts where the “numerification” conversion is invoked include:

• Where a built-in function expects a number (e.g., int($day_of_week) or sub-
str($days,$day_of_week)),

• Where an object is an operand of the range operator (e.g., foreach $day (0..$day_

of_week)),
• Where an object is used as the index of an array entry (e.g., $appointments[$day_of_

week]).

Unless the "fallback" pseudo-operator is set to a true value (see above), the operands
of a nonoverloaded arithmetic operation don’t imply a numerical context. That is, if no "+"
operator is defined for class DayOfTheWeek, the expression $day_of_week+1 doesn’t
convert $day_of_week to a number and apply normal addition. Instead, it attempts to call
the missing overloaded operator "+" and fails.
PERL ’S OPERATOR OVERLOADING MECHANISM 283



The "bool" entry specifies a subroutine that produces a Boolean result when an object
reference is used. For example:

package DayOfTheWeek;

my @_day_name = qw(Sun Mon Tue Wed Thu Fri Sat);
use overload

q{""}=> sub { $_day_name[$_[0]->{val}] },
"+0"=> sub { $_[0]->{val} },

"bool"=> sub { $_[0]->{val} != 0 && $_[0]->{val} != 6 };

causes the specified anonymous subroutine to be called whenever a reference to a Day-
OfTheWeek object appears anywhere that a true or false value is expected:

print "Week-end!" unless $day_of_week;

This correctly determines whether to print its message because the DayOfTheWeek class
defines its objects to be true if the day value is between 1 and 5 (i.e., Monday to Friday).5 The
"bool" conversion is invoked within:

• Any control statement or statement modifier: if, unless, while, or for (e.g.,
while ($day_of_week) {$day_of_week->incr()}),

• The first operand of the ternary operator (e.g., print $day_of_week ? "work" :
"play"),

• The block of a grep statement (e.g., grep { $_ } ($day_of_week)).

10.3 EXAMPLE: A ROMAN NUMERALS CLASS
Listing 10.1 shows a class that represents Roman numerals in the range I to MMMCMXCIX,
and provides normal arithmetic on them.6

package Number::Roman;

$VERSION = 1.00;
use strict;

use Carp;

my @unit= ( "" , qw( I II III IV V VI VII VIII IX) );
my @ten = ( "" , qw( X XX XXX XL L LX LXX LXXX XC) );

my @hund= ( "" , qw( C CC CCC CD D DC DCC DCCC CM) );
my @thou= ( "" , qw( M MM MMM) );

sub _inv { my $k = shift; map {($_[$_]=>$_*$k)} (0..$#_); } 

sub _any { join "|", @_ }
my %rval= (_inv(1,@unit),_inv(10,@ten),_inv(100,@hund),_inv(1000,@thou));

5 This is probably neither a useful nor an obvious definition of “truth” in this context and most likely
indicates that the DayOfTheWeek example has now been stretched just a little too far.

Listing 10.1 A Roman numerals class

6 The ancient Romans could certainly represent and manipulate numbers larger than 3999, but they
weren’t restricted to ASCII.
284 CHAPTER 10 OPERATOR OVERLOADING



my $rpat= join ")(", _any(@thou), _any(@hund), _any(@ten), _any(@unit);

$rpat= qr/^($rpat)$/i;
my $npat= qr/^([0-3]??)(\d??)(\d??)(\d)$/;

 
sub _fromRoman

{
return unless $_[0] =~ $rpat;

return $rval{uc $1} + $rval{uc $2} + $rval{uc $3} + $rval{uc $4};
}

sub _toRoman

{
return unless $_[0] =~ $npat;

return $thou[$1||0] . $hund[$2||0] . $ten[$3||0] . $unit[$4||0];
}

sub new

{
my ($class, $num) = @_;

$num = _fromRoman($num)||$num;
croak qq{Unable to create Roman value for "$_[1]"}

unless $num =~ $npat;
bless \$num, ref($class)||$class;

}

 use overload
'+'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x+$y) },

'-'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x-$y) },
'*'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x*$y) },

'/'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x/$y) },
'%'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x%$y) },

'**'=> sub { my ($x,$y)=_order(@_); Number::Roman->new(int $x**$y) },
'<=>'=> sub { my ($x,$y)=_order(@_); $x <=> $y },

'++'=> "_incr",
'--'=> "_decr",

'""'=> sub { _toRoman(${$_[0]}) },
'0+'=> sub { ${$_[0]} };

 
sub _order

{
my ($x,$y,$reversed) = @_;

$x = $$x if UNIVERSAL::isa($x,'Number::Roman'); 
$y = $$y if UNIVERSAL::isa($y,'Number::Roman'); 

return $reversed ? ($y,$x) : ($x,$y);
}

sub _incr { ${$_[0]}++ }

sub _decr { ${$_[0]}-- }

1;
EXAMPLE: A ROMAN NUMERALS CLASS 285



Each Roman numeral is represented by a blessed scalar containing its numerical equiva-
lent. Conversions between regular integers and strings representing the equivalent Roman nu-
meral are provided by the _fromRoman and _toRoman subroutines. These make use of
conversion tables (@unit, @ten, @hund, @thou, and %rval), and precompiled patterns
($rpat and $npat) that match and subdivide numbers in each format.7

The constructor accepts a regular number or a string containing a Roman numeral. It
converts its argument to a regular number if necessary (_fromRoman($num)||$num). The
constructor then tests the number against the $npat regular expression to ensure that it’s in
the representable range. If the resulting number is still acceptable, a reference to the lexical vari-
able containing it ($num)is blessed into the class.

Therefore, we can write

my $distantia= Number::Roman->new("LXXXVII");# 87 stadia = 10 miles
my $tempus= Number::Roman->new(42);# 42 hora = 42 hours

my $gravitas= Number::Roman->new("CLXII");# 162 libra = 162 pounds

Apart from the constructor itself, the overloaded operators specified by the use over-
load statement form the entire public interface of the Number::Roman class. They provide
the standard binary arithmetic operations, unary increment and decrement, and suitable con-
versions. The class relies on automagic generation to fill in the missing operations, such as all
the assignment variants. There’s no need to set up "nomethod" or "fallback" handling, be-
cause the constructor automatically throws an exception if any operation creates a value outside
the representable range.

The binary operations all work in exactly the same way. The operands ($x and $y) are
extracted from @_ by the _order subroutine, which dereferences any reference to a Num-
ber::Roman object (producing a number) and undoes any reversal of arguments. Hence, be-
cause they use _order, operators on Number::Roman can cope with mixtures of
Number::Roman objects and normal numbers, in any order:

$velocitatis = $distantia / $tempus; 

$vigoris = ($gravitas * $velocitatis**2) / 2; 

Having converted their arguments to two numerical values in the correct order, the op-
erators apply the appropriate numerical operation to those arguments, convert the result back
to an integer, and wrap the result up in a new Number::Roman object. 

There’s no need to define corresponding “assignment” operators ("+=", "-=", etc.) for
the arithmetic operations. The overload module will do so automagically.

The implementation of the binary "<=>" operator is slightly different from the other bi-
nary operations. The operation is required to return a value of -1, 0, or 1 and, so, cannot return
a Number::Roman. The implementation subroutine still passes its arguments through _or-
der, to dereference them and ensure that their order is correct. The resultant values are com-
pared (using the standard <=> operator for numbers), and the result is returned immediately—

7 The mechanics of the interconversion of Roman and decimal numerals are not important to this dis-
cussion and can be ignored if you wish. In fact, being able to ignore the translation details is the main
reason for having a Number::Roman class.
286 CHAPTER 10 OPERATOR OVERLOADING



without creating a Number::Roman to house it. Having defined the "<=>" operator, we need
not define any other comparison. The overload module automagically creates them for us.

Unary increment and decrement are more straightforward than the binary operations.
They forward the operation to the class’s _incr and _decr methods. Those methods deref-
erence their argument, and apply the corresponding numerical operator. The overloading
mechanism automatically takes care of the pre- or post- semantics for a particular operation.
Of course, we could just as easily implement the two operations via anonymous subroutines:8

use overload
# etc. as before,

'++'=> sub { ${$_[0]}++ },

'--'=> sub { ${$_[0]}-- },

# etc. as before;

The stringification operator (q{""}) extracts the number for a Number::Roman object
and uses the _fromRoman subroutine to convert it to a character string holding the equivalent
Roman numerals. Anywhere a reference to a Number::Roman object is used as a string—in
particular, when it’s interpolated or printed—it will be automatically converted into its Roman
form. Therefore:

print "Velocitatis est: $velocitatis\n";
print "Vigoris est: ", ($gravitas*$velocitatis**2)/2, "\n";

prints out:
Velocitatis est: II

Vigoris est: CCCXXIV

The "0+" operator allows a Number::Roman reference to be used as a number, by au-
tomatically dereferencing it. For example, we can produce a graphical representation of the en-
ergy required to accelerate a two pound mass to various velocities:

$gravitas = Number::Roman->new(2);

for ($velocitatis=Number::Roman->new(1); $velocitatis<8; $velocitatis++)
{

my $vigoris = ($gravitas * $velocitatis**2) / 2;
print "$velocitatis\t", "*" x $vigoris, "\n";

}

to produce:
I *

II ****

III *********

IV ****************

V *************************

VI ************************************

VII *************************************************

VIII****************************************************************

8 Symbolic references were used here as an example of delegating an operation to a method. They will
also help with the explanation of another feature in the next section.
EXAMPLE: A ROMAN NUMERALS CLASS 287



10.3.1 Creating class constants

The Number::Roman package hides away almost all the difficulty in using Roman numerals,
making them almost as easy to work with as Perl’s built-in numeric types. The only time
they’re still a pain to use is at the very beginning. Creating Number::Roman objects is a nui-
sance because we have to code a full constructor call:

my $distantia= Number::Roman->new("LXXXVII"); 

my $gravitas= Number::Roman->new("CLXII");

whereas, with built-in numbers, we can use the appropriate constants directly, because Perl
works out the type for us:

my $distance= 87; #numeric constant

my $weight= 42;#numeric constant

The same problem arises with any other type whose operators we choose to overload. For
instance, all the GDP information in the example at the start of this chapter had to be wrapped
up in long and code-cluttering calls to Math::BigFloat::new. It would be much better if
we could write:

my $distantia= "LXXXVII"; 

or

$USA{gdp}= 7610000000000;

and have Perl automatically convert the string or numeric constants into Number::Roman or
Math::BigFloat objects. Amazingly, perl’s overloading mechanism makes even this possible.

To change the way in which integers, floating-point constants, string literals, or regular
expressions are interpreted in a Perl program, we can create a set of constant-interpreting han-
dlers using the overload::constant subroutine. The subroutine takes a hash of arguments
and expects each entry to have a key that is one of the following:

• "integer", indicating the handler for decimal integers,
• "float", indicating the handler for floating-point numbers,
• "binary", indicating the handler for octal and hexadecimal constants,
• "q", indicating the handler for string constants (i.e., in '…', "…", q{…}, and qq{…}

strings, the arguments of a tr/…/…/, or the second argument of an s/…/…/),
• "qr", indicating the handler for regular expressions (i.e., in the first argument of a m/…/

or an s/…/…/). 

The corresponding value for each key must be a reference to a subroutine. That subrou-
tine is responsible for providing a final value for the particular kind of constant being inter-
preted. The subroutine is passed three parameters:

1 A string containing the original characters in the constant,

2 The value that Perl would normally interpret the constant as,

3 A string indicating the source of the constant.

Table 10.2 shows a series of examples illustrating which handler the use of a particular
constant invokes, and what arguments are passed to that handler. Note that two-part constants,
288 CHAPTER 10 OPERATOR OVERLOADING



such as substitutions and translations, invoke two distinct handlers in succession to handle
their two components. A qw{…} string-to-list interpolator invokes a single "q" handler, which
handles the entire string at once (i.e., before it is split).

The source string passed as the handler’s third argument is only defined for "q" and "qr"
handlers. For those handlers, it takes one of the following values:

• 'q', indicating that the string is from an uninterpolated context ('…' or q{…} or
qw{…}),

• 'qq', indicating that the string is from an interpolated context ("…" or qq{…} or m/…/
or the first argument of an s/…/…/),

• 'tr', indicating that the string is part of a tr/…/…/ or y/…/…/,
• 's', indicating that the string is the second argument of an s/…/…/.

Whichever handler is invoked and whatever arguments it is passed, the handler is always
expected to return a scalar value, which is used in place of the usual interpretation. For

Table 10.2 Invocation of constant-interpreting handlers

Constant
Handler  

invoked

Arguments passed

(Original characters, Interpretation, Origin)

"double quotes" q ('double quotes',      'double quotes',     'q')

qq{qq quotes} q ('qq quotes',          'qq quotes',        'qq')

'single quotes' q ('single quotes',      'single quotes',     'q')

q{q quotes} q ('q quotes',           'q quotes',          'q')

qw{qw qwotes} q ('qw qwotes',          'qw qwotes',         'q')

<<HERE
here doc
HERE

q ("here doc\n",         "here doc\n",       'qq')

<<'HERE'
quoted here doc
HERE

q ("quoted here doc\n",  "quoted here doc\n", 'q')

tr/tr_from/tr_to/ q ('tr_from',             'tr_from',         'tr')

q ('tr_to',               'tr_to',           'tr')

qr{qr quotes} qr ('qr quotes',           'qr quotes',       'qq')

s/s_pat/s_text/ qr ('s_pat',               's_pat',           'qq')

q ('s_text',              's_text',           's')

m/m pattern/ qr ('m pattern',           'm pattern',       'qq')

12345 integer ('12345',               12345,            undef)

12_345 integer ('12_345',              12345,            undef)

12345.0 float ('12345.0',             12345.0,          undef)

12345e1 float ('12345e1',             123450.0,         undef)

012345 binary ('012345',              5349,             undef)

0x12345 binary ('0x12345',             74565,            undef)

0xBadDeed binary ('0xBadDeed',           19594173,         undef)
EXAMPLE: A ROMAN NUMERALS CLASS 289



example, the Math::BigFloat package can use overload::constant to change the way that
integer and floating-point constants in a Perl program are interpreted:

package Math::BigFloat;
use Math::BigInt;

use overload;

my %_constant_handlers =
(

integer=> sub { return Math::BigInt->new($_[0]) },
float=> sub { return Math::BigFloat->new($_[0]) },

);

sub import{ overload::constant %_constant_handlers }

sub unimport{ overload::remove_constant %_constant_handlers }

This causes every literal integer or floating-point constant that appears in a Perl pro-
gram—at least, those within the scope of a use Math::BigFloat statement—to be auto-
matically converted to a Math::BigInt or Math::BigFloat, respectively.

We can also change the way that a program interprets strings when using the Num-
ber::Roman package:

package Number::Roman;

# other methods and operator overloading as before

sub _constant_handler
{

my ($original, $std_interpretation, $source) = @_;
return $std_interpretation unless $source =~ /q/ && $original =~ $rpat;

return Number::Roman->new($original);
}

sub import{ overload::constant( q => \&_constant_handler ) }

sub unimport{ overload::remove_constant( q => undef ) }

This time, the constant handler is a little more sophisticated. It first checks that the con-
stant is coming from a single- or double-quoted string, so that translation and substitution op-
erations do not have embedded character strings interpreted as Roman numerals:9

$medical_text =~ s/intravenous/IV/g;# "IV", not Number::Roman->new("IV")

Next, the constant handler checks that the candidate string is a proper Roman numeral.
If it is, then the string is replaced by the reference to a new Roman::Number object. Otherwise,
the standard Perl interpretation of the string constant, as a constant scalar value, is returned.
Quoted string constants that are valid Roman numerals are automatically converted to refer-
ences to Number::Roman objects, while all other quoted strings are interpreted in the normal
way. For example:

9 Of course, in this particular case it wouldn’t matter if such embedded strings were Romanized (except
for the extra cost involved), because the q{""} operator would convert them straight back to the orig-
inal string. But not all classes have this kind of “exactly reversible” representation.
290 CHAPTER 10 OPERATOR OVERLOADING



my $distantia= "LXXXVII";

my $gravitas= 'CLXII'; 
my $tempus= "DIXIT";

puts references to Number::Roman objects in both $distantia and $gravitas, but a regu-
lar scalar string in $tempus (since although DIXIT is Latin,10 it isn’t a valid Roman numeral).

Note also that overload::remove_constant doesn’t actually care about the value as-
sociated with each key it’s passed, so, in this case, it’s easier to pass undef.

10.4 CIRCUMVENTING UNDESIRED REFERENCE SEMANTICS
In Perl, objects are almost always accessed through references. Normally, that distinction—
between the object we’re using and the reference we’re actually passing around—is kept clear
because we have to use an arrow operator to access the object’s methods or attributes. Opera-
tor overloading, however, blurs the distinction, by allowing code such as

$velocitatis = $distantia / $tempus;

in which we treat the two references in $distantia and $tempus as if they were the values
of the Number::Roman objects to which they refer.

Normally, that isn’t a serious problem, as our minds are well adapted to ignoring this du-
ality, and the overloading mechanism works hard to ensure that we can do so safely. There is
one situation, however, where the overloading mechanism can’t automatically shield us from
the “reference semantics” of objects. Consider an operation like this:

$v = $velocitatis;

# and later…

$v++;

The assignment causes both $v and $velocitatis to refer to the same object. The in-
crement operator later causes that object’s value to be incremented. Other parts of the code still
using the $velocitatis reference will then also have the value of the referent mysteriously
changed. That may be the desired effect, but, if so, it’s obscure and inconsistent with the “value
semantics” of other operations.

Operators that change the value of their operands in this way are called mutators, and in-
clude the increment, decrement, and operator assignment operations ("+=", "*=", etc.). The
overload module provides a means of intercepting mutators and cloning the object being mu-
tated so that the mutation only affects a copy of the object.

That interception is specified by overloading the (misleadingly named) "=" operator:

package Number::Roman;

sub incr { ${$_[0]}++ }
sub copy { Number::Roman->new(${$_[0]}) }

10 …for “[he or she] has said”…
CIRCUMVENTING UNDESIRED REFERENCE SEMANTICS 291



use overload

# etc. as before…
'++'=> "incr",

'='=> "copy";

This does not change the behavior of assignment. Rather overloading "=" sets up a sub-
routine that is called just before the implementation subroutine for any mutator is invoked.
In other words, given the overloadings just specified, the code

$v++;

is effectively translated to:

$v = $v->copy(undef,"");

$v->incr(undef,"");

So, provided copy actually does make a copy of object it’s called on, the previous value acces-
sible via $velocitatis is left unchanged.

10.5 THE USE AND ABUSE OF OPERATORS
The operator overloading mechanism gives you a powerful mechanism with which you can
alter the normal behavior of expressions and conversions involving any new class you create.
The question is, should you?

Clearly, cases exist when overloading certain operations makes perfect sense, especially if
you’re creating a class to represent something with a well-defined algebra (such as large integers,
complex numbers, vectors, or matrices). As illustrated by the GDP calculation at the start of
this section, an appropriate set of operators can greatly improve the usability of such classes and
the readability of code that uses them.

Likewise, it’s often useful to overload the stringification conversion for a class. For
example:

package CD::Music;

use overload
q{""}  =>  sub { qq("$_[0]->{name}" by $_[0]->{artist}) };

That way, if someone writes:

my $cd = CD::Music->new(@messiah_data);

# and later…

print $cd, "\n";

they get something useful like:
"Messiah" by George Frideric Handel

rather than something merely accurate like:
CD::Music=HASH(0x1001c3e0)

Then there are cases where the appropriateness of specific overloadings is less certain.
Consider a class implementing three-dimensional vectors, such as might be found in a graphics
package:
292 CHAPTER 10 OPERATOR OVERLOADING



$view_dir = Vector->new(x=>100,y=>0,z=>-50);

$move_dir = Vector->new(x=>20,y=>20,z=>0);

$motion_normal= $view_dir x $move_dir;
$motion_angle= $view_dir * $move_dir;

Clearly, for such a class "x" is an appropriate operator for the cross-product operation,
but is "*" the right choice for the dot-product? It certainly conveys the multiplicative nature
of the operation. It also looks somewhat like a dot (albeit a big, hairy one). But is the actual
dot operator (i.e., ".") a better choice? That operator already has a strong association with con-
catenation in regular Perl, but a vector algebraist might well find:

$motion_angle = $view_dir . $move_dir;

more intuitive. Or perhaps not. It certainly won’t be intuitive when the dot operator is called
to concatenate two string-interpolated variables (for example, "$vector1$vector2") and,
instead, produces their dot-product. And what would such mathematicians make of the "^"
operator? Would they expect

$unit_view_dir = ^$view_dir; 

to create a unit vector? How will they react when it produces a syntax error instead?
The problem is that, having provided some overloaded operators for a class, we have also

set up an expectation in the mind of the users of that class. Because objects of the class can some-
times be used in the natural way, clients may expect that such objects can always be used that
way. That will probably not be the case, so it’s vital to document where the metaphor breaks
down.

Another dubious use of operator overloading occurs when a certain operation is provided
“for completeness,” though its definition is neither justifiable nor sensible. Our earlier attempt
to overload the "bool" conversion for the DayOfTheWeek class was a good example of that.
Setting up such arbitrary and nonobvious operations leads to code like:

if ($today) { $drive->back_up() }

which forces everyone who comes across it to go hunting through the source code trying to
work out the circumstances under which the disk actually gets archived. This is clearly a case
where a normal method call is a better choice:

if ($today->is_business_day()) { $drive->back_up() }

Sometimes operator overloading is used purely to provide coding expediency, rather than
to promote clarity. For example, suppose we create a database class that is entirely operator-
driven:

use OpDBM;

my $db = OpDBM->new($dbfile);

$db += [item=>"oatmeal",category=>"breakfast"];

$db += [item=>"marmalade",category=>"breakfast"];
$db += [item=>"potatoes",category=>"dinner"];

my $relation = sqrt( ~$db * [category=>"breakfast"] );

print "$_->{item}\n" while ($relation++);
THE USE AND ABUSE OF OPERATORS 293



The dozen or so people on the planet who are well-versed in abstract database theory may
rejoice in the decision to overload "+=" to handle insertions, "~" for database normalization,
"*" to perform selections, "++" to iterate a set of records, and sqrt to implement the “Sort,
Quashing Repeated Tuples" operation:

package OpDBM;
use overload

'+='=> sub {$_[0]->insert_tuple( @{$_[1]} ) },
'~'=> sub {$_[0]->normalize() },

'*'=> sub {if ($_[2]){ $_[1]->insert_tuple( @{$_[0]} ) }
else { $_[0]->insert_tuple( @{$_[1]} ) } };

package OpDBM::Relation;

use overload
'++'=> sub {$_[0]->next() },

'sqrt'=> sub {$_[0]->sort_quash_reps() };

To database theoreticians, the resulting code may be obvious, intuitive, and even elegant.
But it’s also likely to make the task of developing and maintaining such code much harder for
the rest of us.

10.5.1 When to overload?

This is a “religious issue,” so there’s no correct answer.11 As a general rule of thumb, overload-
ing the algebraic operators for a class is appropriate when the same operators are used in the
normal (nonprogramming) notation for whatever the class represents. Numeric and other
mathematical classes are the usual candidates here.

Overloading conversion operations is also often a good idea, as it allows objects to act in
standard ways programmers may expect, especially when they are stringified. Comparison op-
erators are another reasonable candidate for overloading in most cases, provided the values rep-
resented by objects have an obvious ordering.

A few operators are sufficiently generalized in their meaning (for example, "+=" meaning
“add to”) that they can reasonably be overloaded in almost any suitable context. Code like

$db += [item=>"oatmeal", category=>"breakfast"];

or

$dictionary += "algebraist";

or

$process_group += $new_process;

is readily intelligible to almost any programmer.
Apart from that, it’s probably best to use operator overloading sparingly, the way an ex-

pert chef uses salt. Without it, your creations may be bland and indigestible, but using it in-
discriminately or too often will only raise your clients’ blood pressure. 

11 Or perhaps: “…so there are nothing but correct answers, most of which are mutually exclusive.”
294 CHAPTER 10 OPERATOR OVERLOADING



10.6 WHERE TO FIND OUT MORE
The overload.pm module comes as part of the standard Perl distribution and has extensive
documentation, including some interesting example classes. 

Many other modules in the standard distribution and on the CPAN (e.g., Math::BigInt,
Math::Complex, Math::Pari,12 I18N::Collate, Data::Dumper, CGI, File::CounterFile, and
Tk::Font) use operator overloading. Studying their source code can be instructive.

Chapter 13 of the Perl Cookbook also describes operator overloading and gives two simple
example classes—one string-based and one numerical—that make use of the facility in differ-
ent ways.

The CPAN provides a (non-object-oriented) Roman numeral class called Roman.pm. It’s
available from http://www.perl.com/CPAN/authors/id/OZAWA/.

10.7 SUMMARY
• Overloaded operators allow Perl objects to act (and interact) like built-in data types. 
• Operators are overloaded by specifying a subroutine, a class method, or an anonymous

subroutine that provides the necessary implementation. 
• The operands are passed as arguments. Their order may have been reversed to ensure

that the first argument is an object, in which case the third argument will be true. 
• The overload.pm module can manufacture missing operators by combining those which

have been specified. It’s also possible to specify a catchall subroutine to handle missing
operators directly.

• A module can install special conversion routines to convert objects to strings, numbers,
or Boolean values and to convert literal strings, numbers, or Boolean values to objects.

• The "=" operator doesn’t overload assignment. Rather, the operator specifies a duplica-
tion method to be called on an object about to have its value altered.

• Operators are best overloaded when they are syntactically compatible with the pre-exist-
ing non-programming notation for the application area.

12 Math::Pari is Ilya Zakharevich’s Perl interface to the extraordinarily useful PARI library for number the-
ory and numerical computation (see ftp://megrez.ceremab.u-bordeaux.fr/pub/pari). It was to support
this module that Ilya originally implemented Perl’s operator overloading mechanism. 
SUMMARY 295

http://www.perl.com/CPAN/authors/id/OZAWA/
ftp://megrez.ceremab.u-bordeaux.fr/pub/pari


C H A P T E R 1 1

Encapsulation
11.1 The perils of trust 296
11.2 Encapsulation via closures 297
11.3 Encapsulation via scalars 302

11.4 Encapsulation via ties 309
11.5 Where to find out more 326
11.6 Summary 326
Encapsulation is one of the cornerstones of object orientation, but it’s the area in which Perl’s
support for object-oriented programming is weakest. Many would argue that enforced encap-
sulation is against Perl’s philosophy of freedom and flexibility in programming. However,
there are situations when too much freedom becomes a trap, and too much flexibility makes it
hard to build solid code. Fortunately, Perl’s flexibility can be turned against itself to provide a
means of building objects that respect the encapsulation imposed by their classes.

11.1 THE PERILS OF TRUST
In practice, the lack of an built-in encapsulation mechanism rarely seems to be a problem in
Perl. Most Perl programmers build classes out of standard hashes, and both they and the users
of their classes get by happily with the principle of encapsulation by good manners. The lack
of formal encapsulation doesn’t matter because everybody plays nicely, keeps off the grass, and
respects the official interface of objects. Those who don’t play by the rules, who directly access
a method or attribute that is supposed to be private, get what they deserve—either better per-
formance or a nasty surprise.

The only problem is that this convivial arrangement doesn’t scale very well. Leaving your
front door open may be fine in a small town, but it’s madness in the big city. Likewise, informal
mechanisms suitable for a few hundred lines of code written by a single programmer don’t
work nearly as well when the code is tens of thousands of lines long and developed by a team.
296



Even if you could trust the entire team to maintain sufficient programming discipline to re-
spect the notional encapsulation of attributes (a dubious proposition), accidents and mistakes
happen, especially in rarely used parts of the system that only get used when demonstrating
to important clients. 

Moreover, deliberate decisions to circumvent the rules (usually taken in the heat of hack-
ing, out of laziness, or for efficiency) are often inadequately documented, leading to problems
much later in the development cycle. For example, consider a (notionally) private attribute of
an object, which for efficiency reasons is accessed directly in an obscure part of a large system.
If the implementation of the object’s class changes, that attribute may cease to exist. 

In a more static language, this would generate an error message when the external code
next attempts to access the now nonexistent attribute. However, Perl’s autovivification of hash
entries may well resurrect the former attribute when it is next modified, so the now-incorrect
access proceeds silently. Bugs such as this can be painfully difficult to diagnose and track down,
especially if the original programmer has moved on by the time the problem is discovered.

11.2 ENCAPSULATION VIA CLOSURES
The standard approach to enforcing encapsulation of an object’s attributes is to avoid giving
the user direct access to the object. At first glance, that may seem impossible; after all, you
must have a reference to the object, or you can’t call its methods. 

The key here is the word direct. So long as the reference provided to the user refers to
something that has been blessed into the required class, it is possible to call methods through
that reference. If we somehow arrange that the blessed something cannot be used to directly
access object attributes, then those attributes are safely encapsulated. The trick, of course, is
to achieve that encapsulation while still allowing methods to access their own attributes
directly.

Curiously, to find that kind of access control for objects, we have to travel briefly in the
opposite direction and look at subroutines.

Subroutines provide an obvious form of encapsulation. If you have a subroutine—say for
example, the pseudo-random number generator function rand—then the only way you can ac-
cess the information it provides is to call it and grab the value it returns. As clients of the rand
function, we have no way of directly accessing its internals. For all most of us know, it might
be implemented like this:
{

my @rand_val = (0.012657, 0.453662, 0.718273);
sub rand
{

push @rand_val, shift @rand_val; # "rotate" the list
return ($_[0]||1) * $rand_val[0]; # scale and return first element

}
}

The point is, there’s no way to extend rand’s pitifully inadequate look-up table. Outside
the block in which it’s defined, @rand_val is out-of-scope, and the only remaining means of
accessing it is hidden inside the rand function itself.
ENCAPSULATION VIA CLOSURES 297



 We have seen the same technique used throughout this book, to encapsulate class at-
tributes—for example, the $_count attribute in the CD::Music class. Outside the block in
which that lexical variable is defined, the only access to it is via the closures get_count, _
incr_count, etc., that were defined in the same block.

The use of a closure to provide controlled access to an otherwise inaccessible lexical works
equally well when applied to the attributes of individual objects. In fact, we could actually cre-
ate the object by blessing the access control subroutine itself. 

Listing 11.1 shows another version of the simple Soldier class. Unlike the automatically
generated hash-based version in chapter 8, this version of the class is implemented using clo-
sures to enforce encapsulation of its attributes.

As usual, the constructor is the most complex part of the class. It creates a lexical hash
(%data) and initializes it with the appropriate entries from the argument list by assigning one
hash slice (@args{@attrs}) to another (@data{@attrs}).1 

The constructor then creates a new anonymous subroutine and stores a reference to it in
$accessor. As the name implies, that subroutine will be used to access the %data hash, once
the new Soldier object is fully constructed.

The anonymous accessor subroutine takes three arguments: a string indicating what kind
of access is required; another string indicating which attribute is to be accessed; and the new
attribute value for “set” operations. The accessor subroutine has three courses of action, de-
pending on the arguments it is given. 

If the first argument indicates a “get” request, the subroutine simply returns a copy of the
requested attribute in the %data hash. The subroutine has access to %data because that hash
was declared in the same lexical scope as the subroutine itself—that is, within the body of the
constructor. If the first argument indicates a “set” request, the subroutine checks whether it is
the "rank" attribute that is being set and, if so, assigns the new value to $data{"rank"}. Any
other access request—for example, to set the "name" attribute—is impolitely rejected.

Finally, once the accessor subroutine is created, it is blessed as the new object, and a ref-
erence to it is returned from Soldier::new. At that point, the constructor ends, and the lex-
ical variables it created would normally be destroyed. However, the %data hash escapes this
fate because the anonymous subroutine still refers to it, and so Perl arranges for it to live on,
incognito, until the anonymous subroutine itself is no longer accessible.

The result, illustrated in figure 11.1, is that each newly created Soldier object is a blessed
subroutine, one which has the only remaining access to the lexical %data. It uses that hash as
its own private storage area, getting or setting entries in %data whenever it is invoked. It’s im-
portant to realize that, next time Soldier::new is invoked, a new—and entirely distinct—
lexical hash, also called %data, will be created within the constructor. Then a new—and en-
tirely distinct—anonymous subroutine will be created, blessed, and returned. That new and
entirely distinct subroutine will subsequently have access to the new %data hash.

In this way, repeated calls to Soldier::new create a series of distinct hashes, each
wrapped up in a personalized, anonymous, encapsulating subroutine. The subroutines are

1 This method of initialization has much to recommend it: it’s concise (just one assignment), declarative
(valid attributes are declared in the @attrs hash), robust (only attributes specified in @attrs can ever
be initialized), and easy to maintain (just add the name of any new attribute to @attrs).
298 CHAPTER 11 ENCAPSULATION



returned as objects and used to access the corresponding hash in a controlled manner. Instant
encapsulation!

Oddly enough, that encapsulation is actually far stronger than is provided by most other
object-oriented languages. Not even the members of its own class have direct access to a Soldier
object’s data. Instead, they too must request access via the encapsulating subroutine. 

Hence the get_name, get_rank, and get_serial_num accessors each take the refer-
ence to a blessed subroutine through which they are invoked (i.e., $_[0]) and call that

package Soldier;
$VERSION = 1.00;
use strict;

use Carp;

my @attrs = qw(name rank serial_num);

sub new
{

my ($class, %args) = @_;
my %data;
@data{@attrs} = @args{@attrs};
my $accessor =
sub
{

my ($cmd, $attr, $newval) = @_;
return $data{$attr}

if $cmd eq "get";
return $data{"rank"} = $newval

if ($cmd eq "set" && $attr eq "rank");
croak "Cannot $cmd attribute $attr";

};
bless $accessor, ref($class)||$class;

}

# These methods provide the only means of accessing object attributes
# (note that only rank can be changed)

sub get_name { $_[0]->('get','name') } 
sub get_rank { $_[0]->('get','rank') } 
sub get_serial_num { $_[0]->('get','serial_num') } 

sub set_rank
{

my ($self, $newrank) = @_;
$self->('set','rank',$newrank);

}

1;

Listing 11.1 The Soldier class implemented via closures
ENCAPSULATION VIA CLOSURES 299



subroutine, passing it an argument list requesting retrieval of the appropriate attribute value.
Likewise, the set_rank method invokes the subroutine, asking it to update its encapsulated
$data{"rank"} attribute with the specified new value. There is no point in providing a set_
name or a set_serial_num method, since the definition of the encapsulating subroutine
makes it impossible to set these attributes.

11.2.1 A variation for the paranoid

In a sense, the accessor methods of class Soldier exist only as conveniences. Instead of writing:

$soldier->set_rank("Colonel");
print $soldier->get_serial_num();

we could take advantage of the fact that we have a reference to the accessor subroutine (i.e., in
$soldier), and call that subroutine directly:

$soldier->("set","rank","Colonel");
print $soldier->("get","serial_num");

Well, we could do that, but it’s probably not a good idea. In fact, it would probably be
better if we couldn’t do it at all.

This level of paranoia may appear to have no purpose, except to “satisfy certain fastidious
concerns of programming police and related puritans.”2 However, there are good reasons for

$soldier1

Soldier

my ($cmd, $attr, $newval) = @_;

return $data{$attr}
  if $cmd eq "get";

return $data{"rank"} = $newval
  if ($cmd eq "set" && $attr eq "rank");

croak "Cannot $cmd attribute $attr";

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

%data

$soldier2

Soldier

my ($cmd, $attr, $newval) = @_;

return $data{$attr}
  if $cmd eq "get";

return $data{"rank"} = $newval
  if ($cmd eq "set" && $attr eq "rank");

croak "Cannot $cmd attribute $attr";

“name” “Patton, G”

“rank” “general”

“serial_num” 1

%data

Figure 11.1 Structure of closure-based Soldier objects

2 ..as suggested by Tom Christiansen in the perltoot man page. Of course, since the Puritans helped to
found the most powerful nation in history, and the police exist to protect the personal rights and lib-
erties of a free citizenry, it may be that Tom is actually in favor of absolute encapsulation and is praising
it with faint damns.
300 CHAPTER 11 ENCAPSULATION



preventing client code from accessing an object in any way except through their defined
methods.

The most obvious reason is that, as maintainers of the Soldier class’s code, we may later
need to change the interface to the anonymous accessor subroutine or even dispense with sub-
routine-based objects entirely. Either of these changes will invalidate any client code that calls
the accessor subroutine directly, which will result in hundreds of irate users contacting us to
ask why their client code no longer works.

Furthermore, as we have already seen in chapter 5, if a class like Soldier is ever to be in-
herited (Soldier::Foot, Soldier::Paratrooper, Soldier::Is::A::Marine::Sir::HOO::AH, etc.), it
may be vital that client code accesses Soldier attributes only via defined methods. If attributes
are accessed in any other way—either directly (for example, $soldier->{"name"}), or indi-
rectly (for example, $soldier->("get","name"))—then that client code is no longer treat-
ing the object polymorphically, and it may not work correctly when given an object of a derived
class.

Fortunately, it’s easy to ensure that the accessor subroutine that implements a Soldier ob-
ject can only be accessed from the class’s defined methods. We simply modify the Soldier con-
structor as follows:

sub new
{

my ($class, %args) = @_;
my %data;
@data{@attrs} = @args{@attrs};
my $accessor =

sub
{

my ($cmd, $attr, $newval) = @_;
croak "Invalid direct access. Use the ${cmd}_$attr method instead"

unless caller()->isa("Soldier");
return $data{$attr}

if $cmd eq "get";
return $data{"rank"} = $newval

if ($cmd eq "set" && $attr eq "rank");
croak "Cannot $cmd attribute $attr";

};
bless $accessor, ref($class)||$class;

}

In this version, when the anonymous accessor subroutine is called, it checks to see that
it was called by a method belonging to a class that is-a Soldier. If not, it immediately throws
an exception. This means that methods like Soldier::get_name can invoke the accessor
method directly, but subroutines outside the Soldier class hierarchy cannot. We could make
the access rules even stricter:

croak "Invalid direct access. Use the ${cmd}_$attr method instead"
unless caller() eq "Soldier";

and limit access to methods of the Soldier class itself, in which case derived classes would also
have to use those methods to access their own (inherited) attributes.
ENCAPSULATION VIA CLOSURES 301



Ultimately, of course, nothing will stop the determined programmer from circumventing
the proper interface of the Soldier class:

my $soldier = Soldier->new(name=>"Alexander", rank=>"General");

package Soldier; # Step back into the Soldier package and…
print $soldier->("get","name");# …call the accessor directly!

But this technique does serve to effectively catch accidental breaches of the interface, and
thereby minimize nasty surprises.

11.3 ENCAPSULATION VIA SCALARS
A less well-known approach to encapsulation uses scalar-based objects to implement a tech-
nique known as the flyweight pattern. In the flyweight pattern, objects don’t carry around their
own information, so that information can’t be accessed directly via the object. Instead, fly-
weight objects merely serve as an index into a shared table of values, stored within the class
itself. For example, an object may be an integer that indexes into a table of values stored as a
class attribute.

Flyweight objects are most frequently used in object-oriented languages that pass objects
around by value because flyweight objects remain extremely small (no matter how much data
they contain). Hence, they are cheap to pass around. Because Perl objects are invariably ac-
cessed via references, this advantage is not significant. 

However, the flyweight pattern still has something to offer in Perl, because it provides a
simple mechanism for preventing direct access to object attributes, thereby enforcing encap-
sulation. As a bonus, it also provides a means of easily keeping track of every object in a class,
something closure-based encapsulation doesn’t provide. 

11.3.1 Name, rank, and serial number

Listing 11.2 shows a flyweight implementation of the Soldier class. The entire class is con-
tained in a pair of curly braces to ensure that any lexical variable declared within their scope is
not directly accessible outside that scope. Not surprisingly, the first thing the class does is
declare some lexical variables. 

package Soldier;
$VERSION = 2.00;
use strict;

{
# Table storing references to hashes containing object data
my @_soldiers;

# Allowable attributes and their default values
my %_fields = (name=>'???', rank=>'???', serial_num=>-1);

# Constructor adds object data to table and blesses a scalar

Listing 11.2 The Soldier class implemented via scalars
302 CHAPTER 11 ENCAPSULATION



# storing the index of that data

sub new
{
my ($class, %args) = @_;
my $dataref = {%_fields};
foreach my $field ( keys %_fields )
{

$dataref->{$field} = $args{$field}
if defined $args{$field};

}
push @_soldiers, $dataref;
my $object = $#_soldiers; 
bless \$object, $class;

}

# These methods provide the only means of accessing object attributes
# (note that only rank can be changed)

sub get_name { return $_soldiers[${$_[0]}]->{name} } 
sub get_rank { return $_soldiers[${$_[0]}]->{rank} } 
sub get_serial_num { return $_soldiers[${$_[0]}]->{serial_num} } 

sub set_rank
{
my ($indexref, $newrank) = @_;
$_soldiers[$$indexref]->{rank} = $newrank

}

# This class method provides an iterator over every object

my $_cursor = -1;
sub each 
{
my $nextindex = ++$_cursor;
if ($nextindex < @_soldiers)
{

return bless \$nextindex, ref($_[0])||$_[0];
}
else
{

$_cursor = -1;
return undef;

}
}

}

The lexical array @_soldiers is used to store the data for each object. That data is di-
rectly accessible to the methods declared within the surrounding curly braces, but nowhere else.
It is this restriction that eventually provides the desired encapsulation of object data.
ENCAPSULATION VIA SCALARS 303



The lexical hash %_fields performs the dual function of recording (in its keys) the
names of valid attributes of a Soldier object and storing (in its values) the default values for
those attributes. 

The constructor begins like most others we’ve seen so far, by creating an anonymous hash
and initializing it with the default attribute values for the class. It loops over the valid fields of
the class, overwriting those default values with any corresponding argument that was passed
to the constructor. 

At this point, a typical constructor blesses and returns the reference in $objref, making
the anonymous hash into the new object. Instead, Soldier::new pushes the hash onto the
end of the encapsulated @_soldiers array and blesses a scalar storing the index of that newly
added array element.

Thus a constructor call such as

my $grunt = Soldier->new(name => "Smith, J.",
rank => "private",
serial_num => 149162536);

leaves $grunt with a reference to a scalar—that is, to the index of the data—rather than a ref-
erence to a hash—that is, to the data itself). Figure 11.2 illustrates the process.

Theoretically, the effect is the same. Since we have the index and know which array it re-
fers to, we can still find the actual data. In practice, however, there’s an important difference.
Outside the curly braces surrounding the class, the @_soldiers array is inaccessible so, even
though we have the index for the object’s data, we can’t access that data directly.

11.3.2 Controlled access

Instead, it’s up to the accessor methods of the class to provide the required access. Since they
are all defined within the encapsulating curly braces, they do have access to @_soldiers. So,
the accessor methods can dereference the blessed index (${$_[0]}), index into the array to
get a reference to the appropriate hash data ($_soldiers[${$_[0]}]), and then access the
correct field of that data using the arrow notation ($_soldiers[${$_[0]}]->{name}).

The implementation shown in listing 11.2 doesn’t provide write accessors for a Soldier’s
name or serial number. The lack of write access provides real data security since, without the
accessors, there is no way of modifying these attributes once they are set. 

Even imposing a new method on the class

package main;
use Soldiers;

my $general = Soldier->new( name => "Caesar, G.J.",
rank => "Prodictator",
serial_num => "MMXLVIII");

# Oops, that serial number was out by one.
# Strange, there's no method to change it.
# Oh well, let's just add one ourselves…
sub Soldiers::set_serial_num { $_soldiers[${$_[0]}]->{serial_num} = $_[1] }
304 CHAPTER 11 ENCAPSULATION



# …and use it…

$general->set_serial_num("MMXLIX");

will not circumvent encapsulation. Although the new method is in the class’s namespace (and
hence, callable through its objects), it isn’t in the lexical scope of the original encapsulating
curly braces, so it doesn’t have access to the lexical @_soldiers array. 

a After my $dataref = {%_fields}; and foreach my $field...                    

$grunt

$dataref

@_soldiers
[0] [1] [2] [3]

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

b After push @_soldiers, $dataref; and my $object = $#_soldiers                 

$object

0

$grunt

$dataref

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

[0] [1] [2] [3]

c After bless \$object, $class; and constructor returns

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

[0] [1] [2] [3]

0
Soldier

@_soldiers

@_soldiers

$object

Figure 11.2 Construction of a Soldier object
ENCAPSULATION VIA SCALARS 305



It’s worth noting that Perl visits a satisfying form of Instant Justice on the author of this
code. Since the code doesn’t use strict, Perl concludes that the @_soldiers array being
modified in Soldier::set_rank is the package variable @main::_soldiers. Thus, the
code executes without complaint, yet mysteriously fails to update any soldier’s serial number,
leading to happy hours of fruitless debugging. 

11.3.3 Roll call

The other advantage of a scalar-based object representation like this is that the class itself has
direct and continuing access to the data of every object blessed into it. That makes it easy to
provide class methods to iterate that data.

The Soldier class demonstrates this by providing an iterator method (Soldier::each),
which steps through the indices of the @_soldiers array, returning a blessed version of each
index (i.e., a Soldier object). The method can be used like this:

while (my $soldier = Soldier->each)
{

printf "name: %s\nrank: %s\n s/n: %d\n\n",
$soldier->get_name(),
$soldier->get_rank(),
$soldier->get_serial_num();

}

By the way, as elegant as it might look, don’t be tempted to write

while (my $soldier = each Soldier) {…}

hoping that this is one of the few places where the indirect object syntax will work. It isn’t.
Instead, Perl will assume you wanted to use the built-in each function to iterate the package
hash %Soldier, and just forgot the "%" prefix. Once again, use strict will prevent Perl
from helping you cut your own throat.

11.3.4 A question of identity

It’s instructive to contemplate what the Soldier::each method is actually doing, every time
it returns an object. Consider the following code:

use Soldier;

my $soldier_ref1 = Soldier->new(name=>"Temuchin", rank=>"Khan");
my $soldier_ref2 = Soldier->each;

Assuming that this is the entire program, then the objects referred to by $soldier_ref1
and $soldier_ref2 should be the same. And, in almost every important sense, they are. They
have the same name, rank, and serial number, and any changes made via $soldier_ref1->
set_rank() will be reflected in subsequent calls to $soldier_ref2->get_rank(). How-
ever, the two references themselves do not compare equal, because the two blessed scalar objects
to which they refer are distinct (though they have the same value). 

Each time it needs to return a given index of @_soldiers, Soldier::each creates
an entirely new blessed scalar object containing that index. Because that object has the same
value as the original object for the given data, it is logically equivalent to the original, and
306 CHAPTER 11 ENCAPSULATION



only distinguishable by its distinct address. Such objects are sometimes called proxies, since
they act in place of the original object.

11.3.5 A variation for the truly paranoid

Although it’s useful that two physically distinct objects can be logically identical, there’s a
down-side: that duality also means that any Soldier object can be converted to any other Sol-
dier object, even if there is no preexisting reference to that other object in the current scope.

For example, consider the following code

use Soldier;
OUTER:
{

INNER:
{

my $commander = Soldier->new(name=>"Smythe, Sir X.A.StJ.",
rank=>"Field Marshall");

}
my $private1 = Soldier->new( name=>"Smith, J.",

rank=>"Private");

$$private = 0; # Guess the right index 
bless $private, Soldier; # and become…
print $private->get_rank(); # …Field Marshall!

}

Even though the outer scope has lost access to the $commander object before the $pri-
vate object is even created, $private can still steal $commander’s identity by changing (and
reblessing) the index stored in its object.

If this kind of referential “bed-swapping” is unacceptable, or if it is important that all ref-
erences to the same Soldier object always compare equal, then a slightly more sophisticated ap-
proach, such as that shown in listing 11.3, is required.

package Soldier;
$VERSION = 3.00;
use strict;

{
# Hash table storing references to hashes containing object data
my %_soldiers;

# Allowable attributes and their default values
my %_fields = (name=>'???', rank=>'???', serial_num=>-1);

# Constructor adds object data to hash table and blesses a scalar
# storing the key of that data

sub new
{

Listing 11.3 A more secure version of Soldier class, implemented via scalars
ENCAPSULATION VIA SCALARS 307



my ($class, %args) = @_;

# Build the data for the object…
my $dataref = {%_fields};
foreach my $field ( keys %_fields )
{

$dataref->{$field} = $args{$field}
if defined $args{$field};

}

# Build a unique unguessable key…
$dataref->{_key} = rand

until $dataref->{_key} && !exists $_soldiers{$dataref->{_key}};

# Insert the data into the table and return the key…
$_soldiers{$dataref->{_key}} = $dataref; 
bless \$dataref->{_key}, $class;

}

# These methods provide the only means of accessing object attributes
# (note that only rank can be changed)

sub get_name{ return $_soldiers{${$_[0]}}->{name} } 
sub get_rank{ return $_soldiers{${$_[0]}}->{rank} } 
sub get_serial_num{ return $_soldiers{${$_[0]}}->{serial_num} } 

sub set_rank
{
my ($keyref, $newrank) = @_;
$_soldiers{$$keyref}->{rank} = $newrank

}

# This class method provides an iterator over every object

sub each 
{
my $nextkey = each %_soldiers;
return \$_soldiers{$nextkey}->{_key} if defined $nextkey;
return undef;

} 
}

Version 2.00 of the Soldier class makes it much harder to locate the data for a particular
object by guessing its location in the internal @_soldiers array. Instead of the array, with its
orderly and predictable sequence of indices, this version uses a hash table (%_soldiers), and
chooses hash keys that are much harder to guess.

 The keys are generated by a call to the built-in rand function, which produces floating
point numbers in the range zero to one. When these numbers are stringified to produce hash
keys, they are typically rendered to 15 decimal digits, all of which are independently random
(assuming double precision on a 32-bit architecture). Hence, the odds of guessing a particular
key are one in a quadrillion. 
308 CHAPTER 11 ENCAPSULATION



The code itself does not even trust these odds and uses a while loop to guarantee that a
given key is never reused for separately constructed objects.

Each key is stored as an entry in the hash of data belonging to its object. The tricky bit
is that this scalar entry is then blessed to become the object itself. Trying to visualize and un-
derstand the relationships between keys, data, and objects in this version will almost certainly
give you a headache, mainly because—in a complete reversal of normal object-oriented phys-
ics—objects are now stored inside their own data! Figure 11.3 illustrates how the constructor
call:

my $grunt = Soldier->new(name => "Smith, J.",
rank => "private",
serial_num => 149162536);

would be handled. You may find it helpful to compare the sequence illustrated, with the cor-
responding sequence in figure 11.2.

The benefit of this fascinating arrangement is that it’s now very unlikely that any piece
of code will be able to guess the key of an otherwise inaccessible Soldier object (and thereby
assume its identity). 

Moreover, since the original objects are actually stored as one of their own atrributes, it’s
possible for Soldiers::each to return a reference to the original objects, rather than having
to manufacture a proxy. This guarantees that the object references returned by Soldier::new
and Soldier::each always compare equal for a given object.

In fact, Soldiers::each is considerably simplified in this version, since all it needs to
do is to use the built-in each function to iterate through the entries of %_soldiers hash and
extract a reference to the original object from each entry.

11.4 ENCAPSULATION VIA TIES
Other object-oriented languages support varying degrees of encapsulation. For example, C++
and Java programmers can declare object and class data members as public, protected, or pri-
vate, to restrict access to them to certain well-defined scopes. Likewise, attributes of Eiffel
classes can be declared with an export list that specifies the classes that can access them.

The closest Perl comes to an explicit encapsulation feature is the behavior of the fields.pm

and base.pm modules (as described in chapters 4 and 6). Pseudo-hash fields whose name starts
with an underscore are not imported by a call to use base, and thus, to some extent, they
mimic private attributes. Unfortunately, all this really means is that derived class objects don’t
have a %FIELDS entry for underscored fields inherited from a base class. Such fields can still
be accessed anywhere. 

So far we have seen two clever techniques for encapsulating the attributes of a class: within
a closure and via a scalar implementing the flyweight pattern. Both techniques effectively pro-
vided a bottleneck that controls access to object attributes. These techniques work well, but
they are all-or-nothing propositions. Every attribute is encapsulated, even from methods of the
same class. Moreover, both techniques are moderately complicated to understand and code,
particularly by beginners—who are most likely to need the safety net of explicit encapsulation.
ENCAPSULATION VIA TIES 309



b After $dataref->{_key} = rand while... 

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

%_soldiers

“_key” 0.25362732

$dataref

a After my $dataref = {%_fields}; and  foreach my $field...  

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

%_soldiers

$dataref

c  After $_soldiers{$dataref->{_key}} = $dataref;

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

%_soldiers

“_key” 0.2536273

"0.2536273"

$dataref

d After bless \$dataref->{_key}, $class; and constructor returns

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

%_soldiers

“_key”
0.2536273

"0.2536273"

Soldier

Figure 11.3 Construction of a paranoid Soldier object
310 CHAPTER 11 ENCAPSULATION



What we really need is a mechanism that builds objects using a simple hash-like data type
and yet is able to specify different levels of accessibility to individual attributes stored in that
hash. 

11.4.1 A limited-access hash

The Tie::SecureHash module, which is available from the CPAN, provides a flexible means of
restricting access to individual attributes of a hash. The module mimics a normal hash, via the
standard tie mechanism described in chapter 9, but allows keys to be fully qualified as if they
were independent package variables. Using these qualifiers, the module restricts attribute
accessibility to specific namespaces.

A Tie::SecureHash object—let’s call it a securehash—is created in one of two ways: either
by tie-ing an existing hash to the Tie::SecureHash module:

my %securehash;
tie %securehash, Tie::SecureHash;

or by calling the constructor Tie::SecureHash::new:

my $securehash_ref = Tie::SecureHash->new();

The value returned by Tie::SecureHash::new is a reference to an anonymous secure-
hash, which has also been blessed into the Tie::SecureHash class. (See chapter 9 for an expla-
nation of how a single package can be used both to tie and bless an object.)

Generally speaking, the resulting securehash acts like a regular Perl hash. You can:

• Access individual entries using normal hash access syntaxes: $securehash{$key} or
$securehash_ref->{$key};

• Confirm the existence of specific entries: exists $securehash_ref->{$key}, 
• Obtain a list of the keys and values that it currently contains: keys %securehash,

values %{$securehash_ref};
• Iterate through the entire hash: each %securehash. 

The Tie::SecureHash module also provides object methods corresponding to most of
these features—such as $securehash_ref->values(), $securehash_ref->each(),
$securehash_ref->exists($key), and so forth—which may be invoked on securehashes
that were created with Tie::SecureHash::new.

The following subsections look at each aspect of using a securehash, concentrating on
how it differs from a regular hash.

11.4.2 Constructing a securehash

Although you can create a securehash by explicitly tie-ing an existing hash to the Tie::Secure-
Hash package, it’s an ungainly way of producing one.3 Since securehashes are designed to be
used as the basis of regular Perl classes, the Tie::SecureHash::new method provides a con-
venient way of obtaining a reference to a “pre-blessed” securehash. 

3 It also makes optimization using the “fast” option difficult (see section 11.4.8).
ENCAPSULATION VIA TIES 311



Tie::SecureHash::new takes a single optional argument that specifies the class you
want the new securehash blessed into. So, instead of writing a constructor like this:

sub new
{

my ($class, %args) = @_;
my %hash;
tie %hash, Tie::SecureHash;
my $self = bless \%hash, $class;

# initialization here

 return $self;
}

you can just write

sub new
{

my ($class, %args) = @_;
my $self = Tie::SecureHash->new($class);

# initialization here

return $self;
}

If Tie::SecureHash::new is called without the optional argument, it blesses the se-
curehash into class Tie::SecureHash itself.

11.4.3 Declaring securehash entries

Securehashes differ from regular Perl hashes in several respects. Perhaps the most important
difference is that securehash entries are not autovivifying. In fact, specific entries cannot be
accessed at all until they have been declared to exist.

A securehash entry is declared by referring to it through a qualified key. A qualified key
is a string consisting of one or more characters except ':', preceded by a standard Perl package
qualifier. For example, the following are all qualified keys, suitable for specifying entries in a
securehash:

'MyClass::key' # key: 'key', qualifier: 'MyClass::'
'MyClass::a key' # key: 'a key', qualifier: 'MyClass::'
'CD::Music::_tracks' # key: '_tracks', qualifier: 'CD::Music::'
'Railroad::_tracks' # key: '_tracks', qualifier: 'Railroad::'
'PerlGuru::__password' # key: '__password',qualifier: 'PerlGuru::'
'main::mainkey' # key: 'mainkey', qualifier: 'main::'
'::mainkey' # key: 'mainkey', qualifier: 'main::' (implicitly)

Each qualifier indicates the package that owns the key. Hence, the first two keys above
are owned by class MyClass and the last two by the main package. Qualified keys with the same
key but different qualifiers—for example, 'Railroad::_tracks' and 'CD::Music::_
tracks'—are treated as being distinct, even if they label two entries in the same securehash.
312 CHAPTER 11 ENCAPSULATION



Hence, the qualifiers are just like the classname prefixes used in chapter 64 to prevent derived
class attributes from clobbering those of the same name inherited from the base class. Indeed,
as we’ll see shortly, qualifiers serve exactly the same purpose in securehashes.

To create an entry in a securehash, it must first be referred to by its fully qualified name.
This would typically happen in a class’s constructor:

package File;

sub new
{

my ($class) = @_;
my $self = Tie::SecureHash->new($class);

$self->{"File::name"} = $_[1];
$self->{"File::_type"} = $_[2];
$self->{"File::__handle"} = $_[3];

return $self;
}

The class whose name is used as a qualifier to declare an entry is thereafter considered to
be the owner of that entry. Owner classes have special access privileges to their attributes, as
described in the next section. Because of that special relationship, an entry can only be declared
within the namespace of its owner’s package. In other words, the qualifier for any entry dec-
laration must be the name of the current package, as in the example above.

Once the entries have been declared, they can subsequently be accessed (subject to the
constraints explained in the next section) either by their fully qualified key or their actual key,
so long as it’s unambiguous. For example:

sub File::dump
{

my ($self) = @_;

print "Dumping file $self->{name}\n"; # Just use key
print "(of type $self->{File::_type}):\n"; # Use qualified key

while (my $nextline = readline(*{$self->{__handle}})) # Just use key
{

print " > $nextline";
}

}

11.4.4 Accessing securehash entries

The use of underscores in some of the key names shown above is not an accident. Secure-
hashes are aware of the usual Perl conventions about leading underscores. More importantly,
they enforce those conventions.

4 …in the subsection Naming attributes of derived classes…
ENCAPSULATION VIA TIES 313



If the unqualified key of a securehash begins with a single underscore, access to the entry
for that key is restricted to its owner class and any classes derived from the owner. If the un-
qualified key of a securehash begins with two or more underscores, access to the entry for that
key is restricted to its owner class alone. Entries with unqualified keys that don’t begin with
an underscore are accessible everywhere. In other words, in C++/Java parlance:

• No leading underscore indicates a public attribute.
• One leading underscore signifies a protected attribute. 
• Two or more leading underscores mark an attribute as private.

For example, in the File::new constructor shown above, the attribute with the key
"name" is universally accessible, the attribute with the key "_type" is accessible within class
File or any class derived from it, and the attribute with the key "__handle” is only accessible
within class File itself.

This arrangement is similar to the usual Perl conventions regarding the labeling of at-
tributes although the distinction between protected and private is rarely made in Perl classes.
The difference here is that Tie::SecureHash polices the intended accessibilities at run time.
Whenever a piece of code attempts to access a securehash entry, the securehash checks whether
the key indicates that the entry is legally accessible to that code. If it isn’t, the securehash throws
an exception. For example:

package ASCII_File;
@ISA = qw( File );
use strict;

use IO::File;
sub open
{

my ($self) = @_;
$self->{__handle} = IO::File->new($self->{name});

}

throws an exception stating: Private key 'File::__handle' of tied SecureHash is inaccessible from

package ASCII_File. The leading underscores of the key '__handle' indicate that it’s a pri-
vate attribute, and the qualifier indicates that it’s private to the package File.

Similarly, an access attempt such as:

package main;

my $file = File->new();
print $file->{_type};

dies with the message: Protected key 'File::_type' of tied SecureHash is inaccessible from pack-

age main, since the leading underscore indicates that the "_type" entry is accessible only
within the hierarchy derived from the class in which the entry was created (i.e., File), and
therefore not accessible from the main package.5

5 …unless, of course, @main::ISA = ('File'). But that’s unlikely.
314 CHAPTER 11 ENCAPSULATION



For additional security, private attributes have a further access restriction. They can only
be accessed within the source file in which they were originally declared. That catches most ac-
cidental abuses of encapsulation6 such as:

use File; # Import class File (i.e., from some other file)

package File; # Reopen the class…

sub reset_handle # …and rummage around inside 
{

my ($self, $newval) = @_;
$self->{__handle} = $newval; 

}

The leading underscores of the attribute name clearly indicate it is intended to be private
and should therefore be left alone. If class File had been implemented using a regular Perl hash,
messing about with such an attribute would merely constitute a dangerous breach of Perl et-
iquette. However, because $self is a securehash, it is, instead, a fatal error.

11.4.5 Iterating a securehash

The issue of entry accessibility extends to iterations. The built-in functions each, keys, and
values, when applied to a securehash, respect the accessibility constraints of its entries.

This means that the each iterator only returns those entries accessible at the point where
the iteration occurs. In other words, if $file contains a reference to a File object, then the
number of entries printed out by a loop such as:

while ( ($key, $value) = each %{$file} )
{

print "$key => $value\n"
}

depends on where the loop is executed. The four possibilities are:

• The loop executes in package File in the source file in which File::new was originally
declared. In this case, all three entries—that is, those with the keys "name", "_type",
and "__handle"—are accessible, and so all three are returned by each.

• The loop executes within the logical bounds of package File, but in the physical bounds
of some other source file. In this case, two entries (for "name", and "_type") are
returned. The "__handle" entry is skipped because it’s only accessible in the file in
which it was originally declared.

• The loop executes in a package derived from File. Once again, two entries ("name" and
"_type") are returned. This time the "__handle" entry is skipped because it’s only
accessible from the class in which it was originally declared.

• The loop executes in a package not derived from File. Only the public entry ("name") is
returned. The "__handle" entry is skipped because it is only accessible from the class in

6 Though determined encapsulation abusers can always resort to the #line directive and effectively
wish themselves into any source file they choose.
ENCAPSULATION VIA TIES 315



which it was originally declared. The "_type" entry would be skipped because it is
accessible only from the hierarchy of the class in which it was originally declared.

Thus, for a securehash, each (and likewise keys and values) only iterates through the
currently accessible entries, and silently skips the rest. It’s also worth noting that each and
keys both return fully qualified keys, which can be used to access the iterated entry unambig-
uously (see the next section). 

11.4.6 Ambiguous keys in a securehash

The ability to access securehash entries by unqualified keys is an important convenience. It
can also be a useful programming technique when using inheritance, since, as we’ll see in a
moment, it allows us to create polymorphic attributes. But it also creates problems under
some circumstances.

The convenience aspect is obvious. Requiring that securehash keys always be fully qual-
ified would go against the cardinal virtue of Laziness. Who would bother to use a securehash
if they always had to write $self->{CD::Music::__rating}, instead of $self->{__rat-
ing}? In most cases, the securehash contains only a single matching unqualified key, so it is
redundant to require it to be qualified.

However, the use of inheritance can bring complications. It should be possible to derive
one class from another without worrying about conflicts with inherited attributes. But, as we
saw in chapter 6, when using a standard hash as the basis of an object, it’s all too easy to set
up name collisions between a class’s attributes and those of an ancestral class. 

Let’s recreate the collection class with the settable flag from chapter 6, using securehashes
instead:

package Settable;
use Tie::SecureHash;

sub new
{

my ($class, $set) = @_;
my $self = Tie::SecureHash->new($class);
$self->{Settable::_set} = $set; # Is the Settable object set?
return $self;

}

sub set
{

my ($self) = @_;
$self->{_set} = 1; # Access Settable_set

}

package Collection;
@ISA = qw( Settable );

sub new
{

my ($class, %items) = @_;
316 CHAPTER 11 ENCAPSULATION



my $self = $class->SUPER::new();
$self->{Collection::_set} = { %items }; # Set of items in collection
return $self;

}

sub list
{

my ($self) = @_;
print keys %{$self->{_set}}; # Collection::_set or 

# Settable_set?
}

We would probably expect that Collection::list would be smart enough to work out
that accesses to the key "_set" in the Collection class should refer to "Collection::_
set", rather than "Settable::_set". And, indeed, Tie::SecureHash resolves such ambigu-
ous cases in exactly that way. The key whose owner is the least distance away up the inherit-
ance hierarchy is the one selected. Hence, unlike those stored in a normal hash, object
attributes stored in a securehash can behave polymorphically. Just like methods, attributes
declared in derived classes can supersede those of the same name that were inherited from a
base class, instead of colliding with them.

The concept of an attribute being the least distance away up the hierarchy means “…with
respect to the class that owns the current method,” not “…with respect to the actual class of the
object.” Otherwise, there would be problems if a Collection object called the inherited Set-
table::set method. In that case, there are still two "_set" keys in the securehash, but we
want the appropriate one for the Settable portion of the Collection object. If the securehash
looked at the type of the object (Collection), rather than the location of the method (in Set-
table), it would guess wrongly.

That’s not to say that a securehash can always correctly interpret an unqualified key. Take
the following example:

package Chemical;

sub new
{

my ($class, $chem_name) = @_;
my $self = Tie::SecureHash->new($class);
$self->{Chemical::name} = $chem_name; 
return $self;

}

package Medicine;
@ISA = qw( Chemical );

sub new
{

my ($class, $product_name, $chemical_name) = @_;
my $self = Chemical->new($class, $chemical_name);
$self->{Medicine::name} = $product_name; 
return $self;

}

ENCAPSULATION VIA TIES 317



Within any methods of the Chemical class, the unqualified public key "name" is always
resolved to "Chemical::name". Likewise, within Medicine’s methods, the same key is un-
ambiguously resolved to "Medicine::name". But suppose we attempt to use the unqualified
key from the main package? That is:

package main;
my $nostrum = Medicine->new("Didroxyfen", "dihydrogen oxide");
print $nostrum->{name};

Since we’re not attempting to access either "name" entry from the namespace of its own-
er, there’s no way to decide which entry was intended. Tie::SecureHash sidesteps the issue by
immediately throwing an exception that explains the difficulty.

Of course, there’s no problem if we remember to fully qualify any access to a public at-
tribute of a securehash outside its class hierarchy. An even better solution is not to use public
attributes in the first place!

Unfortunately, even if we virtuously avoid declaring public keys, ambiguity can still arise
within a class hierarchy. The problem lies, as usual, with multiple inheritance. If a class inherits
protected attributes with the same unqualified key from two ancestral classes, any subsequent
unqualified attempt to access one of those attributes is inherently ambiguous. Listing 11.4
shows a particularly nasty case.

The reference to $self->{_handle} in IO::okay is inherently ambiguous. There are
two matching keys—"Reader::_handle" and "Writer::_handle"—in the securehash re-
ferred to by $self, and each of their owners is equally close to the IO class in the inheritance
tree, since both are owned by an immediate parent of the current class.

In this case, Tie::SecureHash has two options:

• Implement a resolution process similar to the dispatch process for methods (that is,
resolve the unqualified key to the one owned by the left-most depth-first ancestor);

• Simply flag an ambiguity. 

Since the situation really is ambiguous, securehashes choose the second alternative and
throw an exception listing the accessible qualified keys that made the unqualified key ambig-
uous. Once again, the problem disappears if we say exactly what we mean and use a fully qual-
ified key instead:

sub okay
{

my ($self) = @_;
return !$self->{Writer::_handle}->error();

}

It’s important to note that Tie::SecureHash only ever considers accessible keys when
determining whether an unqualified key is ambiguous.7 That means, for example, that even
though entries for both keys "Reader::_handle" and "Writer::_handle" may be present
in the securehash object, the Reader::next method can unambiguously resolve an

7 In contrast, for example, to C++, where an unqualified member access under multiple inheritance will
be flagged as ambiguous even if only one of the possible targets is actually accessible at that point.
318 CHAPTER 11 ENCAPSULATION



unqualified access to $self->{_handle} since only the "Reader::_handle" entry is
accessible from package Reader.

11.4.7 Debugging a securehash

Because two or more keys in a secure hash can have the same unqualified name, and because
the accessibility rules for keys are moderately complex, the behavior of securehashes blessed

package Reader;

sub init
{

my ($self, $source) = @_;
$self->{Reader::_handle}= new IO::File("<$source");
$self->{Reader::__lastread}= undef;

}

sub next
{

my ($self) = @_;
$self->{__lastread} = $self->{_handle}->readline(); # "Reader::_handle"

}

package Writer;

sub init
{

my ($self, $destination) = @_;
$self->{Writer::_handle} = new IO::File(">$destination");

}

package IO;
@ISA = qw( Reader Writer );

sub new
{

my ($class, $source, $destination) = @_;
my $self = Tie::SecureHandle->new($class);
$self->Reader::init($source);
$self->Writer::init($destination);
$self->{IO::__mode} = "read";
return $self;

}

sub okay
{

my ($self) = @_;
return !$self->{_handle}->error();  # Which "_handle"???

}

Listing 11.4 Key ambiguity within a derived class
ENCAPSULATION VIA TIES 319



into complex inheritance hierarchies can be difficult to debug in some cases. Moreover, since
securehashes strictly enforce encapsulation in a most un-Perl-like manner, they can reveal
unsuspected problems in a class design. Hence, it’s important to be able to debug securehashes
effectively.

The Tie::SecureHash module provides a method (debug) that may be called to dump the
contents of a securehash to STDERR. The method can be called on any securehash—regardless
of the class into which it’s been blessed—with an explicit method call. For example, if we were
debugging the IO::okay method discussed in the previous section, we might modify it:

sub okay
{

my ($self) = @_;
$self->Tie::SecureHash::debug();
return !$self->{_handle}->error();

}

Alternatively, the class using a Tie::SecureHash can inherit from it as well, to make
Tie::SecureHash::debug directly available through its objects:

package IO;
@ISA = qw( Reader Writer Tie::SecureHash );

sub okay
{

my ($self) = @_;
$self->debug();
return !$self->{Writer::_handle}->error();

}

Either way, when IO::okay is called, the debug method will print:
In subroutine 'IO::okay' called from package 'IO':

Writer::

(?)  '_handle' =>  'IO::File=GLOB(0x10028ba0)'

>>> Ambiguous unless fully qualified. Could be:

>>> Reader::_handle

>>> Writer::_handle

IO::

(+)  '__mode' =>  'read'

Reader::

(?)  '_handle' =>  undef

>>> Ambiguous unless fully qualified. Could be:

>>> Reader::_handle

>>> Writer::_handle

(–)  '__lastread' =>  undef

>>> Private entry of Reader::

>>> is inaccessable from IO.
320 CHAPTER 11 ENCAPSULATION



In other words, Tie::SecureHash::debug reports the current location details8 and the
key and value of each entry of the securehash, categorized by owner. More importantly, it re-
ports the accessibility of each entry at the point where it was called. Entries preceded by a “(+)”
are accessible, entries preceded by a “(–)” are not, and entries preceded by a “(?)” are accessible
but ambiguous unless the key is fully qualified.

11.4.8 "Fast" securehashes 

Securehashes provide an easy means of controlling the accessibility of object attributes on a
per-attribute basis. Unfortunately, that ease and flexibility comes at a cost. 

As explained in chapter 9, accessing the entries of tied hashes is often five to ten times
slower than for untied hashes. Add to that the cost of the tests that a securehash has to perform
before it can grant access to an entry, and the cost blows out to between ten and twenty times
as much as for an untied hash. That makes the use of securehashes impractical in most pro-
duction code.

With this problem in mind, the Tie::SecureHash module provides a way to have your
cake (properly encapsulated attributes…) and eat it too (…accessed at untied hash speeds). The
trick lies in observing that the actual enforcement of access restrictions is only required when
a piece of code attempts to violate those restrictions. In other words, if no one ever breaks the
law, you don’t need any actual police to enforce it.

The solution is to develop the application using Tie::SecureHash to enforce proper en-
capsulation, then optimize the final code by converting every securehash to a regular hash
(which provides no enforcement). As long as the development code has been fully tested, the
enforcement code provided by the securehashes is no longer required.

To convert from securehashes to regular hashes, it’s not necessary to change any of the
code that accesses a securehash, only the code that creates it. That’s because a securehash’s in-
terface mimics that of a regular hash,9 so code that accesses one will access the other just as well.
It’s a form of polymorphism: keeping the interface the same means the client code doesn’t have
to worry about the implementation at all. 

Of course, in the typical large application in which you might want to use securehashes,
hunting for every situation where a securehash is created and replacing that securehash with a
regular hash can be time-consuming and error-prone. If we have to locate every call to
Tie::SecureHash::new and every use of tie %somehash, Tie::SecureHash, we’re
likely to miss at least one. 

To reduce that burden, the Tie::Securehash module provides a special “fast” mode, in
which a call to Tie::SecureHash::new returns a reference to an ordinary hash, rather than
to a securehash. Hence, in fast mode, we don’t have to replace any call to Tie::Secure-
Hash::new, since it correctly adjusts its behavior automatically. Of course, that doesn’t solve
the problem of any raw tie %somehash, Tie::SecureHash, but that’s just another reason
to use Tie::SecureHash::new instead.

8 Access violations often occur because methods are not actually called from the expected package (or
file), or they’re not defined in the class in which they’re assumed to be.

9 Well, almost. See section 11.4.9 for the single exception.
ENCAPSULATION VIA TIES 321



Fast mode is activated by importing the entire module with an extra argument:

use Tie::SecureHash "fast";

Converting to fast mode: an example 
Developing securehash-based classes that can later be converted to fast mode requires three
phases of coding. First, we create the code using securehashes:

package Color;
use Tie::SecureHash;

sub new
{

my $self = Tie::SecureHash->new($_[0]);
$self->{red} = $_[1];
$self->{Colour::green} = $_[2];
$self->{Component::blue} = $_[3];
$self->{Color::__bright} = 0.299*$_[1] + 0.587*$_[2] + 0.114*$_[3];
return $self;

}

package main;

my $color = Color->new(128,255,255);
print $color->{Color::__bright};

Then, we debug the code to eliminate the error messages that the securehashes will have
produced in response to access violations:

package Color;
use Tie::SecureHash;

sub new
{

my $self = Tie::SecureHash->new($_[0]);
$self->{Color::red} = $_[1]; # Add missing owner name 
$self->{Color::green} = $_[2]; # Correct wrongly spelt owner name
$self->{Color::blue} = $_[3]; # Replace wrong owner name
$self->{Color::__bright} = 0.299*$_[1] + 0.587*$_[2] + 0.114*$_[3];
return $self;

}

# add accessor for private attribute
sub brightness { return $_[0]->{Color::__bright} }

package main;

my $color = Color->new(128,255,255);
print $color->brightness; # use accessor instead of private attribute

Finally, we optimize the entire code, converting every securehash to a regular hash by ac-
tivating fast mode:
322 CHAPTER 11 ENCAPSULATION



package Color;
use Tie::SecureHash "fast"; # switch to "fast" mode

sub new
{

my $self = Tie::SecureHash->new($_[0]);
$self->{Color::red} = $_[1];
$self->{Color::green} = $_[2];
$self->{Color::blue} = $_[3];
$self->{Color::__bright} = 0.299*$_[1] + 0.587*$_[2] + 0.114*$_[3];
return $self;

}

sub brightness { return $_[0]->{Color::__bright} }

package main;

my $color = Color->new(128,255,255);
print $color->brightness;

Apart from that one extra argument to use Tie::Securehash, the debugged source
code doesn’t change in any way. But Tie::SecureHash::new now returns a reference to a
regular hash and, although the code works exactly as before, access to attributes has been greatly
accelerated.

11.4.9 “Strict” securehashes 

This develop-with-restrictions-then-run-without-them approach works well provided we
accept two limitations: always use Tie::SecureHash::new to create securehashes, and
never use unqualified keys to access them.

The need to use Tie::SecureHash::new was explained above. If the Color::new con-
structor had been implemented like this

sub new
{

my %securehash;
tie %securehash, Tie::SecureHash;
my $self = bless \%securehash, $_[0];
$self->{Color::red} = $_[1];
$self->{Color::green} = $_[2];
$self->{Color::blue} = $_[3];
$self->{Color::__bright} = 0.299*$_[1] + 0.587*$_[2] + 0.114*$_[3];
return $self;

}

then, even with fast mode activated, the constructor still ties the object to the Tie::SecureHash
class. The resulting code works, but slowly. So, the source code has to be manually changed
when moving to fast mode—by replacing the tie statement. In other words, Tie::Secure-
ENCAPSULATION VIA TIES 323



Hash::new knows about fast mode and can adjust for it, but the built-in tie function
doesn’t and can’t.10

The second restriction is a more significant problem. One of the useful features of a se-
curehash is that, once an entry has been declared with its full qualifier, you can thereafter refer
to it without the qualifier and expect the securehash to get it right in all unambiguous cases.
However, if we’re replacing the securehash with a regular hash, that “do what I mean” intel-
ligence disappears. Since a regular hash doesn’t recognize an unqualified key as being the same
as a fully qualified key, this can lead to subtle bugs when the securehashes are removed. For
example, if we code Color::brightness like so:

sub brightness { return $_[0]->{__bright} }

it works perfectly as long as Color objects are implemented as securehashes, but silently breaks
as soon as the securehashes are replaced by regular hashes in fast mode. 

That’s because, although the constructor stores the brightness value under the key "Col-
or::__bright", the brightness method looks it up under the key "__bright". Since a
regular hash considers these two keys to be completely unrelated, it won’t redirect the access
request to the "Color::__bright" entry. Instead, it autovivifies an entry for the key "__
bright" and returns that new entry’s undef value, which would probably then be automat-
ically converted to zero. Oops!

These two restrictions are not particularly onerous, but they can be difficult to apply con-
sistently in a large application.11 To make conversion to fast mode easier, Tie::SecureHash
offers another mode called “strict.” Like fast mode, this mode can be invoked by importing the
module with the appropriate argument:

use Tie::SecureHash "strict";

In strict mode, securehashes control access in their normal way, except that they also pro-
duce warnings whenever a hash is explicitly tied to Tie::SecureHash and whenever an unqual-
ified key is used to access a securehash. Thus, code that uses securehashes and runs without
warnings in strict mode is guaranteed to behave identically in fast mode.

11.4.10 The formal access rules

The access rules for a securehash are designed to provide secure encapsulation with minimal
inconvenience and maximal intuitiveness—so that keys need only be qualified when they are
created and where they would be ambiguous. However, to produce this appearance of trans-
parency, the formal access rules are quite complicated. The following subsections list them
explicitly. Unless you’re planning to use the module immediately, you may like to skip this bit
for now.

10 Actually, the way Tie::SecureHash is set up, any attempt to tie a securehash while in fast mode causes
a warning to be generated. That doesn’t make converting such code back to regular hashes any easier,
but at least it tells you where the problems are.

11 …or to retrofit to an existing one when the decision to use fast mode is made only after the code is
complete.
324 CHAPTER 11 ENCAPSULATION



All entries
• No entry for an unqualified key is autovivifying. Each entry must be declared before it is

used. Qualified keys do autovivify their entry, so an entry may be declared as part of its
initial use.

• The key of each entry must be explicitly qualified (in the form "<owner>::<key>")
when an entry is declared.

• An entry is owned by the package whose name was used as the explicit qualifier in its
declaration.

• Entries must be declared by code that’s within the namespace of their owner’s package
and file.

• An unqualified key is always interpreted as referring to the key owned by the current
package, if such a key exists, no matter how many other accessible matching keys the
hash may also contain.

• Otherwise, accesses through an unqualified key throw an exception if the number of
accessible matching keys in the securehash is not 1 (either …key does not exist… if the
number is zero, or …key is ambiguous… if it is greater than 1). 

• A fully qualified key is never ambiguous, though it may be nonexistent, or inaccessible
from a particular namespace.

Public entries
• Public accessibility of entries is indicated by their unqualified key beginning with a char-

acter other than an underscore. 
• Public entries may be subsequently accessed from any package in any source file.
• A public entry’s key is ambiguous if it isn’t explicitly qualified, and no matching key is

owned by the current package, and two or more matching unqualified keys are owned by
any other packages.

Protected entries
• Protected accessibility of entries is indicated by their unqualified key beginning with a

single underscore. 
• Protected entries may subsequently be accessed from any package (P) in any source file,

provided that at the point of access, P is, or inherits from, the owner package (Owner).
That is, a protected entry is accessible in any package P, where P->isa("Owner") is
true.

• Protected keys declared to be owned by a given package will hide entries with the same
unqualified key inherited from parent classes of that package. Any inherited entry hid-
den in this way is inaccessible from the namespace of the derived class, unless accessed
via a qualified key.

• A protected key is ambiguous if it’s not explicitly qualified, and no matching key is
owned by the current package, and two or more accessible matching keys are owned by
two or more other packages, and those other packages are inherited by the current pack-
age through two distinct entries in its inheritance hierarchy.
ENCAPSULATION VIA TIES 325



Private entries
• Private accessibility of entries is indicated by their unqualified key beginning with two or

more underscores. 
• Private entries can be accessed only from within the namespace of their owner package,

and only from the source file in which they were originally declared.
• Unqualified private keys are never ambiguous. Because private entries are only ever

accessible from a single class, there can be at most only one accessible matching private
key.

11.5 WHERE TO FIND OUT MORE
Tom Christiansen’s perltoot tutorial has an excellent description of the use of closures to
enforce encapsulation. Closures themselves are discussed in the perlref, perlsub, and perlfaq7

documentation and in chapter 4 of Advanced Perl Programming. 
The flyweight pattern is discussed at great length in Design Patterns (although in the con-

text of C++, not Perl). 
The Tie::SecureHash is available from the CPAN in the directory http://www.perl.com/

CPAN/authors/id/DCONWAY/.

11.6 SUMMARY
• Techniques for enforcing encapsulation of Perl objects rely on hiding the interface of the

datatype that is implementing each object, typically by taking advantage of the limited
scope of lexical variables.

• One approach is to use a closure as an object. The closure itself provides restricted access
to out-of-scope lexicals, which in turn store attribute values.

• Alternatively, a scalar object can be used to hold an index into a lexical table that stores
the actual objects. This approach is known as the flyweight pattern.

• The Tie::SecureHash module simulates a regular hash, but provides three levels of
enforced encapsulation on individual entries.

• Hashes tied to Tie::SecureHash are slower than regular hashes, so the module is best used
in development and then removed (using the fast option) in production code.
326 CHAPTER 11 ENCAPSULATION

http://www.perl.com/CPAN/authors/id/DCONWAY/


C H A P T E R 1 2

Genericity
12.1 Why Perl doesn’t need special generic 
mechanisms 327

12.2 Using specific mechanisms 
anyway 329

12.3 Implicit generics via 
polymorphism 337

12.4 Where to find out more 351
12.5 Summary 351
The ability to specify generic code structures, independent of the details of class type, is an
important component of most object-oriented languages. Anyone who has ever had to rewrite
the List class to cater for different types of elements (List_of_CDs, List_of_Soldiers, List_of_
Lexers, List_of_List_of_Dates, etc.) knows that generic types and subroutines are a powerful
means of reducing code duplication and simplifying maintenance. In fact, some would con-
tend that genericity is more important than hierarchical abstraction in this respect.

Surprisingly, Perl offers no explicit built-in mechanism for creating generic classes or ge-
neric subroutines.1 There are no templates, no metaclasses, no parametric types, no class gen-
erators. The reason is simple: they aren’t needed.

12.1 WHY PERL DOESN’T NEED SPECIAL GENERIC MECHANISMS
Explicit mechanisms for specifying generic structures are usually found in languages with
static typing, where the type of each object is determined—and fixed—during compilation.
Such languages need a way of separating the generic form of a data structure from the type-
specific implementation of that data structure, for a given set of classes (usually called its type
parameters).

1 …except, perhaps, the AUTOLOAD mechanism, which can be viewed as a run-time generic method that
reproduces the functionality and, to some extent, the internal structure of the specific methods it replaces.
327



In other words, such languages need a way of indicating a placeholder for a type, so that
it’s possible to specify something general like: 

“Let L be a list of objects of type <whatever>. To insert a new element E (also of
type <whatever>), for each object O already in the L, use a subroutine S to compare
O and E. The first time the comparison is false, insert E before O in the list, and set
the current element pointer to the newly inserted element.”

Then the compiler can fill in the placeholders with actual types, usually with the assis-
tance of additional syntax to bind specified types to the placeholder <whatever>.

Perl’s type system is completely different from this. Perl objects don’t have statically as-
sociated class types; objects can be reblessed at any time. Perl variables don’t have static types
either;2 they can store objects blessed into any class (or into no class at all). So, in Perl, we can
get away with specifying a generic list insertion as follows:

"Let L be a list of objects (of any type, as usual). To insert a new element E (of any
type), for each object O already in the L, use a subroutine S to compare O and E.
The first time the comparison is false, insert E before O in the list, and set the cur-
rent element pointer to the newly inserted element."

Or, in actual Perl code:

sub List::insert

{
my ($L, $E, $S) = @_;

my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)

{
my $O = $L->{elements}->[$index];

last unless $S->($O, $E);
}

splice @{$L->{elements}}, $index, 0, $E;
$L->{current} = $index;

}

The dynamic typing of Perl variables means that there is no need for placeholders, since
any scalar variable will happily hold a reference to an object of any class, and arguments of any
type(s) may be passed to any subroutine.

Of course, there’s a price to pay. The earlier statically typed version has access to more
information, namely, the type of object the list is supposed to store. With this information, it
can pick up errors at compile time such as attempting to insert an object E of the wrong type,
or using the wrong comparison subroutine. In the Perl version, these problems would not sur-
face until the code is actually executed—and perhaps not even then.

Another reason why Perl has no need for explicit genericity is Perl’s excellent range of
built-in datatypes. As the above code example illustrates, Perl’s powerful arrays, hashes, refer-
ences to data, and subroutines, and so forth, are already generically capable of storing—or re-
ferring to—any Perl data-type. Thus, when implementing the insertion subroutine for our

2 Not even with typed lexicals, where the associated class name is merely a hint to the compiler as to their
intended use.
328 CHAPTER 12 GENERICITY



generic list class, we can just use a regular Perl array as the basis of the class, confident that it
will be able to cope with whatever kind of objects we choose to store.

12.2 USING SPECIFIC MECHANISMS ANYWAY
Yet another reason why Perl doesn’t need explicit genericity is that it provides other powerful
mechanisms that can achieve the same effects. Closures, for example, are a general means of
binding specific data (and hence data-types) into a generic subroutine. The eval function pro-
vides an even more powerful code-generation mechanism, allowing us to build an entire class,
using interpolated variables as placeholders. This section explains both of these techniques.

12.2.1 Closures as generic methods

One problem with the generic List::insert code shown above is that the user has to pass a
reference to some comparison subroutine, which is accessed via $S, each time they wish to do
an insertion. That’s tedious and unnecessary.

A better solution is to provide a method that generates variants of the List::insert
method with the appropriate comparison subroutine hard-wired in. For example, we can write:

sub List::generate_insert

{

my ($class, $S) = @_;

return sub

{

my ($L, $E) = @_;
my $index;

for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;

$L->{current} = $index;

}
}

List::generate_insert takes a single argument, which is a reference to a subroutine.
It creates and returns a new anonymous subroutine functionally identical to List::insert,
except that it no longer requires a third ($S) argument. Instead, the lexical variable $S, which
was created in the first line of List::generate_insert, is used. $S is still in scope when
the anonymous subroutine is created, so it’s okay to use it within that subroutine. And because
the subroutine uses it, $S survives the end of the call to List::generate_insert. The tech-
nique is almost identical to the way we created a private $_count variable for the CD::Music
class.

Of course, to make it usable, we still have to associate the newly created anonymous sub-
routine with the insert method of a specific class. If, for example, we want List_of_Em-
ployee::insert to use the anonymous subroutine we can simply assign the result of the call
to List::generate_insert to the appropriate typeglob:
USING SPECIFIC MECHANISMS ANYWAY 329



*List_of_Employee::insert = List->generate_insert(\&List_of_Employee::_compare);

We pass List::generate_insert a reference to the subroutine List_of_Employ-
ee::_compare, so that the new class’s insert method uses its own _compare. This ap-
proach gives us some flexibility in deciding which comparison subroutine is used by which
insert. For instance, we might want to ensure the same sorting order for both general em-
ployees and management level staff:

*List_of_Manager::insert = List->generate_insert(\&List_of_Employee::_compare);

On the other hand, this might be a coding error (and a difficult one to detect, at that).
If each specific list class’s insert must always use the same class’s _compare, we can rewrite
the List::generate_insert method to produce a safer generator method: 

sub List::generate_insert_for

{

my ($class, $newclass) = @_;

no strict "refs";

my $S = \&{"${newclass}::_compare"};

*{"${newclass}::insert"}  = sub

{
my ($L, $E) = @_;

my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)

{
my $O = $L->{elements}[$index];

last unless $S->($O, $E);
}

splice @{$L->{elements}}, $index, 0, $E;
}

}

Instead of a reference to the comparison function, this version takes the name of the new
class as its argument. It uses that class name to build the name of the appropriate comparison
subroutine—"${newclass}::_compare". That name is used as a symbolic reference to the
subroutine itself (&{"${newclass}::_compare"}), which is converted to a normal reference
via a leading backslash (\&{"${newclass}::_compare"}). The anonymous subroutine is
then constructed exactly as before, but now it is automatically assigned it to the correct type-
glob, which is also accessed via a symbolic reference (*{"${newclass}::insert"}).

So, now, to create a suitable List_of_Manager::insert method, we write:

List->generate_insert_for("List_of_Employee");

This same approach can easily be extended to generate the other necessary methods for a list
class:

List->generate_first_for("List_of_Employee");

List->generate_next_for("List_of_Employee");
List->generate_insert_for("List_of_Employee");

List->generate_delete_for("List_of_Employee");

or, better still, aggregated into a single subroutine:
330 CHAPTER 12 GENERICITY



sub List::generate_methods_for

{
my ($class, $newclass) = @_;

List->generate_first_for($newclass);
List->generate_next_for($newclass);

List->generate_insert_for($newclass);
List->generate_delete_for($newclass);

}

Even better, that subroutine could be called List::import instead of List::
generate_methods_for. Remember that import is automatically called whenever a module
is used, so we can put the generic method generators of class List into a List.pm module and
create list classes whenever they are needed like so:

use List "List_of_Employee";

use List "List_of_Tasks";
use List "ClientList";

# etc., etc.

Of course, we would then need to declare the _compare subroutines in BEGIN blocks to
make sure each is available when each new list type is used into existence during compilation:

BEGIN
{

sub List_of_Employee::_compare
{

return $_[0]->{ID} < $_[1]->{ID}
}

}

use List "List_of_Employee";

Otherwise, there is no way to create the necessary reference to it within List::generate_
insert_for. 

Alternatively, we can go back to passing the comparison subroutine explicitly (as a second
argument to List::generate_insert_for):

sub List::generate_insert_for
{

my ($class, $newclass, $S) = @_;

no strict "refs";

*{"${newclass}::insert"}  = sub
{

my ($L, $E) = @_;
my $index;

for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;

}
}

We would then modify List::import accordingly:
USING SPECIFIC MECHANISMS ANYWAY 331



sub List::import

{
my ($class, $newclass, $comparison_sub) = @_;

List->generate_first_for($newclass);
List->generate_next_for($newclass);

List->generate_insert_for($newclass,$comparison_sub);
List->generate_delete_for($newclass);

}

and create entire classes in a single line:

use List "List_Employee", sub {$_[0]->{ID} < $_[1]->{ID}};

use List "Manager::List", sub {$_[0]->{revenue} > $_[1]->{revenue}};

# and later…

my $minions = List_Employee->new();
my $masters = Manager::List->new();

Listing 12.1 shows the complete generic List class, as it would be specified in the List.pm

module.

package List;

$VERSION = 1.00;
use strict;

no strict "refs";

sub List::import
{

my ($class, $newclass, $comparison_sub) = @_;
List->generate_new_for($newclass);

List->generate_first_for($newclass);
List->generate_next_for($newclass);

List->generate_insert_for($newclass,$comparison_sub);
List->generate_delete_for($newclass);

}

sub List::generate_new_for
{

my ($class, $newclass) = @_;
*{"${newclass}::new"} = sub

{
my ($class, @data) = @_;

bless{
current => 0,

data => [@data],
}, ref($class)||$class;

}
}

sub List::generate_first_for

{

Listing 12.1 The List module
332 CHAPTER 12 GENERICITY



my ($class, $newclass) = @_;

*{"${newclass}::first"} = sub
{

my ($self) = @_;
return \$self->{data}[$self->{current}]

if ($self->{current}=0) < @{$self->{data}};
}

}

sub List::generate_next_for
{

my ($class, $newclass) = @_;
*{"${newclass}::next"} = sub

{
my ($self) = @_;

return \$self->{data}[$self->{current}]
if (++$self->{current}) < @{$self->{data}};

}
}

sub List::generate_insert_for

{
my ($class, $newclass, $compare) = @_;

*{"${newclass}::insert"} = sub
{

my ($self, $newelem) = @_;
my $index;

for ($index=0; $index < @{$self->{data}}; $index++)
{

my $nextelem = $self->{data}[$index];
last unless $compare->($nextelem, $newelem);

}
splice @{$self->{data}}, $index, 0, $newelem;

$self->{current} = $index;
}

}

sub List::generate_delete_for
{

my ($class, $newclass) = @_;
*{"${newclass}::delete"} = sub

{
my ($self) = @_;

splice @{$self->{data}}, $self->{current}, 1;
}

}

1; # to ensure the "use" succeeds

The same approach can be adapted to any generic class that requires specific subroutine
references, class name strings, or other class-specific data to be interpolated into some place-
USING SPECIFIC MECHANISMS ANYWAY 333



holder within the generic code. The values to be interpolated are passed as arguments to use
and distributed to the appropriate generator subroutines by the generic class’s import method.

12.2.2 Eval-ing generic classes 

There are two main drawbacks to the approach described in the previous section. First, invok-
ing the comparison subroutine through a reference (i.e., $S) is relatively slow, which is unfor-
tunate in a fundamental data structure like a list. Secondly, the use of different generate_…
methods, each with an embedded anonymous subroutine representing a single generic
method, fragments the generic class and makes it more difficult to understand and maintain.

Both problems can be overcome at once by changing the way the individual subroutines
are generated. Instead of creating an anonymous subroutine and assigning it into a typeglob,
we can use an eval to convert a block of text (containing the specification of the generic class)
into actual Perl code. Listing 12.2 shows the generic List class from listing 12.1 modified in
this way.

package List;

$VERSION = 2.00;
use strict;

 
sub _replace

{
my ($substitute, $text) = @_;

$text =~ s/\Q$_/$substitute->{$_}/g foreach (keys %$substitute);
return $text;

}

my $code;
sub import

{
my ($class, $newclass, $compare) = @_;

unless (defined $code) { local $/; $code = <DATA> }
eval _replace {'<<CLASS>>'=>$newclass, '<<COMPARE>>'=>$compare} => $code;

}

1; # to ensure the "use" succeeds
__DATA__

package <<CLASS>>;

sub new
{

my ($class, @data) = @_;
bless { current => 0, data => [@data] }, ref($class)||$class;

}

sub compare { <<COMPARE>> }

sub first
{

Listing 12.2 The List module using eval
334 CHAPTER 12 GENERICITY



my ($self) = @_;

return \($self->{data}[$self->{current}])
if ($self->{current}=0) < @{$self->{data}};

}

sub next
{

my ($self) = @_;
return \($self->{data}[$self->{current}])

if (++$self->{current}) < @{$self->{data}};
}

sub insert

{
my ($self, $newelem) = @_;

my $index;
for ($index=0; $index < @{$self->{data}}; $index++)

{
my $nextelem = $self->{data}[$index];

last unless compare($nextelem, $newelem);
}

splice @{$self->{data}}, $index, 0, $newelem;
$self->{current} = $index;

}

sub delete
{

my ($self) = @_;
splice @{$self->{data}}, $self->{current}, 1;

}

The _replace subroutine takes a reference to an anonymous hash as its first argument
and a string as its second. The hash specifies a series of substitutions to perform on the string.
Each key of the hash is a literal pattern; each value is the corresponding replacement text.

The List::import subroutine effectively performs the same job as the previous version,
but in a different way. It first extracts the name of the new class and the code for that class’s
_compare subroutine from the argument list. 

Then, if necessary, it reads in the template for the List class, as specified after the token
__DATA__, and stores it in the package lexical variable $code. This read is only performed
the very first time a use List is issued in a program, after which the text is cached in $code. 

To generate the specific code needed we could also have used a here document, or an in-
terpolation module such as Interpolation or Text::Template,3 or even the standard sprintf
function. However, reading from <DATA> allows us to cleanly distinguish between the actual
code implementing the List.pm module (everything before __DATA__) and the code template
it uses (everything after __DATA__).

3 Both by Mark-Jason Dominus, and available from the CPAN.
USING SPECIFIC MECHANISMS ANYWAY 335



The template code is passed through _replace to put the new class’s name and the com-
parison code into the appropriate placeholders. Once these slots have been filled in, the (now-
specific) code is evaled into the current program.

The remainder of the file consists of the code template for the generic list class. The entire
class is laid out—with the placeholders <<CLASS>> and <<COMPARE>> for the generic bits—
making the structure, function, and level of genericity of the class much clearer. 

This version of the List class is used in much the same one-line manner as the previous
one. The only difference is that the comparison code is now specified as a string (in single
quotes to avoid the embarrassment of premature interpolation):

use List "List_Employee", '$_[0]->{ID} < $_[1]->{ID}';
use List "Manager::List", '$_[0]->{revenue} > $_[1]->{revenue}';

# and later…

my $minions = List_Employee->new();

my $masters = Manager::List->new();

Once again, the technique can be easily adapted to generate generic classes for any pur-
pose and with any number of place-holders.

12.3 IMPLICIT GENERICS VIA POLYMORPHISM
Despite the occasional need for the techniques shown above, Perl’s normal blend of dynamic
typing, interface polymorphism, and string-based class names (as arguments to bless) is so
powerful that it’s almost always enough to do the job without such tricks.

Let’s look at a complete example of a generic tree container class and see how it can be
used to implement treelike structures as diverse as binary search trees and numerical heaps.

12.3.1 The generic Tree class

The class, as shown in listing 12.3, is very simple. Its constructor takes the name of another
class, which specifies the type of node to be stored. It stores this name and creates an empty
root node of the corresponding type. Because Tree::new takes an argument used to specify
another type, it is immediately generic, since we can now create trees to store different kinds
of nodes using the same method:

my $bst_str= Tree->new("BinarySearch::StringKey");
my $bst_num= Tree->new("BinarySearch::NumericKey");

my $heap_num= Tree->new("Heap");

The _check_root method ensures that there is a root node in every tree, which is vital
since all other methods of the class rely on being able to invoke methods on the root node. If
it finds that the root node no longer exists, _check_root recreates it, using the class name
stored in the "_node_type" attribute. 

The "_node_type" attribute is the heart of the genericity of class Tree. It acts as a place-
holder for a (specific) type name, which is then used by the (generic) Tree::_check_root
method to create nodes of different types. The tree class as a whole is generic because, even
though every Tree object uses a set of public methods defined by the one source code, the
336 CHAPTER 12 GENERICITY



semantics of those methods differ, according to the actual type of root node in the tree. That
root node type in turn depends on the value of the "_node_type" placeholder that an indi-
vidual Tree stores. 

package Tree;
$VERSION = 1.00;

use strict;

sub new
{

my ($class, $node_type) = @_;
bless{

_node_type=> $node_type,
_root=> $node_type->new()

}, ref($class)||$class;
}

 
sub _check_root

{
my ($self) = @_;

$self->{_root} = $self->{_node_type}->new()
unless $self->{_root};

}

sub find
{

my ($self, $key) = @_;
$self->_check_root();

return $self->{_root}->find($key);
}

sub insert

{
my ($self, $key, $value) = @_;

$self->_check_root();
return $self->{_root}->insert($key,$value);

}

sub pop
{

my ($self) = @_;
$self->_check_root();

return $self->{_root}->pop();
}

1;

Listing 12.3 A generic tree class
IMPLICIT GENERICS VIA POLYMORPHISM 337



This difference in semantics occurs because the public methods of Tree all delegate their
respective tasks directly to the root node. For example, the Tree::find method calls the util-
ity method _check_root to ensure that the tree has a root object (creating one for it, if nec-
essary) and then invokes the find method of that root object, passing it the target information
to be located. Likewise, Tree::insert calls the root node’s insert method, and Tree::pop
calls the root’s pop.

Indeed, the three methods are effectively identical in structure: get self, get arguments, get
root node, call corresponding method of root with arguments. This suggests that we can increase
our use of genericity by replacing Tree::find, Tree::insert, and Tree::pop with a single
Tree::AUTOLOAD method:

use vars '$AUTOLOAD' # keep 'use strict' happy
sub Tree::AUTOLOAD

{
my ($self, @args) = @_;

$AUTOLOAD =~ s/^.*:://;
$self->_check_root();

my $method = $self->{root}->can($AUTOLOAD);
croak "Tree($self->{_node_type} can't $AUTOLOAD"

unless $method;
$self->{_root}->$method(@args);

}

This method is invoked whenever some method is called on a Tree object—for example,
$bst_str->find("enlightenment"). When invoked, the $AUTOLOAD variable contains
the fully qualified name of the method being requested: "Tree::find". Tree::AUTOLOAD
first truncates this to the actual method name ("find") by stripping everything up to the last
"::". It then ensures that the root node exists and tests whether that node will be able to re-
spond to the specified method. If not, it throws an exception. Otherwise it calls the method
directly, using the subroutine reference returned by can.

Using an AUTOLOAD like this is almost certainly a good idea, as it allows the tree to adopt
any behavior that a specific node class might provide, rather than being restricted to only find-
ing, inserting, and popping. For example, a specific node class—say UnbalancedTree—might
provide an UnbalancedTree::rebalance method to manually rebalance a tree. If
Tree::AUTOLOAD were defined, we could easily rebalance a suitable tree:

my $checkbook_records = Tree->new("UnbalancedTree");

# and later…

$checkbook_records->rebalance();

If we had used a heap instead (or any other node type that doesn’t support rebalancing) 

my $checkbook_records = Tree->new("Heap");

# and later…

$checkbook_records->rebalance();

an exception would have been thrown: Tree(Heap) can't rebalance.
338 CHAPTER 12 GENERICITY



12.3.2 A specific node class

Although the Tree class doesn’t care what individual node classes look like—that’s the point of
genericity—it’s instructive to look at several such classes to see how they go about honoring
their commitments to the Tree class. The classes also demonstrate some interesting object-ori-
ented programming techniques in their own right.

Listing 12.4 illustrates a node class, BinarySearch::StringKey, that turns the generic Tree
class into a binary search tree with keys that are strings. The constructor builds an object by
blessing a hash with four attributes, which will store the key and value of the node, as well as
references to its left and right child nodes.

package BinarySearch::StringKey;

$VERSION = 1.00;
use strict;

sub _compare

{
return "left"if $_[1] lt $_[2];

return "right"if $_[1] gt $_[2];
return "";

}

sub new
{

my $class = ref($_[0])||$_[0];
bless{

key=> undef,
value=> undef,

left=> undef,
right=> undef,

}, $class;
}

sub find

{
my ($self, $key) = @_;

my $compare = $self->_compare($key,$self->{key});

return $self->{value} unless $compare;
return eval { $self->{$compare}->find($key) };

}

sub insert
{

my ($self, $key, $value) = @_;
if (!defined($self->{key}))

{
$self->{key} = $key;

return $self->{value} = $value;
}

Listing 12.4 A node class implementing a binary search tree with string keys
IMPLICIT GENERICS VIA POLYMORPHISM 339



my $compare = $self->_compare($key,$self->{key});

return $self->{value} = $value unless $compare;

$self->{$compare} = $self->new() unless $self->{$compare};
return $self->{$compare}->insert($key,$value);

}

sub pop
{

my ($self) = @_;
return () unless defined $self->{key};

return $self->{left}->pop($self) if defined $self->{left};
$_[0] = $self->{right};

return ($self->{key}, $self->{value});
}

1;

BinarySearch::StringKey next defines a method (_compare) that can be used to deter-
mine the relative positions of two given keys. If the first key is lexicographically before the sec-
ond key, the first key must appear to the left of the second in the tree. If it is greater, the first
key must be to the right. Otherwise the keys are identical, a case the _compare method indi-
cates by returning the empty string. 

The find method implements the standard binary search algorithm for trees. It consults
the compare method to determine where the key in question is likely to be found. If compare
returns an empty string, the key has been found in the current node, so find returns the cur-
rent value. Otherwise, the value returned by _compare indicates the name of child node in
which the key may be found, either "left" or "right". In that case find invokes itself re-
cursively on the node referenced by the attribute of the same name—$self->{"left"} or
$self->{"right"}. 

The eval block is used to catch and disarm the explosion that occurs if the current node
doesn’t have an appropriate left or right child. This would normally cause an error indicating
an illegal attempt to call a method through an undefined reference—that is, the undefined val-
ue of the attribute $self->{$compare}. The eval catches the exception and transmutes it
into a simple undef, which is the ideal value to return when indicating a failure to find the
requested key. Exceptiophobes may replace the eval block:

return eval { $self->{$compare}->find($key) };

 with a boring (but probably more maintainable)

return $self->{$compare} ? $self->{$compare}->find($key) : undef;

The insertion routine for class BinarySearch::StringKey also implements a standard algo-
rithm. The simplest case is where the current node is empty (that is, where there is no defined
key), in which case insert just fills it up with the new key and value and returns. The next
best case is where the current node already has the required key, as indicated by _compare
340 CHAPTER 12 GENERICITY



returning an empty string. In this case, we need only assign the new value indicated and we’re
done. 

The remaining case is where _compare indicates that the new node should be inserted
to the left or right of the current one. If there is no appropriate left or right child, insert cre-
ates one by cloning itself.4 Having ensured that the appropriate child exists, insert recursively
hands that child the task of inserting the specified data.

Popping is an operation usually defined on stacks, rather than trees. Hence, Binary-
Search::StringKey is at liberty to define this operation any way it likes.5 In this case, pop is de-
fined to delete the node with the lexicographically smallest key and return that node’s key and
value as a two-element list. How this is achieved bears a detailed explanation.

As with insertion, three distinct cases must be handled. The first case is where pop is in-
voked on a node that does not have a defined key. This can happen only if the node is the root
of an empty tree. (Remember that Tree::_check_root ensures that every tree always has a
root node, creating an empty one if need be.) In that case, nothing is left to pop, so an empty
list can be returned to indicate failure.

The next case is where the current node has a left child. The insert method ensures that
any left child has a key lexicographically before its parent’s key so, in this second case, the value
to be popped must reside somewhere in the left subtree. Therefore, the task of popping the next
value can be delegated to the left child of the current node—that is, return $self->

{left}->pop($self) if defined $self->{left}.
The final case is the awkward one. If it has no left child, the current node must have the

“least” key. In that case, the current node must be destroyed and have its values returned. To
get rid of the node itself, we need to ensure that there are no references to it anywhere in the
tree. In other words, we have to remove the reference to it that’s in its parent’s "left" at-
tribute. This might seem difficult to achieve, given that nodes don’t have pointers to their par-
ent nodes, but we can accomplish the task easily by assigning undef to $_[0]—though why
this is so may not be immediately obvious.

Recall that the elements of the @_ array are special in that they are aliases for the original
arguments to a subroutine or method, rather than copies of those arguments. That means
that any assignment to an element of @_ changes the value of the corresponding argument
in the subroutine or method that called the current one. In a method, that means the
assignment $_[0] = undef assigns an undefined value to the object reference through
which the method was invoked.

In the case of the pop method, that object was either $t->{_root}—where $t refers to
the containing Tree object—or else $p->{left}—where $p refers to the current node’s parent.

In either case, assigning an undef causes the parent, or the containing tree, to lose the
only external reference to the current node, apart from the one still contained in the lexical
$self. That means that, at the end of the current method call, when the lexical $self goes

4 The constructor carefully blesses nodes into the class specified by ref($class)||$class so that
new acts as a copier as well as a constructor. This ability is required of all node classes to be used by
Tree.

5 Of course, this is also true for all its other methods. Teleologically speaking, it’s the way in which meth-
ods are defined that gives a particular node class its semantics, not vice versa.
IMPLICIT GENERICS VIA POLYMORPHISM 341



out of scope, there will be no existing references to the current node, and so it will be garbage
collected.6

The only problem is that, if the current node has a right subtree, that subtree will also
be lost. That’s clearly unacceptable. The solution, as illustrated in figure 12.1, is to replace the
current node with its own right subtree ($_[0] = $self->{right}). If the subtree is non-
existent, this is equivalent to assigning undef, as described above. If the subtree does exist, this
ensures that its nodes are preserved and that the ordering of the tree is maintained.

Having now successfully condemned the current node, pop can finally extract its key and
value and return them in a list as required.

12.3.3 Building related node classes

Having gone to all that trouble, it would be gratifying if we could extract additional function-
ality from the BinarySearch::StringKey class. If nothing else, it might soothe the headache we
developed trying to understand how BinarySearch::StringKey::pop works.

Taking a second look at the class, it becomes clear that many of the decisions that each
method makes are determined by the values returned by the method Binary-

Search::StringKey::_compare. Whether find should search left or right for a node and
where insert should put new data both depend directly on what _compare says about the
relationship between a specified key and the key of the current node. Indirectly, this decision
determines the ordering of the entire tree of nodes and, therefore, the behavior of pop as well. 

The _compare method is designed to correctly handle keys that are strings. This could
lead to problems if the keys are numbers, since the ordering of strings of digits ("1", "11",

6 If the current node was the root node of the surrounding tree, the assignment to $_[0] causes the root
node to cease to exist. That’s why the Tree class provides the _check_root method: to reinstate it
if necessary.

$_[0]
"f"

"b" "g"

$self

$self->{right}

$_[0]
"f"

"b" "g"

"d"

"c" "e"

$self

"d"

"c" "e"

Figure 12.1 Deleting a left-most node without losing its right subtree

a Before $_[0] = self->(right); 

b After $_[0] = self->(right);

ba
342 CHAPTER 12 GENERICITY



"12", "2", "21", "22", etc.) is not the same as for actual numbers (1, 2, 11, 12, 21, 22, etc.)
Thus if we wanted to use numerical keys in a Tree, we would need to create a new node class:
BinarySearch::NumericKey.

But, as far as Perl is concerned, the only relevant difference between numbers and strings
lies in the behavior of their comparison operators. So we ought to be able to construct the Bi-
narySearch::NumericKey class simply by borrowing, or inheriting, all that complex yet useful
behavior from BinarySearch::StringKey and replacing the inappropriate _compare method:

package BinarySearch::NumericKey;
@ISA = qw( BinarySearch::StringKey );

$VERSION = 1.00;
use strict;

sub _compare

{
return "left"if $_[1] < $_[2];

return "right"if $_[1] > $_[2];
return "";

}

Now, when a BinarySearch::NumericKey object is asked to locate a particular key—that
is, when it has find invoked on it—BinarySearch::StringKey::find is called and, in
turn, calls $self->_compare($key,$self->{key}). Because $self actually refers to a Bi-
narySearch::NumericKey object, BinarySearch::NumericKey::_compare is invoked and
performs a numeric comparison. This ensures that the insertion occurs in such a way that the
expected order of the numeric keys is preserved. 

In a similar way, we can create a BinarySearch::DescendingStringKey class, which reverses
the ordering of nodes:

package BinarySearch::DescendingStringKey;
@ISA = qw( BinarySearch::StringKey );

$VERSION = 1.00;
use strict;

my %reverse = ( "left"=>"right", "right"=>"left", ""=>"" );

sub _compare

{
my ($self, @keys) = @_;

return $reverse{ $self->SUPER::_compare(@keys) };
}

12.3.4 Cleaning up the act: an abstract base class

If we intend to create additional BinarySearch::… subclasses in this way, it soon becomes clear
that BinarySearch::StringKey has no claim to special status, and does not deserve to be the
ancestor of all the others.

Instead, we might choose to restructure the entire hierarchy so that Binary-
Search::StringKey, BinarySearch::NumericKey, BinarySearch::DescendingStringKey, and so
forth, all inherit from some common ancestor—say, BinarySearch—which defines all their
shared methods—in fact, everything except _compare. Each derived class, including Binary-
IMPLICIT GENERICS VIA POLYMORPHISM 343



Search::StringKey, would then inherit from BinarySearch and redefine the appropriate _com-
pare method.

BinarySearch probably doesn’t need its own _compare method, since there’s no obvious
default behavior for comparisons. If we simply omit BinarySearch::_compare, any class
that inherits BinarySearch but fails to redefine compare is prone to an exception: Can't locate

object method "compare" via package "BinarySearch". The fact that the base class doesn’t pro-
vide enough functionality to stand on its own can be looked on as a feature.7 

As explained in chapter 1, such classes are known as abstract base classes and are typically
used to provide some common functionality to a collection of derived classes, but with the in-
tention that objects of the base class itself are never actually used. Some languages even prevent
objects from being created if their class includes uninstantiated polymorphic methods, such as
the missing BinarySearch::_compare. Perl, of course, views this as the worse kind of fascism
and contents itself with simply killing your program when you do something as stupid as that.

If you prefer an epitaph more indicative of the problem, you might choose to provide an
abstract version of BinarySearch::_compare (as described in chaper 6), which could cor-
rectly identify the problem. It might even distinguish between attempts to use a BinarySearch
object directly and failures to redefine _compare in a derived class:

package BinarySearch;

use Carp;

# all the useful methods (as previously in BinarySearch::StringKey)

sub _compare

{
my $callers_class = ref($_[0]);

if ($callers_class eq "BinarySearch")
{

croak"BinarySearch is an abstract base class.
 Attempt to call non-existent method BinarySearch::_compare"

}
else

{
croak"Class $callers_class inherited the abstract base class

 BinarySearch but failed to redefine the _compare method.
 Attempt to call non-existent method ${callers_class}::_compare";

} 
}

12.3.5 An unrelated node class

Listing 12.5 shows a node class completely unrelated to binary search trees. A heap is a tree-
like data structure in which the organizing rule is that every node must be greater in value
than any node in its subtree. Figure 12.2 illustrates the difference between a heap and a binary
search tree storing the same data.

7 As can any bug, provided it’s suitably documented!
344 CHAPTER 12 GENERICITY



package Heap;

$VERSION = 1.00;
use strict;

sub _ordered_child

{
my ($self, $which) = @_;

my $left= $self->{left} && $self->{left}->{weight}|| 0;
my $right= $self->{right} && $self->{right}->{weight}|| 0;

my @order= ($left < $right) ? ("left","right") : ("right","left");
return $order[$which];

}

sub new
{

my ($class, $value, $left, $right) = @_;
bless{

value=>$value,
left=>$left,

right=>$right,
weight=>( defined($value)? 1 : 0 ) +

( defined($left)? $left->{weight}: 0 ) +
( defined($right)? $right->{weight}: 0 ),

}, ref($class)||$class;
}

sub find

{
my ($self, $value) = @_;

return 1 if $value == $self->{value};

return eval { $self->{left}->find($value) }
    || eval { $self->{right}->find($value) };

}

sub insert
{

my ($self, $newvalue) = @_;

$self->{weight}++;
return $self->{value} = $newvalue

if (!defined $self->{value});
if ($self->{value} > $newvalue)

{
my $child = $self->_ordered_child(0);

$self->{$child} = $self->new() unless $self->{$child};
$self->{$child}->insert($newvalue);

}
else

{

Listing 12.5 A node class implementing a numeric heap
IMPLICIT GENERICS VIA POLYMORPHISM 345



$_[0] = $self->new($newvalue, $self, $self->{right});

$self->{right} = undef;
}

}

sub pop
{

my ($self) = @_;
my $popval = $self->{value};

if (!$self->{left} && !$self->{right})
{ $_[0] = undef; }

elsif ($self->{left} && !$self->{right})
{ $self->{value} = $self->{left}->pop() }

elsif (!$self->{left} && $self->{right})
{ $self->{value} = $self->{right}->pop() }

elsif ($self->{left}->{value} >= $self->{right}->{value})
{ $self->{value} = $self->{left}->pop() }

else
{ $self->{value} = $self->{right}->pop() }

return $popval;
}

1;

The Heap class provides all the public methods (new, find, insert, pop) required of a
node for the Tree class. However, instead of a _compare method, those public methods need
a way to determine the heavier subtree of a given node—in other words, the subtree which
contains the most nodes. This is important because, when adding a new node, we may chose

"b" "d"

"f" "h" "c""a""c"

"b""d"

"f"

"h"

"g" "e"

"e"

"a" "g"

Figure 12.2 A binary search tree and a heap storing the same set of data

a Data stored in a binary search tree 

b Data stored in a “top-heavy” heap

ba
346 CHAPTER 12 GENERICITY



to add it to either the left or right of a given node. We would prefer to add it to the subtree
that currently has the fewest nodes in order to keep the heap as well-balanced as possible. 

Hence, the _ordered_child method compares the weight attribute of each child (mak-
ing allowances for nonexistent children, whose weight is zero) and returns the attribute name
of the appropriate child (i.e., "left" or "right"). _ordered_child takes a single numerical
argument (0 or 1), which indicates whether the “lighter” or the “heavier” child is required.

The Heap constructor takes a node value and references to two subtrees and constructs
a new node, automatically determining its weight. That weight is the combined weights of the
two subtrees—either of which may be zero—plus 1 if the new node is not itself empty. As in
the BinarySearch::… classes, the constructor is careful to bless into ref($class)||$class,
so it can be invoked either as a class method or through a specific object.

Finding a specific value in a heap is less efficient than finding a key in a binary search tree.
Because the ordering of a heap is “vertical,” rather than “left-to-right,” Heap::find may have
to search both left and right subtrees if the required value isn’t found in the current node. Once
again we’ve wrapped each recursive call in a soothing eval block to avoid having to cope ex-
plicitly with nonexistent subtrees. 

Insertion into a heap is more complicated than insertion into a binary search tree.8 There
are three distinct cases that must be handled, although they have the common feature that each
causes the weight of the current node to increment (since the value will be inserted either at
the current node or in a subtree).

In the first case, the current node is empty. It is also the simplest, because all that is re-
quired is to set the nodes "value" attribute to the new value, and return.

In the second case, the current node’s value is greater than the new value. This implies
that the new value must be inserted somewhere further down the heap, so insert selects the
lighter subtree, $self->_ordered_child(0), creates that child if necessary, and then recur-
sively inserts the new value into that child.

In the final case, the current node stores a value no greater than the new value. In that
case, insert has to insert the new value at the position of the current node. To do this, it cre-
ates a new node in place of the current node—by assigning it to $_[0], just as Binary-
Search::StringKey::insert did. This new node is created containing the new value and
has subtrees holding the current node and its left subtree—as the new node’s left child—and
the current node’s right child—as the new node’s right child. Figure 12.3 illustrates this com-
plex transformation.

Popping a heap is conceptually straightforward: just remove the root node and promote
the larger of its two children. Again, there are three cases. If the node has no children, there
is nothing to promote, so the current node can be deleted—once again, by assigning undef
to $_[0]. If the node has only one child, that child’s value can be promoted by recursively pop-
ping it and assigning the returned value to the current node. If both children exist, the child
whose value is larger is the one recursively popped (or the left one, if their values are the same).

8 This is mainly because insertion into a binary search tree can only occur at leaf nodes (i.e., those which
have no children), whereas, in a heap, a value bigger than any leaf node may need to be inserted some-
where in the middle. Allowing for duplicate values in the heap also complicates matters slightly.
IMPLICIT GENERICS VIA POLYMORPHISM 347



The recursive call to pop in the second and third cases ensures that the top-heavy struc-
ture of the entire heap is preserved and the heap is kept as small and shallow as possible. Once
the correct child has been promoted, the original value of the current node, which was pre-
served in $popval, is returned.

12.3.6 Putting it all together

Having examined a few types of node class, we can observe the way in which the type of node
given to a Tree changes its semantics by considering the following example:

use Tree;

use BinarySearch::StringKey;
use BinarySearch::NumericKey;

use Heap;

my $bst_str= Tree->new("BinarySearch::StringKey");
my $bst_num= Tree->new("BinarySearch::NumericKey");

my $heap_num= Tree->new("Heap");

@value[8..12] = qw( eight nine ten eleven twelve );

foreach $n (8..12)
{

$bst_str->insert($n, $value[$n]);
$bst_num->insert($n, $value[$n]);

$heap_num->insert($n);
}

print "$key=>$value\n"while ($key, $value) = $bst_str->pop();

print "$key=>$value\n"while ($key, $value) = $bst_num->pop();
print "$value\n"while defined($value = $heap_num->pop());

The code constructs three Tree objects—$bst_str, $bst_num, and $heap—passing
them distinct node types. It then initializes an array of values, and uses a foreach loop to insert

"b""d" "c""a"

"h"

"g" "e"
current node's

right child

current  node

current node's
left child

"f"

new node

"a"

"b""d" "c""e"

"h"

"g" "f"

current node
current node's

right child

new node

current node's
left child

Figure 12.3 Inserting into the middle of a heap

a Node "f" to be inserted where node "e" is

b Node "f" inserted by splitting the children of node "e"

ba
348 CHAPTER 12 GENERICITY



identical elements from that array into each tree. Note the different insertion syntax for the tree
storing Heap nodes, which store only a single value rather than a key/value pair.

The last three lines step through each tree’s content, popping nodes and printing them.
Observe again that the syntax of popping differs slightly for $heap, because Heap::pop re-
turns a single scalar value, rather than a pair in a list.9

It’s also important to note that the semantics for insertion to $bst_str and $bst_num
also differ, due to the distinct node types they were given. Both BinarySearch::StringKey and
BinarySearch::NumericKey insert into a tree node by using their _compare method to deter-
mine whether the key belongs in the current node or in one of its children. The insertion meth-
ods themselves are syntactically identical (since BinarySearch::NumericKey inherits from
BinarySearch::StringKey). 

However, because class BinarySearch::NumericKey redefines its version of the _compare
method, the semantics of the shared insertion method are subtly different when called on ob-
jects of each class. Specifically, BinarySearch::NumericKey::insert uses the standard
numeric ordering when comparing two node keys, while BinarySearch::StringKey::in-
sert uses the standard string ordering. Hence, the loop that pops $bst_str prints:
10=>ten

11=>eleven

12=>twelve

8=>eight

9=>nine

whereas the loop popping $bst_num prints:
8=>eight

9=>nine

10=>ten

11=>eleven

12=>twelve

12.3.7 A philosophical note

The design and implementation of the Tree class and its node classes represent perhaps the
purest form of object-oriented programming we’ve yet seen. 

The Tree class performs almost all of its duties simply by sending messages (method in-
vocations plus arguments) to other objects. Those other objects, the nodes, have no central
control or organizer. They achieve their task of implementing the full behavior of the Tree by
exchanging messages that cause them to collaboratively create, preserve, and ultimately destroy
a structure that they impose upon themselves.

Thus, they implement an emergent system: one with no centralized control, and in which
the interesting behavior is never explicitly coded, but just emerges from the much simpler in-
teractions of its individual components. The node objects within a Tree are therefore less like
a traditional data structure and more like a flock of birds in flight, an ensemble of dancers

9 The fact that Tree::insert and Tree::pop can adapt without any code changes to these different
node types is an indication of the power of Perl’s built-in genericity.
IMPLICIT GENERICS VIA POLYMORPHISM 349



improvising, or a group of musicians jamming. Each individual reacts in simple ways to local
and immediate cues, but collectively the group produces complex and choreographed behavior.

12.4 WHERE TO FIND OUT MORE
The Interpolation and Text::Template modules, which can be used to simplify the generation
of evaled generic classes, are available from the CPAN in the directory http://www.perl.com/
CPAN/authors/id/MJD/.

12.5 SUMMARY
• Perl’s dynamic typing of variables and interface polymorphism handle most situations

where generic techniques would be required in other languages.
• In the few cases where generic programming is needed in Perl, it can easily be imple-

mented using closures with lexical variables acting as placeholders within a subroutine.
• Alternatively, it is sometimes easier to use the built-in eval function to generate new

code at run time, filling in placeholders in the generic text with relevant code fragments.
350 CHAPTER 12 GENERICITY

http://www.perl.com/CPAN/authors/id/MJD/


C H A P T E R 1 3

Multiple dispatch
13.1 What is multiple dispatch? 351
13.2 Multiple dispatch via single dispatch 

and cases 353
13.3 Multiple dispatch via a table 357
13.4 Comparing the two 

approaches 362
13.5 Dynamic dispatch tables 364

13.6Some lingering difficulties 368
13.7The Class::Multimethods 

module 368
13.8Comparing the three 

approaches 386
13.9Where to find out more 386

13.10Summary 386
Sometimes the standard polymorphic dispatch mechanism isn’t sophisticated enough to cope
with the complexities of finding the right method to handle a given situation. For example, in
a graphical user interface (GUI), objects representing events may be passed to objects repre-
senting windows. What happens next depends not only on the type of window but also on the
type of event. 

It’s not enough to polymorphically invoke a receive_event method on the window ob-
ject, since that won’t distinguish between the possible kinds of event. Nor can we polymor-
phically invoke a send_to_window method on the event object, since that won’t distinguish
between the possible kinds of window. What we really want is to polymorphically select a suit-
able method for the appropriate combination of window and event. This chapter looks at how
to accomplish that.

13.1 WHAT IS MULTIPLE DISPATCH?
In object-oriented Perl, the subroutine to be called in response to a method invocation is
selected polymorphically. That means the subroutine invoked is the one defined in the class
351



that the invoking object belongs to. So, a call to $objref->method(@args) invokes
CLASSNAME::method, where CLASSNAME is the class name returned by ref($objref). 

If the class in question doesn’t have a suitable method, the dispatch procedure searches
upwards through the superclasses of the original class, looking for an appropriate subroutine.
If that search fails, the dispatch procedure attempts to invoke an AUTOLOAD subroutine some-
where in the inheritance hierarchy. 

The important point is that the subroutine the method dispatcher eventually selects is de-
termined by the class of the original invoking object—that is, according to the class of the first
argument. 

For most applications, the ability to select behavior based on the type of a single argument
is sufficient. In terms of their expressive power, such single dispatch mechanisms provide the
same functionality as a case statement. The class of the method’s first argument is the selector
value, and the polymorphic methods that can be invoked correspond to the cases that could
be selected. Alternatively, you can think of a polymorphic method as a one-dimensional look-
up table, where the first argument’s type is the key, and the method to be invoked is the cor-
responding value.1 

However, some applications—such as the GUI event handler mentioned above—need to
select the most applicable polymorphic method on the basis of more than one argument.
Therefore, they require a more complex dispatching behavior, something equivalent to nested
if statements or multidimensional tables. The object-oriented equivalent of those constructs
is called multiple dispatch.

Multiple dispatch works by considering the classes of all of a method’s arguments, and
searching for a subroutine with a corresponding set of typed parameters. Typical situations
where multiple dispatch is needed include:

• Processing events in a GUI or a real-time system, where the correct response to an event
depends not just on the object that receives it, but also on the type of event and the cur-
rent mode of the interface (i.e., whether or not it’s active, what types of events are
enabled, etc.) 

• Performing image-processing operations between different types of images, such as a
blend between two images that may be in different formats. Using multiple dispatch, the
common case where the two images are in the same format can be handled by one opti-
mized subroutine. Cases where conversions are required can be delegated to a more gen-
eral, but probably less efficient, method. 

• Handling binary operations on different numeric types: integer, rational, arbitrary-preci-
sion, etc. Often the return type of such an operation depends on the types of both oper-
ands: integer + integer gives integer; integer + rational gives rational; arbitrary-precision +
rational gives arbitrary-precision, and so forth. Multiple dispatch allows a separate
method to be supplied for each combination of operands, then enables the program to
automatically find the right one each time. 

1 In fact, many languages (including Perl) use such look-up tables to implement or optimize calls to poly-
morphic methods.
352 CHAPTER 13 MULTIPLE DISPATCH



• Implementing simulations in which a diversity of objects interact. For example, in a
physical simulation, the way two colliding objects interact depends on the nature of both
(e.g., hard/hard, hard/brittle, soft/hard, brittle/sticky, etc.) Using multiple dispatch, han-
dlers for each type of object-object interaction can be coded separately. The correct han-
dler is selected automatically on the basis of the types of objects involved. 

Generally speaking, multiple dispatch is needed whenever two or more objects belonging
to different class hierarchies are going to interact, and we need to do different things depending
on the combination of the actual types of those objects.

Multiple dispatch isn’t the same thing as overloaded functions in C++ or Java. In those
languages, you can define two or more methods with the same name but different parameter
lists, and the compiler works out which one to call, based on the nominal types of the argu-
ments you specify. In other words, the compiler analyzes the argument type information, se-
lects the corresponding target method, and hard-codes a call to it. That means that if you call
the overloaded method with a set of arguments belonging to derived classes, you still invoke
the method that handles the original base-class arguments. 

With multiple dispatch, on the other hand, the method called is always chosen polymor-
phically by examining the actual run-time types of each of the objects you passed as arguments,
not the compile-time types of the pointers or references through which those arguments were
passed. Hence, if you pass derived objects as arguments, you get the method that handles de-
rived objects.

13.2 MULTIPLE DISPATCH VIA SINGLE DISPATCH AND CASES
Let’s consider a typical object-oriented implementation of a GUI. There would probably be
classes for different types of windows: 

package Window;
package ModalWindow; @ISA = qw( Window );
package MovableWindow; @ISA = qw( Window );
package ResizableWindow; @ISA = qw( MovableWindow );

and events:

package Event;
package ReshapeEvent; @ISA = qw( Event );
package AcceptEvent; @ISA = qw( Event );
package MoveEvent; @ISA = qw( ReshapeEvent );
package ResizeEvent; @ISA = qw( ReshapeEvent );
package MoveAndResizeEvent; @ISA = qw( MoveEvent ResizeEvent );

and modes that the entire interface may be in:

package Mode;
package OnMode; @ISA = qw( Mode );
package ModalMode; @ISA = qw( Mode );
package OffMode; @ISA = qw( Mode );

Figure 13.1 illustrates the structure of these three hierarchies. 
But what happens when we want a Window to handle a specific Event in a certain Mode?

That happens repeatedly in the GUI’s event loop: 
MULTIPLE DISPATCH VIA SINGLE DISPATCH AND CASES 353



while ($next_event = shift @event_queue)
{

$focus_window->receive_event($next_event, $current_mode);
}

Each class in the Window hierarchy needs a polymorphic method (receive_event) that
expects two arguments—an Event and a Mode—and determines how to handle the resulting
combination. Listing 13.1 shows an implementation of the Window hierarchy with suitable
methods. 

package Window;

my $_id = 1; 
sub new { bless { _id => $_id++ }, $_[0] }

sub receive_event 
{ 

my ($self, $event, $mode) = @_; 
if ($event->isa(Event) && $mode->isa(OffMode)) 

{ print "No window operations available in OffMode\n" } 
else 

{ print"Window $self->{_id} can't handle a ",ref($event),
" event in ", ref($mode), " mode\n" } 

}

package ModalWindow; @ISA = qw( Window );

Listing 13.1 Window subclasses with polymorphic receive_event methods

Window

Movable
Window

Resizable
Window

ReshapeEvent

ResizeEvent

Modal
Window

Mode

OnMode OffMode ModalMode

AcceptEvent

MoveEvent

MoveAnd
ResizeEvent

Event

Figure 13.1 The Window, Event, and Mode class hierarchies
354 CHAPTER 13 MULTIPLE DISPATCH



sub receive_event 
{ 

my ($self, $event, $mode) = @_; 
if ($event->isa(AcceptEvent))
{ 

if ($mode->isa(OffMode)) 
{ print "Modal window $self->{_id} can't accept in OffMode!\n" }

else 
{ print "Modal window $self->{_id} accepts!\n" } 

} 
elsif ($event->isa(ReshapeEvent)) 

{ print "Modal windows can't handle reshape events\n" } 
else 

{ $self->SUPER::receive_event($event,$mode) } 
}

package MovableWindow; @ISA = qw( Window );
 
sub receive_event 
{ 

my ($self, $event, $mode) = @_; 
if ($event->isa(MoveEvent) && $mode->isa(OnMode)) 

{ print "Moving window $self->{_id}!\n" } 
else 

{ $self->SUPER::receive_event($event,$mode) } 
}

package ResizableWindow; @ISA = qw( MovableWindow );
 
sub receive_event 
{ 

my ($self, $event, $mode) = @_; 
if ($event->isa(MoveAndResizeEvent) && $mode->isa(OnMode)) 

{ print "Moving and resizing window $self->{_id}!\n" } 
elsif ($event->isa(ResizeEvent) && $mode->isa(OnMode)) 

{ print "Resizing window $self->{_id}!\n" } 
else 

{ $self->SUPER::receive_event($event,$mode) } 
}

Each receive_event method has what amounts to a nested case statement inside it, so
this technique is sometimes known as “tests-in-methods.” The if statements are needed to
work out which combination of argument types has actually been received and, thus, what ac-
tion to take. Also note that the last alternative in each method is always the same: give up and
pass the arguments to the parent class in the hope that an ancestral class will be able to handle
them. 

The cases directly tested don’t explicitly cover all possible combinations of argument
types. To do so would require a total of 96 alternatives (4 window classes × 6 event types
× 4 modes). Instead, the handlers rely on inheritance relationships. For example, there is no
MULTIPLE DISPATCH VIA SINGLE DISPATCH AND CASES 355



specific test to detect a ResizableWindow object receiving a MoveEvent in OffMode. If that
actually ever happens, the following sequence ensues: 

1 ResizableWindow::receive_event is called, and tests for the cases it handles. None
match, so it executes the else block, invoking its parent class’s receive_event method
on the same set of arguments.

2 In response, MovableWindow::receive_event is called, and tests for the cases that it
handles. Once again, none match, so its else block is selected and invokes the grandpa-
rental receive_event method on the same arguments. 

3 That means that Window::receive_event is called, and it, too, tests its cases. The
first case discovers that the MoveEvent argument can be treated as an Event—since the
MoveEvent class inherits from Event. Then it discovers that the modes also match
exactly. Hence it executes the code of the first case. 

The result is that the arguments (ResizableWindow, MoveEvent, OffMode) have collec-
tively been treated as if their types were (Window, Event, OffMode). Since there was no case
to explicitly handle the actual combination given, receive_event has located a case that will
handle it more generally—by abstracting the first two arguments. 

This type of best fit behavior is extremely useful because it means we can code the cases
we want to handle specially and provide one or more catchall cases (that is, handlers that take
base-class parameter types) to deal with any other combination of arguments. 

Normally, a polymorphic method like receive_event selects the subroutine to call on
the basis of the type of its first argument alone and, if necessary, works its way up that argu-
ment’s inheritance tree to find a suitable method. Here, in contrast, it’s as if the receive_
event were able to select the appropriate action on the basis of the combined types of all three
arguments, working its way up all three inheritance hierarchies at once to find a suitable
response. 

That’s polymorphism with a vengeance.

13.3 MULTIPLE DISPATCH VIA A TABLE
Of course, vengeance always comes at a price. In this instance, instead of the already high cost
of doing a single polymorphic dispatch on the receive_event method, the dispatch mecha-
nism now has to do that dispatch, test the various cases, and then, perhaps, redispatch
receive_event to a parent class and repeat the tests there as well.

It would be far better if the call to receive_event went directly to a single method,
which determined the classes of the arguments involved, looked up the appropriate handler in
some table, and invoked that handler directly. No multiple tests, no redispatch; just one sub-
routine call, one table look up, and the handler is invoked. Listing 13.2 illustrates the imple-
mentation of just such a method. 
356 CHAPTER 13 MULTIPLE DISPATCH



package Window;

my $_id = 1;
sub new { bless { _id => $_id++ }, $_[0] }

my %table;

sub init
{

my ($param1,$param2,$param3,$handler) = @_;
foreach my $p1 ( @$param1 ) {

foreach my $p2 ( @$param2) {
foreach my $p3 ( @$param3) {

$table{$p1}{$p2}{$p3} = $handler;
}

}
}

}

my $windows= [qw(Window ModalWindow MovableWindow ResizableWindow )];
my $events= [qw(Event ReshapeEvent AcceptEvent

     MoveEvent ResizeEvent MoveAndResizeEvent )];
my $modes= [qw(Mode OnMode OffMode ModalMode )];

init $windows, $events, $modes#case 0
=> sub { print"Window $_[0]->{_id} can't handle a ",

ref($_[1]), " event in ", ref($_[2]), " mode\n" };

init $windows, $events, [qw(OffMode)]#case 1
=> sub { print "No window operations available in OffMode\n" };

init [qw(ModalWindow)],#case 2
     [qw(ReshapeEvent ResizeEvent MoveEvent MoveAndResizeEvent)],
     $modes

=> sub { print "Modal windows can't handle reshape events\n" };

init [qw(ModalWindow)], [qw(AcceptEvent)], $modes#case 3
=> sub { print "Modal window $_[0]->{_id} accepts!\n" };

init [qw(ModalWindow)], [qw(AcceptEvent)], [qw(OffMode)]#case 4
=> sub { print "Modal window $_[0]->{_id} can't accept in OffMode!\n" };

init [qw(MovableWindow ResizableWindow)],#case 5
 [qw(MoveEvent MoveAndResizeEvent)],

[qw(OnMode)]
=> sub { print "Moving window $_[0]->{_id}!\n" };

init [qw(ResizableWindow)], [qw(ResizeEvent)], [qw(OnMode)]#case 6
=> sub { print "Resizing window $_[0]->{_id}!\n" };

init [qw(ResizableWindow)], [qw(MoveAndResizeEvent)], [qw(OnMode)]#case 7

Listing 13.2 Window base class with a table-based receive event method
MULTIPLE DISPATCH VIA A TABLE 357



=> sub { print "Moving and resizing window $_[0]->{_id}!\n" };

sub receive_event
{

my ($type1, $type2, $type3) = (ref($_[0]),ref($_[1]),ref($_[2]));
my $handler = $table{$type1}{$type2}{$type3};
die "No suitable handler found" unless $handler;
$handler->(@_);

}

This version of the Window hierarchy uses a three-dimensional dispatch table, stored in
the lexical hash %table. Each dimension of the dispatch table represents the range of possible
parameter types of one of the three arguments passed to the receive_event method: the first
dimension representing the Window argument; the second, representing the Event argument;
the third, the Mode argument. 

The table must have entries for each possible combination of Window, Event, and Mode
subclasses. To make this less tedious—remember, there are 96 distinct combinations—the
init subroutine is provided. This subroutine takes three references to arrays and a reference
to an anonymous subroutine. The three arrays specify the respective sets of parameter types for
which the anonymous subroutine should be used as a handler. 

For example, the call

init[qw(ModalWindow)],
[qw(ReshapeEvent ResizeEvent MoveEvent MoveAndResizeEvent)],
[qw(Mode OnMode ModalMode OffMode)]

=> sub { print "Modal windows can't handle reshape events\n" };

means: 

Locate every dispatch table entry corresponding to a call where the first 
argument is a ModalWindow; and the second argument is either a ReshapeEvent 
or ResizeEvent or MoveEvent or MoveAndResizeEvent; and the third argument is 
any mode (Mode or OnMode or OffMode or ModalMode). To each such entry, 
assign a reference to the specified anonymous subroutine.

The nested foreach loops in init iterate through the class names in each array, install-
ing a reference to the handler subroutine ($handler) in the corresponding entries in the dis-
patch table. In other words, each array specifies a set of parameter classes, whose objects may
appear as the corresponding argument. The same specified handler is called for any combina-
tion of parameters chosen from those classes. 

Typically, there is no special handler for most combinations of parameter types, so most
of the dispatch table entries correspond to cases that use the most generic possible behavior.
Therefore, the first step in setting up the dispatch table is to initialize the entire table to point
to a general handler (#case 0). That is

init $windows, $events, $modes
=> sub

{ print "Window $_[0]->{_id} can't handle a ",
  ref($_[1]), " event in ", ref($_[2]), " mode\n" };
358 CHAPTER 13 MULTIPLE DISPATCH



The three lexical variables—$windows, $events, and $modes—are set up with complete lists
of each hierarchy’s subclasses, specifically to make this general initialization easier. 

Once the universal catchall case has been set up, particular table entries can be overwritten
to redirect them to more-specialized handlers. First (#case 1), every combination of argu-
ments that includes an OffMode parameter is reinitialized to refer to the handler specific to
OffMode. Then (#case 2), every combination with a ModalWindow, a ReshapeEvent (or any
derived class) and a Mode (or any derived class) is given a special handler. Next (#case 3), a
handler is installed for the (ModalWindow, AcceptEvent, any-kind-of-mode) combination and
then (#case 4) one for the more specific (ModalWindow,AcceptEvent,OffMode) combina-
tion. The initialization process continues until all handlers are correctly set up. 

Once the table is complete, implementing the actual receive_event method is straight-
forward. The method simply determines the class of the three arguments, by applying ref to
each of them, and looks up the corresponding entry in %table to retrieve the appropriate han-
dler. If the entry isn’t defined, an exception is thrown. Otherwise, the handler is called, and
passed the original argument list. 

As promised, a single receive_event method handles every call on any type of Window
object. To make sure that happens, the method is defined in the base class—that is, in Win-
dow—and the derived classes simply inherit it unchanged. 

Because this change to the internals of the multiple dispatch mechanism is safely encap-
sulated within the receive_event method, the GUI’s event loop: 

while ($next_event = shift @event_queue)
{

$focus_window->receive_event($next_event, $current_mode);
}

doesn’t have to change at all when a dispatch table is used instead of “tests-in-methods.”

13.3.1 Determining the table initialization order

Obviously, the whole technique only works if the dispatch table is correctly initialized, which
in turn requires that we install the handlers in the correct order. That order is determined by
the relationships within and between the set of classes that each argument accepts. 

For example, consider the two initializations

#initialization A
init[qw(Window)], [qw(Event)], [qw(Mode OnMode OffMode ModalMode)]

=> sub { print "universal handler" }; 

#initialization B
init [qw(Window)], [qw(Event ResizeEvent)], [qw(OffMode)]

=> sub { print "specific OffMode handler" };

If these initializations occur in the opposite order, the entry for the combination (Modal-
Window, AcceptEvent, OffMode) is initially set to the OffMode handler, only to be imme-
diately—and incorrectly— overwritten with the more general “universal” handler. 

This same problem may occur wherever there is an overlap in the set of cases covered by
two handlers. Some kind of rule is obviously needed to determine the order in which a given
set of table initializations should occur. 
MULTIPLE DISPATCH VIA A TABLE 359



To determine the correct order for any two initializations, we need to work out which
of the handlers is the more general—that is, which one covers the widest range of cases. Typ-
ically, either one handler will cover a superset of the other handler’s cases (in which case, it’s
obviously the more general of the two and should be initialized first), or each handler will cover
a nonoverlapping set of cases (in which case, the initialization order doesn’t matter), or else
there will be some noninclusive overlap in the cases covered (which is a damn nuisance). 

Ignoring the problem of overlapping coverage for the moment (we’ll deal with it in the
next section), it’s relatively straightforward to determine which of the two handlers should be
initialized first. To do so, we have to find the least-derived class name in each parameter set
of each handler. That is, for each argument of each handler, we have to determine the one class
within its parameter set that is an ancestor for all other classes in the same set. For example,
within a set such as [qw(ReshapeEvent Event ResizeEvent)], the least-derived class is
Event since it’s the ancestor of the other two. 

Once we’ve determined the two lists of least-derived parameter types, we use them to
compare the two handlers in question argument-by-argument. The goal is to find an argument
position for which the least-derived parameter in one handler is an ancestral class of the least-
derived parameter in the other handler. 

For example, looking at initializations A and B above, we can see that, for A, the least-
derived parameter classes of the three arguments are (Window, Event, Mode). That’s because
the first two parameter sets have only one candidate each (Window and Event, respectively),
so those classes are automatically the least-derived for those parameters. For the third parameter
set there are four candidates, but Mode is the base class of the other three, so it’s clearly the
least-derived. By similar logic, the least-derived parameter classes in initialization B are (Win-
dow, Event, OffMode). 

Having now determined the least-derived parameter class in each argument position of
both handlers, we can compare them, one argument position at a time. For their first argu-
ments, the least-derived class of each handler is Window, so they’re equal at that point. Like-
wise, the least-derived class for both handlers’ second arguments is Event, so they’re still equal.
Only when we compare the final arguments is there a difference: Mode vs OffMode. Since
Mode is an ancestor of OffMode, initialization A wins. Winning implies that initialization A
sets up the more general of the two handlers—since at least one of its parameters is more gen-
eral than B’s—and, hence, should be performed first.

13.3.2 Ordering problems

Working out the correct order for two—or more—initializations is not always so straightfor-
ward, even when each parameter set has only a single element. Consider the following case: 

# initialization C
init [qw(Window)], [qw(AcceptEvent)], [qw(OffMode)],

=> sub { print "Window $_[0]->{_id} can't accept in OffMode!\n" };

# initialization D
init [qw(ModalWindow)], [qw(Event)], [qw(Mode)]

=> sub { print "Modal window $_[0]->{_id} can't handle event!\n" };
360 CHAPTER 13 MULTIPLE DISPATCH



Comparing the parameter sets for the first argument position suggests that initialization
C should be done first since Window is an ancestor of ModalWindow. However, the opposite
conclusion is reached when you compare the second parameters: Event is the base class of Ac-
ceptEvent, so initialization D should come first. The final parameter types also suggest that ini-
tialization D should be done first since OffMode is derived from Mode. 

Cases such as this one are, in fact, inherently ambiguous. Suppose, for example, that the
actual set of arguments passed to receive_event were (ModalWindow, AcceptEvent, Off-
Mode). Clearly, the handler for (Window, Event, OffMode) can handle these arguments: it
will just polymorphically treat the ModalWindow argument as a Window. Equally clearly, the
(ModalWindow, AcceptEvent, Mode) handler can handle the call, by treating the AcceptEvent
argument polymorphically as an Event and the OffMode argument polymorphically as a
Mode. 

There are several ways to resolve this ambiguity. We might decide that the initialization
with the greatest number of more general arguments should come first, in which case initial-
ization D wins with two ancestral parameter types to C’s one. 

Or we might still follow the algorithm described in the previous section, and effectively
give priority to the left-most parameter where a difference occurs. In that case, initialization
C wins because the difference in the first parameters favors it. This approach is the multiple
dispatch equivalent of Perl’s “left-most ancestor wins” single dispatch policy. 

Or we might choose to complain that the two handlers really do make the (ModalWin-
dow, AcceptEvent, OffMode) combination ambiguous and demand that a third handler be
provided specifically for that case. 

Generally speaking, it doesn’t matter which resolution policy we choose to apply, as long
as it’s well documented and used consistently. The few languages with built-in support for
multimethods generally opt for giving left-most arguments priority, but that’s mainly because
it’s an easy rule for language designers to implement and programmers to remember; it doesn’t
necessarily lead to more predictable or appropriate dispatching behavior. 

13.4 COMPARING THE TWO APPROACHES
Having now looked at two different approaches to implementing multiple dispatch—tests-in-
methods and dispatch tables—the obvious question is: which is better? 

Multiple dispatch via tables is clearly superior in terms of execution speed. For the im-
plementations shown above, a single call to a handler is dispatched through a dispatch table
approximately twice as fast as through a method with embedded tests. That translates to an av-
erage improvement of around 20 percent in real applications, where the cost of actually exe-
cuting the handler typically dominates the cost of invoking it. 

Many implementers also find dispatch tables easier to maintain, since the calls to init
explicitly document the expected behavior for every combination of argument classes. On the
other hand, experienced object-oriented programmers may find the use of methods with nested
tests more illuminating because the polymorphism of the initial single dispatch and the sub-
sequent calls to isa allows them to reason abstractly about the overall behavior of the handlers. 
COMPARING THE TWO APPROACHES 361



Despite its poorer run-time performance, the tests-in-methods approach has another in-
disputable advantage over a fixed dispatch table: it’s able to handle requests involving argu-
ments of classes not explicitly named in the handlers. 

For example, suppose we derive a new type of window from ResizableWindow—let’s call
it CollapsableWindow—and a new mode from OnMode—say, ActiveMode. If the GUI event
hander is called on a set of arguments with classes (CollapsableWindow, ResizeEvent, Active-
Mode), then the tests-in-methods version of the handler initially calls the inherited method
ResizableWindow::receive_event: 

sub ResizableWindow::receive_event
{

my ($self, $event, $mode) = @_;
if ($event->isa(MoveAndResizeEvent) && $mode->isa(OnMode))

{ print "Moving and resizing window $self->{_id}!\n" }
elsif ($event->isa(ResizeEvent) && $mode->isa(OnMode))

{ print "Resizing window $self->{_id}!\n" }
else

{ $self->SUPER::receive_event($event,$mode) }
}

because that’s the one that CollapsableWindow inherits. 
That method tries each of its tests and discovers that the second test succeeds, because the

ResizeEvent object is-a ResizeEvent (obviously), and the ActiveMode object is-a OnMode (be-
cause it inherits directly from that class). Hence, even though there’s no specific code to handle
the many new argument combinations created by adding two new classes, the existing handlers
can still use inheritance relationships to treat all three arguments polymorphically. 

In contrast, if you use the dispatch table approach, the receive_event method inher-
ited from class Window:

sub Window::receive_event
{

my ($type1, $type2, $type3) = (ref($_[0]),ref($_[1]),ref($_[2]));
my $handler = $table{$type1}{$type2}{$type3};
die "No suitable handler found" unless $handler;
$handler->(@_);

}

is called. It attempts to look up the entry for the new combination in %table, but fails to find
one, since no entries for either CollapsableWindow or ActiveMode are ever initialized. Instead
of handling the request in some reasonable way, this version of receive_event throws an
exception. 

Therefore, to add the new classes into the table-dispatched application, we have to ensure
that we’ve also covered all possible combinations of those classes with appropriate extra ini-
tializations. For example, to cover the (CollapsableWindow, ResizeEvent, ActiveMode) com-
bination, we can extend the initialization

init[qw(ResizableWindow)],
[qw(ResizeEvent)],
[qw(OnMode)]
=> sub { print "Resizing window $_[0]->{_id}!\n" };
362 CHAPTER 13 MULTIPLE DISPATCH



to: 

init[qw(ResizableWindow CollapsableWindow)],
[qw(ResizeEvent)],
[qw(OnMode ActiveMode)]
=> sub { print "Resizing window $_[0]->{_id}!\n" };

13.5 DYNAMIC DISPATCH TABLES
Of course, it’s not particularly difficult to redesign the dispatch table mechanism so that it can
automatically treat unfamiliar argument types polymorphically. To do so, we need to supply a
means of extending the dispatch table whenever we encounter an unknown combination of
types. That means, on failing to find a suitable entry in the dispatch table, receive_event
has to search upwards through the various argument hierarchies until it finds a combination
of ancestral parameter classes that does have an entry in the table. Figure 13.2 illustrates that
search for a subset of the full table. 

Each node represents a particular combination of argument types. If the node is dark,
there is a handler for the combination. Light nodes represent combinations for which no han-
dler has yet been installed. The search performed in such cases is represented by the dashed ar-
rows. The search is constrained to move only in the same direction as the inheritance arrows,2

even if it must bypass a handler node physically closer than the one it eventually reaches.
Listing 13.3 illustrates the surprisingly extensive additions required to provide this new

behavior. The central concern of those additions is what happens when the table doesn’t spec-
ify a handler for a particular set of arguments. And what happens is that receive_event com-
piles a list of the ancestral classes of each argument, then searches through the full set of
combinations of those ancestors, in three nested foreach loops, looking for a combination 
with an entry in the table. If such an entry is found, it’s guaranteed to handle the actual argu-
ment types.3

The ancestors subroutine is used to compute the set of ancestral classes for each argu-
ment. Starting with a list consisting of the class itself, it iteratively splices the parents of each
class into the list (using the symbolic reference @{"$ancestors[$i]::ISA"}). Each parent
list is spliced in just after the class itself. This eventually produces a depth-first, left-to-right list-
ing of the ancestors of the original class. 

Having determined the ancestry of each argument, receive_event iterates through
three nested foreach loops, stepping through every combination of possible argument types
until it finds a suitable handler. The order of the nested loops (i.e., foreach

(@ancestors1)... foreach (@ancestors2)... foreach (@ancestors3)) is impor-
tant here because that sequence gives priority to the left-most argument. In other words, com-
binations featuring the most-derived classes of the left-most arguments are tried first. This is
an extension of the left-most ancestor wins ambiguity resolution policy. 

2 …because the is-a relationship, by which argument objects are generalized, is unidirectional, it only
applies when going up a hierarchy…

3 One of the consequences of an inheritance relationship is that each object conceptually is-a instance of
every one of its ancestral types, and can be treated as such whenever necessary.
DYNAMIC DISPATCH TABLES 363



Most importantly, once a handler is found for a previously unknown set of argument
types, that handler is assigned to the corresponding entry of the dispatch table. That way, the
next time the same set of argument types is used, the search won’t have to be repeated. 

Because receive_event can now cope with missing table entries, the initialization pro-
cess can be made much simpler. It’s no longer necessary to ensure that every possible combi-
nation of argument classes has a handler, since a suitable polymorphic substitute for any
missing combination will be automatically located when the table is forced to extend. As long
as we remember to initialize the critical default case, (Window,Event,Mode), every actual com-
bination of arguments will find its way back to that handler unless a more specific handler is
encountered first. 

      OnMode
            is a
Mode

      OnMode
            is a
Mode

      OnMode
            is a
Mode

      OnMode
            is a
Mode

M
ov

eA
nd

Re
siz

eE
ve

nt

M
ov

eE
ve

nt

Re
sh

ap
eE

ve
nt

Ev
en

t

is ais ais a

Resi
zab

leW
ind

ow

Mova
ble

Wind
ow

Mod
alW

ind
ow

Wind
ow

is a

is a

is a

handler exists for this combination of argument types

no handler exists for this combination of arguments: 
receive_event follows the inheritance arrows to find a handler

1
1

1

1

1

1

1

1

2

2

2
2

2

2

2
3

3

3

3

3

3

2 4

4

4

4

3 5

Figure 13.2 Multiple dispatch with a dynamic table
364 CHAPTER 13 MULTIPLE DISPATCH



package Window;

my $_id = 1;
sub new { bless { _id => $_id++ }, $_[0] }

my %table;

sub init
{

my ($param1,$param2,$param3,$handler) = @_;
$table{$param1}{$param2}{$param3} = $handler;

}

init "Window", "Event", "Mode"
=> sub { print"Window $_[0]->{_id} can't handle a ",

ref($_[1]), " event in ", ref($_[2]), " mode\n" };

init "Window", "Event", "OffMode"
=> sub { print "No window operations available in OffMode\n" };

init "ModalWindow", "ReshapeEvent", "Mode"
=> sub { print "Modal windows can't handle reshape events\n" };

init "ModalWindow", "AcceptEvent", "Mode"
=> sub { print "Modal window $_[0]->{_id} accepts!\n" };

init "ModalWindow", "AcceptEvent", "OffMode"
=> sub { print "Modal window $_[0]->{_id} can't accept in OffMode!\n" };

init "MovableWindow", "MoveEvent", "OnMode"
=> sub { print "Moving window $_[0]->{_id}!\n" };

init "ResizableWindow", "ResizeEvent", "OnMode"
=> sub { print "Resizing window $_[0]->{_id}!\n" };

init "ResizableWindow", "MoveAndResizeEvent", "OnMode"
=> sub { print "Moving and resizing window $_[0]->{_id}!\n" };

sub ancestors
{

no strict "refs";
my @ancestors = @_;
for (my $i=0; $i<@ancestors; $i++)

{ splice @ancestors, $i+1, 0, @{"$ancestors[$i]::ISA"} }
return @ancestors;

}

sub receive_event
{

Listing 13.3 Window subclasses with a dynamically extending table-based

receive_event method
DYNAMIC DISPATCH TABLES 365



my ($type1, $type2, $type3) = (ref($_[0]),ref($_[1]),ref($_[2]));
my $handler = $table{$type1}{$type2}{$type3};
if (!$handler)
{

my @ancestors1 = ancestors($type1);
my @ancestors2 = ancestors($type2);
my @ancestors3 = ancestors($type3);

SEARCH:foreach my $anc1 ( @ancestors1 )
{

foreach my $anc2 ( @ancestors2 )
{

foreach my $anc3 ( @ancestors3 )
{

$handler = $table{$anc1}{$anc2}{$anc3};
next unless $handler;
$table{$type1}{$type2}{$type3} = $handler;
last SEARCH;

}
}

}
}

die "No handler defined for ($type1,$type2,$type3)"
unless $handler;

$handler->(@_);
}

Hence, the init subroutine can be greatly simplified, so that it merely initializes the en-
try for the three least-derived classes handled by a particular handler. Those single class names
can now be passed as strings rather than in anonymous arrays. 

13.5.1 No free lunch...

Extending the dispatch table mechanism in this way comes at a cost. For a start, it greatly
complicates receive_event, which is unfortunate if we plan to use a number of different
multiply-dispatched methods and need to implement a distinct dispatch table mechanism for
each. 

The greater complexity of the mechanism also reduces the dispatch table’s raw perfor-
mance by around 60 percent for each call in which the table has to be extended. Amortized
over many calls, this reduces the real-world performance by around 15 to 20 percent—once
all combinations have been handled at least once and the table is fully extended. 

The simplified initialization process compensates somewhat for this loss of performance.
Unlike the tests-in-methods approach, which distributes the possible handlers amongst nu-
merous methods throughout the first argument’s class hierarchy, the dynamic, table-driven dis-
patch collects the alternatives together and specifies them in a generic way that makes the
dispatch process much easier to predict. Better still, because each initialization sets up only a
single table entry, it doesn’t matter what order they’re applied in. 
366 CHAPTER 13 MULTIPLE DISPATCH



13.6 SOME LINGERING DIFFICULTIES
The hand-crafted approaches to multiple dispatch shown above are fine for small applications
where it’s relatively easy to work out the necessary tests (in the tests-in-methods approach) or
to construct suitable dispatching mechanisms (for a dispatch table). 

But the number of possible cases, and potential handlers, grows with the product of the
size of the class hierarchies involved, and that way lies madness. For example, adding a single
new type of window to the GUI adds twenty-four extra cases (1 new window type × 6 existing
events × 4 existing modes). By adding a single class, we just made the already complex task of
setting up handlers about 25 percent more difficult. 

Moreover, most of us simply aren’t able to directly perceive the consequences of simul-
taneous changes in multiple interacting hierarchies.4 Imagine adding that extra window sub-
class, and a few extra events specific to it, and then throwing in another possible mode. Do any
of the existing handlers become ambiguous? If so, the dispatch of existing cases may also be
affected. How many additional handlers will be required? If you’re using tests-in-methods, will
the order of testing have to change? And what happens if that new window subclass inherits
from two existing classes, for example, combining MovableWindow and ModalWindow to
create a MovableModalWindow? 

In such cases, it can be particularly hard to ensure that all possible combinations of ar-
guments are covered, and that method calls are dispatched in a consistent and predictable man-
ner. Even if you do manage to encode the correct set of choices, testing and maintenance can
become a nightmare. And, on top of everything else, you still have to rebuild a separate dis-
patch table, look-up method, and extension mechanism for each new multiply dispatched
method you add.

Life would be much easier if we could define a set of identically-named methods with dis-
tinct parameter lists. Then the program would automagically find the right one. Such a set of
multiply dispatched methods is known as a multimethod, and each alternative method in the
set is known as a variant.

Alas, Perl has no mechanism for specifying parameter types or overloading subroutine
names. And certainly there’s no mechanism for automatically selecting between (hypothetical-
ly) overloaded subroutines on the basis of the inheritance relationships of those (unspecifiable)
parameter types. 

And that’s where the Class::Multimethods module comes in. 

13.7 THE CLASS::MULTIMETHODS MODULE
The Class::Multimethods module generalizes and automates the dynamic dispatch table tech-
nique described earlier. It exports a subroutine called multimethod that takes the place of the
dynamic dispatch table’s init subroutine and can be used to specify multimethods of the
type described above. 

4 Consider, for example, the many unforeseen consequences to England’s monarchy when the Windsor
hierarchy started interacting with the Spenser and Ferguson family trees.
THE CLASS: :MULTIMETHODS MODULE 367



The multimethod subroutine takes the name of the desired multimethod, followed by
a parameter list (of class names), and a subroutine reference. Unlike the init subroutine used
by the dynamic dispatch tables, each variant defined using multimethod can be given any
number of parameters. The call to multimethod generates an implementation of a single vari-
ant of the requested multimethod within the current class. By using several calls to multim-
ethod, we can set up a collection of variants, thereby creating a usable multimethod.

Listing 13.4 shows the Window class reimplemented using Class::Multimethods. The
new class is effectively an automated version of the dynamic dispatch table shown in
listing 13.3. Once again, the GUI’s event loop:

while ($next_event = shift @event_queue)
{

$focus_window->receive_event($next_event, $current_mode);
}

correctly dispatches each event to the appropriate variant of the receive_event multime-
thod for the given combination of arguments derived from classes Window, Event, and Mode.
More importantly, if no variant of the multimethod matches exactly, the call is dispatched to
the closest compatible alternative.

13.7.1 Identifying the nearest multimethod

The usefulness of any multiple dispatch technique depends on how intelligently the dispatch
mechanism performs its dispatch resolution—that is, how well the dispatch mechanism decides
which variant of a multimethod is nearest to the arguments provided. 

In the dynamic dispatch table shown previously, that decision was based on a depth-first,
left-to-right analysis of the inheritance hierarchies of the arguments, giving the left-most ar-
gument’s hierarchy precedence. That’s an easy algorithm to understand, and one that corre-
sponds well to Perl’s built-in notions of left-most, depth-first search for singly dispatched
methods. But it doesn’t always select the most appropriate method.

For example, given a multimethod call with a combination of arguments such as (Resiz-
ableWindow, MoveAndResizeEvent, OffMode), a depth-first algorithm might dispatch them
to the variant for (ResizableWindow, Event, Mode).5 That’s unfortunate, since the variant for
(MovableWindow, MoveAndResizeEvent, OffMode) would clearly be a better choice.

In trying to quantify what makes (MovableWindow, MoveAndResizeEvent, OffMode)
a better choice, the obvious answer is that—on average—its parameter types are nearer to the
actual arguments in their respective inheritance hierarchies. That means that their behaviors
are more specific to the actual arguments. It’s better to treat a ResizableWindow a little more
generically—say, as a MovableWindow—if it means we don’t have to treat the MoveAnd-
ResizeEvent and OffMode objects as completely abstract Event and Mode objects.

In other words, in selecting a most appropriate variant, we’d prefer to go as short a dis-
tance up each argument’s inheritance hierarchy as possible. That calls for a breadth-first rather
than a depth-first approach.

5 …because it walked all the way up the inheritance trees of the right-most arguments first, reached the
ancestral Window and Mode classes, and happened to find a match.
368 CHAPTER 13 MULTIPLE DISPATCH



13.7.2 Finding the nearest multimethod

And a breadth-first dispatch resolution algorithm is exactly what Class::Multimethods uses.
When asked to select a variant to handle a particular multimethod call, it follows these five
steps:

package Window;

my $_id = 1;
sub new { bless { _id => $_id++ }, $_[0] }

use Class::Multimethods;

multimethod receive_event
=> ("Window", "Event", "Mode")

=> sub { print"Window $_[0]->{_id} can't handle a ",
ref($_[1]), " event in ", ref($_[2]), " mode\n" };

multimethod receive_event
=> ("Window", "Event", "OffMode")

=> sub { print "No window operations available in OffMode\n" };

multimethod receive_event
=> ("ModalWindow", "ReshapeEvent", "Mode")

=> sub { print "Modal windows can't handle reshape events\n" };

multimethod receive_event
=> ("ModalWindow", "AcceptEvent", "Mode")

=> sub { print "Modal window $_[0]->{_id} accepts!\n" };

multimethod receive_event
=> ("ModalWindow", "AcceptEvent", "OffMode")

=> sub { print "Window $_[0]->{_id} can't accept in OffMode!\n" };

multimethod receive_event
=> ("MovableWindow", "MoveEvent", "OnMode")

=> sub { print "Moving window $_[0]->{_id}!\n" };

multimethod receive_event
=> ("ResizableWindow", "ResizeEvent", "OnMode")

=> sub { print "Resizing window $_[0]->{_id}!\n" };

multimethod receive_event
=> ("ResizableWindow", "MoveAndResizeEvent", "OnMode")

=> sub { print "Moving and resizing window $_[0]->{_id}!\n" };

Listing 13.4 Generating the receive_event multimethod using Class::Multi-

methods
THE CLASS: :MULTIMETHODS MODULE 369



1 If the types of the arguments given, as determined by ref, exactly match the parameter
types of any variant of the multimethod, that variant is called immediately, and the dis-
patch process is complete.

2 Otherwise, Class::Multimethods compiles a list of viable targets. A viable target is a vari-
ant of the multimethod with the correct number of parameters, where each parameter
type is a base class of the respective argument’s actual type in the actual call. That means
that if the actual arguments passed to the multimethod are of types X, Y, and Z, a viable
target will have parameter types A, B, and C, where X->isa(A), Y->isa(B), and
Z->isa(C).

3 If there’s only one viable target, it’s called immediately, and the dispatch process is com-
plete. If there are no viable targets, the dispatch fails, and an exception is thrown.6 

4 Otherwise, Class::Multimethod examines each viable target and computes its inheritance
distance to the actual set of arguments. The inheritance distance from a single argument
to the corresponding parameter is the number of inheritance steps between their respec-
tive classes (working up the tree from argument to parameter). If there is no inheritance
path between them, the distance is infinite. The inheritance distance for a set of argu-
ments is just the sum of their individual inheritance distances.

Hence, if a specific argument is of the same class as the corresponding parameter, the
inheritance distance to that parameter is zero. If the argument is of a class that is an
immediate child of the parameter type, the inheritance distance is 1. If the argument is
of a class that is a “grandchild” of the parameter type, the inheritance distance is 2. For
example, the numbered links in figure 13.2 show the inheritance distances for various
argument sets passed to the receive_event multimethod. 

5 Class::Multimethod chooses the viable target with the smallest inheritance distance as
the actual target. If more than one viable target has the same smallest distance, the call is
ambiguous. In that case, the dispatch process fails, and an exception is thrown.6 If there
is only a single actual target, Class::Multimethod records its identity in a special cache.
That way, the distance computations don’t have to be repeated next time the same set of
argument types is used.7 The actual target is then called, and the dispatch process is
complete.

That’s a fairly complex definition of nearest. To gain a better appreciation of how the
Class::Multimethods dispatch process works, let’s consider the example where arguments of
types (ResizableWindow,MoveEvent,OffMode) are passed to the receive_event multi-
method. Here’s how Class::Multimethods handles the call:

1. Exact match? 
The available variants of the receive_event multimethod are:

6 …but see the subsection on Handling resolution failure, section 13.7.4, below.
7 As with the dynamic dispatch table, the caching of this information is vital because it ensures that the

average cost of calling multimethods approaches the cost of a single table look-up per call and, so, is
comparable to the cost of using tests-in-methods or fixed dispatch tables.
370 CHAPTER 13 MULTIPLE DISPATCH



multimethod receive_event => (Window, Event, OffMode)
multimethod receive_event => (Window, Event, Mode)
multimethod receive_event => (ModalWindow, ReshapeEvent, Mode)
multimethod receive_event => (ModalWindow, AcceptEvent, OffMode)
multimethod receive_event => (ModalWindow, AcceptEvent, Mode)
multimethod receive_event => (MovableWindow, MoveEvent, OnMode)
multimethod receive_event => (ResizableWindow, ResizeEvent, OnMode)
multimethod receive_event => (ResizableWindow, MoveAndResizeEvent, OnMode)

None of these has a parameter list (ResizableWindow, MoveEvent, OffMode), so no ex-
act match can be invoked directly. 

2. Viable targets?
Class::Multimethods compiles the list of viable targets, namely:

multimethod receive_event => (Window, Event, OffMode)
multimethod receive_event => (Window, Event, Mode)

The (Window, Event, OffMode) variant is viable because its first parameter type, Win-
dow, is a grandparent of the actual type of the first argument, ResizableWindow; the second
parameter type, Event, is a parent of MoveEvent; and the last argument, OffMode, matches
the type of the corresponding argument exactly.

 The (Window, Event, Mode) is also viable. Once again, Window is a grandparent of Re-
sizableWindow, and Event is a parent of MoveEvent. The last parameter type, Mode, is also
compatible since it's the parent class of the last argument type (OffMode). 

None of the other six variants is viable. For example, the (ModalWindow, ReshapeEvent,
Mode) variant is rejected because ModalWindow isn’t a superclass of ResizableWindow even
though ReshapeEvent and Mode are superclasses of MoveEvent and OffMode respectively. 

Likewise, the other five candidates fail to be viable due to various incompatibilities in one
or more of their parameter types: 

multimethod receive_event=> (ModalWindow, AcceptEvent, OffMode)
#  no no no

multimethod receive_event=> (ModalWindow, AcceptEvent, Mode)
#  no no yes

multimethod receive_event=> (MovableWindow, MoveEvent, OnMode)
#  yes yes no

multimethod receive_event=> (ResizableWindow,ResizeEvent, OnMode)
#  yes yes no

multimethod receive_event=> (ResizableWindow,MoveAndResizeEvent, OnMode)
#  yes no no

3. One or fewer viable targets? 
Step 2 leaves two viable targets, so neither can be called immediately. However, there’s still the
possibility that the call can be dispatched to one of them. 
THE CLASS: :MULTIMETHODS MODULE 371



4. Computation of inheritance distances 
For the first viable target:

multimethod receive_event => (Window, Event, OffMode)

the inheritance distance of the first parameter is two inheritance steps (ResizableWindow is-a
MovableWindow is-a Window). For the second parameter, the distance from MoveEvent to
Event is one inheritance step (MoveEvent is-a Event). For the third parameter, the distance
from OffMode to OffMode is, of course, zero. Hence, the total distance from the actual argu-
ment set to the first viable target is 3. 

For the second viable target:

multimethod receive_event => (Window, Event, Mode)

the distance from class ResizableWindow to Window is once again 2, and the distance from
MoveEvent to Event is still 1. The distance from OffMode to Mode is also 1, since OffMode
directly inherits from Mode. Hence, the distance to the second viable target is 4. 

5. Selection of least distant target 
Because the first viable candidate has a smaller inheritance distance than the second, it is
selected as the actual target. Class::Multimethod records the fact in its dispatch cache, noting
that any future calls to receive_event with the argument types (ResizableWindow,
MoveEvent, OffMode) should be sent straight to the variant with parameters (Window,
Event, OffMode). Finally, the actual target is invoked and passed the original argument list.

13.7.3 Implications of breadth-first multimethod dispatch

It’s important to note the differences between the dispatch processes for a multimethod and a
regular Perl polymorphic method, since the more complex multimethod dispatch procedure
can lead to unexpected results, especially if the multimethod has only a single argument.

The minimal inheritance distance criterion for selecting a multimethod variant is equiv-
alent to a breadth-first parallel search of the inheritance hierarchies of all the multimethod’s
arguments. In fact, that’s how the multiple dispatch mechanism is actually implemented in
Class::Multimethods, since it’s more efficient to search for and evaluate viable targets incre-
mentally than blithely calculate the distance to every multimethod at once.

In contrast, regular methods are dispatched via a sequential depth-first search of the hi-
erarchy of the first argument only. That makes for faster dispatching, but it does mean that
the first parent of a class is more strongly inherited than the rest,8 and, hence, tends to deter-
mine which inherited method is called.

Differences for multiple arguments from multiple hierarchies
To see the consequences of these two approaches, let’s consider the A_…, B_…, and C_…
hierarchies shown in figure 13.3 and implemented in listing 13.5. In each class, the method

8 Left-most ancestor wins again. One way to think about it is to pretend that the left-most parent has
the dominant genes.
372 CHAPTER 13 MULTIPLE DISPATCH



poly and the multimethod multi are identical in structure. They differ only in how calls to
them are dispatched. That difference between method dispatch and multimethod dispatch
becomes clear when the following code is executed:

package main;

my ($aref1, $aref2) = (A_Parent->new(), A_Grandchild->new());
my ($bref1, $bref2) = (B_Parent->new(), B_Grandchild->new());
my ($cref1, $cref2) = (C_Parent->new(), C_Grandchild->new());
 
# case 1
$aref1->poly($bref2,$cref2);
$aref1->multi($bref2,$cref2);

# case 2
$aref2->poly($bref1,$cref1);
$aref2->multi($bref1,$cref1);

# case 3
$aref2->poly($bref2,$cref2);
$aref2->multi($bref2,$cref2);

In case 1, the following lines are printed:

dispatched to A_Parent::poly

dispatched to A_Parent::multi

A_Parent::poly is called because the method dispatch mechanism looks at the type of
the first argument ($aref1), starts searching for a matching subroutine in the corresponding
package (A_Parent), immediately finds a suitable match, and calls it. In contrast, A_Par-
ent::multi is called because the multimethod dispatch mechanism looks at the types of all
the arguments ($aref1, $bref2, $cref2), compiles a list of viable targets (A_Par-
ent::multi is the only one), selects the one viable target as the actual target, and calls it.

Case 2 prints the following:
dispatched to A_Child::poly

dispatched to A_Parent::multi

A_Parent
&poly

&multi

is-a

is-a

A_Child
&poly
&multi

A_GrandChild
&poly
&multi

B_Parent

is-a

is-a

B_Child

B_GrandChild

C_Parent

is-a

is-a

C_Child

C_GrandChild
Figure 13.3 Class hierarchies illustrating 

the differences between dispatch of 

methods and multimethods
THE CLASS: :MULTIMETHODS MODULE 373



A_Child::poly is called because the method dispatch mechanism looks at the type of
$aref2, and starts searching for a matching subroutine in the corresponding package (A_
Grandchild). It fails to find one there, so it checks the parent class (A_Child) where it finds
and calls a suitable subroutine. In contrast, A_Parent::multi is called because the mul-
timethod dispatch mechanism looks at the types of all the arguments ($aref2, $bref1,
$cref1), compiles a list of viable targets (A_Parent::multi is again the only one),
selects that single viable target as the actual target, and calls it.

Case 3 prints:
dispatched to A_Child::poly

dispatched to A_Child::multi

A_Child::poly is called because the method dispatch mechanism looks at the type of
$aref2, fails to find a matching subroutine in A_Grandchild, finds one in the parent class A_
Child, and calls that matching subroutine. A_Child::multi is called because the multime-
thod dispatch mechanism:

1 looks at the types of all the arguments ($aref2, $bref2, $cref2);

2 compiles a list of viable targets (both A_Parent::multi and A_Child::multi are
now viable);

3 computes their relative inheritance distances from the actual argument types (6 for A_
Parent::multi and 3 for A_Child::multi);

4 selects A_Child::multi as the single "closest" actual target;

5 calls it. 

In this third case, the outcomes are similar: a method of class A_Child is selected in pref-
erence to a method of class A_Parent. However, the reasons for each selection are different.
A_Child::poly is selected because the first argument is closer to class A_Child than to class
A_Parent. A_Child::multi is chosen because the complete set of arguments is collectively
closer to the combination (A_Child,B_Child,C_Child) than to (A_Parent,B_Parent,C_Par-
ent).

Differences for single arguments from the same hierarchy
It is not so surprising that multimethods handle the dispatch of calls with more than one
argument in a special manner. After all, that’s why they were invented. What is surprising is
that such differences in dispatch behavior are not confined to cases involving multiple argu-
ments from different inheritance hierarchies. They can also occur when dispatching methods
with a single argument belonging to a single hierarchy.

Consider the D_… hierarchy shown in figure 13.4 and implemented in listing 13.6. The
following two calls:

my $dref = D_Grandchild->new();

$dref->poly();
$dref->multi();
374 CHAPTER 13 MULTIPLE DISPATCH



dispatch on the same single argument, $dref, consider a similar set of possible target meth-
ods—those inherited from D_Parent, D_OtherParent, and D_OtherChild—but end up in
different places:
dispatched to D_Parent::poly

dispatched to D_OtherChild::multi

# The "A" class hierarchy
package A_Parent;
use Class::Multimethods;

multimethod multi => (A_Parent, B_Parent, C_Parent)
=> sub{ print "dispatched to A_Parent::multi\n" };

sub poly{ print "dispatched to A_Parent::poly\n" }

package A_Child;
@A_Child::ISA = (A_Parent);
use Class::Multimethods;

multimethod multi => (A_Child, B_Child, C_Child)
=> sub{ print "dispatched to A_Child::multi\n" };

sub poly{ print "dispatched to A_Child::poly\n" }

package A_Grandchild;
@A_Grandchild::ISA = (A_Child);

# The "B" class hierarchy
package B_Parent;

package B_Child;
@B_Child::ISA = (B_Parent);

package B_Grandchild;
@B_Grandchild::ISA = (B_Child);

# The "C" class hierarchy
package C_Parent;

package C_Child;
@C_Child::ISA = (C_Parent);

package C_Grandchild;
@C_Grandchild::ISA = (C_Child);

Listing 13.5 Implementation of the A_.., B_..., and C_... class hierarchies

shown in figure 13.3
THE CLASS: :MULTIMETHODS MODULE 375



The call to the poly method looks at the class of $dref, finds no matching subroutine
in D_Grandchild, and recursively tries the left-most parent class (D_Child). Failing to find a
match there, it again tries the left-most parent (D_Parent), finally finding a suitable method,
which it immediately calls.

In contrast, the call to the multi multimethod first assembles a list of viable targets. This
list consists of D_Parent::multi, D_OtherParent::multi, and D_OtherChild::multi.
Computing the inheritance distances from D_Grandchild (the class of the argument $dref)
to each viable target yields 2, 2, and 1 respectively, so D_OtherChild::multi becomes the
final target and is called.

In other words, even with a single argument to consider, the regular Perl polymorphic
method chooses the first suitable method that a class inherits, while a Class::Multimethods
multimethod chooses the closest suitable inherited method.

13.7.4 Handling resolution failure

It’s relatively easy to create a set of multimethod variants so that particular combinations of
argument types cannot be correctly dispatched. For example, consider the following variants
of a multimethod called put_peg:

multimethod put_peg => (RoundPeg,Hole)
=> sub { print "a round peg in any old hole\n"; };

multimethod put_peg => (Peg,SquareHole)
=> sub { print "any old peg in a square hole\n"; };

multimethod put_peg => (Peg,Hole)
=> sub { print "any old peg in any old hole\n"; };

If put_peg is called like this:

put_peg( RoundPeg->new(), SquareHole->new() );

is-a

is-a

is-a

is-a

D_Parent
&poly

&multi

D_Child
&poly

&multi

D_GrandChild
&poly

&multi

D_OtherParent
&poly
&multi

D_OtherChild
&poly

&multi

Figure 13.4 Another class hierarchy 

illustrating the difference between 

dispatch of methods and multimethods
376 CHAPTER 13 MULTIPLE DISPATCH



Class::Multimethods can’t dispatch the call, because it cannot decide between the (RoundPeg,
Hole) and (Peg, SquareHole) variants, each of which is the same inheritance distance—one
derivation—from the actual arguments.

The default behavior of Class::Multimethods in such a situation is to throw an exception:
Cannot resolve call to multimethod put_peg(RoundPeg,SquareHole).

The multimethods:

put_peg(RoundPeg,Hole)

put_peg(Peg,SquareHole)

are equally viable.

Sometimes, however, the more specialized variants of a multimethod like put_peg are
only optimizations. A more general case, such as the (Peg,Hole) variant, would suffice as a de-
fault where such an ambiguity exists. If that’s the case, it’s possible to tell Class::Multimethods
to resolve the ambiguity by calling that generic variant. To do so, we use the resolve_am-
biguous subroutine, which is automatically exported by Class::Multimethods:

# The "D" class hierarchy
package D_Parent;
use Class::Multimethods;

multimethod multi => (D_Parent)
=> sub{ print "dispatched to D_Parent::multi\n" };

sub poly{ print "dispatched to D_Parent::poly\n" }

package D_OtherParent;
use Class::Multimethods;

multimethod multi => (D_OtherParent)
=> sub{ print "dispatched to D_OtherParent::multi\n" };

sub poly{ print "dispatched to D_OtherParent::poly\n" }

package D_Child;
@D_Child::ISA = (D_Parent, D_OtherParent);

package D_OtherChild;
use Class::Multimethods;

multimethod multi => (D_OtherChild)
=> sub{ print "dispatched to D_OtherChild::multi\n" };

sub poly{ print "dispatched to D_OtherChild::poly\n" }

package D_Grandchild;
@D_Grandchild::ISA = (D_Child, D_OtherChild);

Listing 13.6 Implementation of the D_... class hierarchy shown in figure 13.4
THE CLASS: :MULTIMETHODS MODULE 377



resolve_ambiguous put_peg => (Peg,Hole);

That is, we specify the name of the multimethod being disambiguated and the signature
of the variant to be used in ambiguous cases. Of course, the specified variant must actually exist
at the time of the call. If it doesn’t, Class::Multimethod gives up and throws the usual equally
viable exception anyway.

Alternatively, if no variant is suitable as a default, you can register a reference to a sub-
routine to be called instead:

resolve_ambiguous put_peg => \&disambiguator;

Now, whenever put_peg can’t dispatch a call because it’s ambiguous, disambiguator
is called instead, with the same argument list as put_peg was given. Of course, resolve_am-
biguous doesn’t care which subroutine it’s given a reference to, so we can just as easily also
use an anonymous subroutine:

resolve_ambiguous put_peg
=> sub { print "can't put a ", ref($_[0]), " into a ", ref($_[1]), "\n" };

Multiple dispatch can also fail if no suitable variants are available to handle a particular
call. For example:

put_peg( JPEG->new(), Loophole->new() );

would normally produce the exception
No viable candidate for call to multimethod put_peg(JPeg,Loophole)

because classes JPEG and Loophole aren’t in the Peg and Hole hierarchies, and so there’s no
inheritance path back to a more general variant.

To catch such cases, you can use the resolve_no_match subroutine, also exported from
Class::Multimethods. resolve_no_match registers a multimethod variant—or subroutine
reference—to be used whenever the dispatch mechanism can’t find a suitable variant for a giv-
en multimethod call. For example:

resolve_no_match put_peg => sub
{

my ($p_type, $h_type) = @_;

$_[0]->show($_[1])if $p_type =~ /[JM]PEG/;
call_plumber()if $p_type eq 'ClothesPeg' && $h_type eq 'DrainHole';
$_[1]->crush($_[0])if $h_type eq 'BlackHole';

# etc.
};

As with resolve_ambiguous, the variant or subroutine that resolve_no_match reg-
isters is called with the same set of arguments that was passed to the original multimethod call.

13.7.5 Defining multimethods outside their classes

Class::Multimethod is laid back about how you use it. Having implemented its own sophis-
ticated dispatch procedure, it can cheerfully ignore the constraints imposed by the normal Perl
378 CHAPTER 13 MULTIPLE DISPATCH



method dispatch mechanism.9 For example, it doesn’t matter which packages the individual
variants of a multimethod are defined in. Every variant of a multimethod is visible to the
underlying multimethod dispatcher, no matter where it was created. Notice, for instance, that
the receive_event variants in listing 13.4 are all defined in class Window, even though
most of them don’t take a Window object as their first argument.

There’s no need to declare the multimethod in every other class in the Window hierarchy
because the normal Perl method inheritance mechanism ensures that it’s automatically visible
in all derived classes. However, the dispatch mechanism will be more efficient if the multim-
ethod is declared separately in every subclass, since Perl won’t have to search up the inheritance
tree to find the multimethod declaration and perform its own multimethod dispatch procedure
as well. 

To declare, but not define, a multimethod within the assorted Window subclasses, we can
call multimethod with just the name of the multimethod (that is, without specifying its pa-
rameter types or a reference to its associated subroutine). For example:

package ModalWindow;
use Class::Multimethods;
multimethod 'receive_event';

package MovableWindow;
use Class::Multimethods;
multimethod 'receive_event';

# etc.

It’s a little tedious to have to import Class::Multimethods into every class and declare the
multimethod as well, so the module also provides a shortcut. If the use Class::Multi-
Methods statement is specified with the name of one or more multimethods, it automatically
declares each of them in the current package. For example:

package ModalWindow;
use Class::Multimethods 'receive_event';

package ModalWindow;
use Class::Multimethods 'receive_event';

# etc.

Whether it’s better to define multimethod variants in separate classes or collect them in
a single class is largely a matter of personal preference. You might take the view that, as methods
of individual classes, they belong with those classes. Alternatively, it could be argued that a
multimethod is really a behavior of the class hierarchy as a whole, and so it makes sense to collect
all the variants in one place somewhere near the code implementing the hierarchy (say, at the
end of all the related classes). Yet another school of thought observes that a multimethod im-
plements a behavior that emerges from the interactions of the hierarchies containing all its ar-
guments, so there’s no reason to put its variants near any particular hierarchy. 

9 It is a tribute to the brilliance of Perl’s design that it’s possible for a user-defined module to circumvent
so fundamental a mechanism as method dispatch.
THE CLASS: :MULTIMETHODS MODULE 379



Ultimately, like so many things in life, it doesn’t really matter what you choose to do, only
that you do it consistently. However, experience indicates that multimethods with more than
three or four variants are usually easier to comprehend and to maintain if all their variants are
kept together.

13.7.6 Multimethods as regular subroutines

Although we’ve gone to the trouble of setting them up as object methods, Class::Multimethod
doesn’t care whether multimethods are called as methods or as regular subroutines. 

In fact, because they use their own dispatch mechanism, multimethod calls are the one
exception to the rule about always calling a method using the arrow syntax. When receive_
event is implemented using Class::Multimethods, the GUI event loop shown previously can
just as easily be coded as:

package main;
use Class::Multimethods 'receive_event';

while ($next_event = shift @event_queue)
{

receive_event($focus_window, $next_event, $current_mode);
}

and the correct method would still be called in each case.10 The call would even be marginally
faster, since it doesn’t need to work its way through Perl’s normal method dispatch process
first.

Of course, dispensing with the method call syntax also implies that multimethods can be
used as regular subroutines in non-object-oriented contexts. In other words, Class::Multime-
thods also provides general subroutine overloading. For example:

package main;
use IO;
use Class::Multimethods;

multimethod test => (IO::File) => sub
{

$_[0]->print("This should go in a file\n");
};

multimethod test => (IO::Pipe) => sub
{

$_[0]->print("This should go down a pipe\n");
};

multimethod test => (IO::Socket) => sub
{

$_[0]->print("This should go out a socket\n");
};

# and later…

test($some_io_handle); # calls whichever variant is appropriate

10 Note, however, that it was necessary to declare the multimethod within the main namespace, since
there’s now no invoking object to help Perl locate receive_event.
380 CHAPTER 13 MULTIPLE DISPATCH



13.7.7 Nonclass types as parameters

Yet another thing Class::Multimethods doesn’t care about is whether the parameter types for
each multimethod variant are the names of real classes or just the identifiers returned when
raw Perl data types are passed to the built-in ref function. That means we could also define
multimethod variants like this:

multimethod stringify => (ARRAY) => sub
{

my @arg = @{$_[0]};
return "[" .  join(", ",@arg) . "]";

};

multimethod stringify => (HASH) => sub
{

my %arg = %{$_[0]};
return "{" . join(", ", map("$_=>$arg{$_}",keys %arg)) . "}";

};

multimethod stringify => (CODE) => sub
{

return "sub {???}";
};

# and later…

print stringify( [1,2,3] ), "\n";
print stringify( {a=>1,b=>2,c=>3} ), "\n"; 
print stringify( $array_or_hash_ref ), "\n";

Provided we remember that the parameter types ARRAY, HASH, and CODE really mean ref-
erence to array, reference to hash, and reference to subroutine, the names of built-in types—
those returned by ref—are perfectly acceptable as multimethod parameters.

That’s a nice bonus, but there’s a problem. Because ref returns an empty string when
given any literal string or numeric value, the following code

print stringify( 2001 ), "\n";
print stringify( "a multiple dispatch oddity" ), "\n";

produces a nasty surprise
No viable candidate for call to multimethod stringify at line 1

The problem is that the dispatch resolution process first calls ref(2001) to get the class
name for the first argument. That call returns undef since 2001 isn’t a reference at all. The
undef is subsequently converted to an empty string when used as a class name, and since
there’s no stringify variant with an empty string as its parameter type, there are no viable
targets for the multimethod call. Hence, the exception.

To overcome this limitation, Class::Multimethods allows two special pseudo-typenames
within the parameter lists of multimethod variants. The first pseudo-type, '$', is the class to
which Class::Multimethods pretends all scalar values belong. Thus, we could make the two re-
calcitrant stringifications of scalars work correctly by defining:
THE CLASS: :MULTIMETHODS MODULE 381



multimethod stringify => ('$') => sub
{

return qq{"$_[0]"};
};

With that definition in place, the two calls:

print stringify( 2001 ), "\n"; 
print stringify( "a multiple dispatch oddity" ), "\n";

would produce:
"2001"

"a multiple dispatch oddity"

That solves the problem, but not as elegantly as we might like. It would be better if numeric
values were left unquoted. To this end, Class::Multimethods offers a second pseudo-type, '#',
which represents the class it pretends numeric scalar values belong to. If we now also define:

multimethod stringify => ('#') => sub
{

return $_[0];
};

then the two calls to stringify now produce:
2001

"a multiple dispatch oddity"

the first having been dispatched to the '#' variant, rather than to the '$' version.
From an object-oriented point of view, it’s interesting to note that Class::Multimethod

treats the pseudo-type '#' as a subclass of the pseudo-type '$' (that is, a numeric scalar is a
special case of a scalar). That’s why, before the '#' variant of stringify was defined, the call
to stringify(2001) still managed to call the '$' variant.

13.7.8 Last resort parameters

Sometimes it’s useful to define multimethod variants that ignore one or more parameters
when determining the actual target of a dispatch. For example, our stringify multimethod
caters only to scalars and to references to arrays, hashes, and subroutines. It throws an excep-
tion if it encounters anything else (such as a reference to a scalar, a precompiled pattern, a
typeglob, or another reference).

Of course, in this particular example, we can code individual variants for each of these
argument types, though it is tedious. However, if we also need to support the stringification
of references to blessed objects of various classes, the problem quickly becomes unmanageable,
since there is a potentially endless supply of cases to be covered. 

To overcome this problem in the Laziest possible way, Class::Multimethods supports one
extra pseudo-type, '*', which matches a value or reference of any type. 

Hence, we can code our catchall case as:

multimethod stringify => ('*') => sub
{

return "<<".ref($_[0]).">>";
};
382 CHAPTER 13 MULTIPLE DISPATCH



Now, any attempt to stringify something for which there is no more specific variant

print stringify(\1), "\n";
print stringify(qr/^=head[12]/), "\n";
print stringify(CD::Music->new()), "\n";

is handled by the '*' variant and results in stringifications like this: 
<<SCALAR>>

<<Regexp>>

<<CD::Music>>

The presence of the '*' specifier does complicate the dispatch resolution process slightly.
It matches any argument, but is designed to be used only as a last resort—when all more spe-
cific alternatives have failed. In order to allow those other variants to take precedence, the
Class::Multimethods dispatch mechanism doesn’t include variants with a '*' parameter in its
list of viable targets at all, unless there is no viable target without a '*' parameter. All of which
means that '*' parameters really are a last resort. For example, given the two variants:

multimethod receive_event => (Window, Event, Mode) 
=> sub { print "W-E-M\n" };

multimethod receive_event => (ResizableWindow, MoveAndResizeEvent, '*') 
=> sub{ print "W-M-*\n" };

a call to receive_event with argument types (ResizableWindow, MoveAndResizeEvent,
OnMode) selects the variant with parameters (Window, Event, Mode), even though two of
the three parameters of the '*'-ed variant are much closer to the actual argument types. 

13.7.9 Recursive multiple dispatch

As defined above, the stringify multimethod still fails rather badly on nested data struc-
tures. For example:

print stringify( { a=>[1,2,3], b=>{b1=>4,b2=>5}, c=>sub{3} } );

will print out something like:
{a=>ARRAY(0x1001c23e), b=>HASH(0x10023ae6), c=>CODE(0x10027698)}

That’s because, when the hash reference is passed to the HASH variant of stringify, each key
and value is simply interpolated directly into the returned string rather than being individu-
ally stringified. 

Fortunately, a small tweak to the ARRAY and HASH variants solves the problem:

multimethod stringify => (ARRAY) => sub
{

my @arg = map { stringify($_) } @{$_[0]};
return "[" .  join(", ",@arg) . "]";

};

multimethod stringify => (HASH) => sub
{

my %arg = map { stringify($_) } %{$_[0]};
return "{" . join(", ", map("$_=>$arg{$_}",keys %arg)) . "}";

};
THE CLASS: :MULTIMETHODS MODULE 383



The difference here is that each element in the array or hash is recursively stringified,
within the map block, before the container itself is processed. Because stringify is a multi-
method, these recursive calls automatically select the correct variant for each element, so nested
references and values are correctly processed. 

Now the call:

print stringify( { a=>[1,2,3], b=>{b1=>4,b2=>5}, c=>sub{3} } );

prints:
{"a"=>[1, 2, 3], "b"=>{"b1"=>4, "b2"=>5}, "c"=>sub{???}}

13.7.10 Debugging a multimethod

As some of the preceding examples indicate, it isn’t difficult to set up a multimethod with
enough variants to make its behavior impossible to casually predict, especially when its argu-
ments are drawn from complicated hierarchies.

To help prevent multimethods becoming obfuscated in this manner, Class::Multi-
methods provides a (nonexported) subroutine called analyse. This subroutine takes the name
of a multimethod and generates a report (to STDERR) listing the behavior of that multimethod
under all possible argument combinations. Because it’s not exported, Class::Multime-
thods::analyse must be called by its fully qualified name. For example

use Class::Multimethods;

multimethod test => (IO::File)
=> sub { $_[0]->print("This should go in a file\n") };

multimethod test => (IO::Pipe)
=> sub { $_[0]->("This should go down a pipe\n") };

multimethod test => (IO::Socket)
=> sub { $_[0]->("This should go out a socket\n") };

Class::Multimethods::analyse("test");

The combinations of argument types to be analyzed are determined by examining the pa-
rameter lists of each variant of the multimethod and compiling a list of classes in the same in-
heritance hierarchy as any of those parameter classes. The analyse subroutine iterates through
every possible combination of argument types and reports which variant, if any, would have
been called for that set of arguments. Combinations that result in ambiguities or failure to dis-
patch are reported separately. 

Even more usefully for argument sets where a single variant would be sucessfully dis-
patched, analyse also reports any other viable candidates—in other words, other variants that
can handle the call, but which are further away from the argument list. This can be especially
useful in determining why a particular variant was not called as expected.

The analyse subroutine can also take extra parameters to narrow the analysis to specific
argument combinations. Each combination to be explicitly analyzed is specified as an anony-
mous array. For example, if we are puzzled over apparent discrepancies in the way the
receive_event multimethod dispatched the specific argument combinations (ModalWin-
dow, AcceptEvent, Mode) and (ModalWindow, Event, OnMode), we can analyze them in iso-
lation by writing
384 CHAPTER 13 MULTIPLE DISPATCH



Class::Multimethods::analyse( "receive_event",
[ModalWindow,AcceptEvent,Mode],
[ModalWindow,Event,OnMode],

);

13.8 COMPARING THE THREE APPROACHES
We’ve now seen three approaches to implementing multimethods in Perl: building polymor-
phic tests into ordinary methods, hand-crafting dispatch tables, and using the Class::Multim-
ethods module.

Compared to the first two approaches, Class::Multimethods is much easier to use. It sup-
plies the dispatch mechanism automatically, so the only code to be written is the actual be-
havior of the variants. That probably also makes code that uses the module more robust, since
Class::Multimethods’ dispatch mechanism has already been carefully debugged.

The breadth-first dispatch implemented by Class::Multimethods differs from the left-
most ancestor wins strategy of the tests-in-methods approach and the dynamic dispatch table.11

The breadth-first strategy is more predictable—that is, likelier to invoke the expected variant—
in many cases, and, in those cases where it isn’t any better than the other two, it’s no worse
either. 

At present, however, the module offers no alternative to breadth-first search, so if you
need to dispatch using some other strategy—for example, if one argument really is more im-
portant than the others—you’ll still need to build your own mechanism.

Another important issue is that of run-time performance. Individual calls to multime-
thods built with the Class::Multimethods module are dispatched approximately one-third as
fast as calls through an equivalent hand-crafted static dispatch table, and about half as fast as
calls through a comparable tests-in-methods hierarchy.

That loss of performance may be significant if a multimethod is used frequently—for col-
lision detection in a simulation, for example, or event handling in a GUI. Often, however, the
difference in speed can be ignored because the multimethods being dispatched are themselves
so expensive that variations in dispatch performance are relatively unimportant. 

13.9 WHERE TO FIND OUT MORE
The Class::Multimethods module is available from the CPAN, in the directory http://
www.perl.com/CPAN/authors/id/DCONWAY/.

13.10 SUMMARY
• Multiple dispatch is a polymorphic method-call technique that selects the subroutine to

invoke according to the combined types of all arguments to a call, rather than just on the
type of the first argument.

11 Although, of course, we could rewrite the ancestors subroutine of the dynamic dispatch table version
to use a breadth-first approach.
SUMMARY 385

http://www.perl.com/CPAN/authors/id/DCONWAY/


• Multiple dispatch can be simulated in Perl by nesting if statements in a singly dis-
patched method. The statements use the isa method to determine the actual types of
the other arguments and respond accordingly.

• A faster alternative is to set up a multidimensional table of references to subroutines
(handlers) for all possible combinations of argument types. Methods are dispatched by
looking up the table entry for the argument types given and then calling the correspond-
ing subroutine.

• To cope with arguments of derived types, such dispatch tables must be able to extend
themselves at run time. Extending a table involves searching up the arguments’ respective
inheritance hierarchies to find a handler (in the current table) for a combination of
ancestral parameter types.

• The Class::Multimethods module automates and greatly simplifies the task of setting up
dynamic dispatch tables to implement multimethods.
386 CHAPTER 13 MULTIPLE DISPATCH



C H A P T E R 1 4

Persistent objects
14.1 The ingredients 387
14.2 Object-oriented persistence 398
14.3 Coarse-grained persistence 400

14.4 Fine-grained persistence 413
14.5 Where to find out more 431
14.6 Summary 431
One of the most useful features of inanimate objects in the Real World is that when you leave
them somewhere, they’re often still there when you come back.1 Unfortunately, software
objects aren’t nearly so obliging. Consequently, you have to keep recreating them every time
you run their program. 

Persistent programming is an attempt to overcome that problem, by arranging for data
objects to retain their existence, identity, and contents between executions of the program that
created them. Perl provides many means of grafting persistence onto object-oriented code. This
chapter examines a few of them.

14.1 THE INGREDIENTS
To enable data to persist between executions of a program, the program—or the program-
ming language—needs to provide four basic services. It must:

• Associate a unique identifier with the persistent data (identity);
• Create an accurate external representation of the data, suitable for storage between exe-

cutions (encoding or serialization);
• Store and retrieve that external representation of the data between executions (storage);
• Reliably ensure that the internal and external representations of the data are synchro-

nized at certain times (coordination).

1 Unless, of course, you live with a two-year-old or some other small inquisitive domestic creature.
387



In a typical coarse-grained persistent program, these services are used as follows. When
the program is executed, the persistence mechanism reinstates any external representation of
persistent data. This involves locating the storage for the data, extracting the external repre-
sentation, decoding it to an internal representation—sometimes described as thawing it—de-
termining its identity, and assigning it to the appropriate variable. At the end of the program,
the persistence mechanism saves the contents of each internal persistent variable. This involves
extracting the data from the variable, converting it to an external representation—known as
encoding or “freezing”—and then storing it. In other words, the persistence mechanism is re-
sponsible for converting between internal and external representations, and does so at either
end of the program’s execution.

Coarse-grained persistence is susceptible to data loss if the program terminates unexpect-
edly and is unable to save its persistent data to permanent storage. In cases where data integrity
is critical, or system reliability is poor, an application may need to implement fine-grained per-
sistence, in which the representations of the internal and external data are synchronized every
time the data changes. That is, any change to the internal data causes the persistence mecha-
nism to immediately save that data to external storage. This scheme is far less susceptible to
data corruption,2 but is also considerably more expensive since every change to the value of any
persistent variable now requires a write to disk.

14.1.1 Identity

All data in a program, whether persistent or transient, needs an unambiguous identity, so that
it can be located when needed. In many programming languages—including Perl—the iden-
tity of a datum is imposed by the variable that stores it. From one perspective, variables pro-
vide a kind of persistence of data within a program: they preserve values for use in other parts
of the program at other points in the execution. 

Localized and lexical variables impart a temporary identity on data, whereas global (pack-
age) variables impose a permanent identity—at least within the lifetime of the program itself.
If we confine our discussion to unlocalized package variables, we can reasonably pretend that
the identity of a piece of data is synonymous with the name of the variable containing it. 

Applying that view to the problem of persistence, we require the value that a package vari-
able was storing at the end of one execution of a program to be restored to that variable at the
beginning of the next execution. Or, looking at it the other way, we require that a specific da-
tum (whose identity is specified by virtue of being stored in a particular package variable) must
be given the same identity—that is, be stored in the same variable—next time the program is
run.

Establishing and maintaining identity is usually a major obstacle when implementing per-
sistence in a nonpersistent programming language. Most such languages only allow the internal
memory address of a given variable—a pointer or reference—to be accessed by the program
itself and provide no run-time mechanism for determining a variable’s name, scope, or type.
This makes it difficult to generate unique and consistent identities for data since there is no

2 …but not immune to it. For example, the program might receive a fatal signal in the middle of saving
some persistent data.
388 CHAPTER 14 PERSISTENT OBJECTS



guarantee that a given memory address will be repeatedly allocated to the same variable in each
separate execution of a program.

Yet again, Perl is pleasantly different. Perl programs have full run-time access to their own
symbol tables, and allow variables to be accessed via strings containing their names. Provided
we confine our ambitions to package variables, we can easily arrange for each persistent datum
to be given a unique and reproducible identity.

Even if the Perl symbol table isn’t directly accessible, the availability of hashes still permits
a form of persistent identity to be established for particular data. Since each value in a hash is
identified with a unique key, if we store data in a single hash whose contents are restored each
time the program runs, then each value in the hash will be persistent and uniquely identifiable.

14.1.2 Encoding/serialization

Once a datum can be identified in a reproducible manner, the next step towards making it
persist is to find some way to represent it accurately outside the program. This is necessary
because the formats used to store data within a program typically involve information, such as
internal pointers or references to memory addresses, that is specific to a particular execution of
the program.

If this execution-specific data were to be stored away in its raw state, then, when the pro-
gram is next invoked and that persistent data is restored, it is extremely unlikely that the dif-
ferent memory addresses would all conveniently line-up with their previous data. It’s far more
likely that the various parts of the data would be stored in entirely different memory addresses,
so the restored pointers and references now refer to completely unrelated data.

Hence, the values of any pointers or references within a data structure need to be con-
verted into a consistent set of abstract addresses that are correctly related to each other, but en-
tirely unrelated to the actual locations where the data was previously stored. This process is
called “unswizzling.” Next time the program is executed, these abstract addresses can be co-
herently mapped, or swizzled, back into the new address space to restore the internal relation-
ships of the parts of the data.

Encoding is also required because persistent data has to hibernate somewhere on disk be-
tween program executions. Most modern file-systems use files that store only sequences of
bytes. Therefore, in order to store a datum, it must be converted to a single sequence of char-
acters (or bits). This process is called serialization, or flattening, or marshalling.

Once again, Perl makes the task, if not painless, at least possible. Because the type of any
value can be ascertained (via a call to ref), it is possible to develop Perl code that can analyze
the type and contents of a variable, determine its structure, and convert that structure to an
execution-independent sequence of characters. 

There are three freely available modules on the CPAN that automate the task of serializing
and later reconstructing arbitrary data structures: Storable, FreezeThaw, and Data::Dumper.
The following subsections look briefly at each of these and illustrate their approaches to seri-
alization using the following test data:
THE INGREDIENTS 389



$str = "string";

$num = 668;
$ref = \$str;

@arr = (1,2,\$str);
%hsh = (a=>1,z=>\$arr[1]);

Note that the last three variables contain references to other variables (or parts thereof).
If an encoding module is to be usable, it must preserve these relationships when encoding and
decoding.

The Storable module
Rafaël Manfredi’s Storable module provides two subroutines: Storable::freeze and
Storable::thaw, that encode and decode a single arbitrary data structure to a binary for-
mat. The freeze subroutine takes a single reference to a scalar, array, or hash and converts
the contents of the variable to a character string. So, to encode two or more values simulta-
neously, they must be boxed in an array.

For example, we can serialize the complete set of test data above as follows:

use Storable qw(freeze thaw);

# encode data and relationships…
$encoding = freeze [\$str, \$num, \$ref, \@arr, \%hsh];

which would produce the following string in $encoding:

"\002\0044321\004\004\004\002\000\000\000\005\004\n\006stringXX\004\006\000
\000\002\234XX\004\004\000\000\000\000\002XX\004\002\000\000\000\003\010\20

1X\010\202X\004\000\000\000\000\002XXX\004\003\000\000\000\002\010\201X\000
\000\000\001a\004\000\000\000\000\nX\000\000\000\001zXXX"

This string is actually considerably more compact than it appears. (It occupies only 92
bytes.) It looks longer here because it consists largely of non-printable characters, which have
been rendered above as "\nnn" escapes.

When decoded:

# decode data…

$anon_array = thaw $encoding;

that string recreates exactly the anonymous array—now referred to by $anon_array—that
was originally passed to freeze, including the relationships between the variables. However,
that re-creation represents an exact copy of the originals and their interrelationships, rather
than a reconstruction of the originals themselves. In order to restore the original package vari-
ables and their relationships, we need to add:

# decode data…
$anon_array = thaw $encoding;

# …and reinstate in variables…

( *str, *num, *ref, *arr, *hsh ) = @$anon_array;

This assigns each recreated reference in the array referred to by $anon_array back to the
original package variable, via an assignment to the appropriate typeglob.

Storable also provides subroutines for storing to, and retrieving from, a named disk file: 
390 CHAPTER 14 PERSISTENT OBJECTS



store $data_ref, "save_file";

# and later…

$data_ref = retrieve "save_file";

The module also has subroutines for storing data through an open filehandle, storing data in a
machine independent order and deep-copying data (that is, when copying a reference, copy
the entire data object referred to, not just the reference).

The FreezeThaw module
Ilya Zakharevich’s FreezeThaw module also offers freeze and thaw methods, but has a
slightly different interface. FreezeThaw::freeze takes a list of scalar arguments—normally
references—and freezes them together, preserving any referential relationships between them.
FreezeThaw::thaw takes the encoded string and converts it back to an array of references.

To encode and decode our test data using FreezeThaw, we would write

use FreezeThaw qw(freeze thaw);

# encode data and relationships…
$encoding = freeze (\$str, \$num, \$ref, \@arr, \%hsh);

# decode data…

@array = thaw $encoding;

# …and reinstate in variables…
 ( *str, *num, *ref, *arr, *hsh ) = @array;

FreezeThaw uses a different encoding scheme to Storable and manages to be even more
frugal with space. The code above puts the following string

"FrT;!0|\_\$6|string@1|@5|<0|\$3|668\<0|@3|$1|1$1|2<0|%4|$1|a$1|z$1|1\$1|2"

into $encoding and requires only 73 bytes to encode the five interrelated pieces of data.
FreezeThaw is also more sophisticated than Storable when it comes to encoding and de-

coding blessed data (see section 14.2).

The Data::Dumper module
Gurusamy Sarathy’s Data::Dumper module is different in its approach to encoding: it uses the
Perl language itself as its encoding scheme. That is, the Data::Dumper::Dump subroutine—
Data::Dumper’s equivalent of freeze—takes an anonymous array of variables, and a second
array listing their names, and converts them into a character string containing a series of beau-
tifully-formatted Perl statements. 

For example, when given the five variables of our test set

# encode data and relationships…

$encoding = Data::Dumper->Dump( [ $str, $num, $ref, \@arr, \%hsh],
[qw( str num ref *arr *hsh )] );

Dump returns the following string to be assigned to $encoding:
THE INGREDIENTS 391



q{

$str = 'string';
$num = 668;

$ref = \$str;
@arr =(

1,
2,

$ref
);

%hsh =(
'a' => 1,

'z' => \$arr[1]
);

}

Although it’s an uninterpolated character string, the return value contains text that is
bona fide Perl source code. If executed, that source code will fully reconstruct the original con-
tents and interrelationships of the original variables. 

Because its encoded representation is simple Perl, Data::Dumper doesn’t need a special
subroutine to decode it. Instead, you just apply eval to the string:

# decode data and reinstate in variables…

eval $encoding;

You don’t even have to muck about assigning the decoded contents to an array of type-
globs; the evaluated string automatically assigns the correct data to the correct variables. 

Of course, the downside is that the standard Data::Dumper encoding scheme isn’t opti-
mally compact. Encoding the five test variables required 151 bytes, over half of which are white
space characters. Fortunately Data::Dumper provides an option that dispenses with the lovely
layout, thereby reducing the same encoding to a remarkably compact 74 bytes:

q{$str='string';$num=668;$ref=\$str;@arr=(1,2,$ref);%hsh=(a=>1,z=>\$arr[1])
;}

Data::Dumper also provides several formatting options for the code strings it produces.
You can independently control padding, layout, indentation, and even “eval-ability.” This
helps the module to moonlight as a useful debugging tool—producing comprehensible repre-
sentations of misbehaving data structures—and also makes it useful in some code-generation
contexts.

Like FreezeThaw, Data::Dumper also has special tricks when encoding blessed objects
(see below), though it isn't quite as flexible as FreezeThaw in that regard.

14.1.3 Storage

Once the data has been suitably serialized, we have to store it somewhere on disk. To do this,
we can write it into a standard disk file, or we can use one of the simple database modules
from the CPAN (NDBM_File, GDBM_File, ODBM_File, DB_File) or a full relational database
such as Oracle (via the DBI and DBD::Oracle modules), Ingres (DBI plus DBD::Ingres),
Sybase (DBI plus DBD::Sybase), and so on. 
392 CHAPTER 14 PERSISTENT OBJECTS



Flat files
If we use one of the serialization modules described above to encode all the persistent data in a
program at once, we produce a single, possibly very long, character string. The easiest way to
store this string might well be to just write it out to a file on disk.

This approach can be particularly effective if we use Data::Dumper as our encoding
mechanism since, in that case, the encoding is really just a short Perl script that recreates the
data when executed. If that script were written to a disk file

open STORAGE, ">persistent.dat"

and print STORAGE $encoding 
and close STORAGE

or die "can't save persistent data";

then the complete code to reinstate it would simply be

do "persistent.dat";

It’s hard to make persistence much simpler than that!

Simple databases
Sometimes however, we want fast and reliable access to the encodings of individual objects
stored on disk (we’ll see examples of this shortly). In such cases, a proper database system is a
better choice.

If the data for each object is still serialized as a single string, then we can use one of the
simple database systems supported by the tie mechanism. In this approach to storage, we cre-
ate a tied hash that’s attached to the desired database, then assign the encoded representation
of the object to the entry for a specific key of that hash. That key might, for example, be the
full name of the variable storing the persistent data.

To tie a simple database—let’s call it persistent.db—to a hash—say %pers_db—we use
the tie function as follows:

use DB_File;

use Fcntl;

tie %pers_db, "DB_File", "persistent.db", O_CREAT|O_RDWR, 0640, $DB_HASH; 

In this case we are tie-ing the hash %pers_db to a database in the Berkeley DB format.
The arguments to tie are:

• %pers_db: the hash to which the database is to be tied.
• "DB_File": the name of the Perl module that implements the necessary methods to tie a

hash to that particular kind of database.
• "persistent.db": the name of the database file to which the hash is to be tied.
• O_CREAT|O_RDWR: a set of bit-flags (as used by the sysopen function), indicating the

kind of access to be provided. O_CREAT specifies that the database file is to be created if it
doesn’t already exist. O_RDWR specifies that the database should be opened for both read-
ing and writing. The constants themselves come from the Fcntl module.

• 0640: an octal value specifying the maximal access permission to be given to the new
database file, if it needs to be created. This number is filtered through the user’s umask to
THE INGREDIENTS 393



determine the actual access permissions for the file. 0640 means that maximal permis-
sions allowed for the file are read/write access for the user, read-only access for the user’s
group, and no access for other users. A more permissive value of 0666, which permits
read/write access for everyone, subject to the user’s umask, is also a common choice.

• $DB_HASH: a variable exported by the DB_File module. It contains a predefined refer-
ence that tells the database how to act—in this case, as a hash of key/value pairs.

The set-up code would be similar for any of the other simple databases: ndbm, odbm,

gdbm, sdbm, and so on, except for the last argument, which is unique to Berkeley DB. The
documentation accompanying their respective Perl modules (NDBM_File, ODBM_File,
GDBM_File, SDBM_File, etc.) describes the specifics of tie-ing each type of database.

Once the database is open, storing serialized objects in it is as easy as assigning a string
to a hash entry. In fact, that’s exactly what you do. For example, having tied %pers_db to per-

sistent.db, we can encode the values of the test variables and save them in the database as fol-
lows:

use FreezeThaw "freeze";

$pers_db{"str"} = freeze(\$str);
$pers_db{"num"} = freeze(\$num);

$pers_db{"ref"} = freeze(\$ref);
$pers_db{"arr"} = freeze(\@arr);

$pers_db{"hsh"} = freeze(\%hsh);

Extracting the data back to its original package variables is similarly straightforward. We
retrieve the relevant entry of the %per_db hash, decode it, and assign the resulting reference
back to the appropriate typeglob:

use FreezeThaw "thaw";

(*str) = thaw( $pers_db{"str"} );
(*num) = thaw( $pers_db{"num"} );

(*ref) = thaw( $pers_db{"ref"} );
(*arr) = thaw( $pers_db{"arr"} );

(*hsh) = thaw( $pers_db{"hsh"} );

In other words, once the database is tied to a hash, each record is accessible as an entry
of that hash.

Relational databases
Occasionally, it may be preferable to use a full relational database like Oracle or Sybase to
store persistent data. For example, we may want to perform complex queries or generate
reports on the persistent data in other applications, or we may be working on a machine that
only has this kind of database installed.

The easiest way to use such databases is through the interface provide by Tim Bunce’s DBI
module. The DBI module defines a set of classes that provides a standard interface to many
SQL-based relational databases (and numerous others besides). The details specific to each par-
ticular database are then encoded in a separate module (DBD::Oracle, DBD::Sybase, DBD::In-
formix, etc.) that is passed to DBI when setting up access to a particular database.
394 CHAPTER 14 PERSISTENT OBJECTS



Again, let’s assume the data is encoded as a single string.3 We’ll use Tim’s own DBD::Or-
acle driver module to connect to an Oracle database, called persistence.orc:

use DBI;
use DBD::Oracle;

my $db = DBI->connect("dbi:Oracle:peristence.orc", $user, $password)

or die "Couldn't not connect to persistence database";

# etc.

The DBI::connect method is a constructor for a database interface object and returns
a reference to the new object, which is then stored in $db. In DBI parlance, however, that ref-
erence is called a database handle, so that’s what we’ll call it here.

The first argument to connect specifies the driver module and database file to be used.
(The format is "dbi:driver_module:database_source_name".) The remaining argu-
ments are the username and password required for access to most databases.

Once the database connection is established, serialized objects can be stored and retrieved
by creating appropriate SQL statements and sending them to the database via methods called
on the database handle. For example, to encode and store the contents of the test variables, we
can write:

# Create a table to store the data (if necessary)…
my $create_table =

"CREATE TABLE persistent_data
 ( var_name CHAR(128) PRIMARY KEY,

   encoding CHAR(2000) )";

$db->do($create_table);

# Create a statement for inserting data into the table…
my $insert_data = 'INSERT INTO persistent_data VALUES ( ?, ? )';

my $insert_stat = $db->prepare($insert_data);

# Encode and store the data…

use FreezeThaw "freeze";

$insert_stat->execute( "str", freeze(\$str) );
$insert_stat->execute( "num", freeze(\$num) );

$insert_stat->execute( "ref", freeze(\$ref) );
$insert_stat->execute( "arr", freeze(\@arr) );

$insert_stat->execute( "hsh", freeze(\%hsh) );

$db->commit();

We first set up a table called “persistent_data” with two fields: “var_name” and “encod-
ing”. The do method takes a string argument containing an SQL command—in this case a
“CREATE TABLE…” command—and executes it. Of course, normally, it is only necessary to

3 Of course, with a relational database we could set individual fields to represent the attributes of a hash,
but then we’d have to worry about conversions, and we’d still have to encode any nested data structures.
THE INGREDIENTS 395



set up the table the first time the database is used, unless we’re also planning to delete it again
when the data is reloaded (see below).

Next, we set up another SQL statement—“INSERT INTO…”—that inserts a new row of
data into the “persistent_data” table. The values for the row’s two fields are “?” placeholders,
which we will need to fill in each time we wish to insert some data.

The “INSERT” statement is set up as a separate object by passing the SQL string to the
prepare method. The object returned4 (known as a “statement handle”) can then be used to
perform insertions on the original database by calling its execute method. Of course, each
time the statement handle is executed, the “?” placeholders in the original SQL statement must
be filled in. This is achieved by passing those values as arguments when execute is called.

After the insertions are made, we also need to tell the database to make the changes per-
manent by calling commit on the original database handle.

Extracting the data is more complicated. To retrieve the data for a variable whose name
is stored in $var_name, we need to extract the corresponding encoding field from the table
using a qualified “SELECT…” statement:

$select_statement =
"SELECT encoding FROM persistence_data WHERE var_name = '$varname'"; 

But, as we need to extract all the encodings from the table to reinstate the complete set
of persistent variables, it’s more efficient to use a single unqualified “SELECT…” statement:

$select_statement =

"SELECT var_name, encoding FROM persistence_data"; 

and then process the matching records one at a time (see below).
Because the unqualified “SELECT…” is going to return a number of rows of data, the DBI

module requires us to create another statement handle to provide access to that information.
This statement object can be applied to the database—once again, by calling its execute
method—and subsequently queried to retrieve individual rows—using its fetchrow_array
method.

Therefore, complete restoration of the four variables looks like this:

# Create a statement handle to collect all the returned data…

my $extract_data = 
"SELECT var_name, encoding FROM persistence_data";

my $statement = $db->prepare($extract_data);

# Extract the data from the database into the statement handle…

$statement->execute();

# Extract each row of data from the statement handle,
# decoding it, and reinstating the corresponding variable…

4 Note that each time it’s called, the prepare method creates and initializes a new statement handle
object. Thus prepare is a constructor, but one always called as an object method, rather than as a class
method.
396 CHAPTER 14 PERSISTENT OBJECTS



while ( ($var_name, $encoding) = $statement->fetchrow_array() )

{
(*{$var_name}) = thaw( $encoding );

}

# Set the statement handle free…
$statement->finish();

# Remove the table (if necessary)…

$db->do("DROP TABLE persistent_data");
$db->commit();

It’s sometimes necessary to delete the table every time the persistent data is reinstated
within a program, so that other applications will not try to access the data while it’s in play.
Alternatively, depending on the type of database we’re using, it may be possible to lock the ta-
ble so other applications only have read access (or no access at all) while the program executes.

The DBI module and the SQL language together provide a sophisticated means of achiev-
ing the same end of storing data externally. For more details, you should consult the docu-
mentation that comes with DBI.pm and the DBD::… driver module for your particular database.

14.1.4 Coordination

Useful as they are, none of the modules described above is a complete package for implement-
ing persistence. Though together they can provide a means by which data can be converted to
an externally-stored representation, none provides a control mechanism that ensures data
actually is converted or stored at the appropriate time.

The coordination mechanism has to ensure that persistent data is uniquely identified in
a process-independent manner; that it is encoded and decoded in a manner that preserves val-
ues and their interrelationships; and that the encoded data is stored reliably and retrieved as
needed. 

Ideally, a coordination mechanism should accomplish these tasks with little or no
prompting from the programmer—in other words, it should be automatic. The mechanism
should also place as few constraints as possible on the nature and organization of the data so
that persistence can be added into an existing system with little if any modification to code—
that is, the persistence mechanism should be orthogonal. Ideally, we would like something as
simple as a (hypothetical) persistent specifier, so that a variable can be made persistent
merely by writing

persistent $obj;

thereafter, all the messiness of coordinating the identification, encoding, storage, retrieval,
decoding, and re-creation of that object’s data is handled automagically.

Coordinating those tasks for coarse-grained persistence is relatively simple in Perl and can
be fully automated and completely orthogonal. We can even implement a persistent sub-
routine with almost exactly the semantics described above. 

Coarse-grained persistence requires only that data be brought in from disk at the start
of a program and written back at the end. Most programming languages provide a means of
performing a task like this at either end of a program’s execution. Perl and awk offer explicit
THE INGREDIENTS 397



BEGIN and END blocks, while C++ and Java normally rely on the constructors and destructors
of global objects. Even in C and Pascal, you can at least hard-code statements at the beginning
and end of the main program.

Coordinating fine-grained persistence is more challenging. A general solution tends to be
more invasive—that is, less orthogonal—because fine-grained persistence requires the program
to detect any case in which any part of any persistent datum changes. This can be achieved in
Perl, but does require some explicit coding, since there is no way to automatically detect and
intercept changes to the elements of an arbitrary array or a hash, not even using a tied variable.

14.2 OBJECT-ORIENTED PERSISTENCE
An added complication arises when making blessed objects persistent. A blessed object is a
collection of data with an associated class. Hence, to correctly encode such an object, it’s
essential to record both the data and the class into which the object was blessed. 

14.2.1 Encoding objects

Fortunately that’s not particularly difficult in Perl, since ref can be used to ascertain the name
of any object’s class. Decoding the data for a persistent object and reblessing that object into
the correct class is also relatively easy. So long as we can access the class name as a string, we
can bless an object into that class with the two-argument form of bless. All three packages
described in section 14.1.2 automatically detect blessed data and encode and decode it
correctly.

For example, when Data::Dumper is asked to encode a blessed object:

package Act;

sub new

{
my ($class, %data) = @_;

bless { %data }, $class;
}

package main;

use Data::Dumper;

$data = { age=>34, shoe_size=>9 };
$obj  = Act->new(age=>34, shoe_size=>9);

print Data::Dumper->Dump([$data,$obj],[qw(data obj)]);

it recognizes the blessing of the data referred to by the second variable and produces the fol-
lowing reconstruction string:
q{

$data={

'shoe_size' => 9,

'age' => 34,

};
398 CHAPTER 14 PERSISTENT OBJECTS



$obj=bless({

'shoe_size' => 9,

'age' => 34,

}, 'Act' );

}

14.2.2 Object-oriented encoding

Better still, the Data::Dumper module provides two run-time configuration variables:
$Data::Dumper::Freezer and $Data::Dumper::Toaster. Each may be assigned a
string specifying the name of a method to be invoked as part of the encoding or decoding pro-
cess. For example:

use Data::Dumper;
$Data::Dumper::Freezer = "tidy_up";

$Data::Dumper::Toaster = "rebuild";

Whenever $Data::Dumper::Freezer is set to a string containing the name of a meth-
od, Data::Dumper::Dump calls that method on any blessed object immediately before it is
encoded. Hence, if $Data::Dumper::Freezer is set as above, a call like

# encode data and relationships…

$encoding = Data::Dumper->Dump([$obj],["obj"]);

causes $obj->tidy_up() to be called before $obj is encoded. This may be useful to allow
$obj to delete any unnecessary internal housekeeping data structures or, perhaps, eliminate
some cached information relevant to the current process only. 

If $Data::Dumper::Toaster is set to a nonempty string, Data::Dumper::Dump in-
cludes a call to the method of that name as part of the encoded string. In other words, that
method is called when eval is used to reanimate the encoded object. For example, if $Da-
ta::Dumper::Toaster is also set as above, the call to Data::Dumper::Dump produces a
string like this:

q{
$obj=bless({

'shoe_size' => 9,
'age' => 34,

},'Act' )->rebuild();
}

which, when eval-ed, invokes the rebuild method on the newly blessed Act object.
The FreezeThaw module is even cleverer. When asked to encode a blessed object, it calls

that object’s own Freeze method and returns whatever that method returns. That is:

$encoding = FreezeThaw::freeze($obj);

($obj) = FreezeThaw::thaw($encoding);

is really equivalent to:

$encoding = $obj->Freeze($_options);

($obj) = Act->Thaw($encoding,$_options);
OBJECT-ORIENTED PERSISTENCE 399



where $_options is a reference to an object containing configuration options. FreezeThaw
passes this object to the method to allow it to conform to the overall configuration for the
package. See the module’s documentation for the gory details.

Giving each object control over its own encoding provides a great deal of flexibility. For
example, if the object is keeping an access count, it may choose not to encode that information
since it may no longer be relevant the next time the program is invoked. But what if the object’s
class doesn’t define a suitable Freeze or Thaw method?

Here is where FreezeThaw is at its most clever. When the package is first imported, it in-
stalls two additional subroutines: UNIVERSAL::Freeze and UNIVERSAL::Thaw. This ensures
that every class now has a suitable Freeze or Thaw method, if not its own, then the one it in-
herits from class UNIVERSAL. UNIVERSAL::Freeze and UNIVERSAL::Thaw implement the
default freeze-everything semantics applied to non-blessed data. Thus, a class may choose to
specify its own encoding behavior or do nothing and inherit the default.

We can even use this feature to allow an object to record how often it has been frozen:

package CountFreezings;

sub Freeze
{

my ($self, $_options) = @_;
$self->{_freezings}++;

$self->UNIVERSAL::Freeze($_options);
}

Now, when we freeze an object of any class that inherits from CountFreezings, Count-
Freezings::Freeze receives the freeze request. It increments the freeze count in the object
($self->{_freezings}++) and allows the default freezing behavior ($self->UNIVER-
SAL::Freeze($_options)) to take over.

14.3 COARSE-GRAINED PERSISTENCE
Implementing coarse-grained persistence for objects of a particular class is easy. We merely
have to ensure that, when the program starts, the data for such objects is retrieved from disk
and, when the program ends, the data is written back to disk. We’ll first consider how to hard-
code this for a specially designed class. Then we’ll see how the technique can be generalized to
provide automatic and orthogonal persistence for any class and, indeed, for unblessed data as
well.

14.3.1 Class-specific persistence

An object consists of a collection of attributes accessed through a set of methods. For an object
to be persistent, its attributes must be retrieved and stored at either end of a program. Those
attributes are usually implemented as a hash, where each attribute is a single entry within the
hash, and is accessed via a key that is the attribute’s name. Thus, to make an object persistent,
we must create a persistent hash.

A persistent hash is a reasonable description of a database. In fact, in Perl, a tied hash is
the usual interface to a database. So, if we can arrange for an object to store itself in a database
400 CHAPTER 14 PERSISTENT OBJECTS



at the end of a program and retrieve itself from that database next time the program executes,
we will have made the object persist.

Unless the object’s attributes are improbably large, which particular database we use is al-
most irrelevant. As long as the database can store keys and associated strings of an appropriate
length, we are able to encode each attribute of an object—using one of the encoding modules
described above—and use the attribute’s name as a key under which to store it in the database.

To illustrate the technique, we’ll implement a class of persistent objects suitable for re-
cording basic contacts information. Listing 14.1 lists the basic, nonpersistent, Contact class.
The constructor creates a blessed hash and initializes it with any suitable arguments given. The
accessor functions provide read access to all attributes and write access to all but the name at-
tribute. The print method prints out an object’s data.

Listing 14.2 shows the Contact::Persistent class, which is derived from class Contact. It
provides its objects with coarse-grained persistence by storing them in a Berkeley DB database

package Contact;
$VERSION = 1.00;

use strict;

sub new
{

my ($class, %init) = @_;
bless{

name=> $init{name},
phone=> $init{phone},

fax=> $init{fax},
email=> $init{email},

}, $class;
}

sub get_name{ $_[0]->{name} }

sub get_phone{ $_[0]->{phone} }
sub set_phone{ $_[0]->{phone} = $_[1] }

sub get_fax{ $_[0]->{fax} }
sub set_fax{ $_[0]->{fax} = $_[1] }

sub get_email{ $_[0]->{email} }
sub set_email{ $_[0]->{email} = $_[1] }

sub print

{
my ($self) = @_;

print $self->get_name(), ":\n";
print "\tPhone:", $self->get_phone(), "\n";

print "\tFax:", $self->get_fax(), "\n";
print "\tEmail:", $self->get_email(), "\n";

}

1;

Listing 14.1 A non-persistent contacts class
COARSE-GRAINED PERSISTENCE 401



(though any other Unix database could be substituted simply by replacing "DB_File" with
the appropriate alternative: "NDBM_File", "GDBM_File", "SDBM_File", etc.)

The derived class first loads the DB_File module—to provide access to the databases—
and the Fcntl module—to access the file control constants needed to open them. Next, it de-
fines a lexical hash, %persistent, which will be used to record the identities of any persistent
objects.

use Contact;

package Contact::Persistent;
$VERSION = 2.00;

@ISA = qw( Contact );
use strict;

use DB_File;

use Fcntl;
 

my %persistent = ();
sub persistent

{
no strict;

my ($class, $varname, $filename) = @_;
$varname =~ s/^\$((\w|::)+)$/$1/

or croak "Invalid persistent variable name: $varname";
$varname = (caller)[0]."::$varname" unless $varname =~ /::/;

$persistent{$varname} = $filename;
if (tie local %db, 'DB_File', $filename, O_RDWR, 0640)

{
${$varname} = bless { %db }, $class;

untie %db;
}

return ${$varname};
}

END

{
no strict;

while (my ($varname, $filename) = each %persistent)
{

tie local %db, 'DB_File', $filename, O_CREAT|O_RDWR, 0640
or croak "Unable to open persistent database $filename ($!)";

%db = %${$varname};
untie %db;

}
}

1;

Listing 14.2 A persistent contacts class
402 CHAPTER 14 PERSISTENT OBJECTS



That recording is done in the Contact::Persistent::persistent method, which
takes two arguments: the name of a scalar package variable ($varname), and the name of the
database file in which it’s to be stored ($filename). For example:

package main;

Contact::Persistent->persistent( '$me' => 'mydata' );
Contact::Persistent->persistent( '$Spouse::unit' => 'herdata' );
Contact::Persistent->persistent( '$employer' => 'theirdata' );

When invoked, the persistent method first extracts the variable’s name, by chopping
off the leading "$" and prepending a suitable package name—the name of the calling pack-
age—if the variable was specified without one. For example, after “extraction,” the three vari-
able names specified above become

"main::me"

"Spouse::unit"
"main::employer"

Invalid scalar variable names such as:

Contact::Persistent->persistent( '%us' => 'ourdata' );
Contact::Persistent->persistent( '@them' => 'theirdata' );
Contact::Persistent->persistent( '$Those::%&^@%' => 'theirdata.too' );

are also caught and vilified. 
The extracted variable name is used as a key to store the corresponding file name in the

%persistent cache. That information will be needed again at the end of the program in order
to save the persistent objects back to disk.

Next, persistent attempts to tie a local hash to the named database file. If it can, it pro-
ceeds to copy the data stored in the database to an anonymous hash, which is then blessed. A
reference to the reconstructed object is assigned to the named variable—which is why it had
to be a scalar—using $varname as a symbolic reference—which is why we need no strict. 

This reconstruction step is skipped if the database doesn’t exist. That occurs the first time
that the program is run because the object’s data has not yet been saved. In that case, the named
global variable is not initialized at all, which makes it easy to initialize it within the program:

Contact::Persistent->persistent( '$me'=> 'mydata' );
$me = Contact::Persistent->new(name=>"Damian") unless defined $me;

Or, since Persistent returns the reference stored in the named variable, it’s also possible to
write

Contact::Persistent->persistent( '$me'=> 'mydata' )
or $me = Contact::Persistent->new(name=>"Damian");

Within persistent the newly created object is blessed into the class named by the first
argument, not straight into Contact::Persistent. This means that objects of classes derived from
Contact::Persistent can also be made persistent:

@Contact::Persistent::Personal::ISA = ( "Contact::Persistent" );
@Contact::Persistent::CIA::ISA = ( "Contact::Persistent" );

Contact::Persistent::Personal->persistent( '$therapist' => 'shrinkdata' );
Contact::Persistent::CIA->persistent( '$agent_x' => 'covertdata' );
COARSE-GRAINED PERSISTENCE 403



Because persistent blesses reconstructed objects into the class through which it is in-
voked, $therapist receives a Contact::Persistent::Personal object rather than a Contact::Per-
sistent object.

Finally, the local database is untied to close it and persistent returns the value, if any
of the named package variable.

The overall effect of a call to Contact::persistent is to recreate the previous contents
of a Contact::Persistent object and to mark the package variable that stores it as housing per-
sistent data. That marking is used at the end of the program by the END block that follows the
definition of persistent.

The END block iterates through each variable-name/file-name pair stored in %persis-
tent. For each pair, it opens the corresponding database file or issues a warning if something
goes wrong. Then, the END block copies and stores the contents of the object referred to by
the variable and closes the database. Thus, every package variable registered via a call to per-
sistent is automatically saved to its own database file at the end of the program. In this re-
spect, the END block within a class is being used like a destructor for class attributes.

This scheme can only make package variables persistent, since the Contact::Persistent
module will not have symbol table access to lexical variables from other scopes and, hence, can’t
load or store them. 

14.3.2 Some improvements

For a simple class like Contact, the technique described above is adequate and moderately
robust. For more complicated cases, however, it has six glaring deficiencies: 

• It will lose data if the program terminates without invoking the END block—that is, if it
receives a fatal signal;

• It can handle only scalar attributes and will fail if any attribute stores a reference to an
array or to a hash;

• It relies on the user to correctly specify the actual class of each object when calling
persistent;

• It uses a separate database for each object, which is cumbersome and wasteful;
• It confines persistence to a single class hierarchy;
• It fails to preserve any interrelationships between persistent variables because each vari-

able is encoded separately, so the encoder doesn’t recognize the relationships.

We’ll fix the first four of those problems in this section, and the last two in the next. 
The first problem, data loss, is easily dealt with. We need to ensure that any fatal signal

causes the process to exit normally—with the usual clean-up—rather than terminating the pro-
cess immediately. To do that, we can modify persistent so that it also installs a signal han-
dler to catch this case:

sub persistent
{

$SIG{'INT'} = sub { exit(0) };

no strict;

my ($class, $varname, $filename) = @_;
404 CHAPTER 14 PERSISTENT OBJECTS



# etc. as before

}

Now, unless some other part of the program changes the signal handler, when an inter-
rupt signal is received, the program calls exit, which performs the END block and ensures that
the data is saved. The handler is set up in persistent so that it is only installed if at least one
persistent variable is specified. However, catching interrupt signals still doesn’t guarantee data
integrity. The signal may have been received, and the handler invoked, in the middle of mod-
ification to an object; that is, while one of its methods was executing. This is likely to leave the
object in an invalid state and corrupt the data saved for it. Alternatively, the program might
receive a kill signal, which can’t be caught.

The second problem—inability to handle nested data structures within an object—is also
easy to overcome. We merely ensure that the END handler serializes each attribute before storing
it and that persistent properly decodes it again when reconstructing the object. We can use
any of the three encoding modules described above. Listing 14.3 shows the necessary modifi-
cations to persistent and the END block, implemented with Storable. The only change to
either is a loop that steps through each attribute, decoding or encoding it as appropriate. How-
ever, now the attributes of a Contact::Persistent object can store anything:

Contact::Persistent->persistent( '$me' => 'mydata' );

# and later…

$me->set_phone( ["555-6787", "1800-AUTHOR"] );

because those additional loops convert each attribute value to a string representation that the
database can store.

We can overcome the third and fourth problems—relying on the programmer to get the
class right, and storing objects in separate databases—by taking the encoding process one step
further and encoding each entire object as a single string. 

If each object is encoded in this way, then decoding it automatically reblesses it into the
correct class. Better still, we can store the representations of all persistent objects in a single da-
tabase, since each object is now a single string and can be indexed by its variable name.
Listing 14.4 shows the changes to the original Contact::Persistent class (from listing 14.2) that
are required to implement this scheme. Note that, for this version, we’ve swapped to
Data::Dumper for the encoding, just to show that the choice of serializer is irrelevant to the
various techniques.

The most significant change to the class is that its interface has been altered.5 Specifically,
the persistence mechanism is now accessed differently. For a start, the addition of an import
method means that the Contact module is now going to do something whenever it’s used. It’s
now going to expect an extra argument to use, which specifies the single persistence database
that all the Contact::Persistent objects will be stored in. It then opens the database and ties it
to the lexical hash %db (or dies trying).

5 Interface changes are always the most significant because they directly affect every person who is using
the previous version of your class and who will now need to change their code.
COARSE-GRAINED PERSISTENCE 405



use Contact;

package Contact::Persistent;
$VERSION = 2.10;

@ISA = qw( Contact );
use strict;

use Storable qw( freeze thaw );

my %persistent = ();

sub persistent

{
$SIG{'INT'} = sub { $SIG{'INT'} = 'IGNORE'; exit(0) };

no strict;
my ($class, $varname, $filename) = @_;

$varname =~ s/^\$((\w|::)+)$/$1/
or croak "Invalid persistent variable name: $varname";

$varname = (caller)[0]."::$varname" unless $varname =~ /::/;
$persistent{$varname} = $filename;

if (tie local %db, 'DB_File', $filename, O_RDWR, 0640)
{

${$varname} = bless { %db }, $class;
foreach my $key (keys %${$varname})

{

${$varname}->{$key} = ${thaw( ${$varname}->{$key} )}

}

untie %db;

}
return ${$varname};

}

END
{

no strict;
while (my ($varname, $filename) = each %persistent)

{
tie local %db, 'DB_File', $filename, O_CREAT|O_RDWR, 0640

or croak "Unable to open persistent database $filename ($!)";
foreach my $key (keys %${$varname})

{

${$varname}->{$key} = freeze( \${$varname}->{$key} )

}

%db = %${$varname};

untie %db;
}

}

Listing 14.3 A persistent contacts class with encoded attributes
406 CHAPTER 14 PERSISTENT OBJECTS



use Contact;

package Contact::Persistent;
$VERSION = 2.20;

@ISA = qw( Contact );
use strict;

use Carp;

use DB_File;
use Fcntl;

use Data::Dumper;

my %db;

sub import

{

my ($class, $filename) = @_;

croak "Usage: use $class '<database>'" unless $filename;

tie %db, 'DB_File', $filename, O_CREAT|O_RDWR, 0640

or croak "Unable to open persistent database $filename ($!)";

}

 sub persistent
{

$SIG{'INT'} = sub { $SIG{'INT'} = 'IGNORE'; exit(0) };
no strict;

my ($class, $varname) = @_;

$varname =~ s/^\$((\w|::)+)$/$1/

or croak "Invalid persistent variable name: $varname";
$varname = (caller)[0]."::$varname" unless $varname =~ /::/;

if (exists $db{$varname})

{ eval $db{$varname} }

else

{ $db{$varname} = "" }

return ${$varname};
}

END

{
no strict;

foreach my $varname (keys %db)

{

$db{$varname} = Data::Dumper->Dump([${$varname}],[$varname]);

}

untie %db;

}

Listing 14.4 A persistent contacts class in a single database
COARSE-GRAINED PERSISTENCE 407



The persistent method also changes. It no longer needs a second argument specifying
the object’s storage file, since all objects are stored in the file attached to %db. Instead, it checks
whether %db has a meaningful entry for the variable in question and, if so, evals it into ex-
istence (recall that eval is Data::Dumper’s equivalent to thaw). If the entry for the variable
was empty, or nonexistent, persistent sets the entry to an empty string. This ensures that
the variable’s name is recorded (as a key in %db) so that the END block subsequently knows to
save it.

The END block does that saving by iterating through each key of the %db hash. For each
key, it uses Data::Dumper to encode the corresponding variable, ${$varname}, then stores
it back in the database by assigning it to $db{$varname}. Having updated the database, the
END block then closes it by untie-ing %db.

The result is that we can specify persistent contacts like so:

package main;

use Contact::Persistent "contacts.db";

# and later…

Contact::Persistent->persistent( '$me' )
or $me = Contact::Persistent->new(%my_data);

Contact::Persistent::Personal->persistent( '$therapist' )

or $therapist = Contact::Persistent::Personal->new(%shrink_data);

Contact::Persistent::CIA->persistent( '$agent_x' )
or $agent_x = Contact::Persistent::CIA->new(%classified_data);

and have them all saved in a single database file (i.e., contacts.db).

14.3.3 Coarse-grained persistence for any data

To achieve the last two goals—persistence for objects of any class and preserving interre-
lationships between persistent objects—we have to isolate the persistence mechanism from
class Contact::Persistence and push the serialization scheme back yet another level. In other
words, we have to encode all the persistent variables together into a single string. Listing 14.5
illustrates a module, Persistence, that does this.

The Persistence module uses the standard Exporter module to export a single subroutine
called persistent. This subroutine takes the place of the Contact::Persistent::per-
sistent method.

The module declares two package variables: a hash (%pers_var), that’s used to collect
the persistent variables; and a scalar ($storage_file), that records the name of the text file
in which their encoded representations will be stored. The Persistence module can use a regular
disk file for persistent storage because all the persistent variables will eventually be encoded to-
gether into a single string. Since the string can be written to a flat file, we can avoid the com-
plexities and overheads of a full database.
408 CHAPTER 14 PERSISTENT OBJECTS



package Persistence;

$VERSION = 1.00;

require Exporter;
@ISA = qw(Exporter);

@EXPORT = qw( persistent );
use strict;

use Carp;
use Data::Dumper;

$Data::Dumper::Purity = 1;

use vars qw( %pers_var $storage_file );

sub import
{

my ($class, $file) = @_;
if (defined $file)

{
croak "Storage file specified twice" if defined($storage_file);

$storage_file = $file;
do $storage_file;

$SIG{'INT'} = sub { $SIG{'INT'} = 'IGNORE'; exit(0) };
}

$class->export_to_level(1,@_[2..$#_]);
}

sub persistent

{
no strict 'refs';

my ($varname) = @_;
my ($package) = caller;

my ($type,$symname) = ($varname =~ /^(.)((\w|::)+)$/);
my $success;

$symname = "${package}::$symname" unless $symname =~ /::/;
$varname = "$type$symname";

if ($type eq '$')
{ ${$symname} = ${$success = $pers_var{$varname}}

if defined $pers_var{$varname}; }
elsif ($type =~ /[%@]/)

{ *{$symname} = $success = $pers_var{$varname}
if defined $pers_var{$varname}; }

else
{ croak "Can't make $varname persistent" }

$pers_var{$varname} = undef;
return $success;

}

END

{
no strict;

Listing 14.5 A class-independent persistence module
COARSE-GRAINED PERSISTENCE 409



foreach my $varname (keys %pers_var)

{
my ($type,$symname) = ($varname =~ /(.)(.*)/);

if ($type eq '$'){ $pers_var{$varname} = \${$symname} }
elsif ($type eq '@'){ $pers_var{$varname} = \@{$symname} }

elsif ($type eq '%'){ $pers_var{$varname} = \%{$symname} }
}

open STORAGE, ">$storage_file"

and print STORAGE Data::Dumper->Dump([\%pers_var],["*pers_var"])
and close STORAGE

or die qq{Couldn't save persistent data: $!};
}

1;

The import method is defined to catch any call to use Persistence. If the use state-
ment also specifies a file name—use Persistence "persistent.dat"—then the name
of the file is stored in $storage_file for later use by the END block. Note that croak-ing
if the $storage_file variable is already set ensures that use Persistence can be called
only once with a file name, though it may be called any number of times without a file, so as
to import the persistent method into various namespaces.

The contents of the storage file are evaluated, using the do $storage_file statement.
Once again, we’re using Data::Dumper, so eval-ing the contents of the storage file is a tidy
and efficient way of reconstructing the persistent data. 

The import method next sets up a signal handler to commute any trappable interrupt
signal to an exit, thereby ensuring the END block will be invoked. Finally, it calls Export-
er::export_to_level, passing any arguments specified after the file name. Calling
export_to_level causes the subroutines specified in the @EXPORT array to be exported in
the usual manner. We have to do it ourselves because we overrode the normal Exporter::im-
port method (by defining Persistence::import).

The single exported subroutine—Persistence::persistent—replaces Con-

tact::Persistent::persistent from the previous examples. It serves exactly the same
purpose, namely, to mark specific variables as housing persistent data, and restore their stored
values. However, this version of persistent is a little more general in applicability. It can be
passed the name of any package scalar, array, or hash, thereby allowing nonscalars to also be
made persistent. 

If the variable isn’t of one of those types, persistent complains and dies. Otherwise,
persistent restores its value, either by direct assignment if it’s a scalar or, else, by assigning
the corresponding array or hash reference to the appropriate typeglob for the package variable,
which is accessed through a symbolic reference: *{$symname}. 

You might well ask how %pers_var happened to have an appropriate entry containing
a reference to the persistent data. The answer is that the END block is going to assign references
to each persistent variable to the corresponding entries of %pers_var, then encode
%pers_var, and all those variables, into a single string. Thus, the file that import evaluates
410 CHAPTER 14 PERSISTENT OBJECTS



with its do $storage_file command will contain a script for reconstructing %pers_var
and, with it, the values of all the persistent variables.6

Finally, persistent assigns an undefined value to the %pers_vars entry for the spec-
ified variable. This has two important effects: it records the variable’s name—as a key—so that
the END block knows to save the variable, and it ensures that any future call to persistent
that specifies the same variable has no effect, since the "if defined $pers_var{$var-
name}" guarding the typeglob assignment will then fail. 

The END block carries out the same functions as the END block in the Contact::Persistent
module: it saves the values of the various variables that persistent recorded as being persis-
tent. As promised earlier, it uses Data::Dumper (with its purity set to 1 so that complex rela-
tionships between the variables being saved are correctly preserved).

The END block iterates through the name of each persistent variable, as specified by the
keys of %pers_var), and assigns a reference to each variable into the %pers_var entry with
the corresponding key. The references are generated by taking a symbolic reference to the vari-
able ($symname), dereferencing it with the appropriate type dereferencer (${$symname},
@{$symname}, or %{$symname}), and taking a reference to the resulting variable (\${sym-
name}, \@{$symname}, or \%{$symname}).

Having aggregated the necessary references into a single variable, the END block opens a
file handle, encodes that single variable, and writes its representation to the specified storage
file. Because all the persistent variables are encoded simultaneously, Data::Dumper—or either
of the other two serialization modules, if we chose to use them instead—is able to detect and
preserve their interrelationships in the encoded representation.

Now, we don’t need to create a specific Contact::Persistent class. We can use the (non-
persistent) Contact class and mark some of its objects as persistent:

use Contact;
use Persistence "contacts.db";

# and later…

persistent '$me'

or $me = Contact->new(%my_data);

persistent '$therapist'
or $therapist = Contact::Personal->new(%shrink_data);

persistent '$agent_x'

or $agent_x = Contact::CIA->new(%classified_data);

Because the Persistence module is now totally decoupled from the Contact class, we can
easily make objects of other classes persistent as well:

use CD::Music;
use Bit::String;

6 It’s kind of a Back to the Future arrangement. The program can rely on do $storage_file to recon-
stitute the persistent values in %pers_var because, in a previous existence, the program’s END block
already put those persistent values into %pers_var and then saved that hash to the storage file.
COARSE-GRAINED PERSISTENCE 411



persistent '$bach'
or $bach = CD::Music->new(@eine_kleine_Bach_data);

persistent '$isprime'

or $isprime = Bit::String->new(primes(1..1000000);

or even confer immortality on common unblessed values:

persistent '$name'
or $name = "Damian";

persistent '%corrections'

or %corrections ={
"recieved"=> "received",

"wierdness"=> "weirdness",
"undocumented bug"=> "retro-feature",

};

14.3.4 Assessing the technique 

The mechanism implemented by the Persistence module meets the needs of many applica-
tions requiring persistent data. The persistence conferred on package variables is automatic:
once a variable is marked persistent, its value is automatically saved and restored every time
the program is run without the need for any further user intervention. The persistence is also
orthogonal: it can be applied to any class or built-in data type that the Data::Dumper serial-
ization module can encode.

Orthogonality also works in the other direction. The internal serialization mechanism
that Persistence uses can be changed to Storable or FreezeThaw without affecting the syntax
or behavior of any program using the Persistence module. Likewise, the storage mechanism can
be changed from a flat file to a database, without any impact on client code. 

In fact, the Persistence module could easily be made generic, so that a serialization module
and a storage mechanism would each be specified when the Persistence module is imported.

14.4 FINE-GRAINED PERSISTENCE
The fundamentals of fine-grained persistence—identity, encoding, storage, and coordina-
tion—are almost exactly the same as in the coarse-grained persistence techniques described so
far. The difference is that the external representation of each persistent object has to be
updated every time the object's data changes.

In general such updates are difficult to achieve without some assistance from the objects
themselves, since there are no built-in mechanisms in Perl to detect assignments to nested ar-
rays or hashes. (Although it is possible to detect assignments to unnested data structures by
tie-ing them.)

This section illustrates several approaches to fine-grained persistence. All of them require
cooperation on the part of the objects being made to persist; none are as automatic or orthog-
onal as the final coarse-grained technique described above.
412 CHAPTER 14 PERSISTENT OBJECTS



14.4.1 Disk files as objects

The simplest way to ensure that an object’s internal and external representations are always
synchronized is to make those representations one and the same. In other words, use the exter-
nal representation as the internal representation.

Listing 14.6 shows a Bit::String::FinelyPersistent class, derived from the Bit::String class
shown in chapter 4. Bit::String::FinelyPersistent objects act just like Bit::String objects, except
they also provide fine-grained persistence.

use Bit::String;

package Bit::String::FinelyPersistent;
@ISA = qw( Bit::String );
$VERSION = 1.00;
use strict;

use Carp;
use Symbol;
use Fcntl;
 
sub new
{

my ($class, $file, $size) = splice(@_,0,3);
my $filehandle = gensym;
sysopen($filehandle, $file, O_RDWR|O_CREAT) 

|| croak "Can't open persistence file: $file";
my $init_string = join('',map({$_?'1':'0'} @_)).'0'x($size-@_);
syswrite($filehandle, $init_string, $size)

|| croak "Can't initialize persistence file: $file"
unless -s $filehandle;

bless $filehandle, $class;
}

sub get
{

my ($self,$bitnum) = @_;
return undef if $bitnum >= $self->bitcount();
my $bit;
sysseek($self, $bitnum, 0) 

&& sysread($self, $bit, 1)
|| croak "Couldn't read bit $bitnum";

return $bit;
}

sub set
{

my ($self,$bitnum,$newval) = @_;
return undef if $bitnum >= $self->bitcount();
sysseek($self, $bitnum, 0)

&& syswrite($self, ($newval?"1":"0"), 1)

Listing 14.6 A persistent Bit::String subclass
FINE-GRAINED PERSISTENCE 413



|| croak "Couldn't write bit $bitnum";
}

sub complement
{

my ($self) = @_;
my $bits;
sysseek($self, 0, 0) 
&& sysread($self, $bits, $self->bitcount())

|| croak "Couldn't read bits to create complement";
return Bit::String->new(split(//,$bits))->complement();

}

sub bitcount
{

my ($self) = @_;
return -s $self;

}
 
1;

Bit-strings are ideal candidates for implementing fine-grained persistence. They have an
extremely simple internal structure which makes them easy to represent externally and simple
access methods, which are easily modified to ensure synchronization of internal and external
representations.

More importantly, though, there are good reasons for wanting to make bit-strings per-
sistent. One common use of a bit-string is to house a collection of flags, such as a set of program
options, a file creation permissions mask, or a lookup table indicating which elements of some
other array have a certain property such as “primality” or “validity” or “readiness.” Such data
often needs to be preserved between executions of a program, either because the user expects
the information to be “sticky” or because the data was expensive to compute.

The Bit::String::FinelyPersistent class works by blessing a filehandle, or rather, the type-
glob containing it. That filehandle is attached to a disk file. The disk file provides storage for
the actual bit-string. Thus, bits are never stored internally. Accesses to individual bits of the
bit-string are actually reads on the disk file, while changes to bits are writes. The technique is
essentially the same as the one used to implement the Genome::Array class in chapter 9, though
the Bit::String::FinelyPersistent class has a much simpler interface.

To make it all work, the module redefines the constructor, get, and set accessors, and
the complement and bitcount methods defined in Bit::String. In fact, only the print meth-
od is actually inherited unscathed. Thus, the use of inheritance here is more symbolic—of the
common purpose of the two classes—than functional.

Nevertheless, the Bit::String::FinelyPersistent class illustrates a major advantage of inher-
itance. Although it provides exactly the same features and interface as its parent class, internally
the two classes have almost nothing in common. Whereas the Bit::String class implements each
of its objects as a pack’ed character string, Bit::String::FinelyPersistent objects are actually
blessed filehandles, connected to a disk file storing the bits as individual “1” or “0” characters.
414 CHAPTER 14 PERSISTENT OBJECTS



The advantage is that clients of the class don’t have to worry, or even know, about those in-
ternal differences, and can easily add or remove persistence to bit-strings with minimal changes
to the code that uses them.

The constructor takes two arguments, specifying the name of the disk file to be used and
the size of the bit-string to be created (and, hence, the size of the storage file itself). Any ad-
ditional arguments are treated as true/false initialization values just as in the Bit::String class. 

The constructor first creates an anonymous typeglob using the Symbol::gensym sub-
routine and stores a reference to it in $filehandle—since it’s the filehandle within the type-
glob that we’re actually interested in. The typeglob will eventually be blessed as the new
Bit::String::FinelyPersistent object. The constructor then opens the specified file for both read
and write access (O_RDWR), creating it if necessary (O_CREAT). 

Next, the constructor checks the length of the newly opened file (-s $filehandle) to
see if it already existed. If it was just created, the file’s size will be zero, so -s $filehandle
will return false. In that case, the constructor writes the initialization values to the file, by first
mapping them to a list of 1’s and 0’s (map({$_?'1':'0'} @_)), concatenating the list
(join('',map({$_?'1':'0'} @_)), then appending enough additional zeroes
(join(map({$_?'1':'0'} @_).'0'x($size-@_)) to pad the resulting string to the re-
quested size.

Finally, the typeglob containing the filehandle is blessed into the class and returned as the
new Bit::String::Persistent object.

The accessor methods, get and set, use that filehandle—their invoking object—to ac-
cess the file character that corresponds to the bit they are requested to access. Both accessors
first check whether the requested bit ($bitnum) is in the range stored in the file. If it is not,
they immediately return undef to indicate an out-of-range error. Otherwise, they seek to the
specified character in the file. Recall that each character represents a single bit, so seeking to
the position $bitnum takes the filehandle to the correct point in the file. Having reached the
appropriate point in the file, the get accessor simply reads a single character, thereby retrieving
the requested bit. The set accessor, on the other hand, writes a single character—either “1”
or “0”, depending on the truth-status of the value it is given—thereby storing the requested bit. 

The constructor and accessors all use syswrite, sysread, and sysseek, rather than the
more commonly used print, read, and seek. Apart from their greater efficiency, these sys…
functions bypass the normal buffering of Perl I/O, which ensures that the file is updated im-
mediately and minimizes the chance that an ill-timed signal will cause data to be lost.

The complement method cheats a little.7 It extracts all the bits from the file by seeking
to the start and reading $self->bitcount() characters. It splits the resulting string into an
array of individual bits (split //,$bits)) and builds a new (nonpersistent) Bit::String ob-
ject containing those bits (Bit::String->new(split(//,$bits))). Then, it returns the
complement of that Bit::String object (Bit::String->new(split(//,$bits))->com-
plement()).

7 Or if you prefer: “…reuses existing superclass functionality in a polymophic manner, in the best tradi-
tions of object orientation.”
FINE-GRAINED PERSISTENCE 415



Lastly, the implementation of the bitcount method is extremely simple. Since
Bit::String::FinelyPersistent bit-strings are stored as one file character per bit, bitcount just
returns the length of the file to which its filehandle is attached: -s $self. 

14.4.2 Memory-mapped files as objects

If your operating system supports memory mapping—via the mmap system call—the
Bit::String::FinelyPersistent class can be made even simpler, and far more efficient. Memory
mapping is a technique through which the memory required by a scalar variable is provided
not from the program’s internal address space, but, instead, a disk file. 

In other words, memory mapping is an automation of the file reading and writing tech-
nique shown in the previous section. It’s also an optimization of the previous technique, since
memory-mapped access to a file is typically two to five times faster that standard reads and
writes, depending on your system’s architecture.

Perl supports memory mapping on systems that provide it—via Malcolm Beattie’s Mmap
module. Listing 14.7 uses that module to reimplement Bit::String::FinelyPersistent using
memory mapping. Compared to the version in listing 14.6, its constructor is marginally more
complex, but its other methods are much simpler.

use Bit::String;

package Bit::String::FinelyPersistent;
@ISA = qw( Bit::String );
$VERSION = 2.00;
use strict;

use Carp;
use Mmap;
 
sub new
{

my ($class, $file, $size) = splice(@_,0,3);
my $filehandle = gensym;
sysopen($filehandle, $file, O_RDWR|O_CREAT) 

|| croak "Can't open persistence file: $file";
my $init_string = join('',map({$_?'1':'0'} @_)).'0'x($size-@_);
syswrite($filehandle, $init_string, $size)

|| croak "Can't initialize persistence file: $file"
unless -s $filehandle;

my $str;
mmap($str, $size, PROT_READ|PROT_WRITE, MAP_SHARED, $filehandle)

|| croak "Can't map object to file: $file";
bless \$str, ref($class)||$class;

}

sub get
{

my ($self,$bitnum) = @_;

Listing 14.7 A persistent memory-mapped Bit::String subclass
416 CHAPTER 14 PERSISTENT OBJECTS



return undef if $bitnum >= $self->bitcount();
return substr($$self, $bitnum, 1);

}

sub set
{

my ($self,$bitnum,$newval) = @_;
return undef if $bitnum >= $self->bitcount();
substr($$self, $bitnum, 1) = $newval?"1":"0";

}

sub complement
{

my ($self) = @_;
return Bit::String->new(split(//,$$self))->complement();

}

sub bitcount
{

my ($self) = @_;
return length($$self);

}
 
1;

The constructor is essentially the same as before, except it no longer blesses the anony-
mous typeglob that stores the filehandle. Instead, it memory maps the filehandle onto the vari-
able $str, using the mmap subroutine supplied by the Mmap module. The arguments to mmap
are:

• $str: the scalar variable to which the file is to be memory mapped, in this case, a lexical
variable,

• $size: the number of bytes of the file that are to be mapped to the object, in this case,
all of them,

• PROT_READ|PROT_WRITE: a set of access flags, in this case, both read and write access
are permitted. The constants are exported by the Mmap module,

• MAP_SHARED: a flag indicating how paging of the mapped file should be handled. See
the mmap(2) documentation on your local system for intimate details on this—or else
just ignore it, like the rest of us do,

• $filehandle: a reference to the typeglob containing the filehandle for the file to be
mapped, in this case, a handle for the file we just opened and initialized.

The effect of the call to mmap is to make the scalar variable $str use the file as its memory
for any string it might hold. Any assignment to that string—or into it, via substr—is written
straight to the file. The data returned by any read access is read directly from it. Having set
up $str this way, the constructor blesses it into the class and returns a reference to it.

The accessor methods, get and set, can now be greatly simplified. Because the blessed
string ($$self) uses the same memory as the file, we can access the file character at position
FINE-GRAINED PERSISTENCE 417



$bitnum by accessing the single character at that position in $$self—that is, sub-
str($$self,$bitnum,1). The get method returns the result of this expression, while set
assigns to it. The Mmap module takes care of the (notional) reading, writing, and seeking re-
quired to synchronize $$self’s internal representation with the memory mapped disk file.

The complement method is also greatly simplified. To access the complete set of bits for
the bit-string, we can use the value of the entire memory-mapped string—that is, $$self—
directly. As before, this is split, fed to Bit::String::new, and the resulting object comple-
mented. Similarly, the bitcount method simply returns the length of the complete memory-
mapped string.

14.4.3 Tied databases as objects

Yet another approach to implementing fine-grained persistence is to attach the internal repre-
sentation of an object to an external file by tie-ing a hash to a database. The technique is
similar to the coarse-grained persistence mechanism illustrated by listing 14.2. The only dif-
ference is that, now, instead of only tie-ing a hash at either end of an object’s existence, in
persistent and the END block, we keep the tied hash around and use it as the object.

The move from accessing database records only at the program boundaries to accessing
them throughout the program simplifies the structure of the persistent class considerably.
Listing 14.8 shows the class Contact::FinelyPersistent. Note how much cleaner it is than the
equivalent coarse-grained Contact::Persistent subclass in listing 14.2.

Once again, we have a triumph for inheritance: Contact::FinelyPersistent has only to re-
define its constructor before reusing all of the accessor methods (get_name, set_phone,
print, etc.) that it inherits from Contact. This is because the new constructor takes the hash
that will become the new Contact::FinelyPersistent object and ties it directly to an external file.
Thereafter, any modifications to the object’s values will be automatically propagated back to
the file. 

There is no need for a persistent method because, as the class name suggests, every
Contact::FinelyPersistent object is automatically persistent and doesn’t need to be explicitly
marked as such. There is no need for an END block either because every operation on a Con-
tact::FinelyPersistent object automatically saves the object back to its persistence file. So, at the
end of the program every object will already be synchronized with its external representation.

The Contact::FinelyPersistent class uses Gurusamy Sarathy’s MLDBM module to access
each object’s database, rather than DB_File, or SDBM_File, etc. “MLDBM” stands for “Multi-
Level Database Module.” The module allows nested hashes and arrays to be stored in a simple
key/value database.8 

It manages this impressive feat by interposing an encoding/decoding layer—normally
Data::Dumper, but you can specify FreezeThaw or Storable instead—between the tied hash
and an underlying database module—SDBM_File by default, but that too is configurable. Each
tied MLDBM hash is implemented internally by a real hash with two entries:

8 The MLDBM module itself makes excellent use of many object-oriented techniques described in earlier
chapters: interface polymorphism, inheritance, delegation, attribute accessors, aggregation, tie-ing, ge-
neric methods, and abstract methods. The source code is definitely worth studying.
418 CHAPTER 14 PERSISTENT OBJECTS



• "SR", which stores a reference to a special serialization object. It is the serialize and
deserialize methods of this object that are called to encode or decode data whenever
MLDBM::STORE or MLDBM::FETCH are invoked.

• "DB", which stores a reference to another tied hash, which is tied to the standard
SDBM_File database access module. 

Figure 14.1 illustrates the arrangement.
Contact::FinelyPersistent uses DB_File as MLDBM’s underlying database and Freeze-

Thaw as its encoding module, specifying them as extra parameters when MLDBM is imported.9

The constructor creates a lexical hash (%hash) and uses MLDBM to tie it to the database spec-
ified by the $file argument. If the database did not previously exist—that is if the size of its
.pag file was zero before the tie—it is initialized by assigning the relevant entries from %init
to %hash. These initialization values can be scalars, array references, or hash references since

9 These modules were chosen instead of the defaults because they have much better performance.

use Contact;

package Contact::FinelyPersistent;
$VERSION = 1.00;
@ISA = qw ( Contact );
use strict;

use MLDBM;
use Fcntl;
use Carp;

sub new
{

my ($class, $file, %init) = @_;
my $already_exists = -s "$file.pag";
my %hash;
tie %hash, 'MLDBM', $file, O_RDWR|O_CREAT, 0640 

or croak "Unable to connect to persistence file: $file ($!)";
unless ($already_exists)
{

%hash =(
name=> $init{name},
phone=> $init{phone},
fax=> $init{fax},
email=> $init{email},

);
}
bless \%hash, ref($class)||$class;

}

1;

Listing 14.8 A Contact subclass with fine-grained persistence
FINE-GRAINED PERSISTENCE 419



MLDBM automatically serializes them when they are assigned and will decode them again
when they are next accessed. 

Having connected the new Contact::FinelyPersistent object to its database and initialized
it, all that remains is to bless the hash into the class and return a reference to it. Thereafter,
the object looks and acts just like a blessed hash, except that each modification to it is imme-
diately and automatically encoded (by FreezeThaw) and stored (by DB_File) in the specified
database. That’s why the other methods inherited from Contact work just as well for Con-
tact::FinelyPersistent objects. For example, the Contact::set_phone method

sub set_phone { $_[0]->{phone} = $_[1] }

assigns to the phone entry of the tied hash, which causes MLDBM to encode the new value
and pass it to DB_File, which stores it directly into the object’s database. Then, when the
Contact::get_phone method

sub get_phone { $_[0]->{phone} }

is next called, it requests the value of the phone entry from the tied hash, which causes
DB_File to retrieve the corresponding value from the database and pass it to MLDBM, which
decodes it.

This is all very convenient for a simple case like the Contact class, but, in general, the
methods of classes based on MLDBM databases must be carefully designed if they are to access
subentries of a tied hash. For example, if the phone entry for a Contact::FinelyPersistent object
is a reference to an array of strings

$me->set_phone( ["555-6787", "1800-AUTHOR"] );

and we wish to add a method (set_phone_i), to replace a given phone number in that array,
we have to write it like this:

"DB"

"SR"

MLDBM

filehandle
to database

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

MLDBM::Serializer

%hash

DBM_File

Figure 14.1 The structure of an 

MLDBM-tied hash
420 CHAPTER 14 PERSISTENT OBJECTS



sub Contact::FinelyPersistent::set_phone_i
{

my ($self, $i, $newval) = @_; # get args
my $temp = $self->{phone}; # create temporary phone data
$temp->[$i] = $newval; # update temporary phone data
$self->{phone} = $temp; # update original phone data

}

rather than the more obvious:

sub Contact::FinelyPersistent::set_phone_i
{

my ($self, $i, $newval) = @_; # get args
$self->{phone}->[$i] = $newval; # try to update original data directly

}

The problem is that Perl’s tied hashes don’t support modifications to nested subentries.
The expression $self->{phone} returns a copy of the data in that entry (that is, a copy of
the phone list), so assigning $newval directly to $self->{phone}->[$i] (in the second ver-
sion) puts the new value into the $i-th element of the copy, not into the original. In contrast,
the first version (with $temp) works correctly because it explicitly captures the copy returned
by $self->{phone}, assigns into it, and writes the complete updated copy back to the orig-
inal entry in the database.

14.4.4 Fine-grained persistence for any class

Just as we generalized the coarse-grained Contact::Persistent class to create the Persistence
module, we can abstract any of the mechanisms used to implement Contact::FinelyPersistent
to create a FinePersistence module.

Listing 14.9 shows such a module. Unfortunately, although the fine-grained persistence
it confers is orthogonal and can be applied to objects of any suitable class, it’s not completely
automatic because it requires a small amount of cooperation by the inheriting class, as de-
scribed below.

package FinePersistence;
$VERSION = 1.00;

require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(persistent changes);
use strict;
use Carp;

use vars qw( %pers_var $storage_file);

sub import
{

my ($class, $file) = @_;
if (defined $file)

Listing 14.9 A module for conferring fine-grained persistence on any class
FINE-GRAINED PERSISTENCE 421



{
croak "Storage file specified twice" if defined($storage_file);
$storage_file = $file;
do $storage_file;
$SIG{'INT'} = sub { $SIG{'INT'} = 'IGNORE'; exit(0) };

}
$class->export_to_level(1,@_[2..$#_]);

}
 
sub persistent
{

no strict;
my ($varname) = @_;
my ($package) = caller;
my $success = 0;
my ($type,$symname) = ($varname =~ /^(.)((\w|::)+)$/);
$symname = "${package}::$symname" unless $symname =~ /::/;
$varname = "$type$symname";
if ($type eq '$')
{ *{$symname} = $success = $pers_var{$varname} 
 if defined $pers_var{$varname} }

else
{ croak "Can't make $varname finely persistent" }

$pers_var{$varname} = undef;
return $success;

}

sub changes { $_[0] = FinePersistence::Updater->new() }

package FinePersistence::Updater;
use Data::Dumper;
$Data::Dumper::Purity = 1;
 
sub new { bless {}, ref($_[0])||$_[0] }
 
sub DESTROY
{

foreach my $varname (keys %FinePersistence::pers_var)
{
no strict;
my $symname = substr($varname,1);
$FinePersistence::pers_var{$varname} = \${$symname};

}

open STORAGE, ">$FinePersistence::storage_file"
and print STORAGE Data::Dumper->Dump([\%FinePersistence::pers_var],

["*pers_var"])
and close STORAGE

or die qq{Couldn't save persistent data: $!};
}

1;
422 CHAPTER 14 PERSISTENT OBJECTS



The initial sections of the FinePersistence module are identical to the (coarse-grained)
Persistence module. Once again, the lexical %pers_var is used to collect all persistent vari-
ables, and the import method restores them when the module is first use-d. The persistent
subroutine marks objects as persisting and reinstates their stored values from %per_var. The
subroutine’s implementation is almost the same as in figure 14.5, except that this version is re-
stricted to operating on scalars. This change is necessary because FinePersistence only works
for blessed objects, and scalars are the only type of variable that can directly store an object ref-
erence.10

Not surprisingly then, marking package variables as holding persistent objects is done just
as it was with the Persistence module:

package main;

use FinePersistence "persistence_file";

# create Contact subclass called Contact::FinelyPersistent
# (see below)

persistent '$me'

or $me = Contact::FinelyPersistent->new(@mydata);

persistent '$Spouse::unit'
or $me = Contact::FinelyPersistent->new(@herdata);

persistent '$Secret::agent_x'

or $me = Contact::FinelyPersistent->new(@we_could_tell_you,
@but_then_we'd_have_to_kill_you);

The differences between the Persistence module and FinePersistence have to do with the
way each goes about storing the persistent data it controls. The Persistence module uses a single
END block to collect, encode, and store the values of persistent variables. FinePersistence uses
objects of a special helper class, FinePersistence::Updater, to control these tasks. 

The FinePersistence::changes subroutine is exported to assist in the creation of
these helper objects. It takes a single scalar argument, to which it assigns a reference to a new
FinePersistence::Updater object. Because $_[0] aliases the corresponding argument passed to
changes, assigning the reference directly to $_[0] actually assigns it to the original argument
variable. The reason for this slightly unusual approach—assigning to an argument rather than
just returning the reference directly—is aesthetic and will become apparent in a moment.

The constructor of the FinePersistence::Updater class blesses an empty hash and returns
a reference to it. It could equally well bless an empty array or scalar because we don’t care about
the contents of FinePersistence::Updater objects, only their lifetimes. 

In fact, the FinePersistence::Updater class really exists only to provide its objects with a
destructor. That destructor acts just like the END block of the Persistence module, collecting
references to persistent variables (in %pers_var), encoding them together (with Data::Dump-

10 Of course, an array element and a hash entry can also store a reference, but individually they are both
really scalars. The version of FinePersistence shown in figure 14.9 doesn’t allow such embedded scalars
to be made persistent, though it wouldn’t be difficult to add that capacity.
FINE-GRAINED PERSISTENCE 423



er), and storing them in the specified file, overwriting it each time. Consequently, every time
a FinePersistence::Updater object ceases to exist, the complete set of persistent variables is col-
lected, encoded, and stored.

The postmortem behavior of these helper objects is the key to the fine-grained persistence
that FinePersistence confers on classes that use it. For example, Listing 14.10 shows how to add
fine-grained persistence to the Contact and Bit::String classes.

Creating persistent versions of these classes is easy. We simply create a new subclass and
redefine any method that changes the value of an object. Methods that don’t change the object
can be inherited as-is, since the persistence mechanism can safely ignore them. The redefined
methods are all structurally identical, consisting of a call to changes, followed by an invoca-
tion of the inherited method.

The call to changes creates a helper object (a FinePersistence::Updater) and assigns a ref-
erence to it to the lexical variable $value.11 When $value ceases to exist at the end of the
method, the helper object’s destructor is called, which causes all persistent variables to be re-
saved. This ensures that the external representations of all persistent objects are updated after
any of their value-changing methods is invoked.

At first glance, this appears wasteful, since the FinePersistence::Updater destructor re-
saves all persistent objects every time any of them changes. It certainly is more expensive than
updating only the individual object that changes, but global updating is also essential in the
general case. That’s because the only way that the serialization module can preserve the inter-
relationships within a group of objects is to encode the entire group at the same time. Since
we have no way of knowing how the objects that FinePersistence controls interrelate, we have
to play it safe and re-encode everything each time anything changes. 

After all, the change might easily involve assigning a reference to one persistent object in
an attribute to another, perhaps as part of a persistent binary search tree. If that assignment
replaced a previously-stored reference to another persistent object, the relationships between
three objects have altered, and all three must be reserialized to preserve that change.

14.4.5 Easier persistence through genericity

Because the structure of every redefined method is identical in any derived class that uses the
FinePersistence module, we have a good opportunity to apply some genericity. For example,
FinePersistence might provide an additional exported function, perhaps save_after, like
this:

package FinePersistence;
@EXPORT = qw(persistent changes save_after);
 
# etc. as before…

my $generic_method =
q{

package %s;

11 This usage explains why changes assigns to its first argument—because that allows us to poetically
declare that a method: changes my $value.
424 CHAPTER 14 PERSISTENT OBJECTS



use Contact;

package Contact::FinelyPersistent;
$VERSION = 2.00;
@ISA = qw( Contact );
use strict;

use FinePersistence;

sub set_phone
{

changes my $value;
my ($self, @args) = @_;
$self->SUPER::set_phone(@args);

}

sub set_fax
{

changes my $value;
my ($self, @args) = @_;
$self->SUPER::set_fax(@args);

}

sub set_email
{

changes my $value;
my ($self, @args) = @_;
$self->SUPER::set_email(@args);

}

use Bit::String;

package Bit::String::FinelyPersistent;
$VERSION = 2.00;
@ISA = qw( Bit::String );
use strict;

use FinePersistence;

sub set 
{

changes my $value;
my ($self, @args) = @_;
$self->SUPER::set(@args);

}

Listing 14.10 Conferring fine-grained persistence on Contact and Bit::String

subclasses
FINE-GRAINED PERSISTENCE 425



 %s
{

changes my $value;
my ($self, @args) = @_;
$self->SUPER::%s(@args);

}
};

sub save_after
{

my ($owner) = caller;
foreach my $method_name ( @_ )
{

croak "No such method was inherited: $method_name"
unless $owner->can($method_name);

eval sprintf($generic_method, $owner, $method_name, $method_name);
}

}

The save_after function determines the name of the package ($owner) from which it
was called and steps through its arguments, checking that each is a valid method name for the
$owner class, via a call to the standard can method. It then interpolates each valid method
name into a generic subroutine template, stored in $generic_method, using sprintf. Fi-
nally, save_after evaluates this interpolated string to define each new method. 

The result is that save_after takes a list of inherited method names and, for each, builds
the standard redefined method required by FinePersistence. The creation of the persistent ver-
sions of Contact and Bit::String is now trivial:

package Contact::FinelyPersistent;
$VERSION = 3.00;
@ISA = qw( Contact );
use FinePersistence;
save_after qw( set_phone set_fax set_email );

package Bit::String::FinelyPersistent;
$VERSION = 3.00;
@ISA = qw( Bit::String );
use FinePersistence;
save_after qw( set );

Of course, given that these two simplified class definitions are now also structurally iden-
tical, we can repeat the trick at the next level up and define an exported define_persistent
subroutine:

package FinePersistence;

@EXPORT = qw(persistent changes save_after define_persistent);
 

# etc. as before…

my $generic_subclass =

q{
package %s::FinelyPersistent;

@%s::FinelyPersistent::ISA = qw( %s );
426 CHAPTER 14 PERSISTENT OBJECTS



use FinePersistence;

save_after qw( %s );
};

sub define_persistent

{
my $owner = shift;

my $save_afters =  join(" ",@_);
eval sprintf($generic_subclass, $owner, $owner, $owner, $save_afters);

}

Then we can reduce the two class definitions to:

use FinePersistence;

define_persistent 'Contact'=> qw( set_phone set_fax set_email );

define_persistent 'Bit::String'=> qw( set );

14.4.6 Assessing the technique 

Fine-grained persistence for specific classes can be most easily provided by attaching each per-
sistent object to a separate file, either by a filehandle, memory mapping, or tie-ing a hash to a
database. The accessors of the persistent class have to be specifically coded to ensure that data
is correctly “written through” to the file whenever it changes. Nested data structures within
such special-purpose objects also present difficulties because of the limitations of Perl’s tie
mechanism.

Generalizing fine-grained persistence to any class is also possible, but, again, it requires
special coding for some accessors. Therefore, fine-grained persistence cannot be applied direct-
ly to a preexisting class, but requires the definition of a special derived class with suitably re-
defined accessors. Fortunately, every such derived class is structurally similar, which allows us
to use generic techniques to minimize the effort required.

As with coarse-grained persistence techniques, the identity of an object is either imposed
by the name of its individual storage file—as passed to its constructor—or the name of the
package variable that stores it—as passed to persistent.

On balance, unless your application specifically needs the extra robustness of fine-grained
persistence, you’re almost certainly better off just using the non-intrusive generalized coarse-
grained persistence technique described earlier.

14.5 WHERE TO FIND OUT MORE
Several simple database access modules (DB_File, GDBM_File, NDBM_File, and
SDBM_File) come with the standard Perl distribution. The serialization modules
Data::Dumper, FreezeThaw, and Storable are all available from the CPAN, as are the relational
database access modules (DBI, DBD::Oracle, DBD::Sybase, etc.) There’s also a home page for
the DBI module: http://www.symbolstone.org/technology/perl/DBI/.

The CPAN has several database solutions to persistent objects. For example, Paul Sharpe’s
excellent DbFramework classes (found in the directory http://www.perl.com/CPAN/authors/
id/PSHARPE/) includes a DbFramework::Persistent module. More recently, Jean-Louis
WHERE TO FIND OUT MORE 427

http://www.symbolstone.org/technology/perl/DBI/
http://www.perl.com/CPAN/authors/id/PSHARPE/


Leroy’s Tangram module, available from http://www.perl.com/CPAN/authors/id/J/JL/JLLE-
ROY/, provides a declarative approach to specifying persistent classes.

The Perl Cookbook has recipes for serialization, database access, and simple persistence.
Advanced Perl Programming also discusses these issues, and explores another approach to ob-
ject-oriented persistence.

14.6 SUMMARY
• Persistent systems enable the contents of variables to be automatically preserved between

executions of a program. Such systems require components to identify, encode, store,
retrieve, decode, and reinstate data. They also require mechanisms to coordinate these
activities.

• In Perl, the easiest way to identify a package variable is by its fully qualified name. Alter-
natively, the keys of a special hash can be used to provide unique identifiers for their cor-
responding values.

• The CPAN provides several modules to automate the encoding and decoding of arbitrary
hierarchical data structures. The main constraint is that objects with nested cross-refer-
ences must be encoded simultaneously, to allow the modules to detect and preserve refer-
ential interrelationships.

• Once encoded, persistent data may be stored in flat files or databases.
• Coarse-grained persistence only restores and saves the state of persistent variables at the

start and end of a program’s execution. This form of persistence can be fully automated,
but may result in data loss if the program terminates unexpectedly.

• Fine-grained persistence restores the state of persistent variables at the start of a program,
and saves their state every time it changes. Compared to coarse-grained techniques, this
approach is less susceptible to data loss, but cannot be as easily automated.
428 CHAPTER 14 PERSISTENT OBJECTS

http://www.perl.com/CPAN/authors/id/J/JL/JLLEROY/


A P P E N D I X  A

 Quick reference guide

This appendix summarizes the important concepts and syntax of object-oriented Perl.     

Table A.1 Classes and objects (Chapters 3 to 5)

Concept Syntax

A class is a package. package Class::Name;
use strict;

An object method is a subroutine in 
the class package that expects an 
object reference as its first argu-

sub method_name 
{
my ($self, @other_args) = @_;
ment. # whatever
}

A class method is a subroutine in 
the class package that expects a 
class name as its first argument.

sub class_method_name 
{
my ($class, @other_args) = @_;
# whatever

}

A constructor is a subroutine in a 
package (i.e., a method in the 
class). It uses the bless function 
to mark a datatype (usually a hash) 
as an object.

sub new 
{
my ($class, @args) = @_;
my $self = bless {}, ref($class) || $class;
# initialize object here
return $self;

}

Objects can also be based on 
anonymous arrays

my $self = bless [], $class;
429



or scalars (usually lexicals) my $implementation;
$self = bless \$implementation, $class;

or typeglobs use Symbol;
my $self = bless gensym(), $class;

or precompiled regular expressions my ($class, $pattern) = @_;
my $self = bless qr/$pattern/, $class;

or subroutines. my $implementation = sub {
#whatever

};
my $self = bless $implementation, $class;

Object attributes are usually 
accessed via a method called an 
accessor. Typically, a single acces-
sor is used to both get and set each 
attribute.

sub attribute_name 
{
my ($self, $newval) = @_;
$self->{attribute_name} = $newval if @_ > 1;
return $self->{attribute_name};

}

Class attributes are usually imple-
mented by a lexical within the class 
package. Accessors are declared in 
the same namespace. The acces-
sors are visible outside the declara-
tion block; the lexical itself is not.

{
my $_class_attribute_name = $init;
sub class_attribute_name 
{
my ($class, $newval) = @_;
$_class_attribute_name = $newval if @_ > 1;
return $_class_attribute_name;

}
}

A destructor is a method with the 
special name DESTROY. It is called 
automatically when an object's ref-
erence count reaches zero.

sub DESTROY 
{
my ($self) = @_;
# any object clean-up here

}

An object is normally created by 
calling a class's constructor.

my $obj_ref = Class::Name->new(@init_args);

All methods  are called using the 
"arrow" notation.

$obj_ref->method_name($arg1, $arg2, $etc);

my $val = $obj_ref->attribute_name(); # get
$obj_ref->attribute_name($new_value); # set

Table A.1 Classes and objects (Chapters 3 to 5) (continued)

Concept Syntax
430 APPENDIX A QUICK REFERENCE GUIDE



Table A.2 Inheritance and polymorphism (Chapters 6 and 7)

Concept Syntax

A derived class is a package whose 
@ISA array lists its parent classes.

package DerivedClass::Name;
@ISA = qw( Parent1 Parent2 Etc );

Derived classes may not need their 
own constructor if the one they 
inherit is sufficient (it must use the 
two-argument form of bless). 
Otherwise, they may define a con-
structor that delegates object cre-
ation to their ancestor (using the 
SUPER pseudo-class).

sub DerivedClass::Name::new 
{
my ($class, @args) = @_;
my $self = $class->SUPER::new(@args);
# initialize derived bits of object here
return $self;

}

Every method in Perl is polymor-
phic and may be overridden in any 
derived class.

package Even::More::DerivedClass::Name;
@ISA = qw( DerivedClass::Name );

sub inherited_method_name
{
# whatever

}

When a method is called on a 
derived-class object, if it's not 
found in the derived class, the 
ancestral classes are searched 
depth-first, left-to-right; then the 
UNIVERSAL class; then the search 
repeats, looking for an AUTOLOAD 
subroutine instead.

sub AUTOLOAD
{
my ($self, @args) = @_;
my ($methodname) = $AUTOLOAD=~/.*::(\w+)$/;
# build or simulate missing method

}

Table A.3 Automated class creation (Chapter 8)

Concept Syntax

The standard Class::Struct module 
creates a constructor and attribute 
accessors for the named hash-
based class.Attributes can be sca-
lars, arrays, hashes, or other 
objects.

use Class::Struct;

struct Class::Name =>
{
attr1 => '$', # scalar attribute
attr2 => '@', # array attribute
attr3 => '%', # hash attribute
attr4 => 'Type', # object attribute

};

The module can also implement 
named array-based classes.

struct Class::Name =>
[
attr1 => '$', # scalar attribute
attr2 => '@',  # array attribute
attr3 => '%', # hash attribute
attr4 => 'Type', # object attribute

];
QUICK REFERENCE GUIDE 431



Alternatively, it can provide acces-
sors to the current class. 
If attribute types are specified with 
a leading *, they are returned by 
reference instead of by value. (This 
feature is independent of the array 
or hash basis of the class.) 

package Class::Name;
use Class::Struct;

struct
(
attr1 => '*$', # scalar reference attribute
attr2 => '*@', # array reference attribute
attr3 => '*%', # hash reference attribute

);

The Class::MethodMaker module 
always installs methods into the 
current class.
Constructors can be specified that 
take no arguments, or named argu-
ments, or may be made to call a 
user-defined init method.

package Class::Name;

use Class::MethodMaker
new => 'create_empty',
new_hash_init => 'create_with_args',
new_with_init => 'create_and_call_init';

Attributes can be scalars, grouped 
scalars, flags, keys, lists, or hashes.
Attributes can be specified singly 
(using a string) or several at a time 
(using a reference to an array of 
strings).

use Class::MethodMaker
get_set => 'name', 
grouped_fields => [name => [qw(first last)]],
boolean => [qw(flag1 flag2 flag3)], 
key_attrib => 'id_number',
struct => [qw(name rank serial_num)],
list => [qw(names dates)],
hash => 'found';

Attributes can also be nested 
objects.

use Class::MethodMaker
object => [OtherType => 'obj_attr'];

Classes can delegate methods to 
the methods of their object 
attributes.

use Class::MethodMaker
object => [OtherType => { slot => 'obj_attr',

 forward => 'method'}
];

Hash-like class attributes can also 
be declared.

use Class::MethodMaker
static_hash => 'shared_data';

Attributes that are subroutines or 
special per-object methods can be 
created.

Passing a subroutine reference to 
the accessor replaces the attribute. 

Passing any other arguments (or 
none) calls the subroutine.

use Class::MethodMaker
code => 'iterator_function',
method => 'print_me';

$obj->iterator_function(sub {each %somehash});
$obj->print_me( \&some_method );

while ($obj->iterator_function())
{ $obj->print_me() }

Methods declared "abstract" throw 
exceptions if they're ever invoked.

use Class::MethodMaker
abstract => 'redefine_me_later_or_else';

Table A.3 Automated class creation (Chapter 8) (continued)

Concept Syntax
432 APPENDIX A QUICK REFERENCE GUIDE



Table A.4 Ties (Chapter 9)

Concept Syntax

The tie function takes a variable or
a typeglob, plus package name and 
arranges for that package to pro-
vide the interface for the variable or 
filehandle.

tie $scalar, "Package_Name", @other_args;
tie @array, "Package_Name", @other_args;
tie %hash, "Package_Name", @other_args;
tie *glob, "Package_Name", @other_args;

When tie is called, it passes the 
package name and any extra argu-
ments to the package's appropriate 
TIE… method (TIESCALAR, TIE-
ARRAY, TIEHASH, or TIEHANDLE).

package Package_Name;

sub TIESCALAR
{
my ($class, @otherargs) = @_;
bless { value => undef }, $class;

}

That method must return an object, 
blessed into a class, that provides 
the necessary interface methods 
for the type of variable tied.

sub Package_Name::FETCH
{
my ($implementation) = @_;
return $implementation->{value};

}

sub Package_Name::STORE
{
my ($implementation, $newval) = @_;
$implementation->{value} = $newval;

}

Table A.5 Operator overloading (Chapter 10)

Concept Syntax

A class may overload operators on 
its objects using the standard over-
load.pm module. 
When the module is imported, a list 
of operator names is specified, 
each with an associated method 
name or a subroutine reference 
indicating how it is implemented.

package DayOfTheWeek;

use overload
"+" => "add_days", # call as method
"-" => \&delta_days, # call as subroutine
"neg" => sub { die "can't negate Days" };

When an operation involving 
objects of the class is performed, 
the corresponding method or sub-
routine is called.

print $day + 7; # print $day->add_days(7,"");
print 31-$day; # print delta_days($day,31,1);
print -$day; # throws "can't negate Days"

The method or subroutine called 
receives three arguments: the 
object, the other argument (which 
may also be an object), and a flag 
indicating whether the order of 
arguments was reversed (to ensure 
an object was the first argument).

sub delta_days
{
my ($x, $y, $reversed) = @_;
($x,$y) = ($y,$x) if $reversed;
# do subtraction here

}

QUICK REFERENCE GUIDE 433



The "=" operator specifies a clon-
ing subroutine (not an assignment 
mechanism), which is called just 
before any mutator operation is 
applied to an object.

use overload
"++" => "increment", 
"=" => "copy";

$obj++;  # ( $obj=$obj->copy() )->increment();

The q{""}, "0+" and "bool" 
keys are used to specify conver-
sions when an object is evaluated 
in a string, numeric, or Boolean 
context.

use overload
q{""} => "stringify", 
"0+" => "numerate",
"bool" => "booleanize";

if ($obj) # if ($obj->booleanize())
{
$str .= $obj;  # $str .= $obj->stringify();
$num += $obj;  # $num += $obj->numerate();

}

Table A.6 Encapsulation (Chapter 11)

Concept Syntax

Attributes can be encapsulated 
using closure-based objects…

package Class::Name;

sub new
{ my ($class) = @_;

my %data = { r_attr=>undef, rw_attr=>undef };
my $closure = sub

   { my ($attr, $val) = @_;
     die "$attr is read-only"
        if @_>1 && $attr ne 'rw_attr';
     $data{$attr} = $newval if @_>1;
     return $data{$attr};
   };

bless $closure, $class;
}

sub r_attr { shift()->('r_attr',@_) }
sub rw_attr { shift()->('rw_attr',@_) }

Table A.5 Operator overloading (Chapter 10) (continued)

Concept Syntax
434 APPENDIX A QUICK REFERENCE GUIDE



…or scalar-based objects (the 
flyweight pattern)…

package Class::Name;
my @data = ();

sub new
{ my ($class) = @_;
push @data, {r_attr=>undef, rw_attr=>undef};
my $scalar = $#data;
bless \$scalar, $class;

}

sub r_attr
{ my ($self) = @_;
  die "r_attr is read-only" if @_>1;
  return $data[$$self]->{r_attr};
}

sub rw_attr
{ my ($self, $val) = @_;
  $data[$$self]->{rw_attr} = $val if @_>1;
  return $data[$$self]->{rw_attr};
}

…or by tie-ing them with the Tie::
SecureHash module.

package Class::Name;
use Tie::SecureHash;

sub new
{ my ($class) = @_;
my $self = Tie::SecureHash->new($class);
$self->{Class::Name::_r_attr} = undef;
$self->{Class::Name::_rw_attr} = undef;
return $self;

}

sub r_attr
{ my ($self) = @_;
  die "r_attr is read-only" if @_>1;
  return $self->{_r_attr};
}

sub rw_attr
{ my ($self, $val) = @_;
  $self->{_rw_attr} = $val if @_>1;
  return $self->{_rw_attr};
}

Table A.6 Encapsulation (Chapter 11) (continued)

Concept Syntax
QUICK REFERENCE GUIDE 435



Table A.7 Genericity (Chapter 12)

Concept Syntax

Genericity in Perl is usually 
achieved via closures…

package SortedList;

sub import
{
my ($class,$COMPARE_SUB) = @_;
my ($CALLER) = caller();
no strict "refs";

*{$CALLER."::new"} = sub
{ my ($class, @data) = @_;
bless { curr=>0, data=>[@data] }, $class;

};

*{$CALLER."::insert"} = sub
{ my ($self, $newval) = @_;
my $arr = $self->{data};
@$arr = sort $COMPARE_SUB (@$arr,$newval);

};

*{$CALLER."::delete"} = sub
{ my ($self) = @_;
splice @{$self->{data}}, $self->{curr}, 1;

};

*{$CALLER."::first"} = sub
{ my ($self) = @_;
return $self->{data}->[$self->{curr}=0];

};

*{$CALLER."::next"} = sub
{ my ($self) = @_;
return $self->{data}->[++$self->{curr}];

};

return 1;
}

436 APPENDIX A QUICK REFERENCE GUIDE



…or else by eval-ing a string 
template

package SortedList;

sub import
{
my ($class,$COMPARE_TEXT) = @_;
my ($CALLER) = caller();

eval <<EOCLASS;
package $CALLER;
sub insert
{ my ($self, $newval) = @_;

  my $arr = $self->{data};
  @$arr = sort {$COMPARE_TEXT} 

@$arr,$newval;
};

sub new {...} # implementation as above
sub delete {...} # implementation as above
sub first  {...} # implementation as above
sub next {...} # implementation as above

EOCLASS

return 1;
}

Table A.7 Genericity (Chapter 12) (continued)

Concept Syntax
QUICK REFERENCE GUIDE 437



A P P E N D I X B

What you might know instead
B.1 Perl and Smalltalk 438
B.2 Perl and C++ 443

B.3 Perl and Java 449
B.4 Perl and Eiffel 454
Many people come to Perl on the rebound from some other language: hurt, confused, disillu-
sioned, looking for comfort. Many of us who learn object-oriented Perl are already painfully
familiar with object orientation in some other form. This appendix briefly summarizes the
similarities and differences between Perl and four of the better-known object-oriented lan-
guages: Smalltalk, C++, Java, and Eiffel.

If you’re familiar with one or more of those languages, the following sections may help
you get a better grasp on Perl’s unique approach to object orientation, by comparison and con-
trast. If you’ve never used any of these languages, the following sections can give you a general
idea of several other approaches to the same issues. 

Each of these comparisons assumes that you’re well versed in the other language and at
least noddingly acquainted with object-oriented Perl (for example, that you’ve read the first
half of this book). 

In other words, this appendix is designed to help someone moving from another language
to Perl, rather than someone interested in jumping from Perl to that other language. Specifi-
cally, each section couches its description of object-oriented Perl constructs in the terminology
of the language with which Perl is being compared.

B.1 PERL AND SMALLTALK
Although Simula 67 was the first programming language to offer all the major components of
object-oriented programming, Smalltalk is generally considered to be the first significant
object-oriented programming language. Developed in the early 1970s by Alan Kay and his
438



team at Xerox PARC, Smalltalk had evolved into a widely used and relatively stable language
by the early 80s. This section assumes you’re familiar with the most widely used variant of
Smalltalk: Smalltalk-80.

B.1.1 Objects

Perl’s general notion of an object—that is, something that has a unique identity, a capacity to
store data, and an ability to respond to requests—is surprisingly similar to that of Smalltalk.
However, unlike Smalltalk, Perl doesn’t require that every datum in a program, including
primitive numbers and characters, must be an object. Object-oriented and non-object-ori-
ented Perl can be freely intermixed in a way quite foreign to Smalltalk.

In Smalltalk, every object is accessed through a variable storing a reference to it. Perl ob-
jects are (almost always) stored and accessed in the same way. Like Smalltalk variables, the Perl
scalars used to store object references are dynamically typed and can be made to refer to any
kind of object. Like Smalltalk objects, Perl objects are automatically garbage-collected.

Regardless of their actual class, all Smalltalk objects are record-like collections of at-
tributes, called “instance variables,” each of which is uniquely named. Perl is more flexible, al-
lowing an object to be a based on a record-like hash, or an array, or a scalar, or just about any
other Perl datatype. Smalltalk also provides a built-in mechanism for declaring class attributes
(class instance variables). Perl doesn’t provide such a mechanism, but the same effect can be
achieved by taking advantage of the scoping rules of lexical variables (chapter 3).

In both Smalltalk and Perl, objects are created by invoking a method, usually called new
in both languages.

B.1.2 Classes

In Smalltalk, each object is an instance of a class. Classes are defined in a template provided by
the programming environment, or specified by a subclass message sent to an existing class
object. In Perl, each class is also a template, but one completely defined by the methods speci-
fied in a given package. Perl has no standard concept like a Smalltalk class object, though the
capabilities can certainly be simulated (chapter 8).

Like Smalltalk classes, Perl packages have a name and a list of method definitions. Unlike
Smalltalk, Perl classes do not directly specify the attributes (instance variables) that are acces-
sible to objects of the class.1 Instead, it is the responsibility of the Perl class’s constructor—its
new method—to set up any necessary attributes.

B.1.3 Methods

Smalltalk methods are defined as unary subroutines, binary operators, or keyword selectors in
which the method name is implicitly the concatenation of the selector arguments. Perl meth-
ods are always just regular named subroutines, which may take any number of arguments

1 …unless the Perl programmer uses a module such as fields.pm (chapter 4), or Class::Struct or Class::
MethodMaker (chapter 8).
PERL AND SMALLTALK 439



(chapter 3). However, Perl methods may also be camouflaged as unary and binary operators
using the overload.pm module (chapter 10).

Perl has no built-in dispatch mechanism like a Smalltalk keyword message to a selector,
but can provide named arguments to a method call, by treating its argument list as if it were
a hash initialization (chapter 3). Unlike Smalltalk methods, Perl methods don’t automatically
enforce a fixed-length parameter list, even though non-object-oriented Perl subroutines can do
so.

Methods are invoked in Smalltalk by sending a message to an object. Such messages con-
sist of the name of the variable referring to the object, followed by the name of the message,
which may be implied as the set of selector arguments. Perl methods are invoked in a similar
manner (chapter 3) by specifying the name of the variable containing an object reference, fol-
lowed by the name of the method, and, then, a list of any arguments to the method. In Perl,
an arrow is placed between the object reference and the method name.

In Smalltalk, the name of a method being invoked may be parameterized using a selector
literal, which allows the name of the method to be specified as a string passed to an object’s
perform method. Perl provides a simpler mechanism: the method name in any method in-
vocation may be replaced by a scalar variable that contains a reference to the desired method
(chapter 3).

While both Smalltalk and Perl methods can return values, the values that Perl returns are
not limited to object references, but can be any Perl datatype. Both languages ensure that all
methods always return some value: in Smalltalk, if no return value is specified, then the method
returns a reference to the invoking object; in Perl, the default return value is the value of last
evaluated statement. In this respect, a Perl method is more like a Smalltalk block constructor.

Perl has no built-in mechanism for cascading messages to a particular object, although
method invocations can be chained together if each method happens to return a reference to
the original object.

Within each method, Smalltalk provides a reference to the object that received the in-
voking message, through the special identifier self. In Perl, a reference to the invoking object
is always passed as the first argument and typically immediately assigned to a scalar variable
called $self.

Both languages allow methods to be defined as class methods, rather than object methods.
Class methods in Smalltalk are essentially just object methods of the class object—they can
even refer to self to access the class object. Class methods in Perl are essentially just object
methods which are called by naming the class, rather than invoking through an object
(chapter 3).  

B.1.4 Encapsulation

Smalltalk objects are strongly encapsulated, so it’s not possible to directly access their
attributes except within the methods of the class. Instead, the program manipulates those
attributes by sending messages to an object, which then performs the necessary computations
using its own encapsulated data. 
440 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



Perl, by contrast, has no enforced encapsulation of object attributes, which are all acces-
sible by any other part of the program (chapter 3). It’s possible to set up mechanisms in Perl
to provide strong encapsulation (chapter 11), but this must be done manually.

Instead of strong encapsulation, Perl relies on encapsulation by good manners, in that it’s
customary to politely avoid accessing object attributes directly except within a class’s methods.

B.1.5 Inheritance

Unlike Smalltalk classes, which always have a single superclass, each Perl package may inherit
from more than one class or from no explicit superclass at all (chapter 6). 

In Smalltalk, the inheritance relationships are fixed when classes are defined.2 In Perl, in-
heritance relationships are determined dynamically by the contents of the @ISA array belong-
ing to each class. Such relationships are dynamic because run-time changes to the contents of
a class’s @ISA array actually change its inheritance.

Both Perl and Smalltalk have a primordial class that is the ultimate ancestor of all others.
In Smalltalk, it’s the Object class; in Perl, it’s called UNIVERSAL.

Both languages grant full access to attributes inherited from ancestral classes but in dif-
ferent ways. Smalltalk automatically imports inherited instance variables and reencapsulates
them in each subclass. Perl, because it provides no enforced encapsulation, has no need to.

B.1.6 Polymorphism

As in Smalltalk, Perl methods are inherently interface polymorphic (chapter 7). Any method
may be invoked on any object that provides a suitable interface. Perl provides no standard
mechanism, like the Smalltalk protocol, for controlling such interfaces, although it may be
simulated easily enough (chapters 6 and 8).

In both languages, any method inherited from a superclass may be overridden in the sub-
class. Both languages also provide a mechanism—the super identifier in Smalltalk, the SU-
PER:: pseudo-package in Perl—for delegating control back to an otherwise overridden
method.

Smalltalk’s Object protocol provides the class message, with which the actual class of
an object can be determined, and the isMemberOf: and isKindOf: messages, with which an
object’s membership in a specific class hierarchy can be interrogated. Perl provides similar
mechanisms: the ref function to determine object classification,3 and the UNIVERSAL::isa
method to determine hierarchy membership (chapter 6).

Smalltalk also provides the respondsTo: message, which can be used to determine if
an object conforms to part of a specified protocol (that is, whether it can accept a specific mes-
sage). In Perl, the UNIVERSAL::can method fulfils the same role.

2 In fact, they’re determined by the class to which the subclass message is sent.
3 ref($object) is actually the equivalent of object class name in Smalltalk, since Perl classes aren’t

objects and, hence, are always accessed symbolically by their package name.
PERL AND SMALLTALK 441



B.1.7 Control structures and exception handling

Smalltalk is a pure object-oriented language in that even its selection and iteration control
structures are implemented as messages passed to objects, in particular to the objects named
true and false. Perl provides explicit imperative control structures: if, unless, while,
until, and for statements.

In Smalltalk, exceptions—like almost everything else—are represented by objects, and ex-
ception handlers are implemented by on:do: selectors inherited from specific classes. Object-
oriented Perl, in contrast, uses the same exception handling techniques as regular Perl (die to
throw exceptions, eval to catch them). More significantly, unlike Smalltalk exceptions, Perl
exceptions are always non-resumable.

B.1.8 Comparative syntax

Table B.1 shows the translation of fundamental Smalltalk programming constructs to their
Perl equivalents.

Table B.1 Selected comparative syntax for Smalltalk and object-oriented Perl

Construct Smalltalk Perl

Comment "Comments in double quotes" # comment from '#' to eol

Undefined literal nil undef

Assignment variable := value $variable = value;

Temporary variable | variable | my $variable;

Conditional execution condition ifTrue: [actions]
ifFalse: [actions]

if (condition) { actions }
else { actions }

Iterative execution [condition]
whileTrue: [actions]

while (condition)
{ actions }

Counted repetition 1 to: 10 do: [:i| actions ] foreach my $i (1..10) {actions}

Class definition Object subclass: #className package className;

Class derivation superclassObject
subclass: #subclassName

package subclassName;
@ISA = qw( superclassName );

Attribute specification Object subclass: #className
instance_variables: 'a b'

bless {a=>value, b=>value},  
className;

Class attribute 
specification

Object subclass: #className
classVariableNames: 'c'

package className;
{ my $c;
  sub c 
  { $c = $_[1] if @_>1; $c }
}

Object instantiation variable := className new $variable = className->new();

Method definition methodName
actions
^ returnedValue

sub methodName
{ actions;

  return returnValue; }

Access to message 
target

self my ($self) = @_;

Access to superclass 
method

super methodName $self->SUPER::methodName()
442 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



B.1.9 Where to find out more

The most widely used references for Smalltalk are probably Budd’s A Little Smalltalk and
Goldberg and Rubin’s Smalltalk-80: The language. A more recent text that provides an inte-
grated introduction to Smalltalk and object-oriented programming in general is Liu’s Small-
talk, Objects, and Design.

The Smalltalk Industry Council (STIC) is an advocacy group promoting the use of Small-
talk. Their website is at http://www.stic.org/. The University of Illinois hosts an archive site
for Smalltalk components, documentation, tutorials, and FAQs (roughly analogous in content
to Perl’s CPAN) at http://st-www.cs.uiuc.edu/. There is also an active Smalltalk-related new-
group: comp.lang.smalltalk.

B.2 PERL AND C++
For better or worse, to much of the programming world, C++ is object-oriented program-
ming. Devised by Bjarne Stroustrup at the Bell Research Laboratories in the early 80s as an
object-oriented successor to the C programming language, C++ has undergone perhaps the
most public and collaborative evolution of any programming language, culminating in the
recent ANSI C++ standard.

Like Perl, C++ is a hybrid language with object-oriented features layered over an original
imperative language. Syntactically and semantically, its non-object-oriented components are
almost completely backwards compatible with the C programming language, while its object-
oriented features draw most heavily on Simula.

Method invocation 
(message dispatch)

object methodName $object->methodName()

Class method 
invocation

classObject methodName className->methodName()

"Named" method 
arguments (selectors)

object arg1: value arg2: value $object->method( arg1=>value, 
arg2=>value);

Parameteric method 
invocation

object #methodName $method = "methodName";
$object->$method();

Class type 
identification

object class name ref($object)

Class hierarchy 
membership

object isKindOf: superclassObj $object->isa("superclassName")

Exception handlers [ actions ]
on: exceptionClassObject
do: [ exception: | handle ]

unless (eval { actions; 1 })
{ handle }

Raising an exception exceptionClassObject signal die "exceptionText";

Table B.1 Selected comparative syntax for Smalltalk and object-oriented Perl (continued)

Construct Smalltalk Perl
PERL AND C++ 443

http://www.stic.org/
http://st-www.cs.uiuc.edu/


B.2.1 Objects

C++ objects are structured regions of memory that store one or more typed data members. In
other words, every object is a record of various fields. In Perl, too, objects may be recordlike
structures (i.e., hashes), but they may also be arrays, scalar variables, subroutine references, or
any other Perl datatype. 

C++ objects may be stored directly in statically typed variables or dynamically created and
accessed via typed pointers or references. Perl objects may similarly be variables or unnamed
values and are always accessed via references4 stored in dynamically typed variables. Unlike
C++, in Perl there is no need for a manual deallocation mechanism like delete, since all ob-
jects in Perl are automatically garbage-collected.

C++ also permits the definition of static data members that are (conceptually) shared by
all objects of a given class. Perl has no equivalent construct, but it is easy to set up such shared
attributes using lexical variables of appropriately restricted scope (chapter 3).

C++ objects are created either by static declaration or by dynamic allocation using the new
operator. Perl objects are almost always created dynamically, in a method that is often called
new.

B.2.2 Classes

A class in C++ is a specification of the data and function members (i.e., methods) possessed by
a particular kind of object. Classes in Perl also define the methods of a type of object, but do
not normally directly specify the attributes possessed by such objects.5 Attribute specification
is typically arranged by the constructor method (e.g., new).

In C++, a class specifies a local namespace in which data and function members exist, but
C++ also has a separate higher-level namespace mechanism with which two or more classes
can be grouped.  Perl’s package construct does double-duty as both a namespace and a class
specification mechanism, so there is no such ability to construct hierarchical namespaces.

Perl provides better resources for run-time type information than does C++. Whereas a
C++ program is restricted to the data provided by the standard typeid function, and limited
to using dynamic casts to verify class compatibility, Perl allows almost every aspect of a class’s
structure and capabilities to be interrogated at run-time: class name via the ref function, hi-
erarchical relationships via the UNIVERSAL::isa subroutine, and method compatibility via
the UNIVERSAL::can subroutine.

Perl does not directly support generic classes such as those provided by C++ templates.
In practice, this presents few problems because the combination of Perl’s closure mechanism,
interface polymorphism (see below), and dynamic-typing makes generic types largely unnec-
essary (chapter 12). 

4 A Perl reference is semantically closer to a C++ pointer than to a C++ reference. In Perl, references are
not automatically dereferenced as they are in C++, nor must they be permanently bound to a given
variable.

5 Although there are modules that make it possible to declaratively specify a class’s attributes (chapters 4
and 8).
444 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



B.2.3 Methods

C++ and Perl are both hybrid languages that allow code to be executed in stand-alone subrou-
tines as well as methods. 

In C++, a class’s function members are declared as part of the class specification and may
be defined at the same point or anywhere else, provided the appropriate class qualifier (i.e.,
ClassName::functionName) is used. Perl is even more liberal in this respect: a class method
may be declared and defined anywhere, provided it is suitably qualified (using the same qual-
ification syntax as C++).

Every C++ member function has a specific signature determined by its name and the
number and types of arguments it takes. C++ methods may be overloaded, may have default
argument values, and may also pass arbitrary arguments (using the “…” specifier). Perl methods
have no static checking of parameter types, and Perl unifies the many variable argument list
mechanisms of C++ by passing arguments as an actual variable-length list. There is no signa-
ture-based method selection (like C++ overloading), but the effect can be achieved using mul-
timethod techniques (chapter 13).

C++ member functions are called on an object or object reference using the “dot” oper-
ator (varOrRef.method(args)). Methods may also be invoked through a pointer using the
“arrow” operator (ptr->method(args)). In Perl, methods are always invoked through a ref-
erence to an object, using the arrow operator ($ref->method(args)). Unlike C++, in Perl,
if the method takes no arguments, the trailing parentheses indicating a subroutine call may be
omitted.

C++ allows pointers or references to member functions to be used to call those functions
on specific objects using the ptr->*funcptr() syntax. Perl allows references to methods to
be used in the same way, using the $ref->$methodRef() notation. Unlike C++, Perl also al-
lows methods to be called by name, by storing a suitable character string—rather than a ref-
erence—in the $methodRef variable.

In both languages, a method may act like a procedure or a function, depending on wheth-
er it chooses to return a value. Both languages provide a return statement to specify such re-
turn values. However, unlike C++, where a member function that does not return a value must
have a return type of void, Perl methods do not require, nor allow, any form of return-type
specification.

C++ provides the special constant this within each member function, which is a pointer
to the object on which the method was called. In Perl, a reference to the invoking object is in-
stead passed as the first argument to the call. It is typically extracted from the argument list
and stored in a variable called $self.

Both C++ and Perl allow class methods to be defined within a class. In C++, such member
functions are defined with the static qualifier and are called using the syntax ClassName:
:method(args). In Perl, such methods are defined in the same way as all other methods, and
differ only in that they expect the class name—rather than an object reference—as their first
argument. They are called using the syntax ClassName->method(args).

Both languages also support the definition of class-specific versions of the standard set of
operators (i.e., operator overloading), and, as in C++, overloaded operators in Perl may either
be regular subroutines or specific object methods (chapter 10).
PERL AND C++ 445



B.2.4 Constructors and destructors

C++ classes typically provide a special member function—with the same name as the class
itself—that may be used to initialize objects when they are created. Perl has no comparable
built-in initialization mechanism. Instead, a regular class method, typically called new, is used
to both create and initialize objects.

C++ also provides for destructor functions, which are automatically called on an object
just before it goes out of scope or is otherwise deallocated.  Perl also allows for destructor meth-
ods to be defined using the special method name DESTROY.

B.2.5 Encapsulation

Every data and function member of a C++ class has some associated accessibility—public,
protected, or private—which determines the scopes from which it can be directly
accessed. Perl has no equivalent concept and does not enforce any form of encapsulation on
attributes or methods of objects. There are, however, several programming techniques which
permit both attributes and methods to be appropriately restricted in accessibility (chapter 11).

B.2.6 Inheritance

Both C++ and Perl support optional multiple inheritance of superclasses, but in quite differ-
ent ways. In C++, the classes from which a given class inherits are determined at compile-time
by the class definition. The classes that a given Perl package inherits are determined at run-
time by the contents of that package’s @ISA array.

A subclass in C++ does not have access to the private data and function members of its
superclasses.6 Because the attributes and methods of a Perl class are entirely unencapsulated,
there is no equivalent restriction in Perl. Likewise, Perl does not support access variations along
the lines of C++’s protected or private inheritance.

Perl does not have a mechanism corresponding to virtual inheritance in C++, nor does it
need one, since object attributes are determined dynamically by constructors, rather than stat-
ically by class definitions. In practice, the most common forms of class implementation all pro-
vide implicit virtual inheritance of attributes.7

Unlike C++, Perl classes all implicitly inherit from a single common class called
UNIVERSAL.

B.2.7 Polymorphism

In C++, methods are implicitly nonpolymorphic unless they are specifically marked as being
virtual. All Perl methods are implicitly polymorphic and there is no way to mark them as
nonpolymorphic. Unlike C++, in Perl, any method may be redefined in any derived class.

C++ polymorphism is controlled by class hierarchies because virtual functions are called
through typed pointers or references. In Perl, all variables are dynamically typed and, therefore,

6 …except in the highly unusual case where the derived class is also a friend of the base class.
7 …mainly as a consequence of the uniqueness of keys in the hashes on which most classes are based.
446 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



may store a reference to any class of object at any time. Thus, Perl provides the more general
form of polymorphism—interface polymorphism—in which any object (regardless of its class
hierarchy membership) may respond to any method call for which it has a suitably named
method.

C++ allows base class member functions to be accessed from derived class member func-
tions, even if the derived class redefines the function in question. This access is achieved by ful-
ly qualifying the nested function call with the name of the desired ancestral class. Perl has the
same mechanism. However, Perl also provides a special pseudo-class called SUPER that may
be used to delegate a method dispatch to an unspecified ancestral class—namely whichever one
actually provides the inherited method (chapter 6).

Perl has no method abstraction construct corresponding to C++’s pure virtual member
function declaration. Instead, in keeping with Perl’s dynamically typed nature and run-time
checking philosophy, if an abstract method is required, a normal method is specified and made
to immediately throw an exception.

B.2.8 Comparative syntax

Table B.2 shows a translation into Perl of the fundamental object-oriented features of C++.

Table B.2 Selected comparative syntax for C++ and object-oriented Perl

Construct C++ Perl

Comment // Comment to EOL
/* Delimited comment*/

# comment from ‘#’ to eol

Assignment variable = value; $variable = value;

Temporary variable className variable = init; my $variable = init;

Class definition class className 
{ specification };

package className;
specification

Class derivation class subclassName 
: superclassName(s) 

{ specification };

package subclassName;
@ISA = qw( superclassName(s) );
specification

Attribute specification class className
{
type memberName;

};

bless
{ memberName=>type->new() },
className;

Class attribute 
specification

class className
{
static type memberName;

};
type className::memberName
=init;

package className;
{
my $var = type->new(init);
sub fieldName
{ $var = $_[1] if @_>; $var}

}

Object instantiation ptr = new className(args); $ref = className->new(args);
PERL AND C++ 447



Method definition class className
{
returnType methodName(args)
{
statements
return returnValue;

}
}

package className;

sub methodName
{
my @args = @_;
statements;
return returnValue;

}

Polymorphic method 
definition

virtual returnType
methodName (args)
{
statements
return returnValue;

}

sub methodName
{
my @args = @_;
statements;
return returnValue;

}

Abstract method 
definition

virtual returnType methodName()
= 0;

sub methodName
{ die "Abstract method” }

Constructor definition className(args)
{
statements

}

sub new
{
my {$classname, @args) = @_;
my $self =
bless {}, $classname;

statements;
return $self;

}

Destructor definition ~className()
{
statements

}

sub DESTROY
{
statements

}

Method invocation objref.methodName(args);
objptr->methodName(args);

$objref->methodName(args);

Indirect method 
invocation

retType (class::*methptr)(args)
= class::methodName;

objref.*methptr(args):
objptr->*methptr(args);

$methref = \&class::methodName;

$ref->$methref(args);

Class method 
invocation

classNam::methodName(); className->MethodName();

Access to message 
target

this my ($self) = @_

Access to superclass 
method

this->superclass::methodName(); $self->SUPER::methodName();

Class type 
identification

classDescriptor = 
typeid(object);

$className
= ref($object);

Exception handlers try { statements }
catch { handler }

unless (eval { statements; 1 })
{ handler }

Raising an exception throw exceptionType(args); die "exceptionText:"

Table B.2 Selected comparative syntax for C++ and object-oriented Perl (continued)

Construct C++ Perl
448 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



B.2.9 Where to find out more

The two principal textbooks on C++ are Bjarne Stroustrup’s The C++ Programming Language
(3rd Edition), and Lippmann and Lajoie’s C++ Primer (3rd Edition). There are hundreds of
others on the market, but none as definitive or comprehensive as these two.

The distributed and fragmentary nature of C++’s development is nowhere more evident
than in the lack of a single overarching website devoted to the language. There are, however,
many useful sites devoted to specific aspects of C++. A good starting point is Marshall Cline’s
C++ FAQ at http://www.cerfnet.com/~mpcline/c++-faq-lite/. Full documentation on the ex-
tensive C++ standard template library (or “STL") is available from http://www.sgi.com/Tech-
nology/STL/. 

C++ is more coherently represented by its various newsgroups. The most relevant and
useful two are comp.lang.c++.moderated (for general C++-related questions) and comp.std.c++
(for questions specifically related to the interpretation of the new ANSI standard). Don’t bother
with comp.lang.c++: it provides too little signal in far too much noise.

B.3 PERL AND JAVA
Java is a relative newcomer to the object-oriented world, having been publicly released in
1995, but it has had a meteoric rise due to the strong support it receives from Sun Microsys-
tems and other industry heavyweights. It has also found a niche because it was carefully tar-
geted as a platform-independent implementation language for web applications.

Java was developed (originally as an embedded systems language called Oak) by James
Gosling and his team at Sun. It is (almost8) a pure object-oriented language, and derives most
of its syntax and some of its general semantics from the C/C++ family of languages. It also
draws heavily on Smalltalk.

B.3.1 Objects

Objects in both Java and Perl are collections of data associated with a particular class. In both
languages, objects are accessed via references stored in variables. However, unlike Java vari-
ables, which are strongly typed, Perl variables may contain references to any kind of object.
Like Java objects, Perl objects are automatically garbage-collected.

Java objects are all structurally similar in that they are collections of named fields (i.e.,
record-like structures). Perl objects, on the other hand, can have a range of internal implemen-
tations. In fact, any standard Perl datatype can be the basis for an object. Hence, they may be
composed of named entries (in a hash), or a sequence of elements (in an array), or a single value
(in a scalar), and so forth. 

Java also allows the specification of static fields which are not attached to any one ob-
ject, but belong to the object’s class as a whole. Perl has no built-in mechanism for defining

8 A few of its basic types—characters, numbers, and Booleans—are not classes, which is enough to make
the more strait-laced language lawyers scoff.
PERL AND JAVA 449

http://www.cerfnet.com/~mpcline/c++-faq-lite/
http://www.sgi.com/Technology/STL/


such shared data, but a similar effect can be achieved through the use of lexical variables
(chapter 3). 

In Java, objects are instantiated by applying the new keyword to a class name. Perl objects
are created by applying the bless function to an existing value. (Although this is almost always
encapsulated in a constructor method.)

B.3.2 Classes

A Java class is a specification of the fields possessed by a set of objects and of the methods to
which such objects may be passed. In Perl, however, a class is just a specification of methods
and doesn’t define the attributes of its objects. Instead, the task of setting up object attributes
is usually delegated to specific constructor methods. 

Packages in Perl are much like those in Java, in that they collect related things in a single
separate namespace. However, Java packages operate at a higher level than Perl packages: a Java
package may contain several classes which share its namespace; a Perl package can contain only
one class.9

B.3.3 Methods

Whereas Java is purely object-oriented, at least to the extent that all executable statements
must be part of a method, in Perl, object-oriented and non-object-oriented constructs can be
used together in the same program.

Java methods are specified as subroutines defined within the scope of a particular class
declaration. Perl methods are also subroutines and are defined within a particular package (i.e.,
namespace), though not necessarily all in the same source file. Whereas each Java method takes
a fixed number of arguments, Perl methods always take a dynamically sized list of arguments.
In Java, method names may be overloaded, but this facility is not available in standard Perl be-
cause dynamic argument lists reduce the need for overloading. If it is required, overloading can
be simulated (chapter 13).

In Java, methods are invoked by passing a variable containing an object reference, plus
any arguments, to the method. The syntax is var.method(args). In Perl, the approach is
identical and the syntax nearly so: $var->method(args) (chapter 3). Both languages provide
a return statement for returning values from a method, although, in Perl, the return value is
not statically typed.

Within each Java method it’s possible to access the object on which the method was in-
voked through the special reference this. In Perl, there is no reserved identifier to provide ac-
cess to the object. Instead, a reference to the invoking object is always passed as the first
argument. Typically, though, that reference is immediately assigned to a local variable, which
is almost always called $self.

Class methods can be defined in both languages: in Java, by using the static modifier
when defining a method; in Perl, by declaring a normal method in which the first argument
is expected to be a string containing the class name (rather than a reference to some object).

9 …or, to be precise, a Perl package implements a single class, which has the same name as the package.
450 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



Java class methods are called using the syntax Classname.method(args). In Perl, the syntax
is once again similar:10 Classname->method(args) (chapter 3).  

B.3.4 Constructors and finalizers

In Java, a constructor is a special method that has the same name as the class. It is automati-
cally invoked whenever an object is created. In contrast, constructors in Perl are ordinary class
methods, used to both create and initialize an object. By convention, Perl constructors are
often called new. Java also provides static initializers to set up class attributes. Perl requires no
explicit facility to do this. Any initialization code included in a class definition is executed in
the normal course of program execution. 

A finalizer is a Java object method with the special name finalize. This method takes
no arguments and has no return type. It is called automatically whenever an object is garbage-
collected. In Perl, the equivalent feature is known as a destructor, and it too is distinguished
by a special name: DESTROY. Unlike a Java finalizer, a Perl destructor is treated like a normal
method and does not automatically call the destructors of ancestral classes as well (chapter 6).

B.3.5 Encapsulation

Java objects provide various levels of encapsulation to their fields: public, protected, pri-
vate, and package visibility. Perl, on the other hand, does not normally enforce any kind of
encapsulation on object attributes, all of which are universally accessible throughout a pro-
gram (chapter 3). Encapsulation in Perl is therefore a matter of convention and programmer
discipline, rather than semantics and compiler enforcement. It is, however, possible to “manu-
ally” enforce visibility constraints in Perl that are equivalent to Java’s “four P’s” (chapter 11).

B.3.6 Inheritance

Java classes always inherit from exactly one superclass. Perl packages may inherit from more
than one class or from no explicit superclass at all (chapter 6). However, like Java’s Object
class, Perl has a universal class—called UNIVERSAL—from which all classes ultimately derive.

Perl is unusual in that inheritance relationships are determined at run time, rather than
being defined as an integral part of the class definition as they are in Java. In Perl, a subclass
inherits methods from whatever superclasses appear in the subclass’s @ISA array when each
method is called.

Subclasses in Java only have access to the non-private fields and methods of their su-
perclass. In Perl, which provides no encapsulation of attributes or methods, every class has di-
rect access to every component of each of its ancestors.

B.3.7 Polymorphism

In both Java and Perl, methods are inherently interface polymorphic (chapter 7). In other
words, any method may be invoked on any object whose class conforms to a suitable

10 The syntactic similarities of some aspects Java and object-oriented Perl merely reflect their common
inheritance of syntactic features of C/C++.
PERL AND JAVA 451



interface. Perl provides no syntactic mechanism like a Java interface specification—although it
may be simulated—but relies instead on run-time checking and exceptions to ensure inter-
faces are respected.

In both languages, any method inherited from a superclass may be overridden in the sub-
class. However, Perl has nothing like Java’s final method modifier to prevent a method from
being overridden in derived classes, nor an abstract modifier to require that a method be
overridden.

In both languages, it’s possible to access an overridden method directly. In Java, the pseu-
do-variable super is used; in Perl, the overridden method can be accessed by pretending it be-
longs to a special pseudo-class called SUPER (chapter 6).

Java’s recently extended reflection mechanism, implemented by the java.lang.re-
flect module, provides a means of accessing information about the class of a particular object,
as well as the methods and fields it provides. Perl also makes it possible to access this type of
information: using the ref function to determine an object’s classification; the inherited UNI-
VERSAL::isa method to determine its membership in a hierarchy; and the inherited UNI-
VERSAL::can method to ascertain whether an object provides a certain method (chapter 6).

B.3.8 Exception handling

Java and Perl provide quite similar approaches to non-resumptive exception handling. The
major differences are that Perl exceptions are simple character strings—not full objects as in
Java—and that Perl provides no built-in construct equivalent to a finally block.

In both Java and Perl, exceptions are thrown by standard execution errors (arithmetic
overflow, divide by zero, etc.) and may also be manually raised using a throw statement in Java
and a die statement in Perl. In both languages, exceptions are caught by enclosing fallible code
in a special block—a try block in Java, an eval block in Perl. In Java, any exception caught
in this way is handled by a catch handler associated with the try block. In Perl, the eval
block simply sets a special variable whenever an exception is caught. Subsequent code can test
that variable to decide how to respond.

B.3.9 Comparative syntax

Table B.3 shows the Perl equivalents of the basic Java programming constructs.

Table B.3 Selected comparative syntax for Java and object-oriented Perl

Construct Java Perl

Comment // Comment to EOL
/* Delimited comment */

# comment from '#' to eol

Undefined literal null undef

Assignment variable = value; $variable = value;

Temporary variable className variable = init; my $variable = init;

Class definition class className
{ specification }

package className;
specification

Class derivation class subclassName
extends superclassName

{ specification }

package subclassName;
@ISA = qw( superclassName );
specification
452 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



Attribute specification class className
{
public type fieldName;

}

bless
{ fieldName=>type->new() },  
className;

Class attribute 
specification

class className
{
public static type
fieldName = new type();

}

package className;
{ my $var = type->new();
  sub fieldName 
  { $var = $_[1] if @_>1; $var}
}

Object instantiation var = new className (args); $var = className->new(args);

Method definition class className
{
public returnType methodName
{
statements;
return returnValue;

}
}

package className;

sub methodName
{
statements;
return returnValue;

}

Abstract method 
definition

public abstract
returnType methodName();

sub methodName
{ die "Abstract method " }

Constructor definition class className
{
className(args)
{
statements

}
}

sub new
{
my ($classname,@args) = @_;
my $self =
bless {}, $classname;

statements;
return $self;

}

Finalizer definition class className
{
public void finalize()
{
statements

}
}

package className;

sub DESTROY
{
statements

}

Method invocation var.methodName(args); $var->methodName(args);

Class method 
invocation

className.methodName(); className->methodName();

Access to message 
target

this my ($self) = @_

Access to superclass 
method

super.methodname(args); $self->SUPER::methodName(args);

Class type 
identification

className = 
object.getClass().getName();

$className =
ref($object);

Object interface tests class = object.getClass();
methodObject = 
class.getMethod("methodname");

$methodReference = 
$object->can("methodName");

Exception handlers try { statements }
catch { handler }

unless (eval { statements; 1 })
{ handler }

Raising an exception throw new exceptionType; die "exceptionText";

Table B.3 Selected comparative syntax for Java and object-oriented Perl (continued)

Construct Java Perl
PERL AND JAVA 453



B.3.10 Where to find out more

The world is awash with books on Java. The definitive text is Arnold and Gosling’s The Java
Programming Language, while the most popular introductions are Ivor Horton’s Beginning
Java and David Flanagan’s Java in a Nutshell. If you’re after a nontechnical overview of the lan-
guage, try Making Sense of Java, by Simpson, Mitchell, Christeson, Zaidi, and Levine.

The web is similarly saturated with Java-related information, but there’s little need to look
anywhere other than Sun Microsystem’s own Java Technologies Home Page at http://ja-
va.sun.com/.

Java is widely discussed in a number of newsgroups, starting with comp.lang.java and its
many specialized subgroups (comp.lang.java.databases, comp.lang.java.beans, comp.lang.ja-
va.corba, etc.) A good place to start is comp.lang.java.help.

B.4 PERL AND EIFFEL
Eiffel is a pure object-oriented language designed by Bertrand Meyer in 1985 and first
released the following year. It is strongly grounded in software development theory and sup-
ports a programming-by-contract view of class design. Semantically, it draws most heavily on
the Simula/Smalltalk school of object orientation, though syntactically it is much closer to the
Algol/Pascal family of languages.

B.4.1 Objects

Perl takes a much less regimented approach to objects than Eiffel. Whereas every object in
Eiffel is either atomic (a numeric or Boolean value) or a recordlike composite of specified
fields, Perl allows any of its built-in data types to be used as objects (chapters 3 to 5).

In Eiffel, objects may be accessed through entities, which are strongly typed variable-like
constructs. They may store a reference to an object or the object itself. Perl objects are almost
always stored and accessed as references in dynamically typed scalar variables (chapter 3).  Like
Eiffel objects, Perl objects are automatically garbage-collected.

Eiffel also provides a built-in mechanism for declaring class attributes (class instance vari-
ables). Perl does not provide such a mechanism, but the effect can be achieved by taking ad-
vantage of the scoping rules of lexical variables (chapter 3).

In Eiffel objects are either created implicitly—by declaring an entity of an expanded
type—or explicitly—by applying the !! operator to an entity of an unexpanded type. Usually,
a creation feature, conventionally called make, is also called to initialize the new object. In Perl,
objects are almost always created by invoking a constructor method, which is often called new.
The actual creation of the object within that method is accomplished by applying the built-
in bless function to a regular Perl datatype.

B.4.2 Classes

In Eiffel, a class is a specification of the features (routines and attributes) that a certain kind of
object possesses, and every object is a direct instance of some class. In Perl, each class is a pack-
age, whose subroutines specify the methods that objects of that class may invoke. In both
454 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD

http://java.sun.com/


languages, a clear distinction exists between the concepts of class and instance, as opposed to
languages such as Smalltalk and Self where everything, including classes, is an object.

Like Eiffel classes, Perl packages have a name and specify the interface of objects. Unlike
Eiffel, in Perl, that interface is simply a list of method definitions.11 Unlike Eiffel classes, Perl
packages do not normally specify the attributes of objects of the class. Instead, it is the respon-
sibility of a class’s constructor method to set up any necessary attributes within the object’s im-
plementation datatype.

Unlike Eiffel, Perl provides no mechanism to specify class invariants. It is, however, pos-
sible to transparently overlay such mechanisms through the appropriate use of autoloaded
methods (chapters 2 and 3).

B.4.3 Methods

In Eiffel, a class’s methods are those of its features that have been implemented as routines.
Routines may be specified as named procedures and functions, or prefix and infix operations.
In Perl, methods are always named subroutines belonging to a particular package, although
prefix, postfix, and infix operators may also be associated with a class (chapter 10).

Eiffel routines enforce static type checking on their parameter lists. Because they are stan-
dard Perl subroutines, Perl methods don’t enforce parameter types or counts, though they can
interrogate these properties at run-time.

Methods are invoked in Eiffel by naming the entity attached to the object in question,
followed by a dot, followed by the name of the routine to be invoked on that entity. Perl meth-
od calls are conceptually identical: the variable containing a reference to the object in question,
followed by a right arrow, followed by the name of the method to be invoked  (chapter 3). In
both languages, an argument list may be passed to the invoked method, or omitted entirely if
no arguments are required.

Eiffel functions return a value by assigning it to the special entity Result. Perl methods
return values using an explicit return statement. Within an Eiffel routine, the object on which
the routine was invoked is available through the special entity Current. In Perl, there is no
reserved symbol for the current object. Instead, a reference to it is passed as the first argument
to the method (chapter 3).

Eiffel’s once construct declares functions that cache their result and never recompute it.
This provides a way to implement class attributes using the cached return value of a particular
once function to store a shared attribute value. Perl does not provide a built-in mechanism for
caching subroutine return values,12 nor does it directly support class attributes. Instead, it uses
lexically scoped variables declared within a class’s package to implement encapsulated shared
data (chapter 3).

Perl has no built-in mechanism for validating pre- or post- assertions on methods, al-
though it is easy to develop mechanisms to do so (chapter 2).

11 Perl objects also inherit the interface of the datatype with which they are implemented, but it is pref-
erable to avoid the unencapsulated use of this implementation interface (chapter 11).

12 …although the Memoize module developed by Mark-Jason Dominus makes it easy to achieve the
same effect…
PERL AND EIFFEL 455



B.4.4 Encapsulation

Eiffel objects provide two levels of encapsulation of attribute features: available and unavail-
able. A given feature may be made available to a specified set of other classes, or to all classes
(“fully exported”), or none except the owner class itself (“secret”). Perl has no mechanism to
control the accessibility of methods or attributes in this way. It is as if every Perl method,
including those which are part of its implementation, were fully exported (chapter 3). To
restrict the accessibility of attributes, manually coded mechanisms or a special module must
be used (chapter 11).

B.4.5 Inheritance

Like Eiffel, Perl supports single and multiple inheritance of classes, as well as the specification
of classes which inherit from no class at all (chapter 6). 

The inheritance relationships of an Eiffel class are fixed when classes are defined, but, in
Perl, inheritance relationships are determined at run-time, according to the values assigned to
a class’s @ISA.

In Eiffel, whether a derived class has access to a particular feature is determined by the
export list associated with that feature in the inherited class. Because attributes and methods
in Perl classes are unencapsulated, derived classes automatically have full access to all features
inherited from any class.

Eiffel and Perl provide different mechanisms for resolving the ambiguities that multiple
inheritance can produce. Eiffel provides the ability to rename inherited features, undefine
them, redefine them, and select between two or more inherited features of the same name. In
Perl, by contrast, a method defined in a derived class always supplants one of the same name
inherited from a base class. Perl also uses a single rule to resolve conflicts between inherited
methods: the method inherited from the left-most parent in a class’s inheritance list is always
preferred (chapter 6). 

Eiffel enables abstract methods and classes to be defined using the deferred keyword.
Perl has no equivalent built-in mechanism, but the effect of deferred routines is easily achieved
by throwing an exception from each (nominally) abstract method.

Both languages provide a mechanism for accessing an inherited method overridden in a
derived class. In Eiffel, the Precursor identifier may be used to access the overridden routine.
In Perl, the overridden method is accessible via the SUPER pseudo-class (chapter 6).

B.4.6 Polymorphism

The dynamic attachment of objects to typed entities provides Eiffel with inheritance poly-
morphism. That is, an object of a derived class may be attached to an attribute, and subse-
quent accesses to features of that object will be correctly dispatched to the corresponding
routine in the derived class. Perl also provides this form of polymorphism, but because the
variables which hold object references are untyped, it also provides the more general form of
polymorphism: interface polymorphic (chapter 7). 

Eiffel provides the conditional assignment operator (?=) to test whether a value is type-
compatible with a typed entity before assignment. Perl has no such operator because Perl
456 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



variables have no associated class type. Instead, Perl provides the type-inquiry function ref and
two interface enquiry methods: isa and can.

B.4.7 Genericity

Perl provides no built-in mechanism for parameterized classes as Eiffel does. This is rarely a
problem, since the dynamically typed nature of Perl variables, combined with Perl’s interface
polymorphism, eliminates most of the need for genericity. Where generic classes are desirable,
they may be implemented easily using closures or run-time code generation (chapter 12).

B.4.8 Comparative syntax

Table B.1 shows the equivalent Perl syntax for a range of key features of the Eiffel language.

B.4.9 Where to find out more

Bertrand Meyer’s textbook Object-Oriented Software Construction (2nd edition) is generally
considered to be one of the best introductions to object orientation available, and is certainly
a good introduction to Eiffel as well.

The online home of Eiffel is the Interactive Software Engineering home page at http://
www.eiffel.com/. Eiffel’s governing body, the Non-profit International Consortium for Eiffel
(NICE), has its home page at http://www.eiffel.tm/. A useful source for Eiffel-related links is
Geoff Eldridge’s Universal Eiffel Resource Locator (the GUERL) available from the “Eiffel Lib-
erty Journal” site at http://www.elj.com/eiffel/.

The Eiffel newsgroup is comp.lang.eiffel.

Table B.4 Selected comparative syntax for Eiffel and object-oriented Perl

Construct Eiffel Perl

Comment -- comment from dashes to eol # comment from '#' to eol

Undefined literal Void undef

Assignment entity := value $variable = value;

Temporary variable local entity : type my $variable;

Class definition class className
specification

end

package className;
specification

Object instantiation local entity : className
!! entity

$objref = className->new();

Object initialization local entity : className
!! entity.make(args)

$objref =
className->new(@args);

Method invocation entity.methodName(args) $objref->methodName(@args);

Class derivation class subclassName
inherit
superclass1, superclass2
subclassSpecification

end

package subclassName;
@ISA = qw( superclass1

superclass2 );
subclassSpecification
PERL AND EIFFEL 457

http://www.eiffel.com/
http://www.eiffel.tm/
http://www.elj.com/eiffel/


Attribute specification class className 
feature a : A_TYPE
feature b : B_TYPE

end

bless
{ a=>A_TYPE->new(),

  b=>B_TYPE->new() },  className;

Class attribute 
specification

class className 
feature c : C_TYPE is
once
!! Result 

end

package className;
{ my $c = C_TYPE->new();
  sub c 
  { $c = $_[1] if @_>1; $c }
}

Method definition feature
methodname ( parameters ) is
do
actions
Result := returnedValue

end

sub methodName
{
my (@parameters) = @_;
actions;
return returnValue;

}

Abstract method 
definition

feature
methodname is deferred

sub methodName
{ die "Abstract method " }

Access to message 
target

Current my ($self) = @_;

Access to superclass 
method

Precursor(args) $self->SUPER::methodName(@args)

Assignment 
compatability

local entity : className 
entity ?= value

$objref = $value 
if $value->isa(className)

Exception handlers code
rescue
recover
retry

end

until (eval { code; 1 })
{ recover }

Raising an exception local exception : EXCEPTIONS
exception.raise

die "exception";

Table B.4 Selected comparative syntax for Eiffel and object-oriented Perl (continued)

Construct Eiffel Perl
458 APPENDIX B WHAT YOU MIGHT KNOW INSTEAD



glossary

Abstract base class. A class—normally in the upper tiers of a hierarchy—that is not intended
to instantiate objects. Typically, it exists only as a respository for shared code inherited by other
classes or as a means of specifying a particular interface. To enforce these roles, abstract classes may
often define one or more abstract methods. See Abstract method.

Abstract data type. A description of the attributes possessed by objects of a specific class, the
relationships between those attributes, and the operations specified for such objects. The descrip-
tion is independent of all implementation issues.

Abstract method. A method that acts as a placeholder in the base class of a hierarchy imple-
menting inheritance polymorphism. The method has no usable implementation of its own,
though it may throw a cautionary exception. It exists to force derived classes to redefine that par-
ticular method.

Accessor. A method whose purpose is to provide controlled access to an attribute of an object.
Accessors typically enforce the read-only status of certain attributes or provide range checking on
assigned values. See Mutator.

Actual target. The single multimethod variant selected from the list of viable targets by the
multimethod’s dispatch resolution process. See Multimethod.

Affordances. Physical or logical features of a tool or system that passively encourage correct
use.

Aggregation. Constructing a system from simpler components. For example, creating an ob-
ject by binding together two or more simpler objects (as attributes). 

Aliasing. When two or more symbols in a program to refer to the same underlying entity. In
Perl, aliasing occurs in several contexts. The subroutine arguments $_[0], $_[1], $_[2], and
so forth. act as alternate names for the original arguments to a subroutine; typeglob assignment
causes two symbols to refer to the same underlying values; and, in a foreach (list) statement,
the variable $_ becomes another name for each list element in turn.

Ancestor class. A class that provides a description of attributes or methods that the current
class uses (in addition to any attributes and methods it may itself define). See Parent class.

Attribute. A container for a specific datum belonging to an object (see Object attribute) or to
a class of objects (see Class Attribute).
459



Attribute value. Data stored in an attribute.

Autovivification. The generally useful—but occasionally annoying—feature of Perl arrays,
hashes, and references that allows them to automatically create nonexistent elements, entries, or
referents when those missing components are modified.

Base class. In general, a class appearing in a given class’s inheritance hierarchy to provide some
attributes or methods to that class.  In Perl, if B->isa('A'), then class A is a base class of class
B. See also Superclass, Parent class.

Child class. Some other class that uses the description of attributes or methods provided by
the current class.

Class. A namespace or user-defined type that specifies the attributes and methods used by a cer-
tain set of objects. In Perl, a package used for that purpose.

Class attribute. A named storage location for data associated with, and preferably encapsu-
lated in, the namespace in a given class. Such an attribute is shared by all objects of that class.
Compare with Object attribute.

Class hierarchy. The graphlike structure created by the inheritance relationships between par-
ent and child classes. It is a hierarchy because all inheritance relationships are asymmetrical. It is
graph-like because any class may have two or more parents and two or more children. 

Class method. A method that may be called directly on a class, rather than on an object.  In
Perl, such a method is normally invoked using the Classname->method(@args) syntax. The
typical example is the constructor method Classname->new().

Closure. A subroutine that has access to, and preserves the values of, all lexical variables in the
scope in which it is defined, even when subsequently called from outside that scope. In Perl, any
anonymous subroutine has access to all lexical variables from the scope in which it is defined.
Thus, all Perl anonymous subroutines are potentially closures, although only those which do refer
to external lexical variables are actually closures).

Composition. See Aggregation.

Constructor. A class or object method that creates, and often initializes, a new object. In Perl,
a regular class or object method—often, but not necessarily, called new—that blesses and initial-
izes the implementation of a new object and returns a reference to it.

Decoupling. The separation of unrelated parts of a system. Decoupling reduces complexity
and limits the propagation of errors.

Delegation. Implementing a method’s complete behavior by calling some other method, typ-
ically one belonging to—or referred to by—an attribute.

Derived class. In general, any class D that directly inherits from a base class B.  In Perl, if the
package array @D::ISA contains the name of class B, then class D is treated as being derived from
class B. See Child class, Subclass.

Destructor. An object method that is automatically called when an object ceases to exist. Typ-
ically, such methods are used to undo any side-effects of an object’s former existence. In Perl, a
method with the special name DESTROY, which is invoked just before an object is garbage-col-
lected.
460 GLOSSARY



Dispatch resolution. The procedure that determines which method to invoke in response to
a given method call.  In Perl, the dispatch resolution algorithm looks for the method in the pack-
age, P, into which the invoking object is currently blessed. If no such method exists, the parent
classes of the P, as specified in the array @P::ISA, are searched for the method in a depth-first,
left-to-right, recursive sequence. Finally, the package UNIVERSAL is searched. If a suitable meth-
od is still not found, the dispatch process looks for a method called P::AUTOLOAD in the class P,
its ancestral classes, and, finally, in UNIVERSAL. If that search fails, the dispatch mechanism
throws an exception.

Dispatch table. A multidimensional table storing references to variants of a multimethod.
Each dimension of the table is indexed by the names of classes whose objects may be passed as
arguments in a particular parameter position of the multimethod. 

Emergent system. A system with little or no centralized control, whose interesting behavior
is not explicitly coded, but develops spontaneously as a result of the low level interactions between
components of the system.

Encapsulation. The restriction of an attribute or method to a namespace. Encapsulated mem-
bers of a class are not directly accessible, except to methods of the same class. This is desirable be-
cause it ensures that changes to attribute values can only be made in controlled ways (by calling
methods of the class). It also ensures that alterations to a class’s implementation do not affect client
code.

Encoding. The process of converting the internal representation of a data structure into an ex-
ternally storable format—typically, to a linear sequence of characters. Also known as Serialization.

Exception. A mechanism for transfer of control within a program. Typically used to handle
unusual or erroneous conditions (hence the name). In Perl, a call to die (or croak) anywhere in
a program. That call causes control to be propagated back to any enclosing eval statement. If
there is no enclosing eval statement, the program terminates. 

Flyweight pattern. An object-oriented idiom in which objects are small, usually holding only
a single scalar value. That value is used as an index or key into a separate, larger collection of data
that stores the attributes of all objects of the class. 

Helper class. A class whose task is to assist some other class. Often used as a return type for
particular methods of the other class or as an internal representation that the other class uses.
Compare with Mixin.

Identity. The property of objects that allows them to be distinguished from other objects,
which may otherwise be storing exactly the same data.

Idioms. Techniques or generic code structures peculiar to a particular coding style, program-
ming language, or language paradigm. Also known as “patterns.”

Implementation. The encapsulated members of a class. The implementation of a class pro-
vides the actual functionality of the class’s objects. It may be changed as necessary, provided that
the apparent behavior of the class’s publicly accessible methods is not altered. Compare with In-
terface.

Implementation object. In Perl, a blessed object that provides the implementation—at-
tributes and methods—for a tied variable.
GLOSSARY 461



Inheritance. A relationship between two classes in which one (the Child class) assumes all the
properties—attributes and methods—of the other (the Parent class).

Inheritance distance. The number of steps in the inheritance chain between two classes—
typically from the actual class of an argument to the class of the corresponding formal parameter.
By extension, the sum of the inheritance distances from a set of arguments to a corresponding set
of parameters. Typically used to compare the merits of the viable targets of a multimethod.

Inheritance polymorphism. A form of polymorphism that requires an invoking object to be-
long to a particular class hierarchy. Under inheritance polymorphism, a method can only be in-
voked on an object if the object belongs to class derived from a specified base class. Compare with
Interface polymorphism.

Inherited class. See Base class.

Instantiation. The process of creating an object from the specification provided by a class.

Instance. An object belonging to a specified class.  In Perl, any standard datatype (array, hash,
scalar, etc.) that has been blessed into a specific package.

Interface. The universally accessible members of a class. Normally, the interface provided by
a class consists entirely of methods, which may be called to access or modify encapsulated at-
tributes. However, a class may also provide nonencapsulated attributes as part of its interface. By
using only its documented interface, code that uses an object insulates itself from changes in that
object’s implementation. Compare with Implementation.

Interface polymorphism. A form of polymorphism that does not require the invoking object
to belong to a particular class hierarchy. Under interface polymorphism, a method may be invoked
on an object provided the object’s class has a suitably named method. Compare with Inheritance
polymorphism.

Invoking object. The object through which an object method is called. In Perl, for a method
call such as $objref->method(@args), the invoking object is the one referred to by $objref.
A reference to the invoking object is always the first argument (i.e. $_[0]) passed to a Perl object
method. 

Is-a. The relationship between a child and parent class (or objects of such classes). Indicates
that the child class provides the same facilities as the parent class.

Lexical analyser (lexer). An object or function that breaks a character string into a series of
labeled substrings, whose labels indicate each substring’s grammatical role in the original string.

Member. An inclusive term for an attribute or a method.

Memoized computed attribute. An attribute whose value is not (initially) stored in an ob-
ject. The first time its value is requested, the attribute computes and then stores it for subsequent
reuse. The technique is typically used when an attribute value is expensive to compute, does not
change once computed, and may not be required.

Message. The combination of a method name and a list of one or more objects or values on
which the method is to operate. In Perl, a message typically looks like: $objref->meth-
od(@args). 
462 GLOSSARY



Method. A subroutine associated with a given class, designed to operate exclusively on objects
of that class. In Perl, a subroutine defined in a package into which objects have been blessed. See
Object Method and Class method.

Method signature. The combination of the name of a method and the names of the classes
of its expected parameters. Used in multiply dispatched systems, or singly dispatched systems with
method overloading, to determine which method to invoke in response to a message. A method’s
signature is normally required to be unique within the namespace of its class. Perl does not support
method signatures directly.

Mixin. A class inherited solely to provide certain behaviors to another class. Typically, a mixin
is incomplete by itself. That is, its objects would serve no useful purpose by themselves, if instan-
tiated. Compare with Helper class.

Module. In Perl, a library file containing one or more packages.

Multimethod. A polymorphic method dispatched according to the types of all its arguments,
not just that of its invoking object. Perl does not provide a built-in multimethod mechanism,
though multimethods may be implemented using other standard features of the language. See
Multiple dispatch.

Multimethod variant. A method or subroutine that a multimethod invokes in response to
a specific set of parameter types. Typically, all variants of a multimethod share the same name,
but have unique signatures.

Multiple dispatch. An approach to polymorphic method invocation in which the method in-
voked in response to a particular call depends on the classes of two or more of its arguments. Perl
does not directly support multiple dispatch. Compare with Single dispatch.

Multiple inheritance. The situation where a class directly inherits from two or more classes.
In Perl, the situation of having two or more elements in a class’s @ISA array.

Mutator. A method or operator that changes the value of the object on which it’s invoked.
Compare with Accessor.

Namespace. The potential or actual set of unique names in a particular symbolic reference
mechanism. In Perl, the set of distinct symbol names in a package’s symbol table.

Object. A means of identifying, encapsulating, and accessing a collection of data. In Perl, any
standard datatype (array, hash, scalar, etc.) that has been blessed into a specific package.

Object attribute. A named storage location for data associated with, and preferably encapsu-
lated within, a single object. Compare with Class attribute.

Object method. A method which can be invoked on an individual object of a given class.
Compare with Class method.

Operator overloading. The ability to change the semantics of a language’s built-in operators
when those operators are applied to objects of user-defined classes. In Perl, the ability to associate
a subroutine with a particular operator, and have it called when that operator is applied to objects
of a particular class.

Override. To change in a derived class the behavior of an inherited method.
GLOSSARY 463



Package. A Perl construct that provides a separate namespace for variables and subroutines.

Parent class. Some other class that provides the description of attributes and/or methods in-
herited by the current class. See: Base class, Superclass.

Persistence. The property of a system in which data can survive the termination of the program
that creates it.

Polymorphism. A situation in which the method invoked in response to a particular method
call depends on the class of one or more of the arguments to that method—typically, on the class
of the object on which the method is invoked. In Perl, all method calls are polymorphic. See Single
dispatch and Multiple dispatch. 

Private member. Internal data or functionality. An attribute or method only directly acces-
sible to the methods of the same class and inaccessible from any other scope.  In Perl, notionally
private attributes and members are conventionally given names beginning with an underscore.
Compare with Protected member and Public member.

Protected member. Restricted data or functionality. An attribute or method only directly ac-
cessible to methods of the same class or of a subclass, but inaccessible from any other scope. Com-
pare with Private member and Public member.

Proxy. An object that takes the place of, or emulates, some other object. Compare with Dele-
gation and Helper class.

Pseudo-hash. In Perl, an array that can act as a hash because its first element stores a mapping
from keys to indices.

Public member. Externally visible data or functionality. An attribute or method that is di-
rectly accessible from scopes outside the class.  In Perl, most members are, by their standard se-
mantics, public. By convention, attributes of Perl classes and objects are regarded as private, as are
methods whose names begin with an underscore. Compare with Private member and Protected
member.

Referent. The datatype or object to which a reference refers.

Serialization. See Encoding.

Signature. See Method signature.

Single dispatch. An approach to polymorphic method invocation in which the method in-
voked in response to a particular call depends on the class of its first argument alone. Compare
with Multiple dispatch.

Subclass. A class that inherits attributes or methods from the class in question. Subclasses are
usually created to augment or restrict the behaviour of the inherited class. Also known as Child
class or Derived class. Compare with Superclass.

Superclass. A class from which the class in question directly inherits. Also known as Parent class
or Base class. Compare with Subclass.

Symbolic reference. In Perl, a string containing the name of something in a package’s symbol
table. Symbolic references can only refer to package variables.
464 GLOSSARY



Token. A string that has been labeled with some semantic information (such as its part-of-
speech or its role in a grammatical construction). See Lexical analyser.

Typed lexical. In Perl, a lexical variable that has a class name associated with it. Typed lexicals
allow certain compile-time checks and optimizations to be carried out on variables that store ref-
erences to pseudo-hashes. See Pseudo-hash.

Variant. See Multimethod variant.

Viable targets. The set of multimethod variants whose parameter types are compatible with
those of the arguments to a multimethod call. Not directly supported in Perl.
GLOSSARY 465



bibliography

Object orientation
Booch, Grady, Object-Oriented Design with Applications, Redwood City, Calif.: Benjamin/Cum-

mings, 1991.
Booch, Grady, Object-Oriented Analysis and Design with Applications, Redwood City, Calif.: Ben-

jamin/Cummings, 1994.

Gamma, Eric, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995.

Meyer, Bertrand, Object-Oriented Software Construction, New York: Prentice-Hall, 1998.
Reenskaug, Trygve, Working With Objects: The OOram Software Engineering Method, Greenwich:

Manning Publications, 1996.

Taylor, David A., Object Technology: A Manager’s Guide (second edition), Reading, Mass.: Addi-
son-Wesley, 1998.

Perl
Brown, Vicki and Chris Nandor, MacPerl: Power and Ease, Sunnyvale, Calif.: Prime Time Free-

ware, 1998.

Christiansen, Tom and Nathan Torkington, Perl Cookbook, Sebastopol, Calif.: O’Reilly & Asso-
ciates, 1997.

Hall, Joseph N. and Randal L. Schwartz, Effective Perl Programming, Reading, Mass.: Addi-
son-Wesley, 1998.

Johnson, Eric F., Cross-Platform Perl, New York: M&T Books, 1996.

Johnson, Andrew L., The Elements of Programming with Perl, Greenwich: Manning Publications,
1999.

Orwant, Jon (ed.), The Perl Journal, New York, EarthWeb, Inc.
Schwartz, Randal L. and Tom Christiansen, Learning Perl (second edition), Sebastopol, Calif.:

O’Reilly & Associates, 1997.

Schwartz, Randal L., Erik Olson and Tom Christiansen, Learning Perl on Win32 Systems, Sebas-
topol, Calif.: O’Reilly & Associates, 1997.

Srinivasan, Sriram, Advanced Perl Programming, Sebastopol, Calif.: O’Reilly & Associates, 1997.
466



Wall, Larry, Tom Christiansen and Randal L. Schwartz, Programming Perl (second edition), Sebas-
topol, Calif.: O’Reilly & Associates, 1996.

Other object-oriented languages

C++

Stroustrup, Bjarne, The C++ Programming Language (third edition), Reading, Mass.: Addi-
son-Wesley, 1997.

Lippmann, Stanley and Josée Lajoie, C++ Primer (third edition), Reading, Mass.: Addison-Wes-
ley, 1998.

Eiffel
Meyer, Bertrand, Eiffel: The Language, New York: Prentice-Hall, 1992.

Java
Arnold, Ken and James Gosling, The Java Programming Language, Reading, Mass.: Addison-Wes-

ley, 1997.
Horton, Ivor, Beginning Java 2, Chicago: Wrox Press, 1999.

Flanagan, David, Java in a Nutshell (second edition), Sebastopol, Calif.: O’Reilly & Associates,
1997.

Simpson, Bruce, John Mitchell, Brian Christeson, Rehan Zaidi and Jonathan Levine, Making
Sense of Java: A Guide for Managers and the Rest of Us, Greenwich: Manning Publications,
1996.

Smalltalk
Budd, Timothy, A Little Smalltalk, Reading, Mass.: Addison-Wesley, 1987.

Goldberg, Adele and David Robson, Smalltalk-80: The Language, Reading, Mass.: Addison-Wes-
ley, 1989.

Liu, Chamond, Smalltalk, Objects, and Design, Greenwich: Manning Publications, 1996.

Miscellaneous
Friedl, Jeffrey, Mastering Regular Expressions, Sebastopol, Calif.: O’Reilly & Associates, 1997.
Norman, Donald, The Psychology of Everyday Things, New York: Basic Books, 1988.

Norman, Donald, The Design of Everyday Things, New York: Doubleday, 1990. 
BIBLIOGRAPHY 467



index
Symbols

"<=>" operator 279
"=" operator 291, 434
"0+" operator 283, 434
"bool" operator 284, 434
#line directive 315
$ (scalar type specifier) 21

as dereferencer 37
$#array_name 23
$^W variable 90
$_[0], assigning to 341
$AUTOLOAD 55, 91, 338
$VERSION 54
% (hash type specifier) 26

as dereferencer 37
%FIELDS 130
& (subroutine type specifier) 29

and goto 30, 264
in subroutine call 30, 83

&AUTOLOAD 55, 91, 171, 
195, 269, 281, 338, 
352, 431

and array-based objects 123
as generic method 327
as generic subroutine 56
cost of 93
destructors 112
efficiency 93
learning from experience 93
non-public attributes 92

&can 179, 210, 338
&CLEAR 249

&clone method 105
&CLOSE 257
&copy method 105
&DELETE 244
&DESTROY 106, 176, 238, 

244, 250, 257
&EXISTS 244
&EXTEND 249
&FETCH 238, 244
&FETCHSIZE 249
&fingerprint 265
&FIRSTKEY 244, 262, 263
&GETC 257
&import 52, 54, 331
&import subroutine 60
&isa 179, 361
&mutate 265
&new 96
&NEXTKEY 244, 262, 263
&OPEN 257, 260, 268, 273
&POP 250
&PRINT 256, 273
&PUSH 250
&READ 257, 273
&read_only subroutine 83
&READLINE 257
&SEEK 268
&SPLICE 250
&STORE 238, 244
&STORESIZE 249
&TIEARRAY 249
&TIEHASH 244
&TIESCALAR 238

&TRUNCATE 268
&VERSION 54, 182
*

Class::Struct type 
specifier 217

multiplication operator 293
typeglob type specifier 60

*foo{THING} syntax 63
*symbol_name typeglob 

syntax 60
++ operator 241
+= operator 241, 294
. operator 283, 293
.login file 53
.pm suffix 51
:: package name separator 44
<=> operator 280, 286
<> operator 166, 257
=> operator 26

for named arguments 31
> operator 141, 430

calling class methods 79
extension to method calls 75
not used for scalar 

references 137
?: operator 102, 284
@ (array type specifier) 22

as dereferencer 37
@_ array 29, 76

aliasing 33
copying to avoid aliasing 33

@array_name 23
@EXPORT 410
468



@INC 52
@ISA 168, 191, 431
^ operator 293
__DATA__ 335
_Initializable class 173
|| operator 102
~ operator 141

Numerics

1, at end of module 53
2001 381

A

ABC 12
abstract base class 12, 343, 459
abstract data type 459
abstract method 12, 185, 232, 

344, 418, 432, 459
in other languages 452, 456
other terms for 18

abstract object 12
abstract relationships 6
abstraction

of arguments 356
of regular expressions 145
vs genericity 327

access
class attributes 85
direct vs encapsulated 297
discouraging direct access 82
hash-like 132
memory mapped 416
restriction of 198
specifier 298
speed, hash vs array 119
Tie::SecureHash 311
to class attribute 200
to data 152
to every object of a class 306
to external data 393
to objects via references 291

access mechanism 2
accessibility

of lexicals used in scalars 57
vs existence 57

accessing typeglob slots 62

accessor 82, 122, 304, 418, 
430, 459

as a convenience 300
explicitly coded 123
for class hierarchy only 301
for persistent class 427
for persistent objects 415
generating 213
get/set 224
tedious to write 91

accidents 297
actual target 370, 372, 459
Ada 19
add-assignment operator 241
address space 389
adopting new behaviour from 

helper class 338
Advanced Perl Programming 69, 

166, 274, 326, 428
advantages

of hash-based objects 136
of inheritance 414

aesthetics 186, 423
affordances 83, 151, 293, 459
aggregation 14, 418, 459

advantages 15
of persistent variables 411

algebra 292
Algol 454
alias

behaviour of @_ 33
aliasing 459

of $_[0] 423
aliens 237
all-or-nothing encapsulation 309
ambiguity

in inheritance 9
in multimethod 

initialization 360
in multiple dispatch 370
indirect object syntax 99
of handlers 367
of unqualified secure-hash 

keys 317
ancestor 360
ancestor class 459
Ancient Greek gods 46
anonymous array 40

as object 429
as pseudo-hash 132
as sorted hash cache 264
mortality of 49

anonymous hash 41, 77, 304
as implementation 

object 242
mortality of 49

anonymous scalar
creating 136

anonymous subroutine 42, 261, 
298, 329

as closure 57
as lexer 156
as multimethod handler 358
as object 152
as operator 

implementation 278
as private method 87
calling 42

anonymous typeglob 165, 
253, 415

anti-Thursday 281
Aphrodite 46
arbitrary operations 293
argument

abstraction of 356, 368
aliasing 76
constructors that 

take many 101
default 102
first 352
forgetting 101
in other languages 450
list as hash 101
original list 359
reversed 286, 433
single 374
to method 75
to overloaded operator 278
to subroutine 29
unfamiliar 363

arithmetic operation 283
array 22

already generic 328
anonymous 40
as object 76, 119
as stack or queue 24
INDEX 469



change in size of 249
Class::Struct 214
index 283
initialization 23
length 23
look-up 130
natural choice of 123
of references to attributes 201
passing to subroutine 

by reference 42
persistent 410
pretending to be hash See

pseudo-hash 126
reference to 420
slice 25
tied 249

array index
as object 304

array slice 199
for initialization 122

arrow operator 38, 291, 430
ASCII

ancient Romans, 
non-use of 284

to EBCDIC 261
Ashton-Jones, Gary xviii
assignment

composite operators 241
non-overloadability of 278
object-to-object 103
of arrays 249
of references 291
of typeglobs 60
to attribute 216
to typed variables 131
undetectability of 412
vs overloaded 292

ATM 2
aggregating attributes 15
attributes 3
methods 3

Atropos 46
attribute 2, 430, 459

access list 93
accessor 82
class 228
class attribute 430, 432
Class::Struct 215

code-like 231
collisions under 

inheritance 186
computed and 

memoized 150
encapsulation 434
flag-like 226, 432
hash 228, 432
in other languages 439, 444, 

450, 454
inheritance of 170
internal 78
key-like 226, 432
list 432
logically grouped 225, 432
of an object 78
physically grouped 227, 432
polymorphic 316
private 301, 309, 315, 326
protected 309, 318, 325
public 309, 318, 325
readable labels for 119
scalar 224, 432
single-bit 226
storage and retrieval 400
subroutine 231
type 215
unique value 226
which is an object 228

attribute value 2, 460
retention of 16

autogeneration of operators 281
autoloaded method 91
automagical

multiple dispatch 367
operators 286

automatic persistence 397, 400
automation of dynamic dispatch 

table 367
autovivification 119, 227, 248, 

297, 460
and pseudo-hashes 127
and securehashes 312, 325

awk 397

B

Bach, Johann Sebastian 412

Back to the Future 411
backquotes 56
Bad Things 82
balanced heap 347
Banzai, Buckaroo 43
bar, polymorphic pick-up lines 9
bar-codes 239
bareword class name 99
Barr, Graham xviii
base class 5, 460
base class destructor

invoking 176
base.pm module 191, 309
bases (genetic) 250, 265
basic ideas of object 

orientation 1
Beattie, Malcolm 416
bed-swapping 307
BEGIN block 331, 398
beginners 309
behaviour

emergent 350, 379
of a class 179
of a multimethod 384
of variables 236
of variants 368
post-mortem 424

benefits of object orientation xiv
best fit behaviour 356
bible 69
bibliography 466
big

city 296
hairy dot 293

Biggar, Mark 276
binary search tree 16, 339

insertion 340
persistent 424

Bit::String class 138
persistent 413

bit-flag 226
bitmap 232
bits

addressing via vec 
function 138

bit-trail 35
Blakey, Adrian xviii
bless function 76, 429
470 INDEX



arguments 77
in constructor 79
one-argument form 196, 219
two-argument form 172, 

196, 220, 223, 233, 
398, 431

blessing
and tie-ing to same 

package 311
different datatypes into same 

class 79
non-hashes 118
not assigned 103
scalars 135
subroutine 152
tied variables 265
typeglobs 158

blood pressure 294
Booch, Grady 19
books

miscellaneous 467
on object orientation 466
on other object-oriented 

languages 454, 467
on Perl 69, 466

boolean 140, 226
borrowing behaviour 343
bottle-neck encasulation 309
box of chocolates, symbol table 

entry like a 59
brain

alien consumption of 237
surgery vs closures 56

breadth-first multiple 
dispatch 368, 372, 385

brittle 353
Brocard, Leon xviii
Brown, Vicki 69
browser cache 245
brute force 83
buffered I/O 415
bugs

$ prototype and scalar 
context 36

+ documentation = 
features 344

|| operator and 0 values 102

accidental breach of 
interface 302

aliasing 33
ambiguous securehash 

keys 318
arbitrary or obscure 

operations 293
assignment of object 

references 291
attribute collision 186
autovivification of non-

existent attributes 119, 
248, 297

calling methods on tied 
filehandles 273

changing @ISA array 179
circular references 108
code in the wrong 

package 321
compile-time diagnosis 131
conventions not scaling 

well 296
data equivalence vs referential 

equality 306
documentation of 96
explicit wait 160
failure to initialize 98
fixed dispatch table and 

derived types 362
hard-coding class 

relationships 176
hunt-and-destroy 183
in simple peristent class 404
indirect object syntax 101
left-most abstract 

methods 185
left-most depth-first dispatch 

resolution 368
map block returning 

undef 184
misgeneralization 83
misnaming attributes in 

accessors 91
missing most of the data 151
multiplying references 278
mutating MLDBM hash 

sub-entries 420

nested iterators 123
not "typing" a lexical for 

pseudo-hashes 132
not reswizzling memory 

addresses 389
object-to-object 

assignment 103
opening a tied filehandle 257
overloading the 

. operator 293
overwriting key 

attributes 227
package variables vs 

lexicals 306
pseudo-hashes and 

inheritance 191
qualified vs unqualified 

securehash keys 324
security via obscurity 264
spelling errors 128
termination whilst saving 

data 388
wrong comparison 

subroutine 330
built-in functions

bless 76, 429, 431
caller 35, 264
close 159, 257
crypt 136
delete 244
do 393
each 27, 123, 244, 309, 315
eof 257
eval 148, 329, 334, 340, 347, 

392, 399, 408, 437
fileno 257
getc 257
grep 284
int 283
join 140
keys 27, 244, 315
local 49
map 140, 384, 415
my 46
open 257, 268
pack 138
package 43
pop 24, 250
INDEX 471



printf 256
push 24, 250
rand 297, 308
read 257, 415
readline 257
ref 38, 63, 359, 381, 

389, 398
return 29
-s (file length) 416
seek 253, 257, 268, 415
select 257
shift 25, 250
splice 25, 250, 363
split 415
sprintf 335, 426
sub 28
substr 283
sysopen 257, 393
sysread 257, 415
sysseek 257, 415
syswrite 256, 415
tell 257
tie 236, 393, 433
tied 243, 257, 268
truncate 254, 257, 268
unshift 25, 250
untie 238
values 27, 244, 315
vec 138
wait 160
wantarray 34
warn 34
write 257
z (zero-sized file) 415

Bunce, Tim xviii, 394
Burke, Sean M. 170, 201

C

C (programming language) 153, 
398, 443

C++ xii, 19, 75, 76, 131, 153, 
314, 318, 326, 353, 398, 
443, 449, 451, 467

caching
&can 181
eliminating cache when 

serializing 399

multimethod handlers 364
of generic code template 335
of methods 171
of multimethod variants 370
sorted hash keys 263

Caesar, Gaius Julius 304
caller function 35, 264

additional return values 35
calling methods

annoying need to 276
under inheritance 169

Cantrell, David xviii
cardinal rule of object 

orientation 82
cardinal virtue 103
carp subroutine 34
cascading messages (Smalltalk 

concept) 440
case statement 205, 352, 355
case-insensitive keys 245
casual programming 90
cat 245
catch-all

handler 356, 359
method 91
multimethod pseudo-

type 382
subroutine 55

CD::Music
inheritance of destructor 197
methods 82

CD::Music::Classical 193
CD::Shiny::Beer 80
cephalopods 13
Cetus Links 19
chain

of destruction 178
of references 110

changing read-only attribute 83
chapter summary xiv
character string

as Roman numeral 290
encoded 393
uninterpolated 392

chef 294
child

class 5, 460
node 339

process 159
China 276
choreographed behaviour 350
Christiansen, Tom xviii, 69, 

198, 300, 326
circular data structures 108
clarity 293
class 3, 460

abstract base 12
adding new methods from 

&AUTOLOAD 93
array-based 431
as blueprint 3
as package 429
as shared category 12
attribute 4, 228, 432, 460
base 5
child 5
class attribute 430
data 4
datum 18
derived 5, 431
destructor 106
diagnostics 96
direct parent 177
documentation 94
empty subclass 189
field 18
generator 327
generic 330
hash-based 431
helper 150, 423
hierarchy 460
implemented by package 74
in other languages 439, 444, 

450, 454
instance 18
interaction 109
intermediate 183
least-derived 360
method 4, 429, 460
mixin 175
module 89
name 77, 429
node 339
other terms for 18
parent 5, 431
persistent 418
472 INDEX



regular expressions 145
specialization 18
strutcures 218
syntax summary 429
testing 189
unspecified features 16
variable 18
version 96

class attribute 4, 85
access to 196
internal use only 198
other terms for 18
ownership of 196
via object attribute 198

class method 4, 85
constructor 79
in other languages 440, 

447, 450
other terms for 18

Class::ISA module 170, 201
Class::MethodMaker 

module 213, 222, 
432, 439

inheritance 233
Class::Multimethods 

module 367, 385
last resort 382
pseudo-types 381

Class::Struct module 213, 
431, 439

inheritance 219
classical music 193
classified lexical

See typed lexical 132
class-specific persistence 400
cloning before mutation 291
CLOS 19
close function 159, 257
closure 56, 94, 460

and anonymous 
subroutine 57

as encapsulation 
mechanism 298

as generic subroutine 329
implementing genericity 436
shared lexicals 58

closure-based object 434

coarse-grained persistence 17, 
388, 397, 400, 408

code
collaborative 349
duplication 183
efficiency 276
expediency 293
extensive, hard to 

understand 187
forward-compatibility 196
generation 214, 392
intelligible 294
migration 267
rarely-used 297
reuse via cut-and-paste 8
run-time generation 329
scaling problems 296
structural patterns 327
test code 189
ugliness 276

CODE slot 60
code-like attribute 231
codons 250, 265
collision

detection 385
of inherited attribute 

names 186
colony organism 14
comic-book profanity 145
communication between 

objects 198
compactness of encoding 

schemes 392
comparison

coarse- vs fine-grained 
persistence 412

of multiple dispatch 
techniques 361, 385

string vs numeric 343
compile-time

checking of interface 170
checking of pseudo-hash 

accesses 132
complement operator 141
complex numbers 292
composition 460
Comprehensive Perl Archive 

Network 66

compression 180
compromises 147
consequences of dispatch 

resolution strategy 372
consistency 380

of multiple dispatch 367
constant 119

interpretation of 288
constant.pm module 99
constructor 78, 96, 429, 460

actions 98
and bless function 79
and inheritance 171
and securehashes 312
annoying need for 288
called as object method 125
called without 

arguments 103
calling 79
Class::MethodMaker 223
delegation from 431
failure of 96
for array-based class 122
for closure-based objects 298
for database object 395
for flyweight objects 304
for pseudo-hash-based 

objects 132
generating 213
generic 173
hierarchical calls 170
in other languages 439, 

446, 451
incrementing global object 

count 86
long argument lists 101
multi-purpose 104
of persistent class 415
redefinition for 

persistence 418
reimplementing in derived 

class 219
reuse in derived class 193, 

431
trivial 223
unique Perl behaviour 172

container datatypes 61
context
INDEX 473



list 33
of subroutine call 33
scalar 23, 33
string, numerical, 

boolean 282, 434
void 33

control, (de-)centralized 349
convenience 316
conventions

always using constructor 79
constructor as duplicator 103
named arguments 102
prefixing attributes 188
undef on constructor 

failure 149
underscore means 78, 313
upper-case for constants 120

conversion
of constants 288
of exception to undef 149
of Roman numerals 286
of securehashes to hashes 321
operators 282, 294, 434

Convert::EBCDIC module 261
Conway, James and Sandra xviii
coordination 397, 412
copy

deep 390
operation 103

copyright 96
coral 14
cost 424

of deferred calculations 150
of dynamic dispatch 

table 366
of encapsulation 198
of multimethods 370
of multiple dispatch 356
of persistence 388
of securehashes 321

coupling 241
of package variables 47

CPAN 66, 96
CPAN Search website 66
home page 66
installing modules 67
mirror sites 66

mystical Multiplex 
Dispatcher 66

the WAIT search engine 66
CPAN.pm module 67

configuration 67
crash vs persistence 17
CREATE statement (SQL) 395
creation

of objects 76, 96, 430
of table in database 395

Cretaceous era 13
cross-breeding 267
cross-indexing 248
cross-product 293
crypt function 136
cultural

considerations 138
solution 188

cumulative effects of 
inheritance 178

curly braces 41
cursing 64
cursor, of hash 124
cut-and-paste

for code reuse 8
vs modules 51

CyberGeek 179

D

dancers 349
data

access vs representation 14
encapsulated 82
execution-specific 389
internal 82
loss 388, 404
on disk 250

data integrity 405
and persistence 17

data member 18
data structure

circular 108
encoding/decoding 390
for object house-keeping 399
misbehaving 392
nested 405, 427

Data::Dumper module 182, 
391, 405, 410, 418, 424

purity 411
database 17

as persistent hash 400
choice of 401
handle 395
MLDBM module 418
overheads and complexities, 

avoiding 408
relational 394
simple 393

DB_File module 393, 419
DBD:: modules 394
DbFramework module 427
DBI module 394, 427
deadly sins, seven 22
debugging 297, 306

bit-strings 141
caller function 35
Data::Dumper 392
dynamic typing vs compile-

time checking 328
hunt-and-destroy 183
multimethods 384
scalar assignments 242
securehashes 320

declarative
code 157
initialization 298
persistence 428

decoupling 14, 267, 460
of persistence 

mechanism 411
default

arguments 102
configuration for CPAN.pm 

module 67
interpolation into hash 161
multimethod variant 378
via undef 31

deferred feature 12, 18
deferring computation 150
delegation 183, 195, 349, 

418, 460
from constructor 431
from tree to root node 338
474 INDEX



of construction 199
of methods 230, 432

delegation on failure 193
delete function 244
dependency of child class 

on parent 187
depth-first

ancestor list 363
method dispatch 368, 431
searching inheritance 

hierarchy 171
dereferencing scalars 137
derivation 18
derived class 5, 431, 460
Désarménien, François xviii
design

critical importance of 196
of regular expression 

class 147
Design Patterns 326
DESTROY 430
destructor 106, 430, 460

and autoloading 112
and circular data 

structures 110
and inheritance 176
as the reason for an 

object's existence 423
cascade of calls 110
closing interprocess 

pipes 163
for tied array 250
for tied filehandle 257
for tied hash 244
for tied scalar 238
from base class 176
hierarchical calls 170
in other languages 446, 451
of helper class 424
reblessing 177

detecting mutation 398
diagnostics 89

documenting 96
diamond operator 166
dir 31
direct

manipulation of objects 276

parent 177
directory listing 31
disambiguation, of multiple 

dispatch 378
discipline 188, 297
discrepancies in multiple 

dispatch 384
disillusionment 438
disk access costs 

for persistence 17
dispatch

of destructor 176
of methods 170
re-dispatch 356

dispatch mechanism 351
extensible 363
in other languages 440
Perl's 379
predictability 361

dispatch resolution 368, 461
example 370

dispatch table 358, 385, 461
dynamic 363
initialization order 359

DIXIT 291
Dlugosz, John xviii
DNA 250, 265
do function 393
do what I mean 324
doctor 203
documentation 70, 94

inadequate 297
Dominus, Mark-Jason xviii, 71, 

335, 455
door handles 84
DOS command 56
dot-product 293
double colon 44
doublethink 291
downloading CPAN modules 67
dragon slaying 66
driver, DBD::Oracle 395
dual constructor trick 232, 233
duality 291
duplication, eliminating 183
duplicators 103
dwarfs, seven 22

dynamic dispatch table 363
Class::Multimethod, automa-

tion of 367
dynamic typing 16, 22

in other languages 439
vs genericity 328

E

each function 27, 123, 244, 
309, 315

EBCDIC to ASCII 261
efficiency 241, 280, 297, 

416, 424
of &AUTOLOAD 93

ego 16
Eiffel xii, 19, 309, 454, 467
elegance vs obscurity 150
elimination of duplication 183
embedded object 218
emergent

behaviour 350
system 349, 461

empty argument list, 
omitting 29

empty subclass test 189
emulation of dispatch 

mechanism 178
encapsulating subroutine 298
encapsulation 2, 18, 59, 201, 

296, 434, 461
"by good manners" 82, 296
and procedural 

programming 14
and qualified array 

constants 122
enforced 302
in other languages 440, 446, 

451, 456
non-enforcement in Perl 82
of class attributes 86, 298
of creation in constructor 79
of I/O 159
of multiple dispatch 

mechanism 359
of paged filehandle 160
of regular expressions 145
private attribute 309
INDEX 475



protecting 
polymorphism 301

public attribute 309
strong 5, 299
unenforced 201
varying strengths 309
via closures 297
via scalars 302
vs pseudo-hashes 192
weak 5
within a tied variable 243

encoding 17, 389, 461
entire objects 405
in Perl 391
objects controlling their 

own 400
of objects 399
serialization 412, 423
simultaneously 411

encryption 136
key 227

END block 398, 404, 410, 
418, 423

end-of-file 159
enforced encapsulation 296
England 367
entry 26

declaration in 
securehashes 312

non-existent 128
of hash as database 

record 394
used for two purposes 186

environment variables 96
eof function 257
epitaph 106
equivalence, logical 306
errata 71
error

logical 83
resynchronization after 157

essentials of object orientation 2
eternal life 57
etiquette 315
eval function 340, 347

and Data::Dumper 392, 
399, 408

and genericity 437

as code generator 329, 334
to protect constructor 148

evaluation
of persistence 

techniques 412, 427
event 18

classes 353
handling 385
loop 353, 359, 368, 380

evil half-brother 17
examples

&analyse_network 110
&call 43
&catalyze 35
&checked_inverse 30
&cyclic_incr 33
&hop_along 57
&initial_sample 35
&insensitive_less_than 36
&insert 43
&listdir 31, 34
&lock and &unlock 59
&make_array_ref 48
&make_sequence 30
&next_cyclic 33
&print_recipes 47
Bit::String 138
Bug 74, 214, 222
CD::Music 80, 120, 132, 

193, 220, 233
Chemical/Medicine 317
Color 322
Contact and 

Contact::Persistent 401
CountFreezings 400
database class 293
Database::Access: 53
DayOfTheWeek 281
DNA::Sequence 265
Employee 226
encoding blessed objects 398
Encryption::Key 227
Filtered filehandle 259
generic tree class 336
Genome::Array 250
graphical user interface 353
Heap class 346
Image class 232

Incremental 239
Insensitive::Hash 245
IO::Filter 268
IO::Filtered 270
IO::Pager 160, 164
Iterator 151
Lexer class 205
Limited_Transceiver 190
List 231, 328
multiple dispatch failure 376
multiple dispatch 

resolution 370
object-oriented 

techniques 418
Password 136
PerlGuru 168
persistent contact 

information 418
Personal_Details 225
pretty-printer 157
Projectile 119
QuotedMessage 183
reference 449
relational database 395
Robot package 55
serialization 390
Settable/Collection 186, 316
single vs multiple 

dispatch 373
Soldier 298, 302
SortedHash 263
stringification 381, 383
the_Marquis_of_Queensbury

_rules 60
Track module 241
tracked scalars 264
Transceiver 128
Truck 186, 233
UNIVERSAL &debug 

method 182
where to find xv

exception 83, 92, 122, 185, 
281, 314, 318, 325, 338, 
340, 359, 362, 370, 377, 
410, 461

as argument default 102
for dispatch failure 12
in other languages 442, 452
476 INDEX



expectation 293
expediency 280, 293
explicit method definition vs 

&AUTOLOAD 92
explosion, disarming 340
exponentiation 279
Exporter module 55, 89, 408
exporting from object-oriented 

modules 89
external representation 17
extraction

of persistent data 394
of variable names 403

F

factoring out shared code 12
fallability 248
fall-back

for polymorphism failure 11
strategy 204

fallback pseudo-operator 281
familiarity 136
fascism

compile-time errors 344
linguistic 236

fastidiousness 96
fatal signals 405
Fates 46
Fcntl module 393, 402
feature 18
feature set 18
feedback to pager 163
field 18, 130

donation 191
of a pseudo-hash 132

fields.pm module 130, 190, 
309, 439

file
as object 413
flat 393, 408
mapping 416
name 408
permissions 414

filehandle 60, 159, 253, 414
memory mapping 417
object-oriented 268
tied 256, 268

fileno function 257
fill in the blanks 16
fine-grained persistence 17, 

388, 412
FinePersistence module 423
finite state machine 108
FireTruck class 5
flag

indicating reversed 
operands 279

persistent bit-strings 414
flag-like attributes 226
flat files 393
flattening for data 

serialization 389
flattening of lists 24
flexibility 118, 296, 321, 330, 

400
floating-point

constants 288
numbers 276

flock of birds 349
flyweight pattern 302, 435, 461
foresight 195
fork 162
forking open 162
format 60
formatting code 157
forward-compatibility 196
forwarded method 229
fragmentation of generic 

class 334
freeze 388, 390, 391, 394
FreezeThaw module 391, 418

and UNIVERSAL 
package 400

Freidl, Jeffrey 69
friendly warning 249
frugality 391
fully-qualified

method name 173
package variable names 45

functionality, inherited vs 
defined 183

functions 24
future-proof code 88

G

garbage-collection
in other languages 439, 

444, 449, 454
gcc 153
GDBM_File module 394
GDP, China vs USA 276
genealogy 204
generation

code 329
of code 214, 392
of consistent unique 

identity 388
of dispatch table 368

generator subroutine 57
generic

"maximum" function 29
behaviour of abstract 

method 12
handler 368
method 16, 18, 418
name of parent class 183
peristence 412
persistence 424
subroutine 327, 426
type 327

generic class 16, 330
fragmentation of 334
other terms for 18

generic module 18
generic package 18
genericity 15, 327, 436

in other languages 444, 457
the point of 339
vs abstraction 327

genes, dominant 372
genetic information 250
Genome::Array class 414
gensym 162, 253, 260, 268, 415
getc function 257
get-or-set accessor 224
gigabytes of data 250
global accessibility, badness of 4
glossary 459
glue 21
gods, Ancient Greek 46
good
INDEX 477



manners 201
sense 186

gory details 13, 68, 400, 417
Gosling, James 449
goto & 264
Gövert, Norbert 66
granularity of persistence 17
graphical user interface 351
graphics package 292
grep function 284
grouping of attributes

logical 225
physical 227

GUI 352
gurus xiii, 71
Guttman, Uri xviii

H

h2xs 53
hack 66
hand-crafted

multiple dispatch 367
operator 

implementations 281
Handel, George 292
handle

database handle 395
handler 18

for multiply dispatched 
methods 358

generic 368
more general 360
overlap of coverage 359
signal 410
specialized 359

hard-coded
&isa method 179
call to overloaded 

subroutine 353
class name 79
inheritance hierarchy 

information 176
method name 75
parent name in child 

method 183
persistence 400

regular expressions 144
hash 26

already generic 328
anonymous 41
as dispatch table 358
as normal basis for objects 81
as object 76, 296
attribute 228
autovivification 119
clearing 247
curly braces and 

stringification 26
entry as database record 394
extensibility 136
initialization 26
iteration 27, 151
key 283
keys conferring identity 

on values 389
lexical 402
look-up 130
multilevel 41
object-oriented iterator 123
of hashes 246
passing to subroutine by 

reference 42
persistent 400, 410
securehash 311
slice 28, 98
sorted 262
tied 243, 311, 393, 400, 

418, 419
vs scalar objects 136
why commonly used as 

objects 118
hash entry 26

as object attribute 78
non-existent 119

headache 65, 309, 342
heap 344

insertion 347
heavier subtree 346
helper class 150, 423, 461
hench-person 5
here document 335
hexadecimal constants 288

hibernation 389
hiding data 18
hierarchy

all classes in 384
inheritance 11, 169
interacting with another 367
multimethod implementing 

behaviour of 379
of categories 5
of genericity 426
restructuring 343

Hollywood 237
homo sapiens

class hierarchy 177
vendax 27

house-keeping 198
data structures 399

HTML 153
human fallibility 3
hunt-and-destroy 183
hunt-and-replace 321
hybrid 132

I

-I Perl option 52
I/O 159, 256

buffering of 415
iambic pentameter 9
ID number 239
identification of target in 

&AUTOLOAD 93
identity 412, 461

of a flyweight object 306
of objects 427
persistent 388

idiom 96, 461
image 352
image-processing 352
immortality 412
implementation 3, 461

changes to 297
deviating from design 12
explicit, of operators 280
of multiple dispatch 372
of overloaded operators 280
of peristence 400
vs interface 13
478 INDEX



implementation object 237, 
238, 461

different type from tied 
variable 241

implementation subroutine 278
implicit class declaration 190
import 405, 410
important clients 297
inaccessible

chunks of memory 110
lexicals 57

inanimate objects 387
include directory 68
include path (@INC) 52
increment operator 241
index 22, 216

negative 23
of first element is zero 22

indirect object syntax 98, 163, 
186, 222, 306

informal mechanisms 296
information

caching 399
hiding 3

ingredients of a persistent 
system 387

inherent ambiguity 318
inheritability 189
inheritance 5, 168, 418, 

431, 462
advantages 414
and constructors 171
and encapsulation 196
and multimethod 

dispatch 362
and securehashes 316
and tie'able packages 262
between Class::Multimethod 

pseudo-types 382
borrowing behaviour 343
by peristent subclass 414
changing relationships 176
Class::MethodMaker 223, 

233
Class::Struct 219
complex chains 6
consequences 363
distance 317, 370, 372, 462

empty subclass test 189
explicit 210
from someone else's class 187
hierarchy 169
implying type relationship 15
in other languages 441, 446, 

451, 456
left-most parent 170
meaning of 169
of CD::Music class 193
of multimethod 359
of persistent classes 403
of pseudo-hashes 190
of UNIVERSAL 

package 182
other terms for 18
planning ahead 173
relationships 203, 355
triumph for 418

inheritance polymorphism 204, 
462

in other languages 456
inherited class 462
INIT block 398
initialization 298

Class::Struct 219
extended 362
hierarchical 173
loop 195
of array 23
of array-based object 122
of dispatch table 358, 364
of hash 26
of perisistent variable 403
of persistent objects 419
separation from creation 96
sequence 173

injections 203
input parsing 153
insecure 82
insertion

into a heap 347
into binary search tree 340

inside-out class 152
installing a CPAN module 67
instance 3, 462

method 18
variable 18

Instant Justice 306
instant variables 45
instantiation 462
insulated approach 141
insulating client code from 

changes 230
int function 283
integer constants 288
integrity, of data 388, 405
interaction

between classes 109
between hierarchies 367
of objects 353

intercepting mutation 398
interface 3, 433, 462

affordance 83
changes to 405
Java concept 12
method-based 277
other terms for 18
reuse of 141
stability 14
tied variables 236
vs implementation 13

interface polymorphism 11, 204, 
418, 462

in other languages 441, 451
internal 78
internal representation, transla-

tion of 17
interpolation

code generation 334
in generic persistence 426
of regular expressions 143

Interpolation module 335, 350
interprocess pipe 162
intravenous 290
intrinsic behaviour 236
intuitive operations 293
intuitiveness 101, 324
invoking object 75, 462

in other languages 440
IO:: modules 159
irate users 301
is-a 5, 363, 462

not bi-directional 6
transitive 5

ISBN 80
INDEX 479



isolating the persistence 
mechanism 408

iteration
of hashes 27
of parent classes 184

iterator 244, 315
for objects of a class 306
object-oriented 123
sorted 262

Iterator class 124, 152

J

jamming 350
jargon 18, 56, 203
Java 70, 76, 314, 353, 398, 

449, 467
John

Glenn or Kennedy? 44
Whorfin, Bigboote, Emdall, 

etc. 43
Johnson, Andrew 69
join function 140
JPEG 232, 378
judicious name selection 187

K

Kay, Alan 438
key 26, 216

applied to typeglob 63
case-insensitive 245
deletion of 247
first 244
fully qualified 311
hash 283
next 244
numeric vs string 

ordering 342
qualified 325
unique 389
unqualified 316

key-like attribute 226
keys function 27, 244, 315
keywords for operator 

overloading 278
Klingon 223
Kobes, Randy 67

L

LAN 108
language lawyers 11, 449
language theorists 9
large

numbers 276
systems 201

last-resort
operator 

implementation 281
variant 383

Latin 291
Laziness xii, 103, 213, 297, 

316, 382
poor basis for security 122

Leach, Chris 261
leakage of memory 110
Learning Perl 69
least-derived class 360
Lectroids 43
left-most ancestor wins 361
left-most parent 170
left-to-right search of inheritance 

hierarchy 171
length of array 23
Leroy, Jean-Louis 428
less 162
lexer 153, 462
lexical

analyser 153, 462
array 76
typed 131, 192

lexical variable 46, 152, 298, 
302, 388, 424

and closure 56
as anonymous scalar 136
as class attribute 86
mortality of 48
vs local variable 50

lexicographical order 340
limitations

of securehashes 323
of tied variables 237

line-noise 145
link 109
list 23

as attribute 228

flattening 24
hierarchical 24
largest element 16
of lists 39
to split arrays 23
vs array 23

list context 33, 125
calls to each 28

local
typeglob 162
vs lexical 50

local function 49
localization

of filehandle 159
of implementation details 14

look-ahead 154
loop for destructor 

delegation 176
lower-case from upper-case 261
ls 31

M

machine independent order 391
MacOS, module directory 52
MacPerl 52
madness 367
magical forking open 162
main package 43
maintainability 201, 209, 

301, 340
and pattern matching 144
of multiple dispatch 361

maintenance 294, 327
advantages of object-oriented 

syntax 146
costs of cut-and-paste 8
-friendliness and -

unfriendliness 183
inheritance reduces 6
nightmare 51, 367
tie'able packages 262

Makefile.PL 67
making life easier 89
man 70
man behind the curtain 264
manager 19
Manfredi, Rafaël 390
480 INDEX



manual blessing of objects 79
map function 140, 384, 415
mapping

keys to indices 126
memory 416
named arguments to 

array indices 122
marines 301
masochist 270
masquerade 250
Math::BigFloat module 276
matrices 292
matter transporter 13
MD5 138
meaningful tag 81
member 462

function 18
object 18

membrane as cell interface 14
memoization 150

and &can 181
of &isa method 179

Memoize module 455
memoized computed 

attribute 462
memory

addresses 389
leaks 110
mapping 416

message 18, 462
handler 18
in other languages 440
target 75

metaclass 327
metaclassical tools 234
meta-method 196
meta-object 18
metaphor, breaking down 293
method 18, 463

abstract 12, 185, 232, 344, 
418, 432

accessor 82, 430
activation 18
ad hoc 212
as attribute 232
as operator 

implementation 433
autoloaded 91

caching 171
call syntax 75
call through symbolic 

reference 75
called under inheritance 169
can't call as operator 88
chaining calls 141
class attribute accessors 86
class method 429
compulsory redefinition 12
constructor 78, 429
delegation 230, 432
destructor 106, 430
differences from 

subroutine 76
dispatch 170
dispatcher 352
failure to find 91
forwarded 229
fully qualified name 173
generator 330
generic 16, 418
implemented by 

subroutine 74
in other languages 439, 444, 

446, 450, 455
inherited 169
invocation, other terms 

for 18
look-up 3
mutator 82, 434
object 429
overloaded 353
polymorphic 203, 431
replacement in derived 

class 10
restricted to class 

hierarchy 301
signature 463
typical argument 

handling 76
universally applicable 182
utility 186, 338
vs multimethod 372

method call 18
polymorphic 209

method dispatch
constant cost 209

fall-back strategy 204
implying polymorphism 203

methods 2
identically-named 367

Meyer, Bertrand 19, 454
MicroTrack class 264
mimicking variables 236
minds, messing with 83
Miner, Jim 213
misgeneralization 83
misleading physical 

similarity 272
mistakes 297
mixin 175, 463
MLDBM module 418
mmap 416
Mmap module 416
mode classes 353
modification of nested

subentry 421
Modula-3 131
module 18, 51, 463

class 89
name vs file name 51
name vs package name 51
object-oriented 89
setting one up 52
setting up under 

Windows 53
monarchy 367
monotonically increasing 

values 239
moon

blue 123
finger pointing at 37
light 392
phase of the xiv

multi-cellular creatures 14
multidimensional data 

structures 39
multilevel hash 41
multilingual environment 223
multimethod 367, 463

acceptible parameters 381
as a subroutine 380
Class::Multimethods 367
declaration of 379
definition, where 379
INDEX 481



single argument 372
variant 367, 463
viable vs actual target 370
vs method 373

multiple dispatch 351, 463
Class::Multimethods 367
disambiguation 378
discrepancies 384
hand-crafted 367
implementation of 372
recursive 383
resolution failure 376
unexpected results 372

multiple inheritance 7, 463
and pseudo-hashes 191
and reblessing 

destructors 177
and the SUPER specifier 184
attribute ambiguity 318
criticism of 8
in other languages 446, 456

music 80
musicians 350
mutator 82, 279, 291, 434, 463
mutual references 110
my keyword 46

N

name
collisions 316
invalid 403
of variable, as identity 388

named argument 31
for constructor 101
in other languages 440

nameless subroutine 42
namespace 43, 305, 463

in other languages 444, 450
looking for methods 89
of method qualifier 173
separate for different 

datatypes 59
Nandor, Chris xviii, 69
NDBM_File module 394
Neanderthalensis class 177
nefarious purposes 86, 237

nested
data structures 405
iterators 123
object 218, 228, 432
scope 87, 93

network 108
newsgroups

for object orientation 19
for other languages 443, 449, 

454, 457
for Perl 71

Newton, Sir Isaac 45
Newton-John, Olivia 45
Nietzsche, Friedrich 153
nightmare 367
no free lunch 366
no strict 65
node 108

class 339
explosive (disarming) 340
for generic tree class 336
of binary search tree 16

nomethod pseudo-operator 281
non-obvious operations 293
non-portability 160
non-printing characters 261
non-public attributes vs 

&AUTOLOAD 92
non-standard feature 262
Norman, Donald 83
notational similarity 294
novices 71
number theory 295
numerical classes 352
numerical computation 295
numerification 283

O

Oak 449
object 2, 463

abstract 12
accessing consistently 17
array-based 76, 429
as access mechanism 2
as attribute 105, 218, 

228, 432
as data container 2

as index 302
as record 76
attribute 4, 430
blessed regular 

expression 430
closure-based 434
creating 76
creation 3, 96
duplicators 103
file-based 413
hash-based 76
helper 423
identity 306, 427
implemented as 

subroutine 151
implemented by tied 

variable 265
in other languages 439, 444, 

449, 454
inanimate 387
interaction 353
intercommunication 198
invoking 75
many ways of accessing 75
method 4, 429
natural enemies 151
nested 218, 228, 432
not data, but data access 152
other terms for 18
persistent 17, 387
reference to 423, 429
scalar-based 76, 430, 435
scalar-based, differences 

accessing 137
side-effects 106
stolen identity 307
stored inside its own data 309
subroutine-based 430
syntax summary 429
template 18
treated as base type object 7
typeglob-based 430

object attribute 4, 463
other terms for 18

Object FAQ website 19
object method 4, 463

other terms for 18
482 INDEX



object orientation 1
and tie function 237
benefits xiv
best traditions of 415
breaking down 205
essentials of 2
pure 349
quick reference guide 429
vs persistence 17

Object Pascal 19
Objective C 153
object-oriented

module 89
pattern matching 143
Perl, summary xiii
token 207

obscurity vs elegance 150
octal constants 288
octopus 13
ODBM_File module 394
oddity 381
Olson, Eric 69
Olympians 46
only human 248
OOP-erman 50
open function 257, 268

magical forking 162
operator

arbitrary 293
automagical creation of 280
conversion 282
in other languages 439
qq 144
qr 143
reference 37
use and abuse of 292
> 38

operator overloading 277, 
433, 463

in other languages 455
optimization 120, 416

compile-time 132
multimethod variant as 377
of method dispatch 352
of securehash-based 

classes 321
Oracle 394

ordering
ambiguity of 

multimethods 360
machine independent 391
of a tree 342
of arguments 101
of dispatch table 

extension 363
of hash entries 27
of heap 347
reversal of 343

organization of data 397
orthogonality

bidirectional 412
of persistence 397, 400, 421

Orwant, Jon 68, 70
ostentation 138
output, paged 159
overheads

of hash access 118
of pseudo-hash access 130
of tied variables 237

overkill 136
overload.pm module 278, 

433, 440
overloading

functions 353
operator dispatch 

sequence 281
operators 277, 433
subroutines 380

overriding 463
methods 431
named arguments 32

overwriting dispatch table 
entries 359

owner of a securehash 313

P

pack function 138
package 18, 43, 464

as class implementation 74, 
429

features of 74
main 43
operation 18
symbol table 43

tie function 236
package keyword 43
package variable 45

and local 49
problems with coupling 46

paging 159
parameter 352

ancestral type 363
ignoring during dispatch 

resolution 382
multimethod 381
non-class type 381

parameterized class 18
paranoia 87, 96, 196, 300
paratroopers 301
parent class 5, 169, 464
parentheses, excessive 277
PARI library 295
parsing 108, 153
Pascal 398, 454
pass by value 302
password

database 395
object-oriented 136

Pavlovian conditioning 83
performance 419

of deferred calculations 150
of dynamic dispatch 

table 366
of multiple dispatch 

strategies 385
of pseudo-hashes 131
of tied variables 237

Perl
array 22
as an encoding scheme 391
book reviews 71
books 69
documentation 70
dynamic typing 22
evolving nature of 237
identifier 22
more advanced features 51
news 71
newsgroups 71
scalar 21
I option 52

Perl Cookbook 69, 295, 428
INDEX 483



PERL.COM 71
PERL5LIB shell variable 52
perlbot 70, 212
perldata 70, 166
perldoc 70
perldsc 70
perlfaq 326
perllol 70
perlmod 51, 70, 166
perlmodinstall 68, 70
perlmodlib 51, 70
perlobj 70, 201, 212
perlop 166
perlpod 94
perlref 70, 126, 135, 157, 

166, 326
perlsub 70, 157, 166, 326
perlthrtut 166
perltoot 70, 158, 198, 201, 212, 

234, 300, 326
permissions mask 414
permutations 125
persistence 16, 387, 464

and genericity 424
automatic 397, 400
binary search tree 424
class-specific 400
coarse- vs fine-grained 412
coarse-grained 388, 397, 

400, 408
coordination 387
data loss 388
declarative 428
encoding/serialization 387, 

389
fine-grained 388, 412
generic 412
hard-coded 400
hash 400
identity 387, 388
initialization of variables 403
orthogonal 397, 400
storage 387, 392
transparency 17
vs object orientation 17

Persistence module 408
Pfeifer, Ulrich 66

PGP 138
philosophy 349
physical similarity 

(misleading) 272
pick-up lines, polymorphic 9
pipe 162
place-holder 336

abstract method 12, 185
in generic code 328, 336
subroutines 56

planning for inheritance 173
playing by the rules 146, 188
playing it safe 424
pledge of allegiance 168
POD 94
poker 44
polite error messages 56
polymerase enzyme 250
polymorphism 9, 321, 351, 361, 

431, 464
and encapsulation 301
and genericity 336
and tie'able packages 262
and typeglob assignment 61
in other languages 441, 446, 

451, 456
in Perl 203
inheritance 

polymorphism 10, 204
interface polymorphism 11, 

204
other terms for 18
usefulness of 10
via tie function 236
with a vengeance 356

pop function 24, 250
popping

a heap 347
a tree 341

populating a hash 98
post-increment 241
post-mortem behaviour 424
pre- and post-conditions 30
precedence of arguments over 

defaults 161
precompiled regular 

expression 143

predictability of multiple 
dispatch 361, 367, 
384, 385

PREFIX for Makefile.PL 67
pre-increment 241
premature interpolation 336
preserving object 

interrelationships 424
pretty-printer 157, 205

inheritance 
polymorphism 208

interface polymorphism 210
primality 414
print function 256, 415

and typeglob references 162
printf function 256
privacy, of data 18
private

accessibility 309
member 464
memory, via closures 58

private attribute 315, 326, 456
in other languages 446, 451

proactive 83
program options 414
programmer, Pavlovian condi-

tioning of 83
programming

by contract 454
discipline 188, 297
police 300

Programming Perl 69
programming, 90
promoting subtrees 347
prompting for data 102, 225
protected

accessibility 309
member 464

protected attribute 325
in other languages 446, 451

protein expression 255
protocol 18

Smalltalk concept 12
prototype 36

ignored for methods 84, 170
proxy 307, 309, 464
pseudo-constant 100
484 INDEX



pseudo-hash 126, 309, 464
adding entries 127
and inheritance 190
limitations 127

pseudo-type inheritance 
relationships 382

psychology 84, 153, 200, 
291, 293

public
accessibility 309
interface, operators as 286
member 464

public attribute 318, 325
in other languages 446, 

451, 456
pure virtual function 12, 18
purists 138
puritans 300
purity (Data::Dumper 

option) 411
purpose of a class, 

documenting 96
push function 24, 250
Python 76

Q

q{""} operator 434
qq operator 144
qr operator 143
quadrillion-to-one against 308
qualification of method 

name 175
qualified key 312, 325
quantum

computing 18
physics 18, 56

Quayle, J. Danforth 16
queue via array 24

R

rand function 297, 308
range operator 283
Ray, Randy 71
read access vs write access 82
read function 257, 415

readability 277
of code 136
of regular expressions 145

readline function 257
real applications 361
Real World 387
real-time system 352
reblessing destructors 177
reconstruction

of objects 17
of original variables 390

record-like data structures 76
recursive

algorithm of &can 180
multiple dispatch 383
search for methods 170

redefinition of inherited 
methods 7

re-dispatch 356
redundant use of class name 79
ref function 38, 63, 359, 381, 

389, 398
return value 381
to check object's class 77

reference 37, 59, 229, 390
attribute 105
calling methods 75
compile-time type 353
conversion from symbolic 

reference 64
in other languages 439, 

444, 454
multiplication 278
not blessed 77
operator 37
returned by accessor 217
semantics 291
stored in typeglob slot 63
symbolic 64, 220
to anonymous subroutine 42
to array 381, 404, 420
to attribute 432
to hash 381, 404
to invoking object 76
to object 429
to persistent object 423

to persistent variable 410
to regular expression 144
to subroutine 329, 381, 
432, 433
to typeglob 61, 63, 268
to typeglob slot 63
used as hash key 264
used in string context 39

reference counting 48, 137
and destructors 106, 430

reference guide 429
referent 37, 76, 464

blessed instead of 
reference 77

determining type of 38
referential inequality 306
Regexp module 146
registered persistent 

variables 404
regular expression

and operator 
overloading 288

as an object 143, 430
re-interpolation of patterns 144
relational database 394
relationship

between objects 424
between operators 280
between parameter types 359
between persistent 

variables 404
between securehash entry and 

owner 313
inheritance 362
internal, between data 389

removal of objects 96
replacement of inherited 

functionality 183
representation

altering safely 15
external 389
ignoring 140
internal vs external 387

reproducible identity 389
resolution

failure 376
of securehash key 

ambiguities 318
INDEX 485



resources for learning object 
orientation 18

respecting public interface 146
restoration of variables 396
resynchronization 154
return function 29
return value

constructor failure 149
in other languages 440, 445, 

450, 455
of &isa 180
of accessor 217
optimization via context 34

reuse
and attribute collision 187
of constructor 193
of inherited 

functionality 183
reversed operands 433
re-wiring objects 199
ribosome 250
RNA 250
robust 140
rogue 66
Roman numerals 284

specified as character 
strings 290

root node 336
rules

1: classes are packages 74
2: methods are 

subroutines 74
3: objects are blessed 

referents 76
cardinal 82
for method dispatch 171
for securehash access 324
multimethods as exceptions 

to 380
of thumb 102, 294
respecting underscores 87

run-time
objects and 

polymorphism 11
type 353

rye 65

S

-s (file length) function 416
-s (zero-sized file) function 415
salt 136, 294
Sarathy, Gurusamy 182, 

391, 418
Savage, Ron 53
scalar 21

as object 76, 135, 302, 
430, 435

memory mapped 416
persistent 410
reference stored in 37
reference to 37
tied 238
tracking values 241

scalar context 33, 125
array used in 23

SCALAR slot 60
Schwartz, Randal xviii, 69
scope 302

nested 87
of accessor methods 86
of securehash entry 

declarations 313
scoped variable 46
SDBM_File module 394, 418
searching

breadth-first dispatch 368
depth-first dispatch 368
for inherited methods 431
in a heap 347

seclusion of lexical variables used 
in closures 58

securehash 311
ambiguous cases 317
anonymous 311
debugging 320
fast mode 321
inheritance 316
iterator 315
not autovivifying 312
owner 313, 325
strict mode 324

security 315

seduction 101
seek function 253, 257, 268, 415
Seibel, Peter 222
select function 257
SELECT statement (SQL) 396
selection of attribute names 187
selector 18

Smalltalk concept 439
Self 455
self documenting code

*foo{THING} syntax 64
dispatch tables 361
document 33
explicit clone method 106
method arguments 76
named arguments 32

semantics 236
different, for regular 

expressions 148
imposed on generic tree 348
of &STORESIZE vs 

&EXTEND 255
of inheritance 170
of method call 171
of operators 277
of persistent specifier 397
of reblessing 178
of regular expressions 146
of tree node classes 337
origin of 341
reference 291

sentinel methods 128
separation

of creation and 
initialization 173

of process and result 151
serialization 17, 389, 464
serious code 89
seven

deadly sins 22
dwarfs 22

sh shell 53
SHA 138
shallow copy 103
shame, hidden by 

encapsulation 166
486 INDEX



shared
attribute 18, 228
code (inheritance) 12
method 18

Sharpe, Paul 427
Shell module 56
Shensky, Brian xviii
shift function 25, 250
shortening long variable 

names 60
shuck 70
side-effects, ignoring 

implementation 15
signal

handler 404, 410
ill-timed 415

signature 464
in other languages 445
of variant 378

simple database 393
Simula 438, 443, 454
simulation 35, 353, 385

of iterator by tied 
hash 244

of methods via 
&AUTOLOAD 93

of standard variable 237
simultaneous encoding 411
single datum 136
single dispatch 352, 464

left-most ancestor wins 361
single inheritance and 

reblessing destructors 177
single-celled organisms 14
slice

array 25
hash 28

slot 18
in symbol table entry 59
SCALAR, ARRAY, 

HASH, etc. 60
small town 296
Smalltalk 19, 76, 438, 449, 

454, 455, 467
soft reference 64
software development 56
software engineering 99, 138

sorting 231, 330
special-purpose class, for 

transparency 17
specification of attributes 215
speed

of &AUTOLOAD 270
of access to tied 

variables 237
of Class::Multimethods 

module 385
of memory mapping 416
of method calls xiv
of multiple dispatch 361, 

372, 380
of securehashes 321
of subroutine calls via 

references 334
spelling mistake 119, 128
spin 415
splice function 25, 124, 

250, 363
split function 415
sprintf function 335, 426
SQL 394
square brackets 40
Srinivasan, Sriram 69
stack via array 24
static 18
STDOUT, paging 159
stealing an object's identity 307
sticky 353, 414
Stock, Corallie & Fred xviii
Stock, Linda xviii
Storable module 390, 405, 418
storage 392, 412

optimal for bit-strings 138
string constants 288
stringification 292, 294, 

308, 381
=> operator 26
in curly braces 26
not in slices 28
of references 39, 264
of undef 381
operator 282

strong encapsulation 440, 
451, 456

Stroustrup, Bjarne 443
structure 213, 227

hierarchical 218
of pseudo-hashes 126

stubs 56
stupidity, fatality of 344
sub keyword 28

and anonymous 
subroutines 42

subclass 18
subprogram 28
subroutine 28

& prefix 29
anonymous 42
any number of arguments 29
arguments 29
as attribute 231
as method 74, 429
as object 151, 297, 430
caller function 35
closure 56
constructor 78
definition 28
differences when called 

as method 75
exported 410
fatality if non-existent 55
generic 327
in other languages 445, 450
invocation 29
methods as adaptors 153
other call syntaxes 30
overloading 380
pre- and post-conditions 30
prototype 36
replacement (goto &) 31
returning last statement's 

value 79
with private memory 58

subroutine reference 231, 329, 
338, 432, 433

as operator 
implementation 278

substr function 283
subtree 16

non-existent 347
Sugalski, Dan 71
INDEX 487



summary
of automated class 

generation 235
of basic Perl 72
of blessing non-variables 166
of blessing scalars and 

arrays 142
of Class::Multimethod dis-

patch process 369
of encapsulation 

techniques 326
of genericity in Perl 350
of inheritance 202
of method dispatch 

process 171
of multiple dispatch 385
of object orientation 20
of object-oriented Perl 

basics 117
of object-oriented Perl 

syntax 429
of operator overloading 295
of persistence 428
of polymorphism 212
of tie mechanism 275
of Tie::SecureHash access 

rules 324
SUPER 183, 431
surnames 44
swapping two variables 24
swizzled 389
Sybase 394
symbol table 43, 59, 64, 245

entry slot 59
installing methods at run-

time 93
run-time access to 389
vs lexical variables 404

symbolic reference 64, 94, 220, 
270, 287, 330, 464

and lexical variables 65
and typeglobs 65
and > operator 64
as method name 75
conversion to non-symbolic 

reference 64, 411
to @ISA 363

to access 65
to operator 

implementation 278
to typeglob 410

symbolic use of inheritance 414
synchronization in fine-grained 

persistence 418
synonym, variable name vs 

identity 388
synopsis, in documentation 96
syntactic sugar 168, 222
syntax

extra 75
indirect object 98, 163, 186, 

306
liberties 90
of other languages, 

comparative 442, 447, 
452, 457

securehash 311
similarities between 

languages 451
sysopen function 257, 393
sysread function 257, 415
sysseek function 257, 415
syswrite function 256, 415

T

table 40
dispatch 358
multidimensional 352
SQL 395

Tangram module 428
target, viable vs actual 370
Taylor, David A. 19
team-based code 

development 296
techniques, object-oriented

339, 418
tedium 213, 379, 382
teleology 341
Telephone 44
tell function 257
teller machine 2
template 18, 327
temporary variable 49

terminology
of object orientation 18
of other languages 438

ternary operator 284
testing base classes 189
tests-in-methods 355, 367, 385
text, conversion to code 156
Text::Balanced module 67, 248
Text::Filter module 275
Text::Template module 335, 

350
textbooks 18
thaw 388, 390, 391, 394, 408
The Dark Side 212
The Eternal Void 96
The Perl Journal 45, 70
thermodynamics 35
Thread.pm module 166
threads 164
three little rules 73
three-way comparison 280
throw-away applications 210
tie function 236, 433

arrays 249
database access 393
filehandles 256
hashes 243
scalars 238

Tie::… modules 262
Tie::SecureHash module 311, 

435
TIEARRAY 433
tied function 243, 257, 268
tied hash as object 418
tied variable as object 265
TIEHANDLE 433
TIEHASH 433
tie-ing and blessing to one 

package 311
TIESCALAR 433
tie-then-bless approach 267
Titans (Ancient Greek gods) 46
Todd, Bennett xviii
token 153, 205, 465

extraction 153
object 207

tokenization 154
488 INDEX



tools 213
Torkington, Nathan xviii, 69
tracking objects 302
tradeoffs 147, 237
tragedy 25
Transceiver class 128
transparency 324

of persistence 17
tree

binary search 16, 339
container class 336
heap 344
inheritance 7
inheritance distance 370
rebalancing 338

truck
other kinds of 6
registration system 10

Truck class 5
truncate function 254, 257, 268
trust, perils of 296
type

dynamic 16
numerical 352
of attribute 215
parameteric 327
parameters 327, 352
run-time 353
system, Perl's 328

type specifiers
$ (scalar) 21
% (hash) 26
& (subroutine) 29
* (typeglob) 60
@ (array) 22

type-compatibility 203
typed lexical 131, 192, 328, 465
typeglob 59, 268, 414, 433

accessing slots 62
anonymous 415
as object 158, 430
assignment 60, 94, 329, 330, 

390, 392, 394, 410
selective assignment of 

slots 60
typography xvii

U

undef 23
silent conversion to zero 151

underscore 78, 313
and use base 192

unexpected
behaviour 90
multiple dispatch 

outcomes 372
unimplemented subroutine 55
unique

attribute value 226
hash key 389

unit vector 293
UNIVERSAL 54, 171, 182, 431

"Mother Of All Classes" 211
&can 179
&isa 179
and FreezeThaw module 400

Unix
.profile file 53
module directory 52
setting up a module under 53

unnecessary internal organs 237
unqualified key 323
unshift function 25, 250
unswizzling 389
untie function 238
unwieldy variable names 60
upper-case to lower-case 261
Uranus 46
use 222, 405

and importing modules 51
base 191
Carp 344
constant 120
fields 130
overload 278
Persistence 410
strict 48, 54, 65, 89
vars 22, 54

user expections 83
user-defined type 18
username 395
utility method 338

V

value 26
value semantics 291
values function 27, 244, 315
variable

conferring identity on 
data 388

lexical 46, 424
package 45
predeclared 22
scope, effect of closures 57

variant 367, 465
as optimization 377
default 378
defining anywhere 379
most approrpiate 368
nearest 368
of last resort 383
signature 378

VCR programming 56
vec function 138
vectors 292
verbosity 102
version number of a module 54
vertical ordering (of heaps) 347
viable target 370, 465
virtual function 18
virtues, four 24
visibility

of multimethod variants 379
of subroutines vs lexicals 430

Visual Basic 19
void context 33

warning if unexpected 34
Vromans, Johan 275

W

-w flag 89
Wais module 66
wait function 160
Wall, Larry xix, 69
wantarray function 34, 124
warn function 34
websites

DBI module 427
for object orientation 19
INDEX 489



for other languages 443, 449, 
457

for this book 71
PARI 295
PERL.COM 71
Tangram module 428
The Perl Journal 71

weight, of a subtree 347
weirdness 119
who to blame 82

window class 351
Windows module directory 52
wisdom, collected 66
wolf in sheep's clothing 145
write function 257

X

x operator 283, 293
Xerox PARC 439

Z

Zakharevich, Ilya xviii, 278, 
295, 391

Zen 37
Zeus 46
490 INDEX


	contents
	foreword
	preface
	acknowledgments
	author online
	What you need to know first (An object orientation primer)
	1.1 The essentials of object orientation
	1.1.1 Objects
	1.1.2 Classes
	1.1.3 Class attributes and methods
	1.1.4 Inheritance
	1.1.5 Polymorphism

	1.2 Other object-oriented concepts
	1.2.1 Interface vs. implementation
	1.2.2 Aggregation
	1.2.3 Genericity
	1.2.4 Persistence

	1.3 Terminology: a few (too many) words
	1.4 Where to find out more
	1.4.1 Books
	1.4.2 Websites
	1.4.3 Newsgroups

	1.5 Summary

	What you need to know second (A Perl refresher)
	2.1 Essential Perl
	2.1.1 Scalars
	2.1.2 Arrays
	2.1.3 Hashes
	2.1.4 Subroutines
	2.1.5 References and referents
	2.1.6 Packages

	2.2 Nonessential (but very useful) Perl
	2.2.1 Modules
	2.2.2 Autoloading
	2.2.3 Closures
	2.2.4 Typeglobs

	2.3 The CPAN
	2.3.1 How to access the CPAN
	2.3.2 How to search the CPAN
	2.3.3 How to install modules from the CPAN

	2.4 Where to find out more
	2.4.1 Essential books
	2.4.2 Useful books
	2.4.3 The Perl documentation
	2.4.4 The Perl Journal
	2.4.5 Websites
	2.4.6 Newsgroups

	2.5 Summary

	Getting Started
	3.1 Three little rules
	3.1.1 Rule 1: To create a class, build a package
	3.1.2 Rule 2: To create a method, write a subroutine
	3.1.3 Rule 3: To create an object, bless a referent

	3.2 A simple Perl class
	3.2.1 The code
	3.2.2 Using the CD::Music class

	3.3 Making life easier
	3.3.1 Class modules
	3.3.2 use strict and the -w �flag
	3.3.3 Automating data member access
	3.3.4 Documenting a class

	3.4 The creation and destruction of objects
	3.4.1 Constructors
	3.4.2 Destructors

	3.5 The CD::Music class, compleat
	3.6 Summary

	Blessing arrays and scalars
	4.1 What’s wrong with a hash?
	4.2 Blessing an array
	4.2.1 An array-specific example—iterators
	4.2.2 Where to find out more

	4.3 Blessing a pseudo-hash
	4.3.1 A pseudo what???
	4.3.2 Advantages of a pseudo-hash
	4.3.3 The worst of both worlds?
	4.3.4 Compile-time support for run-time performance
	4.3.5 Typed lexicals
	4.3.6 Yet another version of CD::Music
	4.3.7 Where to find out more

	4.4 Blessing a scalar
	4.4.1 Why not bless a scalar?
	4.4.2 An object-oriented password
	4.4.3 A bit-string class
	4.4.4 Where to find out more

	4.5 Summary

	Blessing other things
	5.1 Blessing a regular expression
	5.1.1 The qr operator
	5.1.2 Why an object-oriented regular expression class?
	5.1.3 Designing a different regular expressions mechanism
	5.1.4 A closer look at the two classes
	5.1.5 On the separation of Search and State
	5.1.6 Where to find out more

	5.2 Blessing a subroutine
	5.2.1 So, how can a subroutine be an object?
	5.2.2 Why objectify a subroutine?
	5.2.3 A lexer object
	5.2.4 Example: A simple pretty-printer
	5.2.5 Where to find out more

	5.3 Blessing a typeglob
	5.3.1 Paging STDOUT
	5.3.2 A multiprocess pager class
	5.3.3 A threaded pager class
	5.3.4 Where to find out more

	5.4 Summary

	Inheritance
	6.1 How Perl handles inheritance
	6.1.1 The @ISA array
	6.1.2 What inheritance means in Perl
	6.1.3 Where the call goes
	6.1.4 Constructors and inheritance
	6.1.5 Diamonds are forfended
	6.1.6 Destructors and inheritance

	6.2 Tricks and traps
	6.2.1 The isa() method
	6.2.2 The can() method
	6.2.3 The UNIVERSAL package
	6.2.4 The SUPER pseudo-package
	6.2.5 Implementing abstract methods
	6.2.6 Naming attributes of derived classes
	6.2.7 The empty subclass test
	6.2.8 Inheritance and pseudo-hashes

	6.3 Example: Inheriting the CD class
	6.3.1 Applied Laziness
	6.3.2 Class data access revisited
	6.3.3 An alternative solution

	6.4 Where to find out more
	6.5 Summary

	Polymorphism
	7.1 Polymorphism in Perl
	7.1.1 Interface polymorphism
	7.1.2 Inheritance polymorphism

	7.2 Example: Polymorphic methods for the Lexer class
	7.3 The simple pretty-printer objectified
	7.4 Using interface polymorphism instead
	7.5 Where to find out more
	7.6 Summary

	Automating class creation
	8.1 The Class::Struct module
	8.1.1 Creating classes
	8.1.2 Attribute types
	8.1.3 Hierarchical class structures
	8.1.4 Initializing objects
	8.1.5 Inheritance and generated classes
	8.1.6 A full example—automating the CD::Music class

	8.2 The Class::MethodMaker module
	8.2.1 Constructors
	8.2.2 Scalar attributes
	8.2.3 Grouped scalar attributes
	8.2.4 Flaglike attributes
	8.2.5 Keylike attributes
	8.2.6 Nonscalar attributes
	8.2.7 Class attributes
	8.2.8 Nested objects as attributes
	8.2.9 Subroutines as attributes
	8.2.10 Abstract methods
	8.2.11 Inheritance and generated classes
	8.2.12 A full example: reautomating the CD::Music class

	8.3 Where to find out more
	8.4 Summary

	Ties
	9.1 A jacketing tie required
	9.1.1 Limitations of tie-ing

	9.2 Tie-ing a scalar
	9.2.1 Untie-ing a scalar
	9.2.2 A simple example
	9.2.3 Implementing a scalar using a nonscalar

	9.3 Tie-ing a hash
	9.3.1 Example: case-insensitive hashes

	9.4 Tie-ing an array
	9.4.1 Example: a base/codon array

	9.5 Tie-ing a filehandle
	9.5.1 An example: filtered filehandles

	9.6 Inheriting from a tie-able package
	9.6.1 Example: sorted hashes
	9.6.2 Another example: micro-tracked scalars

	9.7 Tied variables as objects
	9.7.1 A DNA class
	9.7.2 Object-oriented tied filehandles
	9.7.3 Blessing and tie-ing to the same package

	9.8 Where to find out more
	9.9 Summary

	Operator overloading
	10.1 The problem
	10.2 Perl’s operator overloading mechanism
	10.2.1 “Automagic” operators
	10.2.2 Fallback operations
	10.2.3 Specifying conversion operations

	10.3 Example: A Roman numerals class
	10.3.1 Creating class constants

	10.4 Circumventing undesired reference semantics
	10.5 The use and abuse of operators
	10.5.1 When to overload?

	10.6 Where to find out more
	10.7 Summary

	Encapsulation
	11.1 The perils of trust
	11.2 Encapsulation via closures
	11.2.1 A variation for the paranoid

	11.3 Encapsulation via scalars
	11.3.1 Name, rank, and serial number
	11.3.2 Controlled access
	11.3.3 Roll call
	11.3.4 A question of identity
	11.3.5 A variation for the truly paranoid

	11.4 Encapsulation via ties
	11.4.1 A limited-access hash
	11.4.2 Constructing a securehash
	11.4.3 Declaring securehash entries
	11.4.4 Accessing securehash entries
	11.4.5 Iterating a securehash
	11.4.6 Ambiguous keys in a securehash
	11.4.7 Debugging a securehash
	11.4.8 "Fast" securehashes
	11.4.9 “Strict” securehashes
	11.4.10 The formal access rules

	11.5 Where to find out more
	11.6 Summary

	Genericity
	12.1 Why Perl doesn’t need special generic mechanisms
	12.2 Using specific mechanisms anyway
	12.2.1 Closures as generic methods
	12.2.2 Eval-ing generic classes

	12.3 Implicit generics via polymorphism
	12.3.1 The generic Tree class
	12.3.2 A specific node class
	12.3.3 Building related node classes
	12.3.4 Cleaning up the act: an abstract base class
	12.3.5 An unrelated node class
	12.3.6 Putting it all together
	12.3.7 A philosophical note

	12.4 Where to find out more
	12.5 Summary

	Multiple dispatch
	13.1 What is multiple dispatch?
	13.2 Multiple dispatch via single dispatch and cases
	13.3 Multiple dispatch via a table
	13.3.1 Determining the table initialization order
	13.3.2 Ordering problems

	13.4 Comparing the two approaches
	13.5 Dynamic dispatch tables
	13.5.1 No free lunch...

	13.6 Some lingering difficulties
	13.7 The Class::Multimethods module
	13.7.1 Identifying the nearest multimethod
	13.7.2 Finding the nearest multimethod
	13.7.3 Implications of breadth-first multimethod dispatch
	13.7.4 Handling resolution failure
	13.7.5 Defining multimethods outside their classes
	13.7.6 Multimethods as regular subroutines
	13.7.7 Nonclass types as parameters
	13.7.8 Last resort parameters
	13.7.9 Recursive multiple dispatch
	13.7.10 Debugging a multimethod

	13.8 Comparing the three approaches
	13.9 Where to find out more
	13.10 Summary

	Persistent objects
	14.1 The ingredients
	14.1.1 Identity
	14.1.2 Encoding/serialization
	14.1.3 Storage
	14.1.4 Coordination

	14.2 Object-oriented persistence
	14.2.1 Encoding objects
	14.2.2 Object-oriented encoding

	14.3 Coarse-grained persistence
	14.3.1 Class-specific persistence
	14.3.2 Some improvements
	14.3.3 Coarse-grained persistence for any data
	14.3.4 Assessing the technique

	14.4 Fine-grained persistence
	14.4.1 Disk files as objects
	14.4.2 Memory-mapped files as objects
	14.4.3 Tied databases as objects
	14.4.4 Fine-grained persistence for any class
	14.4.5 Easier persistence through genericity
	14.4.6 Assessing the technique

	14.5 Where to find out more
	14.6 Summary

	Quick reference guide
	What you might know instead
	B.1 Perl and Smalltalk
	B.1.1 Objects
	B.1.2 Classes
	B.1.3 Methods
	B.1.4 Encapsulation
	B.1.5 Inheritance
	B.1.6 Polymorphism
	B.1.7 Control structures and exception handling
	B.1.8 Comparative syntax
	B.1.9 Where to find out more

	B.2 Perl and C++
	B.2.1 Objects
	B.2.2 Classes
	B.2.3 Methods
	B.2.4 Constructors and destructors
	B.2.5 Encapsulation
	B.2.6 Inheritance
	B.2.7 Polymorphism
	B.2.8 Comparative syntax
	B.2.9 Where to find out more

	B.3 Perl and Java
	B.3.1 Objects
	B.3.2 Classes
	B.3.3 Methods
	B.3.4 Constructors and finalizers
	B.3.5 Encapsulation
	B.3.6 Inheritance
	B.3.7 Polymorphism
	B.3.8 Exception handling
	B.3.9 Comparative syntax
	B.3.10 Where to find out more

	B.4 Perl and Eiffel
	B.4.1 Objects
	B.4.2 Classes
	B.4.3 Methods
	B.4.4 Encapsulation
	B.4.5 Inheritance
	B.4.6 Polymorphism
	B.4.7 Genericity
	B.4.8 Comparative syntax
	B.4.9 Where to find out more


	glossary
	bibliography
	index

