
TE
AM
FL
Y

Team-Fly®

Perl: The Complete Reference
Second Edition

This page intentionally left blank.

Perl:
The Complete Reference

Second Edition

Martin C. Brown

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219425-1

The material in this eBook also appears in the print version of this title: 0-07-212950-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194251

To Darcy and Leon, two little kittens
who do try to help daddy with the typing,

but usually just end up typing
“jjskdjjvoookko000000000000000000000”

About the Author
Martin C. Brown is the author of six Perl
books, including the first edition of Perl: The
Complete Reference, Perl Programmer’s Reference,
ActivePerl Developer’s Guide, and Debugging
Perl. In addition to Perl, he has worked in
Python, Java, Visual Basic, and other languages.
A programmer for 15 years, he is the former
IT director of a large advertising agency
dealing with blue chip clients such as Hewlett
Packard, Oracle, and Cable & Wireless.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Contents at a Glance
Part I Fundamentals

1 Perl Backgrounder . 3
2 Perl Overview . 17
3 Perl Parsing Rules . 37
4 Variables and Data . 73
5 Statements and Control Structures 109
6 Subroutines, Packages, and Modules 123
7 Working with Files . 161
8 Data Manipulation . 209
9 Errors and Trapping Them . 269

Part II Programming with Perl

10 Complex Data Structures . 287
11 System Information . 339
12 Networking . 361

vii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

13 Database Systems . 391
14 Interprocess Communication . 447
15 Other Execution Enhancements . 479

Part III Developing Applications

16 User Interface Tools . 513
17 Advanced User Interfaces . 529
18 Developing for the World Wide Web (WWW) 575
19 Controlling Execution with Pragmas 611
20 Extending and Embedding Perl . 641

Part IV Fine-Tuning Applications

21 Debugging and Tuning . 715
22 Perl Compiler . 773
23 Perl Documentation . 803
24 Cross-Platform Migration Traps . 825
25 Distributing Modules and Applications 837

Part V Appendixes

A Function Reference . 869
B Standard Perl Library . 993
C Resources . 1141

Index . 1153

viii P e r l : T h e C o m p l e t e R e f e r e n c e

Contents
Acknowledgments . xxxiii
Introduction . xxxv

Part I

Fundamentals

1 Perl Backgrounder . 3
Versions and Naming Conventions . 5

Perl, perl or PeRl? . 5
Life Before Perl 5.6 . 5

Perl History . 6
Main Perl Features . 7

Perl Is Free . 7
Perl Is Simple to Learn, Concise, and Easy to Read 7
Perl Is Fast . 7
Perl Is Extensible . 7
Perl Has Flexible Data Types . 8
Perl Is Object Oriented . 8
Perl Is Collaborative . 8

Compiler or Interpreter . 8

ix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Similar Programming Languages . 9
Unix Shells . 9
Tcl . 10
Python . 10
Java . 11
C/C++ . 12
awk/gawk . 12

Popular “Mythconceptions” . 13
It’s Only for the Web . 13
It’s Not Maintenance Friendly . 13
It’s Only for Hackers . 13
It’s a Scripting Language . 14
There’s No Support . 14
All Perl Programs Are Free . 14
There’s No Development Environment 14
Perl Is a GNU Project . 15
Perl Is Difficult to Learn . 15

Perl Success Stories . 15

2 Perl Overview . 17
Installing and Using Perl . 18

Writing a Perl Script . 19
Perl Under Unix . 19
Perl Under Windows . 22
Perl Under Mac OS . 28

Perl Components . 32
Variables . 32
Operators . 34
Statements . 34
Subroutines (Functions) . 34
Modules . 35

Where Next? . 35

3 Perl Parsing Rules . 37
The Execution Process . 38
Syntax and Parsing Rules . 39

Basic Syntax . 40
Comments . 41
Component Identity . 43
Operators and Precedence . 44
Bare Words . 66
Contexts . 67
Logical Values . 69

Perl Coding Styles . 70

x P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

4 Variables and Data . 73
Basic Naming Rules . 74
Scalar Variables . 75
Literals . 76

Numeric Literals . 76
String Literals . 77
Quotes . 80
Interpolation of Array Values . 81
Here Documents . 82

Arrays . 85
Hashes . 89
Lists . 94
Typeglobs . 96
The defined Function and the Undefined Value 97
Default Values . 98
Other Tokens . 98
Special Variables . 98

5 Statements and Control Structures 109
Code Blocks . 110
Conditional Statements . 111
Loops . 114

while Loops . 114
until Loops . 115
for Loops . 115
foreach Loops . 116
The continue Block . 117
Labels . 118
Loop Control . 119
Unqualified Blocks . 120
goto . 122

6 Subroutines, Packages, and Modules 123
Functions . 125

Arguments . 127
Return Values . 137
Error Notification . 138
Context . 138
Attributes . 139
Prototypes . 141

Packages . 143
Package Symbol Tables . 145

C o n t e n t s xi

Special Blocks . 146
Modules . 148

Creating Modules . 148
The Exporter Module . 149
Comparing use and require . 150
no . 153
do . 153

Scope . 154
Effects of my . 155
Effects of local . 156
Effects of our . 157
Scope Within Loops . 158

Autoloading . 158

7 Working with Files . 161
Filehandles . 163

Opening and Closing Files . 164
Reading and Writing Filehandles . 172
Locating Your Position Within a File 181
Miscellaneous Control Functions . 183

File Management . 186
File Information . 187
Basic File Management . 192
Accessing Directory Entries . 196
Managing Directories . 198
File Control with fcntl . 200
I/O Control with ioctl . 203
select . 203
File Locking . 205

8 Data Manipulation . 209
Working with Numbers . 210

abs—the Absolute Value . 210
int—Converting Floating Points to Integers 211
exp—Raising e to the Power . 211
sqrt—the Square Root . 211
log—the Logarithm . 212
Trigonometric Functions . 212
Conversion Between Bases . 213
Conversion Between Characters and Numbers 214
Random Numbers . 214
Working with Very Small Integers . 216

xii P e r l : T h e C o m p l e t e R e f e r e n c e

Working with Strings . 217
String Concatenation . 217
String Length . 218
Case Modifications . 218
End-of-Line Character Removal . 219
String Location . 219
Extracting Substrings . 220
Stacks . 221
Splicing Arrays . 223
join . 224
split . 226
grep . 227
map . 228
sort . 228
reverse . 230

Regular Expressions . 231
Pattern Modifiers . 232
The Match Operator . 233
The Substitution Operator . 236
Translation . 240
Regular Expression Elements . 242
Regular Expression Variables . 258
Regular Expression Extensions/Assertions 259
Precompiling Expressions . 261
Regular Expression Support Functions 263

Unicode . 265
Perl’s Interpretation of Unicode . 266
Unicode Characters in Perl . 266
Unicode’s Effects on Perl Code . 267

9 Errors and Trapping Them . 269
Adding Error Checking to Your Scripts . 270

Error Checking Methods . 270
Error Checking Guidelines . 272

What to Check . 273
What Not to Check . 274
When to Stop Checking . 275

Don’t Check Things Twice . 275
Functions, Return Values, and Nesting 276

Error Messages and Numbers . 277
Reporting Errors Within Scripts . 279

The Warn Function . 279
The Die Function . 280
Directives and Tokens . 280

C o n t e n t s xiii

Reporting Errors Within Modules . 281
The Carp Function . 282
The Cluck Function . 283
The Croak Function . 283
The Confess Function . 283

Part II

Programming with Perl

10 Complex Data Structures . 287
Accessing Packed Data Structures . 288
References . 293

Creating Hard References . 294
Dereferencing . 298
Determining a Reference Type . 301
Symbolic References . 302

Complex Structures . 303
Arrays of Arrays . 304
Hashes of Hashes . 309
Arrays of Hashes . 313
Hashes of Arrays . 315
Beyond Two Dimensions . 317

Objects . 321
Object Basics . 321
Creating and Using Objects . 322
Methods . 325
Classes and Inheritance . 329
Destructors and Garbage Collection 330
Comparing Perl Objects to Other Languages 330

Using tie . 331
Creating New tie Classes . 332

11 System Information . 339
Users and Groups . 340

Getting Unix Password Entries . 341
Getting Unix Group Entries . 343
Password Encryption . 344

Time . 345
gmtime and localtime . 345
time Function . 347
Comparing Time Values . 347
Converting Dates and Times into Epochs 348

xiv P e r l : T h e C o m p l e t e R e f e r e n c e

Time Arithmetic . 348
times Function . 351
sleep Function . 352
Alarms . 353

Environment Variables . 353

12 Networking . 361
Obtaining Network Information . 364

Hosts . 364
Protocols . 366
Services . 367
Networks . 368

The Socket Module . 368
Address Resolution and Conversion 369
Address Constants . 369
Socket Structures . 370
Line Termination Constants . 370

Socket Communication . 371
Connecting to a Remote Socket . 371
Listening for Socket Connections . 374

Using IO::Socket . 380
Client Side . 381
Server Side . 381
Using IO::Socket and IO::Select . 382
Getting Socket Addresses . 383
Closing Sockets . 384
Socket Options . 384
Data Transfer . 386

Graham Barr’s libnet Bundle . 387
Gisle Aas’ LWP Bundle . 389

13 Database Systems . 391
Text Databases . 393

Delimited Databases . 395
Fixed-Length Records . 395

DBM Databases . 399
DBM Implementations . 400
DBM Functions . 402
Using Tied DBM Databases . 403
Converting Between DBM Formats 406
Using AnyDBM_File . 407
GDBM Features . 408

C o n t e n t s xv

Berkeley DB Features . 409
Storing Complex Data in a DBM Database 418
Relational Databases with DBM . 421

Database File Locking . 424
Using the DBI and Win32::ODBC Toolkits . 425

DBI . 425
Win32::ODBC . 426
Database Mechanics and Compatibility 427
Connecting to a Database . 428
Executing Simple Queries . 430
Executing Extended Queries . 431
Closing the Connection . 432
Identifying Errors . 433
Doing More . 433

SQL Refresher . 434
SQL Statements . 435

14 Interprocess Communication . 447
Processes . 448

Controlling Perl Execution . 449
Process Information . 449
Process Groups . 449
Process Priority . 450

Signals . 451
Signal Handlers . 453
The __WARN__ and __DIE__ Signals 455
Sending Signals . 458

Pipes . 459
Anonymous Pipes . 459
Two-Way Communication . 460
Named Pipes . 461
Named Pipes Under Windows . 463
Safe Pipes . 467

Executing Additional Processes . 468
Running Other Programs . 468
Replacing the Current Script . 470
Creating Child Processes . 470

Other Function Calls . 477
System V IPC . 478

15 Other Execution Enhancements . 479
Perl on the Command Line . 480

Special Handling . 489

xvi P e r l : T h e C o m p l e t e R e f e r e n c e

Perl Environment Variables . 489
Perl in Perl (eval) . 491

Using eval EXPR . 492
Using eval BLOCK . 492
Trapping Exceptions . 493
Returning Information . 493
eval and the __DIE__ signal handler 494

Threads . 494
How Multitasking Works . 494
From Multitasking to Multithreading 495
Comparing Threads to Multiple Processes 497
Comparing Threads to select() . 498
Threads and Perl . 498
Creating a New Thread . 498
Creating a Thread Using an Anonymous Subroutine 499
Controlling a Thread . 500
Controlling Variables . 501
Controlling Subroutines . 502
Queues . 503
Semaphores . 504
Signals . 504

Security . 505
Using Taint Mode . 505
The Safe and Opcode Modules . 508

Part III

Developing Applications

16 User Interface Tools . 513
Processing Command Line Arguments . 514

Getopt::Std . 515
Getopt::Long . 516

Perl’s Reporting Mechanism . 521
Headers and Footers . 525
Format Functions . 526
Format Variables . 527

17 Advanced User Interfaces . 529
Working with a Terminal . 531
Using Tk . 532

Installing Tk Under Unix . 533
Installing Tk Under Windows . 533
Hello from Tk . 533

C o n t e n t s xvii

Event Loops . 537
Widgets . 540
Controlling Window Geometry . 563
Easing the Process . 567

18 Developing for the World Wide Web (WWW) 575
HTML . 576
Uniform Resource Locators . 578
Web Operation Overview . 579
The Environment . 580
The Common Gateway Interface . 584

Extracting Form Data . 586
Sending Information Back to the Browser 589
Document Body . 593

Smarter Web Programming . 593
The CGI Module . 594

Cookies . 598
Parsing HTML . 601
Parsing XML . 602
Debugging and Testing CGI Applications . 605
Security . 608

19 Controlling Execution with Pragmas 611
Warnings . 612
The $^W Variable . 614
The Old warnings Pragma . 614
Lexical Warnings in Perl 5.6 . 615

The strict Pragma . 620
The vars Option . 621
The refs Option . 623
The subs Option . 624

Other Perl Pragmas . 625
attributes . 625
autouse . 626
base . 627
blib . 628
bytes . 628
charnames . 629
constant . 629
diagnostics . 631
fields . 633

xviii P e r l : T h e C o m p l e t e R e f e r e n c e

filetest . 634
integer . 634
less . 634
lib . 635
locale . 636
open . 636
ops . 636
overload . 637
re . 637
sigtrap . 638
subs . 639
vars . 640

20 Extending and Embedding Perl . 641
Perl Internals . 643

Architecture . 644
Internal Objects . 644
Translator . 646
Opcodes . 647
Compilation . 650
Execution . 652

Perl’s Internal Structures . 653
Variables . 654
The Stack . 662
Stack Size . 668
Internals Summary . 669

Extending Perl . 669
The Extension Interface . 670
XS Overview . 670
SWIG Overview . 671
Using XS . 672

Embedding Perl . 698
Embedding the Perl Interpreter . 699
Using a Specific Perl Function . 700
Multiplicity . 704
XS Initialization . 705

Cooperating with Other Languages . 706
Converting Other Languages to Perl 706
Converting Perl to Other Languages 711
Calling Other Languages from Perl 712

C o n t e n t s xix

Part IV

Fine-Tuning Applications

21 Debugging and Tuning . 715
Debugging Techniques . 717

Using print . 717
Using caller . 721
Using eval . 724
Writing a Log . 726
Reporting to syslog . 729
Reporting to the Windows NT/2000 Event Log 729

Using a Debugger . 730
Watches . 730
Stepping . 730
Breakpoints . 731
The Perl Debugger . 731
The ActivePerl Debugger . 748

Traps for Programmers of Other Languages 750
Differences from awk/gawk . 750
C Traps . 752
sed Traps . 754
emacs Traps . 754
Shell Script Traps . 754
Python Traps . 755

Optimization . 757
The Perl Profiler . 758
Profiling by Hand . 765
Optimization Guide . 766

22 Perl Compiler . 773
Using dump . 775
Using the Compiler . 776

The Backends . 777
The perlcc Frontend . 791
Differences Between Interpreted and Compiled Code . . . 795

Comparing Script and Executable Speeds . 795
Tests . 797
Summary Results . 800

23 Perl Documentation . 803
Using the Supplied Documentation . 805

Unix . 808
Windows . 810
Mac OS/Mac OS X . 811

xx P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Writing POD Documentation . 812
POD Components . 813
Command Paragraph . 813
Ordinary Text Paragraph . 816
Verbatim Paragraph . 816
Escape Sequences . 816
Embedding Documentation . 816

Converting POD to Other Formats . 818
Text . 819
HTML . 820
Unix man Pages . 820
PostScript/PDF . 823
Converting POD to HTML On The Fly 823

24 Cross-Platform Migration Traps 825
Function Support . 826
Constant Compatibility . 827
Execution Environment . 827
Errors . 828
Line Termination . 828
Character Sets . 829
Data Differences . 829
Files and Pathnames . 829
Modules . 830
Performance and Resources . 830
Platform Migration Tricks . 831

Determining Your Platform . 831
Determining the Perl Version . 832
Checking for Supported Functions . 833
Function Overloading . 834

25 Distributing Modules and Applications 837
Perl Makefiles and ExtUtils::MakeMaker . 838

Perl Makefiles and CPAN . 839
Perl Makefiles and PPM . 839
Extension Building and Installation Overview 840
MakeMaker Overview . 842
Start with h2xs . 843
MakeMaker Configurable Options . 845
Creating a Dummy Makefile . 853
Default Makefile Targets . 853
Creating a New Perl Binary . 854
Targets for Package Builders . 855
Related Modules . 858

C o n t e n t s xxi

MakeMaker Tricks . 860
Checking for Prerequisites . 860

Packing for CPAN . 863
Packing for PPM/VPM . 863

Part V

Appendixes

A Function Reference . 869
-X . 879
abs . 880
accept . 881
alarm . 881
atan2 . 882
bind . 882
binmode . 883
bless . 883
caller . 884
chdir . 884
chmod . 885
chomp . 885
chop . 886
chown . 886
chr . 887
chroot . 887
close . 888
closedir . 888
connect . 889
continue . 889
cos . 890
crypt . 890
dbmclose . 890
dbmopen . 891
defined . 892
delete . 892
die . 893
do . 893
dump . 894
each . 895
endgrent . 895
endhostent . 895
endnetent . 896
endprotoent . 896

xxii P e r l : T h e C o m p l e t e R e f e r e n c e

endpwent . 897
endservent . 897
eof . 897
eval . 898
exec . 899
exists . 899
exit . 900
exp . 900
fcntl . 901
fileno . 901
flock . 902
fork . 903
format . 903
formline . 904
getc . 904
getgrent . 904
getgrgid . 905
getgrnam . 906
gethostbyaddr . 906
gethostbyname . 907
gethostent . 907
getlogin . 908
getnetbyaddr . 908
getnetbyname . 909
getnetent . 909
getpeername . 910
getpgrp . 910
getppid . 911
getpriority . 911
getprotobyname . 911
getprotobynumber . 912
getprotoent . 912
getpwent . 913
getpwnam . 914
getpwuid . 914
getservbyname . 915
getservbyport . 915
getservent . 916
getsockname . 916
getsockopt . 917
glob . 918
gmtime . 918
goto . 919

C o n t e n t s xxiii

grep . 920
hex . 920
import . 921
index . 921
int . 922
ioctl . 922
join . 922
keys . 923
kill . 923
last . 925
lc . 925
lcfirst . 925
length . 926
link . 926
listen . 927
local . 927
localtime . 928
log . 928
lstat . 929
m// . 929
map . 929
mkdir . 930
msgctl . 930
msgget . 931
msgrcv . 931
msgsnd . 932
my . 932
next . 933
no . 933
oct . 934
open . 934
opendir . 937
ord . 937
our . 937
pack . 938
package . 940
pipe . 940
pop . 941
pos . 941
print . 942
printf . 942
prototype . 945
push . 945

xxiv P e r l : T h e C o m p l e t e R e f e r e n c e

quotemeta . 946
rand . 946
read . 946
readdir . 947
readline . 947
readlink . 948
readpipe . 948
recv . 949
redo . 949
ref . 950
rename . 951
require . 951
reset . 952
return . 952
reverse . 953
rewinddir . 953
rindex . 953
rmdir . 954
s/// . 954
scalar . 955
seek . 955
seekdir . 956
select (filehandle) . 957
select (files) . 957
semctl . 958
semget . 958
semop . 958
send . 959
setgrent . 960
sethostent . 960
setnetent . 960
setpgrp . 961
setpriority . 961
setprotoent . 962
setpwent . 962
setservent . 962
setsockopt . 963
shift . 964
shmctl . 964
shmget . 965
shmread . 966
shmwrite . 966
shutdown . 967

C o n t e n t s xxv

sin . 967
sleep . 968
socket . 968
socketpair . 969
sort . 969
splice . 970
split . 970
sprintf . 971
sqrt . 972
srand . 972
stat . 972
study . 974
sub . 974
substr . 975
symlink . 975
syscall . 976
sysopen . 976
sysread . 978
sysseek . 978
system . 979
syswrite . 980
tell . 980
telldir . 981
tie . 981
tied . 982
time . 982
times . 982
tr/// . 983
truncate . 983
uc . 984
ucfirst . 984
umask . 984
undef . 985
unlink . 985
unpack . 986
unshift . 986
untie . 986
use . 987
utime . 988
values . 988
vec . 988
wait . 989
waitpid . 989

xxvi P e r l : T h e C o m p l e t e R e f e r e n c e

wantarray . 990
warn . 991
write . 991
y/// . 992

B Standard Perl Library . 993
AnyDBM_File . 994
AutoLoader . 995
AutoSplit . 996
B . 996
B::Asmdata . 998
B::Assembler . 999
B::Bblock . 999
B::Bytecode . 999
B::C . 999
B::CC . 1000
B::Debug . 1000
B::Deparse . 1000
B::Disassembler . 1000
B::Lint . 1001
B::Showlex . 1001
B::Stackobj . 1001
B::Terse . 1001
B::Xref . 1001
Benchmark . 1002
Carp . 1003
CGI . 1004

Import Sets . 1005
CGI::Apache . 1006
CGI::Switch . 1006
Class::Struct . 1007

Using Scalar Elements . 1008
Using Array Elements . 1008
Using Hash Elements . 1009
Using Class Elements . 1010
Example . 1010

Config . 1011
CPAN . 1012

Interactive Shell Interface . 1012
Programmable Interface . 1015

CPAN::FirstTime . 1016
CPAN::Nox . 1016
Cwd . 1016

C o n t e n t s xxvii

Data::Dumper . 1017
DB_File . 1018
Devel::SelfStubber . 1020
DirHandle . 1020
DynaLoader . 1021
English . 1021
Env . 1024
Errno . 1025
Exporter . 1025

Unknown Symbols . 1026
Tag-Handling Functions . 1026
Version Checking . 1027

ExtUtils::Command . 1027
ExtUtils::Embed . 1028
ExtUtils::Install . 1029
ExtUtils::Installed . 1029
ExtUtils::Liblist . 1029
ExtUtils::MakeMaker . 1030
ExtUtils::Manifest . 1030
ExtUtils::Miniperl . 1030
ExtUtils::Mkbootstrap . 1030
ExtUtils::Mksymlists . 1030
ExtUtils::MM_OS2 . 1030
ExtUtils::MM_Unix . 1030
ExtUtils::MM_VMS . 1031
ExtUtils::MM_Win32 . 1031
ExtUtils::Packlist . 1031
Fatal . 1031
Fcntl . 1031
FileCache . 1032
FileHandle . 1033
File::Basename . 1035
File::CheckTree . 1036
File::Compare . 1037
File::Copy . 1037
File::DosGlob . 1038
File::Find . 1039
File::Path . 1040
File::Spec . 1041
File::Spec::Mac . 1042
File::Spec::OS2 . 1043
File::Spec::Unix . 1043
File::Spec::VMS . 1045

xxviii P e r l : T h e C o m p l e t e R e f e r e n c e

File::Spec::Win32 . 1046
FindBin . 1046
GDBM_File . 1047
Getopt::Long . 1048

Linkage . 1049
Aliases . 1050
Callback Function . 1050
Return Values . 1051
Customizing GetOptions . 1051
Variables . 1053

Getopt::Std . 1053
I18N::Collate . 1054
IO . 1054
IO::File . 1055
IO::Handle . 1055
IO::Pipe . 1058
IO::Seekable . 1059
IO::Select . 1059
IO::Socket . 1061

IO::Socket::INET . 1063
IO::Socket::UNIX . 1065

IPC::Msg . 1066
IPC::Open2 . 1067
IPC::Open3 . 1068
IPC::Semaphore . 1068
IPC::SysV . 1070
Math::BigFloat . 1072
Math::BigInt . 1073
Math::Complex . 1075
Math::Trig . 1076
Net::Ping . 1077
NDBM_File . 1078
O . 1079
ODBM_File . 1079
Opcode . 1079

Functions . 1080
Opcode Sets . 1082

Pod::Functions . 1087
Pod::Html . 1087
Pod::Text . 1087
POSIX . 1089

Supported Classes . 1089
Symbol Sets . 1102

C o n t e n t s xxix

Safe . 1111
SDBM_File . 1114
Search::Dict . 1114
SelectSaver . 1114
SelfLoader . 1115
Shell . 1116
Socket . 1116
Symbol . 1118
Sys::Hostname . 1119
Sys::Syslog . 1119
Term::Cap . 1121
Term::Complete . 1122
Term::ReadLine . 1123
Test . 1124
Test::Harness . 1127
Text::Abbrev . 1127
Text::ParseWords . 1128
Text::Soundex . 1129
Text::Tabs . 1130
Text::Wrap . 1131
Tie::Array . 1131
Tie::Handle . 1132
Tie::Hash . 1132
Tie::RefHash . 1133
Tie::Scalar . 1133
Tie::SubstrHash . 1134
Time::Local . 1134
Time::gmtime . 1135
Time::localtime . 1136
Time::tm . 1137
UNIVERSAL . 1137
User::grent . 1138
User::pwent . 1139
utf8 . 1139

C Resources . 1141
Supplied Documentation . 1142

Unix Documentation . 1142
Windows Documentation . 1143
Mac OS Documentation . 1143
Other Platforms . 1144

Books . 1144

xxx P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Journals/Websites . 1146
The Perl Journal (www.tpj.com) . 1146
Internet.com (www.internet.com) . 1146
Server/Workstation Expert Magazine

(sun.expert.com) . 1146
TechWeb (www.techweb.com) . 1146

Web Resources . 1147
Mailing Lists . 1148

General Mailing Lists . 1149
Windows-Specific Mailing Lists . 1149

Newsgroups . 1150

Index . 1153

C o n t e n t s xxxi

This page intentionally left blank.

Acknowledgments

First of all, I’d like to thank my wife. Two years ago, based on the offer for the first
edition of Perl: The Complete Reference, she stood by me when I wanted to start
writing full time. Without her continued support, I wouldn’t have written the first

edition or the various other books that I’ve written since then, or been able to do this
second edition. Meanwhile, she still gives advice, listens to my rants when things aren’t
going well, and continues to be impressed when each book arrives.

Next, I’d like to thank all the people at Osborne who made this book possible. That
includes Wendy Rinaldi for offering me the opportunity, Rebekah Young for keeping
me in check, LeeAnn Pickrell and Betsy Manini for getting it through production, the
desktop compositors for laying out each chapter, and Andy Carroll and Bob Campbell
for doing the copy editing.

For technical input, thanks again to Mark Strivens, Ann-Marie Mallon, Huga van
der Sanden, Jon Nangle, and a myriad of others, including those people on Cix who
gave me ideas and input about topics and tricks that should be included in the book.

It’s not possible to write a Perl book without thanking Perl’s original author and the
current maintainers—that includes Larry Wall, Tom Christiansen, Randal L. Schwartz,
Sriram Srinivasan, Gurusamy Sarathay, and many many others. It continues to amaze
me how much you can cram into one language, and these people are the ones who do it.

If there’s anybody I’ve forgotten to acknowledge, I apologize unreservedly in
advance. I have done my best to check and verify all sources and contact all parties
involved, but it’s perfectly possible I made a mistake.

xxxiii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

The idea of this book is to provide a reference guide to everything you could
possibly want to know about Perl. I’ve done my best to try and cover all the
different aspects, from the core of the language to the different functions, and

on into the different tasks and areas of the Perl language. I even cover how to debug
your software, write documentation, and then build and distribute your applications
or modules to the world at large. Along the way, we also look at some nonstandard
features and extensions, including better ways of networking, web programming, and
designing interfaces.

Throughout the entire book, you’ll find real-world examples and guides on how to
approach real problems using Perl—not just how to use the features of Perl. If all you
want is a quick reference guide to the different areas of Perl, then use the appendixes
at the end of the book and on the Web at www.osborne.com, which cover basic
components, functions, the Perl standard library, CPAN (Comprehensive Perl Archive
Network) extension library, a complete guide to errors and warnings, and a list of
resources for more information.

xxxv
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xxxvi P e r l : T h e C o m p l e t e R e f e r e n c e

What’s Changed Since the First Edition?
Beyond the obvious updates and fixes for the newer versions of Perl, we’ve also
changed the overall layout of this edition. We got a lot of feedback on the first edition
and its pitfalls and problems. The most requested feature was a better introductory
guide to the language. As such, we’ve completely restructured the first section
of the book to provide a well-rounded introduction to the language, for people new
to programming and for those migrating from another language.

The second and third sections have been updated, with many of the chapters
modified to provide a more solution-oriented approach, and that means the order and
content of many of the chapters has been changed. We’ve expanded on the content in
many areas, including more information on networking, database access (which now
covers the DBI extension and Win32::ODBC module) and web programming.

The last section has also been modified into a guide for the final processes behind
turning your Perl program into a distributable application. This includes debugging
and retuning your script and using the Perl compiler to improve performance and
find coding errors. The chapter on Perl documentation has also been updated to
provide information on using the supplied documentation and information on how
to write your own. Finally, we cover the topics of cross-platform development and
the packaging and distribution of your application or module.

Overall, I’ve tried to make the book less Unix-centric and cover more of the issues
surrounding cross-platform development throughout the book, instead of concentrating
the information into a few chapters at the end.

Who Is the Book For?
I haven’t targeted the book at any specific group of Perl users. To put it simply, if you
program in Perl, you will find this book useful. As a reference, most people should find
it useful to keep on the desk or the shelf just as a quick means of looking up a particular
function or feature. For learners and expert users alike, the information in this book
will be invaluable.

You should also find the book useful if you want to know how to do a particular
task in Perl, since you’ll also find working real-world examples of the different features
of Perl within the book. If you are looking for more examples, you might want to look
at Perl Annotated Archives, which contains over 100 scripts to solve a myriad of different
problems. For more information on migrating Unix scripts to the Windows platform,
especially when using the ActivePerl distribution, try ActivePerl Developer’s Guide.

If debugging and tuning are more your thing, then look at Debugging Perl. You can
get more information on all of these titles and many others, in Appendix C.

I n t r o d u c t i o n xxxvii

How to Use This Book
Pick it up, look up the feature you want to get more information on from the contents
or the index, and read! The scripts and script fragments included in the book should all
work without modification on your machine. Be aware though that not all platforms
support all Perl features—Chapter 24 provides a guide to most of the issues
surrounding cross-platform development.

If you want purely reference information—that is, you want to look up the
arguments and return values to a function—then use the appendixes at the back of the
book and on the Web at www.osborne.com. For discussion, examples, and detailed
information on a particular feature, use one of the earlier chapters. You should find
references between the chapters and appendixes in both directions to help you get
more information.

Chapter Breakdown
Each chapter in the book attempts to cover a different aspect of the solutions that Perl
is able to provide.

Chapter 1 looks at the background of Perl and the fundamental abilities that you
will need to use and understand in order to make the best use of Perl.

Chapter 2 examines the basic processes behind programming in Perl, from
installing Perl onto your machine (Unix, Windows, and Mac OS are covered), to
writing and executing your first script. We also look at some of the key terms that
you come across while reading the book and using Perl.

Chapter 3 covers all of the basic semantics and parsing rules behind the Perl
language, including an outline of how the execution process works, and all of the
different components that make up a Perl script.

Chapter 4 looks at the Perl variable types; Perl supports three basic types, the
scalar, the array and the hash (or associative array).

Chapter 5 details the statement and control structures that will control the flow
and execution of your program.

Chapter 6 starts off by covering the theories behind dissecting a program into
different components, from simple subroutines, right up to the more complex issues
of creating your own modules.

Chapter 7 covers the use of files, from the basics of printing information to the
screen to reading information from multiple files.

Chapter 8 details the processing behind data processing—by far the most useful
and popular use of Perl. We start by looking at basic ways of manipulating strings and
arrays before covering the Perl regular expression mechanism.

Chapter 9 looks at the basic mechanisms available for identifying and trapping errors
and bugs, and how to go about handling the situation without upsetting the user.

xxxviii P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 10 looks at the more complex data structures available in Perl—arrays and
hashes. We go beyond the normal uses of these structures and look at other ways they
can be employed to aid in the programming process. We also take the opportunity to
examine references, which provide a different way of accessing and using information
stored in variables, and this leads us on to nested data structures and object-oriented
programming. This final section also leads to tied data structures—a system whereby
information from an external source can be attached to an internal data structure.

Chapter 11 covers the different ways of finding out system information, such as
information about users and groups, time and how to manipulate time values, and
finally the environment and how it can affect the execution of your script.

Chapter 12 describes the processing required within Perl to support communication
over standard network sockets, such as those used for communication over the Internet.

Chapter 13 looks at the storage of information in external databases, both
homegrown and using systems such as DBM, Oracle, and ODBC sources.

Chapter 14 discusses the processes involved in interprocess communication, using
both standard filehandles and System V IPC functions. The chapter also describes the
methods available for creating, controlling, and communicating with external processes.

Chapter 15 details the more advanced methods of executing Perl scripts, from
supplying arguments to the command line, to executing scripts within scripts (using
eval), to multi-threaded execution.

Chapter 16 covers the basic processes behind getting and communicating
information back to your users through a structured interface on the command line
and back through the Perl reporting mechanism.

Chapter 17 takes a detailed look at user interfaces, especially at Perl/Tk—the Perl
interface to the Tk user interface development system.

Chapter 18 describes the environment available to you when you are writing
web scripts. This covers the physical environment of a script and also the ways of
communicating between the web server, the user’s browser, and a Perl script, otherwise
known as CGI. We then go on to look at smarter ways of handling the web-development
process and the specifics of web programming with Perl, including a useful checklist of
the security issues surrounding the web-programming process.

Chapter 19 looks at ways in which you can control the execution of your Perl script.
Perl uses a series of pragmas to improve the monitoring of potential problems in your
script, provide additional warnings and error messages, and change the way in which
different aspects of your scrip are interpreted.

Chapter 20 details the methods behind extending Perl through external C functions
and libraries or through embedding Perl into your existing applications.

Chapter 21 covers the essential process of debugging Perl scripts, both at a simple
level and at deeper levels within the Perl interpreter. We also look at how to debug
regular expressions and how to use the Perl profiler to determine which parts of your
Perl script need optimization.

Chapter 22 looks in detail at the Perl compiler. This supports several different
systems that take a Perl script and produce a number of different reports and output
formats. At a simple level, this includes a parsing tree that describes the real execution

I n t r o d u c t i o n xxxix

profile of your script, and at the other end of the scale, the compiler that supports the
creation of stand-alone Perl binaries.

Chapter 23 details the use and development of Perl documentation, both when
reading supplied documentation and writing your own.

Chapter 24 concentrates on ways in which you can write Perl programs that are
cross-platform compatible, even if you don’t know what the destination platform is.
We look at the basics of using Perl in different environments, the major differences and
things to watch out for, and also ways in which you can make a script more aware of
its surroundings.

Chapter 25 discusses the processes involved in releasing a Perl module to the Perl
community. In particular, it describes the MakeMaker utility for creating Perl Makefiles
that can compile and automatically install Perl extensions.

The appendixes at the back of the book provide a quick reference resource for Perl
functions (Appendix A) and the standard Perl library (Appendix B). Appendix C gives
a list of all of the different areas—books, websites, mailing lists, and newsgroups—that
can provide more information on how to use and program with Perl.

The appendixes on the Web (www.osborne.com) provide a reference to the core
Perl constructs (Web Appendix A), the extensions for Perl available from CPAN
(Web Appendix B), and a complete list and description of all the warnings and error
messages generated by the Perl interpreter (Web Appendix C).

Conventions Used in This Book
All Perl keywords are highlighted in bold, but functions are listed without parentheses.
This is because the C functions on which the Perl versions may be based are shown
like this().

Examples and code are displayed using a fixed-width font.

Function descriptions are formatted using the same fixed-width font.

Notes are formatted like this and include additional information about a particular
topic. You’ll also find similarly formatted “Cautions” and “Warnings,” which highlight
possible dangerous tools or tricks to watch out for when programming.

Contacting the Author
I always welcome comments and suggestions on my work. I particularly appreciate
guides and recommendations on better ways of achieving different goals, especially
with a language as varied and capable as Perl. The best way to contact me is via
email. You can use either books@mcwords.com. Alternatively, visit my website,
http://www.mcwords.com, which contains resources and updated information about
the scripts and contents of this book. You can find the homepage for this book at
http://www.mcwords.com/projects/books/pcr2e/.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Part I
Fundamentals

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 1
Perl Backgrounder

3

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl is many different things to many different people. The most fundamental
aspect of Perl is that it’s a high-level programming language written originally
by Larry Wall and now supported and developed by a cast of thousands. The

Perl language semantics are largely based on the C programming language, while also
inheriting many of the best features of sed, awk, the Unix shell, and at least a dozen
other tools and languages.

Although it is a bad idea to pigeonhole any language and assign it to a specific list
of tasks, Perl is particularly strong at process, file, and text manipulation. This makes
it especially useful for system utilities, software tools, systems management tasks,
database access, graphical programming, networking, and web programming. These
strengths make it particularly attractive to CGI script authors, systems administrators,
mathematicians, journalists, and just about anybody who needs to write applications
and utilities very quickly.

Perl has its roots firmly planted in the Unix environment, but it has since become
a cross-platform development tool. Perl runs on IBM mainframes; AS/400s; Windows
NT, 95, and 98; OS/2; Novell Netware; Cray supercomputers; Digital’s VMS; Tandem
Guardian; HP MPE/ix; Mac OS; and all flavors of Unix, including Linux. In addition,
Perl has been ported to dozens of smaller operating systems, including BeOS, Acorn’s
RISCOS, and even machines such as the Amiga.

Larry Wall is a strong proponent of free software, and Perl is no exception. Perl,
including the source code, the standard Perl library, the optional modules, and all of
the documentation, is provided free and is supported entirely by its user community.

Before we get into the details of how to program in Perl, it’s worth taking the
time to familiarize yourself with where Perl has come from, what it can be used
for, and how it stacks up against other languages. We’ll also look at some popular
“mythconceptions” about what Perl is and at some success stories of how Perl has
helped a variety of organizations solve an equally varied range of problems.

What Does PERL Stand For?
There is a lot of controversy and rumor about exactly what PERL stands for and if,
in fact, it stands for anything. According to Larry Wall, the original acronym stood
for Practical Extraction and Reporting Language, and this relates to the original
development purpose, which was to process a large amount of textual report
information.

Over the years, other solutions have been proposed for the PERL acronym. The
most popular recent version is Pathologically Eclectic Rubbish Lister. Luckily, a
rough translation of that expansion equates to the original version!

FU
N

D
A

M
EN

TA
LS

C h a p t e r 1 : P e r l B a c k g r o u n d e r 5

Versions and Naming Conventions
The current version of Perl (at the time of writing—Nov 2000) was Perl 5.6, with a
develop version, v5.7, already in production. Some sites are migrating to v5.6, others
seem to be dragging their heels, although there are no major compatibility problems.

Up until March 2000, the situation concerning the available versions of Perl was
quite complex, but we’ll start with the “current” version first. From the release of Perl
5.6 there are two very simple strands. Even version numbers, such as 5.6 and 5.8 are
considered to be “stable” releases of the language. Odd version numbers, such as 5.7
and 5.9, are development releases.

Perl 5.6 was a long time coming—over two years since the last major release—
but it also set a landmark for Perl’s development. It was the first version that really
reunited the core and Win32 versions of Perl, as well as providing some compatibility
enhancements. For example, the Windows ports now support fork, something not
natively provided by the Windows operating system. Also updated were the Perl compiler
and the threading system (which actually supports the Windows fork function),
and the addition of a new keyword, our, which handles global variables in the same
way as my.

Discussions have already started for Perl 6. Unlike Perl 5, which was a complete
rewrite of Perl 4 and was developed and coded almost entirely by Larry, Perl 6 will have
its feature set determined by the people that use it, through a series of RFCs (Requests
for Comments). The language’s core code will be developed by a team of programmers
with input and assistance from Larry, and with features agreed upon by committees,
rather than solely by Larry. This will make Perl 6 a language designed by the people
that use it, rather than by the person who invented it.

Perl, perl or PeRl?
There is also a certain amount of confusion regarding the capitalization of Perl.
Should it be written Perl or perl? Larry Wall now uses “Perl” to signify the language
proper and “perl” to signify the implementation of the language. Therefore, perl can
parse Perl. In essence, however, it really doesn’t make a huge amount of difference.
That said, you will find that the executable version of perl is installed with its name
in lowercase!

Life Before Perl 5.6
Before Perl 5.6, version numbers were far more confusing. Before version 5 came
version 4, the highest incarnation of which was 4.036, released in 1993. Version 5 is
still in development, with version 5.005_03 being the last stable release before the

current 5.6. However, many sites were using Perl 5.005_56—this was a developmental
release, but stable enough that some sites used it in preference to 5.005_02. Although
there were changes between these versions, they were bug fixes rather than the
significant improvements in Perl 5.6.

As to naming, you will see references to perl4 and perl5, and more recently, perl5.6.
Since most people will be using at least perl5, it’s probably safe to refer to Perl simply
as Perl!

Perl History
Perl is a relatively old language, with the first version having been released in 1988.
The basic history is shown in Table 1-1.

If you want a more detailed history of Perl, check out the perlhist documentation
installed with Perl, or visit CPAST, the Comprehensive Perl Arcana Society Tapestry at
history.perl.org.

6 P e r l : T h e C o m p l e t e R e f e r e n c e

Version Date Version Details

Perl 0 Introduced Perl to Larry Wall’s office associates

Perl 1 Jan 1988 Introduced Perl to the world

Perl 2 Jun 1988 Introduced Harry Spencer’s regular expression
package

Perl 3 Oct 1989 Introduced the ability to handle binary data

Perl 4 Mar 1991 Introduced the first “Camel” book (Programming
Perl, by Larry Wall, Tom Christiansen, and
Randal L Schwartz; O’Reilly & Associates). The
book drove the name change, just so it could refer
to Perl 4, instead of Perl 3.

Perl 4.036 Feb 1993 The last stable release of Perl 4

Perl 5 Oct 1994 The first stable release of Perl 5, which introduced
a number of new features and a complete rewrite.

Perl 5.005_02 Aug 1998 The next major stable release

Perl 5.005_03 Mar 1999 The last stable release before 5.6

Perl 5.6 Mar 2000 Introduced unified fork support, better threading,
an updated Perl compiler, and the our keyword

Table 1-1. Perl Version History

Main Perl Features
Perl contains many features that most Perl programmers do not even know about, let
alone use. Some of the most basic features are described here.

Perl Is Free
It may not seem like a major feature, but, in fact, being free is very important. Some
languages, such as C (which is free with compilers such as GNU’s gcc), have been
commercialized by Metrowerks, Microsoft, and other companies. Other languages,
such as Visual Basic, are entirely commercial. Perl’s source code is open and free—
anybody can download the C source that constitutes a Perl interpreter. Furthermore,
you can easily extend the core functionality of Perl both within the realms of the
interpreted language and by modifying the Perl source code.

Perl Is Simple to Learn, Concise, and Easy to Read
Because of its history and roots, most people with any programming experience will
be able to program with Perl. It has a syntax similar to C and shell script, among others,
but with a less restrictive format. Most programs are quicker to write in Perl because
of its use of built-in functions and a huge standard and contributed library. Most programs
are also quicker to execute than other languages because of Perl’s internal architecture
(see the section, “Perl is Fast” that follows). Perl can be easy to read, because the code
can be written in a clear and concise format that almost reads like an English sentence.
Unfortunately, Perl also has a bad habit of looking a bit like line noise to uninitiated.
Whether or not your Perl looks good and clean really depends on how you format
it—good Perl is easy read. It is also worth reading the Perl style guidelines (in the Perl
style manual page that comes with Perl) to see how Larry Wall, Perl’s creator, likes
things done.

Perl Is Fast
As we will see shortly, Perl is not an interpreter in the strictest sense—when you execute
a Perl program it is actually compiled into a highly optimized language before it is
executed. Compared to most scripting languages, this makes execution almost as fast
as compiled C code. But, because the code is still interpreted, there is no compilation
process, and applications can be written and edited much faster than with other
languages, without any of the performance problems normally associated with an
interpreted language.

Perl Is Extensible
You can write Perl-based packages and modules that extend the functionality of the
language. You can also call external C code directly from Perl to extend the functionality

C h a p t e r 1 : P e r l B a c k g r o u n d e r 7
FU

N
D

A
M

EN
TA

LS

further. The reverse is also true: the Perl interpreter can be incorporated directly into
many languages, including C. This allows your C programs to use the functionality of
the Perl interpreter without calling an external program.

Perl Has Flexible Data Types
You can create simple variables that contain text or numbers, and Perl will treat the
variable data accordingly at the time it is used. This means that unlike C, you don’t
have to worry about converting text and numbers, and you can embed and merge strings
without requiring external functions to concatenate or combine the results. You can
also handle arrays of values as simple lists, as typical indexed arrays, and even as stacks
of information. You can also create associative arrays (otherwise known as hashes)
which allow you to refer to the items in the array by a unique string, rather than a
simple number. Finally, Perl also supports references, and through references objects.
References allow you to create complex data structures made up of a combination
of hashes, lists and scalars.

Perl Is Object Oriented
Perl supports all of the object-oriented features—inheritance, polymorphism, and
encapsulation. There are no restrictions on when or where you make use of object-
oriented features. There is no boundary as there is with C and C++.

Perl Is Collaborative
There is a huge network of Perl programmers worldwide. Most programmers supply,
and use, the modules and scripts available via CPAN, the Comprehensive Perl Archive
Network (see Web Appendix B at www.osborne.com). This is a repository of the
best modules and scripts available. Using an existing prewritten module can save you
hundreds, perhaps even thousands, of hours of development time.

Compiler or Interpreter
Different languages work in different ways; they are either compiled or interpreted.
A program in a compiled language is translated from the original source into a platform-
specific machine code. This machine code is referred to as an executable. There is no
direct relation between the machine code and the original source: it is not possible to
reverse the compilation process and produce the source code. This means that the
compiled executable is safe from intellectual property piracy.

With an interpreted language, on the other hand, the interpreter reads the original
source code and interprets each of the statements in order to perform the different
operations. The source code is therefore executed at run time. This has some advantages:
Because there is no compilation process, the development of interpreted code should

8 P e r l : T h e C o m p l e t e R e f e r e n c e

be significantly quicker. Interpreted code also tends to be smaller and easier to
distribute. The disadvantages are that the original source must be supplied in order
to execute the program, and an interpreted program is generally slower than a
compiled executable because of the way the code is executed.

Perl fits neither of these descriptions in the real sense. The internals of Perl are
such that at the time of executing a Perl script, the individual elements of the script are
compiled into a tree of opcodes. Opcodes are similar in concept to machine code—the
binary format required by the processor in your machine. However, whereas machine
code is executed directly by hardware, opcodes are executed by a Perl virtual machine.
The opcodes are highly optimized objects designed to perform a specific function.
When the script is executed you are essentially executing compiled C code, translated
from the Perl source. This enables Perl to provide all the advantages of a scripting
language while offering the fast execution of a compiled program. This mode of
operation—translation and then execution by a virtual machine is actually how most
modern scripting languages work, including Java (using Just In Time technology)
and Python.

Keeping all of that in mind, however, there have been some advances in the most
recent versions of a Perl compiler that takes native Perl scripts and converts them into
directly executable machine code. We’ll cover the compiler and Perl internals later in
this book.

Similar Programming Languages
We already know that Perl has its history in a number of different languages. It shares
several features and abilities with many of the standard tools supplied with any Unix
workstation. It also shares some features and abilities with many related languages,
even if it doesn’t necessarily share the same heritage.

With regard to specific features, abilities, and performance, Perl compares favorably
against some languages and less favorably against others. A lot of the advantages and
disadvantages are a matter of personal preference. For example, for text handling, there
is very little to choose between awk and Perl. However, personally I prefer Perl for
those tasks that involve file handling directly within the code, and awk when using it
as a filter as part of a shell script.

Unix Shells
Any of the Unix shells—sh, csh, ksh, or even bash—share the same basic set of
facilities. They are particularly good at running external programs and at most forms
of file management where the shell’s ability to work directly with many of the
standard Unix utilities enables rapid development of systems management tools.

However, where most shells fail is in their variable- and data-handling routines. In
nearly all cases you need to use the facilities provided by shell tools such as cut, paste,
and sort to achieve the same level of functionality as that provided natively by Perl.

C h a p t e r 1 : P e r l B a c k g r o u n d e r 9
FU

N
D

A
M

EN
TA

LS

10 P e r l : T h e C o m p l e t e R e f e r e n c e

Tcl
Tcl (Tool Command Language) was developed as an embeddable scripting language.
A lot of the original design centered around a macro-like language for helping with
shell-based applications. Tcl was never really developed as a general-purpose scripting
language, although many people use it as such. In fact, Tcl was designed with the
philosophy that you should actually use two or more languages when developing large
software systems.

Tcl’s variables are very different from those in Perl. Because it was designed with
the typical shell-based string handling in mind, strings are null terminated (as they are
in C). This means that Tcl cannot be used for handling binary data. Compared to Perl,
Tcl is also generally slower on iterative operations over strings. You cannot pass arrays
by value or by reference; they can only be passed by name. This makes programming
more complex, although not impossible.

Lists in Tcl are actually stored as a single string, and arrays are stored within what
Perl would treat as a hash. Accessing a true Tcl array is therefore slightly slower, as it has
to look up associative entries in order to decipher the true values. The data-handling
problems also extend to numbers, which Tcl stores as strings and converts to numbers
only when a calculation is required. This slows mathematical operations significantly.

Unlike Perl, which parses the script first before optimizing and then executing,
Tcl is a true interpreter, and each line is interpreted and optimized individually at
execution time. This reduces the optimization options available to Tcl. Perl, on the other
hand, can optimize source lines, code blocks, and even entire functions if the compilation
process allows. The same Tcl interpretation technique also means that the only way
to debug Tcl code and search for syntactic errors is to actually execute the code. Because
Perl goes through the precompilation stage, it can check for syntactic and other
possible or probable errors without actually executing the code.

Finally, the code base of the standard Tcl package does not include many of the
functions and abilities of the Perl language. This is especially important if you are
trying to write a cross-platform POSIX-compliant application. Perl supports the entire
POSIX function set, but Tcl supports a much smaller subset of the POSIX function
set, even using external packages.

It should be clear from this description that Perl is a better alternative to Tcl in
situations where you want easy access to the rest of the OS. Most significantly, Tcl will
never be a general-purpose scripting language. Tcl will, on the other hand, be a good
solution if you want to embed a scripting language inside another language.

Python
Python was developed as an object-oriented language and is well thought out. It is an
interpreted, byte-compiled, extensible, and largely procedural programming language.

TE
AM
FL
Y

Team-Fly®

FU
N

D
A

M
EN

TA
LS

Like Perl, it’s good at text processing and even general-purpose programming. Python
also has a good history in the realm of GUI-based application development. Compared
to Perl, Python has fewer users, but it is gaining acceptance as a practical rapid
application development tool.

Unlike Perl, Python does not resemble C, and it doesn’t resemble Unix-style tools
like awk either. Python was designed from scratch to be object oriented and has clear
module semantics. This can make it confusing to use, as the name spaces get complex
to resolve. On the other hand, this makes it much more structured, which can ease
development for those with structured minds.

I’m not aware of anything that is better in Python than in Perl. They both share
object features, and the two are almost identical in execution speed. However, the
reverse is not true: Perl has better regular expression features, and the level of integration
between Perl and the Unix environment is hard to beat (although it can probably be
solved within Python using a suitably written external module).

In general, there is not a lot to tip the scales in favor of one of the two languages.
Perl will appeal to those people who already know C or Unix shell utilities. Perl is
also older and more widespread, and there is a much larger library of contributed
modules and scripts. Python, on the other hand, may appeal to those people who
have experience with more object-oriented languages, such as Java or Modula-2.

Both languages provide easy control and access when it comes to the external
environment in which they work. Perl arguably fills the role better, though, because
many of the standard system functions you are used to are supported natively by
the language, without requiring external modules. The technical support for the two
languages is also very similar, with both using websites and newsgroups to help
users program in the new language.

Finally, it’s worth mentioning that of all the scripting languages available, Perl and
Python are two of the most stable platforms for development. There are, however,
some minor differences. First, Perl provides quite advanced functions and mechanisms
for tracking errors and faults in the scripts. Making extensive use of these facilities can
still cause problems, however. For example, calling the system truncate() function
within Perl will cause the whole interpreter to crash. Python, on the other hand, uses
a system of error trapping that will immediately identify a problem like this before
it occurs, allowing you to account for it in your applications. This is largely due to the
application-development nature of the language.

Java
At first viewing, Java seems to be a friendlier, interpreted version of C++. Depending
on your point of view, this can either be an advantage or a disadvantage. Java probably
inherits less than a third of the complexity of C++, but it retains much of the complexity
of its brethren.

C h a p t e r 1 : P e r l B a c k g r o u n d e r 11

Java was designed primarily as an implementation-independent language, originally
with web-based intentions, but now as a more general-purpose solution to a variety of
problems. Like Perl, Java is byte compiled, but unlike Perl, programs are supplied in
byte-compiled format and then executed via a Java virtual machine at execution time.

Because of its roots and its complexity, Java cannot really be considered as a direct
competitor to Perl. It is difficult to use Java as a rapid application development tool
and virtually impossible to use it for most of the simple text-processing and system-
administration tasks that Perl is best known for.

C/C++
Perl itself is written in C. (You can download and view the Perl source code if you so
wish, but it’s not for the faint-hearted!) Many of the structures and semantics of Perl
and C are very similar. For example, both use semicolons as end-of-line terminators.
They also share the same code block and indentation features. However, Perl tends to
be stricter when it comes to code block definitions—it always requires curly brackets,
for example—but most C programmers will be comfortable with the Perl environment.

Perl can be object oriented like C++. Both share the same abilities of inheritance,
polymorphism, and encapsulation. However, object orientation in Perl is easier to
use, compared to the complexities of constructors and inheritance found in C++. In
addition to all this, there is no distinction between the standard and object-oriented
implementations of Perl as there is with C and C++. This means you can mix and
match different variables, objects, and other data types within a single Perl application—
something that would be difficult to achieve easily with C and C++.

Because Perl is basically an interpreted language (as mentioned earlier), development
is generally quicker than is writing in native C. Perl also has many more built-in
facilities and abilities that would otherwise need to be handwritten in C/C++. For example,
regular expressions and many of the data-handling features would require a significant
amount of programming to reproduce in C with the same ease of use available in Perl.

Because of Perl’s roots in C, it is also possible to extend Perl with C source code and
vice versa: you can embed Perl programs in C source code.

awk/gawk
Although a lot of syntax is different, awk, and gawk (the GNU projects version) are
functionally subsets of Perl. It’s also clear from the history of Perl that many of the
features have been inherited directly from those of awk. Indeed, awk was designed
as a reporting language with the emphasis on making the process of reporting via
the shell significantly easier. Without awk, you would have to employ a number of
external utilities, such as cut, expr, and sort, and the solution would be neither quick
nor elegant.

There are some things that Perl has built-in support for that awk does not. For
example, awk has no network socket class, and it is largely ignorant of external files,

12 P e r l : T h e C o m p l e t e R e f e r e n c e

when compared to the file manipulation and management functions found in Perl.
However, some advantages awk has over Perl are summarized here:

� awk is simpler, and the syntax is more structured and regular.

� Although it is gaining acceptance, Perl has yet to be included as standard with
many operating systems. Awk has been supplied with Unix almost since it was
first released.

� awk can be smaller and therefore much quicker to execute for small programs.

� awk supports more advanced regular expressions. You can use a regular
expression for replacement, and you can search text in substitutions.

Popular “Mythconceptions”
Despite its history and wide use in many different areas, there are still a number of
myths about what Perl is, where it should be used, and even why it was invented. Here’s
a quick list of the popular mythconceptions of the Perl language.

It’s Only for the Web
Probably the most famous of the myths is that Perl is a language used, designed, and
created exclusively for developing web-based applications. In fact, this could not be
more wrong. Version 1.0 of Perl, the first released to the world, shipped in 1988—
several years before the web and HTML as we know it today were in general use. In
fact, Perl was inherited as a good design tool for web server applications based on
its ease of use and flexibility. The text-handling features are especially useful when
working within the web environment. There are libraries of database interfaces,
client-server modules, networking features, and even GUI toolkits to enable you to
write entire applications directly within Perl.

It’s Not Maintenance Friendly
Any good (or bad) programmer will tell you that anybody can write unmaintainable
code in any language. Many companies and individuals write maintainable programs
using Perl. A lot of people would argue that Perl’s structured style, easily readable
source code, and modular format make it more maintainable than languages such as
C, C++, and Java.

It’s Only for Hackers
Perl is used by a variety of companies, organizations, and individuals. Everybody from
programming beginners through “hackers” up to multinational corporations use Perl
to solve their problems. It can hardly be classed as a hackers-only language. Moreover,

C h a p t e r 1 : P e r l B a c k g r o u n d e r 13
FU

N
D

A
M

EN
TA

LS

it is maintained by the same range of people, which means you get the best of both
worlds—real-world features, with top-class behind-the-scenes algorithms.

It’s a Scripting Language
In Perl, there is no difference between a script and program. Many large programs
and projects have been written entirely in Perl. A good example is Majordomo, the
main mailing-list manager used on the Internet. It’s written entirely in Perl. See the
upcoming section “Perl Success Stories” for more examples of where Perl has made
a difference, despite its scripting label.

There’s No Support
The Perl community is one of the largest on the Internet, and you should be able to find
someone, somewhere, who can answer your questions or help you with your problems.
The Perl Clinic (see Appendix C) offers free advice and support to Perl programmers.

All Perl Programs Are Free
Although you generally write and use Perl programs in their native source form, this
does not mean that everything you write is free. Perl programs are your own intellectual
property and can be bought, sold, and licensed just like any other program. If you are
worried about somebody stealing your code, source filters and bytecode compilers will
render your code useful only for execution and unreadable by the casual software pirate.

There’s No Development Environment
Development environments are only really required when you need to compile source
code into object files. Because Perl scripts are written in normal text, you can use any
editor to write and use Perl programs. Under Unix, the favorites are emacs and vi, and
both have Perl modes to make syntax checking and formatting easier. Under Windows
NT, you can also use emacs, or you can use Solutionsoft’s Perl Builder, which is an
interactive environment for Perl programs. Alternatively, you can use the ActiveState
debugger, which will provide you with a direct environment for executing and editing
Perl statements. There are also many improvements being made in the ActiveState
distribution that will allow Perl to be used as part of Microsoft’s Visual Studio product
under a project called VisualPerl. On the Mac, the BBEdit and Pepper editors have a
Perl mode that colors the syntax of the Perl source to make it easier to read.

Additionally, because Perl programs are text based, you can use any source-code
revision-control system. The most popular solution is CVS, or Concurrent Versioning
System, which is now supported under Unix, MacOS and Windows.

14 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl Is a GNU Project
While the GNU project includes Perl in its distributions, there is no such thing as
“GNU Perl.” Perl is not produced or maintained by GNU and the Free Software
Foundation. Perl is also made available on a much more open license than the GNU
Public License.

GNU stands for the recursive “GNU’s Not Unix,” and is part of the Free Software
Foundation, an organization devoted to providing a suite of useful user software for free.

Perl Is Difficult to Learn
Because Perl is similar to a number of different languages, it is not only easy to learn
but also easy to continue learning. Its structure and format is very similar to C, awk,
shell script, and, to a greater or lesser extent, even BASIC. If you have ever done any
form of programming, you’re half way toward learning programming in Perl.

In many cases, you will only use a very small subset of Perl to complete most tasks.
The guiding motto for Perl development is “there’s more than one way to do it.” This
makes Perl’s learning curve very shallow and very long. Perl is a large language with a
great many features, and there is a lot you can learn if you want to.

Perl Success Stories
Perl has been used by thousands of different corporations to tackle and solve different
problems. For most people, it has reduced the development time for their desired
application by days, weeks, or even months. Below is a sample of the bigger companies
that have used Perl. I’ve tried to include testimonials and deeper examples of how
Perl was the better solution, where the information has been available.

� Amazon.com, one of the Internet’s best known and most successful e-commerce
sites, used Perl to develop an entire editorial production and control system.
This integrates the authoring, maintenance (including version control and
searching), and output of the editorial content of the entire Amazon.com website.

� Netscape engineers wrote a content management and delivery system, with
logging, analysis, and feedback on use, in three months using Perl.

� In order to get around many cross-platform development problems, SPEC
(the Standard Performance Evaluation Corporation) used Perl as a wrapper
around the C code that is used to test performance. With Perl’s ability to import
and dynamically use external C code in combination with its object-oriented
abilities, SPEC generated a test system that was easily portable from Unix to
the Windows NT platform.

C h a p t e r 1 : P e r l B a c k g r o u n d e r 15
FU

N
D

A
M

EN
TA

LS

� Using an old 60MHz Pentium and Perl, a New England hospital implemented
a distributed printing system that connected 20,000 PC workstations to 3,000
printers spread over an entire city.

On a personal level, I have Perl scripts that create users, add new virtual WWW
servers to Apache, monitor all the machines and storage on my network, keep track of
all my archives and e-mail, and even scripts that download weather information from
my weather center and get the TV listings every day!

16 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 2
Perl Overview

17

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

18 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl is a relatively unstructured language. Although it does, of course, have rules,
most of the restrictions and rules that you may be used to in other languages are
not so heavily enforced. For example, you don’t need to worry too much about

telling Perl what you are expecting to do with your program (or script or application),
or what variable’s subroutines or other elements you are either going to use or introduce.
This approach leads to what is called “There Is More Than One Way to Do It”
(TIMTOWTDI, or tim toady for short) syndrome—which refers to the fact that there
are different ways of achieving the same result, all of which are legally valid.

In fact, a Perl program is as easy as

print "Hello World\n";

Note that there’s nothing before that statement to tell Perl what it needs in order to
print out that message. Compare it to a similar C program:

#include <stdio.h>

int main()

{

printf("Hello World\n");

}

In Perl there is no “main” (well, not in the same sense as there is in C)—execution
of a Perl script starts with the first statement in the list and continues until the end of
the file. We don’t need to tell Perl to explicitly exit the program, or give a return value
to the caller; Perl will handle all of that for us.

The rest of this chapter is given over to describing how to create Perl scripts and
use Perl to execute scripts, and to describing the basic components that make up a Perl
program. The rest of this section of the book is devoted to giving more detail on each of
these elements (and more) so that you will have a complete understanding of how to
write basic Perl programs. The rest of the book looks at more advanced topics, such as
object orientation, networking, and interface and web development.

Installing and Using Perl
Perl is available for a huge array of platforms, but the chances are that you are using Perl
on one of the main three—Unix, Windows, and Mac OS. The use of Perl under all these
platforms varies slightly, so we’ll look at the Perl implementation on each one in turn.

As a basic rule, however, Perl works the same way on every platform—you create
a text file (using your favorite editor: vi, emacs, kedit, Notepad, WordPad, SimpleText,
BBEdit, Pepper), and then use Perl to execute the statements within that file. You don’t
have to worry about compiling the file into another format first—Perl executes the
statements directly from the raw text.

C h a p t e r 2 : P e r l O v e r v i e w 19
FU

N
D

A
M

EN
TA

LS

Writing a Perl Script
Ignoring the platform-specific issues for a moment, producing a Perl script is not as
difficult as it sounds. Perl scripts are just text files, so in order to actually “write” the
script, all you need to do is create a text file using your favorite text editor. Once you’ve
written the script, you tell Perl to execute the text file you created.

Under Unix, you would use

$ perl myscript.pl

and the same works under Windows:

C:\> perl myscript.pl

Under Mac OS, you need to drag and drop the file onto the MacPerl application.
In each case, Perl reads the contents of your text file, interpreting the file as Perl

statements and expressions.
The file-naming system is part convention and part rule. Generally, Perl scripts

have a .pl extension, even under Mac OS and Unix. This helps to identify what the file
is by name, although it’s actually a requirement. Other extensions you may come
across include .pm for a Perl module, .ph for a Perl header file, and .pod for a Perl
documentation file (POD stands for Plain Old Documentation).

Perl Under Unix
Because much of Perl’s early development originated on a Unix platform, it is not
surprising that this is still one of the most strongly supported Perl environments.
Perl under Unix is available in a number of formats and distributions. The main,
or “core,” distribution comes from the main Perl developers and is available in
precompiled binary and source format. There is also a distribution of Perl that comes
from ActiveState—the original developers of the Windows port of Perl—that comes
as a binary bundled with some additional extensions and the Perl Package Manager
(PPM), an alternative to the CPAN module distributed with the core release. Currently
the ActiveState release is available only for Linux (x86), Solaris, and, of course, the
original Windows.

Installation
Perl is available for Unix in both precompiled binary and source format. Precompiled
binaries can be downloaded, extracted, and then installed without any need to compile
the source code. They are available both as compressed tar archives, RPM (RedHat
Package Manager) packages, and Solaris packages. The best place to get Perl is from the
main Perl website, www. perl.com. You should find links to most binaries on that site.

If you want to compile from the sources (useful if you want to enable certain extensions
and options), then you need to download the source and then configure and compile it.

20 P e r l : T h e C o m p l e t e R e f e r e n c e

You’ll need a C compiler installed on your system—both commercial environments such as
Sun Microsystem’s Forte for C/C++ and free systems such as GNU CC should work fine.

Once you’ve downloaded the source from www.perl.com, do the following:

1. Extract the source code from the archive using tar and gunzip, for example:

$ $ gunzip -c perl.tar.gz | tar xvf -

2. Change to the newly created directory. It’s worth checking the README and
INSTALL files, which contain general Perl information and specific details on
the installation process, respectively.

3. Run the configuration script:

$./configure.gnu

This is, in fact, a GNU-style execution of the real Configure script. The standard
Perl Configure script is interactive, requiring input from you on a number of
questions. The GNU-compatible execution answers the questions automatically
for you, making a number of assumptions about your system, though it still
shows the process going on behind the scenes.

The former GNU style-configuration script will probably install Perl into
/usr/local, with the interpreter and support scripts ending up in /usr/local/
bin and the Perl library being placed into /usr/local/lib/perl5. This obviously
requires suitable access privileges to install the files to this location. You can
change the install directory by using the --prefix command line option:

$./configure.gnu --prefix=/home/mc/local

4. Run make to build the application:

$ make

The application and support files have now been compiled. It’s a good idea
at this point to run make test, which will run a standard selection of tests to
ensure that Perl has compiled properly. If there are any problems, you want
to check the build process to see if anything failed. On the mainstream systems,
such as Linux and Solaris, it’s unlikely that you will notice any test failures.

5. Once the build has completed, install the application, scripts, and modules
using make:

$ make install

Remember that the installation prefix will by default be /usr/local/, although
the exact setting will depend on your OS. Providing you didn’t specify
different directories, the usual directory specification will install Perl into the
/usr/local/bin and /usr/local/lib/perl5 directories. You will need to add
/usr/local/bin or the installation directory you chose (specified by the
$installation_prefix/bin variable in the makefile) to your $PATH environment
variable, if it is not already in it.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : P e r l O v e r v i e w 21
FU

N
D

A
M

EN
TA

LS

Executing Scripts
There are two ways of executing a Perl script under Unix. You can run the Perl application,
supplying the script’s name on the command line, as in the first example, or you can
place the second example on the first line of the file (called the shebang line),

$ perl myscript.pl #!/usr/local/bin/perl

where the path given is the path to the Perl application. You must then change the file
mode of the script to be executable (usually 0755). You can change the mode using the
chmod command:

$ chmod 755 myscript.pl

Note that it is common to have different versions of Perl on your system. In this
case, the latest version will always have been installed as /user/local/bin/perl, which
is linked to the version-specific file, for example, /user/local/bin/perl5.6.0.

The Perl libraries and support files are installed in $prefix/lib/perl5. Since version
5.004, each version of Perl has installed its own subdirectory such that the actual location
becomes /user/local/lib/perl5/5.6.0/, or whatever the version number is. User-installed
(site-specific) scripts should be placed into /user/local/lib/perl5/site-perl/5.6.0.

Whenever a script is run, unless it has been redirected, standard input, output, and
errors are sent via the terminal or window, the same as in the shell environment, except
in the case of CGI scripts, where standard input is taken from the web server, standard
output is sent back to the browser, and standard error is sent to the web server’s log file.

Installing Third-Party Modules
For most modules (particularly those from CPAN), the installation process is fairly
straightforward:

1. Download the module, and extract it using tar and gunzip, for example:

$ gunzip -c module.tar.gz | tar xf -

This should create a new directory with the module contents.

2. Change to the module directory.

3. Type

$ perl5 Makefile.PL

This will check that the module contents are complete and that the necessary
prerequisite modules are already installed. It will also create a makefile that
will compile (if necessary) and install the module.

As in the original installation process, a make test will verify that the
compilation and configuration of the package works before you come to install
it. You should report any problems to the package’s author.

4. To install the module, type

$ make install

This will copy the modules and any required support files into the appropriate
directories.

A better, and less interactive, solution is to use the CPAN module to do
the downloading, building, and installation for you. See Web Appendix B at
www.osborne.com for information on how to use the CPAN module.

Perl Under Windows
Perl has been supported under Windows for some time. Originally, development
concentrated on providing a Windows-compatible version from the core libraries,
and then the development split as it became apparent that providing a lot of the
built-in support for certain functions (notably fork) was unattainable. This lead to
a “core” port and a separate development handled by a company called ActiveWare.
ActiveWare worked on providing not only Perl, but also a suite of extensions that
allowed you to perform most operations normally handled by the built-in functions
that were only supported under Unix.

ActiveWare later became ActiveState, and their changes were rolled back into the
core release. Now there is only one version of the Perl interpreter that is valid on both
platforms, but there are now two distributions. The “core” distribution is identical to
that under Unix, so it comes with the standard Perl library but not the extension set
originally developed under the original ActiveWare development.

ActiveState still provides a prepackaged version of Perl for Windows that includes
the core Perl interpreter and an extended set of modules that include the Perl Package
Manager, a number of Win32-specific modules (see Table 2-1), and some general
extensions like Graham Barr’s libnet bundle and Gisle Aas’s LWP (libwww-perl)
bundle. The main ActiveState Perl distribution is called ActivePerl (and is now also
available under Solaris and Linux x86), but they also supply a number of extras, such
as the Perl Development Kit, which provides a visual package installer and debugger,
and PerlEx, which speeds up execution of Perl scripts when used under Microsoft’s
Internet Information Server.

22 P e r l : T h e C o m p l e t e R e f e r e n c e

Module Description

Archive::Tar A toolkit for opening and using Unix tar files.

Compress::Zlib An interface for decompressing information entirely
within Perl.

Table 2-1. Default Modules Installed by ActivePerl

C h a p t e r 2 : P e r l O v e r v i e w 23
FU

N
D

A
M

EN
TA

LS

Module Description

LWP Gisle Aas’s Lib WWW Perl (LWP) toolkit. This includes
modules for processing HTML, URLs, and MIME-
encoded information, and the necessary code for
downloading files by HTTP and FTP.

Win32::ChangeNotify Interface to the NT Change/Notify system for monitoring
the status of files and directories transparently.

Win32::Clipboard Access to the global system clipboard. You can add and
remove objects from the clipboard directory.

Win32::Console Terminal control of an MSDOS or Windows NT
command console.

Win32::Event Interface to the Win32 event system for IPC.

Win32::EventLog Interface to reading from and writing to the Windows
NT event log system.

Win32::File Allows you to access and set the attributes of a file.

Win32::FileSecurity Interface to the extended file security options under
Windows NT.

Win32::Internet Interface to Win32’s built-in Internet access system for
downloading files. For a cross-platform solution see
Net::FTP, Net:HTTP or the LWP modules elsewhere
in this appendix.

Win32::IPC Base methods for the different IPC techniques
supported under Win32.

Win32::Mutex Interface to the Mutex (Mutual/Exclusive) locking and
access mechanism.

Win32::NetAdmin Network administration functions for individual
machines and entire domains.

Win32::NetResource Provides a suite of Perl functions for accessing and
controlling the individual Net resources.

Win32::ODBC ODBC interface for accessing databases. See also the
DBI and DBD toolkits.

Win32::OLE Interface to OLE automation.

Win32::PerfLib Supports an interface to the Windows NT
performance system.

Table 2-1. Default Modules Installed by ActivePerl (continued)

Installation
There are two ways of installing Perl—the best and recommended way is to download
the ActivePerl installer from www.activestate.com, run the installer, and then reboot your
machine. This will do everything required to get Perl working on your system, including
installing the Perl binary, its libraries and modules, and modifying your PATH so that
you can find Perl in a DOS window or at the command prompt. If you are running Perl
under Windows NT or Windows 2000, or are using Microsoft’s Personal Web Server for
Windows 95/98/Me, then the installer will also set up the web server to support Perl as
a scripting host for web development. Finally, under Windows NT and Windows 2000,
the ActivePerl installer will also modify the configuration of your machine to allow Perl
scripts ending in .pl to be executed directly—that is, without the need to pass the script
names to Perl beforehand.

24 P e r l : T h e C o m p l e t e R e f e r e n c e

Module Description

Win32::Pipe Named pipes and assorted functions.

Win32::Process Allows you to create manageable Win32 processes
within Perl.

Win32::Registry Provides an interface to the Windows registry. See the
Win32API::Registry module and the Win32::TieRegistry
module for a tied interface.

Win32::Semaphore Interface to the Win32 semaphores.

Win32::Service Allows the control and access of Windows NT services.

Win32::Shortcut Access (and modification) of Win32 shortcuts.

Win32::Sound Allows you to play .WAV and other file formats within
a Perl script.

Win32::TieRegistry A tied interface to the Win32 registry system.

Win32::WinError Access to the Win32 error system.

Win32API::Net Provides a complete interface to the underlying
C++ functions for managing accounts with the
NT LanManager.

Win32API::Registry Provides a low-level interface to the core API used for
manipulating the registry.

Table 2-1. Default Modules Installed by ActivePerl (continued)

The alternative method is to compile Perl from the core distribution. Although
some people prefer this version, it’s important to note that core distribution does not
come with any of the Win32-specific modules. You will need to download and install
those modules separately.

If you want to install a version of the Perl binary based on the latest source code,
you will need to find a C compiler capable of compiling the application. It’s then a case
of following the instructions relevant to your C and development environment. The
supported C compilers are described here. Other versions and C compilers may work,
but it’s not guaranteed.

� Borland C++, version 5.02 or later: With the Borland C++ compiler, you
will need to use a different make command, since the one supplied does
not work very well and certainly doesn’t support MakeMaker extensions.
The documentation recommends the dmake application, available from
http://www-personal.umich.edu/~gsar/dmake-4.1-win32.zip.

� Microsoft Visual C++, version 4.2 or later: You can use the nmake that comes
with Visual C++ to build the distribution correctly.

� Mingw32 with EGCS, versions 1.0.2 and 1.1, or Mingw32 with GCC, version
2.8.1: Both EGCS and GCC supply their own make command. You can
download a copy of the EGCS version (preferred) from ftp://ftp.xraylith.
wisc.edu/pub/khan/gnu-win32/mingw32/. The GCC version is available
from http://agnes.dida.physik.uni-essen.de/~janjaap/mingw32/.

Also, be aware that Windows 95/98 as a compilation platform is not supported.
This is because the command shell available under Windows 95/98 is not capable of
working properly with the scripts and make commands required during the building
process. The best platforms for building from the core source code are Windows NT or
Windows 2000 using the standard cmd shell.

In all cases, ignore the Configure utility that you would normally use when compiling
under Unix and Unix-like operating systems. Instead, change to the win32 directory
and run the make command for your installation. For example:

c:\perl\win32> dmake

For Microsoft’s Visual C++, you will need to execute the VCVARS32.BAT batch file,
which sets up the environment for using Visual C++ on the command line; for example:

c:\perlsrc\win32>c:\progra~1\micros~1\vc98\bin\vcvars32.bat

You may need to increase the environment memory on your command.com for
this batch file to work properly—you can do this by modifying the properties for the

C h a p t e r 2 : P e r l O v e r v i e w 25
FU

N
D

A
M

EN
TA

LS

26 P e r l : T h e C o m p l e t e R e f e r e n c e

MS-DOS Prompt shortcut. Select the shortcut within the Start menu, and then choose
the Program tab. You should modify the “Cmd Line” field to read

C:\WINDOWS\COMMAND.COM /E:4096

This boosts the environment memory for the command prompt up to 4K—more than
enough for all the variables you should need.

Remember that compiling and installing Perl from the source distribution does not
give you the integration facilities or modules that are included as standard within the
ActiveState version.

You will need to manually update your PATH variable so that you have access to
the Perl interpreter on the command line. You can do this within Windows 95/98 by
modifying the AUTOEXEC.BAT file. You will need to add a line like

SET PATH=C:\PERL\BIN\;%PATH%

This will update your search path without replacing the preexisting contents. The
C:\PERL\BIN\ is the default install location; you should modify this to wherever
you have installed the binary.

On Windows NT/2000, you will need to update the PATH variable by using the
System control panel.

Executing Scripts
Once installed correctly, there are two basic ways of executing a Perl script. You can
either type

C:\> perl hello.pl

in a command window, or you can double-click on a script in Windows Explorer. The
former method allows you to specify command line arguments; the latter method will
require that you ask the user for any required information.

Under Windows NT, if you want a more Unix-like method of executing scripts,
you can modify the PATHEXT environment variable (in the System control panel)
to include .pl as a recognized extension. This allows you to call a script just like any
other command on the command line, but with limitations. The following will work:

C:\> hello readme.txt

However, redirection and pipes to the Perl script will not work. This means that the
following examples, although perfectly valid under Unix, will not work under Windows:

C h a p t e r 2 : P e r l O v e r v i e w 27
FU

N
D

A
M

EN
TA

LS

C:\> hello <readme.txt

C:\> hello readme.txt|more

The other alternative, which works on all Windows platforms, is to use the pl2bat
utility. This wraps the call to your Perl script within a Windows batch file. For
example, we could use it to convert our hello.pl utility:

C:\> pl2bat hello.pl

C:\> hello

The big advantage here is that because we are using batch file, it works on any Windows
platform, and we can even add command line options to the Perl interpreter within the
batch file to alter the behavior. Furthermore, pipes and redirection work correctly with
batch files, which therefore also means the options work with our Perl script.

If you want to specify any additional command line options, you can use the normal
“shebang” line (#!) to specify these options. Although Windows will ignore this line,
the Perl interpreter still has to read the file, and so it will extract any information from
the line that it needs. So, for example, to turn warnings on within a script, you might
use a line such as

#!perl -w

Note that you must still comment out the line using a leading hash character.

Installing Third-Party Modules
Although it’s possible to use the CPAN module to do the installation for you, it requires
access to the make command and often a C compiler in order for it to work properly.
Instead, ActivePerl comes with the Perl Package Manager (PPM). This works along the
same basic premise as the CPAN module, except that PPM modules are precompiled
and ready to be installed—all the PPM tool actually does is copy the files downloaded
in a given package into their required location.

Using PPM is very easy. You start PPM from the command line:

C:\> ppm

PPM interactive shell (1.1.1) - type 'help' for available commands.

PPM>

Once there, you use search to find a suitable package, and install to install it.
For example, to install the Tk interface module,

C:\> ppm

PPM interactive shell (1.1.1) - type 'help' for available commands.

PPM> install Tk

And you then let PPM install the files for you. The number of PPM files is smaller than
CPAN, largely because the modules on CPAN are uncompiled, and those for use under
PPM need to be precompiled. To add to the headaches for developers many of the
CPAN packages rely on libraries and functions only available under Unix.

PPM packages are stored in a number of repositories. The main repository is at
ActiveState, but others are available. A list of repositories is given in Table 2-2.

Perl Under Mac OS
Compared to Unix and Windows, Mac OS has one significant missing feature: it has
no command line interface. Mac OS is a 100 percent windowed GUI environment.
This presents some potential problems when we consider the methods already
suggested for running Perl programs.

The solution is a separate “development environment.” The MacPerl application
supports both the execution of Perl scripts and the creation of the scripts in the first
place. In addition to direct access to the execution process (scripts can be started and
stopped from menus and key combinations), MacPerl also permits you interactive use
of the Perl debugger in a familiar environment, and complete control of the environment
in which the scripts are executed.

Quite aside from the simple interface problem, there are also underlying differences
between text file formats, the value of the epoch used for dates and times, and even the
supported commands and functions. There are ways of getting around these problems,
both using your own Perl scripts and modifications and using a number of modules
that are supplied as standard with the MacPerl application.

The current version of MacPerl is based on v5.004 of Perl, which makes it a couple
of years old. Although the developer, Matthias Neeracher, has promised to work on a
new version, there is currently no set date for a Perl 5.6 release. In fact, it’s possible that
MacPerl may not be updated until Perl 6 is released toward the end of 2001.

28 P e r l : T h e C o m p l e t e R e f e r e n c e

Repository URL

ActiveState http://www.activestate.com/packages

Jan Krynicky http://jenda.krynicky.cz/perl

Roth Consulting http://www.roth.net/perl/packages/

Achim Bohnet http://www.xray.mpe.mpg.de/~ach/prk/ppm

RTO http://rto.dk/packages/

Table 2-2. PPM Repositories

For those of you interested in developing with Perl under Mac OS X, you’ll be pleased
to hear that Mac OS X’s Unix layer is used to provide the same basic functionality as
any Unix distribution. In fact, Mac OS X actually comes with Perl installed as standard.

Installation
Perl is available in a number of different guises, depending on what you want to do
with it and how extensible and expandable you want the support modules to be. The
basic distribution, “appl”, includes the MacPerl binary, all the Perl and MacPerl libraries
and modules, and the documentation. The “tool” distribution works with MPW (the
Macintosh Programmer’s Workshop), allowing you to develop and release Perl programs
that are part of a larger overall application while presenting you with the same interface
and development environment you use for C/C++ and Pascal Mac applications. Because
MacPerl provides an almost transparent interface to the underlying Mac toolbox, you
can use Perl and C/C++/Pascal programs and code interchangeably. The source, in the
“src” distribution, including all of the toolbox interfaces, is also available.

Installing the application is a case of downloading and decompressing the installer,
and then double-clicking on the installer application. This will install all the modules,
application, and documentation you need to start programming in Perl. Starting MacPerl
is a simple case of double-clicking on the application.

Executing Scripts
Perl scripts are identified using the Mac OS Creator and Type codes. The MacPerl
environment automatically sets this information when you save the script. In fact,
MacPerl specifies three basic formats for running scripts and one additional format
for use with Mac-based web servers. The different formats are outlined in Table 2-3.

C h a p t e r 2 : P e r l O v e r v i e w 29
FU

N
D

A
M

EN
TA

LS

File Type Description

Droplet A droplet is a mini-application that consists of the original
Perl script and a small amount of glue code that uses Apple
events to start MacPerl, if it is not already running, and then
executes the script. Using droplets is the recommended
method for distributing MacPerl scripts.
To save a script as a droplet, go to Save As under the File
menu, and choose Droplet in the file type pop-up at the
bottom of the file dialog box.
Files dragged and dropped onto a droplet’s icon in the
Finder have their names passed to the script as arguments
(within @ARGV).
If you plan on distributing your scripts to other people,
droplets require that the destination users have MacPerl
already installed. This might make initial distributions large
(about 800K), although further updates should be smaller.

Table 2-3. MacPerl Script Types

When a script is executing, STDIN, STDOUT, and STDERR are supported directly
within the MacPerl environment. If you want to introduce information on a “command
line” (other than files, if you are using a droplet), you will need to use the Mac-specific
toolbox modules and functions to request the information from the user.

Installing Third-Party Modules
Installation of third-party modules under MacPerl is complicated by the lack of either
standard development tools or a command-line environment that would enable you to
execute the normal Perl makefiles for make tools.

Scripts that rely on external modules, such as those from CPAN (especially those
that require C source code to be compiled), may cause difficulties, not all of which can
be easily overcome. The process for installing a third-party module is as follows:

1. Download and then extract the module. Most modules are supplied as a gzipped
tar file. You can either use the individual tools, MacGzip and suntar, to extract
the file, or use Aladdin System’s Stuffit Expander with the Expander Extensions.

30 P e r l : T h e C o m p l e t e R e f e r e n c e

File Type Description

Stand-alone applications A stand-alone application creates a file composed of the Perl
application and the script and related modules. This creates a
single, “double-clickable” application that runs and executes
your script.
This can be a great solution if you want to provide a single-file
solution for a client, or if you want to save clients the task of
installing MacPerl on their machines.
However, this is still an interpreted version. The script is
not compiled into an executable, just bundled with the Perl
interpreter into a single file.

Plain text file A plain text file can be opened within the MacPerl environment
and executed as a Perl script. Make sure that if the script has
come from another platform, the script is in Mac OS text format.
These files will not automatically execute when you double-
click them. They open either the built-in editor within MacPerl
or the editor you usually use for editing text files (for example,
SimpleText, BBEdit, or emacs).

CGI Script This creates a script suitable for execution under many
Mac-specific web servers, including the one supported
by Apple’s AppleShare IP 6.0.

Table 2-3. MacPerl Script Types (continued)

TE
AM
FL
Y

Team-Fly®

Whichever application set you use, remember to switch line-feed conversion
on. This will convert the Unix-style Perl scripts into Macintosh text files, which
will be correctly parsed by the MacPerl processor.

2. Read the documentation to determine whether the module or any modules on
which it relies use XS or C source code. If they do, it’s probably best to forget
about using the module. If you have access to the MPW toolkit, you may be
able to compile the extension, but success is not guaranteed. You can also ask
another MacPerl user, via the MacPerl mailing list, to compile it for you.

3. Ignore the Makefile.PL file. Although it might run, it will probably report an
error like this:

On MacOS, we need to build under the Perl source directory or

have the MacPerl SDK installed in the MacPerl folder.

Ignore it, because you need to install the Perl modules manually. Even if the
Makefile.PL runs successfully, it will generate a makefile that you can’t use on
the Mac without the addition of some special tools!

4. Create a new folder (if you don’t already have one) to hold your site-specific
and contributed modules. This is usually located in $ENV{MACPERL}sitelib:,
although you can create it anywhere, as long as you add the directory to the
@INC variable via the MacPerl application preferences or use the use lib
pragma within a script.

Remember to create a proper directory structure if you are installing a
hierarchical module. For example, when installing Net::FTP, you need to
install the FTP.pm module into a subdirectory called Net, right below the
site_perl or alternative installation location.

5. Copy across the individual Perl modules to the new directory. If the modules
follow a structure, copy across all the directories and subdirectories.

6. Once the modules are copied across, try using the following script, which will
automatically split the installed module, suitable for autoloading:

use AutoSplit;

my $instdir = "$ENV{MACPERL}site_perl";

autosplit("$dir:Module.pm", "$dir:auto", 0, 1, 1);

Change the $instdir and module names accordingly. See Appendix B for
more details on the AutoSplit module.

7. Once the module is installed, try running one of the test programs, or write a
small script to use one of the modules you have installed. Check the MacPerl
error window. If you get an error like this,

Illegal character \012 (carriage return).

File 'Midkemia:MacPerl ƒ:site_perl:Net:DNS:Header.pm'; Line 1

(Maybe you didn't strip carriage returns after a network transfer?)

C h a p t e r 2 : P e r l O v e r v i e w 31
FU

N
D

A
M

EN
TA

LS

32 P e r l : T h e C o m p l e t e R e f e r e n c e

then the file still has Unix-style line feeds in it. You can use BBEdit or a similar
application to convert these to Macintosh text. Alternatively, you could write a
Perl script to do it!

Perl Components
Describing language—whether coded, written, or spoken, is fundamentally difficult
because in order to understand the language components (nouns, verbs, adjectives)
you also need to need to understand the semantics that convert those components in
isolation into an understandable language that allows you to communicate. Unfortunately,
it’s impossible to describe those semantics without giving examples of their use!

As a rule, Perl lets you do what you want, when you want to, and, more or less,
how you want to. Perl is far more concerned about letting you develop a solution
that works than it is about slotting your chosen solution into a set of standards and
a rigid structure.

The core of any program are the variables used to hold changeable information. You
change the contents of those variables using operators, regular expressions, and functions.
Statements help to control the flow of your program and enable you to declare certain
facts about the programs you are running. If you can’t find what you want using the
base Perl function set, you can make use of a number of modules, which export a list
of variables and functions that provide additional information and operations. If you
want to work in a structured format, modules also support objects, methods, and object
classes. You can, of course, also make your own modules that use your own functions.

We’ll have a quick look at some of the elements and components within Perl that
will help when we start to look at these individual items in more detail in future chapters.

Variables
Variables hold variable pieces of information—they are just storage containers for
numbers, strings, and compound structures (lists of numbers and strings) that we
might want to change at some future point.

Perl supports one basic variable type, the scalar. A scalar holds numbers and strings,
so we could rewrite the simple “Hello World” example at the beginning of this chapter as

$message = "Hello World\n";

print $message;

In this example, we’ve assigned a literal to a variable called $message. When you
assign a value to a variable, you are just populating that variable with some information.
A literal is a piece of static information—in this case it’s a string, but it could have been
a number. By the way, when you assign information, you are assigning the value to the

right of the assignation operator (the = sign) to the lvalue on the left. The lvalue is the
name given to a variable or structure that can hold information. Normally this is a
variable, but functions and objects are also types of lvalues.

You’ll notice in the preceding example that the variable, $message, has a “funny”
character at the beginning. In this case, it’s a dollar sign, and it identifies the variable as
being a scalar. You always use a dollar sign when accessing a scalar value. The way to
remember a scalar is that the $ sign looks like an “s”, for scalar!

There are also some compound variable types—namely the array and the hash.
The array is a list of scalar variables—thus we can store a list of days using

@days = ('Mon','Tue','Wed','Thu','Fri','Sat','Sun');

The leading character for an array is an @ sign (think “a” for array), and you always
access an array of one or more values using an @ sign. You access the values in an array
by the numerical index; the first value is at index 0, so to get the first day of the week
from the preceding list, we’d use $days[0]. Note the leading $ sign—this is required
because we are accessing the scalar value at index 0 from the array.

Perl also supports a hash—this is a list that uses not numerical indices, but instead a
string “key” to access each “value”—the so-called key/value pair. Hash variables start
with a % sign—think of the two “o” characters in the % as the key and value. Thus we
could create a hash that contains month names (as the keys) and the days in that month
(as the values):

%months = ('January' => 31,

...

'November' => 30,

'December' => 31);

Now all we need to do when we want to know how many days are in November is
access the value in the %months hash with a key of “November”:

print "Days in November:",$months{'November'},"\n";

Perl also supports some other types of variables, such as filehandles (which allow
us to read from and write to files) and typeglobs (which allow us to access a variable
via the internal symbol tables). We also use references, which just point to other
variables without actually containing a value themselves.

The special characters used to access variables are a vital part of the Perl
language—they enable us to identify the variables easily and let the programmer
and Perl know what sort of variable we are expecting to use. We’ll see more information
on variables in Chapter 4.

C h a p t e r 2 : P e r l O v e r v i e w 33
FU

N
D

A
M

EN
TA

LS

Operators
Operators perform some sort of operation on a value or variable. For example, the +
operator adds two numbers together:

$sum = 4 + 5;

Other operators allow you to perform other basic math calculations, introduce lists
of values (for use with functions and variables), and assign values to variables and
subroutines.

There are also operators that enable us to use regular expressions that can “match”
information contained within a string against an expression, or perform a substitution
so that we can replace and translate information without having to explicitly define
its contents.

We’ll be looking at Perl operators, and the core mechanics of how Perl takes a raw
script and interprets the contents, in Chapter 3.

Statements
Statements enable us to control the execution of our script—for example, we might use
the if statement to test the value of a variable or operation so that the script can make
an informed decision about what to do next. Other statements include the loops, which
allow us to repeat a process on the same piece of data or on a sequence of data. Statements
also include declarations, such as those that allow us to define variables and subroutines.

We’ll be covering statements and control structures in Chapter 5.

Subroutines (Functions)
When you want to perform an operation on a variable a number of times, or the same
operation on a number of variables, it makes sense to place that sequence of operations
into a subroutine or function. Now when you want to perform that operation, you send
the variable to the subroutine, and then use the value returned from that subroutine.

Perl includes a number of subroutines that perform different operations—including
the print subroutine, which sends information to the screen (or to a file). Other sub-
routines built into Perl include those for opening and communicating with files, talking
over a network, or accessing information about the system. Other built-ins provide
simple ways for performing different operations on variables and values.

You can also produce your own subroutines—something we’ll be looking at in
Chapter 6.

34 P e r l : T h e C o m p l e t e R e f e r e n c e

Modules
Once you have a collection of subroutines that you find useful, then you’ll probably
want to use them in other scripts and applications that you build with Perl. You could
copy them to the new scripts, but a much better solution is to make your own modules.
These are the libraries that extend the functionality of Perl.

Perl comes with its own, quite extensive, set of modules that allow you to communicate
over a network (see Chapter 12), develop user interfaces (see Chapter 17), access external
databases (see Chapter 13), and provide an interface for communicating with a web
server and a client browser when developing web solutions (see Chapter 18).

If you can’t find what you want within the standard Perl distribution, then there
is a central repository of modules built by other programmers called CPAN. This
contains literally thousands of modules to handle everything from accessing data
sources through to handling XML (Extensible Markup Language).

We’ll be looking at how to build our own modules in Chapter 6.

Where Next?
The answer to that question is really up to you—Perl will let you do almost anything. If
you need to understand the basics of how Perl works and how scripts are interpreted,
their elements identified, and rules followed, then continue reading Chapters 3 through
to 6. If you want a little more detail on the sort of things Perl can do and how you might
approach them, read Chapters 7 through 9.

If you already know the basics and want to use Perl to solve a particular problem,
use the Chapters in Part 2, which cover everything from Perl’s object-orientation
system to extending Perl with external libraries.

C h a p t e r 2 : P e r l O v e r v i e w 35
FU

N
D

A
M

EN
TA

LS

This page intentionally left blank.

Chapter 3
Perl Parsing Rules

37

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

38 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl, like all languages, has its own set of rules for parsing the Perl script, identifying
the different components that make up the Perl language, and then actually
executing the script that you’ve supplied.

As we’ve already seen in the last chapter, Perl is pretty casual about certain aspects
of the script’s layout. For example, in Perl the simplest, and classic, Hello World program
is as straightforward and complete as

print "Hello World\n";

We don’t have to worry about any preamble or tell Perl to include required files
before we can do anything useful. We also don’t have to tell the interpreter how to
end the program—Perl is quite happy for the source to simply end.

In this chapter, we’re going to take a detailed look at some of the core elements
of the Perl language. We’ll start with the method used by Perl to actually interpret
a source script and the process behind identifying and interpreting some of the core
elements of the language. We’ll also take our first look at the core operators used by
Perl for manipulating and working with variables and other information.

The Execution Process
The first step to understanding how Perl parses a script is to take a top-level look at how
Perl takes the source text and executes it. Perl works in a similar fashion to many other
script-based languages—it takes raw input, parses each statement and converts it into a
series of opcodes, builds a suitable opcode tree, and then executes the opcodes within a
Perl “virtual machine.” This technique is used by Perl, Python, and Java, and it’s one of
the most significant reasons why Perl is as quick as it is—the code is optimized into very
small executable chunks, just like a normal program compiled for a specific processor.

To summarize, the basic sequence works as follows:

1. Read the source code and parse the contents to verify the source against
the “core” rules. This is also the stage at which external modules are
imported—Perl imports modules in their source format, and they are
interpreted and parsed in the next stage along with your original script.

2. Compile the source into a series of opcodes. This involves the use of a parser,
which translates the Perl source into the opcode structures. It’s actually here
that the majority of source errors are identified and raised.

3. Execute the opcode tree.

We will look in more detail at the specific process and the internals of the system in
Chapters 20 and 22.

Outwardly, Perl actually classifies only two stages—the parsing stage and the
execution or run-time stage. Errors reported at the parsing stage relate to problems
with the layout or rules of the Perl language—for example, forgetting a quote or
parenthesis, or trying to import a module that cannot be found. Run-time errors
relate to the execution of a statement—for example, trying to divide a value by zero,
or supplying an unexpected value to a function or subroutine.

Syntax and Parsing Rules
The Perl parser has to consider a number of different items when it takes in a source script
and attempts to execute the statements. The primary purpose is, of course, to identify the
different elements within each line as operators, terms, and constants, and then evaluate
each sequence to produce a particular result—this might include calling a function (which
itself will need the same statement examination) or performing a calculation.

Even before Perl gets to these elements, however, the parser must examine the
individual source lines for information—comments need to be identified and removed.
The basic layout of the line has to be validated—does it have a trailing semicolon, does
it run on to the next line, and so on.

In fact, the Perl parser thinks about all of the following when it looks at a source line:

� Basic syntax The core layout, line termination, and so on

� Comments If a comment is included, ignore it

� Component identity Individual terms (variables, functions and numerical
and textual constants) are identified

� Bare words Character strings that are not identified as valid terms

� Precedence Once the individual items are identified, the parser processes
the statements according to the precedence rules, which apply to all operators
and terms

� Context What is the context of the statement, are we expecting a list or scalar,
a number or a string, and so on. This actually happens during the evaluation
of individual elements of a line, which is why we can nest functions such as
sort, reverse, and keys into a single statement line

� Logic Syntax For logic operations, the parser must treat different values,
whether constant- or variable-based, as true or false values

All of these present some fairly basic and fundamental rules about how Perl looks at
an entire script. From the basic Hello World script to entire database applications, each
line is executed in the same manner using the same basic rules.

FU
N

D
A

M
EN

TA
LS

C h a p t e r 3 : P e r l P a r s i n g R u l e s 39

40 P e r l : T h e C o m p l e t e R e f e r e n c e

Basic Syntax
The basic rules govern such things as line termination and the treatment of white
space. These basic rules are

� Lines must start with a token that does not expect a left operand—for example,

= 99;

is invalid, because the = operator expects to see a valid lvalue on the left side of
the expression. As a general rule, functions and variables are the primary token
in a line, with some exceptions.

� Lines must be terminated with a semicolon, except when it’s the last line of a
block, where the semicolon can be omitted. For example:

print "Hello\n"

is perfectly legal as a single-line script. Since it’s the last line of a block, it
doesn’t require any semicolon, but

print "Hello "

print "World\n"

will cause a fault.

� If you split a line within a quoted string, then the line termination becomes part
of the string.

� White space is only required between tokens that would otherwise be confusing,
so spaces, tabs, newlines, and comments (which Perl treats as white space) are
ignored. The line

sub menu{print"menu"}

works as it would if it were more neatly spaced.

� Lines may be split at any point, providing the split is logically between two
tokens. The following is perfectly legal:

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : P e r l P a r s i n g R u l e s 41
FU

N
D

A
M

EN
TA

LS

print

"hello"

,

"world";

All of the preceding are examples of the core rules for executing a script. Any errors
picked up at this point are reported during the compilation stage—before any code is
actually executed (there are some exceptions; see Chapter 5 for details on BEGIN and
other special blocks).

It’s also important to remember that while the examples above are perfectly legal
Perl, they don’t make your program easier to read, which will make it harder to maintain
in the long run.

Comments
Comments are treated by Perl as white space—the moment Perl sees a hash on a line
outside of a quoted block, the remainder of the line is ignored. This is the case even
within multiline statements and regular expressions (when the /x modifier is used):

matched = /(\S+) #Host

\s+ #(space separator)

(\S+) #Identifier

\s+ #(space separator)

(\S+) #Username

\s+ #(space separator)

\[(.*)\] #Time

\s+ #(space separator)

"(.*)" #Request

\s+ #(space separator)

(\S+) #Result

\s+ #(space separator)

(\S+) #Bytes sent

/x;

Comments end when Perl sees a normal line termination. The following is
completely invalid:

print("Hello world"); # Greet the user

and let them know we're here

There is also no way of indicating to Perl that you have a multiline comment
to include, short of placing the hash symbol before each comment segment.

If the comment includes a “line directive”; in this instance the information is stored
within the opcode tree and used to populate the __LINE__ and __FILE__ special
tokens. These are available directly and are also used as the basis for error messages
raised by die and warn when no trailing newline is supplied.

In order to introduce the directive, you must use the word line, followed by a line
number and an optional string. The match is actually made by a regular expression:

/^#\s*line\s+(\d+)\s*(?:\s"([^"]+)?\s*$/

The first group, $1 (the first matching parenthesized block, see Regular Expressions in
Chapter 8 for more details), populates __LINE__, and $2 populates __FILE__. For example:

line 200 "Parsing engine"

die "Fatal";

produces

Fatal at Parsing engine line 200

Note that the line directive actually modifies the __LINE__ token, which is normally
automatically parsed and populated by the Perl interpreter based on the current line
within the script. So this script:

#line 200 "Parsing engine"

print "Busy\n";

print "Doing\n";

print "Nothing\n";

die 'Fatal';

actually reports this:

Busy

Doing

Nothing

Fatal at Parsing engine line 203.

It reported an error on line 203, not the real source line 4—the earlier line directive has
permanently modified the line-numbering counters. You can update the line directive
with any number, such that

42 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : P e r l P a r s i n g R u l e s 43
FU

N
D

A
M

EN
TA

LS

#line 200 "Parsing engine"

print "Busy doing nothing\n";

warn "Warning";

#line 100 "Post-process engine"

print "Working the whole day through\n";

die "Fatal";

generates this:

Busy doing nothing

Warning at Parsing engine line 201.

Working the whole day through

Fatal at Post-process engine line 101.

Comments and line directives can be a useful way of debugging and documenting
your scripts and programs. We’ll return to the topic in Chapter 21.

Component Identity
When Perl fails to identify an item as one of the predefined operators, it treats the
character sequence as a “term.” Terms are core parts of the Perl language and include
variables, functions, and quotes. The term-recognition system uses these rules:

� Variables can start with a letter, number, or underscore, providing they follow
a suitable variable character, such as $, @, or %.

� Variables that start with a letter or underscore can contain any further
combination of letters, numbers, and underscore characters.

� Variables that start with a number can only consist of further numbers—be
wary of using variable names starting with digits. The variables such as $0
through to $9 are used for group matches in regular expressions.

� Subroutines can only start with an underscore or letter, but can then
contain any combination of letters, numbers, and underscore characters.

� Case is significant—$VAR, $Var, and $var are all different variables.

� Each of the three main variable types have their own name space—$var, @var,
and %var are all separate variables.

� Filehandles should use all uppercase characters—this is only a convention, not
a rule, but it is useful for identification purposes.

Once the term has been extracted using these rules, it’s compared against Perl’s
internal symbol table and the symbol table of the current package. Quotes and constants
are also identified and either resolved or tagged at this stage as being bare values.

If after all this, the item has still not been identified, then the item is treated as a bare
word—see the “Bare Words” section further on in this chapter for more information
on how these items are parsed. Quotes are also a special case; because their values may
be interpolated, they are actually resolved at this stage—see the “Quoting” section in
Chapter 4 for information on constants and quoting and the interpolation of variables
into quoted strings.

Operators and Precedence
Like most languages, Perl’s parsing rules are based on precedence—the order in which
individual elements of a line are evaluated and then processed. As a general rule, Perl
parses statements from left to right, except in situations where the rightmost value may
affect the evaluation of a term on the left. A good example is the += operator, which
adds and assigns a value to a variable—if the right side of this operator wasn’t evaluated
first, Perl would be unable to determine what value should be added to the variable on
the left side.

The information in this section is quite complex, and I don’t expect all readers to
understand all of the principles and techniques shown on their first read through.
It’s impossible to describe the mechanics of a language without giving some examples.
My advice is to read this section through, follow up with the remainder of the chapters
in this section, and then come back and re-read this section again. Hopefully, it should
all make more sense the second time around!

The list of operators in Table 3-1 gives the individual operator precedence, and the
overall precedence for all operators.

44 P e r l : T h e C o m p l e t e R e f e r e n c e

Name Precedence Examples

Terms and list operators Left

The arrow (dereference)
operator

Left ->

Auto-increment and
auto-decrement

Nonassoc ++ – –

Exponential Right **

Table 3-1. Operators in Order of Precedence

C h a p t e r 3 : P e r l P a r s i n g R u l e s 45
FU

N
D

A
M

EN
TA

LS

The operators in Table 3-1 are also listed in overall precedence, from top to
bottom—the first item in the table, terms and list operators, have the highest precedence
and will always be evaluated by Perl first when used within a compound statement.

Name Precedence Examples

Symbolic unary operators Right ! ~ \ and unary +
and –

Regular expression bindings Left =~ !~

Multiplication Left * / % x

Addition and subtraction Left + - .

Shift operators Left << >>

Named unary operators Nonassoc -X file test, some
functions

Relational operators Nonassoc < > <= >= lt gt le ge

Equality operators Nonassoc == != <=> eq ne cmp

Bitwise AND Left &

Bitwise OR and Exclusive OR Left | ^

Symbolic logical AND Left &&

Symbolic logical OR Left ||

Range operators Nonassoc

Conditional operator Right ?:

Assignment operators Right = += –= *= etc.

List operators Left , =>

List operators Nonassoc

Logical NOT Right not

Logical AND Left and

Logical OR and Exclusive OR Left or xor

Table 3-1. Operators in Order of Precedence (continued)

You can see, for example, that * has a higher precedence than +. This means that the
statement

$a = 5*6+4;

is evaluated as

$a = (5*6)+4;

and not

$a = 5*(6+4);

which produces a result of 34, and not 50.

46 P e r l : T h e C o m p l e t e R e f e r e n c e

Understanding the Precedence System
If you want to check the precedence rules, you can use the Perl compiler Deparse
backend. This takes a Perl script and regurgitates it after the precedence rules have
been applied and optimization has taken place. The output is then reformatted, ac-
cording to the precedence rules, using parentheses to highlight the precedence rules.

For example:

$ perl -MO=Deparse,-p -e '$a + $b *$c / $d % $e'

-e syntax OK

($a + ((($b * $c) / $d) % $e));

You can see here that the statement has been grouped according to the precedence
rules. Any statement or script can be run through the backend. However, because
the output includes any optimization (see the “The Execution Process” section at
the beginning of this chapter), passing in statements that include constant values
will not yield what you want:

$ perl -MO=Deparse,-p -e '$a = 5*6+4;'

($a = 34);

-e syntax OK

The compiler and its backends, which can provide useful nuggets of information
about your script, such as this one, will be discussed in more detail in Chapter 22.

Terms and List Operators
Terms have the highest precedence in Perl, and they include the following:

� Variables

� Quotes

� Any parenthesized expression

� Function calls with parentheses

� The do {} and eval {} constructs

� Subroutine and method calls

� Anonymous constructors for arrays, [], and hashes, {}

The basic effect can be seen with a simple calculation:

print 6*(5+4);

prints out 54, the 5+4 is evaluated first, because it’s in parentheses, even though the
precedence rules state that the * operator has a higher precedence.

However, if you embed a term within a list, then the terms are evaluated left
to right before being returned as a list to the caller; for example, in the fragment,

sub add { print 'Result:' }

print(2,3,add);

the call to the add function is evaluated before the print statement. As a general rule,
the terms are evaluated from left to right, such that

sub first { print 'First' }

sub second { print 'Second' }

print(2,3,first,second);

generates

FirstSecond2311

This also affects embedded terms that accept further list operators:

print 2,3,sort 2+2, 1+1;

C h a p t e r 3 : P e r l P a r s i n g R u l e s 47
FU

N
D

A
M

EN
TA

LS

48 P e r l : T h e C o m p l e t e R e f e r e n c e

Here, the arguments on the right of the sort term are immediately gobbled up and then
evaluated left to right, before the elements before sort are evaluated. This results in the
entire statement printing “2324”.

In general, this left-to-right term evaluation produces the behavior you expect when
you embed calls to other functions within a statement,

print "Warning:", sort ('A','B','C'), "\nContinuing";

But it also has the effect of ignoring further arguments, or earlier arguments if the script
or function returns or forces the script to terminate. For example,

print "Warning:", die("Error"), "Exiting";

outputs this:

Error.

File 'Untitled'; Line 1

This script:

sub add

{

print "Sum: ",return($_[0]+$_[1]);

}

print add(1,2);

outputs “3”, the return value of the function, missing the prefix string, which would
only have been printed if the evaluated list had been supplied to the print function.

Finally, the statement

print(4+5) + 1, "\n";

C h a p t e r 3 : P e r l P a r s i n g R u l e s 49
FU

N
D

A
M

EN
TA

LS

is unlikely to do what you expect. The call to print will be made and evaluated, but
using only the evaluated 4+5 expression—the parentheses define the list of values that
is returned to the print statement. Then Perl will attempt to add the return value from
the print subroutine call, which is actually void, to 1, while the newline character is just
discarded as a useless constant. If you switch on warnings, you’ll get more information:

Useless use of integer addition (+) in void context at t.pl line 1.

Useless use of a constant in void context at t.pl line 1.

9

But the Deparse backend is more explicit:

((print(9) + 1), '???');

t.pl syntax OK

The first part shows the result of print and 1 being added together, but the newline
argument is never properly evaluated or included in the statement. Note that Perl still
treats the syntax as being okay—there is nothing invalid about the statement as far as
the parser is concerned, it just doesn’t make any sense.

The Arrow (Dereference) Operator
The arrow or infix dereference operator is used to access the properties and methods of
an object or the data contained within hash or array references. Because we are accessing
the contents of variables, the precedence has to be high enough for the values to be
determined before they are included as part of other statements.

References, which support nested structures and Perl’s object-oriented mechanism
are the subject of another chapter. Please refer to Chapter 10 for further examples and
explanation of the dereference operator.

Auto-Increment and Auto-Decrement
The auto-increment and auto-decrement operators allow you to immediately increment
or decrement a value without having to perform the calculation within a separate
expression. This operates in the same fashion as the C equivalent and can be placed

50 P e r l : T h e C o m p l e t e R e f e r e n c e

before or after a variable for the increment or decrement to take place before or after
the variable has been evaluated. For example:

$a = 1;

print ++$a; # incremented before, outputs 2

print $a++; # incremented after, outputs 2, $a now equals 3

print --$a; # decremented before, now outputs 2

print $a--; # decremented after, outputs 2, $a now equals 1

The increment operator also has special meaning when applied in a string context.
If applied to a string that equates to a number, then it returns the number incremented
as normal. For example:

print ++($foo = '99'); # Outputs 100

print ++($foo = '100'); # Outputs 101

However, when used on an alphanumeric string, the increment applies to
the string, applying the increment within the character’s range. For example:

print ++($foo = 'b1'); # Outputs c2

print ++($foo = 'Qz'); # Outputs Ra

print ++($foo = 'zz'); # Outputs aaa

Note the result of the last line—the “characters” are incremented, introducing a
new character “a”, just as if we were incrementing numbers. The rule applies to all
“natural” rollovers: “z” increments to “aa”, and “Z” increments to “AA” and so on.
But, the application is against the entire string as if it was a number. Thus a rollover
of the last character from “z” to “a” also increments the preceding character. This can
be seen better with:

print ++($foo = 'Qx'); # Outputs Qy

print ++($foo = 'Qy'); # Outputs Qz

print ++($foo = 'Qz'); # Outputs Ra

The last letter worked in exactly the same fashion as the tens column in a decimal
number, thus it would have changed “Zz” to “AAa”.

You can only use increment in this fashion; the decrement operator does not work
in the same way.

TE
AM
FL
Y

Team-Fly®

FU
N

D
A

M
EN

TA
LS

Note, as well, that the operators can only be applied to variables—the statement

print ++'aa';

will fail.
The increment and decrement operators have no significant precedence. They are

listed in the table as non-associative—this is because there are no left or right arguments;
the operators work directly on the variable or string supplied. If they are placed before
a variable, the variable’s value is incremented or decremented before the variable’s
value is used. If placed after, then the variable is incremented or decremented after
the variable has been evaluated. This means that the statement:

$a = 3;

print $a++ * $a

Actually prints the result of the calculation 3*4—the increment is executed immediately
after the value of the variable has been extracted.

Exponentiation
The exponential operator raises the value on the left of the operator to the power of
the right. For example:

print 9**3;

Outputs 729, or 9*9*9. The operator evaluates the expression on the right before the one
on the left, such that:

$a = 2;

print $a**++$a;

prints 27, that is, 33 and not as you might expect 23.

Care should be taken to ensure you aren’t executing nested exponential statements that
are parsed in this order. It’s possible to create a large value, or even evaluate items in the
wrong order if you are not careful—if you’re unsure, either use Deparse to check the
entire syntax and sense of the statement, or try to devolve the statement into a number
of individual lines.

C h a p t e r 3 : P e r l P a r s i n g R u l e s 51

Symbolic Unary Operators
The symbolic (or ideographic) unary operators modify an expression in some way:

� Unary ! performs logical negation (not); for example !0 is equal to 1, and !1 is
equal to 0.

� Unary – negates the expression if it is numeric, as in –10. If the expression is a
string, then it returns the string with the operator prefix. For example –option
is equivalent to "–option" just as if the string had been quoted.

� Unary ~ performs bitwise negation (1s complement) on a numerical value.
If the argument is a string, then individual bits of the string are flipped.

� Unary + does nothing on numerical or string values. However, if placed before
an expression that would otherwise be interpreted as a list, it forces the expression
to be returned as a single argument.

� Unary \ creates a reference to the expression or term following it. See Chapter 10
for more information on references.

Regular Expression Bindings
The =~ and !~ operators are regular expression binders—they bind the expression on
the left to the pattern match, substitution, or transliteration (translation) on the right.
As such, they are a special case, and we’ll be looking in more detail at their operation
in Chapter 8.

Multiplication
The *, /, and % operators are fairly straightforward, doing the normal numerical
multiplication, division, and modulus (remainder) on two numbers. For example:

print 2*10; # Outputs 20

print 20/2; # Outputs 10

print 20%7; # Outputs 6 - the remainder

The x repetition operator is useful when you want to repeat a string:

print 'Ma' x 8; # outputs MaMaMaMaMaMaMaMa

If you supply a numerical value on the left side, then the number is converted to a string:

print 123 x 2; # outputs 123123

You should be careful, however, when using it with lists and arrays. If the item on the
left side of the operator is a list, then the entire list is repeated:

52 P e r l : T h e C o m p l e t e R e f e r e n c e

print (join(',',(1,2,3) x 2)); # outputs 1,2,3,1,2,3

With arrays, you must enclose them in parentheses so that they are treated as lists, not
scalars. The fragment,

@abc = ('a','b','c');

@abc = @abc x 5;

print join(',',@abc);

generates “33333”—the @abc array has been populated with a list consisting of one
element, the scalar value of @abc (its length) repeated five times.

To resolve this, place parentheses around the source array:

@abc = ('a','b','c');

@abc = (@abc) x 5;

print join(',',@abc);

Finally, if you supply an array on the right and a list on the left, the result is a
repetition based on the scalar value of the array, effectively setting each item of a
non-empty array to the list you supply. If the array on the right is empty, then an
empty list is returned. For example, this:

@abc = ();

@abc = (5) x @abc;

print "First: ",join(',',@abc),"\n";

@abc = ('a','b','c');

@abc = (5) x @abc;

print "Second: ",join(',',@abc),"\n";

generates this:

First:

Second: 5,5,5

Addition and Subtraction
Addition and subtraction operators work on numerical values as you would expect:

print 10+2; # Outputs 12

print 10-2; # Outputs 8

C h a p t e r 3 : P e r l P a r s i n g R u l e s 53
FU

N
D

A
M

EN
TA

LS

You cannot use the same operators for concatenating strings; instead use
the . operator:

print $hello . $world;

The . operator does not include a space in the concatenation, so this would output
“HelloWorld”. You’ll either have to explicitly add the space or use double-quoted
strings and interpolation:

print "$hello $world";

Shift Operators
The shift operators shift the bits of an expression right or left, according to the number
of bits supplied. For example:

2 << 8;

is 512. Be aware that if a floating point value is supplied to a shift operator, it is converted
to an integer without rounding, that is, it is always rounded down, such that:

2.9 << 7.9;

produces 256, 2 shifted to the left 7 times.

Named Unary Operators
Certain Perl functions are really named unary operators, that is, functions that take
a single argument and return a value. The exact list of unary operators is difficult to
determine manually, but as a guide, the Perl source defines the following functions
and operations as unary operators:

54 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : P e r l P a r s i n g R u l e s 55
FU

N
D

A
M

EN
TA

LS

alarm gethostbyname log sin

caller getnetbyname lstat sleep

chdir getpgrp my sqrt

chr getprotobyname oct srand

chroot gmtime ord stat

cos goto quotemeta uc

defined hex rand ucfirst

delete int readlink umask

do lc ref undef

eval "string" lcfirst require -X tests

exists length return

exit localtime rmdir

exp lock scalar

If any of these are followed by an opening parenthesis, then they automatically
have highest precedence; however, if you use them without parentheses, then their
precedence is as listed within Table 3-1—lower than most calculations, but higher
than most of the relational and logical operations.

For example, the rand function has a lower precedence than the multiplication
operator, so

rand 10 * 20; # rand (10*20)

rand(10) * 20; # (rand 10)*20;

You can always check these functions with Deparse if necessary.

Also, remember that a comma automatically terminates a named unary operator,
such that

print rand 10, 2;

prints a random number up to 10, immediately followed by the number 2.
However, care needs to be taken with these operators in situations where Perl

defaults to using the $_ operator. For unary operators that do default to $_, failing
to explicitly specify the variable may cause Perl to actually interpret any following
operator as the start of a term. For example,

print if length < 1;

will trick Perl into interpreting the < operator as the start of a filehandle input operator.
Other examples include *, which can be identified as a typeglob, and /, which can be
misinterpreted as a regular expression pattern. See Table 3-2 for a complete list.

If a term was expected and it happens to be of the form –X, then Perl treats the
operator as a file test operator—see Chapter 7 for a complete description of the –X
operators.

56 P e r l : T h e C o m p l e t e R e f e r e n c e

Character Operator Misinterpreted as

+ Addition Unary plus

– Subtraction Unary minus

* Multiplication Typeglob (*var)

/ Division Regex (/pattern/)

< Less than Filehandle (<HANDLE>)

<< Left shift Here document (<<EOF)

. Concatenation Value (.1)

? ? Test Regex (?pattern?)

% Modulus Hash (%hash)

& Logical AND Subroutine call (&sub)

Table 3-2. Misinterpreted Unary Operators

Relational and Equality Operators
The relational and equality operators enable you to test the equality of numbers and
strings, respectively. The full list of relational and equality operators is given in Table 3-3.

C h a p t e r 3 : P e r l P a r s i n g R u l e s 57
FU

N
D

A
M

EN
TA

LS

Operator Action

< Returns true if the left statement is numerically less than the right
statement

> Returns true if the left statement is numerically greater than the right
statement

<= Returns true if the left statement is numerically less than or equal to the
right statement

>= Returns true if the left statement is numerically greater than or equal to the
right statement

== Returns true if the left statement is numerically equal to the right
statement

!= Returns true if the left statement is numerically not equal to the right
statement

<=> Returns –1, 0, or 1 depending on whether the left statement is numerically
less than, equal to, or greater than the right statement, respectively

lt Returns true if the left statement is stringwise less than the right statement

gt Returns true if the left statement is stringwise greater than the right
statement

le Returns true if the left statement is stringwise less than or equal to the
right statement

ge Returns true if the left statement is stringwise greater than or equal to the
right statement

eq Returns true if the left statement is stringwise equal to the right statement

ne Returns true if the left statement is stringwise not equal to the right
statement

cmp Returns –1, 0, or 1 depending on whether the left statement is stringwise
less than, equal to, or greater than the right statement, respectively

Table 3-3. Equality and Relational Operators

To logically compare numerical values, you use the symbolic equality and
relational operators, for example:

if ($a > 0)

For string comparisons, you must use the text operators:

if ($a gt 'a')

A common mistake is to use the wrong operator on the wrong type of value but fail
to notice it, because for 99 percent of situations it would resolve true anyway. The
statement

if ($a == $b)

will work fine if both values are numerical. If they are textual, then Perl compares the
logical value of the two strings, which is always true. This may seem confusing, but
even the undefined value resolves to true when comparing it numerically. For example,
the following tests all return true:

undef == 'a'

undef == undef

'a' == 'a'

'a' == 'b'

The reverse is not true when using string comparisons on numerical values. The statement

0 eq 9

will return false, and

0 eq 0

will return true—this is because Perl automatically converts the numerical values to
strings, because that’s what the operator is expecting, and then compares those values.

There is a very simple rule to follow here: if you are comparing numbers, use symbolic
operators, and if you are comparing strings, use text operators.

See the “Logical Values” section at the end of this chapter for details on the logical
value of different constant expressions.

58 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : P e r l P a r s i n g R u l e s 59
FU

N
D

A
M

EN
TA

LS

Bitwise AND, OR, and Exclusive OR
The bitwise AND, &, returns the value of two numbers ANDed together on a bit-by-bit
basis. If you supply two strings, then each character of the string is ANDed together
individually, and the new string is returned. If you supply only one integer and one
string, then the string is converted to an integer and ANDed together as for integers.

For example:

print '123' & '456'; # Outputs 001

print 123 & 456; # Outputs 72

print 123 & '456'; # Outputs 72

Bitwise OR, |, and Exclusive OR, ^, work in the same fashion.

Symbolic Logical AND
The Perl logical AND, &&, works on a short-circuit basis. Consider the statement

a && b;

If a returns a false value, then b is never evaluated.
The return result will be the right operand in both scalar and list context, such that

@list = ('a','b');

@array = ('1','2');

print(@list && @array);

$a = 'a' && 'b';

print $a;

produces “12b”.
See the following “Symbolic Logical OR” section for details on using the operator

for comparisons and tests.

Symbolic Logical OR
The Perl logical OR, ||, works on a short-circuit basis. Consider the statement

a || b;

If a returns a true value, then b is never evaluated. However, be wary of using it with
functions that only return a true value. For example:

select DATA || die;

will never call die, even if DATA has not been defined.
Also, be careful when using it with functions and terms that accept list arguments.

The statement:

print DATA "The answer is ", 0 || warn "Can't write: $!";

actually performs a logical OR between the argument 0 and the call to warn, and warn
will be called before the 0 is evaluated and returned to print:

Can't write: at t.pl line 1.

The answer is 1

The solution is to use the or operator, which has a much lower precedence:

print DATA "The answer is ", 0 or warn "Can't write: $!";

or to enclose your statements in parentheses to give them higher precedence:

print DATA ("The answer is ", 0) || warn "Can't write: $!";

Range Operators
The range operators, .. and ..., allow you to create ranges on the fly, and can also act as
simple “flip-flop” operators. The value of each .. operator is unique, with each operator
maintaining its own state. The value returned by the operator is false as long as the left
operand is false. When the operand changes to true, the operator returns true until the
right operand is also true, and then at the next execution the operator becomes false again.

If the operands are scalars or constant expressions, then the operand is compared
against the $. operator—the current input line number.

In a list context, the operator returns a list of values between the supplied ranges:

@hundred = (0 .. 100);

It also operates in a similar fashion to the increment operator when supplied string values:

60 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

@characters = ('a' .. 'z');

Conditional Operator
The conditional operator is like an embedded if...else statement (see Chapter 5).
The format is

EXPR ? IFTRUE : IFFALSE

If EXPR is true, then the IFTRUE expression is evaluated and returned, otherwise
IFFALSE is evaluated and returned.

Scalar and list context is propagated according to the expression selected. At a basic
level, it means that the following expressions do what we want,

$value = $expr ? $true : $false;

@list = $expr ? @lista : @listb;

while

$count = $expr ? @lista : @listb;

populates $count with the number of elements in each array. On the flip side, you can
also do

$result = $wantcount ? @list : join(',',@list);

returning the array size or merged array accordingly. The conditional operator is
evaluated as a single element when used within a list, so don’t confuse the interpreter
by inserting additional list operators without qualifying them. This means that if you
want to return more than one item based on a conditional operation, you’ll need to
parenthesize the expression you want to return. The script

$name = <STDIN>;

chomp $name;

print "Hello ",length($name) ? $name,', how are you today?'

: 'nobody',"\n";

should be written as

$name = <STDIN>;

chomp $name;

C h a p t e r 3 : P e r l P a r s i n g R u l e s 61
FU

N
D

A
M

EN
TA

LS

print "Hello ",length($name) ? ($name,', how are you today?')

: 'nobody',"\n";

You can also use the conditional operator for assignment, providing the two options
are valid lvalues (see the following “Assignment Operators” section). You’ll need to
qualify the entire expression, however:

($group ? $a : $b) = 'users';

To use the conditional operator for choosing an assignment value, use the conditional
operator as the assignment value, rather than embedding the assignment expression:

$a = $group ? 'is a group' : 'not a group';

Assignment Operators
The assignment operators assign a value to a valid lvalue expression—usually a variable,
but it can be any valid lvalue. An lvalue, or left-hand value, is an expression to which
you can assign a new value. Assignment happens with the = and associated operators.
Valid lvalues include

� Any recognizable variable, including object properties

� vec function (for setting integer values)

� substr function (for replacement strings)

� keys function (for setting bucket sizes)

� pos function (for setting the offset within a search)

� Any lvalue-defined function (Perl 5.6 only)

� ? : conditional operator

� Any assignment expression

As well as the basic = operator, there are also combined expression assignments
that translate into embedded expressions. For example,

$a += 10;

is equivalent to

$a = $a + 10;

62 P e r l : T h e C o m p l e t e R e f e r e n c e

The full list of assignment operators includes the following:

= **= += *= &= <<= &&=

-= /= |= >>= ||=

.= %= ^=

x=

Note that assigning a value to an assignment expression should be read from left to
right, such that

($a += 10) *= 5;

reads as

$a += 10;

$a *= 5;

and

($match = $source) =~ tr/a-z/A-Z/;

resolves to

$match = $source;

$match =~ tr/a-z/A-Z/;

Finally, assignment works differently according to context when assigning lists. In
a list context, a list assignment causes the lvalue to be resolved into a list of lvalues to
be assigned to. That means this:

($a, $b) = (1,2);

is in effect

$a = 1;

$b = 2;

See Chapter 4, where we deal with Perl’s variables, for more information on
assignment.

C h a p t e r 3 : P e r l P a r s i n g R u l e s 63
FU

N
D

A
M

EN
TA

LS

Comma Operator
The comma is the list operator, and arguments are evaluated in order from left to right.
In a scalar context, when used in an implied list, the left argument is evaluated, then
thrown away, and the right-hand argument is returned. For example:

$a = (1,4);

This will assign a value of 4 to $a. In a list context, it evaluates all arguments from left
to right and then returns them as a list:

@a = (1,2);

Be careful when using the list operators in a scalar context without parentheses.
Here the first element of the list will bind tighter than the right-hand arguments, since
the list operator has a lower precedence than most other statement forms. For example,

$a = 1,2;

will populate $a with a value of 1, because it’s interpreted as

($a = 1),2;

Similarly, with a named unary operator,

chdir 'tmp','etc';

This will change the current directory to tmp, not etc.
The same is true of arrays, so the line

@a = 1,2;

is interpreted as

(@a = 1),2;

The => operator is just an alias to the , operator, best used when separating the key
and value of a hash element:

%hash = ('key' => 'value');

64 P e r l : T h e C o m p l e t e R e f e r e n c e

Since Perl 5.001, the => automatically implies that the left argument should be
interpreted as a string, making

%hash = (key => 'value');

perfectly legal, even with warnings and the strict pragma in force.

List Operators (rightward)
The rightward list operators govern the interpretation of the list operator’s arguments.
The right side of a list operator has a very low precedence, with only the and, or, xor,
and not having a lower precedence. This interpretation causes the problems when using
implied lists and the symbolic logical operators:

tie %oldhash, NDBM_File, $old, O_RDONLY, 0444

|| die "$0: Error opening source $old: $!\n";

This is actually interpreted as the last list argument being logically compared with the
die statement. Use the named logical operators, which have lower precedence, to solve
the problem.

Named Logical NOT
The logical not provides a logical negation for the item on the right of the operator.
Any term on the left will immediately raise an error, so the statement

$a = $b not $c;

is completely nonsensical. Use || if you want to choose between two values.

Named Logical AND
This and works identically to the symbolic logical AND (&&), including the short
circuit execution. The only difference is that it has a lower precedence.

Named Logical OR and Exclusive OR
The named logical or works like the symbolic logical OR (||), including the short
circuit execution. Its main benefit is that it operates at very low precedence—in the
lowest precedence of all statements—and is therefore useful in control statements

Care should be taken when using or in assignment statements. Because it has the
lowest precedence, the assignment operator will bind tighter than the or operator, so

$a = $b or $c;

C h a p t e r 3 : P e r l P a r s i n g R u l e s 65
FU

N
D

A
M

EN
TA

LS

66 P e r l : T h e C o m p l e t e R e f e r e n c e

is interpreted as

($a = $b) or $c;

It’s better to write it as

$a = $b || $c;

The same is true of any other statement where you want to make comparisons—the
or operator is really only useful when you want to check the return value of a function
without affecting the value returned.

The xor operator returns the exclusive OR of two expressions.

Bare Words
Bare words within a script are essentially a bad idea. First Perl tries to identify whether
the bare word is a proper value—if it can be resolved to a function within the symbol
table, then the function is called; otherwise it’s treated as a string. The script below
demonstrates this quite neatly:

sub hello

{

return 'Hello user!';

}

$message = hello;

print "$message\n";

$message = goodbye;

print "$message\n";

This outputs

Hello user!

goodbye

If you have warnings switched on, then Perl will warn you if it sees an all-lowercase
bare word that it can’t otherwise identify as a term:

FU
N

D
A

M
EN

TA
LS

Unquoted string "goodbye" may clash with future reserved word at t.pl line 10.

A mixed-case bare word is interpreted as a string in most instances, and it should raise
a suitable error when warnings are switched on. However, there is one exception—
where a bare word is used in a situation that requires a filehandle, the bare word is
used as the filehandle name. For example, the code:

print Tester;

prints the value of $_ to the filehandle Tester, assuming it’s open and writable. If you try

print Tester, "Hello World\n";

you’ll get an error when warnings are switched on because Perl assumes that Tester is
the name of a filehandle.

If you have the subs portion of the strict pragma invoked, then execution will
terminate because of the bare word:

Bareword "goodbye" not allowed while "strict subs" in use at t.pl line 10.

If you have both warnings and the strict pragma in effect, then the pragma takes
precedence.

We’ll be looking at pragmas and warnings in more detail in Chapter 8.

Contexts
Perl supports a number of different contexts, which are identified for each operator or
term during the parsing process. The exact effects vary according to the operator or term
concerned. Contexts affect the operation of different statements and functions, and they
are worth covering, at least briefly—we’ll look at the details of contexts in Chapter 6.

Scalar and List Context
There are two basic contexts that all programmers are aware of: scalar and list. These
two contexts affect the operation of the function or operator concerned by implying the
accepted value, or value returned. For example:

$size = @list;

C h a p t e r 3 : P e r l P a r s i n g R u l e s 67

68 P e r l : T h e C o m p l e t e R e f e r e n c e

Here, the $size variable is a scalar, and it therefore implies scalar context on the array,
which causes it to return the array size, rather than the array values. Conversely, the
statement

sort @list;

is evaluated in list context, since the sort function expects a list of values.
Within a function, you can identify the requested context using the wantarray

function, which returns true if the caller is expecting a list (or array, or hash) to be
returned instead of a scalar value.

Numerical and String Context
Some of the internal Perl functions also distinguish scalar context between numerical
and string contexts. A classic example is the $! special variable, which holds the error
status for the previous operation. In a numerical context, this variable returns the numerical
error number of the last error that occurred, and in a string context, the associated message.
The interpreter uses this context as the basis for the conversion of values into the internal
integer, floating point, or string values that the scalar value is divided into.

Unfortunately, there’s no way of determining from within a script what the expected
numerical or string context is—you must leave it up to Perl to make the decision for you,
converting the value accordingly.

Boolean Context
Boolean context is where an expression is used solely to identify a true or false value.
See the “Logical Values” section, later in the chapter, to see how Perl treats individual
values and constants in a logical context.

Void Context
Void context is a special case and is an extension of the scalar context. It identifies areas
of the code where a constant has been introduced but never used. At its simplest point,
the statement

99;

would be identified as a void context, since introducing a constant at this point does
nothing. You’ll only be notified of this instance if you have warnings switched on.

Other more common areas where void context applies include the instance where
the precedence rules would cause a portion of the statement to be ignored. For example,

$a = 1,2;

causes the “2” to be identified in a void context. Look at the earlier precedence rules for
details on why this and similar statements cause void-context warnings.

Interpolative Context
The Perl documentation identifies the interpolation of variables into interpolating
quoted values as a separate context. This is good way of describing why some quoted
blocks interpolate—that is, they are identified as interpolated context—but it doesn’t
really do the process justice. We’ll look more closely at the interpolation process in
Chapter 3.

Logical Values
Perl’s Boolean logic relies on its ability to identify different variable and constant types
as having a true or false value. As a general rule, anything that is undefined, empty, or
0 is taken as a false value, whilst any other value is taken as true. You can see a more
explicit list in Table 3-4.

To check for the undefined value, you can use the defined function. This returns a
positive integer (true) if the variable contains a valid value, or 0 (false) if the variable
equals the undef value.

C h a p t e r 3 : P e r l P a r s i n g R u l e s 69
FU

N
D

A
M

EN
TA

LS

Value Logical Value

Negative number True

0 False

Positive number True

Empty string False

Non-empty string True

Undefined value False

Empty list False

List with at least one element True

Table 3-4. Values and Their Logical Equivalents

70 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl Coding Styles
How you actually lay out and format your Perl scripts is entirely up to you—it’s perfectly
legal for you to place everything on a single line—but remember that at some future
point in time, you’ll probably want to look at the code again, and then things may not
be so clear.

Using comments is obviously good practice, and writing some form of documentation
will also help, but when it comes to the actual flow and style of the script, it’s worth
remembering that you may not be the only person looking at the code.

Larry Wall, the inventor of Perl, has some ideas for how to format code, although
he doesn’t necessarily enforce them. The only one he feels strongly about is that a
closing brace (on a block) should be lined up with the statement that started it.

Personally, I have my own list of guidelines that I’ve been using for a number of
years. My guidelines call for code that is specially designed to be readable on paper
and is the style used throughout this book. If you want to use the guidelines that Larry
prefers, see the perlstyle guide in the Perl documentation.

I use the following rules:

� Use four column indents for all types of blocks.

� On loops and other blocks, the statement goes on its own line, the opening brace
on its own line, and the enclosing code is indented. The final brace is also on its
own line. Thus, a foreach statement becomes

foreach (@list)

{

code goes here

}

and an if…elsif...else statement becomes

if ($expr)

{

}

elsif ($expr)

{

}

else

{

}

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : P e r l P a r s i n g R u l e s 71
FU

N
D

A
M

EN
TA

LS

� Short blocks can be on one line:

while ($expr) { $expr++ }

� The final semicolon (which is optional) is included in all blocks, unless the
block is on a single line.

� There should not be a space between the statement and semicolon.

� There should not be a space between the function name and its parenthesized
arguments.

� All non-standard functions calls should have parentheses.

� Spaces after commas in lists are optional for numerical arguments, but required
on all others.

� Long lines are broken after an operator, but before logical operators such as and
or ||.

� Line up corresponding items:

my $one = 1;

my $two = 2;

my $three = 3;

� Always use a space to separate groups of code that do different things, for
example avoid

sub funca

{

}

sub funcb

{

}

� Avoid using the same delimiter or quotes in q//, qq// and qx// operators or regular
expressions if you need to use them within the expression. For example, using the
forward slash / in a regular expression that works on directories is messy.

� Use here documents, rather than multiline double-quoted strings or repeated
print statements.

� Use arrays to hold lists of data, and then use join to output it instead of trying
to build the string on the fly.

� Give your variables sensible names; for example, $keyword makes more sense
than $foo.

� Avoid using the $_ in situations where $variable would look clearer.

For a list of further hints, check out the remaining chapters of this book. Above all,
remember to be consistent; don’t change your style half way through the script, and
remember that other people, including yourself in ten years’ time, may need to revisit
the code!

72 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 4
Variables and Data

73

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Variables, a core part of any language, allow you to store dynamic values into
named locations. Perl supports one basic variable type—the scalar. Scalars are
used to contain a single value, although the value itself can be either a numerical

or string constant or a reference to another variable.
Two other variable types are basically variations on the scalar theme. The array,

for example, is essentially a sequence (list) of scalar values accessible through a
numerical index. The hash is a list of key/value pairs that allow you to access a value
by name rather than the numerical index offered by arrays. Both the key and the value
use scalars to hold their contents.

In this chapter, we’re going to look at these base variable types, literals—the values
you assign to these variables—and the variable types and values. We’ll also take the
opportunity to look at the different quoting mechanisms, which control how strings
are determined and interpreted by Perl. The last part of the chapter looks at the
standard Perl variables and some of their effects.

Basic Naming Rules
Before we look at the specifics of the different variables and how to use them, it’s worth
looking at the basic rules that apply to the naming of variables within Perl:

� Variable names can start with a letter, a number, or an underscore, although
they normally begin with a letter and can then be composed of any combination
of letters, numbers, and the underscore character.

� Variables can start with a number, but they must be entirely composed of that
number; for example, $123 is valid, but $1var is not.

� Variable names that start with anything other than a letter, digit, or underscore
are generally reserved for special use by Perl (see “Special Variables” later in
this chapter).

� Variable names are case sensitive; $foo, $FOO, and $fOo are all separate
variables as far as Perl is concerned.

� As an unwritten (and therefore unenforced) rule, names all in uppercase
are constants.

� All scalar values start with $, including those accessed from an array of hash,
for example $array[0] or $hash{key}.

� All array values start with @, including arrays or hashes accessed in slices,
for example @array[3..5,7,9] or @hash{‘bob’, ‘alice’}.

� All hashes start with %.

� Namespaces are separate for each variable type—the variables $var, @var, and
%var are all different variables in their own right.

74 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : V a r i a b l e s a n d D a t a 75
FU

N
D

A
M

EN
TA

LS

� In situations where a variable name might get confused with other data (such
as when embedded within a string), you can use braces to quote the name. For
example, ${name}, or %{hash}.

Just remembering those simple rules should help to eliminate a number of
common problems.

Variables are also subject to the lexical scope within which they have been
declared—we’ll cover that in more detail in Chapter 6.

Scalar Variables
As I’ve already mentioned, the scalar variable is the most basic variable type within
Perl. A scalar always contains a single value, either a number, a string, or a reference
to another variable. If the variable has no value, then it is said to be “undefined” or
to contain the “undefined” value. See the section “The defined Function and the
Undefined Value” later in this chapter for more information on the effects of this
value on variables.

Although scalar values appear to contain a value of a specific type, the truth is
they don’t—Perl doesn’t distinguish (as far as we’re concerned) between numerical
values and strings, nor does it care whether a numerical value is an integer or a floating
point value.

In fact, internally, Perl stores numbers as signed integers, or as double precision
floating point values if the value contains a decimal component. Also be aware that
Perl doesn’t have infinite precision for its floating point values; the calculations 10 / 3
and 1 / 3 * 10 will not always equal the same value.

Strings are held internally as a sequence of characters. There is no limit on the
length of a string, and there are no terminators or other characters used to “delimit”
the content of the string (unlike C, which uses the null value).

However you are using a scalar, it is converted to the most appropriate format
when you use it. So when printing a numeric scalar, we don’t have to use a special
format; it’s automatically converted to a string for us. Perl also automatically converts
between integer and floating point values as required and will even convert strings
into numbers if it deems them necessary. The caveat to this last feature is that a failure
to convert a string results in a numerical value of zero.

To create a scalar variable, just select a name and assign it a value:

$int = 123;

$float = 123.45;

$string = 'Hello world!';

The last example assigns a string value to the scalar—note the quotes, which are a
required component. We’ll return to the topic of quotes later in this chapter (see “Quotes”).

We can also assign a scalar an empty (undefined) value:

$nothing = undef;

The undef is actually the name of a built-in function that returns the undefined value.
Don’t worry about it too much for the moment, but be aware that assigning a variable
the undefined value empties its contents.

Literals
Literals are the raw values that you insert into your source code; they can be made up
of the normal numerical values and strings. Perl also supports a number of advanced
literals that enable you to store specific types of data such as version strings.

Numeric Literals
Perl supports a number of a fairly basic methods for specifying a numeric literal in
decimal:

$num = 123; # integer

$num = 123.45; # floating point

$num = 1.23e45; # scientific notation

You can also specify literals in hexadecimal, octal, and binary by specifying a
preceding character to highlight the number types:

$num = 0xff; # Hexadecimal

$num = 0377; # Octal

$num = 0b0010_0000; # Binary

Note that the numbers are not stored internally using these bases—Perl converts
the literal representation into a decimal internally. Also note that the system that
handles the automatic conversion of strings to numbers does not support the base
prefixes; use the oct function to convert strings (see Chapter 8).

When specifying large numbers, it’s tempting to use commas to separate the
thousands. Because Perl uses the comma as an operator, it’s not practical. Instead,
you can use the underscore character to separate the thousands:

$num = 1_234_456_789; # underlines separate 000s for clarity

76 P e r l : T h e C o m p l e t e R e f e r e n c e

String Literals
Strings are generally surrounded by either single or double quotes. The effects of the
quotes are different, however, and they follow the same rules as the Unix shell. When
using single quotes, the value of the string is exactly as it appears—no form of
interpretation or evaluation is performed on the contents of the string (except for
\’ and \\).

When double quotes are used, the effects are quite different. For a start,
double-quoted strings are subject to backslash and variable interpolation, just as
they are under Unix. For example, we can use double-quoted strings and the \n
backslash sequence to add newline characters to a string. Other backslash (or escape)
sequences supported by Perl are listed in Table 4-1.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 77
FU

N
D

A
M

EN
TA

LS

Code Meaning

\n Newline

\r Carriage return

\t Horizontal tab

\f Form feed

\b Backspace

\a Alert (bell)

\e ESC (escape) character

\XXX Character specified in octal, where XXX is the character’s
ASCII code.

\xXX Character specified in hexadecimal, where XX is the
character’s ASCII code.

\x{XXXX} Character specified in hexadecimal, where XXXX is the
character’s Unicode number.

\cX Control character, where X is the character—\cC is
Control-C.

\N{NAME} Named Unicode character.

Table 4-1. Backslash (Escaped) Character Sequences

78 P e r l : T h e C o m p l e t e R e f e r e n c e

The backslash sequence is often called an escape sequence because you “escape” the
normal interpretation.

For example:

$string = 'hello world'; # hello world

$string = 'hello world\n'; # hello world\n

$string = "hello world\n"; # hello world with trailing newline

$string = "\tHello World\a\a\n"; # hello world with preceding tab and

double bell, with trailing newline

Incidentally, the quotes work across line boundaries, so we could rewrite the second
example as

$string = 'hello world

';

The newline from the source is included in the final string. Because of this, you need to
be careful when using quotes and ensure that you terminate them properly. One of the
most common errors is to embed a quote in your string. For example:

$message = 'Can't write to device';

This will fail because the second quote on the line will terminate the first. You can get
around this in both single and double quotes by escaping the quote:

$message = 'Can\'t write to device';

$text = "She said \"I can't do that!\"";

Note that in the last example the single quote is not escaped; this is because a single
quote has no meaning within double quotes other than as a quote character; thus we
could rewrite the first example:

$message = "Can't write to device";

The same is true in reverse; we could have written the second example:

$text = 'She said "I can\'t do that!"';

You can also modify the case of a string specified within double quotes using a number
of translation escapes, as listed in Table 4-2.

The examples that follow demonstrate the use of translation escapes in your strings:

$string = "\uhello world"; # Hello world

$string = "\Uhello world\n"; # HELLO WORLD

$string = "\Uhello\E \LWorld\E\n"; # HELLO world with trailing newline

$string = "\Q'Hello World'\E"; # \'Hello\ World\'

Double-quoted strings are also subject to variable interpolation—this means that you
can embed a variable directly into a double-quoted string and have the value of that
variable inserted into the string. For example:

$name = 'Martin';

$greeting = "Hello $name!\n"; # Generates Hello Martin!

Note that this technique only works on double-quoted strings:

$greeting = 'Hello $name!\n'; # Generates Hello $name!\n

Note that you can only interpolate scalars and arrays—trying to interpolate an entire
hash will only result in the string ‘%hash’ being included in the literal value. See
the later section “Interpolation of Array Values” for information on how arrays are
interpolated into strings.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 79
FU

N
D

A
M

EN
TA

LS

Code Meaning

\u Force next character to uppercase.

\l Force next character to lowercase.

\U Force all following characters to uppercase.

\L Force all following characters to lowercase.

\Q Backslash (escape) all following non-alphanumeric
characters.

\E End a \U, \L, or \Q escape.

Table 4-2. Translation Escapes

Also, because we sometimes want to include a variable name directly within the
contents of a string that might otherwise upset Perl’s evaluation of that variable name,
we can use one of the rules we saw earlier:

$message = "This is ${name}s computer";

Any identifier within the braces is interpreted as a string, and because it has a leading $
sign, the ${name} becomes the full name for the variable we are accessing.

Quotes
The quotes we have already seen in Perl are actually operators—they operate on the
embedded string. In the case of single quotes, this leads to the introduction of a string,
and in the case of double quotes, it leads to the introduction of a string that has been
evaluated according to the escapes and interpolation rules we have already seen.

Perl actually supports a number of quoting operators, most of which do more than
simply introduce strings. Not all of the quoting operators interpolate, and each has a
customary form. They do, however, share the same basic construction, allowing you to
select the quote character that you want to use. The full list is given in Table 4-3.

80 P e r l : T h e C o m p l e t e R e f e r e n c e

Customary Generic Meaning Interpolates

" q// Literal string No

"" qq// Literal string Yes

`` qx// Execute external
command

Yes

() qw// Generate word list No

// m// Regular expression
pattern match

Yes

s/// s/// Regular expression
substitution

Yes

y/// tr/// Character translation No

"" qr// Quote regular
expression

Yes

Table 4-3. Quoting Mechanisms

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : V a r i a b l e s a n d D a t a 81
FU

N
D

A
M

EN
TA

LS

We have already seen examples of the first two mechanisms in Table 4-3 in their
customary forms. One of the problems with the customary forms is that if you want to
embed quotes of the same type (i.e. single in single), you must escape the quote. Using
the quote operator, you can circumvent this:

$message = q/Can't send to device/;

$text = qq/She said "I can't do this!"/;

The character immediately following each operator is the delimiter—the delimiter
specifies the limits of the construct you are creating. You can use any alphanumeric or
non-whitespace character (that is, other than space, tab, newline) for a delimiter, but
the delimiters must match or complement each other. That means that we could use an
exclamation mark

$message = q!Can't send to device!;

or we can use a complementary pair of characters such as parentheses, braces, square
brackets, or even angle brackets:

$text = qq{She said "I can't do this!"};

$text = qq<She said "I can't do this!">;

Which one you choose will depend entirely on what you are embedding within the
construct, and you’ll probably find that in most instances you end up using the same
delimiting character.

Also note that the interpolation rules apply according to Table 4-3:

$message = q!Hello $name\n!; # Still outputs Hello $name\n

$message = qq/Hello $name\n/; # Outputs Hello Martin with a newline

Interpolation of Array Values
When you embed an array into a string, the elements of the array are included in order
separated by the contents of the $” special variable, which by default is a space:

@list = ('hello', 'world');

print "@list\n"; # Outputs 'hello world'

Perl will determine whether the name you have supplied is correct, and it’ll raise an
error if you’ve tried to interpolate an array that doesn’t exist. This can lead to problems:

print "mc@mcslp.com";

In this instance, Perl is expecting to find an array called @mcslp, and it will obviously
fail because we haven’t defined such an array. Generally, Perl will warn you of this
error during compilation and tell you to escape the @ sign:

print "mc\@mcslp.com@;

Here Documents
If you want to introduce multiline strings into your programs, you can use standard
quotes:

$string = 'This is

a multiline

string';

But this is messy and is subject to the same basic laws regarding interpolation and
quote usage. We could get around it using the q// or qq// operator with different
delimiters, but that won’t change the underlying issue of delimiter choice and
on-screen clarity.

To get around this, Perl supports “here” documents—these are multiline strings,
which interpolate, that continue indefinitely until the multicharacter delimiter that you
specify is reached. For example:

print <<EOF;

This is

a multiline

string

EOF

The resulting contents are interpolated as normal, and they contain any special
characters such as tabs and newlines in the final string.

The delimiter should be placed immediately after the <<, a space is treated as a
null identifier, and the delimiter should be specified on its own line with no leading
or trailing spaces. You can also quote the delimiter during specification:

82 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : V a r i a b l e s a n d D a t a 83
FU

N
D

A
M

EN
TA

LS

print <<'EOF';

This is

a multiline

string

EOF

or

print <<"EOF";

This is

a multiline

string

EOF

The null identifier (an empty string or space) matches the next empty line:

print <<'';

This is

a multiline

string

print "This is a new statement\n";

The here document just becomes a special type of literal, so we can combine it with
other components

print <<'' x 5;

This message will repeat 5 times

and use them as arguments for function calls:

print(<<"EOFA", 99, <<"EOFB");

This is the first

argument...

EOFA

This is the second

EOFB

84 P e r l : T h e C o m p l e t e R e f e r e n c e

We can also use a here document to execute commands if we use backticks instead of
normal single or double quotes:

print <<`BUILTIN`

ll

echo "Finished!"

BUILTIN

The important thing to remember is that everything contained between the initial
specification and the delimiter that you have specified is taken verbatim. This means
that any leading spaces in the text will need to be removed (if you want them to be!):

($string = <<'EOF') =~ s/^\s+//gb;

These lines will have their leading

spaces removed for clarity.

EOF

V-Strings
You probably think of v-strings as a method for the introduction of version numbers,
although in reality they are slightly more complex. Any literal that begins with a v
and is followed by one or more dot-separated elements is treated as a string literal
composed of the characters with the specified values.

For example:

$name = v77.97.114.116.105.110;

Actually equates to ‘Martin’. If there are more than two dots (i.e. more than three
integers), then you can omit the leading ‘v’:

$name = 77.97.114.116.105.110;

V-strings can be a useful way of introducing version numbers and IP addresses into
Perl. It means you are no longer restricted to using simple decimals (1.0003) for version
numbers, and it also eliminates the need to build IP addresses manually with pack
when you want to introduce a fixed IP address into some code.

Of course, it also means that these strings are illegible to the human eye. You’ll
need to use the v format with the printf/sprintf function to format these values nicely.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 85
FU

N
D

A
M

EN
TA

LS

Arrays
An array is just a set of scalars. It’s made up of a list of individual scalars that are
stored within a single variable. You can refer to each scalar within that list using a
numerical index. You can use arrays to store any kind of list data, from the days of
the week to a list of all the lines in a file. Creating individual scalars for each of these
is cumbersome, and in the case of the file contents, impossible to prepare for. What
happens if the input file has 100 lines instead of 10? The answer is to use an array,
which can be dynamically sized to hold any number of different values.

Creation
Array variables have are prefixed with the @ sign and are populated using either
parentheses or the qw operator. For example:

@array = (1, 2, 'Hello');

@array = qw/This is an array/;

The second line uses the qw// operator, which returns a list of strings, separating the
delimited string by white space. In this example, this leads to a four-element array; the
first element is 'this' and last (fourth) is 'array'. This means that you can use newlines
within the specification:

@days = qw/Monday

Tuesday

...

Sunday/;

We can also populate an array by assigning each value individually:

$array[0] = 'Monday';

...

$array[6] = 'Sunday';

However, you should avoid using square brackets to create a normal array.
The line

@array = [1, 2, 'Hello'];

initializes @array with only one element, a reference to the array contained in the
square brackets. We’ll be looking at references in Chapter 10.

86 P e r l : T h e C o m p l e t e R e f e r e n c e

Extracting Individual Indices
When extracting individual elements from an array, you must prefix the variable with
a dollar sign (to signify that you are extracting a scalar value) and then append the
element index within square brackets after the name. For example:

@shortdays = qw/Mon Tue Wed Thu Fri Sat Sun/;

print $shortdays[1];

Array indices start at zero, so in the preceding example we’ve actually printed “Tue.”
You can also give a negative index—in which case you select the element from the end,
rather than the beginning, of the array. This means that

print $shortdays[0]; # Outputs Mon

print $shortdays[6]; # Outputs Sun

print $shortdays[-1]; # Also outputs Sun

print $shortdays[-7]; # Outputs Mon

Remember:

� Array indices start at zero, not one, when working forward; for example:

@days = qw/Monday

Tuesday

...

Sunday/;

print "First day of week is $days[0]\n";

� Array indices start at –1 for the last element when working backward.

The use of $[, which changes the lowest index of an array, is heavily deprecated, so the
preceding rules should always apply.

Be careful when extracting elements from an array using a calculated index. If you
are supplying an integer, then there shouldn’t be any problems with resolving that to
an array index (provided the index exists). If it’s a floating point value, be aware that
Perl always truncates (rounds down) values as if the index were interpreted within
the int function. If you want to round up, use sprintf—this is easily demonstrated;
the script

C h a p t e r 4 : V a r i a b l e s a n d D a t a 87
FU

N
D

A
M

EN
TA

LS

@array = qw/a b c/;

print("Array 8/5 (int) is: ", $array[8/5], "\n");

print("Array 8/5 (float) is: ",

$array[sprintf("%1.0f",(8/5))],"\n");

generates

Array index 8/5 (int) is: b

Array index 8/5 (float) is: c

The bare 8 / 5, which equates to 1.6, is interpreted as 1 in the former statement, but
2 in the latter.

Slices
You can also extract a “slice” from an array—that is, you can select more than one item
from an array in order to produce another array.

@weekdays = @shortdays[0,1,2,3,4];

The specification for a slice must a list of valid indices, either positive or negative, each
separated by a comma. For speed, you can also use the .. range operator:

@weekdays = @shortdays[0..4];

Ranges also work in lists:

@weekdays = @shortdays[0..2,6,7];

Note that we’re accessing the array using an @ prefix—this is because the return value
that we want is another array, not a scalar. If you try accessing multiple values using
$array you’ll get nothing, but an error is only reported if you switch warnings on:

$ perl -ew "print $ARGV[2,3];" Fred Bob Alice

Multidimensional syntax $ARGV[2,3] not supported at -e line 1.

Useless use of a constant in void context at -e line 1.

Use of uninitialized value in print at -e line 1.

Single Element Slices
Be careful when using single element slices. The statement

print @array[1];

is no different than

print $array[1];

except that the former returns a single element list, while the latter returns a single
scalar. This can be demonstrated more easily using the fragment

@array[1] = <DATA>;

which actually reads in all the remaining information from the DATA filehandle,
but assigns only the first record read from the filehandle to the second argument
of the array.

Size
The size of an array can be determined using scalar context on the array—the returned
value will be the number of elements in the array:

@array = (1,2,3);

print "Size: ",scalar @array,"\n";

The value returned will always be the physical size of the array, not the number of
valid elements. You can demonstrate this, and the difference between scalar @array
and $#array, using this fragment:

@array = (1,2,3);

$array[50] = 4;

print "Size: ",scalar @array,"\n";

print "Max Index: ", $#array,"\n";

This should return

Size: 51

Max Index: 50

88 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : V a r i a b l e s a n d D a t a 89
FU

N
D

A
M

EN
TA

LS

There are only four elements in the array that contain information, but the array is
51 elements long, with a highest index of 50.

Hashes
Hashes are an advanced form of array. One of the limitations of an array is that the
information contained within it can be difficult to get to. For example, imagine that you
have a list of people and their ages. We could store that information in two arrays, one
containing the names and the other their ages:

@names = qw/Martin Sharon Rikke/;

@ages = (28,35,29);

Now when we want to get Martin’s age, we just access index 0 of the @ages array.
Furthermore, we can print out all the people’s ages by printing out the contents of each
array in sequence:

for($i=0;$i<@names;$i)

{

print "$names[$i] is $ages[$i] years old\n";

}

But how would you print out Rikke’s age if you were only given her name, rather than
her location within the @names array? The only way would be to step through @names
until we found Rikke, and then look up the corresponding age in the @ages array. This is
fine for the three-element array listed here, but what happens when that array becomes
30, 300, or even 3000 elements long? If the person we wanted was at the end of the list,
we’d have to step through 3000 items before we got to the information we wanted.

The hash solves this, and numerous other problems, very neatly by allowing us to
access that @ages array not by an index, but by a scalar key. Because it’s a scalar, that
value could be anything (including a reference to another hash, array, or even an object),
but for this particular problem it would make sense to make it the person’s name:

%ages = ('Martin' => 28,

'Sharon' => 35,

'Rikke' => 29,);

Now when we want to print out Rikke’s age, we just access the value within the hash
using Rikke’s name as the key:

print "Rikke is $ages{Rikke} years old\n";

90 P e r l : T h e C o m p l e t e R e f e r e n c e

The process works on 3000 element hashes just as easily as it does on 3:

print "Eileen is $ages{Eileen} years old\n";

We don’t have to step through the list to find what we’re looking for—we can just
go straight to the information. Perl’s hashes are also more efficient than those supported
by most other languages. Although it is possible to end up with a super-large hash
that takes a long time to locate its values, you are probably talking tens or hundreds of
thousands of entries. If you are working with that level of information though, consider
using a DBM file—see Chapter 13 for more information.

Creation
Hashes are created in one of two ways. In the first, you assign a value to a named key
on a one-by-one basis:

$ages{Martin} = 28;

In the second, you use a list, which is converted by taking individual pairs from the
list: the first element of the pair is used as the key, and the second, as the value. For
example,

%hash = ('Fred' , 'Flintstone', 'Barney', 'Rubble');

For clarity, you can use => as an alias for , to indicate the key/value pairs:

%hash = ('Fred' => 'Flintstone',

'Barney' => 'Rubble');

When specifying the key for a hash element, you can avoid using quotes within the
braces according to the normal brace expansion rules:

$ages{Martin} = 28;

However, if the contents are a more complex term, they will need to be quoted:

$ages{'Martin-surname'} = 'Brown';

You can also use the - operator in front of a word, although this makes the key
include the leading - sign as part of the key:

%hash = (-Fred => 'Flintstone', -Barney => 'Rubble');

print $hash{-Fred};

TE
AM
FL
Y

Team-Fly®

For single-letter strings, however, this will raise a warning; use single quotes to
explicitly define these arguments.

Extracting Individual Elements
You can extract individual elements from a hash by specifying the key for the value
that you want within braces:

print $hash{Fred};

Care needs to be taken when embedding strings and/or variables that are made
up of multiple components. The following statements are identical, albeit with a slight
performance trade-off for the former method:

print $hash{$fred . $barney};

print $hash{"$fred$barney"};

When using more complex hash keys, use sprintf:

print $hash{sprintf("%s-%s:%s",$a,$b,$c)};

You can also use numerical values to build up your hash keys—the values just
become strings. If you are going to use this method, then you should use sprintf to
enforce a fixed format for the numbers to prevent minor differences from causing you
problems. For example, when formatting time values, it’s better to use

$hash{sprintf("%02d%02d",$hours,$min)};

than

$hash{$hours . $min};

With the former, all times will be displayed in the form ‘0505’ instead of ‘55’.

Extracting Slices
You can extract slices out of a hash just as you can extract slices from an array.
You do, however, need to use the @ prefix because the return value will be a list
of corresponding values:

%hash = (-Fred => 'Flintstone', -Barney => 'Rubble');

print join("\n",@hash{-Fred,-Barney});

C h a p t e r 4 : V a r i a b l e s a n d D a t a 91
FU

N
D

A
M

EN
TA

LS

92 P e r l : T h e C o m p l e t e R e f e r e n c e

Using $hash{-Fred, -Barney} would return nothing.

Extracting Keys, Values, or Both
You can get a list of all of the keys from a hash by using keys:

%ages = ('Martin' => 28, 'Sharon' => 35, 'Rikke' => 29);

print "The following are in the DB: ",join(', ',keys %ages),"\n";

You can also get a list of the values using values:

%ages = ('Martin' => 28, 'Sharon' => 35, 'Rikke' => 29);

print "The following are in the DB: ",join(', ',values %ages),"\n";\

These can be useful in loops when you want to print all of the contents of a hash:

foreach $key (%ages)

{

print "$key is $ages{$key} years old\n";

}

The problem with both these functions is that on large hashes (such as those
attached to external databases), we can end up with very large memory-hungry
temporary lists. You can get round this by using the each function, which returns
key/value pairs. Unlike keys and values, the each function returns only one pair
for each invocation, so we can use it within a loop without worrying about the size
of the list returned in the process:

while (($key, $value) = each %ages)

{

print "$key is $ages{$key} years old\n";

}

The order used by keys, values, and each is unique to each hash, and its order can’t
be guaranteed. Also note that with each, if you use it once outside of a loop, the
next invocation will return the next item in the list. You can reset this “counter” by
evaluating the entire hash, which is actually as simple as

sort keys %hash;

C h a p t e r 4 : V a r i a b l e s a n d D a t a 93
FU

N
D

A
M

EN
TA

LS

Checking for Existence
If you try to access a key/value pair from a hash that doesn’t exist, you’ll normally get
the undefined value, and if you have warnings switched on, then you’ll get a warning
generated at run time. You can get around this by using the exists function, which
returns true if the named key exists, irrespective of what its value might be:

if (exists($ages{$name}))

{

print "$name if $ages{$name} years old\n";

}

else

{

print "I don't know the age of $name\n";

}

Sorting/Ordering
There is no way to simply guarantee that the order in which a list of keys, values, or
key/value pairs will always be the same. In fact, it’s best not even to rely on the order
between two sequential evaluations:

print(join(', ',keys %hash),"\n");

print(join(', ',keys %hash),"\n");

If you want to guarantee the order, use sort, as, for example:

print(join(', ',sort keys %hash),"\n");

If you’re accessing a hash a number of times and want to use the same order,
consider creating a single array to hold the sorted sequence, and then use the array
(which will remain in sorted order) to iterate over the hash. For example:

my @sortorder = sort keys %hash;

foreach my $key (@sortorder)

Size
You get the size—that is, the number of elements—from a hash by using scalar context
on either keys or values:

print "Hash size: ",scalar keys %hash,"\n";

Don’t use each, as in a scalar context it returns the first key from the hash, not a
count of the key/value pairs, as you might expect.

If you evaluate a hash in scalar context, then it returns a string that describes the
current storage statistics for the hash. This is reported as “used/total” buckets. The
buckets are the storage containers for your hash information, and the detail is only
really useful if you want to know how Perl’s hashing algorithm is performing on your
data set. If you think this might concern you, then check my Debugging Perl title, which
details how hashes are stored in Perl and how you can improve the algorithm for
specific data sets (see Appendix C for more information).

Lists
Lists are really a special type of array—essentially, a list is a temporary construct that
holds a series of values. The list can be “hand” generated using parentheses and the
comma operator,

@array = (1,2,3);

or it can be the value returned by a function or variable when evaluated in list context:

print join(',' @array);

Here, the @array is being evaluated in list context because the join function is
expecting a list (see Chapter 6 for more information on contexts).

Merging Lists (or Arrays)
Because a list is just a comma-separated sequence of values, you can combine lists together:

@numbers = (1,3,(4,5,6));

The embedded list just becomes part of the main list—this also means that we can
combine arrays together:

@numbers = (@odd,@even);

Functions that return lists can also be embedded to produce a single, final list:

@numbers = (primes(),squares());

94 P e r l : T h e C o m p l e t e R e f e r e n c e

Selecting Elements from Lists
The list notation is identical to that for arrays—you can extract an element from an
array by appending square brackets to the list and giving one or more indices:

$one = (5,4,3,2,1)[4];

Similarly, we can extract slices, although without the requirement for a leading
@ character:

@newlist = (5,4,3,2,1)[1..3];

Selecting List Elements from Function Calls
We can even use list notation on the return value from a function call. For example, the
localtime function returns a list of time values (hours, minutes, days, and so on), and
we can extract just the elements we want:

($hours,$minutes) = (localtime())[2..3];

Note that the parentheses go around the expression that returns the list, to imply
list context on the overall expression. The following are all examples of how not to
extract individual elements from a function that returns a list:

$hours = localtime()[2];

$hours,$minutes = localtime()[2..3];

($hours,$minutes) = localtime()[2..3];

List Assignment
We’ve now seen an example of list assignment, but it’s a useful feature that can be
applied to any statement or sequence of statements. You can use list assignment to
assign a series of values to a series of valid lvalues; for example, we can shorten

$one = 1;

$two = 2;

$three = 3;

to

($one, $two, $three) = (1,2,3);

C h a p t e r 4 : V a r i a b l e s a n d D a t a 95
FU

N
D

A
M

EN
TA

LS

96 P e r l : T h e C o m p l e t e R e f e r e n c e

Note that you need list context on both sides of the assignment operator. If you
don’t want one of the values, you can also assign to the undefined value:

($one, undef, $three) = (1,2,3);

Finally, you can assign a value to an empty list, which will force list context on to
the function, although any value it returns will be lost:

() = function();

Arrays in List Context
When accessing an entire array or slice, arrays work as lists—that is

@array = (1,2);

($a, $b) = @array;

is equivalent to

($a, $b) = (1, 2);

Hashes in List Context
In the same way that hashes are essentially populated using a list, if you evaluate a
hash in list context, then what you get is a list of key/value pairs. For example,

my %hash = (Fred => 'Flintstone', Barney => 'Rubble');

@list = %hash;

print join(', ',@list);

produces

Barney, Rubble, Fred, Flintstone

Typeglobs
The typeglob is a special type of variable that literally means “everything called….” In
fact, a typeglob is a pointer to a symbol table entry. Typeglobs start with an asterisk;
the typeglob *foo contains the values of $foo, @foo, %foo and &foo. Typeglobs are
useful when you want to refer to a variable but don’t necessarily know what it is.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 97
FU

N
D

A
M

EN
TA

LS

Although this isn’t particularly useful for the three main data types, it can be useful
for exchanging filehandles:

$myfh = *STDOUT;

This is useful when you want to use filehandles within a function call—although it’s
more natural to use references. See Chapter 6 for some more examples of this use.

The defined Function and the Undefined Value
The undefined value, undef, is an alternative to the null value used in C. In essence,
undef means that the variable has had no value assigned. This is useful if you want to
create an undefined variable—one that has no value. Compare the undefined value with
an integer with a value of 0 or an empty string, both of which indicate valid values.

The undefined value will always evaluate to false if used in an expression, for
example the test in this fragment:

$value = undef;

if ($value)

{

...

will always fail. It will also raise an error because you’ve tried to access the contents of
an undefined value. In these situations, you can use the defined function to check the
value of a scalar. The defined function returns true if the scalar contains a valid value,
or false if the scalar contains undef:

if (defined($value))

{

...

Just to confuse you, defined will return false if a variable has never been named or
created, and also false if the variable does exist but has the undef value.

Note that the same rules apply to the scalar components of arrays or hashes: they
can contain the undefined value, even though the index or key is valid. This can cause
problems if you only use defined on a hash element. For example:

$hash{one} = undef;

print "Defined!\n" if (defined($hash{one}));

print "Exists!\n" if (defined($hash{one}));

This will only print “Exists!,” since the element’s value remains undefined.

98 P e r l : T h e C o m p l e t e R e f e r e n c e

Default Values
It’s not necessary within Perl to initialize variables with some default values. Perl
automatically creates all scalars as empty (with the undefined value). Lists and hashes
are automatically created empty. That said, there is nothing wrong with setting the
initial value of a variable—it won’t make any difference to Perl—it’s good programming
practice if only for its sheer clarity effect, especially if you are using my to declare the
variables beforehand. See Chapter 6 for information on using my.

Other Tokens
Perl supports a few other tokens that are identified by Perl as containing a value or
indicating a state, even though they are aren’t truly variables. These are listed in Table 4-4.

Special Variables
Perl keeps an internal list of special variables that supply information and data about
the current scripts environment. The subsections that follow include standard variables
built into the interpreter, variables that have special meanings to core modules (such as
pragmas and Exporter), and also the special filehandles used for communicating with
the outside world.

Token Value

_ _LINE_ _ The current line number within the current file.

_ _FILE_ _ The name of the current file.

_ _PACKAGE_ _ The name of the current package. If there is no current
package, then it returns the undefined value.

_ _END_ _ Indicates the end of the script (or interpretable Perl) within a
file before the physical end of file.

_ _DATA_ _ As for __END__, except that it also indicates the start of the
DATA filehandle that can be opened with the open, therefore
allowing you to embed script and data into the same script.

Table 4-4. Literal Tokens in Perl

C h a p t e r 4 : V a r i a b l e s a n d D a t a 99
FU

N
D

A
M

EN
TA

LS

Note that Perl uses a combination of special characters and names to refer to the
individual variables. To use the long (named) variables, you must include the English
module by placing

use English;

at the top of your program. By including this module, you arrange that the longer
names will be aliased to the shortened versions. Although there is no standard for
using either format, because the shortened versions are the default, you will see them
used more widely. See Web Appendix A for a listing of the variables and their English
module equivalents. The named examples are given here for reference.

Some of the variables also have equivalent methods that are supported by the IO::*
range of modules. The format of these method calls is method HANDLE EXPR (you
can also use HANDLE->method(EXPR)), where HANDLE is the filehandle you want
the change to apply to, and EXPR is the value to be supplied to the method.

_ (underscore) The underscore represents the special filehandle used to cache
information from the last successful stat, lstat, or file test operator.

$0
$PROGRAM_NAME The name of the file containing the script currently being
executed.

$1..$xx The numbered variables $1, $2, and so on are the variables used to hold the
contents of group matches both inside and outside of regular expressions.

$_
$ARG The $_ and $ARG variables represent the default input and pattern searching
spaces. For many functions and operations, if no specific variable is specified, the
default input space will be used. For example,

$_ = "Hello World\n";

print;

would print the “Hello World” message. The same variable is also used in regular
expression substitution and pattern matches. We’ll look at this more closely in Chapter 7.

100 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl will automatically use the default space in the following situations even if you
do not specify it:

� Unary functions, such as ord and int.

� All file tests except -t, which defaults to STDIN.

� Most of the functions that support lists as arguments (see Appendix A).

� The pattern matching operations, m//, s///, and tr///, when used without an
=~ operator.

� The default iterator variable in a for or foreach loop, if no other variable
is supplied.

� The implicit operator in map and grep functions.

� The default place to store an input record when reading from a filehandle.

$&
$MATCH The string matched by the last successful pattern match.

$`
$PREMATCH The string preceding the information matched by the last pattern match.

$’
$POSTMATCH The string following the information matched by the last pattern match.

$+
$LAST_PARENT_MATCH The last bracket match by the last regular expression
search pattern.

$* Set to 1 to do multiline pattern matching within a string. The default value is 0. The
use of this variable has been superseded by the /s and /m modifiers to regular expressions.

Use of this variable should be avoided.

@+
@LAST_MATCHED Contains a list of all the offsets of the last successful submatches
from the last regular expression. Note that this contains the offset to the first character
following the match, not the location of the match itself. This is the equivalent of the
value returned by the pos function. The first index, $+[0] is offset to the end of the
entire match. Therefore, $+[1] is the location where $1 ends, $+[2], where $2 ends.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : V a r i a b l e s a n d D a t a 101
FU

N
D

A
M

EN
TA

LS

@-
@LAST_MATCH_START Contains a list of all the offsets to the beginning of the last
successful submatches from the last regular expression. The first index, $-[0], is offset to
the start of the entire match. Therefore, $-[1] is equal to $1, $-[2] is equal to $2, and so on.

$.
$NR
$INPUT_LINE_NUMBER The current input line number of the last file from which
you read. This can be either the keyboard or an external file or other filehandle (such as
a network socket). Note that it’s based not on what the real lines are, but more what the
number of the last record was according to the setting of the $/ variable.

$/
$RS
$INPUT_RECORD_SEPARATOR The current input record separator. This is
newline by default, but it can be set to any string to enable you to read in delimited
text files that use one or more special characters to separate the records. You can also
undefine the variable, which will allow you to read in an entire file, although this is
best done using local within a block:

{

local $/;

$file = <FILE>;

}

@ISA The array that contains a list of other packages to look through when a method
call on an object cannot be found within the current package. The @ISA array is used
as the list of base classes for the current package.

$|
$AUTOFLUSH
$OUTPUT_AUTOFLUSH
autoflush HANDLE EXPR By default all output is buffered (providing the OS
supports it). This means all information to be written is stored temporarily in memory
and periodically flushed, and the value of $| is set to zero. If it is set to non-zero, the
filehandle (current, or specified) will be automatically flushed after each write operation.
It has no effect on input buffering.

$,
$OFS
$OUTPUT_FIELD_SEPARATOR The default output separator for the print series of
functions. By default, print outputs the comma-separated fields you specify without
any delimiter. You can set this variable to commas, tabs, or any other value to insert a
different delimiter.

$\
$ORS
$OUTPUT_RECORD_SEPARATOR The default output record separator. Ordinarily,
print outputs individual records without a standard separator, and no trailing newline
or other record separator is output. If you set this value, then the string will be appended
to the end of every print statement.

%OVERLOAD Set by the overload pragma to implement operator overloading.

$”
$LIST_SEPARATOR This defines the separator inserted between elements of an
array when interpolated within a double-quoted string. The default is a single space.

$;
$SUBSEP
$SUBSCRIPT_SEPARATOR The separator used when emulating multidimensional
arrays. If you refer to a hash element as

$foo{$a,$b,$c}

it really means

$foo{join($;,$a,$b,$c)}

The default value is “\034.”

$# The default number format to use when printing numbers. The value format
matches the format of numbers printed via printf and is initially set to %.ng, where n is
the number of digits to display for a floating point number as defined by your operating
system (this is the value of DBL_DIG from float.h under Unix).

The use of this variable should be avoided.

102 P e r l : T h e C o m p l e t e R e f e r e n c e

$%
$FORMAT_PAGE_NUMBER
format_page_number HANDLE EXPR The page number of the current output
channel.

$=
$FORMAT_LINES_PER_PAGE
format_lines_per_page HANDLE EXPR The number of printable lines of the current
page; the default is 60.

$-
$FORMAT_LINES_LEFT
format_lines_left HANDLE EXPR The number of lines available to print to on the
current page.

$~
$FORMAT_NAME
format_name HANDLE EXPR The name of the current report format in use by the
current output channel. This is set by default to the name of the filehandle.

$^
$FORMAT_TOP_NAME
format_top_name HANDLE EXPR The name of the current top-of-page output
format for the current output channel. The default name is the filehandle with _TOP
appended.

$:
$FORMAT_LINE_BREAK_CHARACTERS
format_line_break_characters HANDLE EXPR The set of characters after which a
string may be broken to fill continuation fields. The default is “\n-,” to allow strings to
be broken on newlines or hyphens.

$^L
$FORMAT_FORMFEED
format_formfeed HANDLE EXPR The character to be used to send a form feed to
the output channel. This is set to “\f” by default.

$@
$EVAL_ERROR The error message returned by the Perl interpreter when Perl has
been executed via the eval function. If empty (false), then the last eval call executed
successfully.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 103
FU

N
D

A
M

EN
TA

LS

104 P e r l : T h e C o m p l e t e R e f e r e n c e

$$
$PID
$PROCESS_ID The process number of the Perl interpreter executing the current script.

$<
$UID
$REAL_USER_ID The real ID of the user currently executing the interpreter that is
executing the script.

$>
$EUID
$EFFECTIVE_USER_ID The effective user ID of the current process.

$(
$GID
$REAL_GROUP_ID The real group ID of the current process. If the OS supports
multiple simultaneous group membership, this returns a space-separated list of group IDs.

$)
$EGID
$EFFECTIVE_GROUP_ID The effective group ID of the process. If the OS supports
multiple simultaneous group membership, this returns a space-separated list of group IDs.

$!
$ERRNO
$OS_ERROR Returns the error number or error string of the last system call
operation. This is equivalent to the errno value and can be used to print the error
number or error string when a particular system or function call has failed.

%!
%ERRNO
%OS_ERROR Defined only when the Errno module has been imported. Allows
you to compare the current error with an error string as determined by the C #define
definitions in the system header files.

$[The index of the first element in an array or of the first character in a substring.
The default is zero, but this can be set to any value. In general, this is useful only when
emulating awk, since functions and other constructs can emulate the same functionality.

The use of this variable should be avoided.

$]
$OLD_PERL_VERSION The old version + patchlevel/1000 of the Perl interpreter.
This can be used to determine the version number of Perl being used, and therefore
what functions and capabilities the current interpreter supports. The $^V variable
holds a UTF-8 representation of the current Perl version.

$a The variable used by the sort function to hold the first of each pair of values being
compared. The variable is actually a reference to the real variable so that you can modify
it, but you shouldn’t—see Chapter 8 for information on usage.

@_
@ARG Within a subroutine (or function), the @_ array contains the list of parameters
supplied to the function.

ARGV The special filehandle that iterates over command line filenames in @ARGV.
Most frequently called using the null filehandle in the angle operator <>.

$ARGV The name of the current file when reading from the default filehandle <>.

@ARGV The @ARGV array contains the list of the command line arguments
supplied to the script. Note that the first value, at index zero, is the first argument,
not the name of the script.

ARGVOUT The special filehandle used to send output to a new file when processing
the ARGV filehandle under the -i switch.

$b The variable supplied as the second value to compare when using sort, along
with the $a variable.

$^A
$ACCUMULATOR When outputting formatted information via the reporting
system, the formline functions put the formatted results into $^A, and the write
function then outputs and empties the accumulator variable. This the current value
of the write accumulator for format lines.

$?
$CHILD_ERROR The status returned by the last external command (via backticks
or system) or the last pipe close. This is the value returned by wait, so the true return
value is $? >> 8, and $? & 127 is the number of the signal received by the process, if
appropriate.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 105
FU

N
D

A
M

EN
TA

LS

106 P e r l : T h e C o m p l e t e R e f e r e n c e

$^C
$COMPILING The value of the internal flag associated with the -c switch. This
has a true value when code is being compiled using perlcc or when being parsed with
the -MO option.

DATA The filehandle that refers to any text following either the _ _END_ _ or
_ _DATA_ _ token within the current file. The _ _DATA_ _ token automatically opens

the DATA filehandle for you.

$^D
$DEBUGGING The current value of the internal debugging flags, as set from the -D
switch on the command line.

%ENV The list of variables as supplied by the current environment. The key is the
name of the environment variable, and the corresponding value is the variable’s value.
Setting a value in the hash changes the environment variable for child processes.

@EXPORT The list of functions and variables to be exported as normal from a
module when using the standard Exporter module.

%EXPORT_TAGS A list of object groups (in the keys) and objects (in the values) to
be exported when requesting groups of objects when importing a module.

$^E
$EXTENDED_OS_ERROR Contains extended error information for operating
systems other than Unix. Under Unix the value equals the value of $!. We’ll look more
closely at the use of this variable when we study the use of Perl as a cross-platform
development solution.

@F The array into which the input lines fields are placed after splitting when the -a
command line argument has been given.

%FIELDS The hash used by the fields pragma to determine the current legal fields in
an object hash.

$^F
$SYSTEM_FD_MAX The maximum system file descriptor number, after STDIN (0),
STDOUT (1) and STDERR (2)—therefore it’s usually two. System file descriptors are
duplicated across exec’d processes, although higher descriptors are not. The value of
this variable affects which filehandles are passed to new programs called through exec
(including when called as part of a fork).

$^H The status of syntax checks enabled by compiler hints, such as use strict.

@INC The list of directories that Perl should examine when importing modules via
the do, require, or use construct.

%INC Contains a list of the files that have been included via do, require, or use. The
key is the file you specified, and the value is the actual location of the imported file.

$^I The value of the inplace-edit extension (enabled via the -i switch on the command
line). True if inplace edits are currently enabled, false otherwise.

$^M The size of the emergency pool reserved for use by Perl and the die function
when Perl runs out of memory. This is the only standard method available for trapping
Perl memory overuse during execution.

$^O
$OSNAME The operating system name, as determined via the configuration system
during compilation.

$^P
$PERLDB The internal variable used for enabling the Perl debugger.

$^R
$LAST_REGEXP_CODE_RESULT The value of the last evaluation in a (?{ code })
block within a regular expression. Note that if there are multiple (?{code}) blocks
within a regular expression, then this contains the result of the last piece of code that
led to a successful match within the expression.

%SIG The keys of the %SIG hash correspond to the signals available on the current
machine. The value corresponds to how the signal will be handled. You use this
mechanism to support signal handlers within Perl. We’ll look at this in more detail
when we examine interprocess communication in Chapter 10.

$^S
$EXCEPTIONS_BEING_CAUGHT The current interpreter state. The value is
undefined if the parsing of the current module is not finished. It is true if inside an
eval block, otherwise, false.

STDERR The special filehandle for standard error.

STDIN The special filehandle for standard input.

STDOUT The special filehandle for standard output.

C h a p t e r 4 : V a r i a b l e s a n d D a t a 107
FU

N
D

A
M

EN
TA

LS

108 P e r l : T h e C o m p l e t e R e f e r e n c e

$^T
$BASETIME The time at which the script started running, defined as the number of
seconds since the epoch.

$^V
$PERL_VERSION The current revision, version, and subversion of the currently
executing Perl interpreter. Specified as a v-string literal.

$VERSION The variable accessed to determine whether a given package matches the
acceptable version when the module is imported. For example

use Module 2.5;

would check $Module::VERSION to see whether it was equal to or greater than 2.5.

$^W
$WARNING The current value of the warning switch (specified via the -w, -W, and
-X command line options).

$^X
$EXECUTABLE_NAME The name of the Perl binary being executed, as determined
via the value of C’s argv[0]. This is not the same as the name of the script being
executed, which can be found in $0.

${^WARNING_BITS} The current set of warning checks enabled through the
warnings pragma.

${^WIDE_SYSTEM_CALLS} The global flag that enables all system calls made
by Perl to use the wide-character APIs native to the system. This allows Perl to
communicate with systems that are using multibyte characters sets, and therefore wide
characters within their function names.

Chapter 5
Statements and
Control Structures

109

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

110 P e r l : T h e C o m p l e t e R e f e r e n c e

As in any other language, Perl scripts are made of a combination of
statements, expressions, and declarations. We’ve already seen some
examples of expressions that use operators and variables. We’ll be looking

at declarations—the specification of variables and other dynamic components, such
as subroutines—in the next chapter.

Statements are the building blocks of a program. They control the execution of
your script and, unlike an expression, which is evaluated for its result, a statement is
evaluated for its effect. For example, the if statement is evaluated and executes a block
based on the result of the expression.

Examples of other statements include the loop statements, such as for, while, and
do. We’ll look at all of these and the other basic components of a Perl script, but we’ll
start with a core component of any statement—the code block.

Code Blocks
A sequence of statements is called a code block, or simply just a block. The block could
be an entire file (your script is actually a block of code), but more usually it refers to a
sequence of statements enclosed by a pair of braces (curly brackets)—{}. Blocks also
have a given scope, which controls the names and availability of variables within a
given block—we’ll cover scope separately in Chapter 6.

For example, consider the following simple script, which first assigns an expression
to a variable and then prints the value:

$a = 5*2;

print "Result: $a\n";

As the only two lines within the script, they make up a single block. However, if we
place those two statements into a braced block as part of an if statement, like this:

if ($expre)

{

$a = 5*2;

print "Result: $a\n";

}

then we have two blocks in the script—once block consists of the entire file, and the
second block is made up simply of those two lines that perform and then print the
result of a calculation.

Blocks are a vital part of Perl—they allow you to segregate sequences of code for use
with loops and control structures, and they act as delimiters for subroutines and eval
statements. They can even act as delimiters for accessing complex structures. Because
of this, we’ll actually be returning to blocks again and again throughout the book.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 111
FU

N
D

A
M

EN
TA

LS

We’ll be referring to a brace-enclosed block as BLOCK, and while we’re at it, an
expression will be identified as EXPR, and lists of values as LIST.

Conditional Statements
The conditional statements are if and unless, and they allow you to control the
execution of your script. The if statement operates in an identical fashion, syntactically
and logically, to the English equivalent. It is designed to ask a question (based on
an expression) and execute the statement or code block if the result of the evaluated
expression returns true. There are five different formats for the if statement:

if (EXPR)

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ...

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

STATEMENT if (EXPR)

In each case, the BLOCK immediately after an if or elsif or in the last form the
STATEMENT immediately before the if is only executed if EXPR returns a true
value (see the “Logical Values” section in Chapter 3).

The first format is classed as a simple statement, since it can be used at the end
of another statement without requiring a block, as in

print "Happy Birthday!\n" if ($date == $today);

In this instance, the message will only be printed if the expression evaluates to a true
value. Simple statements are a great way of executing a single line of code without
resorting to the verbosity of a full BLOCK-based statement. The disadvantage is that
they can only be used to execute a single line.

The second format is the more familiar conditional statement that you may have
come across in other languages:

if ($date == $today)

{

print "Happy Birthday!\n";

}

This produces the same result as the previous example (providing the expression
returns true), but because we are using a BLOCK, we could execute multiple
statements. Note, by the way, that unlike C/C++, the braces are required, even
for single-line blocks.

The third format allows for exceptions. If the expression evaluates to true, then the
first block is executed; otherwise (else), the second block is executed:

if ($date == $today)

{

print "Happy Birthday!\n";

}

else

{

print "Happy Unbirthday!\n";

}

The fourth form allows for additional tests if the first expression does not return
true. The elsif can be repeated an infinite number of times to test as many different
alternatives as are required:

if ($date == $today)

{

print "Happy Birthday!\n";

}

elsif ($date == $christmas)

{

print "Happy Christmas!\n";

}

The fifth form allows for both additional tests and a final exception if all the other
tests fail:

if ($date == $today)

{

print "Happy Birthday!\n";

}

elsif ($date == $christmas)

{

print "Happy Christmas!\n";

}

else

{

print "Happy Unbirthday!\n";

}

112 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 113
FU

N
D

A
M

EN
TA

LS

The sixth form is a short form used to evaluate a single line statements, providing
the evaluation of the expression applied to if is true. For example:

print "Happy Birthday!\n" if ($date == $today);

would only print “Happy Birthday” if the value of $date equaled the value of $today.
The unless statement automatically implies the logical opposite of if, so unless the

EXPR is true, execute the block. This means that the statement

print "Happy Unbirthday!\n" unless ($date == $today);

is equivalent to

print "Happy Unbirthday!\n" if ($date != $today);

However, if you want to make multiple tests, there is no elsunless, only elsif. It
is more sensible to use unless only in situations where there is a single statement or
code block; using unless and else or elsif only confuses the process. For example, the
following is a less elegant solution to the preceding if…else example,

unless ($date != $today)

{

print "Happy Unbirthday!\n";

}

else

{

print "Happy Birthday!\n";

}

although it achieves the same result—TIMTOWTDI (There Is More Than One Way
To Do It) syndrome!

The final conditional statement is actually an operator—the conditional operator.
It is synonymous with the if…else conditional statement but is shorter and more
compact. The format for the operator is

(expression) ? (statement if true) : (statement if false)

114 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, we can emulate the previous example as follows:

($date == $today) ? print "Happy Birthday!\n" : print "Happy

Unbirthday!\n";

Furthermore, because it is an operator, it can be incorporated directly into
expressions where you would otherwise require statements. This means you can
compound the previous example to the following:

print "Happy ", ($date == $today) ? "Birthday!\n" :

"Unbirthday!\n";

Loops
Perl supports four main loop types, and all of them should be familiar to most
programmers. Perl supports while, until, for, and foreach. In each case, the execution of
the loop continues until the evaluation of the supplied expression changes. In the case of
a while (and for) loop, for example, execution continues while the expression evaluates
to true. The until loop executes while the loop expression is false and only stops when
the expression evaluates to a true value. The list forms of the for and foreach loop are
special cases—they continue until the end of the supplied list is reached.

while Loops
The while loop has three forms:

while EXPRLABEL

while (EXPR) BLOCKLABEL

while (EXPR) BLOCK continue BLOCK

The first format follows the same simple statement rule as the simple if statement
and enables you to apply the loop control to a single line of code. The expression is
evaluated first, and then the statement to which it applies is evaluated. For example,
the following line increases the value of $linecount as long as we continue to read lines
from a given file:

$linecount++ while (<FILE>);

To create a loop that executes statements first, and then tests an expression, you
need to combine while with a preceding do {} statement. For example,

FU
N

D
A

M
EN

TA
LS

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 115

do

{

$calc += ($fact*$ivalue);

} while $calc <100;

In this case, the code block is executed first, and the conditional expression is only
evaluated at the end of each loop iteration.

The second two forms of the while loop repeatedly execute the code block as long
as the result from the conditional expression is true. For example, you could rewrite the
preceding example as:

while($calc < 100)

{

$calc += ($fact*$ivalue);

}

The continue block is explained later in the chapter, in the “The continue
Block” section.

until Loops
The inverse of the while loop is the until loop, which evaluates the conditional
expression and reiterates over the loop only when the expression returns false.
Once the expression returns true, the loop ends. In the case of a do…until loop,
the conditional expression is only evaluated at the end of the code block. In an until
(EXPR) BLOCK loop, the expression is evaluated before the block executes. Using
an until loop, you could rewrite the previous example as

do

{

$calc += ($fact*$ivalue);

} until $calc >= 100;

for Loops
A for loop is basically a while loop with an additional expression used to reevaluate
the original conditional expression. The basic format is

LABEL for (EXPR; EXPR; EXPR) BLOCK

The first EXPR is the initialization—the value of the variables before the loop starts
iterating. The second is the expression to be executed for each iteration of the loop as a
test. The third expression is executed for each iteration and should be a modifier for the
loop variables.

116 P e r l : T h e C o m p l e t e R e f e r e n c e

Thus, you can write a loop to iterate 100 times like this:

for ($i=0;$i<100;$i++)

{

...

}

You can place multiple variables into the expressions using the standard list
operator (the comma):

for ($i=0, $j=0;$i<100;$i++,$j++)

This is more practical than C, where you would require two nested loops to achieve
the same result. The expressions are optional, so you can create an infinite loop like this:

for(;;)

{

...

}

foreach Loops
The last loop type is the foreach loop, which has a format like this:

LABEL foreach VAR (LIST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK

This is identical to the for loop available within the shell. For those not familiar
with the operator of the shell’s for loop, let’s look at a more practical example. Imagine
that you want to iterate through a list of values stored in an array, printing each value
(we’ll use the month list from our earlier variables example). Using a for loop, you can
iterate through the list using

for ($index=0;$index<=@months;$index++)

{

print "$months[$index]\n";

}

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 117
FU

N
D

A
M

EN
TA

LS

This is messy, because you’re manually selecting the individual elements from the
array and using an additional variable, $index, to extract the information. Using a
foreach loop, you can simplify the process:

foreach (@months)

{

print "$_\n";

}

Perl has automatically separated the elements, placing each element of the array
into the default input space. Each iteration of the loop will take the next element of the
array. The list can be any expression, and you can supply an optional variable for the
loop to place each value of the list into. To print out each word on an individual line
from a file, you could use the example here:

while (<FILE>)

{

chomp;

foreach $word (split)

{

print "$word\n";

}

}

The foreach loop can even be used to iterate through a hash, providing you return
the list of values or keys from the hash as the list:

foreach $key (keys %monthstonum)

{

print "Month $monthstonum{$key} is $key\n";

}

As far as Perl is concerned, the for and foreach keywords are synonymous. You can use
either keyword for either type of loop—Perl actually identifies the type of loop you want
to use according to the format of the expressions following the keyword.

The continue Block
We have up to now ignored the continue blocks on each of the examples. The continue
block is executed immediately after the main block and is primarily used as a method

for executing a given statement (or statements) for each iteration, irrespective of how
the current iteration terminated.

Although in practice it sounds pointless, consider this for block:

for (my $i = 0; $i<100; $i++)

{ ... }

We could rewrite this as

{

my $i = 0;

while ($i<100)

{ ... }

continue

{

$i++;

}

}

You can see from this that a for loop is really just a while loop with a continue to
increase the iteration variable $i. As a general rule, the continue block is not used
much, but it can provide a handy method for complex multistatement iterations
that can’t be specified within the confines of a for loop.

Labels
Labels can be applied to any block, but they make the most sense on loops. By giving
your loop a name, you allow the loop control keywords (explained in the following
“Loop Control” section) to specify which loop their operation should be applied to.
The format for a labeled loop is

LABEL: loop (EXPR) BLOCK ...

For example, to label a for loop:

ITERATE: for (my $i=1; $i<100; $i++)

{

print "Count: $i\n";

}

Labels can also be a useful way of syntactically commenting the purpose of a piece
of code—although you might find using actual comments an easier method.

118 P e r l : T h e C o m p l e t e R e f e r e n c e

Loop Control
There are three loop control keywords: next, last, and redo. The next keyword skips
the remainder of the code block, forcing the loop to proceed to the next value in the
loop. For example,

while (<DATA>)

{

next if /^#/;

}

would skip lines from the file if they started with a hash symbol. This is the standard
comment style under Unix. If there is a continue block, it is executed before execution
proceeds to the next iteration of the loop.

The last keyword ends the loop entirely, skipping the remaining statements in the
code block, as well as dropping out of the loop. This is best used to escape a loop when
an alternative condition has been reached within a loop that cannot otherwise be
trapped. The last keyword is therefore identical to the break keyword in C and
Shellscript. For example,

while (<DATA>)

{

last if ($found);

}

would exit the loop if the value of $found was true, whether the end of the file had
actually been reached or not. The continue block is not executed.

The redo keyword reexecutes the code block without reevaluating the conditional
statement for the loop. This skips the remainder of the code block and also the
continue block before the main code block is reexecuted. This is especially useful if you
want to reiterate over a code block based on a condition that is unrelated to the loop
condition. For example, the following code would read the next line from a file if the
current line terminates with a backslash:

while(<DATA>)

{

if (s#\\$#)

{

$_ .= <DATA>;

redo;

}

}

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 119
FU

N
D

A
M

EN
TA

LS

In all cases, the loop control keyword affects the current (innermost) loop. If you
label the nested loops, then you can supply each keyword with the optional label name
so that the effects are felt on the specified block instead of the innermost block. This
allows you to nest loops without limiting their control:

OUTER:

while(<DATA>)

{

chomp;

@linearray=split;

foreach $word (@linearray)

{

next OUTER if ($word =~ /next/i)

}

}

This would skip the current input line from the file if there was a word “next” in the
input line, while still allowing the remainder of the words from the file to be processed.

Unqualified Blocks
You can introduce a block into a script without actually qualifying the block as being
part of a subroutine or statement. In this instance, the unqualified (or bare) block is
interpreted in an identical fashion to a loop, except that the statements are executed
only once. Because an unqualified block acts as a loop, we can use the loop control
statements (next, last, and redo) within the block, something that can’t be done with
if or unless, or the quasi-block statements of eval, sub (for subroutines), and do.

This operation can be useful for complex selections when you don’t want to use
multiple if...else statements or complex logical comparisons. For example, we could
drop out of an if statement by enclosing the if BLOCK within an unqualified BLOCK
so that the statements are identified as loop:

if (/valid/)

{

{

last if /false/;

print "Really valid!\n";

}

}

The last keyword would drop us out of the entire if statement.

120 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

A more obvious example is the emulation of the Shellscript case statement, or the
C/C++ switch statement. The easiest solution is to use if statements embedded within
a named block. For example:

SWITCH: {

if ($date == $today) { print "Happy Birthday!\n"; last SWITCH; }

if ($date != $today) { print "Happy Unbirthday!\n"; last SWITCH; }

if ($date == $xmas) { print "Happy Christmas!\n"; last SWITCH; }

}

This works because we can use the loop control operators last, next, and redo, which
apply to the enclosing SWITCH block. This also means you could write the same
script as

SWITCH: {

print "Happy Birthday!\n", last SWITCH if ($date == $today);

print "Happy Unbirthday!\n", last SWITCH if ($date != $today);

print "Happy Christmas!\n", last SWITCH if ($date == $xmas);

}

or for a more formatted solution that will appeal to C and Shellscript programmers:

SWITCH: {

($date == $today) && do {

print "Happy Birthday!\n";

last SWITCH;

};

($date != $today) && do {

print "Happy Unbirthday!\n";

last SWITCH;

};

($date == $xmas) && do {

print "Happy Christmas!\n";

last SWITCH;

};

}

Note that in this last example, you could exclude the label. The do {} blocks are not
loops, and so the last command would ignore them and instead drop out of the parent
SWITCH block. Also note that because do is not strictly a statement, the block must be
terminated by a semicolon.

FU
N

D
A

M
EN

TA
LS

C h a p t e r 5 : S t a t e m e n t s a n d C o n t r o l S t r u c t u r e s 121

goto
BASIC programmers will be immediately happy when they realize that Perl has a goto
statement. For purists, goto is a bad idea, and in many cases it is actually a dangerous
option when subroutines and functions are available. There are three basic forms: goto
LABEL, goto EXPR, and goto &NAME.

In each case, execution is moved from the current location to the destination. In the
case of goto LABEL, execution stops at the current point and resumes at the point of
the label specified. It cannot be used to jump to a point inside a block that needs
initialization, such as a subroutine or loop. However, it can be used to jump to any
other point within the current or parent block, including jumping out of subroutines.
As has already been stated, the use of goto should be avoided, as there are generally
much better ways to achieve what you want. It is always possible to use a control flow
statement (next, redo, etc.), function, or subroutine to achieve the same result without
any of the dangers.

The second form is essentially just an extended form of goto LABEL. Perl expects
the expression to evaluate dynamically at execution time to a label by name. This
allows for computed gotos similar to those available in FORTRAN, but like goto
LABEL, its use is deprecated.

The goto &NAME statement is more complex. It allows you to replace the
currently executing subroutine with a call to the specified subroutine instead.
This allows you to automatically call a different subroutine based on the current
environment and is used by the autoload mechanism (see the Autoload module in
Appendix B) to dynamically select alternative routines. The statement works such
that even the caller will be unable to tell whether the requested subroutine or the
one specified by goto was executed first.

122 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 6
Subroutines, Packages,
and Modules

123

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

124 P e r l : T h e C o m p l e t e R e f e r e n c e

Everything covered so far makes up the basics of programming Perl. We’ve looked
at how to communicate with the users, how to manipulate basic data types, and
how to use the simple control statements that Perl provides to control and manage

the flow of execution in a program.
One of the fundamentals of any programming language is that there are often repeated

elements in your programs. You could cut and paste from one section to another, but
this is messy. What happens when you need to update that sequence you just wrote?
You would need to examine each duplicated entry and then make the modifications in
each. In a small program this might not make much of a difference, but in a larger program
with hundreds of lines, it could easily double or triple the amount of time you require.

Duplication also runs the risk of introducing additional syntactic, logical, and
typographical errors. If you forget to make a modification to one section, or make the
wrong modification, it could take hours to find and resolve the error. A better solution
is to place the repeated piece of code into a new function, and then each time it needs to
be executed, you can just make a call to the function. If the function needs modifying, you
modify it once, and all instances of the function call use the same piece of code.

This method of taking repeated pieces of code and placing them into a function is
called abstraction. In general, a certain level of abstraction is always useful—it speeds
up the programming process, reduces the risk of introducing errors, and makes a complex
program easier to manage. For the space conscious, the process also reduces the number
of lines in your code. There is a small overhead in terms of calling the function and
moving to a new section of the script, but this is insignificant and far outweighed by
the benefit.

Once you have a suite of functions, you will want to be able to share information
among the functions without affecting any variables the user may have created. By
creating a new package, you can give the functions their own name space—a protected
area that has its own list of global variables. Unless explicitly declared, the variables
defined within the package name space will not affect any variables defined by the
main script.

You can also take this abstraction a stage further. Imagine you have created a suite
of functions that extend the standard mathematical abilities of Perl for use in a single
script. What happens when you want to use those same functions in another script?
You could cut and paste, but we already know that’s a bad solution. Imagine what
would happen if you updated the original script’s function suite—you would need
to do the same for each script that used the same set of functions.

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 125
FU

N
D

A
M

EN
TA

LS

The solution is yet another stage in abstraction: you move the function suite from
the original file and place it into a new file with the same name as that of the package
the functions belong to. In Perl, this process is called creating a new module. Each script
that wants to use the functions defined in the module can import them and use them
just like the functions that Perl has built in. You import the functions from a module
with the use command. The examples of use you have seen up to now are all importing
modules and promoting code reuse.

In this chapter, we’ll be looking at how to create new functions for use within your
Perl scripts and how to group functions and variables to create new packages. Then
we’ll examine how to convert a package into a module before moving on to the differences
between the available methods for importing and using packages and modules within
your scripts.

Functions
A function is a named code block that is generally intended to process specified input
values into an output value, although this is not always the case. For example, the print
function takes variables and static text and prints the values on the screen.

You can define functions anywhere within a program, including importing them
from external files or having them generated on the fly using an eval statement. Fur-
thermore, you can generate anonymous subroutines, which are functions that are attached,
by reference, to a variable. This enables you to treat a subroutine as any other entity
within Perl, even though you may consider it to be a fundamental part of the blocks
that make up the Perl language.

Function or Subroutine?
The two terms function and subroutine are used interchangeably in Perl. If you want
to be strict on the semantics, small pieces of named blocks of code that accept argu-
ments and return values are called subroutines. The built-in subroutines in Perl are
usually referred to as Perl’s functions, because they provide additional functionality.
A subroutine created as part of a class definition is called a method—see Chapter 10
for more information.

In truth, there’s not a lot between subroutines and functions, although
personally I prefer the latter.

126 P e r l : T h e C o m p l e t e R e f e r e n c e

Subroutines, like variables, can be declared (without defining what they do) or
declared and defined. To simply declare a subroutine, you use one of the following forms:

sub NAME

sub NAME PROTO

sub NAME ATTRS

sub NAME PROTO ATTRS

where NAME is the name of the subroutine you are creating, PROTO is the prototype
for the arguments the subroutine should expect when called, and ATTRS is a list
of attributes that the subroutine exhibits. The PROTO and ATTRS arguments are
optional—we’ll be discussing these elements separately in the “Prototypes” and
“Attributes” sections later in this chapter.

An undefined subroutine does nothing, but it does let the rest of the script know
that such a subroutine exists. When used in combination with prototypes, it allows
calls to subroutines to be checked. However, declaring subroutines without actually
defining them is not required—we do not need to tell Perl the names of the subroutines
we expect to create.

If you want to declare and define a function, then you need to include the BLOCK
that defines its operation:

sub NAME BLOCK

sub NAME PROTO BLOCK

sub NAME ATTRS BLOCK

sub NAME PROTO ATTRS BLOCK

You can also create anonymous subroutines—subroutines without a name—by
omitting the NAME component:

sub BLOCK

sub PROTO BLOCK

sub ATTRS BLOCK

sub PROTO ATTRS BLOCK

However, you can’t create an anonymous subroutine without a definition (Perl has
no way of later attaching the definition without knowing the subroutine’s name). You
will also need to assign the subroutine to a scalar variable so that you can call it later;
for example:

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 127
FU

N
D

A
M

EN
TA

LS

$myfunc = sub BLOCK;

We’ll be looking at anonymous subroutines (and other reference types) in Chapter 10.
In all cases, the most important parts of a subroutine are its name and the block that

defines what it does. To give a quick example of a simple subroutine:

sub message

{

print "Hello!\n";

}

To call this function you would use one of the following forms:

NAME

NAME LIST

NAME (LIST)

&NAME

All the forms accept a LIST of arguments; unless you’ve declared through the
prototyping mechanism that a subroutine should accept one argument, all subroutines
accept a list of arguments, even if ultimately they use one (or even none) of them. In the
first and second forms, the subroutine must have been declared and/or defined before
the call was made; otherwise Perl will be unable to determine whether the bare word
was a bare word or a subroutine call. The third option removes the need to predeclare
the subroutine, because the parentheses automatically indicate the name’s status.

The last form is the true name of the function—this is the name that should be used
when referring to the function as a whole, such as when creating a reference to the sub-
routine (see Chapter 10). Think of the & as the notation character for a subroutine in the
same way as $ indicates a scalar and @ indicates an array.

Arguments
Perl has a very simple attitude toward function arguments. In C, Pascal, and other
languages the specification of a function is fixed, both in the form of the data types
that can be supplied and the total number of arguments. Although C supports the
“varargs” option, this is the exception, rather than the rule. Within Perl you can pass
any type of argument and any number of arguments to a function (unless you’ve
prototyped the function—see the “Prototypes” section later in this chapter). For most
situations, this is an incredibly practical solution to the problem of argument passing.

What actually happens is that the arguments you supply to a subroutine are placed
into the @_ array. This means that the first argument you pass to the subroutine is available
within the function as $_[0], the second argument is $_[1], and so on. For example, this
simple function adds two numbers and prints the result:

sub add

{

$result = $_[0] + $_[1];

print "The result was: $result\n";

}

To call the subroutine and get a result,

add(1,2);

The preceding subroutine is fairly simple, but what if you wanted to have named
arguments? The simple answer is to assign the values of @_ to a list of variables:

sub add

{

($numbera, $numberb) = @_;

$result = $numbera + $numberb;

print "The result was: $result\n";

}

Note the syntax here—we’re assigning a list of values (from @_) to a list of variables
($numbera and $numberb) so we must supply a list of variables, enclosed in parentheses
so that each value in @_ is assigned to a corresponding variable.

Finally, because we probably don’t want to create those variables in the global
name space, we ought to use my to declare them all locally:

sub add

{

my ($numbera, $numberb) = @_;

my $result = $numbera + $numberb;

print "The result was: $result\n";

}

See the “Scope” section later in this chapter for information on the effects of my and
the other scoping mechanisms.

128 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 129
FU

N
D

A
M

EN
TA

LS

Using shift
The shift function is one of the “stack” operands supported by Perl. The shift function
returns (and removes) the first element of an array. For example:

@list = qw/first second third/;

$a = shift @list;

The $a variable will now contain “first”, while the @list array will contain the two
elements “second” and “third”. The shift function actually defaults to using the @_
array when used in a subroutine, so we could get our arguments using

sub add

{

my $numbera = shift;

my $numberb = shift;

my $result = $numbera + $numberb;

print "The result was: $result\n";

}

The effect is exactly the same; we’ve just obtained the arguments in a different way.
The only downside to this shift solution is that @_ is now empty. The advantage is

that we can use the shift function to work through a list of supplied arguments without
worrying about how many arguments there are:

sub add

{

my $result;

while(@_)

{

$result += shift;

}

print "Result: $result\n";

}

Now we can call the function with any number of arguments,

add(1);

add(1,2);

add(1,2,3,4,5,6,7,8,9,10,11);

130 P e r l : T h e C o m p l e t e R e f e r e n c e

Or a list:

add(@values);

See the “Passing Lists to Subroutines” section later in this chapter for information
on passing multiple lists to a function.

Counting Arguments
If you want to count the number of arguments that you have received, just access the
@_ in a scalar context:

my $count = @_;

If the subroutine expects a specific number of arguments, then your function
should check for the correct number. The most obvious way of doing this is to check
the scalar value of the @_ array:

carp "Not enough/too many arguments in mysub" unless(@_ == 2);

Note here the use of carp to report a problem, rather than using warn or die—this
is to ensure that the error is reported back to the caller. (See Appendix B for information
on the Carp module, which supports the carp function.)

We can use a count to allow a variable number of arguments to be supplied to
a function:

sub greeting

{

if (@_ == 2)

{

($fname, $sname) = @_;

}

elsif (@_ == 3)

{

($fname, $sname, $title) = @_;

}

...

}

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 131
FU

N
D

A
M

EN
TA

LS

Alternatively, we could have used shift to progressively take arguments from the
stack. However, if you’re going to use the shift method, then it’s a good idea to set de-
fault values for any arguments that you consider to be optional, for example:

sub greeting

{

my ($fname, $sname, $title) = ('Nobody','','');

my $fname = shift;

$sname = shift if (@_);

$title = shift if (@_)

...

}

Note that when using shift we don’t have to explicitly check the number of arguments
supplied or use a compound if statement to extract them.

If you’re going to support a function that accepts multiple arguments, remember to use
my to declare the variables before the tests and assignation. If you define the variables
within the BLOCK of an if statement, they will have gone out of scope before the rest of
the subroutine is executed.

Passing Lists to Subroutines
Because the @_ variable is an array, it can be used to supply lists to a subroutine. However,
because of the way in which Perl accepts and parses lists and arrays, it can be difficult
to extract the individual elements from @_. To understand the reasons better, let’s start
by looking at the ways in which we can call a subroutine that accepts three arguments.
All three of the following are valid:

mysub(1,2,3);

@args = (2,3);

mysub(1,@args);

@args = (1,2,3);

mysub(@args);

132 P e r l : T h e C o m p l e t e R e f e r e n c e

All of these calls will work and will supply exactly the same information to the sub-
routine. Because each of the preceding examples results in an @_ variable that contains
three elements, we have no way of knowing which of the preceding arguments was
supplied as an array and which was supplied as a scalar.

If we extend the subroutine to accept four arguments, the effects become even
more apparent:

@args = (1,2);

@moreargs = (3,4);

mysub(@args,@moreargs);

Now @_ contains four elements: 1,2,3,4. Perl has compounded the two arrays into a
single array.

This has some advantages over a normal, explicitly named argument list as sup-
ported in C or Python. For a start, it means that we can easily blend lists together and
end up with a single new list, as in this call to a sorting function:

@sorted = simplesort(@lista, @listb, @listc);

We can call the same function using scalars, and still end up with a sorted list:

@sorted = simplesort($valuea, $valueb, $valuec);

The function itself is very simple—in fact we cheat and use the built-in sort function:

sub simplesort

{

sort @_;

}

Because the argument list has been combined, we can just walk through the entire list
of arguments and return them.

The downside is that if you want to actually supply a number of lists without them
getting combined into a single list, the semantics get slightly more complicated. The
format that you might expect to work:

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 133
FU

N
D

A
M

EN
TA

LS

(@listc, @listd) = simplesort(@lista, @listb);

simply won’t work. Perl combines @lista and @listb into @_. All the subroutine does is
sort @_ and then return it. Perl assigns the entire returned list to @listc—it has no way
of knowing which elements from @lista and @listb should be placed into @listc or @listd.

If you want to work with and identify the individual lists passed to Perl, then you
need to use references:

(@listc, @listd) = simplesort(\@lista, \@listb);

The leading \ character tells Perl to supply a reference, or pointer, to the array. A
reference is actually just a scalar, so we can identify each list by assigning the reference
to each array within our subroutine. We’ll cover references and how to access and use
their values in Chapter 10.

The fundamental rule to remember in this example is that when passing arrays or
lists to subroutines you can pass only one array or list, and it must be the last argument
supplied. If you want to extract an array from a list of arguments, then specify the
array list:

sub process

{

my ($first, $second, @rest) = @_;

...

}

If you try to extract the array as the first element, then it will immediately gobble up all
of @_, even if there are arguments after the array leaving any scalar entries empty. The
following won’t do what you want at all:

sub process

{

my (@rest, $first, $second) = @_;

...

}

The $first and $second arguments will never be filled, no matter how hard you try!
The exception to this rule is when you use prototypes; see the “Prototypes” section

later in this chapter.

Passing Hashes to Subroutines
When you supply a hash to a subroutine or operator that accepts a list, the hash is
automatically translated into a list of key/value pairs. For example:

%hash = ('name' => 'Tom', 'age' => 19);

print %hash;

This will output “nameTomage19”. However, the same process works in reverse, so we
can extract a list and convert it to a hash:

sub display_hash

{

my (%hash) = @_;

foreach (%hash)

{

print "$_ => $hash{$_}\n";

}

}

In this case, we output the key/value pairs of the hash properly, displaying each
pair on its own line. As with arrays, care needs to be taken if you expect to pick out a
single hash from a list of arguments. The following will work because we extract the
hash last:

sub display_has_regexp

{

my ($regex, %hash) = @_;

...

}

while this one won’t because we try to extract the hash first (there will be an extra
element, and Perl won’t know how to assign this to the hash):

sub display_has_regexp

{

my (%hash, $regex) = @_;

134 P e r l : T h e C o m p l e t e R e f e r e n c e

...

}

If you want to work with multiple hashes, then use references. For example, the
following subroutine returns the key intersection of two hashes:

sub intersection

{

my ($hasha, $hashb) = @_;

my %newhash;

foreach my $key (keys %{$hasha})

{

$newhash{$key} = $$hasha{$key} if (exists $$hashb{$key});

}

return %newhash;

}

To use the subroutine:

%hasha = ('a' => 'b',

'b' => 'b',

'c' => 'b');

%hashb = ('b' => 'b',

'c' => 'b',

'd' => 'b');

%newhash = intersection(\%hasha, \%hashb);

Identifying Values and Types
If you need to verify the value or type of an individual argument, then you can use
regular expressions or other methods to validate the information before you use it.
For example, to verify that two arguments are numerical:

sub square

{

die "Not a number" unless($_[0] =~ /^[0-9]+$/);

return($_[0] * $_[0]);

}

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 135
FU

N
D

A
M

EN
TA

LS

136 P e r l : T h e C o m p l e t e R e f e r e n c e

Default Values
For functions that accept varying numbers and/or types of arguments, you should be
setting the variable used within the subroutine to a default value. This will help to en-
sure that when an argument is not supplied, the variable still contains either valid data
or a value that can be ignored or tested when it needs to be used. The default value of
any declared but unassigned variable is the undefined value, or an empty list or hash.
For example, the power function that follows raises the first argument to the power of
the second argument, or to 2 if there is no second argument:

sub power

{

my $base = shift;

my $power = shift || 2;

return $base**$power;

}

Here I’ve used shift to take off the arguments and then used the || operator to set
the power to a default value if shift fails. If called with a single argument, the function
will return the square of the supplied value, and if supplied with two arguments, it’ll
return the first raised to the power of the second.

Dynamic Arguments
There are times when there is no set argument order for a function, but you still want
to accept changes to the function’s variables. The way to do this is to accept a hash, where
each key of the hash is the variable that you want to accept, and the value is the data
for that variable. This method has the advantage of allowing you to pass a variety of
scalars, arrays, and hashes without directly worrying about the order of the references
you supply.

For example, we could rewrite the power function from the previous section like this,

sub power

{

my (%args) = @_;

my $base = $args{base} || 2;

my $power = $args{power} || 2;

return $base**$power;

}

which means that we can now call the function in a number of different ways:

print power(base => 16, power => 3); # returns 16384

print power(base => 16); # returns 256

print power(power => 8); # returns 256

print power(); # returns 4

The order of the arguments is no longer an issue, which makes supporting default
values and/or multiple options within a single subroutine significantly easier.

If you want to use this option, consider using -argument as the argument string. That
way you won’t need to quote the hash key each time—the preceding hyphen translates
the bareword to a string.

Return Values
The return value of any block, including those used in subroutines, is taken as the
value of the last evaluated expression. For example:

sub myfunc

{

$_[0]+$_[1];

}

The return value here is the result of the calculation.
You can also explicitly return a value using the return keyword:

sub myfunc

{

if (@_)

{

return $_[0]+$_[1];

}

else

{

return 0;

}

}

When called, return immediately terminates the current subroutine and returns the
value to the caller—if you don’t specify a value then the return value is undef.

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 137
FU

N
D

A
M

EN
TA

LS

Error Notification
The easiest way to report an error within a subroutine is to return the undefined value
undef—this is universally accepted within Perl as notification of some form of failure
and is also identified by any testing mechanism as a false (and therefore failure) value.

If you want to report the error directly within the function, then use die (see
Chapters 7 and 9) or use the carp function from the Carp module (see Appendix B).

Context
The context of a subroutine or statement is defined as the type of return value that is
expected. This allows you to use a single function that returns different values based
on what the user is expecting to receive. For example, the following two calls to the
getpwent function return a list or a scalar, according to what was used in the assignation:

$name = getpwent();

($name, $passwd, $uid, $gid, $quota,

$comment, %gcos, $dir, $shell) = getpwent();

In the first case, the user expects a scalar value to be returned by the function, because
that is what the return value is being assigned to. In the second case, the user expects
an array as the return value, again because a list of scalars has been specified for the
information to be inserted into.

This can be confusing, since most other languages support only one type of return
value. In fact, it’s very practical, because it reduces the amount of code required to
achieve different results. Here’s another example, again from the built-in Perl functions,
that shows the flexibility:

my $timestr = localtime(time);

In this example, the value of $timestr is now a string made up of the current date and
time, for example, Thu Nov 30 15:21:33 2000. Conversely,

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

now the individual variables contain the corresponding values returned by localtime.
We can now use these values to build our own string, instead of relying on the default
value returned in a scalar context.

In order to discover the context in which a function has been called, you use the
wantarray function. This returns true if the function has been called in a list context,
and false otherwise. Consider the following script, which prints a scalar or list-based
message, according to how the hw function was called:

138 P e r l : T h e C o m p l e t e R e f e r e n c e

sub hw

{

if (wantarray)

{

return('Hello','World',"\n");

}

else

{

return "Hello World\n";

}

}

$scalarmsg = hw();

$listmsg = join('--',hw());

print "Scalar is $scalarmsg";

print "List is $listmsg";

The list context is implied here because the join function expects a list as the second
argument. If you run this program, you get this,

Scalar is Hello World

List is Hello--World--

which we know to be correct and is the result we expected.
If you supply a hash, then the hash is translated into a list of key/value pairs. Note

that there is no equivalent wanthash function. If you want to exchange and work with
hashes in your subroutines on a hash level, use references (see the “Passing Hashes to
Subroutines” section earlier in this chapter).

You can force a function to return a scalar value with the scalar keyword. This forces
the context of the function to be recognized as a scalar, not a list, value. To use it, just
place the scalar function before the statement or expression that you want to be forced
into scalar context:

my $time = scalar localtime;

Attributes
Subroutine attributes are another new feature of Perl. Although an attributes feature
has been available for some time, the definition has now been merged into the main
subroutine-declaration process. To define an attribute, you specify a white space or
colon separated list of keywords.

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 139
FU

N
D

A
M

EN
TA

LS

140 P e r l : T h e C o m p l e t e R e f e r e n c e

The attributes system is currently underused, although it’s expected that attributes
will form an important part of new versions of Perl, including Perl 6.0 when it becomes
available.

Currently Perl supports only three attributes: locked, method, and lvalue.

The locked Attribute
The locked attribute allows you to define a subroutine so that a lock is obtained
before the subroutine is executed when called in a script that supports multiple
threads. For example:

sub func : lock { ... }

You can also use it in combination with the method attribute to ensure that only
one thread is allowed to use the function on a given object at one time:

sub func : lock method { ... }

The exact semantics are identical to those for the lock function—see Chapter 15 for
more information on threads.

The method Attribute
The method attribute currently only marks the subroutine so that you don’t get a
warning when a given method can’t be resolved properly (normally highlighted as
“Ambiguous call resolved as CORE::%s”. See Web Appendix C for a full description
of the likely cause of this error.

The lvalue Attribute
You can get a subroutine to act as a valid lvalue providing that you have declared the
subroutine with the lvalue attribute. Using lvalue, a subroutine can be used as a modifiable
scalar value. For example, you can do this:

mysub() = 5;

This is particularly useful in situations where you want to use a method on an object to
accept a setting, instead of setting the value on the object directly. To create the subroutine,
you must provide a scalar variable in the subroutine, which will be used both as the
value that is assigned to the subroutine when it is used as an lvalue, and the return value
when the subroutine is called as part of an expression. For example:

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 141
FU

N
D

A
M

EN
TA

LS

sub mysub : lvalue

{

$val;

}

Look up the attributes pragma in Chapter 19 for more information on attributes,
including creating your own customized values.

Prototypes
The dictionary defines prototype as “an original type, form, or instance that serves as a
model on which later stages are based or judged.” Within Perl, the act of prototyping
a function tells Perl (or a programmer, if he’s looking) what arguments the function
expects or requires. As with other elements of the Perl process, the arguments passed
can also imply the format of the information returned by the function. For example,
the built-in syswrite function could be declared like this:

sub syswrite($$$;$)

The prototype is used by Perl to make decisions about the number and type of
arguments that are supplied to the function. The prototypes only affect function calls
in the “new” form, that is, without a leading ampersand. If it looks like a built-in
function, Perl will treat it as such. If you call a function using the “old” ampersand
style, prototypes are ignored. In all cases, Perl only checks at compile time, so the
function and calls must be visible at the time the functions are compiled.

You specify the function arguments by using the special characters that precede
normal variables as indicators of the variable type expected. In the preceding example,
the dollar signs signify that scalar values are expected. The @ and % characters, as ex-
pected, specify arrays and hashes. However, except in the upcoming case (where a sub-
routine is treated as a named unary operator), unbackslashed entries gobble up all the
remaining arguments, regardless of the rest of the prototype. In addition, the $ implies a
scalar context, and @ and % imply list context accordingly.

An ampersand requires an anonymous subroutine that can be specified without the
sub keyword or the trailing comma, if it is specified as the first argument. A * character
specifies a typeglob, typically used to supply filehandles.

Any backslash-quoted character signifies that the argument absolutely must start
with that character—for example, \@ would require that the function call specify a
list as the first argument. A semicolon separates the required arguments from optional
arguments in the prototype. The semicolon is used to distinguish between the arguments

that are required and those that are optional. Table 6-1 shows some examples taken from
the perlsub man page.

In the last three examples in Table 6-1, Perl treats the declarations slightly differently.
The mygrep function is passed as a true list operator, interpreting the following arguments
as elements of a list and not as further arguments to the original mygrep function. The
myrand function behaves like a true unary operator, and the mytime function is treated
as a function with no arguments at all. This means you can get away with statements like

mytime +2

and you’ll end up with the return value of mytime added to the static value, instead of
Perl calling mytime with an argument of +2.

142 P e r l : T h e C o m p l e t e R e f e r e n c e

Declaration Example Call

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off,

sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (\@) mypop @array

sub mysplice (\@$$@) mysplice @array, @array, 0, @pushme

sub mykeys (\%) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE,
WRITEHANDLE

sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand ($) myrand 42

sub mytime () mytime

Table 6-1. Sample Prototype Declarations

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 143
FU

N
D

A
M

EN
TA

LS

You should be careful when specifying prototypes, since many of the options imply
the context in which the function should return and, therefore, affect some of the
function-specific utilities such as wantarray. In general, therefore, you should use
prototypes only on new functions, rather than retrofitting them to functions you have
already written. This will prevent the effects of imposing a scalar context on a function
that is expecting to return in a list context. For example, consider a function with a
single argument:

sub printmsg($)

{

print "Message: ", shift, "\n";

}

Calling this function with an argument that returns a single element list wouldn’t
produce the same results. The call

printmsg(@message);

would actually print a value of 1, since the scalar prototype has imposed that the list
argument supplied be converted to a scalar.

In the case of a list, the scalar value of a list variable is the number of elements in
the list. Worse, using a function such as split, which uses the context in which it is called
to determine where it puts its results, would cause a more serious problem. If used as
the argument to the prototype function, split would execute in the scalar context, messing
up your @_ argument list.

Packages
The main principle behind packages in Perl is to protect the name space of one section
of code from another, therefore helping to prevent functions and variables from over-
writing each other’s values. Despite what you may have seen up to now, there is no
such thing as a global variable—all user variables are created within the realms of a
package. If no package name is specified, then the default package name is main.

You can change the current package to another by using the package keyword. The
current package determines what symbol table is consulted when a user makes a function
call or accesses a variable. The current package name is determined at compile and run
time because certain operations, such as dereferencing, require Perl to know what the
“current” package is. Any eval blocks are also executed at run time, and the current
package will directly affect the symbol table to which the eval block has access.

All identifiers (except those declared with my or with an absolute package name)
are created within the symbol table of the current package. The package definition re-
mains either until another package definition occurs or until the block in which the
package was defined terminates. You can intersperse different package names in the
same file and even specify the same package multiple times within multiple files. The
package declaration only changes the default symbol table. For example, in the following
code, both the add and subtract functions are part of the Basemath package, even though
the square function has been inserted within a Multimath package:

package Basemath;

sub add { $_[0]+$_[1] }

package Multimath;

sub square { $_[0] *= $_[0] }

package Basemath;

sub subtract { $_[0]-$_[1] }

This example is probably not a good example of when a package is normally defined.
Normally, the first statement within a new file would be used to define the package
name for a module that would be imported via the use or require statement. Of course,
there is nothing to stop you from using a package statement anywhere you would use
any other statement.

You can reference a symbol entry from any package by specifying the full package
and symbol name. The separator between the package and symbol entry is the double
colon. You could refer to the preceding add function as Basemath::add. If you are refer-
ring to a variable, you place the character for the variable type before the package name;
for example, $Basemath::PI. The main package can either be specified directly, as in
$main::var, or you can ignore the name and simply use $::var.

Perl 4 and below used the ' symbol. This is currently still supported, but for the longer
term, you should move to the :: notation. It’s easier to read, for a start, and editors that
try to match quotes and parentheses don’t fall over when you use double colons.

You can also nest package names in order to create a package hierarchy. Using
the math module again, you might want to split it into three separate packages. The
main Math package contains the constant definitions, and it has two nested packages
Math::Base and Math::Multi. The hierarchy does not introduce any additional symbol
tables, so the variable $Math::Multi::var is simply not accessible as $Multi::var. You

144 P e r l : T h e C o m p l e t e R e f e r e n c e

either need to change the current package with a package statement or refer to the
variable with its full name.

The symbol table is the list of active symbols (functions, variables, objects) within
a package. Each package has its own symbol table, and with some exceptions, all the
identifiers starting with letters or underscores are stored within the corresponding symbol
table for each package. This means that all other identifiers, including all of the special
punctuation-only variables, such as $_, are stored within the main package. Other
identifiers that are forced to be within the main package include STDIN, STDOUT,
STDERR, ARGV, ARGVOUT, ENV, INC, and SIG.

Finally, if you name any package with a name matching one of the pattern operators
(m//, s///, y///, or tr///), you cannot use the qualified form of an identifier as a filehandle,
as it will be interpreted as a pattern match, substitution, or translation.

Signals also need special care: when specifying a signal handler, you should ideally
qualify the signal handler completely. See Chapter 14 for more information on specifying
signal handlers.

Package Symbol Tables
The symbol table for a package can be accessed as a hash. For example, the main
package’s symbol table can be accessed as %main:: or, more simply, as %::. Likewise,
symbol tables for other packages are %MyMathLib::. The format is hierarchical, so
that symbol tables can be traversed using standard Perl code. The main symbol table
includes a reference to all the other top-level symbol tables, so the preceding nested
example could be accessed as %main::Math::Base.

The keys of each symbol hash are the identifiers of the symbols for the specified
package; the values are the corresponding typeglob values. This explains the use of
a typeglob, which is really just accessing the value in the hash for the corresponding
key from the symbol table. The following code prints out the symbol table for the
main package:

foreach $symname (sort keys %main::)

{

local *symbol = $main::{$symname};

print "\$$symname is defined\n" if defined $symbol;

print "\@$symname is defined\n" if defined @symbol;

print "\%$symname is defined\n" if defined %symbol;

}

You can also use the symbol table to define static scalars by assigning a value to
a typeglob:

*C = 299792458;

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 145
FU

N
D

A
M

EN
TA

LS

You now cannot modify $C, the speed of light, since the variable $C does not really
exist—Perl is just allowing us to access a typeglob as a scalar value. Note that uppercase
is used for the constant, even though normally the speed of light is specified as “c.”
This is a convention in Perl. Constants and filehandles are typically in uppercase,
variables and functions are lowercase, and package names are specified in title case.
Although this is convention, Perl doesn’t really care!

Special Blocks
Perl has reserved a number of specially named blocks that provide some additional
control over the execution of your script—although these are more complex topics,
we’ll cover them here, as their execution will help you to understand how modules
and importing and exporting objects works.

The four blocks are BEGIN, CHECK, INIT, and END, and they are executed in
that order. When you execute a Perl script, any BEGIN blocks are executed during
the parsing process—that is, as soon as the statements within a BEGIN block have
been parsed and verified. The CHECK block is executed as soon as the parsing and
compilation stages have been completed, but before the actual execution of the script.
The INIT block runs before the main flow of the program starts. The END blocks ex-
ecute when the program terminates.

If you specify more than one of these blocks in your script, they are executed in the
order in which they are parsed in the case of BEGIN and CHECK, and in reverse order
in the case of INIT and END, and still in the overall order given above. You can see
this better using a simple script:

print "Now in the main script\n";

die "Script abnormally terminated!\n";

CHECK { print "1st declared CHECK block\n" }

CHECK { print "2nd declared CHECK block\n" }

END { print "1st declared END block\n" }

BEGIN { print "1st declared BEGIN block\n" }

INIT { print "1st declared INIT block\n" }

BEGIN { print "2nd declared BEGIN block\n" }

END { print "2nd declared END block\n" }

INIT { print "2nd declared INIT block\n" }

When executed, the script generates the following:

1st declared BEGIN block

2nd declared BEGIN block

2nd declared CHECK block

146 P e r l : T h e C o m p l e t e R e f e r e n c e

1st declared CHECK block

1st declared INIT block

2nd declared INIT block

Now in the main script

Script abnormally terminated!

2nd declared END block

1st declared END block

Note that the execution also applies to individual packages and modules. Here, the
BEGIN and END blocks can act as initializers and finalizers for the package. They are
defined like this:

BEGIN { print "Start!\n" };

END { print "End!\n" };

A BEGIN block is executed as soon as possible after it has been defined. This over-
rides the parsing of the rest of the package. You can have multiple BEGIN blocks that
are executed in the order they were defined. You can use a BEGIN block to import
functions and values from other modules so that the objects required by the rest of
the package are defined at the point the block is parsed. This can be especially useful
if you are using the function prototyping and declarations seen earlier in this chapter.
If a function has been defined such that it is interpreted as an operator, or with a specific
prototyping format, then it will need to exist before Perl interprets the rest of the package.

An END routine is the opposite: it is executed as late as possible. In practice, this
means that an END block is executed at the point the parser and interpreter are about
to exit to the calling process. This is the case, even if the reason for the failure is a die
function or the result of an exception raised due to the nonexistence of a required system
call. You can use this facility to help print error messages or close filehandles cleanly in
the event of an error. Of course, in a well-written Perl script, you should be able to find
cleaner ways of handling exceptions and errors.

END blocks are executed in reverse order—that is, the last END block specified
will be the first to be executed. The following program doesn’t do quite what we want,
although it’s pretty close:

BEGIN { print "Eanie\n" }

die "Meanie\n";

END { print "Miney\n" }

END { print "Mo\n" }

You should not assume that the main program code has been executed in an END
block. Care is needed to ensure you don’t try to use a variable or function in an END

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 147
FU

N
D

A
M

EN
TA

LS

148 P e r l : T h e C o m p l e t e R e f e r e n c e

block that has not otherwise been defined, although you should be doing this kind of
checking in the main body of the script anyway.

Modules
Modules are the loadable libraries of the Perl world. A Perl module is generally just
another Perl source file that defines a number of functions and/or variables, although
it can also be an interface to an external C library. Modules are the main way for sup-
porting additional functionality in your Perl scripts and for properly dividing up your
module into a reusable format. For example, we can import the CGI module, which
supports a range of web-related functions and tools using

use CGI;

What actually happens is that during the compilation stage, when Perl sees require
or use, it looks for a file called CGI.pm, first in the current directory, and then in the
library directories for the current Perl interpreter (as defined in @INC). As soon as it
finds the module, it imports the module source and then parses that as part of the main
script. We don’t need to worry about naming conflicts, because the package system
explained earlier in the chapter will be able to determine the difference between dif-
ferent objects.

Creating Modules
At the simplest level, a module is just another name for a package that has been moved
to a separate file with the same name as the package, and that has the extension .pm
attached. Perl doesn’t actually know how to magically import the functions defined
within the module file; for that we need to use the Exporter module, which supplies
the necessary intelligence for us.

To explain the process, let’s look at a very simple module called MyMathLib,
which is contained in the file MyMathLib.pm:

package MyMathLib; # Define the package (and module) name

require Exporter; # Import the functions required to export

functions from our own module

@ISA = qw/Exporter/; # Set the inheritance tree so that Perl can

find the function required

@EXPORT = qw/add/; # Specify the functions we want to export

sub add # The function we want to export

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 149
FU

N
D

A
M

EN
TA

LS

{

$_[0]+$_[1];

}

1; # Modules must return a true value

The important parts here are the package line, the Exporter module, the @EXPORT
array, and the final 1; line.

The package definition tells Perl what package the functions we are defining
should be belong to. This is required—Perl expects to find the package MyMathLib
in the file MyMathLib.pm—and it also helps to protect the name spaces between the
entities you’ve defined in your module and those used in your scripts.

The Exporter module provides the import function, which exposes the list of functions
that you specify in @EXPORT so that they exist within the name space of the caller.
For example, in the script

use MyMathLib;

print add(1,2);

you can use the add function without qualifying it with its full name because the import
function has made the add function available within the main name space—see the
section on “Packages” earlier in this chapter for more information on packages and
name spaces.

The 1; in the module file is simply used as a return value. The use keyword checks
when parsing the module to ensure that the return value is true as an indication of
whether the module loaded correctly. In most instances, you’ll always use a simple
value like this to show success, but more advanced uses can use this value to indicate
an error somewhere else. For example, a module that relies on a set of configuration
files might return false if the files couldn’t be found—the use statement would identify
the error and the execution of your script would terminate because of this.

The Exporter Module
The Exporter module supplies the import function required by the use statement to
import functions. The absolute minimum required at the top of your module is this:

package ModuleName;

require Exporter;

@ISA = qw(Exporter);

The package name should reflect the module’s file name—remember that the
module MyGroup::MyModule equates to a file name of MyGroup/MyModule.pm.
The remaining statements import the Exporter module, and the @ISA array defines the
inheritance—it’s inheritance that allows the import module in Exporter to be inherited
by the module you are creating.

The Exporter module then uses the values in @EXPORT, @EXPORT_OK,
@EXPORT_FAIL, and %EXPORT_TAGS to determine which objects should or
should not be exported from the module.

The @EXPORT array should be used to list the objects that should be exported by
default from the module. The @EXPORT_OK array should list the objects that can be
exported if they have been specifically requested. For example, this:

use MyModule qw/process regurgitate/;

would cause MyModule to only export the process and regurgitate subroutines. You
can think of this in a similar way to the public and private methods in object-oriented
programming— although Perl’s OOP system works slightly differently.

The %EXPORT_TAGS is a hash that contains a series of import sets; for example,
the definition

%EXPORT_TAGS = ('standard' => [process, regurgitate],

'processing' => [process, parse]);

can be used from a caller with

use MyModule qw/:standard :processing/;

Finally, if you don’t want any specific objects to be exported, then the naming
convention is to use a preceding underscore, but this is not actually enforced—it’s
still possible to import an object with that prefix. You can disable this ability by defining
those objects within the @EXPORT_FAIL array—the Exporter will die if any objects
that appear in this array are explicitly requested.

Comparing use and require
When you import a module, you can use one of two keywords: use or require. We’ll
look in more detail at their differences in a moment, but in essence, a require statement
imports the functions and objects only within their defined packages. The use keyword,
on the other hand, imports the functions and objects so they are available to the current
package as if they had been defined globally.

150 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

require
The format of the require statement is

require Module;

The specified module is searched for in the directories defined in @INC, looking for
a file with the specified name and an extension of .pm. You can also specify the full file
name (and path, if necessary) by inserting the file name in single quotes:

require 'Fcntl.pl';

Furthermore, the require function can be used to specify that a particular minimum
version of Perl is required. For example, to specify a minimum version of 5.003:

require 5.003;

This can be especially useful if a module or script you have written requires the
features or functions of a specific version of Perl. If the specification does not match
the version of Perl being used to execute the script, it will fail at compilation time.

use
The use keyword accepts one of two forms:

use Module;

and

use Module LIST;

The first format imports all of the symbols that have been specified in the @EXPORT
array. You can therefore think of the @EXPORT array as listing the symbols that
should be exported by default. The @EXPORT_OK array lists the additional symbols
that can only be exported when the user requests them via the second form. For example,
the line

use MyMathLib qw/add square/;

would cause only the add and square functions to be exported from the MyMathLib
module.

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 151
FU

N
D

A
M

EN
TA

LS

The Difference Between use and require
What actually happens when you use the use statement is that Perl calls the import
method defined in the specified module. If one has not been defined, the Exporter
module supplies this method for you. This means that the process you would need to
follow in order to support this ability without the use statement would look something
like this:

BEGIN

{

require "Module.pm";

Module->import();

}

You could, for example, request no functions from the module using

use MyMathLib ();

which is, in fact, identical to

BEGIN { require MyMathLib; }

You can see from the preceding example the important difference: the require
statement reads in the specified module, but it does not call the import method. This
has the effect that symbols defined within another package do not update the current
package’s symbol table. For example,

require Cwd;

$pwd = Cwd::getcwd();

as opposed to

use Cwd;

$pwd = getcwd();

One other significant difference between require and use is that use statements are
interpreted and executed at the time the file is parsed, but require statements import
modules at run time, which means you can supply a variable name to a require statement
based on other elements of your program. This can be useful for dynamically selecting
a different module to import, outside of the usual dynamic loading capabilities of the
Perl module system.

152 P e r l : T h e C o m p l e t e R e f e r e n c e

The dynamic loading and autoloading features are generally used when you are
extending Perl using external code written in C or Pascal or even Java. It’s normally
up to the module you import to autoload the external modules it requires. We’ll look
again at the autoloading process when we look at extending and embedding Perl in
Chapter 20.

You’ll also notice from many of the latter examples that we are not specifying the
full file name. By specifying a file name, we imply the full name and location of the file.
If you do not specify the name in quotes, and you leave off the extension, both require
and use imply the .pm extension. The path used to determine the location of the files
imported this way is the @INC array. This can be updated to allow other paths to be
taken into account. The paths specified are the top directories. You can further subdivide
modules into other subdirectories for clarity, in which case you must specify the relative
pathname for the module you want to import, using the double-colon notation in place
of your operating system’s pathname separator. For example,

use File::Basename;

actually imports the File/Basename.pm module on a Unix machine.
The use function also supports a number of pragmas—small modules (typically

with lowercase names) that control the execution and parsing of a Perl script. For
example, pragmas exist to switch on warnings or change the contents of the @INC
array. Generally, pragmas affect the entire execution of a script, but see Chapter 19
for full details.

no
The no statement is the complete opposite of the use statement. It “unimports” meanings
that have been imported via the use statement. It does this by calling a corresponding
unimport method, if one has been defined, for a specified module. If no unimport
method has been defined, Perl quits with a fatal error. Generally, no is only really
required to switch off compiler pragmas, and we’ll look at the use of the function
in Chapter 18.

do
The do statement is rather like a cross between eval and the require and use functions,
although it is neither as practical nor user friendly as any of those functions. The format
for the command is

do EXPR

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 153
FU

N
D

A
M

EN
TA

LS

where EXPR is the name of a file to be executed. The return value is taken as the evaluated
value of the last statement in the file. If the file is not in the current directory, then the
paths specified in the @INC array are searched instead.

The main difference between do and require is that the file specified by do will be
executed each time it is called. The require function (and use), on the other hand, keeps
track of the files it has imported and will only import a file once.

Scope
When you create a variable, it’s created within the scope of the current package. In the
case of the main package, it means that you are creating a “global” variable. Although
packages allow you to split up the global variables that you create into different sections,
many programs would be difficult to work with if we had to keep giving unique names
to all the variables we used.

For that reason, Perl also allows us to create variables that are lexically scoped—
that is, they are declared as existing only until the end of the innermost enclosing scope,
which is either a block, a file, or an eval statement. In fact, Perl supports three scoping
declarations that enable us to create private variables (using my), selectively global
variables (using our), and temporary copies of selected global variables (using local).

At the simplest level, you just prefix the variable with the declaration keyword:

my $var;

our $var;

local $var;

If you want to specify more than one variable, then supply the names in parentheses,

my ($var, @var, %var);

and if you want to assign a value as well,

my ($var, $string) = (1,'hello');

If you forget to use parentheses, you get some strange effects:

my $var, $string = 1,'hello';

The preceding line actually works like this:

154 P e r l : T h e C o m p l e t e R e f e r e n c e

FU
N

D
A

M
EN

TA
LS

my $var;

$string = 1;

'hello';

If you have warnings switched on, then you’ll get an error, because the 'hello'
is actually interpreted in a void context (since it doesn’t actually do anything).

In general, you’ll see and use my more than other declarations, because it generally
does what you expect when you declare variables in this way. The our declaration is a
relatively new invention (it was only introduced in Perl 5.6), and it allows you to declare
a variable as being global and potentially usable by any other subroutine defined in your
script. Both my and our are examples of lexically scoped variables—the difference is in
the level at which the lexical scope is applied.

The local variable is really a dynamically scoped variable—it effectively creates a
copy of a global variable within the current scope. It operates just like a lexically scoped
variable; its effects disappear when the variable goes out of the current scope, with the
variable returning to its original value instead of simply disappearing.

We’ll look at the specific effects of each declaration in the following sections.

Effects of my
The my keyword declares a variable to be scoped within the current block. For the
duration of the block, the new variable will take precedence over any previously
scoped variable. When the block ends, the variable goes out of scope. You can easily
demonstrate this with this script:

my $string = "We are the world";

print "$string\n";

myfunction();

print "$string\n";

sub myfunction

{

my $string = "We are the function";

print "$string\n";

mysub();

}

sub mysub

{

print "$string\n";

}

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 155

156 P e r l : T h e C o m p l e t e R e f e r e n c e

This generates

We are the world

We are the function

We are the world

We are the world

The my declaration does exactly what you expect—it defines a variable as existing
only within the current block (and is therefore not available to any functions called from
within that block). The moment the block terminates, the variable effectively disappears
from view—you can’t access a variable declared with my from outside of the block
within which it’s defined. This means that from outside of a function, you can’t access
a variable declared with my within that function.

It also means that variables declared with my within a module are not accessible
outside of that module (since the module is a single block), even when called upon
explicitly by using $MyModule::string. You also can’t export a variable declared with
my outside of a module; for that you’ll need to use the vars pragma or, with Perl 5.6 or
later, use the our keyword to declare a global variable and then place the full name in
@EXPORT or @EXPORT_OK.

Effects of local
When using local on a global variable, the variable is given a temporary value each
time the local statement is executed. The temporary value lasts only for the duration
of the block. However, the use of local does not affect its accessibility—it’s still a global
variable; it just has a temporary value while it’s being used within that block. For example,

{

local $var = 'newvalue';

myfunc();

}

can be thought of as

{

$oldvalue = $var;

$var = 'newvalue';

myfunc();

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 157
FU

N
D

A
M

EN
TA

LS

}

continue

{

$var = $oldvalue;

}

except that the continue block is executed however the block exits, including through
a return.

Note that the value of a variable modified using local is consistent for all functions
called from the block in which the variable has been localized. In the preceding examples,
the myfunc function will access the temporary value of $var when called from within
that block, but the normal value when outside of it.

Don’t use local on an exported module variable—the value of the variable will
never change.

Effects of our
The our keyword (introduced in Perl 5.6) declares a variable to be global, effectively
making it the complete opposite of my. For example,

our $string = "We are the world";

print "$string\n";

myfunction();

print "$string\n";

sub myfunction

{

our $string = "We are the function";

print "$string\n";

}

produces

We are the world

We are the function

We are the function

158 P e r l : T h e C o m p l e t e R e f e r e n c e

Using our within a function, or indeed any form of nesting within any block, on
the same variable has no effect; you are always referring to the same global variable.

The use of our on a variable declared with my will have no effect.

Scope Within Loops
There is a slightly special case when declaring a variable in a loop statement. In
the fragment,

foreach my $key (sort keys %hash)

{

...

}

the $key variable is lexically defined for the duration of the entire statement, which
means that it’s accessible within the block that makes up the loop (including any
continue block in a while or other statement), but it immediately disappears when
the loop terminates.

However, be careful where you define the variable. In the fragment,

do {

my $var = 1;

} while ($var);

the $var used in the test has no value—only the $var in the block has a value.

Autoloading
There are times when what you really want to do is use a subroutine that hasn’t been
defined. If a subroutine with the magic name AUTOLOAD has been defined within a
package, then any unknown subroutine calls are sent to this subroutine. The AUTOLOAD
subroutine is called with all the same arguments as the unknown routine, and the fully
qualified subroutine name is placed into the $AUTOLOAD variable.

This is traditionally used in combination with the AutoSplit module to automatically
load functions from external script files where each file contains a single subroutine.

What actually happens is that the AUTOLOAD subroutine uses do, require, or eval to
import and parse the external function into the current name space. The AUTOLOAD
subroutine then calls the special format of the goto function to make Perl (and the auto-
loaded subroutine) think that it was the function that loaded after all.

This is effectively identical to the process used to load external C functions into the
current name space, but this is called dynamic loading and is handled by the DynaLoader
module. However, the DynaLoader imports whole function suites, not single functions,
and is generally used to import entire modules (and even base classes) at one time.

The AUTOLOAD module can also be used directly within a Perl script to add
blanket functionality to a script without requiring you to create many subroutines.
Here’s an example that employs the AUTOLOAD routine as a way of introducing
constants looked up from a hash:

BEGIN

{

$constants{"PI"} = 3.141592654;

}

use subs keys %constants;

print "The value of PI is ",PI;

sub AUTOLOAD

{

my $constant = $AUTOLOAD;

$constant =~ s/.*:://;

return $constants{"$constant"};

}

We actually use a few tricks here. First of all, we create the %constants hash table
in a BEGIN block to ensure it’s defined as early as possible. The main reason for this is
that we need to use the keys of this hash as the argument to the use subs pragma in
order to predeclare the subroutines (or in this case, constants) that we want to use. By
predeclaring them, we set up Perl to allow us to use the “functions” without requiring
parentheses. See Chapter 16 for more details on this pragma.

Finally, we use the AUTOLOAD subroutine to look up the value in the %constants
hash and return the value.

C h a p t e r 6 : S u b r o u t i n e s , P a c k a g e s , a n d M o d u l e s 159
FU

N
D

A
M

EN
TA

LS

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Chapter 7
Working with Files

161

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

It is almost impossible to make good use of a programming language without at
some point having to access information from or about files. Accessing the information
in a file is relatively easy, but unless you know the exact name of the file, you are

basically stuck. Perl supports a number of ways of extracting the list of files, either by
using the familiar wildcard operations that you use within a shell, or by reading individual
file names directly from the directory.

You can also glean more information about the file that you are using. You may need
to find out the file size or perhaps the file permissions to test whether you can access a
file. We will also take a look in this chapter at ways of controlling files, including deleting
files, and creating and accessing symbolic and hard links.

It is inevitable that at some point you will need to communicate with the outside
world. We will consider three basic outside influences in this chapter: screen, keyboard,
and files. In fact, Perl works much like many other languages. The default input and
output devices are the screen and the keyboard, but these devices can also be referenced
via files.

Unlike C, Perl uses, within reason, the same set of functions for communicating
with the terminal, keyboard, pipes (external commands or command input), network
sockets, and files. This creates less confusion while you are working and helps optimize
the language. This means that many of the functions we will look at can be used not
only for accessing files but also for accessing any kind of external data stream outside
of the main Perl script.

The basics of handling files are simple: you associate a filehandle with an external
entity (usually a file) and then use a variety of operators and functions within Perl to
read and update the data stored within the data stream associated with the filehandle.
This is similar to other languages that use the same structure. In C, for example, a FILE
structure contains all the information on a data stream and acts as the reference point
for using the data stored within that stream.

Using files and filehandles effectively, particularly when using network sockets
or providing an interactive user interface, also requires more complex controls on the
capabilities and data handling of individual filehandles. This can be achieved using
fcntl and ioctl—two functions that provide an interface to the underlying operating
system equivalents. Furthermore, in a complex installation you need to be able to
handle data I/O between multiple files simultaneously. This can be achieved using
a simple round-robin approach, but a more reliable and efficient method is to use the
select function, which is examined in some detail in this chapter.

All of the functions in this chapter are derived or descended from their operating system
equivalents. It is vital that you check the return values of all the functions in this chapter,
especially those that modify the execution environment for the script, such as chdir and
unlink. In most cases, if there is an error, the error string is stored in the $! variable,
which should be used with the die or warn function to report the error to the user.
See Chapter 9 for more information on using these functions.

162 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : W o r k i n g w i t h F i l e s 163
FU

N
D

A
M

EN
TA

LS

Filehandles
A filehandle is a named internal Perl structure that associates a physical file with a
name. A filehandle can be reused. It is not permanently attached to a single file, nor
is it permanently related to a particular file name. The name of the filehandle and the
name of the file are not related.

As far as Perl is concerned, all operating systems support three basic filehandles—
STDIN, STDOUT, and STDERR. The exact interpretation of the filehandle and the
device or file it is associated with depend on the OS and the Perl implementation. Table 7-1
shows the relationship between Perl filehandles and the underlying C file descriptors.

Perl also supports a number of standard filehandles that provide access to files while in
special command line modes (see Chapter 15), and when accessing information appended
to a Perl script. See the end of Chapter 4 for a list of standard variables and filehandles.

All filehandles are capable of read/write access, so you can read from and update
any file or device associated with a filehandle. However, when you associate a filehandle,
you can specify the mode in which the filehandle is opened. This option prevents you
from accidentally updating or overwriting information in a file that you only wanted to
read. You can see from Table 7-1 the access modes for the standard filehandles.

All filehandles are by default buffered on both input and output. In most cases, this
helps to improve performance by reading more than is needed from the physical device,
or by block writing to a physical device. Information is buffered on a block-by-block
basis (the underlying OS defines the block size). The only exception to this rule is
STDOUT, which is buffered on a line basis: appending the newline character to a
printed string will automatically flush the buffer. You can switch the buffering for the
currently selected filehandle by setting the value of the $| variable to any value other

Perl
Filehandle

C File
Descriptor Associated Device Access Mode

STDIN 0 Keyboard/terminal Write-only

STDOUT 1 Monitor/terminal Read-only

STDERR 2 Monitor/terminal Write-only

Table 7-1. Standard Perl Filehandles

164 P e r l : T h e C o m p l e t e R e f e r e n c e

than zero. It’s also possible to set the buffering on other files if you use the IO::Handle
module with the autoflush method. For example, the following code turns buffering
off for the DOOR filehandle:

use IO::Handle;

open(DOOR,"<file.in") or die "Couldn't open file";

autoflush DOOR 1;

To switch it back on again:

autoflush DOOR 0;

In the preceding example, the arguments to open are placed in parentheses to ensure
that the or operator checks the entire statement, not the value of the file name. See
“Error Handling” in Chapter 9 for more information on error handling skills.

A filehandle can be referred to by either a static token or an expression. If an ex-
pression is specified, then the value of the expression is used as the filehandle name.
Note that a filehandle token does not have a special preceding character, as with a
variable, and the name is written in uppercase. This is to help separate a filehandle
from a normal variable. If the filehandle is referred to by an expression, then the result
of the expression is used as the filehandle name.

The only limitation with a filehandle is that it cannot be supplied directly to a user-
defined function. In this instance you must use a typeglob. This is a special type of identifier
that enables you to refer to different types of variables by prefixing the name with an
asterisk. This allows a typeglob to refer to all, or any, of $name, @name, %name, or
name with *name. How the typeglob is used, and therefore which interpretation is
employed, is at the discretion of the expression or statement using the typeglob. See
Chapter 6 for more information on the symbol table and the use of typeglobs in functions.

Opening and Closing Files
A fundamental part of the Perl language is its ability to read and process file data
very quickly. In Chapter 1 we saw how the historical development of Perl was geared
toward text processing long before it gained the general-purpose status it holds now.

All file data is exchanged through the use of a filehandle, which associates an
external data source (a file, network socket, external program, pipe) with an internal
data structure (the filehandle). The method with which you associate the filehandle

C h a p t e r 7 : W o r k i n g w i t h F i l e s 165
FU

N
D

A
M

EN
TA

LS

varies depending on the type of external data source, although many of the functions
used to access the data available with the filehandle are the same. For files, you use the
open function to open ordinary files and the sysopen function to handle more complex
opening procedures. The close function is used to close any open filehandle, regardless
of how it was opened.

open
The open function is almost certainly one of the most complicated to understand when
you first approach the Perl language. Once grasped, however, it becomes easy and
almost second nature in use, often making the methods employed in other languages
seem clumsy and constricting.

open FILEHANDLE, EXPR

open FILEHANDLE

The first form is the one used most often. The FILEHANDLE is a token name that
allows you to refer to a file with a specific name. A FILEHANDLE in any function
can alternatively be an expression, which is evaluated; the value being used as the
filehandle name. If the expression supplied does not evaluate to a suitable value, Perl
does not make one up for you. You must ensure, therefore, that the expression you
supply in place of FILEHANDLE evaluates to something identifiable.

The EXPR is more complex. Perl takes the value supplied, interpolates the string
where necessary, and then strips any leading or trailing white space. The string is then
examined for special characters at the start and end of the string that define the mode
and type of file to be opened.

The basic operators are the greater-than/less-than signs. The syntax is taken from
the shell, which uses a less-than sign to pass file contents to the standard input of a
command. Within Perl, this translates to this:

open(DATA, "<file.txt");

The EXPR for the function shows that the file is being opened read-only. If you want to
write to a file, you use the greater-than sign:

open(DATA, ">file.txt");

This example actually truncates (empties) the file before opening it for writing, which
may not be the desired effect. If you want to open a file for reading and writing, you
can put a plus sign before the > or < characters.

166 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, to open a file for updating without truncating it:

open(DATA, "+<file.txt");

To truncate the file first:

open DATA, "+>file.txt" or die "Couldn't open file file.txt, $!";

Note that in the preceding example I’ve combined the open function with the die
function to report an error if the open failed. Nearly all functions within Perl return
true (a value greater than zero) if the function was a success, so you can easily place
it within a test or with the warn or die functions to report an errors—see Chapter 9 for
more information on error trapping in Perl. So, in this example, if the open function
returns true, then the die function will not be executed. However, if it returns false
(zero), indicating a failure, then the die function will be executed. This is quicker and
significantly more efficient than using if statements to test the success of functions.

This also demonstrates a basic principle of any programming: you must be able
to track and trace errors. Perl has a simple but effective method of error checking that
we’ll see in various examples throughout the rest of the book. In this case, not being
able to open a file is a serious problem, so there is little point in continuing.

One final item to mention for this example is that I’ve left out the parentheses
(which is valid in Perl; they are optional for all function arguments, but essential for
other lists) and used or as the operator, which checks the function’s success. Using or
is safe in a list context because it has a lower precedence than the list supplied to the
open function. If you wanted to use the || operator, you would have to enclose the
open statement in parentheses; otherwise, the operator would act on the EXPR and
die function:

open(DATA,"+>file.txt") || die "Couldn't open file file.txt, $!";

In both of the previous cases, the file has been opened for updating, but the file
pointer that describes the current position within the file is at the start of the file. If
you want to append, you can also use shell-style operators:

open(DATA, ">>file.txt");

C h a p t e r 7 : W o r k i n g w i t h F i l e s 167
FU

N
D

A
M

EN
TA

LS

A double >> opens the file for appending, placing the file pointer at the end, so that
you can immediately start appending information. However, you can’t read from it
unless you also place a plus sign in front of it:

open(DATA, "+>>file.txt");

The list of tricks for opening files does not end there. Let’s imagine a situation in
which you need to read the contents of a compressed file within a script. The normal
method would be to use a function to call an external program that uncompresses the
file so that you can read it, before recompressing the file once you finish. But this is
very time consuming, and on systems that have limited resources (CPU and disk space),
it is extremely wasteful.

With Perl, you can open a filehandle that is associated with the output of an external
command. The gzcat function decompresses Gzipped files on the fly, sending the output
to the commands stdout without actually decompressing the file to its full size. You
can use Perl to read in this information directly by using a pipe at the end of the EXPR:

open(GZDATA, "gzcat file.gz|");

You can now use one of the many functions that read from a filehandle to process
the data being decompressed on the fly. You haven’t created a temporary file, nor will
you have to recompress the data once you’ve finished reading it. The opposite is also
true. So you could, for example, send an email message by using the mail program and
opening a filehandle to which you can write the email message:

open(EMAIL, "|mail mc@mcwords.com");

The only limitation to this is that you cannot open an external program for both reading
and writing; the pipes work only one way—read when at the end, write when at the start.

You can also open STDIN and STDOUT directly by specifying “−” and “>−,”
respectively.

The next forms allow you to duplicate a filehandle. This is again similar to the shell
tradition of being able to redirect information not to just one file, but to multiple files.
The duplication can be specified by the existing filehandle name:

open(SECOUT,">&STDOUT");

This is especially useful if you want to save the information that would normally
be printed to STDOUT and STDERR. You duplicate the two standard filehandles to
new filehandles. You can then respecify the destination for STDOUT and STDERR,
perhaps to an external log file. This will force all output and errors to the new location,
without losing the ability to report information to the real standard output and error
using the duplicated filehandles. For example:

open(SECOUT,">&STDOUT");

open(SECERR,">&STDERR");

open(STDOUT,">stdlog.txt");

open(STDERR,">stderr.txt");

In the preceding example, all standard prints will go to the stdlog.txt file, while errors
will go to stderr.txt. If you needed to, however, you could still report to the real standard
output and error by using the SECOUT and SECERR filehandles.

The penultimate form of the open function emulates the functionality of the fdopen
system function. It associates a filehandle with a specific file descriptor number. For
example, the following line opens STDIN by file descriptor:

open(SECIN,"<&=1");

The final two formats are really extensions of the earlier pipe expressions. Instead
of starting a new program from the current script, an explicit fork is done, creating
a new child process. The return value of open is the process ID of the child. The file-
handle is normal as far as the parent is concerned. However, the input and output to
the parent filehandle is piped to the STDOUT or STDIN, respectively, of the child.

There is little advantage in this method of using a piped command, except that it
can be useful in secure situations where you want to control the method used to execute
the external command. For example, the earlier gzcat example could be rewritten as

open(GZDATA,"-|") or exec 'gzcat', 'file.gz';

and the email example could be written as

open(EMAIL, "|-") or exec 'mail' 'mc@mcwords.com';

Note that in both cases communication is still one way: you can still only read from a
“-|”-based open.

The full list of available expressions for opening files is shown in Table 7-2.

168 P e r l : T h e C o m p l e t e R e f e r e n c e

Note that you need to use the binmode function under some systems (notably
Windows) to stop Perl from automatically implying input line processing on the file.
See “binmode” later in this chapter, and Chapter 24 for more information.

File Disciplines
Perl v5.6 or above allows you to specify the encoding format to be used when reading and
writing to and from a filehandle by supplying the format as part of the EXPR argument,
and supplying the name of the file to be opened in LIST, making a three-argument form
of the open function. To specify the encoding formation, you must supply one of the
modes shown in Table 7-3.

FU
N

D
A

M
EN

TA
LS

C h a p t e r 7 : W o r k i n g w i t h F i l e s 169

Expression Result

“filename” Opens the file for reading only.

“<filename” Opens the file for reading only.

“>filename” Truncates and opens the file for writing.

“+<filename” Opens the file for reading and writing.

“+>filename” Truncates and opens the file for reading and writing.

“|command” Runs the command and pipes the output to the filehandle.

“command|” Pipes the output from the filehandle to the input
of command.

“-” Opens STDIN.

“>-” Opens STDOUT.

“<&FILEHANDLE” Duplicates specified FILEHANDLE or file descriptor if
numeric, for reading.

“>&FILEHANDLE” Duplicates specified FILEHANDLE or file descriptor if
numeric, for writing.

“<&=N” Opens the file descriptor matching N, essentially identical
to C’s fdopen().

“|-” and “-|” Opens a pipe to a forked command.

Table 7-2. Options for Opening Files

170 P e r l : T h e C o m p l e t e R e f e r e n c e

The exact list of modes supported is dependent on the support in the current release
of Perl. Check the Perl documentation for more information on the current list.

For example, we could open a file that will be used in paragraph mode and
interpret carriage returns and line feeds as a single newline by using

open(FILE, "<:para:crlf", 'myfile');

Discipline Meaning

:raw Binary mode—no line input processing—Equivalent to
calling binmode.

:text Text processing—the basic mode supported by versions
prior to v5.6.

:def Default—as declared by the use open pragma.

:latin1 Use the ISO-8859-1 format.

:lctype Use the LC_CTYPE format.

:utf8 Use the UTF-8 (unicode) format.

:utf16 Use the UTF-16 (unicode) format.

:utf32 Use the UTF-32 (unicode) format.

:uni Intuit Unicode (UTF-*) format.

:any Intuit Unicode/Latin1/LC_CTYPE

:xml Use the file-specified encoding format.

:crlf Intuit newlines.

:para Paragraph mode.

:slurp Slurp mode.

Table 7-3. File Format Encoding DisciplinesTE
AM
FL
Y

Team-Fly®

FU
N

D
A

M
EN

TA
LS

C h a p t e r 7 : W o r k i n g w i t h F i l e s 171

The default mode (:def) is to use :text, but you can change the default by using the
open pragma:

use open IN => ":any", OUT => "utf8";

sysopen
The sysopen function is similar to the main open function, except that it uses the
system open() function, using the parameters supplied to it as the parameters for
the system function:

sysopen FILEHANDLE, FILENAME, MODE, PERMS

sysopen FILEHANDLE, FILENAME, MODE

There are some differences between the sysopen and open functions. The FILENAME
argument is not interpreted by sysopen. The special codes used with open are interpreted
as elements of the file name. In essence, the FILENAME argument is taken literally.
This allows you to take information from a user that specifies the full pathname to
a file and use it directly without requiring variable interpolation.

Because of this difference, the format in which a file is opened is taken from
MODE. The value of MODE is a bitset using the constants defined in the system’s
fcntl.h header file. Perl can either use the numbers directly or use word equivalents if
the standard Fcntl module has been imported. Because it’s a bitset, you’ll need to OR
the values together to produce the final mode. There are some standard values if you
want to remain completely portable. A MODE of zero opens the file read-only; one,
write-only; and two, read/write. These correspond to the constants O_RDONLY,
O_WRONLY, and O_RDWR, which are defined in the Fcntl module.

Two other standard constants are O_CREAT, which creates a file if it does not
already exist, and O_TRUNC, which truncates a file before it is read or written.

For example, to open a file for updating, emulating the “+<filename” format
from open,

sysopen(DATA, "file.txt", O_RDWR);

or to truncate the file before updating,

sysopen(DATA, "file.txt", O_RDWR|O_TRUNC);

The PERMS argument specifies the file permissions for the file specified if it has
to be created (provided O_CREAT has been specified in MODE). This should be specified
in standard octal notation, and Perl uses a default of 0x666 if PERMS are not defined.
The values are modified according to your current umask if applicable.

close
To close a filehandle, and therefore disassociate the filehandle from the corresponding
file, you use the close function. This flushes the filehandle’s buffers and closes the
system’s file descriptor.

close FILEHANDLE

close

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It
returns true only if it could successfully flush the buffers and close the file. If you have
been writing to a file, then close can be used as an effective method of checking that
information has been successfully written. For example:

open(DATA,"+<data.txt") || die "Can't open data.txt";

#do some work

close(DATA) || die "Couldn't close file properly";

However, if you are not worried about the file condition (for example, you are
reading from a file), you do not need to close a filehandle before reassigning the
filehandle to a new file. The open function implicitly closes the previous file before
opening the new one, but be warned that there is no way of guaranteeing the file status
in this way.

When you open a pipe, either via the pipe function or via open, the function will
return false if one of the related system calls fails. Alternatively, if the program called
via the pipe returns an exit status other than zero, the return value from the called
program is placed in $?. In either case, closing a pipe waits for the child process to exit
before returning.

Reading and Writing Filehandles
Once you have an open filehandle, you need to be able to read and write information.
There are a number of different ways of reading and writing data, although it’s likely
you’ll stick to one or two methods that you find you prefer.

172 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : W o r k i n g w i t h F i l e s 173
FU

N
D

A
M

EN
TA

LS

The <FILEHANDLE> operator
The main method of reading the information from an open filehandle is the
<FILEHANDLE> operator. In a scalar context it returns a single line from the
filehandle. For example:

print "What is your name?\n";

$name = <STDIN>;

print "Hello $name\n";

I’ve used STDIN to demonstrate how to read information from the keyboard or
terminal. Since it is already open, I don’t have to worry about opening it beforehand.

When you use the <FILEHANDLE> operator in a list context, it returns a list of
lines from the specified filehandle. For example, to import all the lines from a file into
an array:

open(DATA,"<import.txt") or die "Can't open data";

@lines = <DATA>;

close(DATA);

Although this operation looks dangerous, Perl lets you go ahead and read the entire
contents of a file into a single variable. Perl dynamically allocates all of the memory
it needs. The only limitation is the amount of physical and virtual memory your
machine has.

Although it appears that <FILEHANDLE> only reads in lines from the file, you can
specify a different record separator using the $/ or $INPUT_RECORD_SEPARATOR
variable. This enables you to read in character-separated data files. On the Mac, for
example, a program called TouchBase Pro supports the export of name and address
information using a record separator with an ASCII value of 252; hence you could use
Perl to import this information using a script like this:

open(DATA,"+<tbpro.dat") or die "Can't open tbpro.dat, $!\n";

$/ = "\374";

while(<DATA>)

{

Process and update a record

}

I’ve introduced two new things here. One is the use of the special $! variable to
report the error returned by the open function if it fails. The other is that I’ve enclosed
the <FILEHANDLE> operator within a while loop. Because the <FILEHANDLE>
operator returns a single record in a scalar context, you can use it within a while loop
to work through a file until the end. Each iteration of the loop will return a new record,
and the data is placed into the $_ default input space.

readline
The readline function is actually the internal function used by Perl to handle the
<FILEHANDLE> operator function.

readline EXPR

The only difference is that readline accepts an expression directly, instead of the usual
filehandle. This means you need to pass a typeglob to the readline function, instead of
the normal filehandle. However, the same rules apply. The function reads in records
from the filehandle using the value of $/ as a record separator. So to duplicate the
while statement shown earlier, you would use

while(readline *DATA)

getc
The getc function returns a single character from the specified FILEHANDLE, or
STDIN if none is specified:

getc FILEHANDLE

getc

If there was an error, or the filehandle is at end of file, then undef is returned
instead. Unfortunately, because of the buffering on filehandles, you can’t use it
effectively to get nonbuffered single characters. There is a trick for this, and we’ll
examine some techniques for this in Chapter 13.

read
Whereas the <FILEHANDLE> operator or readline function reads data from a
filehandle using the input record separator, the read function reads a block of
information from the buffered filehandle:

read FILEHANDLE, SCALAR, LENGTH, OFFSET

read FILEHANDLE, SCALAR, LENGTH

174 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : W o r k i n g w i t h F i l e s 175
FU

N
D

A
M

EN
TA

LS

The length of the data read is defined by LENGTH, and the data is placed at the start
of SCALAR if no OFFSET is specified. Otherwise data is placed after OFFSET bytes
in SCALAR, allowing you to append information from the filehandle to the existing
scalar string. The function returns the number of bytes read on success, zero at end of
file, or undef if there was an error.

This function can be used to read fixed-length records from files, just like the system
fread() function on which it is based. However, it must be used in combination with print
and seek to ensure that the buffering system works correctly without overwriting existing
data. For a more reliable method of reading and writing fixed-length data, and for the
equivalent of the system read() function, see the section “sysread” later in the chapter.

print
For all the different methods used for reading information from filehandles, the main
function for writing information back is the print function. Unlike in C, in Perl print is
not just used for outputting information to the screen; it can be used to print information
to any open filehandle. This is largely due to the way Perl structures its internal data.
Because scalars are stored precisely, without using the traditional null termination seen
in other languages, it’s safe to use the print function to output both variable and fixed-
length information.

print FILEHANDLE LIST

print LIST

print

The most common error a new Perl programmer makes is to place a comma between
FILEHANDLE and LIST. This often causes undesired results, because to the print
function, the comma makes FILEHANDLE the first element of the LIST to be evaluated
and printed.

The print function prints the evaluated value of LIST to FILEHANDLE, or to the
current output filehandle (STDOUT by default). For example:

print "Hello World!\n";

or

print "Hello", $name, "\nHow are you today?\n";

176 P e r l : T h e C o m p l e t e R e f e r e n c e

which prints

Hello Martin

How are you today?

Note that a LIST rather than string interpolation is used in the last example.
You can achieve the same result using a here document with the print function:

print <<EOT;

Hello $name

How are you today?

EOT

Because the argument to the print function is a LIST, the individual elements of the
list are evaluated before the results are passed to print, which then outputs the values.
You need to be careful when incorporating a print statement within a larger statement,
especially one that itself uses a LIST context. For example, the line

print "Hello ", print "How are you today?";

actually prints

How are you today?Hello 1

The second element to the print function is evaluated first, resulting in the message,
and then the resulting list values are output by print, which explains the 1—the return
value from the nested print function.

To get around this problem, you can use parentheses to enclose the list of values
for print,

print("Hello "),print "How are you today?";

which correctly outputs the message “Hello How are you today?” However, care
should be taken with the parentheses, since you can also get unexpected results:

print (1+2)*3, "\n";

Only the first calculation is printed, since the parser assumes that the parentheses
specify the LIST to the print function. The remaining values are ignored, since they no

C h a p t e r 7 : W o r k i n g w i t h F i l e s 177
FU

N
D

A
M

EN
TA

LS

longer form part of a valid expression. Perl doesn’t produce an error because you are
still defining valid Perl code—even though the values of the list are never used.

The correct way to write the preceding equation is

print(((1+2)*3),"\n");

If no LIST is specified, the value of $_ is printed instead. It returns true (1) on success
and zero on failure.

printf
Although print is incredibly useful, it suffers from a lack of format. The Perl parser
decides how a particular value is printed. This means that floating point numbers are
printed as such, when you may wish to restrict the number of places past the decimal
point that the number is printed. Alternatively, you may wish to left- rather than right-
justify strings when you print them.

printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST

Within C, the only function available is printf, which uses a formatting string as
the first element and formats the remaining values in the list according to the format
specified in the format string. Each format is called a format conversion and is made up
of an initial percent sign, followed by some optional flags, and finally a single character
that defines how the value in the list is printed. Each format conversion string relates to
the corresponding value in the remainder of the argument list.

For example, the statement

printf "%d\n", 3.1415126;

only prints the number 3. The “%d” conversion format determines that an integer
should be printed. Alternatively, you can define a “currency” format like this,

printf "The cost is $%6.2f\n",499;

which would print

The cost is $499.00

The printf function accepts the format conversions in Table 7-4.

Perl also supports flags that optionally adjust the output format. These are specified
between the % and conversion letter, as shown in Table 7-5.

178 P e r l : T h e C o m p l e t e R e f e r e n c e

Format Result

%% A percent sign.

%c A character with the given ASCII code.

%s A string.

%d A signed integer (decimal).

%u An unsigned integer (decimal).

%o An unsigned integer (octal).

%x An unsigned integer (hexadecimal).

%X An unsigned integer (hexadecimal using uppercase characters).

%e A floating point number (scientific notation).

%E A floating point number (scientific notation using “E” in place of “e”).

%f A floating point number (fixed decimal notation).

%g A floating point number (%e of %f notation according to value size).

%G A floating point number (as %g, but using “E” in place of “e” when
appropriate).

%p A pointer (prints the memory address of the value in hexadecimal).

%b An unsigned integer in binary.

%n Stores the number of characters output so far into the next variable in
the parameter list.

%i A synonym for %d.

%D A synonym for C %ld.

%U A synonym for C %lu.

%O A synonym for C %lo.

%F A synonym for C %f.

Table 7-4. Conversion Formats for printf

C h a p t e r 7 : W o r k i n g w i t h F i l e s 179
FU

N
D

A
M

EN
TA

LS

The v format is useful for displaying ordinal values of characters within strings.
For example:

printf "Perl's version is v%vd\n",%^V;

Note that the v format is only a modifier for the true format in which the information
will be output. We can also therefore use it to output the information in decimal, or
hex, or even as a series of strings:

printf "IP address: %vd\n", $addr;

printf "IPv6 address: %vX\n", $addr;

Flag Result

space Prefix positive number with a space.

+ Prefix positive number with a plus sign.

− Left-justify within field.

0 Use zeros, not spaces, to right-justify.

Prefix non-zero octal with “0” and hexadecimal with “0x.”

number Minimum field width.

.number Specify precision (number of digits after decimal point) for floating
point numbers.

l Interpret integer as C type “long” or “unsigned long.”

h Interpret integer as C type “short” or “unsigned short.”

V Interpret integer as Perl’s standard integer type.

v Interpret the string as a vector of integers (v-string)—output as a
series of numbers separated by dots, or by an arbitrary string
supplied by the argument list when the flag is preceded by *.

Table 7-5. Formatting Flags for printf Conversion Formats

The special * format character tells Perl to accept the corresponding argument
as the separating character in lieu of the period, so we could print out an Ethernet
address using

printf "Ethernet address: %*vX\n", %addr;

Nonbuffered I/O
Using the standard read and print functions can cause problems if you want to access
fixed blocks of data that are not separated by a recognizable record or if you want to
avoid the problems associated with buffered input. In particular, this can cause delayed
reads and writes, and, overall, make the system seem inefficient compared to a direct
access system.

To get around this, you can use the sysread and syswrite functions, which emulate
the underlying fread and fwrite functions. They read and write a block of data of a
specified size, ignoring the usual field and record boundaries of the <FILEHANDLE>
operator and the read and print functions.

sysread
The sysread function reads a fixed number of bytes from a specified filehandle into a
scalar variable:

sysread FILEHANDLE, SCALAR, LENGTH, OFFSET

sysread FILEHANDLE, SCALAR, LENGTH

If OFFSET is specified, then data is written to SCALAR from OFFSET bytes, effectively
appending the information from a specific point. If OFFSET is negative, data is written
from the number of bytes specified counted backward from the end of the string.

The function is based on the system read() function, and therefore it avoids the
normal buffering supported by standard streams-based stdio functions.

syswrite
The syswrite function is the exact opposite of sysread. It writes a fixed-sized block of
information from a scalar to a filehandle:

syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET

syswrite FILEHANDLE, SCALAR, LENGTH

If OFFSET has been specified, then LENGTH bytes are read from the SCALAR and
written to FILEHANDLE. If the length of the scalar is less than LENGTH, the data is
padded with nulls.

180 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : W o r k i n g w i t h F i l e s 181
FU

N
D

A
M

EN
TA

LS

In both cases, you should avoid using the sysread and syswrite functions with the
functions that do use buffered I/O, including print, seek, tell, write, and especially read.

If you use these two functions in combination with the sysseek function (discussed
later in the chapter), you can update a database with a fixed record size:

open(DATABASE,"+<datafile") or die "Can't open datafile";

$recloc = 0;

while(sysread(DATABASE,$record,80))

{

Find the record we're looking for

if ($found)

{

last; # quit out of the read loop

}

$recloc += 80; #Otherwise, record the next record start

}

Update the information

sysseek(DATABASE,$recloc,SEEK_SET); #Go back to the start of the record

syswrite(DATABASE,$record,80); #Write record back, replacing previous

You could use the tell function, since that takes into account the usual buffering; so
you have to calculate the file position manually by totaling up the bytes read from the
database. If you had used read, seek, and print, then the standard buffering used may
have affected the results, probably overwriting information. Using sysread guarantees
that the information read and written from the filehandle is what you received and
supplied.

Locating Your Position Within a File
When reading and writing files using the standard line-based or record-based methods,
you are normally processing individual records in sequence—outputting or formatting
the results as you read in the entire file in sequence. However, if you are accessing
fixed-length information—for example, a database—you are likely to require access
to the information in a more random fashion. In order to work correctly, you need to
be able to discover your current location and set a new location within the file.

tell
The first requirement is to find your position within a file, which you do using the
tell function:

tell FILEHANDLE

tell

This returns the position of the file pointer, in bytes, within FILEHANDLE if specified,
or the current default selected filehandle if none is specified. The function returns
undef if there is a problem getting the file position information, since a value of zero
could just indicate that you’re at the start of the file.

seek
The seek function positions the file pointer to the specified number of bytes within
a file:

seek FILEHANDLE, POSITION, WHENCE

The function uses the fseek system function, and you have the same ability to position
relative to three different points: the start, the end, and the current position. You do this by
specifying a value for WHENCE. The possible values are 0, 1, and 2 for positions relative
to the start of the file, the current position within the file, and end of the file. If you import
the IO::Seekable module, you can use the constants SEEK_SET, SEEK_CUR, and
SEEK_END, respectively.

Zero sets the positioning relative to the start of the file. For example, the line

seek DATA, 256, 0;

sets the file pointer to the 256th byte in the file. Using a value of one sets the position
relative to the current position; so the line

seek DATA, 128, 1;

moves the file point onto byte 384, while the line

seek DATA, -128, SEEK_CUR;

moves back to byte 256.
A WHENCE value of two moves the file relative to the end of the file, and the value

of POSITION is generally specified as a negative number. You can move to a point 80
bytes from the end of the file using a line like this:

seek DATA, -80, SEEK_END;

It’s worth noting that the seek function resets the end-of-file condition. You can
use the SEEK_CUR constant with a WHENCE value of zero to achieve this, since the
overall effect is to move nowhere. If you were to use the SEEK_SET or SEEK_END
function, you’d have to use the tell function to discover the current location.

182 P e r l : T h e C o m p l e t e R e f e r e n c e

sysseek
As you already know, the bulk of the functions that use filehandles rely on the
buffering provided by the system’s stdio functions. The sysseek function is essentially
identical to the seek function, except that it ignores the buffering on filehandles:

sysseek FILEHANDLE, WHENCE, POSITION

In the earlier database example, you might want to move to the last record in a
database, which you could do with

sysseek DATABASE, -80, 2;

Miscellaneous Control Functions
A few functions do not conveniently fall into one of the sections we have already
discussed. They are functions that primarily control the operation or control of a
filehandle, or they may return some additional information for a specific filehandle.

binmode
On older operating systems, there is a distinction between textual and binary files. The
difference occurs because Perl converts automatically between external file formats that
contain two characters for line separation. MS-DOS, for example, uses CR LF to terminate
lines, which Perl translates internally to LF, converting them back when information
is written.

binmode FILEHANDLE

This obviously causes a problem when opening files for binary access, since you
will lose information in the internal representation and can corrupt the files due to the
conversion process. To get around this problem, you can use the binmode function,
which forces Perl to ignore line termination, thus preventing it from doing any form
of conversion. To use it, open a filehandle, and then call the binmode function with the
new filehandle. For example:

open(DATA,"+<input.bin") or die "Couldn't open the file input.bin\n";

binmode(DATA) or die "Couldn't set binary mode on input.bin\n";

...

The binmode function returns the usual true/false on success/failure. Once set,
there is no way to unset binary mode short of closing the filehandle and reopening it,
although you’re unlikely to want to change the format of an open file anyway.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 183
FU

N
D

A
M

EN
TA

LS

The function has no effect on systems that make no distinction between formats,
such as Unix, Mac OS, and Windows.

eof
Although all functions and operators that read information automatically detect the
end-of-file condition and return a suitable error code to the user, it is sometimes necessary
to check the status outside of such a test. The eof function supports this action:

eof FILEHANDLE

eof()

eof

If eof is specified with a FILEHANDLE, then it checks whether the next read from
the specified filehandle will return an end-of-file condition. The function returns true if
the end-of-file condition exists, or undef otherwise.

When called with parentheses, it returns true when the end of file has been reached
for the last file within a while(<>) loop (see Chapter 9). For example, the following
code prints an error message when it realizes it’s running out of source text:

while(<>)

{

if(eof())

{

print "Running out of data!!\n";

}

...

}

When used without a filehandle or parentheses, the function detects the end-of-file
condition for the end of file within the current file of a while(<>) loop. So the next
example prints a separator after each file that is printed:

while(<>)

{

print;

if (eof)

{

print "\n",'=' x 50,"\n\n";

}

}

184 P e r l : T h e C o m p l e t e R e f e r e n c e

The actual method used by Perl for discovering the end-of-file condition is to get a
byte of information from the required filehandle and then push the character back onto
the input stream of the filehandle with the C ungetc() function. This makes it useless in
an interactive context, so it may catch keystrokes that you are trying to read.

fileno
The fileno function returns the underlying operating system file descriptor for the
specified filehandle:

fileno FILEHANDLE

Essentially this function is only used when you require the file descriptor number
instead of the filehandle. The select function is a classic example that requires the
number in order to create the necessary bitsets used to monitor the filehandles. The
function can also be used when duplicating filehandles (although you can do that
easier by name) and detecting whether two filehandles are duplicated:

print "Dupes\n" if (fileno(DATA) == fileno(SRC));

select
There are two forms of select. One sets the default filehandle, and the other is used for
the more complex act of handling multiple I/O effectively. We will deal only with the
first in this section.

select FILEHANDLE

select

The select function returns the default filehandle name and sets the default filehandle
to FILEHANDLE. This is the default filehandle used by functions such as print and
read when the user does not specify a FILEHANDLE. If no FILEHANDLE is specified,
the name of the current filehandle is returned.

For example, to switch buffering off for another filehandle, you could use this code:

$stdfh = select DATA;

$| = 1;

select $stdfh;

This works because select returns the current filehandle before setting it to the new
supplied value.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 185
FU

N
D

A
M

EN
TA

LS

This trick is also sometimes useful when you are formatting and producing reports
using the Perl reporting mechanism. In both cases, however, there are now convenient
ways of modifying report formats and setting the buffering of filehandles.

If you import the FileHandle module, then to switch off buffering, you can use

use FileHandle;

autoflush(DATA);

Alternatively, using the method syntax, you can set the format options for two
separate reports:

use FileHandle;

DETAILS->format_top_name("Detailed Phone Statistics");

SUMMARY->format_top_name("Summary Phone Statistics");

This virtually eliminates the need for select altogether, but it remains for historical
compatibility.

truncate
You can truncate (empty) a specific filehandle to trim it down to a specific size:

truncate FILEHANDLE, LENGTH

For example, to reset the size of an error log, perhaps after the full contents have
been printed, you can use this line:

truncate LOGFILE, 1024;

The function causes a fatal error if your system does not support the underlying
truncate function, or returns true if the operation is successful.

File Management
For most people, the bulk of the data they want to process comes from the contents of
a file. However, a significant amount of information is stored along with file data. The
most obvious is the file’s name, but this is often coupled with additional information
about the file. This information is often called metadata, since it refers to metaphorical
information about a file, rather than the file data itself. The exact specification of this
information is reliant on the operating system, but it usually includes permissions
(or attributes), ownership, and more trivial information such as modification times
and the file size.

186 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : W o r k i n g w i t h F i l e s 187
FU

N
D

A
M

EN
TA

LS

Perl provides an entire suite of functions for determining the metadata of a file.
We’ll start by looking at the basic test operators, -X, which return a Boolean response
to simple queries about a specific file, such as whether the file can be read or written to.
There is also a simple operator for finding the size, in bytes, of a specified file. We then
move on to the stat and lstat functions, which return extended information from the
directory entry for the specified file or link.

There is also a series of functions that enable you to create and manage files, including
deleting files, creating hard and symbolic links, and obtaining the location of the file or
directory that a particular link points to. We will also be examining methods for finding
out the list of available files in a particular directory and how to access the entire
directory contents.

Finally, we’ll look at the more advanced operations available for control filehandles
and I/O with a range of files using fcntl, ioctl, and the select function.

File Information
You can test certain features very quickly within Perl using a series of test operators
known collectively as -X tests. The file test operators take either a file name or a
filehandle, returning true, false, or a value, depending on the operator being used.
The format of the operator is as follows:

-X EXPR

-X FILEHANDLE

-X

If you do not specify a file to get the information from, the operator uses the value
of $_ as a file name for all tests except -t, which instead uses STDIN. The full list of
available tests is shown in Table 7-6.

For example, to perform a quick test of the various permissions on a file, you might
use a script like this:

my (@description,$size);

if (-e $file)

{

push @description, 'binary' if (-B _);

push @description, 'a socket' if (-S _);

push @description, 'a text file' if (-T _);

push @description, 'a block special file' if (-b _);

push @description, 'a character special file' if (-c _);

push @description, 'a directory' if (-d _);

push @description, 'executable' if (-x _);

push @description, (($size = -s _)) ? "$size bytes" : 'empty';

print "$file is ", join(', ',@description),"\n";

}

188 P e r l : T h e C o m p l e t e R e f e r e n c e

Operator Description

-A Age of file (at script startup) in days since modification.

-B Is it a binary file?

-C Age of file (at script startup) in days since modification.

-M Age of file (at script startup) in days since modification.

-O Is the file owned by the real user ID?

-R Is the file readable by the real user ID or real group?

-S Is the file a socket?

-T Is it a text file?

-W Is the file writable by the real user ID or real group?

-X Is the file executable by the real user ID or real group?

-b Is it a block special file?

-c Is it a character special file?

-d Is the file a directory?

-e Does the file exist?

-f Is it a plain file?

-g Does the file have the setgid bit set?

-k Does the file have the sticky bit set?

-l Is the file a symbolic link?

-o Is the file owned by the effective user ID?

-p Is the file a named pipe?

-r Is the file readable by the effective user or group ID?

-s Returns the size of the file, with zero referring to an empty file.

-t Is the filehandle opened by a TTY (terminal)?

-u Does the file have the setuid bit set?

-w Is the file writable by the effective user or group ID?

-x Is the file executable by the effective user or group ID?

-z Is the file size zero?

Table 7-6. File Test Operators

Note that after the first test, I’ve used a special character, the underscore, which is a
special filehandle. This is a buffer that holds the information from the last file name or
filehandle test, or the last stat command. Using this special filehandle is more efficient
than continually specifying the file, since this special filehandle stores all of the status
information for the last file accessed. If you specify each file or filehandle individually,
the physical device holding the file will be polled each time for the information.

Be careful of foreign language files with high-bit or special characters, such as characters
with accents. They can sometimes be misinterpreted as a binary file when using -B or -T.

Beyond this standard set of tests, there is also a separate stat command that obtains
further information about the file specified, including the physical device, underlying
file system parameters such as the inode number, the owner and group permissions,
and the access and modification times for the file. The information is returned by the
function as a list:

($dev, $inode, $mode, $nlink, $uid, $gid, $rdev

$rdev, $size, $atime, $mtime, $ctime, $blksize, $blocks) = stat $file;

The full list of information supplied is shown in Table 7-7.
The stat function uses the operating system stat() function to obtain information

directly from the inode (see sidebar), returning the list. The information is very raw; for
example, it returns user IDs rather than names, but using other functions seen elsewhere
in this chapter, it’s possible to extract the information to make it more usable.

The most complex procedure is the extraction of the permissions information,
which is supplied back to use as a number, but needs to be treated as an octal value
that many Unix programmers will be familiar with. The following example shows one

C h a p t e r 7 : W o r k i n g w i t h F i l e s 189
FU

N
D

A
M

EN
TA

LS

Inodes
An inode is the name for a directory entry within a file system. The term “inode”
comes from Unix, although all operating systems have a similar term for the inode.
Both Macs and NT use the term directory entry. Regardless of the operating system
or file system type, the primary purpose for an inode or directory entry is to store
the information about the physical location of the data that constitutes a file on the
physical (or logical) device.

Because this is effectively a mapping structure between the data and the name
the user gives the file, an inode is also used to store other information such as
the ownership and security information and other data obtainable with the stat
function. Inodes also play a part in the management of files.

190 P e r l : T h e C o m p l e t e R e f e r e n c e

method for extracting the information into a usable form using the logical and operator
to compare known values against the value returned.

for $file (@ARGV)

{

my ($mode,$nlinks,$uid,$gid,$size,$mtime) = (stat($file))[2..5,7,9];

printf("%s %2d %-10s %-10s %8d %s %s\n",extperms($mode),

$nlinks,

scalar getpwuid($uid),

scalar getgrgid($uid),

$size,

scalar localtime($mtime),

$file);

}

Element Short Name Description

0 dev Device number of file system.

1 inode Inode number.

2 mode File mode (type and permissions).

3 nlink Number of (hard) links to the file.

4 uid Numeric user ID of file’s owner.

5 gid Numeric group ID of file’s owner.

6 rdev The device identifier (special files only).

7 size File size, in bytes.

8 atime Last access time since the epoch.

9 mtime Last modify time since the epoch.

10 ctime Inode change time (not creation time!) since
the epoch.

11 blksize Preferred block size for file system I/O.

12 blocks Actual number of blocks allocated.

Table 7-7. Data Returned by the stat Function

TE
AM
FL
Y

Team-Fly®

sub extperms ()

{

($mode) = @_;

my $perms = '-' x 9;

substr($perms,0,1) = 'r' if ($mode & 00400);

substr($perms,1,1) = 'w' if ($mode & 00200);

substr($perms,2,1) = 'x' if ($mode & 00100);

substr($perms,3,1) = 'r' if ($mode & 00040);

substr($perms,4,1) = 'w' if ($mode & 00020);

substr($perms,5,1) = 'x' if ($mode & 00010);

substr($perms,6,1) = 'r' if ($mode & 00004);

substr($perms,7,1) = 'w' if ($mode & 00002);

substr($perms,8,1) = 'x' if ($mode & 00001);

substr($perms,2,1) = 's' if ($mode & 04000);

substr($perms,5,1) = 's' if ($mode & 02000);

substr($perms,8,1) = 't' if ($mode & 01000);

$perms;

}

The script largely emulates the Unix ls command or, indeed, the Windows dir
command. When run, it produces output similar to this:

rwxr-xr-x 7 root root 512 Fri Jun 12 10:00:50 1998 /usr/local/atalk

rwxr-xr-x 2 root root 1536 Tue Nov 3 22:17:09 1998 /usr/local/backups

rwxr-xr-x 4 root root 3584 Wed Feb 17 12:12:32 1999 /usr/local/bin

rwxr-xr-x 3 root root 512 Fri Jun 12 10:03:19 1998 /usr/local/com

rwxrwxrwx 15 root root 1024 Sat Feb 20 06:57:26 1999 /usr/local/contrib

rwxr-xr-x 2 root root 512 Sat Feb 20 07:04:19 1999 /usr/local/cpan

rwxrwxrwx 5 root root 512 Wed Feb 17 13:08:56 1999 /usr/local/etc

rwxrwxrwx 10 root root 512 Tue Jan 19 20:56:41 1999 /usr/local/http

rwxr-xr-x 6 root root 512 Thu Aug 27 21:31:21 1998 /usr/local/include

rwxr-xr-x 2 root root 4096 Mon Feb 8 10:14:58 1999 /usr/local/info

rwxr-xr-x 11 root root 1024 Wed Jan 20 16:39:53 1999 /usr/local/lib

rwxr-xr-x 4 root root 512 Fri Jun 12 10:30:39 1998 /usr/local/libexec

rwx------ 2 root root 8192 Thu Jun 26 13:31:45 1997 /usr/local/lost+found

rwxr-xr-x 16 root root 512 Wed Jan 20 16:39:35 1999 /usr/local/man

rwxr-xr-x 11 root root 512 Thu Jan 21 09:56:08 1999 /usr/local/nsr

rwxr-xr-x 10 root root 512 Wed Feb 17 12:27:15 1999 /usr/local/qmail

rwxr-xr-x 6 root root 512 Tue Jun 16 22:27:18 1998 /usr/local/samba

rwxr-xr-x 8 root root 512 Tue Jun 16 23:52:46 1998 /usr/local/share

C h a p t e r 7 : W o r k i n g w i t h F i l e s 191
FU

N
D

A
M

EN
TA

LS

When accessing a symbolic link on a Unix system, the information returned by stat
is that of the file the link points to, rather than the link itself. To return the information
for the link (rather than the file it points to), you need to use the lstat function:

lstat EXPR

This returns exactly the same information as stat. (Refer to Table 7-7 for the list of
information returned.) If your system does not support symbolic links, a normal stat
operation is done instead.

Basic File Management
Under Unix, files are created on a file system by creating a link to an inode (see the
earlier sidebar), which creates the necessary directory entry that links to the file data.
Many of the functions for managing files therefore have a direct effect on the inode
information without requiring you to access the file. The rename function is the first
of these. It changes the registered name for a file:

rename OLDNAME, NEWNAME

The OLDNAME is the specification of the old file, and NEWNAME is the new name
for the file. The function fails if it is unable to find the file or unable to change
the file name (perhaps because it is open).

The next few functions all directly affect the existence, creation, or information
about a link. The first is the link function. This creates a “hard” link to an existing file.
A hard link is a new inode that points to an existing data stream; that is, it’s a duplicate
directory entry for an existing file. The duplicate has a different name and different
permissions and access times. Only the inode field (from the stat function) is identical
to the original:

link OLDNAME, NEWNAME

Creation of a new hard link updates the link count (the number of links to a file);
the significance of this will be seen shortly. If the function fails, it returns a value of
zero and sets the error string in $!. Note that you cannot create hard links across file
systems, because the new directory entry must refer to the inode of a file on the same
file system. Use symbolic links instead.

Since the notion of a duplicate directory entry for an existing file is a Unix feature,
other operating systems are unlikely to support this option. They may, however,
support symbolic links via the symlink function. Certainly Mac OS and Windows
support symbolic links in the form of aliases and shortcuts, respectively. A symbolic
link is similar in principle to a hard link; however, rather than duplicating the

192 P e r l : T h e C o m p l e t e R e f e r e n c e

information about an existing inode, a symbolic link contains a reference (the path) to
the file you want to link to:

symlink OLDNAME, NEWNAME

Because a symbolic link is a reference to a file, rather than a physical pointer to a
real file, you can create a symbolic link on any file system and have it point to any
other file system.

Symbolic links do not update the link count either. This is significant because the
link count of an inode is used by the file system to determine whether a file is to be
deleted completely. The unlink function deletes a link from a file system. If you a delete
a link, you are only deleting the directory entry that relates the file name you see in the
file list to the physical file. By deleting a link, you effectively remove access to the file.

For most files you create, there will be only one link to the file (the name you originally
gave it). Once the link count in the inode reaches zero, the file system deletes the file in
question. In effect, therefore, the unlink function does not actually delete a file; it only
decrements the link count for the inode number to which the directory entry relates.

unlink LIST

The function accepts a list of files to be deleted, or it uses the value of $_ if you
do not specify a list. Because the file globbing operator and functions return lists,
that means all three of these examples will work:

unlink $file;

unlink @files;

unlink <*.o>;

To delete directories, use the rmdir function. Although Perl supports the deletion of
a directory via unlink (providing you are root and have specified the -U option on the
command line), it’s not advised. Removing the directory entry/inode for a directory
without also deleting the files that refer to that directory can cause serious file system
problems—probably not the effect you want.

Once you have created (or indeed identified) a symbolic link, any references to the
link actually return the file contents that the link points to. This is sensible, since the link
itself contains no valid information. However, you can find out the pathname of the file
that the symbolic link points to using the readlink function:

readlink EXPR

C h a p t e r 7 : W o r k i n g w i t h F i l e s 193
FU

N
D

A
M

EN
TA

LS

The function returns the location of the file pointed to by the symbolic link EXPR,
or $_ if none is specified. If the value cannot be determined, or if EXPR is not a symbolic
link, the function returns undef.

Also be aware that symbolic links can be relative to the location of the link, rather
than a full pathname. The value returned to you will only be of any use if you are
currently in the same directory as the link you are reading.

You may remember the access permissions information returned by stat earlier in
this chapter. The access permissions (mode) of a file can also be set using the chmod
function:

chmod MODE, LIST

The MODE should be the numerical value associated with a specific file mode.
Normally, this information is represented as an octal value (as seen earlier). For
example, to change the permissions of a file to be readable by everybody:

chmod 0444, $file;

The most common mistake when using this command is to specify a decimal rather
than octal number. Remember that Perl identifies octal numbers by a leading zero, or
you can use the oct function to convert a decimal value to its octal equivalent.

The LIST is the list of file names whose mode you want to change, and the function
returns the number of files that successfully had their modes changed. To find out which
files have not been successfully modified, you will either need to use a loop or use the
grep function to identify the files in a list. For example:

@failure = grep { not chmod 0444, $_ } @files;

warn "Unable to change the mode of @failure" if @failure;

To change the user and group ownership of a file, you need to use the chown
function:

chown USERID, GROUPID, LIST

The USERID and GROUPID are the numerical IDs of the user and group, and LIST is
the list of files whose ownership you want to change. For example:

chown 1000,1000,@files;

Like the chmod function, it returns the number of files actually changed. You want to
use a similar trick to the earlier chmod example if you are modifying a number of files.

194 P e r l : T h e C o m p l e t e R e f e r e n c e

Note that the user and group information must be specified numerically. You may
want to use the getpwnam and getgrnam functions to obtain the IDs of user and group
names, as in

chown scalar getpwnam($user), scalar getgrnam($group), @files;

You’ll see further examples of obtaining user and group information later in
this chapter.

To modify the last access and modification time for a file, you need to use the
utime function:

utime ATIME, MTIME, LIST

The ATIME and MTIME arguments specify the access and modification times you
wish to set. The values should be specified as the number of seconds that have elapsed
since the epoch. See the section “Time” in Chapter 11 for details on converting between
the epoch value and date format.

For the next example, the time specified is taken from the time function, which
returns the number of seconds since the epoch at the time executed; so this script
effectively emulates the Unix touch command:

$now = time;

utime $now, $now, @files;

Note in this example that the time is assigned to a variable before being set. This prevents
two different times being set between invocations and also reduces the number of
system calls. If you fail to specify a value, the corresponding time for the file is not
modified. Like the previous two commands, the function returns the number of files
that were successfully modified.

When creating a file using open, sysopen, or other functions, the mode of the file is
determined by a combination of the mode specified and the current umask. The umask
is an octal permissions mask that specifies the permissions bits that cannot be set when
a file is created. For example, with a umask of 0077, the read, write, and execute bits for
group and other users cannot be set, even if the function creating the file specifies them.

umask EXPR

umask

The function returns the current mode, and if you do not specify EXPR, there is no
modification of any kind to the umask.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 195
FU

N
D

A
M

EN
TA

LS

Accessing Directory Entries
If you do not already know the name of the file you are trying to access, or if you want
to specify a list of files but don’t know where to get the list, you can use one of three
methods. The first is similar to the filehandle operator:

<*>

The pattern between the brackets is matched against the list of files in the current
directory, or that specified within the pattern.

The pattern supports the standard file pattern matching of many shells on the Unix
platform. Users of Mac and NT platforms may be unfamiliar with these, although they
follow guidelines similar to the basic pattern matching supported by Perl regular ex-
pressions. The supported formats are very basic, and they only support the use of * as
a wildcard for any number of characters and ? as a wildcard for a single character. For
example, to get a list of all of the files ending in “.c”:

@files = <*.c>;

Other patterns that you may be familiar with within the shell, such as braces
(for multiple options) and square brackets (for a single character from a set), are
not supported. However, this is not a problem, since you can use the grep function
(discussed in the next chapter) to select a more specific list of files.

You can also use the standard variable interpolation to use a scalar variable as the
pattern, but don’t do

@files = <$pattern>;

since Perl will assume you’re referring to an indirect filehandle (one specified by a
variable, rather than a static tag). Instead, either use braces to force interpretation as
a file name glob,

@files = <${pattern}>;

or use the glob function, which is actually what calling the <PATTERN> operator does
anyway. The glob function is also clearer: it is obvious to any reader that you are trying
to do a file name glob, not access a filehandle.

The format for the glob function is identical to the operator. The earlier C source
file example can be restated as

@files = glob("*.c");

196 P e r l : T h e C o m p l e t e R e f e r e n c e

FU
N

D
A

M
EN

TA
LS

C h a p t e r 7 : W o r k i n g w i t h F i l e s 197

Whether you use the operator or the function, the return value in a scalar context is
the next entry matching the specified pattern. If you don’t assign the value returned to
a variable in a while loop, the value is assigned to $_, so you can do

while (<*.c>)

{

}

Both the operator and function methods for file name globbing invoke a subshell in
order to expand the pattern supplied to a suitable file list. For quick searches, this is not
a major issue, but because you are using an external application to produce the list, you
may run into a combination of both performance and memory allocation problems.
This is definitely the case if your shell does not support large argument lists (and most
shells don’t).

To get around this problem, you can use the opendir function set. This facility
is an interface to the underlying routines that the operating system supports, and it
functions rather like a directory-specific filehandle. In fact, you access it in a similar
way, using a directory handle:

opendir DIRHANDLE, EXPR

readdir DIRHANDLE

rewinddir DIRHANDLE

telldir DIRHANDLE

seekdir DIRHANDLE, POS

closedir DIRHANDLE

To use opendir, first you need to open the directory handle and associate it with
the directory you want to examine. The EXPR should be a directory name, not a file
specification, since the function set does not handle file name globbing. Once opened,
subsequent reads to readdir on the specified filehandle return the next file name in
the directory in a scalar context. In a list context, the entire directory contents are
returned. Once you have finished reading the directory names, you need to close the
directory handle.

To list the contents of the directory:

opendir (DIR, '.') or die "Couldn't open directory, $!";

while ($file = readdir DIR)

{

print "$file\n";

}

close DIR;

198 P e r l : T h e C o m p l e t e R e f e r e n c e

This circumvents all of the memory problems associated with the globbing operator
and function, since each entry of the directory is retrieved individually.

Because the process of reading in from a directory is associated with a specific
directory handle, you can have multiple handles open simultaneously. You can also
record your position within a directory handle using the telldir function. The return
value is an integer representing the current location within the directory list held
within the instance of the directory handle. Unfortunately, even over short periods
of time, this value is not guaranteed to actually return you to the location it originally
indicated. This is because the number of directory entries may increase or decrease in
size between the time you obtain the position information and when you attempt to
move to that position using the seekdir function.

The best solution in these instances is to record not the theoretical position within
an arbitrary directory list, but instead the actual pathname and file name you want to
store. If all you want to do is start reading the directory entry list again, you can use
the rewinddir function. This resets the pointer within the directory handle to the start
of the list without the file pattern being reevaluated. Due to the nature of the directory
handle system, a more reliable method for processing the same list of files a number of
times is to use an array—providing, as ever, that the list size is not so great that it starts
eating up too much memory in the process.

To emulate the globbing features of the glob function, you will need to check each
individual file name or pass the list returned by readdir through the grep function. You
can also use the opportunity to sort the list returned, since the readdir function does not
return a sorted list. For example, to print the list of C source code files, you might use

opendir(DIR, '.') or die "Couldn't open directory, $!";

foreach (sort grep(/^.*\.c$/,readdir(DIR)))

{

print "$_\n";

}

closedir DIR;

We’ll be looking at the sort and grep functions in more depth in the next chapter.

Managing Directories
All programs are aware of their current directory. This is either the directory they
reside in or the current directory of the application (such as a shell) that called the
program. The system chdir() function is supported within Perl in order to change
the current directory for the current process.

chdir EXPR

chdir

If you do not specify a directory to change to, Perl changes to the home directory
for the current user. Under Unix, this information is derived from the user’s entry in
the /etc/passwd file, and under NT, it’s the home directory defined in the environment
variable %HOME%. On the Mac, if you do not specify a directory, it simply changes
to the current directory (which means that it does nothing!). The function returns false
if the function failed, or true if it succeeded:

chdir or die "Couldn't change back to the home directory, $!";

Perl does not support a function internally for discovering the current working
directory. What it does provide, however, is a Cwd module as part of the standard
distribution:

use Cwd;

print getcwd(),"\n";

The method used to discover the current working directory is basically the one that
works on your system. In practice, most OSs support a getcwd function; others support
a pwd command that returns the current directory. The Cwd module simply chooses
the one that works each time getcwd is called.

For security reasons, it can sometimes be necessary to create your own directory
structure that contains a reduced set of devices and utilities, or you may want to
restrict a user-defined function or process to a similar environment. Under Unix,
you also have the ability to change the root directory—the directory from which
all “/” references are taken. This is not implemented under either the Mac OS or
Windows versions.

By changing the “root” of the current process to another directory, such as
/etc/miniroot, you can guarantee that a call to a program of the form /sbin/shutdown
actually executes /etc/miniroot/sbin/shutdown. The user may be unaware of the
restricted directory structure and will be unable to access any directories above the
one configured as the new root. For example, here’s a line taken from a Perl-based web
server. Without the restriction of the chroot function, it would be possible for a cracker
to access the web page /etc/passwd—not the level of access we want to provide.

unless (chroot("/users/martinb"))

{

warn "You are not root!\n" if ($>);

die "Cannot change to root directory, $!";

}

You can only use the chroot function if you are root, and once set, there is no way
to unset the root directory change (since all new references are relative to the previous

C h a p t e r 7 : W o r k i n g w i t h F i l e s 199
FU

N
D

A
M

EN
TA

LS

200 P e r l : T h e C o m p l e t e R e f e r e n c e

chroot function call). The effect is inherited both by the current function and by any
children, including those generated by fork, implicitly or otherwise.

You can make a new directory using the mkdir function:

mkdir EXPR, MODE

The EXPR argument is the name of the directory you would like to create, with the
permissions specified by the octal MODE. If your operating system does not support
a mkdir function within the C library, the command line mkdir program will be called,
with EXPR as the argument; so be wary of creating a large number of directories with
this function if this is the case. Calling the external program puts extra overhead on the
system, as it executes an additional program.

To remove a directory, use the rmdir function:

rmdir EXPR

The directory must be empty for the function to work. If an error occurs, the return
value will be zero, and the $! variable will be populated with the error message. If the
directory is not empty, the message is usually something like “File Exists”; so you may
want to test specifically for this during execution, as in this example:

unless (rmdir($dir))

{

if ($! =~ /File Exists/i)

{

warn "Error removing directory: The directory is not empty";

}

else

{

warn "Error removing directory: $!";

}

}

If you fail to specify an expression, the directory to remove will be taken from the
$_ variable, which may not be the desired result.

File Control with fcntl
The fcntl function is the Perl interface to the system fcntl() function, which enables
certain file control operations on your files that are not supported by other functions.

TE
AM
FL
Y

Team-Fly®

Typically, these are specific to an operating system, although many features are
available across a number of different platforms.

fcntl FILEHANDLE, FUNCTION, SCALAR

The function performs the function specified by FUNCTION, using SCALAR on
FILEHANDLE. SCALAR either contains a value to be used by the function or is the
variable used to store any information returned by the corresponding fcntl function.
To use fcntl effectively, you will probably want to import the Fcntl module with a

use Fcntl;

For all subfunctions of the fcntl function, the return value is slightly different in
Perl from that returned by the operating system. A value of -1 from the operating
system is returned as undef by Perl, while a value of 0 from the system is returned
by Perl as 0 but true. This equates to true in a test condition, but 0 when evaluated as
a number. For all other values the return values are the same for the operating system
and Perl.

Since the fcntl functions are operating system specific, no details will be given on the
fcntl function at this stage, but see Table 7-8 for some sample functions and Table 7-9
for a description of many of the constants you will need. You’ll need to refer to your
operating system documentation for details on the fcntl() functions supported on
your system, or examine the Fcntl module, which will contain a summarized list of
the functions as a list of constants for use when using the command. We will be using
some of the functions later in this chapter and elsewhere in the book.

If your system does not support fcntl(), a fatal error will occur.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 201
FU

N
D

A
M

EN
TA

LS

Function Description

&F_DUPFD Duplicates the supplied file descriptor, returning the lowest
numbered file descriptor not currently in use. This is roughly
equivalent to the “>&FH” format with the Perl open function.

&F_GETFD Returns the FD_CLOEXEC flag (see the next table) for the
specified filehandle.

&F_SETFD Sets the state of the FD_CLOEXEC flag on the filehandle.

Table 7-8. Example Functions for fcntl

202 P e r l : T h e C o m p l e t e R e f e r e n c e

Function Description

&F_GETFL Gets the current flags for the specified filehandle. These
flags are identical to those you can specify during a sysopen
function (see Table 7-9 for more information).

&F_SETFL Sets the flags for the specified filehandle (see Table 7-9 for
suitable values).

&F_GETLK Gets the lock status for a specified filehandle; used to test
whether a particular lock can be set on a file (see “File Locking”
later in the chapter).

&F_SETLK Sets or clears a file segment lock (see “File Locking”).

&F_SETLKW Identical to F_SETLK, except that the process will block until
a read or write lock can be set on the specified filehandle (see
“File Locking”).

Table 7-8. Example Functions for fcntl (continued)

Constant Description

FD_CLOEXEC The close-on-exec flag. If set on a filehandle (it’s set by
default), it will be closed if its file descriptor number is
greater than 2 (that is, not STDIN, STDOUT, or STDERR)
when a new process is forked.

O_APPEND File opened in append mode.

O_BINARY File opened in binary mode.

O_TEXT File opened in text mode.

O_NDELAY Non-blocking I/O.

O_NONBLOCK Non-blocking I/O.

O_RDONLY File opened in read-only mode.

O_RDWR File opened in read/write mode.

O_WRONLY File opened in write-only mode.

Table 7-9. Filehandle Flags for Use with fcntl

I/O Control with ioctl
The ioctl function is similar in principle to the fcntl function. It too is a Perl version of
the operating system equivalent ioctl() function.

ioctl FILEHANDLE, FUNCTION, SCALAR

The ioctl function is typically used to set options on devices and data streams,
usually relating directly to the operation of the terminal. You will need to include
the system ioctl.h header file, available in a Perl version, by doing

require 'ioctl.ph';

This will provide you with the necessary constants to use the ioctl function. A value of
-1 from the operating system is returned as undef by Perl, while a value of 0 from the
system is returned by Perl as 0 but true. This equates to true in a test condition, but
zero when evaluated as a number. For all other values the return values are the same
for the operating system and Perl.

As a general rule, calls to ioctl should not be considered portable. When using
terminals for a Perl interface, you may want to consider using a more portable module
such as Tk to do the portability work for you. We’ll be examining the use of the terminal
and the Tk module in Chapter 13.

select
The second form of the select function (you may remember the first one was defined
earlier in this chapter and used to set the “default” filehandle for print) is an interface
to the system select() function. This function is for determining whether the filehandles
you have specified are ready to accept input, supply output, or report an exceptional
condition.

select RBITS, WBITS, EBITS, TIMEOUT

The RBITS, WBITS, and EBITS are bitmasks specifying the file descriptors that
you want to monitor for reading, writing, and exceptional status, respectively. You
can specify any of these as undef if you are not interested in the value. The bitsets are
created by placing a value of 1 in each bit, with each bit number being equal to the file
descriptor number (obtainable with fileno) that you want to monitor. You can create
this structure using vec, for example:

vec($rbits,fileno(DATA),1) = 1;

C h a p t e r 7 : W o r k i n g w i t h F i l e s 203
FU

N
D

A
M

EN
TA

LS

The TIMEOUT specifies the interval to wait for the selection to complete. The
select function will block until the time-out expires. If TIMEOUT is 0, the effect is
the same as polling in a round-robin fashion—simply returning the current status
without waiting.

The return value from the function is the number of filehandles that are waiting to
be accessed, or on some platforms, it will return the number of filehandles and the time
remaining on the time-out value:

($nfound, $timeleft) = select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

The function also replaces the supplied scalar bitmasks with bitmasks defining the
list of filehandles that require attention. The preceding example shows the best method
for using the values of the bitmasks $rin, $win, and $ein while returning the information
into $rout, $wout, and $eout.

The problem with using most filehandles is that in order to monitor and read or
write information from or to them, you need to “poll” each filehandle to see if it’s
ready. This is time consuming, especially with multiple files when a good proportion
of them may not be ready. This is further complicated if your filehandles or network
sockets are blocking (the default status). A blocking filehandle will cause a <FH>
operator or a sysread function to halt execution of the program until some data is
ready to be read. The opposite is also true: if a filehandle or network socket is not
ready to accept data, a print or syswrite function will also wait until it is ready. In
some situations this is ideal; in others, particularly if you are handling multiple
filehandles or a user interface, this is far from ideal.

The solution is to use select, which reports the status of the filehandle without
attempting to access it, thereby ignoring the blocking state. A better alternative is
to set a non-blocking operation on the filehandle using fcntl. Non-blocking I/O with
select works as follows: First you need to open one or more filehandles—either genuine
files, pipes, or network sockets—and then set them to be non-blocking using fcntl:

use Fcntl;

open(DATA,"ls|") or die "Couldn't open pipe, $!";

if ((fcntl(DATA,&F_GETFL,0) & O_NONBLOCK) != O_NONBLOCK)

{

die "Can't set non-blocking status"

unless fcntl(DATA,&F_SETFL,(fcntl(DATA,&F_GETFL,0) & ~O_NONBLOCK));

}

else

{

die "Couldn't get non-blocking status";

}

204 P e r l : T h e C o m p l e t e R e f e r e n c e

Then, once the files are open and ready for access, you need to create the necessary
bitsets for use with the select function. Since we’re only reading from a pipe, we really
only need to create the RBITS bitset, but this example shows creation of all three
for clarity:

$rbits = $wbits = $ebits = '';

vec($rbits, fileno(DATA), 1) = 1;

vec($wbits, fileno(DATA), 1) = 1;

$ebits = $rbits | $wbits;

You’re now ready to start checking the status of the filehandles you want to
monitor. Typically of course you’d do this in a loop as part of the main execution
process, but for this example, we’ll simply check the status once:

$nfound = select($rreq = $rbits, $wreq = $wbits, $ereq = $ebits, 0);

print "$nfound filehandle(s) waiting for input\n";

print "Expecting input from 'ls' command\n" if ($rreq && fileno(DATA));

If you put the preceding example together, and assuming there are no problems
opening the ls command or setting non-blocking on the filehandle, you should get
a result like this:

1 filehandle(s) waiting for input

Expecting input from 'ls' command

The select function has a much easier to use module, IO::Select, which makes it
much easier to manage multiple select file sets. See Chapter 12, where we’ll be looking
at the use of this function for handling multiple network sockets.

File Locking
Using files in a single script environment does not often cause any sort of file access
problems. But if you want to access a file that may be in use by another process (or
another invocation of the same script), you need to support file locking. By “locking”
a file, you can prevent it from being updated by another process at the same time you
are using it. Furthermore, it can be used to stop other processes’ even reading from the
file, allowing you to update a file before it needs to be read by another process.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 205
FU

N
D

A
M

EN
TA

LS

When locking DBM databases, there is no built-in method for locking in the generic
ODBM/NDBM/SDBM implementations. In these situations you must use flock or
something similar. If you can use GDBM or Berkeley DB, these provide built-in file
locking capabilities as part of the implementation. See Chapter 13 for more information.

The main method for locking within Perl is the flock function.

flock FILEHANDLE, OPERATION

This supports file locking on the specified FILEHANDLE using the system flock(),
fcntl() locking, or lockf(), in that order of preference. The exact implementation used
is dependent on what your system supports. OPERATION is one of the static scalar
values defined in Table 7-10, which can be obtained from the Fcntl module, although
you must specify the symbols you want to import:

use Fcntl qw/LOCK_SH LOCK_EX LOCK_UN LOCK_NB/;

Here is an example of locking a mailbox before writing:

use Fcntl;

flock DATA, LOCK_EX;

print DATA $message;

flock DATA, LOCK_UN;

Note that flock will block process execution until such time as the requested lock
can be achieved. The way to get around this is to use $LOCK_NB, which attempts to
lock the filehandle without blocking. However, caution should be used here: you must

206 P e r l : T h e C o m p l e t e R e f e r e n c e

Operation Result

LOCK_SH Set shared lock.

LOCK_EX Set exclusive lock.

LOCK_UN Unlock specified file.

LOCK_NB Set lock without blocking.

Table 7-10. Locking Operations

make sure you test the result of the lock before you start using the file. When using
$LOCK_NB, the result from flock will be true, irrespective of whether the lock
succeeded.

In nearly all cases file locking is generally advisory, that is, the fact the lock has
been set does not guarantee that another application will not be able to access or
overwrite the file. This is because all applications that use the file need to use the same
file locking mechanism. This is especially true if the underlying implementation is
through the flock() function because of the way in which flock() sets its locks. You
should also be aware that it is unlikely that flock will work over a networked file
system. If you want to force the use of fcntl, you will need to use it directly; so the
equivalent of the earlier example becomes

use Fcntl qw/F_SETLK LOCK_EX LOCK_UN/;

fcntl(DATA,&F_SETLK,LOCK_EX);

print DATA $message;

fcntl(DATA,&F_SETLK,LOCK_UN);

Another alternative is to use a separate file with a .lck or similar extension and
check for that during execution. This only works if all processes are aware of the
method of locking you are using. Both flock and fcntl have the advantage that they
are operating system functions, so the information and locks are shared across the
whole operating system.

In theory this means that a C program that uses file locking will also be aware of the
locks imposed by a Perl script. It also means that all the operating system commands
will also be aware of the locks imposed on different files. Of course, the exact system
you use will often rely on the supported options for the platform you are using; fcntl
is the most supported cross-platform solution.

C h a p t e r 7 : W o r k i n g w i t h F i l e s 207
FU

N
D

A
M

EN
TA

LS

This page intentionally left blank.

Chapter 8
Data Manipulation

209

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

210 P e r l : T h e C o m p l e t e R e f e r e n c e

Most software is written to work with and modify data in one format or
another. Perl was originally designed as a system for processing logs and
summarizing and reporting on the information. Because of this focus, a

large proportion of the functions built into Perl are dedicated to the extraction and
recombination of information. For example, Perl includes functions for splitting a line
by a sequence of delimiters, and it can recombine the line later using a different set.

If you can’t do what you want with the built-in functions, then Perl also provides
a mechanism for regular expressions. We can use a regular expression to extract
information, or as an advanced search and replace tool, and as a transliteration tool
for converting or stripping individual characters from a string.

In this chapter, we’re going to concentrate on the data-manipulation features built
into Perl, from the basics of numerical calculations through to basic string handling.
We’ll also look at the regular expression mechanism and how it works and integrates
into the Perl language.

We’ll also take the opportunity to look at the Unicode character system. Unicode
is a standard for displaying strings that supports not only the ASCII standard, which
represents characters by a single byte, but also provides support for multibyte characters,
including those with accents, and also those in non-Latin character sets such as Greek
and kanji (as used in the far east).

Working with Numbers
The core numerical ability of Perl is supported through the standard operators that you
should be familiar with. For example, all of the following expressions return the sort of
values you would expect:

$result = 3+4;

$ftoc = (212-32)*(5/9);

$square = 16*2;

Beyond these basic operators, Perl also supports a number of functions that fill in
the gaps.

Without exception, all of these functions automatically use the value of $_ if you fail
to specify a variable on which to operate.

abs—the Absolute Value
When you are concerned only with magnitude—for example, when comparing the size
of two objects—the designation of negative or positive is not required. You can use the
abs function to return the absolute value of a number:

print abs(-1.295476);

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : D a t a M a n i p u l a t i o n 211
FU

N
D

A
M

EN
TA

LS

This should print a value of 1.295476. Supplying a positive value to abs will return the
same positive value or, more correctly, it will return the nondesignated value: all
positive values imply a + sign in front of them.

int—Converting Floating Points to Integers
To convert a floating point number into an integer, you use the int function:

print int abs(-1.295476);

This should print a value of 1. The only problem with the int function is that it strictly
removes the fractional component of a number; no rounding of any sort is done. If you
want to return a number that has been rounded to a number of decimal places, use the
printf or sprintf function:

printf("%.2f",abs(-1.295476));

This will round the number to two decimal places—a value of 1.30 in this example.
Note that the 0 is appended in the output to show the two decimal places.

exp—Raising e to the Power
To perform a normal exponentiation operation on a number, you use the ** operator:

$square = 4**2;

This returns 16, or 4 raised to the power of 2. If you want to raise the natural base
number e to the power, you need to use the exp function:

exp EXPR

exp

If you do not supply an EXPR argument, exp uses the value of the $_variable as the
exponent. For example, to find the square of e:

$square = exp(2);

sqrt—the Square Root
To get the square root of a number, use the built-in sqrt function:

$var = sqrt(16384);

212 P e r l : T h e C o m p l e t e R e f e r e n c e

To calculate the nth root of a number, use the ** operator with a fractional number.
For example, the following line

$var = 16384**(1/2);

is identical to

$var = sqrt(16384);

To find the cube root of 16,777,216, you might use

$var = 16777216**(1/3);

which should return a value of 256.

log—the Logarithm
To find the logarithm (base e) of a number, you need to use the log function:

$log = log 1.43;

Trigonometric Functions
There are three built-in trigonometric functions for calculating the arctangent squared
(atan2), cosine (cos), and sine (sin) of a value:

atan2 X,Y

cos EXPR

sin EXPR

If you need access to the arcsine, arccosine, and tangent, then use the POSIX
module, which supplies the corresponding acos, asin, and tan functions.

Unless you are doing trigonometric calculations, there is little use for these
functions in everyday life. However, you can use the sin function to calculate your
biorhythms using the simple script shown next, assuming you know the number
of days you have been alive:

my ($phys_step, $emot_step, $inte_step) = (23, 28, 33);

use Math::Complex;

print "Enter the number of days you been alive:\n";

C h a p t e r 8 : D a t a M a n i p u l a t i o n 213
FU

N
D

A
M

EN
TA

LS

my $alive = <STDIN>;

$phys = int(sin(((pi*($alive%$phys_step))/($phys_step/2)))*100);

$emot = int(sin(((pi*($alive%$emot_step))/($emot_step/2)))*100);

$inte = int(sin(((pi*($alive%$inte_step))/($inte_step/2)))*100);

print "Your Physical is $phys%, Emotional $emot%, Intellectual

$inte%\n";

Conversion Between Bases
Perl provides automatic conversion to decimal for numerical literals specified in
binary, octal, and hexadecimal. However, the translation is not automatic on values
contained within strings, either those defined using string literals or from strings
imported from the outside world (files, user input, etc.).

To convert a string-based literal, use the oct or hex functions. The hex function
converts only hexadecimal numbers supplied with or without the 0x prefix. For
example, the decimal value of the hexadecimal string “ff47ace3” (42,828,873,954) can
be displayed with either of the following statements:

print hex("ff47ace3");

print hex("0xff47ace3");

The hex function doesn’t work with other number formats, so for strings that start
with 0, 0b, or 0x, you are better off using the oct function. By default, the oct function
interprets a string without a prefix as an octal string and raises an error if it doesn’t see
it. So this

print oct("755");

is valid, but this

print oct("aef");

will fail.
If you supply a string using one of the literal formats that provides the necessary

prefix, oct will convert it, so all of the following are valid:

print oct("0755");

print oct("0x7f");

print oct("0b00100001");

214 P e r l : T h e C o m p l e t e R e f e r e n c e

Both oct and hex default to using the $_ variable if you fail to supply an argument.
To print out a decimal value in hexadecimal, binary, or octal, use printf, or use

sprintf to print a formatted base number to a string:

printf ("%lb %lo %lx", oct("0b00010001"), oct("0755"), oct("0x7f"));

See printf in Chapter 7 for more information.

Conversion Between Characters and Numbers
If you want to insert a specific character into a string by its numerical value, you can
use the \0 or \x character escapes:

print "\007";

print "\x07";

These examples print the octal and hexadecimal values; in this case the “bell”
character. Often, though, it is useful to be able to specify a character by its decimal
number and to convert the character back to its decimal equivalent in the ASCII table.

The chr function returns the character matching the value of EXPR, or $_if EXPR is
not specified. The value is matched against the current ASCII table for the operating
system, so it could reveal different values on different platforms for characters with an
ASCII value of 128 or higher. This may or may not be useful.

The ord function returns the numeric value of the first character of EXPR, or $_ if
EXPR is not specified. The value is returned according to the ASCII table and is always
unsigned.

Thus, using the two functions together,

print chr(ord('b'));

we should get the character “b”.

Random Numbers
Perl provides a built-in random number generator. All random numbers need a “seed”
value, which is used in an algorithm, usually based on the precision, or lack thereof, for
a specific calculation. The format for the rand function is

rand EXPR

rand

The function returns a floating-point random number between 0 and EXPR or
between 0 and 1 (including 0, but not including 1) if EXPR is not specified. If you want

an integer random number, just use the int function to return a reasonable value, as in
this example:

print int(rand(16)),"\n";

You can use the srand function to seed the random number generator with a
specific value:

srand EXPR

The rand function automatically calls the srand function the first time rand is
called, if you don’t specifically seed the random number generator. The default seed
value is the value returned by the time function, which returns the number of seconds
from the epoch (usually January 1, 1970 UTC—although it’s dependent on your platform).
The problem is that this is not a good seed number because its value is predictable.
Instead, you might want to try a calculation based on a combination of the current
time, the current process ID, and perhaps the user ID, to seed the generator with an
unpredictable value.

I’ve used the following calculation as a good seed, although it’s far from perfect:

srand((time() ^ (time() % $])) ^ exp(length($0))**$$);

By mixing the unpredictable values of the current time and process ID with predictable
values, such as the length of the current script and the Perl version number, you should
get a reasonable seed value.

The following program calculates the number of random numbers generated before
a duplicate value is returned:

my %randres;

my $counter = 1;

srand((time() ^ (time() % $])) ^ exp(length($0))**$$);

while (my $val = rand())

{

last if (defined($randres{$val}));

print "Current count is $counter\n" if (($counter %10000) == 0);

$randres{$val} = 1;

$counter++;

}

print "Out of $counter tries I encountered a duplicate random number\n";

C h a p t e r 8 : D a t a M a n i p u l a t i o n 215
FU

N
D

A
M

EN
TA

LS

216 P e r l : T h e C o m p l e t e R e f e r e n c e

Whatever seed value you choose, the internal random number generator is
unlikely to give you more than 500 numbers before a duplicate appears. This makes
it unsuitable for secure purposes, since you need a random number that cannot otherwise
be predicted. The Math::TrulyRandom module provides a more robust system for
generating random numbers. If you insert the truly_random_value function in place
of the rand function in the preceding program, you can see how long it takes before
a random number reappears. I’ve attained 20,574 unique random numbers with this
function using that test script, and this should be more than enough for most uses.

Working with Very Small Integers
Perl uses 32-bit integers for storing integers and for all of its integer-based math.
Occasionally, however, it is necessary to store and handle integers that are smaller than
the standard 32-bit integers. This is especially true in databases, where you may wish
to store a block of Boolean values: even using a single character for each Boolean value
will take up eight bits. A better solution is to use the vec function, which supports the
storage of multiple integers as strings:

vec EXPR, OFFSET, BITS

The EXPR is the scalar that will be used to store the information; the OFFSET and
BITS arguments define the element of the integer string and the size of each element,
respectively. The return value is the integer store at OFFSET of size BITS from the
string EXPR. The function can also be assigned to, which modifies the value of the
element you have specified. For example, using the preceding database example, you
might use the following code to populate an “option” string:

vec($optstring, 0, 1) = $print ? 1 : 0;

vec($optstring, 1, 1) = $display ? 1 : 0;

vec($optstring, 2, 1) = $delete ? 1 : 0;

print length($optstring),"\n";

The print statement at the end of the code displays the length, in bytes, of the string.
It should report a size of one byte. We have managed to store three Boolean values
within less than one real byte of information.

The bits argument allows you to specify select larger bit strings: Perl supports
values of 1, 2, 4, 8, 16, and 32 bits per element. You can therefore store four 2-bit
integers (up to an integer value of 3, including 0) in a single byte.

Obviously the vec function is not limited to storing and accessing your own
bitstrings; it can be used to extract and update any string, providing you want to modify
1, 2, 4, 8, 16, or 32 bits at a time. Perl also guarantees that the first bit, accessed with

vec($var, 0, 1);

FU
N

D
A

M
EN

TA
LS

will always be the first bit in the first character of a string, irrespective of whether your
machine is little endian or big endian. Furthermore, this also implies that the first byte
of a string can be accessed with

vec($var, 0, 8);

The vec function is most often used with functions that require bitsets, such as the
select function. You’ll see examples of this in later chapters.

Little endian machines store the least significant byte of a word in the lower byte address,
while big endian machines store the most significant byte at this position. This affects the
byte ordering of strings, but doesn’t affect the order of bits within those bytes.

Working with Strings
Creating a new string scalar is as easy as assigning a quoted value to a variable:

$string = "Come grow old along with me\n";

However, unlike C and some other languages, we can’t access individual characters by
supplying their index location within the string, so we need a function for that. This
same limitation also means that we need some solutions for splitting, extracting, and
finding characters within a given string.

String Concatenation
We have already seen in Chapter 3 the operators that can be used with strings. The most
basic operator that you will need to use is the concatenation operator. This is a direct
replacement for the C strcat() function. The problem with the strcat() function is that it is
inefficient, and it requires constant concatenation of a single string to a single variable.
Within Perl, you can concatenate any string, whether it has been derived from a static
quoted string in the script itself, or in scripts exported by functions. This code fragment:

$thetime = 'The time is ' . localtime() . "\n";

assigns the string, without interpolation; the time string, as returned by localtime; and
the interpolated newline character to the $thetime variable. The concatenation operator
is the single period between each element.

It is important to appreciate the difference between using concatenation and lists.
This print statement:

print 'The time is ' . localtime() . "\n";

C h a p t e r 8 : D a t a M a n i p u l a t i o n 217

produces the same result as

print 'The time is ', localtime(), "\n";

However, in the first example, the string is concatenated before being printed; in the
second, the print function is printing a list of arguments. You cannot use the second
format to assign a compound string to a scalar—the following line will not work:

$string = 'The time is ', localtime(), "\n";

Concatenation is also useful when you want to express a sequence of values as only
a single argument to a function. For example:

$string = join($suffix . ':' . $prefix, @strings);

String Length
The length function returns the length, in characters (rather than bytes), of the supplied
string (see the “Unicode” section at the end of this chapter for details on the relationship
between bytes and characters). The function accepts only a single argument (or it
returns the length of the $_ variable if none is specified):

print "Your name is ",length($name), "characters long\n";

Case Modifications
There are some simple modifications built into Perl as functions that may be more
convenient and quicker than using the regular expressions we will cover later in this
chapter. The four basic functions are lc, uc, lcfirst, and ucfirst. They convert a string
to all lowercase, all uppercase, or only the first character of the string to lowercase or
uppercase, respectively. For example:

$string = "The Cat Sat on the Mat";

print lc($string) # Outputs 'the cat sat on the mat'

print lcfirst($string) # Outputs 'the Cat Sat on the Mat'

print uc($string) # Outputs 'THE CAT SAT ON THE MAT'

print ucfirst($string) # Outputs 'The Cat Sat on the Mat'

These functions can be useful for “normalizing” a string into an all uppercase or
lowercase format—useful when combining and de-duping lists when using hashes.

218 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : D a t a M a n i p u l a t i o n 219
FU

N
D

A
M

EN
TA

LS

End-of-Line Character Removal
When you read in data from a filehandle using a while or other loop and the <FH>
operator, the trailing newline on the file remains in the string that you import. You
will often find yourself processing the data contained within each line, and you will
not want the newline character. The chop function can be used to strip the last character
off any expression:

while(<FH>)

{

chop;

...

}

The only danger with the chop function is that it strips the last character from
the line, irrespective of what the last character was. The chomp function works in
combination with the $/ variable when reading from filehandles. The $/ variable is the
record separator that is attached to the records you read from a filehandle, and it is by
default set to the newline character. The chomp function works by removing the last
character from a string only if it matches the value of $/. To do a safe strip from a
record of the record separator character, just use chomp in place of chop:

while(<FH>)

{

chomp;

...

}

This is a much safer option, as it guarantees that the data of a record will remain
intact, irrespective of the last character type.

String Location
Within many programming languages, a string is stored as an array of characters. To
access an individual character within a string, you need to determine the location of the
character within the string and access that element of the array. Perl does not support
this option, because often you are not working with the individual characters within
the string, but the string as a whole.

Two functions, index and rindex, can be used to find the position of a particular
character or string of characters within another string:

index STR, SUBSTR [, POSITION]

rindex STR, SUBSTR [, POSITION]

220 P e r l : T h e C o m p l e t e R e f e r e n c e

The index function returns the first position of SUBSTR within the string STR, or it
returns –1 if the string cannot be found. If the POSITION argument is specified, then
the search skips that many characters from the start of the string and starts the search
at the next character.

The rindex function returns the opposite of the index function—the last occurrence
of SUBSTR in STR, or -1 if the substring could not be found. In fact, rindex searches
for SUBSTR from the end of STR, instead of the beginning. If POSITION is specified,
then it starts from that many characters from the end of the string.

For example:

$string = "The Cat Sat on the Mat";

print index($string,'cat'); # Returns -1, because 'cat' is lowercase

print index($string,'Cat'); # Returns 4

print index($string,'Cat',4); # Still returns 4

print rindex($string,'at'); # Returns 20

print rindex($string,'Cat'); # Returns 4

In both cases, the POSITION is actually calculated as the value of the $[variable plus
(for index) or minus (for rindex) the supplied argument. The use of the $[variable is
now heavily deprecated, since there is little need when you can specify the value directly
to the function anyway. As a rule, you should not be using this variable.

Extracting Substrings
The substr function can be used to extract a substring from another string based on the
position of the first character and the number of characters you want to extract:

substr EXPR, OFFSET, LENGTH

substr EXPR, OFFSET

The EXPR is the string that is being extracted from. Data is extracted from a starting
point of OFFSET characters from the start of EXPR or, if the value is negative, that
many characters from the end of the string. The optional LENGTH parameter defines
the number of characters to be read from the string. If it is not specified, then all
characters to the end of the string are extracted. Alternatively, if the number specified
in LENGTH is negative, then that many characters are left off the end of the string.
For example:

$string = 'The cat sat on the mat';

print substr($string,4),"\n"; # Outputs 'cat sat on the mat'

print substr($string,4,3),"\n"; # Outputs 'cat'

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : D a t a M a n i p u l a t i o n 221
FU

N
D

A
M

EN
TA

LS

print substr($string,-7),"\n"; # Outputs 'the mat'

print substr($string,4,-4),"\n"; # Outputs 'cat sat on the'

The last example is equivalent to

print substr($string,4,14),"\n";

but it may be more effective to use the first form if you have used the rindex function
to return the last occurrence of a space within the string.

You can also use substr to replace segments of a string with another string. The
substr function is assignable, so you can replace the characters in the expression you
specify with another value. For example, this statement,

substr($string,4,3) = 'dog';

print "$string\n";

should print “the dog sat on the mat” because we replaced the word “cat,” starting at
the fourth character and lasting for three characters.

The substr function works intelligently, shrinking or growing the string according
to the size of the string you assign, so you can replace “dog” with “computer
programmer” like this:

substr($string,4,3) = 'computer programmer';

print "$string\n";

Specifying values of 0 allows you to prepend strings to other strings by specifying
an OFFSET of 0, although it’s arguably easier to use concatenation to achieve the
same result. Appending with substr is not so easy; you cannot specify beyond the last
character, although you could use the output from length to calculate where that might
be. In these cases a simple

$string .= 'programming';

is definitely easier.

Stacks
One of the most basic uses for an array is as a stack. If you consider that an array is a
list of individual scalars, it should be possible to treat it as if it were a stack of papers.
Index 0 of the array is the bottom of the stack, and the last element is the top. You can
put new pieces of paper on the top of the stack (push), or put them at the bottom
(unshift). You can also take papers off the top (pop) or bottom (shift) of the stack.

There are, in fact, four different types of stacks that you can implement. By using
different combinations of the Perl functions, you can achieve all the different
combinations of LIFO, FIFO, FILO, and LILO stacks, as shown in Table 8-1.

pop and push
The form for pop is as follows:

pop ARRAY

pop

It returns the last element of ARRAY, removing the value from the list. If you don’t
specify an array, it pops the last value from the @ARGV special array when you are
within the main program. If called within a function, it takes values from the end of the
@_ array instead.

The opposite function is push:

push ARRAY, LIST

This pushes the values in LIST on to the end of the list ARRAY. Values are pushed
onto the end in the order supplied.

shift and unshift
The shift function returns the first value in an array, deleting it and shifting the
elements of the array list to the left by one.

shift ARRAY

shift

222 P e r l : T h e C o m p l e t e R e f e r e n c e

Acronym Description Function Combination

LIFO Last in, first out push/shift

FIFO First in, first out unshift/shift

FILO First in, last out unshift/pop

LILO Last in, last out push/pop

Table 8-1. Stack Types and Functions

C h a p t e r 8 : D a t a M a n i p u l a t i o n 223
FU

N
D

A
M

EN
TA

LS

Like its cousin pop, if ARRAY is not specified, it shifts the first value from the @_ array
within a subroutine, or the first command line argument stored in @ARGV otherwise.

The opposite is unshift, which places new elements at the start of the array:

unshift ARRAY, LIST

This places the elements from LIST, in order, at the beginning of ARRAY. Note that
the elements are inserted strictly in order, such that the code

unshift @array, 'Bob', 'Phil';

will insert “Bob” at index 0 and “Phil” at index 1.
Note that shift and unshift will affect the sequence of the array more significantly

(because the elements are taken from the first rather than last index). Therefore, care
should be taken when using this pair of functions.

However, the shift function is also the most practical when it comes to individually
selecting the elements from a list or array, particularly the @ARGV and @_ arrays. This
is because it removes elements in sequence: the first call to shift takes element 0, the
next takes what was element 1, and so forth.

The unshift function also has the advantage that it inserts new elements into the array
at the start, which can allow you to prepopulate arrays and lists before the information
provided. This can be used to insert default options into the @ARGV array, for example.

Splicing Arrays
The normal methods for extracting elements from an array leave the contents intact.
Also, the pop and other statements only take elements off the beginning and end of the
array or list, but sometimes you want to copy and remove elements from the middle.
This process is called splicing and is handled by the splice function.

splice ARRAY, OFFSET, LENGTH, LIST

splice ARRAY, OFFSET, LENGTH

splice ARRAY, OFFSET

The return value in every case is the list of elements extracted from the array in
the order that they appeared in the original. The first argument, ARRAY, is the array
that you want to remove elements from, and the second argument is the index
number that you want to start extracting elements from. The LENGTH, if specified,
removes that number of elements from the array. If you don’t specify LENGTH, it
removes all elements to the end of the array. If LENGTH is negative, it leaves that
number of elements on the end of the array.

Finally, you can replace the elements removed with a different list of elements,
using the values of LIST. Note that this will replace any number of elements with the
new LIST, irrespective of the number of elements removed or replaced. The array will

224 P e r l : T h e C o m p l e t e R e f e r e n c e

shrink or grow as necessary. For example, in the following code, the middle of the list
of users is replaced with a new set, putting the removed users into a new list:

@users = qw/Bob Martin Phil Dave Alan Tracy/;

@newusers = qw/Helen Dan/;

@oldusers = splice @users, 1, 4, @newusers;

This sets @users to

New Bob Helen Dan Tracy

and @oldusers to

Martin Phil Dave Alan

join
The normal interpolation rules determine how an array is displayed when it’s
embedded within a scalar or interpreted in a scalar context. By default, the individual
elements in the array are separated by the contents of the $, variable which is empty by
default, so this:

@array = qw/hello world/;

print @array;

outputs

helloworld

To change the separator, change the value of $,:

@array = qw/hello world/;

$, = '::';

print @array,"\n";

Be careful though, because the preceding outputs

hello::world::

The $, variable replaces each comma (including those implied by arrays and hashes in
list context). However, remember that when interpolating an array into a scalar string,
an array is always separated by a space, completely ignoring the value of $,.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 225
FU

N
D

A
M

EN
TA

LS

To introduce a different separator between individual elements of a list, you need
to use the join function:

join EXPR, LIST

This combines the elements of LIST, returning a scalar where each element is separated
by the value of EXPR to separate each element. Note that EXPR is a scalar, not a
regular expression:

print join(', ',@users);

EXPR separates each pair of elements in LIST, so this:

@array = qw/first second third fourth/;

print join(', ',@array),"\n";

outputs

first, second, third, fourth

There is no EXPR before the first element or after the last element.
The return value from join is a scalar, so it can also be used to create new strings

based on the combined components of a list:

$string = join(', ', @users);

The join function can also be an efficient way of joining a lot of elements together
into a single string, instead of using multiple concatenation. For example, in the
following code, I’ve placed multiple SQL query statement fragments into an array
using push, and then used join to combine all those arguments into a single string:

if ($isbn->{rank} < $row[10])

{

push @query,"reviewmin = " . $dbh->quote($isbn->{review});

push @query,"reviewmindate = " . $dbh->quote($report->{date});

}

if ($isbn->{rank} > $row[12])

{

push @query,"reviewmax = " . $dbh->quote($isbn->{review});

push @query,"reviewmaxdate = " . $dbh->quote($report->{date});

}

$dbh->do("update isbnlimit set " .

226 P e r l : T h e C o m p l e t e R e f e r e n c e

join(', ',@query) .

" where isbn = " .

$dbh->quote($isbn->{isbn}) .

" and host = " .

$dbh->quote($host->{host}));

If you want to join elements using a regular expression, try awk.

split
The logical opposite of the join function is the split function, which enables you to
separate a string using a regular expression. The result is an array of all the separated
elements. The split function separates a scalar or other string expression into a list,
using a regular expression.

split /PATTERN/, EXPR, LIMIT

split /PATTERN/, EXPR

split /PATTERN/

split

By default, empty leading fields are preserved, and empty trailing fields are deleted.
If you do not specify a pattern, then it splits $_ using white space as the separator

pattern. This also has the effect of skipping the leading white space in $_. For reference,
white space includes spaces, tabs (vertical and horizontal), line feeds, carriage returns,
and form feeds.

The PATTERN can be any standard regular expression. You can use quotes to
specify the separator, but you should instead use the match operator and regular
expression syntax.

If you specify a LIMIT, then it only splits for LIMIT elements. If there is any
remaining text in EXPR, it is returned as the last element with all characters in the text.
Otherwise, the entire string is split, and the full list of separated values is returned. If
you specify a negative value, Perl acts as if a huge value has been supplied and splits
the entire string, including trailing null fields.

For example, you can split a line from the /etc/passwd file (under Unix) by the
colons used to identify the individual fields:

while (<PASSWD>)

{

chomp;

@fields = split /:/;

}

C h a p t e r 8 : D a t a M a n i p u l a t i o n 227
FU

N
D

A
M

EN
TA

LS

You can also use all of the normal list and array constructs to extract and combine
values,

print join(" ",split /:/),"\n";

and even extract only select fields:

print "User: ",(split /:/)[0],"\n";

If you specify a null string, it splits EXPR into individual characters, such that

print join('-',split(/ */, 'Hello World')),"\n";

produces

H-e-l-l-o-W-o-r-l-d

Note that the space is ignored.
In a scalar context, the function returns the number of fields found and splits the

values into the @_ array using ?? as the pattern delimiter, irrespective of supplied
arguments; so care should be taken when using this function as part of others.

grep
The grep function works the same as the grep command does under Unix, except that
it operates on a list rather than a file. However, unlike the grep command, the function
is not restricted to regular expression searches, even though that is what it is usually
used for.

grep BLOCK LIST

grep EXPR, LIST

The function evaluates the BLOCK or EXPR for each element of the LIST. For
each statement in the expression or block that returns true, it adds the corresponding
element to the list of values returned. Each element of the array is passed to the
expression or block as a localized $_. A search for the word “text” on a file can
therefore be performed with

@lines = <FILE>;

print join("\n", grep { /text/ } @lines);

A more complex example, which returns a list of the elements from an array that
exist as keys within a hash, is shown here:

print join(' ', grep { defined($hash{$_}) } @array);

This is quicker than using either push and join or catenation within a loop to
determine the correct list.

In a scalar context, the function just returns the number of times the statement
matched.

map
The map function performs an expression or block expression on each element within a
list. This enables you to bulk modify a list without the need to explicitly use a loop.

map EXPR, LIST

map BLOCK LIST

The individual elements of the list are supplied to a locally scoped $_, and the
modified array is returned as a list to the caller. For example, to convert all the
elements of an array to lowercase:

@lcarray = map { lc } @array;

This is itself just a simple version of

foreach (@array)

{

push @lcarray,lc($_);

}

Note that because $_ is used to hold each element of the array, it can also modify
an array in place, so you don’t have to manually assign the modified array to a new
one. However, this isn’t supported, so the actual results are not guaranteed. This is
especially true if you are modifying a list directly rather than a named array, such as:

@new = map {lc} keys %hash;

sort
With any list, it can be useful to sort the contents. Doing this manually is a complex
process, so Perl provides a built-in function that takes a list and returns a lexically

228 P e r l : T h e C o m p l e t e R e f e r e n c e

FU
N

D
A

M
EN

TA
LS

C h a p t e r 8 : D a t a M a n i p u l a t i o n 229

sorted version. For practicality, it also accepts a function or block that can be used to
create your own sorting algorithm.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST

Both the subroutine (SUBROUTINE) and block (BLOCK, which is an anonymous
subroutine) should return a value—less than, greater than, or equal to zero—depending
on whether the two elements of the list are less than, greater than, or equal to each
other. The two elements of the list are available in the $a and $b variables.

For example, to do a standard lexical sort:

sort @array;

Or to specify an explicit lexical subroutine:

sort { $a cmp $b } @array;

To perform a reverse lexical sort:

sort { $b cmp $a } @array;

All the preceding examples take into account the differences between upper- and
lowercase characters. You can use the lc or uc functions within the subroutine to ignore
the case of the individual values. The individual elements are not actually modified; it
only affects the values compared during the sort process:

sort { lc($a) cmp lc($b) } @array;

If you know you are sorting numbers, you need to use the <=> operator:

sort { $a <=> $b } @numbers;

Alternatively, to use a separate routine:

sub lexical

{

$a cmp $b;

}

sort lexical @array;

You can also use this method to sort complex values that require simple translation
before they can be sorted. For example:

foreach (sort sortdate keys %errors)

{

print "$_\n";

}

sub sortdate

{

my ($c,$d) = ($a,$b);

$c =~ s{(\d+)/(\d+)/(\d+)}{sprintf("%04d%02d%02d",$3,$1,$2)}e;

$d =~ s{(\d+)/(\d+)/(\d+)}{sprintf("%04d%02d%02d",$3,$1,$2)}e;

$c <=> $d;

}

In the preceding example, we are sorting dates stored in the keys of the hash %errors.
The dates are in the form “month/day/year”, which is not logically sortable without
doing some sort of modification of the key value in each case. We could do this by
creating a new hash that contains the date in a more ordered format, but this is
wasteful of space. Instead, we take a copy of the hash elements supplied to us by sort,
and then use a regular expression to turn “3/26/2000” into “20000326”—in this format,
the dates can be logically sorted on a numeric basis. Then we return a comparison
between the two converted dates to act as the comparison required for the hash.

reverse
On a sorted list, you can use sort to return a list in reverse order by changing the
comparison statement used in the sort. However, it can be quicker, and more practical
for unsorted lists, to use the reverse function.

reverse LIST

In a list context, the function returns the elements of LIST in reverse order. This is
often used with the sort function to produce a reverse-sorted list:

foreach (reverse sort keys %hash)

{

...

}

230 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

In a scalar context, it returns a concatenated string of the values of LIST, with all
bytes in opposite order. This also works if a single-element list (or a scalar!) is passed,
such that

print scalar reverse("Hello World"),"\n";

produces

dlroW olleH

Regular Expressions
Using the functions we’ve seen so far—for finding your location within a string and
updating that string—is fine if you know precisely what you are looking for. Often,
however, what you are looking for is either a range of characters or a specific pattern,
perhaps matching a range of individual words, letters, or numbers separated by other
elements. These patterns are impossible to emulate using the substr and index
functions, because they rely on using a fixed string as the search criteria.

Identifying patterns instead of strings within Perl is as easy as writing the correct
regular expression. A regular expression is a string of characters that define the pattern
or patterns you are viewing. Of course, writing the correct regular expression is the
difficult part. There are ways and tricks of making the format of a regular expression
easier to read, but there is no easy way of making a regular expression easier to
understand!

The syntax of regular expressions in Perl is very similar to what you will find
within other regular expression–supporting programs, such as sed, grep, and awk,
although there are some differences between Perl’s interpretations of certain elements.

The basic method for applying a regular expression is to use the pattern binding
operators =~ and !~. The first operator is a test and assignment operator. In a test
context (called a match in Perl) the operator returns true if the value on the left side
of the operator matches the regular expression on the right. In an assignment context
(substitution), it modifies the statement on the left based on the regular expression
on the right. The second operator, !~, is for matches only and is the exact opposite:
it returns true only if the value on the left does not match the regular expression on
the right.

Although often used on their own in combination with the pattern binding
operators, regular expressions also appear in two other locations within Perl. When
used with the split function, they allow you to define a regular expression to be used
for separating the individual elements of a line—this can be useful if you want to
divide up a line by its numerical content, or even by word boundaries. The second
place is within the grep statement, where you use a regular expression as the source

C h a p t e r 8 : D a t a M a n i p u l a t i o n 231
FU

N
D

A
M

EN
TA

LS

for the match against the supplied list. Using grep with a regular expression is similar
in principle to using a standard match within the confines of a loop.

The statements on the right side of the two test and assignment operators must
be regular expression operators. There are three regular expression operators within
Perl—m// (match), s/// (substitute), and tr/// (transliterate). There is also a fourth operator,
which is strictly a quoting mechanism. The qr// operator allows you to define a regular
expression that can later be used as the source expression for a match or substitution
operation. The forward slashes in each case act as delimiters for the regular expression
(regex) that you are specifying.

Pattern Modifiers
All regular expression operators support a number of pattern modifiers. These change
the way in which the expression is interpreted. Before we look at the specifics of the
individual regular expression operators, we’ll look at the common pattern modifiers
that are shared by all the operators.

Pattern modifiers are a list of options placed after the final delimiter in a regular
expression and that modify the method and interpretation applied to the searching
mechanism. Perl supports five basic modifiers that apply to the m//, s///, and qr//
operators, as listed here in Table 8-2. You place the modifier after the last delimiter in
the expression. For example m/foo/i.

The /i modifier tells the regular expression engine to ignore the case of supplied
characters so that /cat/ would also match CAT, cAt, and Cat.

The /s modifier tells the regular expression engine to allow the . metacharacter to
match a newline character when used to match against a multiline string.

The /m modifier tells the regular expression engine to let the ^ and $ metacharacters
to match the beginning and end of a line within a multiline string. This means that /^The/
will match “Dog\nThe cat”. The normal behavior would cause this match to fail, because
ordinarily the ^ operator matches only against the beginning of the string supplied.

232 P e r l : T h e C o m p l e t e R e f e r e n c e

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage return
characters, the ^ and $ operators will now match against a
newline boundary, instead of a string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression for clarity

Table 8-2. Perl Regular Expression Modifiers for Matching and Substitution

C h a p t e r 8 : D a t a M a n i p u l a t i o n 233
FU

N
D

A
M

EN
TA

LS

The /o operator changes the way in which the regular expression engine compiles
the expression. Normally, unless the delimiters are single quotes (which don’t
interpolate), any variables that are embedded into a regular expression are interpolated
at run time, and cause the expression to be recompiled each time. Using the /o operator
causes the expression to be compiled only once; however, you must ensure that any
variable you are including does not change during the execution of a script—otherwise
you may end up with extraneous matches.

The /x modifier enables you to introduce white space and comments into an expression
for clarity. For example, the following match expression looks suspiciously like line noise:

$matched =

/(\S+)\s+(\S+)\s+(\S+)\s+\[(.*)\]\s+"(.*)"\s+(\S+)\s+(\S+)/;

Adding the /x modifier and giving some description to the individual components
allows us to be more descriptive about what we are doing:

matched = /(\S+) #Host

\s+ #(space separator)

(\S+) #Identifier

\s+ #(space separator)

(\S+) #Username

\s+ #(space separator)

\[(.*)\] #Time

\s+ #(space separator)

"(.*)" #Request

\s+ #(space separator)

(\S+) #Result

\s+ #(space separator)

(\S+) #Bytes sent

/x;

Although it takes up more editor and page space, it is much clearer what you are
trying to achieve.

There are other operator-specific modifiers, which we’ll look at separately as we
examine each operator in more detail.

The Match Operator
The match operator, m//, is used to match a string or statement to a regular expression.
For example, to match the character sequence “foo” against the scalar $bar, you might
use a statement like this:

if ($bar =~ m/foo/)

Note the terminology here—we are matching the letters “f”, “o”, and “o” in
that sequence, somewhere within the string—we’ll need to use a separate qualifier to
match against the word “foo”. See the “Regular Expression Elements” section later in
this chapter.

Providing the delimiters in your statement with the m// operators are forward
slashes, you can omit the leading m:

if ($bar =~ /foo/)

The m// actually works in the same fashion as the q// operator series—you can use any
combination of naturally matching characters to act as delimiters for the expression.
For example, m{}, m(), and m<> are all valid. As per the q// operator, all delimiters
allow for interpolation of variables, except single quotes. If you use single quotes,
then the entire expression is taken as a literal with no interpolation.

You can omit the m from m// if the delimiters are forward slashes, but for all other
delimiters you must use the m prefix. The ability to change the delimiters is useful
when you want to match a string that contains the delimiters. For example, let’s
imagine you want to check on whether the $dir variable contains a particular directory.
The delimiter for directories is the forward slash, and the forward slash in each case
would need to be escaped—otherwise the match would be terminated by the first
forward slash. For example:

if ($dir =~ /\/usr\/local\/lib/)

By using a different delimiter, you can use a much clearer regular expression:

if ($dir =~ m(/usr/local/lib))

Note that the entire match expression—that is the expression on the left of =~ or !~
and the match operator, returns true (in a scalar context) if the expression matches.
Therefore the statement:

$true = ($foo =~ m/foo/);

Will set $true to 1 if $foo matches the regex, or 0 if the match fails.
In a list context, the match returns the contents of any grouped expressions (see the

“Grouping” section later in this chapter for more information). For example, when
extracting the hours, minutes, and seconds from a time string, we can use

my ($hours, $minutes, $seconds) = ($time =~ m/(\d+):(\d+):(\d+)/);

234 P e r l : T h e C o m p l e t e R e f e r e n c e

This example uses grouping and a character class to specify the individual elements.
The groupings are the elements in standard parentheses, and each one will match (we
hope) in sequence, returning a list that has been assigned to the hours, minutes, and
seconds variables.

Match Operator Modifiers
The match operator supports its own set of modifiers—the standard five operators
shown in Table 8-2 are supported, in addition to the /g and /cg modifiers. The full list
is shown in Table 8-3 for reference.

The /g modifier allows for global matching. Normally the match returns the first
valid match for a regular expression, but with the /g modifier in effect, all possible
matches for the expression are returned. In a list context, this results in a list of the
matches being returned, such that:

@foos = $string =~ /foo/gi;

will populate @foos with all the occurrences of “foo”, irrespective of case, within the
string $string.

FU
N

D
A

M
EN

TA
LS

C h a p t e r 8 : D a t a M a n i p u l a t i o n 235

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage
return characters, the ^ and $ operators will now
match against a newline boundary, instead of a
string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression
for clarity

g Globally finds all matches

cg Allows the search to continue even after a global
match fails

Table 8-3. Regular Expression Modifiers for Matches

In a scalar context, the /g modifier performs a progressive match. For each execution
of the match, Perl starts searching from the point in the search string just past the last
match. You can use this to progress through an array searching for the same string
without having to remove or manually set the starting position of the search. The
position of the last match can be used within a regular expression using the \G
assertion. When /g fails to match, the position is reset to the start of the string.

If you use the /c modifier as well, then the position is not reset when the /g
match fails.

Matching Only Once
There is also a simpler version of the match operator—the ?PATTERN? operator. This
is basically identical to the m// operator except that it only matches once within the
string you are searching between each call to reset. The operator works as a useful
optimization of the matching process when you want to search a set of data streams
but only want to match an expression once within each stream.

For example, you can use this to get the first and last elements within a list:

@list = qw/food foosball subbuteo monopoly footnote tenderfoot catatonic footbrdige/;

foreach (@list)

{

$first = $1 if ?(foo.*)?;

$last = $1 if /(foo.*)/;

}

print "First: $first, Last: $last\n";

A call to reset resets what PATTERN? considers as the first match, but it applies
only to matches within the current package. Thus you can have multiple PATTERN?
operations, providing they are all within their own package.

The Substitution Operator
The substitution operator, s///, is really just an extension of the match operator that
allows you to replace the text matched with some new text. The basic form of the
operator is

s/PATTERN/REPLACEMENT/;

For example, we can replace all occurrences of “dog” with “cat” using

$string =~ s/dog/cat/;

236 P e r l : T h e C o m p l e t e R e f e r e n c e

The PATTERN is the regular expression for the text that we are looking for. The
REPLACEMENT is a specification for the text or regular expression that we want to
use to replace the found text with. For example, you may remember from the substr
definition earlier in the chapter that you could replace a specific number of characters
within a string by using assignment:

$string = 'The cat sat on the mat';

$start = index($string,'cat',0);

$end = index($string,' ',$start)-$start;

substr($string,$start,$end) = 'dog';

You can achieve the same result with a regular expression:

$string = 'The cat sat on the mat';

$string = s/cat/dog/;

Note that we have managed to avoid the process of finding the start and end of the
string we want to replace. This is a fundamental part of understanding the regular
expression syntax. A regular expression will match the text anywhere within the string.
You do not have to specify the starting point or location within the string, although it is
possible to do so if that’s what you want. Taking this to its logical conclusion, we can
use the same regular expression to replace the word “cat” with “dog” in any string,
irrespective of the location of the original word:

$string = 'Oscar is my cat';

$string = s/cat/dog/;

The $string variable now contains the phrase “Oscar is my dog,” which is factually
incorrect, but it does demonstrate the ease with which you can replace strings with
other strings.

Here’s a more complex example that we will return to later. In this instance, we
need to change a date in the form 03/26/1999 to 19990326. Using grouping, we can
change it very easily with a regular expression:

$date = '03/26/1999';

$date =~ s#(\d+)/(\d+)/(\d+)#$3$1$2#;

This example also demonstrates the fact that you can use delimiters other than the
forward slash for substitutions too. Just like the match operator, the character used is
the one immediately following the “s”. Alternatively, if you specify a naturally paired

C h a p t e r 8 : D a t a M a n i p u l a t i o n 237
FU

N
D

A
M

EN
TA

LS

delimiter, such as a brace; then the replacement expression can have its own pair of
delimiters:

$date = s{(\d+)/(\d+)/(\d+)}

{$3$1$2}x;

Note that the return value from any substitution operation is the number of
substitutions that took place. In a typical substitution, this will return 1 on success,
and if no replacements are made, then it will return 0—a false response.

The problem with modifying strings in this way is that we clobber the original
value of the string in each case—which is often not the effect we want. The usual
alternative is to copy the information into a variable first, and then perform the
substitution on the new variable:

$newstring = $string;

$newstring =~ s/cat/dog/;

You can do this in one line by performing the substitution on the lvalue that is created
when you perform an assignment. For example, we can rewrite the preceding as

($newstring = $string) =~ s/cat/dog/;

This works because the lvalue created by the Perl interpreter as part of the expression
on the left of =~ is actually the new value of the $newstring variable. Note that without
the parentheses, you would only end up with a count of the replacements in
$newstring and a modified $string—not what we wanted!

The same process also works within a loop, for the same reasons:

foreach ($newstring = $string)

{

s/cat/dog/;

}

A loop also affords us the ability to perform multiple substitutions on a string:

foreach ($newstring = $string)

{

s/cat/dog/;

s/sheep/camel/;

}

238 P e r l : T h e C o m p l e t e R e f e r e n c e

Substitution Operator Modifiers
In addition to the five standard modifiers, the substitution operator also supports a
further two modifiers that modify the way in which substitutions take place. A full list
of the supported modifiers is given in Table 8-4.

The /g operator forces the search and replace operation to take place multiple times,
which means that PATTERN is replaced with REPLACEMENT for as many times as
PATTERN appears. This is done as a one-pass process, however. The substitution
operation is not put into a loop. For example, in the following substitution we replace
“o” with “oo”:

$string = 'Both foods';

$string =~ s/o/oo/g;

The result is “Booth foooods”, not “Boooooooooooth foooooooooods” ad infinitum.
However, there are times when such a multiple-pass process is useful. In those cases,
just place the substitution in a while loop. For example, to replace all the double spaces
with a single space you might use:

1 while($string =~ s/ / /g);

C h a p t e r 8 : D a t a M a n i p u l a t i o n 239
FU

N
D

A
M

EN
TA

LS

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage
return characters, the ^ and $ operators will now
match against a newline boundary, instead of a
string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression
for clarity

g Replaces all occurrences of the found expression
with the replacement text

e Evaluates the replacement as if it were a Perl statement,
and uses its return value as the replacement text

Table 8-4. Substitution Operator Modifiers

240 P e r l : T h e C o m p l e t e R e f e r e n c e

The while loop will drop out as soon as the substitution fails to find a double space.
The /e modifier causes Perl to evaluate the REPLACEMENT text as if it were a Perl

expression, and then to use the value as the replacement string. We’ve already seen an
example of this when converting a date from traditional American slashed format into
the Japanese/Universal format:

$c =~ s{(\d+)/(\d+)/(\d+)}{sprintf("%04d%02d%02d",$3,$1,$2)}e;

We have to use sprintf in this case; otherwise, a single-digit day or month would
truncate the numeric digits from the eight required—for example, 26/3/2000 would
become 2000326 instead of 20000326.

Translation
Translation is similar, but not identical, to the principles of substitution, but unlike
substitution, translation (or transliteration) does not use regular expressions for its
search on replacement values. The translation operators are

tr/SEARCHLIST/REPLACEMENTLIST/cds

y/SEARCHLIST/REPLACEMENTLIST/cds

The translation replaces all occurrences of the characters in SEARCHLIST with the
corresponding characters in REPLACEMENTLIST. For example, using the “The cat sat
on the mat.” string we have been using in this chapter:

$string =~ tr/a/o/;

print "$string\n";

this script prints out “The cot sot on the mot.”
Standard Perl ranges can also be used, allowing you to specify ranges of characters

either by letter or numerical value. To change the case of the string, you might use

$string =~ tr/a-z/A-Z/;

in place of the uc function. The tr operator only works on a scalar or single element of
an array or hash; you cannot use it directly against an array or hash (see the discussion
of grep or map in Chapter 7). You can also use tr// with any reference or function that
can be assigned to. For example, to convert the word “cat” from the string to
uppercase, you could do this:

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : D a t a M a n i p u l a t i o n 241
FU

N
D

A
M

EN
TA

LS

substr($string,4,3) =~ tr/a-z/A-Z/;

Unlike regular expressions, the SEARCHLIST and REPLACEMENTLIST
arguments to the operator do not need to use the same delimiters. As long as the
SEARCHLIST is naturally paired with delimiters, such as parentheses or braces, the
REPLACEMENTLIST can use its own pair. This makes the conversion of forward
slashes clearer than the traditional regular expression search:

$macdir = tr(/)/:/;

The same feature can be used to make certain character sequences seem clearer,
such as the following one, which converts an 8-bit string into a 7-bit string, albeit with
some loss of information:

tr [\200-\377]

[\000-\177]

Three modifiers are supported by the tr operator, as seen in Table 8-5.
The /c modifier changes the replacement text to be the characters not specified in

SEARCHLIST. You might use this to replace characters other than those specified in
the SEARCHLIST with a null alternative; for example,

$string = 'the cat sat on the mat.';

$string =~ tr/a-zA-Z/-/c;

print "$string\n";

replaces any non-character with a hyphen, resulting in “the-cat-sat-on-the-mat-.”

Modifier Meaning

c Complement SEARCHLIST.

d Delete found but unreplaced characters.

s Squash duplicate replaced characters.

Table 8-5. Modifiers to the tr Operator

242 P e r l : T h e C o m p l e t e R e f e r e n c e

The /d modifier deletes the characters matching SEARCHLIST that do not have a
corresponding entry in REPLACEMENTLIST. For example,

$string = 'the cat sat on the mat.';

$string =~ tr/a-z/b/d;

print "$string\n";

deletes any characters from “b-z”, whilst translating “a” to “b”. This results in

b b b.

The last modifier, /s, removes the duplicate sequences of characters that were
replaced, so

$string = 'food';

tr/a-z/a-z/s;

returns “fod”. This is useful when you want to de-dupe the string for certain
characters. For example, we could rewrite our space-character compressing
substitution with a transliteration:

$string =~ tr/ / /s;

If you do not specify the REPLACEMENTLIST, Perl uses the values in
SEARCHLIST. This is most useful for doing character-class-based counts,
something that cannot be done with the length function. For example, to count
the nonalphanumeric characters in a string:

$cnt = $string =~ tr/a-zA-Z0-9//cs;

In all cases, the tr operator returns the number of characters changed (including
those deleted).

Regular Expression Elements
The regular expression engine is responsible for parsing the regular expression and
matching the elements of the regular expression with the string supplied. Depending
on the context of the regular expression, different results will occur: a substitution
replaces character sequences, for example.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 243
FU

N
D

A
M

EN
TA

LS

The regular expression syntax is best thought of as a little language in its own right.
It’s very powerful, and an incredible amount of ability is compacted into a very small
space. Like all languages, though, a regular expression is composed of a number of
discrete elements, and if you understand those individual elements, you can
understand the entire regular expression.

For most characters and character sequences, the interpretation is literal, so a
substitution to replace the first occurrence of “cat” with “dog” can be as simple as

s/cat/dog/;

Beyond the literal interpretation, Perl also supports two further classes of characters
or character sequences within the regular expression syntax: metacharacters and
metasymbols. The metacharacters define the 12 main characters that are used to define
the major components of a regular expression syntax. These are

\ | () [{ ^ $ * + ? .

Most of these form multicharacter sequences—for example \s matches any white-space
character, and these multicharacter sequences are classed as metasymbols.

Some of the metacharacters just shown have their own unique effects and don’t
apply to, or modify, the other elements around them. For example, the . matches any
character within an expression. Others modify the preceding element—for example the
+ metacharacter matches one or more of the previous elements, such that .+ matches
one or more characters, whatever that character may be.

Others modify the character they precede—the major metacharacter in this instance
is the backslash, \, which allows you to “escape” certain characters and sequences. The
\. sequence, for example, implies a literal period. Alternatively, \ can also start the
definition of a metasymbol, such as \b, which specifies a word boundary.

Finally, the remaining metacharacters allow you to define lists or special
components within their boundaries—for example, [a-z] creates a character class that
contains all of the lowercase letters from “a” to “z.”

Because all of these elements have an overall effect on all the regular expressions
you will use, we’ll list them here first, before looking at the specifics of matching
individual characteristics within an expression, such as words and character classes.
In both Tables 8-6 and 8-7, the entries have an “Atomic” column—if the value in that
column is “yes”, then the metasymbol is quantifiable. A quantifiable element can be
combined with a quantifier to allow you to match one or more elements.

Table 8-6 lists the general metacharacters supported by regular expressions.

244 P e r l : T h e C o m p l e t e R e f e r e n c e

The next table, Table 8-7, lists the metasymbols supported by the regular expression
mechanism for matching special characters or entities within a given string. Note that
not all entries are atomic—as a general rule, the metasymbols that apply to locations or
boundaries are not atomic.

Character Atomic Description

\ Depends Treats the following character as a
real character, ignoring any
associations with a Perl regex
metacharacter—see Table 8-7.

^ No Matches from the beginning of the
string (or of the line if the /m
modifier is in place).

$ No Matches from the end of the string
(or of the line if the /m modifier is
in place).

. Yes Matches any character except the
newline character.

| No Allows you to specify alternative
matches within the same regex—
known as the OR operator.

() Yes Groups expressions together,
treating the enclosed text as a
single unit.

[] Yes Looks for a set and/or range of
characters, defined as a single
character class, but [] only
represents a single character.

Table 8-6. Regular Expression Metacharacters

C h a p t e r 8 : D a t a M a n i p u l a t i o n 245
FU

N
D

A
M

EN
TA

LS

Sequence Atomic Purpose

\0 Yes Matches the null character.

\033 Yes Matches the specified octal character,
up to \377 (255 decimal).

\n Yes Matches the nth previously captured
string (deprecated, use $n instead).

\A No Matches only the beginning of a string.

\a Yes Specifies alarm (bell).

\b Yes Matches the backspace character
(within a character class).

\b No Matches a word boundary (outside a
character class).

\B No Matches a non-word boundary.

\cX Yes Matches the control character X.

\c Yes Matches one byte (8-bit character), even
when the utf8 pragma is in force.

\d Yes Matches a digit.

\D Yes Matches a nondigit character.

\e Yes Matches the escape (ASCII) character.

\E NA Ends case (\U, \L) or metaquote (\Q)
translation.

\f Yes Matches the form feed character.

\G No Matches where previous m//g operation
left off (only works with /g modifier).

\l NA Translates only the next character to
lowercase.

\L NA Specifies lowercase until \E.

\n Yes Matches a newline (CR on Macs).

Table 8-7. Regular Expression Character Patterns

246 P e r l : T h e C o m p l e t e R e f e r e n c e

Sequence Atomic Purpose

\N{NAME} Yes Matches the named UTF character.

\p{PROP} Yes Matches any UTF character with the
named property.

\P{PROP} Yes Matches any UTF character without the
named property.

\Q NA Quotes (disables) regex metacharacters
until e.

\r Yes Matches the carriage return character
(NL on Macs).

\s Yes Matches any white-space character
(spaces, tabs, etc.).

\S Yes Matches any non-white-space character.

\t Yes Matches the (horizontal) tab character.

\u NA Translates only the next character to
uppercase.

\U NA Specifies uppercase until \E.

\w Yes Matches any alphanumeric character
(including _).

\W Yes Matches any nonalphanumeric
character.

\x1B Yes Matches any two-digit hexadecimal
character.

\x{xxxx} Yes Matches any multidigit hexadecimal
character.

\X Yes Matches any Unicode “combining
character sequence” string.

\z No Matches the end of a string.

\Z No Matches the end of a string or before a
newline character (except when in
multiline-match mode).

Table 8-7. Regular Expression Character Patterns (continued)

Table 8-8 lists the quantifiers supported by Perl. These affect the character or
entity immediately before them—for example, [a-z]* matches zero or more occurrences
of all the lowercase characters. Note that the metasymbols show both maximal and
minimal examples—see the “Quantifiers” section later in this chapter for an example
of how this works.

Matching Specific Characters
Anything that is not special within a given regular-expression pattern (essentially
everything not listed in Table 8-2) is treated as a raw character. For example /a/ matches
the character “a” anywhere within a string. Perl also identifies the standard character
aliases that are interpreted within double-quoted strings, such as \n and \t.

In addition, Perl provides direct support for the following:

� Control Characters You can also name a control character using \c, so that
CTRL-Z becomes \cZ. The less obvious completions are \c[for escape and \c?
for delete. These are useful when outputting text information in a formatted
form to the screen (providing your terminal supports it), or for controlling the
output to a printer.

� Octal Characters If you supply a three-digit number, such as \123, then it’s
treated as an octal number and used to display the corresponding character
from the ASCII table, or, for numbers above 127, the corresponding character
within the current character table and font. The leading 0 is optional for all
numbers greater than 010.

� Hexadecimal Characters The \xHEX and \x{HEX} forms introduce a
character according to the current ASCII or other table, based on the value of

C h a p t e r 8 : D a t a M a n i p u l a t i o n 247
FU

N
D

A
M

EN
TA

LS

Maximal Minimal Purpose

* *? Matches zero or more
items.

+ +? Matches one or more
items.

? ?? Matches zero or one items.

{n} {n}? Matches exactly n times.

{n,} {n,}? Matches at least n times.

{n,m} {n,m}? Matches at least n times
but no more than m times.

Table 8-8. Regular Expression Pattern Quantifiers

248 P e r l : T h e C o m p l e t e R e f e r e n c e

the supplied hexadecimal string. You can use the unbraced form for one- or
two-digit hexadecimals; using braces, you can use as many hex digits as
you require.

� Named Unicode Characters Using \N{NAME} allows you to introduce
Unicode characters by their names, but only if the charnames pragma is
in effect. See Chapter 19 for more information on accessing characters by
their names.

Matching Wildcard Characters
The regular expression engine allows you to select any character by using a wildcard.
The . (period) is used to match any character, so that

if ($string =~ /c.t/)

would match any sequence of “c” followed by any character and then “t.” This would,
for example, match “cat” or “cot”, or indeed, words such as “acetic” and
“acidification.”

By default, a period matches everything except a newline unless the /s modifier is
in effect, in which case it matches everything including a newline.

The wildcard metasymbol is usually combined with one of the quantifiers (see the
“Quantifiers” section later in the chapter) to match a multitude of occurrences within a
given string. For example, you could split the hours and minutes from “19:23” using

($hours,$mins) = ('19:23' =~ m/(.*?):(.*?)/);

This probably isn’t the best way of doing it, as we haven’t qualified the type of
character we are expecting—we’d be much better off matching the \d character class.

The \X matches a Unicode character, including those composed of a number of
Unicode character sequences (i.e. those used to build up accented characters). For
example /\X/i would match “c”, “ç”, “C” and “Ç”.

The \C can be used to match exactly one byte from a string—generally this means
that \C will match a single 8-bit character, and in fact uses the C char type as a guide.

Character Classes
Character classes allow you to specify a list of values for a single character. This can
be useful if you want to find a name that may or may not have been specified with a
leading capital letter:

if ($name =~ /[Mm]artin/)

Within the [] metacharacters, you can also specify a range by using a hyphen to
separate the start and end points, such as “a-z” for all lowercase characters, “0-9” for
numbers, and so on. If you want to specify a hyphen, use a backslash within the class

to prevent Perl from trying to produce a range. If you want to match a right square
bracket (which would otherwise be interpreted as a character class), use a backslash or
place it first in the list, for example [[].

You can also include any of the standard metasymbols for characters, including \n,
\b, and \cX, and any of the character classes given later in this chapter (class, Unicode,
and POSIX). However, metasymbols used to specify boundaries or positions, such as
\z, are ignored, and note that \b is treated as backspace, not as a word boundary. The
wildcard metasymbols, ., \X, and \C, are also invalid. You also can’t use | within a
class to mean alternation—the symbol is just ignored.

Finally, you can’t use a quantifier within a class because it doesn’t make sense. If
you want to add a quantifier to a class, place it after the closing square bracket so that it
applies to the entire class.

All character classes can also use negation by including a ^ prefix before the class
specification. For example, to match against the characters that are not lowercase, you
could use

$string =~ m/[^a-z]/;

Standard (Classic) Character-Class Shortcuts
Perl supports a number of standard (now called Classic) character-class shortcuts. They
are all metasymbols using an upper- or lowercase character. The lowercase version
matches a character class, and the uppercase versions negate the class. For example,
\w matches any word character, while \W matches any non-word character.

The specifications are actually based on Unicode classes, so the exact matches will
depend on the current list of Unicode character sets currently installed. If you want to
explicitly use the traditional ASCII meanings, then use the bytes pragma. Table 8-9

C h a p t e r 8 : D a t a M a n i p u l a t i o n 249
FU

N
D

A
M

EN
TA

LS

Metasymbol Meaning Unicode Byte

\d Digit \p{IsDigit} [0-9]

\D Non-digit \P{IsDigit} [^0-9]

\s White space \p{IsSpace} [\t\n\r\f]

\S Non-white space \P{IsSpace} [^ \t\n\r\f]

\w Word character \p{IsWord} [a-zA-Z0-9_]

\W Non-word
character

\P{IsWord} [^a-zA-Z0-9_]

Table 8-9. “Classic” Character Classes

shows the metasymbol, the meaning, and the Unicode- and byte-based interpretations
of each metasymbol.

Note that the \d sequence is strict, such that if you want to match periods or
commas that are often used to separate elements of numbers, then you must specify
them additionally within a set:

if ('23,445.33' =~ m/([\d,.]+)/)

Also note that, as in the preceding example, a character class can be used both
outside and inside of a character-class definition.

POSIX-Style Character Classes
The POSIX-style character classes allow you to specify a class according to the Is...
functions defined by the POSIX standard. For example, you can specify an
alphanumeric character class using [:alnum:]. However, a POSIX character class
must be specified as part of another character class, for example [[:alnum:]] or
[[:alpha:][:digit:]].

The full list of supported classes is shown in Table 8-10.

POSIX character classes are only supported in Perl 5.6 and above.

If the utf8 pragma is in effect, then the POSIX character classes shown in Table 8-10 are
identical to the Is properties for Unicode characters given in Table 8-12 later in the chapter.

You can negate a POSIX character class by specifying the ^ character before the
class name, as in [:^digit:].

250 P e r l : T h e C o m p l e t e R e f e r e n c e

Class Meaning

alnum Any alphanumeric (equivalent to [[:alpha:][:digit:]])

alpha Any letter (upper or lowercase)

ascii Any 7-bit ASCII character (that is, those with a value
between 0 and 127)

cntrl Any control character—basically those ASCII characters
with a decimal value of less than 32, including newlines,
carriage returns, and tabs

digit Any character representing a digit (0–9)

graph Any alphanumeric or punctuation character

Table 8-10. POSIX Character Classes

TE
AM
FL
Y

Team-Fly®

Unicode Classes
You can use \p{PROP} and its negation, \P{PROP}, to select characters according to
their Unicode properties. The braces are optional for classes that use a single character.
Perl uses a combination of the formal definitions specified in the Unicode standard,
and a number of composites defined purely within Perl that act as equivalents to the
classic or POSIX character classes we’ve already seen.

For the moment, all of the Unicode character classes require the utf8 pragma to
be in effect for the matches to work properly. Table 8-11 lists the standard Unicode
properties that are supported by Perl, along with those composites that are defined
by Perl only to act as umbrellas for the main categories.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 251
FU

N
D

A
M

EN
TA

LS

Class Meaning

lower Any lowercase letter

print Any printable character (equivalent to
[[:alnum:][:punct:][:space:]])

punct Any punctuation character

space Any white-space character (space, tab, newline, carriage
return, and form feed)

upper Any uppercase letter

word Any identifier character—basically alnum and the
underscore

xdigit Any hexadecimal digit (upper- or lowercase, 0–9 plus a–f)

Table 8-10. POSIX Character Classes (continued)

Property Meaning

IsC Control codes (Perl defined)

IsCc Other, control

IsCf Other, format

IsCn Other, not assigned

IsCo Other, private use

IsCs Other, surrogate

Table 8-11. Standard Unicode Character-Class Properties

252 P e r l : T h e C o m p l e t e R e f e r e n c e

Property Meaning

IsL Letters (Perl defined)

IsLl Letter, lowercase

IsLm Letter, modifier

IsLo Letter, other

IsLt Letter, title case

IsLu Letter, uppercase

IsM Marks (Perl defined)

IsMc Mark, combining

IsMe Mark, enclosing

IsMn, Mark, non-spacing

IsN Numbers (Perl defined)

IsNd, Number, decimal digit

IsNl, Number, letter

IsNo Number, other

IsP Punctuation (Perl defined)

IsPc Punctuation, connector

IsPd Punctuation, dash

IsPe Punctuation, close

IsPf Punctuation, final quote

IsPi Punctuation, initial quote

IsPo Punctuation, other

IsPs Punctuation, open

IsS Symbols (Perl defined)

IsSc Symbol, currency

IsSk Symbol, modifier

IsSm Symbol, math

IsSo Symbol, other

Table 8-11. Standard Unicode Character-Class Properties (continued)

Perl uses these classes to define its own unique sets, which are POSIX or classic
compatible; these are themselves listed in Table 8-12. For more information on Unicode
and how the properties are interpreted and supported in Perl, see the Unicode folder
in the main Perl 5.6 library—since the Unicode standard is subject to change and
expansion, we’ll only deal with the basic classes and Perl composites in this section.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 253
FU

N
D

A
M

EN
TA

LS

Property Meaning

IsZ Separators (Perl defined)

IsZl Separator, line

IsZp Separator, paragraph

IsZs Separator, space

Table 8-11. Standard Unicode Character-Class Properties (continued)

Property Consists of

IsASCII [\x00-\x7f]

IsAlnum [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}]

IsAlpha [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}]

IsCntrl \p{IsC}

IsDigit \p{Nd}

IsGraph [^\pC\p{IsSpace}]

IsLower \p{IsLl}

IsPrint \P{IsC}

IsPunct \p{IsP}

IsSpace [\t\n\f\r\p{IsZ}]

IsUpper [\p{IsLu}\p{IsLt}]

IsWord [_\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}]

IsXDigit [0-9a-fA-F]

Table 8-12. Perl’s Composite Unicode Properties

For more information on the other properties supported by Perl (which are subject
to constant change as new languages, character sets, and Perl composites are
produced), check the Unicode documentation that comes with Perl.

Matching the Beginning and End of a String
The ^ metacharacter matches the beginning of the string. The following line would
only return true if the character sequence “cat” were present at the beginning of
$string:

if ($string =~ /^cat/)

This would match “catatonic”, “cat”, and “cationic surfactant”, but not “polecat”. The
^ also matches the beginning of a line, so when it is used within a multiline string
(using the /m modifier), it will match not only the start of the string, but also the start
of each line (matching against a preceding newline character). If you have supplied a
multiline string, but want to match only the beginning of that string then use \A.
For example,

$string = "Cats go Catatonic\nWhen given Catnip";

($start) = ($string =~ /\A(.*?) /);

@lines = $string =~ /^(.*?) /gm;

print "First word: $start\n","Line starts: @lines\n";

outputs

First word: Cats

Line starts: Cats When

The $ metasymbol matches the end of the string,

if ($string =~ /cat$/)

so this example only matches when the “cat” character sequence is at the end of the
string being matched. However, just like ^, when used in a multiline string with the
/m modifier, $ also matches the end of a line (at the point just before the newline
character).

The \z metasymbol matches at the end of the string, no matter what the contents
of the string are. The \Z matches just before the newline at the end of the string if there
was a newline, or at the end of string if there wasn’t a newline. The \Z can be useful
when reading information from a file that contains newlines, when you want to execute
a regular expression on the source string without first using chomp.

254 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : D a t a M a n i p u l a t i o n 255
FU

N
D

A
M

EN
TA

LS

Boundaries
The \b matches at any word boundary, as defined by the difference between the \w
class and the \W class. Because \w includes the characters for a word, and \W the
opposite, this normally means the termination of a word. The boundary also works in
reverse; that is, a change from \W to \w, which indicates the beginning of a word. The
\B assertion matches any position that is not a word boundary. For example:

/\bcat\b/ # Matches 'the cat sat' but not 'cat on the mat'

/\Bcat\B/ # Matches 'verification' but not 'the cat on the mat'

/\bcat\B/ # Matches 'catatonic' but not 'polecat'

/\Bcat\b/ # Matches 'polecat' but not 'catatonic'

Note, however, that because \W includes all the punctuation characters, you may
end up splitting in the middle of a word, such as “can’t” and “mc@mcslp.com”, which
may or may not be what you want.

Selecting Alternatives
The | character is just like the standard or bitwise OR within Perl. It specifies alternate
matches within a regular expression or group. For example, to match “cat” or “dog” in
an expression, you might use this:

if ($string =~ /cat|dog/)

You can group individual elements of an expression together in order to support
complex matches. Searching for two people’s names could be achieved with two
separate tests, like this:

if (($string =~ /Martin Brown/) ||

($string =~ /Sharon Brown/))

You could write this more efficiently in a single regular expression, like this:

if ($string =~ /(Martin|Sharon) Brown/)

The use of grouping here is vital. By using a group, the code looks for “Martin Brown”
or “Sharon Brown”, because the OR operation simply works on either side of the |
metacharacter. Had you written

if ($string =~ /Martin|Sharon Brown/)

256 P e r l : T h e C o m p l e t e R e f e r e n c e

the regular expression would match either “Martin” or “Sharon Brown”, which may or
may not be what you want. In general, the use of grouping with the | metacharacter
follows the same rules as the logical operators elsewhere in Perl.

Grouping
As seen earlier, you can logically group any part of an expression together. Syntactically
the groupings have no specific meaning within an expression unless combined with a
| operator, as in the example earlier. In fact, from a regular-expression point of view,
there is no difference between

$string =~ /(\S+)\s+(\S+)/;

and

$string =~ /\S+\s+\S+/;

except, perhaps, that the former is slightly clearer.
However, the benefit of grouping is that it allows us to extract a sequence from a

regular expression. Groupings are returned as a list in the order in which they appear
in the original. For example, in the following fragment,

my ($hours, $minutes, $seconds) = ($time =~ m/(\d+):(\d+):(\d+)/);

we’ve pulled out the hours, minutes, and seconds from a string.
As well as this direct method, matched groups are also available within the special

$x variables, where x is the number of the group within the regular expression. We
could therefore rewrite the preceding example as follows:

$time =~ m/(\d+):(\d+):(\d+)/;

my ($hours, $minutes, $seconds) = ($1, $2, $3);

When groups are used in substitution expressions, the $x syntax can be used in the
replacement text. Thus, we could reformat a date string using this:

$date = '03/26/1999';

$date =~ s#(\d+)/(\d+)/(\d+)#$3$1$2#;

Each element of the date is placed into the temporary variables, so the month
(group one) is in $1, the day is group two, and the year is in group three. To convert to
the number format, you just need to specify each element in the desired order—in this
example, year, month, day. The resulting string is “19990326”. The matched groups are
perpetual—that is, you can also access each matched group outside of the substitution
expression. Obviously, the next regular expression executed resets all of the values.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 257
FU

N
D

A
M

EN
TA

LS

Perl also supports \x as a group definition, but it is only valid within the confines of a
substitution. It is also limited to just nine groups (\1 to \9), whereas $x is essentially
unlimited.

If you nest groups, then you must remember that the numbering system keys on
the first opening parenthesis, as demonstrated by the following code:

$date = '03/26/1999';

$date =~ s#((\d+)/(\d+)/(\d+))#Date $1 = $4$2$3#;

print "$date\n";

which prints this:

Date 03/26/1999 = 19990326

The first parenthesis matches the whole date string; the nested parentheses then match
the individual year, month, and day of the date.

Quantifiers
In many of the preceding examples, you’ll see a quantifier—a special character or
sequence that defines the number of times the previous sequence or character appears.
Using a quantifier, you can specify that a sequence must appear a minimum or
maximum number of times, or that a character can repeat indefinitely until the next
regex element. Table 8-8 earlier in the chapter shows the supported quantifiers.

The * and + operators match 0 or more, or 1 or more items, respectively. By using a
pattern of /.*/, you can match everything including an empty string (although this
seems rather pointless), or with /.+/, you must match at least one character. The brace
specifications allow you to specify a range of repetitions. Some examples and
equivalencies are shown here:

m/.{0}/; #Matches no characters

m/.{1,}/; #Matches any character at least once, equivalent to /.+/

m/\d{2,4}/; #Matches any digit at least two and a maximum of four times

In Table 8-8, entries in the left-hand (Maximal) column will match preceding
expression or class the maximum number of times. This means that the quantifier will
soak up all the characters it can before it attempts the next match in the regex. The
Minimal column shows the sequence that will match the minimum number of times
before the next element of the regular expression is matched. The following code
demonstrates the effect:

$string = "There was a food shortage in foodham";

print "Maximal:",($string =~ /(.*)foo/),"\n";

print "Minimal:",($string =~ /(.*?)foo/),"\n";

If you run this, the result is as follows:

Maximal:There was a food shortage in

Minimal:There was a

Using the \G Assertion
The \G assertion allows you to continue searching from the point where the last match
occurred. This is the same as using pos (see the “pos” section, later in the chapter),
except that you can continue using regular expressions instead of splitting up your
string using substr.

For example, in the following code we’ve used \G so that we can search to the
correct position and then extract some information, without having to create a more
complex, single regular expression:

$string = "The time is: 12:31:02 on 4/12/00";

$string =~ /:\s+/g;

($time) = ($string =~ /\G(\d+:\d+:\d+)/);

$string =~ /.+\s+/g;

($date) = ($string =~ m{\G(\d+/\d+/\d+)});

print "Time: $time, Date: $date\n";

The \G assertion is actually just the metasymbol equivalent of the pos function, so
between regular expression calls you can continue to use pos, and even modify the
value of pos (and therefore \G) by using pos as an lvalue subroutine:

pos($string) = 0;

Regular Expression Variables
Regular expression variables include $, which contains whatever the last grouping
match matched; $&, which contains the entire matched string; $`, which contains
everything before the matched string; and $’, which contains everything after the
matched string.

Use of the $` and $’ variables induces a significant overhead within your program, since
the first time you use them Perl then starts to populate the variables for each regular
expression executed. Avoid using them if you can. Grouping will often give you the
same result without the same overhead. The $& also adds overhead, but since version
5.005, the performance hit is not as high as that induced by $`.

258 P e r l : T h e C o m p l e t e R e f e r e n c e

The following code demonstrates the result:

$string = "The food is in the salad bar";

$string =~ m/foo/;

print "Before: $`\n";

print "Matched: $&\n";

print "After: $'\n";

This code prints the following when executed:

Before: The

Matched: foo

After: d is in the salad bar

Regular Expression Extensions/Assertions
The regular expression engine also allows you to specify a number of additional
extensions, called assertions, within the main expression. These extensions enable
more specific matches to take place without the match affecting the variables and/or
groupings that are in place. These work in combination with the grouping facilities
within the regular expression and the global variables that are affected by regular
expression matches. The assertions are summarized in Table 8-13.

For example, here’s a regular expression match using the (?{code}) assertion:

use re 'eval';

$_ = '';

m<

(?{ $cnt = 0 })

\<A.*"

(.(?{ local $cnt = $cnt + 1;}))*

"\>

(?{ $res = $cnt })

>x;

print $res," words\n";

It counts the number of letters between the double quotes in the HTML reference
specified in $_. This is a fairly simplistic example, since the likelihood is that you’ll
want to perform some sort of test (perhaps via a function call) within the (?{code})
assertion, but you can see the general idea.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 259
FU

N
D

A
M

EN
TA

LS

260 P e r l : T h e C o m p l e t e R e f e r e n c e

Assertion Meaning

(?#text) Comment text within the brackets is
ignored.

(?:pattern) Identical to grouping, but does not
populate $1, $2, and so on, on a match.

(?imsx:pattern) Identical to grouping, but does not
populate $1, $2, and so on, on a match;
embeds pattern-match modifiers for the
duration of the specified pattern.

(?=pattern) Matches if the regular expression
engine would match pattern next,
without affecting the result of the
match. For example, the expression
\w+(?=\t)/ would match a tab
following a word, without the tab
being added to the value of $&.

(?!pattern) Matches if the regular expression
engine would not match pattern
next. For example, the expression
\foo($!bar)/ would match only if
there was an occurrence of “foo”
not followed by “bar”.

(?<=pattern) Matches the next statement only if
pattern would have matched with
the following expression, but with-
out placing the result of pattern into
the $& variable. For example, to test
for a word following a tab, but without
placing the tab into $&, you would use
/(?<=\t)\w+/.

(?<!pattern) Matches the next statement only if
pattern would not have matched with
the following expression, but without
placing the result of pattern into the $&
variable. For example, to match any
occurrence of “foo” that isn’t following
“bar”, you might use /(?<!bar)foo/.

Table 8-13. Regular Expression Assertions

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : D a t a M a n i p u l a t i o n 261
FU

N
D

A
M

EN
TA

LS

Precompiling Expressions
One of the pitfalls of the regular expression mechanism is that when interpolating
variables into expressions, Perl must recompile the regular expression each time. Most
expressions are compiled during the compilation phase of the main script, of course,

Assertion Meaning

(?{ code }) Experimental—the intended use for
this is for code to be executed, and
if it returns true, then the result is
considered as a match along the same
lines as the (?:pattern) assertion. The
code does not interpolate variables.
This assertion only works if you have
the use re ‘eval’ pragma in effect.

(?>pattern) Matches the substring that a stand-
alone pattern would match if the
pattern was anchored at the current
position. For example, the regex
/^(?>a*)ab/ will never match, because
the assertion (?>a*) will match all
characters “a” at the beginning of the
string, effectively removing the “a”
required to match “ab.”

(?(condition)yes-pattern|no-pattern)
(?(condition)yes-pattern)

Conditional expression—the
(condition) element should either be an
integer in parentheses or an assertion.

(?imsx)
(?-imsx)

Embedded pattern-match modifiers.
Useful when you want to embed an
expression modifier within a variable,
which may then be used in a general
regex that does not specify its own
modifiers. Anything following a
hyphen, -, switches off the modifier
for the duration, or until another
embedded modifier is in place.

Table 8-13. Regular Expression Assertions (continued)

but in those situations where you are using scalars, you can run into a severe performance
problem as each regular expression is compiled and checked.

For simple one-shot expressions that include a variable, you can get around this by
using the /o modifier, which forces the expression to be compiled only once, even if
you do change the variable contents.

However, doing so limits the usefulness of Perl in situations where you want to run
a number of regular expressions over a list—something that is easy to do in sed. For
example, the code:

while(<FILE>)

{

foreach $regex (@expressions)

{

print if /$regex/;

}

}

would be incredibly time consuming, because for each line in FILE, we have to
recompile each of the regular expressions in @expressions, even though the contents
of @expressions don’t change between each line.

You can get around this, perhaps, by creating a new script based on @expressions
that could then be executed through an eval. Because the regex entries would be
“fixed” within the limits of the subscript, they would only have to be compiled once
during the eval initialization. This is exceedingly messy, however. A much better
solution is to use the qr// (quote regex) operator.

The qr// operator takes a regular expression and compiles it as normal, returning a
regular expression object such that

$regex = qr/[a-z]+/is;

s/$regex/nothing/;

is the same as

s/[a-z]+/nothing/is;

Because the returned object is a compiled regular expression, we can solve the earlier
problem by precompiling all the expressions before we enter the loop.

That means we could change the preceding example to

@regexes = map { qr/$_/ } @expressions;

while(<FILE>)

{

262 P e r l : T h e C o m p l e t e R e f e r e n c e

FU
N

D
A

M
EN

TA
LS

C h a p t e r 8 : D a t a M a n i p u l a t i o n 263

foreach $regex (@regexes)

{

print if /$regex/;

}

}

Now, because the patterns are precompiled, the regular expressions are executed
immediately within the main loop without requiring a new compilation.

The return value of the qr// operator can also be embedded into other expressions:

print if /start${regex}end/;

Be careful when using qr//, as you run the risk of compiling an expression during run
time that might cause an exception. You should be embedding the compilation into an
eval statement:
$regex = eval { qr/$pattern/ } || warn "Cant regex from $pattern";

Regular Expression Support Functions
There are three functions that support the regular expression engine. The first, pos, is
an extension of the \G assertion, which we have already seen. The second, quotemeta,
is useful when you want to include a string within an expression that may contain
character sequences that match the regular expression engine’s metacharacters or
metasymbols. The last, study, can improve the speed at which the regular expression
engine operates when you are matching against large strings.

pos
When you’ve performed a match, you can find the location within the string at the
point where the regular expression stopped checking for new matches within an m//g
regex. The basic form is

pos [SCALAR]

The pos function, in scalar context, returns the location immediately after the last
successful match for SCALAR, or $_ if no scalar is specified. For example,

$string = "The food is in the salad bar";

$string =~ m/foo/g;

print pos($string),"\n";

should print a value of 7, the number of characters read before the match operator
stopped looking for new entries (because there weren’t any). In list context, pos returns
all of the matches from the previous expression.

264 P e r l : T h e C o m p l e t e R e f e r e n c e

As we’ve already seen, pos can also be used as lvalue to set the position within an
expression:

pos($string) = 12;

This is useful if you are using the \G assertion within your regular expressions and
want to explicitly set (or reset) the starting point.

quotemeta
In Table 8-7 you should have noticed the \Q sequence, which prevented the regular
expression engine from interpreting metacharacters or sequences as special values
within a regular expression. This effect is actually achieved by the general Perl function
quotemeta:

quotemeta EXPR

quotemeta

The function replaces any nonalphanumeric (not matching [a-zA-Z0-9]) character
with a backslash version. For example, this string

print quotemeta "[Foobar!]";

will return

\[Foobar\!\]

If you do not specify an expression, then the value of $_ will be quoted instead.

study
If you expect to perform a number of pattern matches on a large scalar, you may find
that the regular expression process is very slow. To increase the performance of the
regular expression system, you can use the study function:

study EXPR

study

The special $_ is used if you do not specify a scalar to examine. The study function
works by building a linked list of all the characters within the scalar. This enables the
regular expression engine to identify where all of the “x” characters are, for example.
When a search is requested, the character that occurs least in the search string is used
to choose the starting point for the pattern search.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 265
FU

N
D

A
M

EN
TA

LS

You will need to check the speed of the search process with and without the study
function; for many cases, you may find there is little or no difference. Unfortunately,
only one scalar can be studied at any one time. The moment you specify a new scalar
for the function to examine, it replaces the information stored on the previous scalar.

Unicode
Some of you may have come across Unicode elsewhere, and if you haven’t, then it’s
highly likely that you will soon. It has long been a part of the Windows operating
system (having been officially introduced with Windows 98, although support existed
in Windows 95 and NT), and the Mac OS has had Unicode support for many years.
Although support under Unix is currently a system-wide issue, most software that
thinks it ought to be using Unicode comes with its own support.

Unicode solves an age-old problem relating to the representation of characters on
screen. The base format that most people are aware of is ASCII, which officially lists
the main Latin letters, numbers, and grammatical marks in their upper- and lowercase
versions. Some ASCII extensions are also universally accepted and allow for accented
characters that support most of the southern European languages. The actual
characters are referred to by a number, using a range of 0–255, which enables us to
store the numerical equivalent of the letter into a single 8-bit byte.

However, what happens when you migrate a system that uses the ASCII, and
therefore Latin, character set into an environment that doesn’t actually use Latin
characters? In Greece, for example, they use letters from the Greek alphabet, which
are not actually part of the ASCII standard. Traditionally, programmers and designers
have got around this issue by developing a font that maps normal Latin characters into
their foreign equivalents. In essence, we’re still using a single byte to represent each
character, but because the software knows that we should be using a Greek rather
than a Latin font, it displays the Greek character.

When you move to more complex graphical languages, such as Chinese and
Japanese, this method no longer works. The traditional Chinese writing system has
over 30,000 characters in it—not directly representable by a single byte that limits
us to 256 characters. For these languages, we need to use multibyte characters, a
specification that allows us to refer to a character in an alphabet that fits in the range
0 to (232–1) (or 0 to (264–1) for 64-bit computers).

It’s here that Unicode fits in. The Unicode standard is designed to be the accepted
set of rules to allow people to exchange textual information around the world. Because
the Unicode standard includes information on the character set and the multibyte
format of the data being exchanged, you should be guaranteed that the information
you are reading is in the correct format and language.

Unicode is not (yet) a compulsory element of any software, and certainly isn’t a
required part of Perl, but in these modern times when scripts and information are
exchanged between hundreds of different languages, and therefore character sets,
around the world during the course of its life, ignoring Unicode is not the smartest
move you will ever make!

266 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl’s Interpretation of Unicode
The problem of Unicode from a programmer’s perspective is that because it smudges
the line between single-byte-based character sets and multibyte-based character sets,
some of the operations that we are used to don’t always work as we would expect.

To give a very classic example, consider the length function. Working within the
standard Latin character set, the length function returns the length of a string from two
perspectives. First, it gives us the length of the string in terms of characters—that is, the
number of letters and numbers that we see on the screen. It also returns the length of
the string in terms of bytes—because one character is represented by one byte, the
relationship is one to one.

If we use the same length function on a Unicode string, the two numbers won’t
always marry. If the string contains letters using two-byte characters, then we end up
with a character length of 10 but a byte length of 20. Things get even more complicated
if we work with Unicode strings that contain multibyte characters with different byte
lengths!

However, before you panic and expect all of your software to suddenly fail, Perl
isn’t quite so strict about how it applies the rules of Unicode. In fact, the documentation
lists the following goals that were applied when Perl’s Unicode system was developed:

� Goal #1 Old byte-oriented programs should not spontaneously break on the
old byte-oriented data they used to work on.

� Goal #2 Old byte-oriented programs should magically start working on the
new character-oriented data when appropriate.

� Goal #3 Programs should run just as fast in the character-oriented mode as in
the old byte-oriented mode.

� Goal #4 Perl should remain one language, rather than forking into a
byte-oriented Perl and a character-oriented Perl.

Perl’s support, like Unicode itself, is still largely a work in progress, so not
everything is working perfectly within these guidelines, but the goals will remain the
same. Although it’s too early to speculate at this stage what the Unicode support in
Perl 6 will be like, it’s likely that many of the developments being made now to bond
Perl’s core systems into the Unicode fold will still apply.

Unicode Characters in Perl
Unicode characters are, internally at least, still referred to by a number. The difference
is in the size of the number used to represent each character. Perl uses the UTF-8
(Unicode Transformation Format-8) system to support variable-length encoding for
Unicode characters. The UTF-8 system allows us to specify a multibyte character by
using a string of single bytes without losing any information. This means that for the
first 128 characters (0–127), which can obviously be represented by a single byte, the
relationship between UTF-8 and ASCII is identical.

C h a p t e r 8 : D a t a M a n i p u l a t i o n 267
FU

N
D

A
M

EN
TA

LS

Perl automatically switches to using UTF-8 when it thinks that it’s required. If you
are only using single-byte characters in your scripts, then you have nothing to worry
about—Perl will carry on working as normal, and you shouldn’t have to make any
changes to your scripts. What happens internally is that Perl converts the fixed 8-bit
characters you supply into the UTF-8 format as necessary.

On the other hand, if you do use a string that contains characters using numbers
larger than 255, the string is converted into UTF-8. Perl uses an extended version of
UTF-8 called utf8, and there is a pragma of that name that can be used to help specify
the UTF-8 characters. Although the utf8 pragma allows you to use any defined
Unicode character, it’s limited to supporting the characters officially endorsed by
the Unicode consortium.

Your main concern when dealing with Unicode characters should be the interface
between the Perl code and the outside world. You need to be aware that, by default,
all of Perl’s interfaces assume they are working with byte (8-bit) rather than character
(Unicode) data.

When communicating with the outside world, you must tell Perl that you are
expecting (or exporting) character-oriented, rather than byte-oriented, information. Perl
should do this automatically, although occasionally it’ll need some help—for example,
you’ll need to tell the open function to expect Unicode source (see Chapter 7).

Unicode’s Effects on Perl Code
The general rule to follow with Unicode in Perl is that a typical operator will now
operate on characters (including multibyte Unicode ones) unless you’ve explicitly told
it otherwise by using the byte pragma. If you are only using 8-bit characters, then there
is no difference as far as you or your program is concerned, and you won’t have to
make any changes to your code.

The utf8 pragma exists as a compatible way of introducing UTF-8 characters in
literals, and allowing Perl to support UTF-8 characters in identifiers. Eventually, the
utf8 pragma will have no effect at all, as all of this functionality will be supported
natively by the interpreter.

The bytes pragma is there to force sections of code to employ a byte-sized
interpretation of contents, instead of characters. This means that outside of bytes, the
length function now returns the length in characters, but inside, it returns the length in
bytes. The bytes pragma can also be used as a wrapper around certain functions (only
length at present). For example:

use bytes (); # Loads wrappers without enforcing byte

interpretation

$charlen = length($string);

$bytelen = bytes::length($string);

Outside of a bytes pragma, the interpreter follows these rules:

� Strings and regular expression patterns may contain characters with values
larger than eight bits (utf8 pragma required).

� Identifiers may contain alphanumeric characters, including ideographs (utf8
pragma required).

� Regular expressions match characters, not bytes.

� Character classes in regular expressions match characters, not bytes.

� Named Unicode properties and block ranges can be used as character classes.

� The regular expression metasymbol \X matches any Unicode sequence.

� The tr/// operator transliterates characters, not bytes.

� Case translation operators (\U, \L and uc, ucfirst, etc.) use the Unicode
translation tables.

� Functions and operators that deal with position and length within a string use
character, rather than byte positions. Exclusions are pack, unpack, and vec,
which traditionally work on byte- or bit-based data anyway.

� The c and C pack/unpack formats do not change—they still extract byte-based
information. If you want to use characters use the U format.

� The chr and ord functions work on multibyte characters.

� The reverse function in a scalar context reverses by character, rather
than by byte.

The whole Unicode implementation within Perl is still a work in progress, and
there’s lots to do before all of the features and/or functionality within both Unicode
and Perl works correctly. The best way to keep up to date is to read the Unicode
documentation that comes with the latest Perl distribution (available in the
unicode/Unicode3.html document within the main Perl library directory).

268 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 9
Errors and
Trapping Them

269

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Despite your best efforts, all programs have the potential to cause problems.
We’ll be looking at the debugging process and tools available in Perl in
Chapter 21, but finding and debugging your programs is only part of the issue.

Some statements and function calls in Perl will fail—not necessarily through a fault
of yours, Perl’s, or the operating system’s. For example, when you open a file, what
happens if the file doesn’t exist? Or if it’s a new file, what do you do if the operating
system doesn’t let you create a new file?

Your first question, though, will be: why actually check for errors in the first place?
The reason is quite simple—we need to stop our script from doing something we (or
the user) don’t expect it to do, or from potentially damaging something we didn’t
expect. Updating a database from a series of text files when one of those text files may
be unreadable could have serious consequences.

It’s probably dangerous to continue the script under these circumstances, so we
now have two problems to resolve—first, how do you identify an error, and second,
what do you do with the error once you’ve identified it?

In this chapter we’ll aim to answer those questions. To that end, we’ll be looking at
the basics and mechanics of error checking and verification in Perl and at the different
tricks and tools that can be used to help in that process.

Adding Error Checking to Your Scripts
We’ve already seen some examples of error-checking mechanisms in Perl, and you
should already be adding error-checking processes to your scripts as you write them.
It doesn’t take long to get into the habit of always adding even basic error-checking
sequences as you type, but you need to know which functions deserve checking and
how to check and verify their operation.

Error Checking Methods
Most of the basic functions and keywords within Perl and many of the standard CPAN
extension modules follow the same basic format—a value is returned of true if the
function completed successfully or of false if there was an error. You can identify and
trap an error in a number of different ways.

Using if
The if statement is the obvious choice when you need to check the return value from a
statement; for example:

if (open(DATA,$file))

{

...

}

270 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

else

{

die "Woah: Couldn't open the file $!";

}

This procedure is most useful when you want to be able to account for two possible
outcomes—if the statement works, then continue and execute these statements; if it
doesn’t succeed, then do these statements instead.

Alternatively, we can reduce the statement to one line in situations where it makes
sense to do so; for example:

die "Woah: Something went wrong\n" if (error());

See the upcoming section on “Error Checking Guidelines” for more information on
when, and indeed whether, to use this format.

Using unless
The unless function is the logical opposite to if: statements can completely bypass the
success status and only be executed if the expression returns false. For example:

unless(chdir("/etc"))

{

die "Can't change directory!: $!";

}

The unless statement is best used when you want to raise an error or alternative only if
the expression fails. The statement also makes sense when used in a single-line statement:

die "Can't change directory!: $!" unless(chdir("/etc"));

Here we die only if the chdir operation fails, and it reads nicely.

Using the Conditional Operator
For very short tests, you can use the conditional operator:

print(exists($hash{value}) ? 'There' : 'Missing',"\n");

It’s not quite so clear here what we’re trying to achieve, but the effect is the same as
using an if or unless statement. The conditional operator is best used when you want
to quickly return one of two values within an expression or statement.

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 271
FU

N
D

A
M

EN
TA

LS

It’s not really an error trapping statement, since there’s not enough scope to do
anything, but it can be used to help communicate status information back to the user.
Consider the following example:

chdir("/tmp") ? print "Using /tmp\n" : warn "Can't use /tmp: $!";

Here it’s a useful way of highlighting a potential problem without actually doing
anything about it. The same basic principles can be used from within functions when
returning values:

return (@results) ? @results : undef;

Using Short-Circuit Logic
For many situations, especially when you want to immediately exit the script without
actually handling the error, the short-circuit capabilities of the or operator work best:

mkdir("./tmp",0755) or die "Can't make directory!: $!";

See “Symbolic Logical Or” in Chapter 3 for more details on why this works and the
related dangers.

The || symbolic logical or can also be used as a way to provide alternatives when
the first-choice option doesn’t work. For example, the line

$host = param('host') || $user->{prihost} || 'azus';

will use the browser-supplied value, then the user-configured value, and finally a
default value if the other options fail.

Error Checking Guidelines
There are some general guidelines for testing for errors in this way. The first guideline
is to make it obvious what you are testing and what you are trying to do. For example,
the statement

if (!open(DATA,$file))

will work fine, except that it would make more sense to use the unless statement, as in

unless(open(DATA,$file))

272 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 273
FU

N
D

A
M

EN
TA

LS

The difference is that the if statement reads “If I didn’t open,” and the unless
statement reads “Unless I can open.” It’s a minor difference but will make the code
easier to read and, therefore, easier to debug. Here’s another example that’s difficult
to read:

die "Couldn't change directory: $!" unless(chdir("/etc"));

This should be changed to

chdir("/etc") or die "Couldn't change directory: $!";

The second guideline is that you should make it obvious what the actual problem
was; simply reporting that there was an error isn’t enough, either for you to debug the
program, or for your user to rectify it. Where relevant, also include information on the
system error message, as provided by $!. Also remember the $^E variable, which
contains the extended OS error on non-Unix platforms. For example, the line

open(DATA,$file) or die "Can't open";

is useless compared to

open(DATA,$file) or die "Can't open $file: $!, stopped";

Coupled with this, you should always report an error to STDERR by using either
warn or die. The exception to this rule is when you working with a GUI or web-based
application, for which there is no logical STDERR file handle. See the end of this
chapter for information on reporting errors when no terminal interface is available.

What to Check
The paranoid would say “everything,” and the more relaxed and laid back would say
“nothing.” There are statements and operations that you should always check, whether
you are interested in the return value or not, if only to prevent your script from doing
something it shouldn’t:

� The open, close, and related statements that provide a conduit to the outside
world (including socket and tie) and external database connectivity

� Reading from or writing to a file or socket handle other than STDIN, STDOUT,
or STDERR

� Reading from or writing to STDIN, STDOUT, or STDERR if they have been
reassigned or redirected within the script

� Anything that makes changes to the operating system or file system, including
calls like unlink

� Anything that changes the environment in which you are operating
(for example, chdir and chroot) or modifies the %ENV hash

� Any system call not already covered—system calls always return their status,
so use it!

� Anything that relies on input or information supplied the user—don’t
automatically assume that users know what they are doing!

� Any calls to an external program, either through open, the qx operator,
or system

� The object type when a reference that points to an internal object is dynamically
generated—particularly vital for code references

Beyond the preceding list, it comes down to a case of how the operation will affect
the execution of your script. If the operation will affect the following statements, then it
needs to be traced and probably trapped to prevent it from it having a knock on effect.
As a good example, using zero as a division value will raise an error, so it’s a good idea
to check the value beforehand.

What Not to Check
This list is obviously the inverse of our previous list. Beyond avoiding things that we
don’t need to worry about, there are some less obvious elements of our scripts that we
can safely ignore. Most of the time, the things to avoid checking are those that will not
have an immediate effect on what we are trying to achieve.

We can summarize the limit of your checking procedures as follows:

� Don’t Check Things That Don’t Matter There are some things in your script
that just don’t merit checking, either because the return values don’t mean
anything or because they have little or no relevance for the execution of
your script.

� User Input When checking a user-supplied value, whether it’s from a simple
line input, a command line argument, or a web form, you should check that the
information is valid according to what you expect. For example, when accepting
a name from standard input, we only need to verify that we received some
input; we don’t need to worry about whether it’s actually a name.

Substitution/Transliteration When modifying a variable through the substitution or
transliteration operators, don’t bother checking that the operation completed successfully,
unless you specifically want to match or identify regular expression elements.

274 P e r l : T h e C o m p l e t e R e f e r e n c e

When to Stop Checking
There are times when you can go too far. In the script we modified, for example, we
check the result when close is called, but nowhere did we actually check that the
number of bytes that we read from the file matched the number of bytes in the file
when we started. Checking that information is pointless—either we’ll read everything
from the file, or an error will be raised at some point (in this instance, probably when
we try to close the file). On the other hand, there are situations in which checking to
that level of granularity would be vital—transferring data over a network connection,
for example.

Don’t Check Things Twice
There’s no point in checking the same thing twice in two different ways. Usually there
is a simpler, one-shot solution that will identify the error for us. Here’s a common
mistake made by some programmers:

die "$file doesn't exist!" unless (-e $file);

open(FILE,$file) or die "Can't open $file: $!";

Aside from the fact that the second line would never be reached, the chances of the
status of the file changing between the two lines is pretty remote. Furthermore, the first
test may well pass if the file exists, even though it might not necessarily be readable. By
checking the return value of open, we actually verify that the file can be opened and
read by Perl, not just the file’s status.

Here’s another example where the checking is basically verifying the same
information, albeit at different levels each time:

if ($name)

{

if (length($name) > 0)

{

if ($name =~ /[a-zA-Z0-9]+/)

{

print "Hello $name\n";

}

}

}

The regular expression will tell us whether the information that was supplied was
valid or not. Should the expression match fail, then we’ll already know that either it
didn’t match or that the supplied value wasn’t long enough.

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 275
FU

N
D

A
M

EN
TA

LS

276 P e r l : T h e C o m p l e t e R e f e r e n c e

Functions, Return Values, and Nesting
If you’ve followed the guidelines in Chapter 5, you already know that you can improve
your scripts and reduce the number and effects of bugs in them by dividing and
debugging the individual components. You know as well that the functions should
ideally handle errors by returning the error to the caller and not by using their own
error-handling statements to report problems (there are some exceptions; see
“Reporting Errors Within Modules” later in this chapter). Therefore, in checking for
errors when calling one of your own functions, you should avoid situations like this:

sub formatmessage

{

my ($msg) = @_;

if ($msg)

{

return "Hello $msg\n";

}

else

{

warn "No message!";

return undef;

}

}

$message = formatmessage(undef);

if ($message)

{

print $message;

}

else

{

warn "Invalid message!";

}

If we run this script, we get this:

No message! at t.pl line 10.

Invalid message! at t.pl line 22.

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 277
FU

N
D

A
M

EN
TA

LS

We’ve checked the same thing twice, once within the function and again with the
returned value in the main script. This procedure could be avoided completely by just
allowing the caller to handle the error condition and report the problem.

There are exceptions to this rule. There are occasions when it makes more sense
to trap and if necessary report a problem within the function itself, yet still report an
error condition back to the caller that could, if necessary, be trapped. In the code that
follows, for example, we have a function that reads information from a file and returns
it to the caller.

sub template

{

my $data = '';

if (open(DATA,"template"))

{

$data .= $_ while (<DATA>);

close(DATA);

return $data;

}

else

{

return '';

}

}

print template();

If the template file can’t be opened, an empty string is returned—the error is still
reported and indeed logged against the function in which the error occurs, but we
ignore the error in the caller. We could have trapped the information and provided
an alternative, but in this case it’s safe to ignore the error.

Error Messages and Numbers
When reporting an error, it’s useful to supply the error that was returned by the
operating system so that the problem can be identified. For example, when opening a
file, the error could be caused by nonexistence of the file or by the user’s privileges not
allowing access to the file. Perl uses the special $! variable to hold the error number or
error string for the last system error that occurred.

For example, we could update our open error message to

open FILE, 'myfile.txt' or warn "Didn't open the file: $!\n";

Whether the variable returns a numerical value or a string depends on the context in
which it is used. If Perl is expecting a numerical value, then the variable returns the
numerical error code. For example, the modified statement

open FILE, 'myfile.txt' or warn "Didn't open the file: ", 0+$!, "\n";

will return an error code of 2 if the file doesn’t exist.
When called in a string context, the variable returns the corresponding error code

string. The information for the error codes comes from the operating system’s own
headers, and the message contents and corresponding numbers will vary across
different systems.

If required, you can set the value of $! in order to determine the error messages for
a platform. The same trick can also be used if you want to set the error message and
exit value for die; for example,

unless(open(DATA,$file))

{

$! = 1;

die "Couldn't open the file!";

}

will give an exit value of 1 from the script when it terminates.
For platform-specific error messages or extended error messages from outside

Perl’s normal execution space, you can use the $^E variable. This variable holds
errors raised external to Perl or the functions that Perl uses to communicate with the
operating system. Under Windows, for example, the $^E variable will usually hold the
information that would otherwise be returned by the statement

Win32::FormatMessage(Win32::GetLastError());

However, don’t rely on the value of $^E always being populated—it’s quite
possible that the value will always be undefined, regardless of the result of the
previous system call.

278 P e r l : T h e C o m p l e t e R e f e r e n c e

Reporting Errors Within Scripts
The most obvious solution when you want to report an error is to use the print
function and either send the output directly to STDOUT or redirect it to STDERR.
One advantage of print over the normal warn and die functions is that the output can
also be redirected to another, previously opened file that you are using to log errors.

The more usual method, however, is to report the error directly to STDERR using
the warn and die functions. The basic format for both functions is

warn LIST

die LIST

In essence, the two functions are identical, and they both follow the same basic rules:

� The supplied LIST is concatenated and then printed to STDERR.

� If the final value to LIST does not end with a \n character, then the current
script name, line number, and input source line number (from an opened file)
are appended.

� If LIST is empty and $@ already contains a value (from an earlier eval call),
then the string “\t…propagated” (for die) or “\t…caught” (for warn) is
appended to $@ and then printed with the current script name and
line number.

We’ll be returning to this last item later, as it applies specifically to the use of warn and
die with an eval statement.

The major difference between the two functions is that warn only raises an error,
whereas die raises an error and calls exit.

The Warn Function
The warn function just raises a warning—a message is printed to STDERR, but no
further action is taken. Aside from the rules already given, the warn function adds the
following rule:

� If LIST is empty and $@ does not contain a value, then the string “Warning:
something’s wrong” and the source file and line number are printed.

Otherwise, the function is fairly straightforward:

chdir('/etc') or warn "Can't change directory";

FU
N

D
A

M
EN

TA
LS

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 279

280 P e r l : T h e C o m p l e t e R e f e r e n c e

The Die Function
The die function works just like warn, except that it also calls exit. Within a normal
script, this function has the effect of immediately terminating execution. The return
code given by the script when die is called depends on the context. If the $! error
variable contains a value, it is used as the error code. If $! is zero, then the value of $!
shifted to the right eight times ($! >> 8) is used. This correctly prints the error number
retrieved from an external program execution via backticks. If the value is still zero,
a value of 255 is passed to the exit function.

Beyond the rules given, the die function also adds the following rule:

� If LIST is empty and $@ is undefined, then the string “Died” is printed.

The function can be used in an identical fashion to warn:

chdir('/etc') or die "Can't change directory";

It’s generally a good idea to add “stopped” or something similar to a die message
just to make sure that it’s obvious the script has abnormally terminated.

Directives and Tokens
The special tokens __FILE__ and __LINE__ contain the currently executing line number
and the file in which the line appears. These tokens are automatically populated by
Perl and are the same tokens actually used by the die and warn functions when you
supply a string not terminated by a newline character. For example,

chdir('/etc')

or die "Can't change dir in ",__FILE__," line ", __LINE__, "\n";

If you failed to change the directory, this would print

Can't change dir in adduser.pl line 35

You can change the values that these tokens are populated with by using a special type
of comment that includes a “line directive”; for example,

line 200 "Parsing engine"

die "Fatal error";

produces the following:

Fatal error at Parsing engine line 200

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 281
FU

N
D

A
M

EN
TA

LS

It is important to note that the line number given here just resets the number for the
following line of code—three lines down and an error would be reported as occurring
on line 202. The line and file information is unique to the current input/source file, so
when using die or a similar function, the information will be reported accordingly.

Also, because the line directive updates the __FILE__ and __LINE__ tokens, which
are themselves used by die and similar functions, the modifications will work across all
of the functions and tools used to report errors.

See “Comments” in Chapter 3 for more information on line directives and how they
are identified.

Reporting Errors Within Modules
Although I’ve already stated that you should be using return values from functions to
relate errors back to the caller, there are times when you need to raise an error within
the confines of the module in which it appears. By highlighting a module-specific error,
you can more easily track down the problem and also raise errors within a module that
are too significant to be safely trapped through the use of an if statement.

There are two different situations we need to be able to handle:

� Reporting an error in a module that quotes the module’s filename and line
number—this is useful when debugging a module, or when you specifically
want to raise a module-related, rather than script-related, error.

� Reporting an error within a module that quotes the caller’s information so that
you can debug the line within the script that caused the error. Errors raised in
this fashion are useful to the end-user, because they highlight the error in
relation to the calling script’s origination line.

The warn and die functions work slightly differently than you would expect when
called from within a module—the __LINE__ and __FILE__ tokens are populated with
the information about the module file, not the calling script. This causes a problem
when you want to identify the line within the original script that triggered the problem.
For example, the simple module

package T;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/function/;

use Carp;

sub function

{

warn "Error in module!";

}

1;

when called from a script

use T;

function();

produces the following error message:

Error in module! at T.pm line 11.

This is more or less what you might expect, but not necessarily what you want.
From a module programmer’s perspective, the information is useful because it helps
to point to a bug within the module itself. For an end-user, the information provided
is fairly useless, and for all but the hardened programmer, it completely pointless.

Assuming that we know the module has only been imported from a calling script,
we could use the caller function to identify the parent and then report the error. This is
messy, and it also requires that you know the level to which the module has been called.

The solution is the Carp module, which provides a simplified method for reporting
errors within modules that return information about the calling script—not the module.
The Carp module provides four functions: carp, cluck, croak, and confess. With each
function, the location of the error is specified relative to the script or package that called
the function. For errors more than one level deep, it doesn’t return the information on
the calling script unless you use the cluck or confess function to report a stack trace.

The Carp Function

carp "Error in module!";

The carp function is the basic equivalent of warn and prints the message to
STDERR without actually exiting the script. The module actually uses warn, so the
same basic rules are followed. Thus the preceding example would report the following:

Error in module! at test.pl line 3

282 P e r l : T h e C o m p l e t e R e f e r e n c e

Note that the function will always return the call that originated the error. If the script
test.pl calls the module S which in turns calls the module T, and this is where carp is
called, then carp will return the call in S that triggered the error.

The Cluck Function
The cluck function is a sort of supercharged carp, it follows the same basic principle
but also prints a stack trace of all the modules that led to the function being called,
including information on the original script. The cluck function is not exported by
default by the module, so you’ll need to import it explicitly. Following on from our
test.pl->S->T example, we’d get this:

Error in module! at T.pm line 11

T::function() called at S.pm line 13

S::raise() called at test.pl line 3

The Croak Function
The croak function is the equivalent of die, except that it reports the caller one level up:

croak "Definitely didn't work";

Like die, this function also exits the script after reporting the error to STDERR:

Error in module! at S.pm line 13

As with carp, the same basic rules apply regarding the including of line and file
information according to the warn and die functions.

The Confess Function
The confess function is like cluck; it calls die and then prints a stack trace all the way
up to the origination script.

confess "Failed around about there";

For example:

Error in module! at T.pm line 11

T::function() called at S.pm line 13

S::raise() called at t2.pl line 3

C h a p t e r 9 : E r r o r s a n d T r a p p i n g T h e m 283
FU

N
D

A
M

EN
TA

LS

This page intentionally left blank.

Part II
Programming with Perl

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 10
Complex Data
Structures

287

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Perl’s base data types are relatively flexible, and they can be used to store and hold
all sorts of information—the hash is by far the most popular and practical, as
it often solves many of the problems associated with processing large quantities

of information.
However, there are times when what you need is to hold even more complex data

types—you need to be able to create your own data types. Perl actually provides this
facility through a system of references. A reference points to another data type—scalar,
array, hash, etc.—and because a reference is in fact just a scalar variable, you can embed
references in arrays and hashes. Within Perl, you have lots of options for creating data
structures; and this chapter looks at both the simple base structures of arrays and hashes,
and the more complex nested structures, references, and objects.

In this chapter, we’ll start by looking at the pack function, which can be used to store
information into a “packed” structure. We’ll be looking at it again in Chapter 13 when
we see how it can be used for fixed-length databases. In fact, pack is a much more versatile
tool that allows us to pack and unpack the structures used in C for defining complex
records without resorting to the objectivity offered by C++.

We’ll then move on to references—these form the core of any complex data structure
and, in turn, also provide the basis for Perl’s object system. Objects are an intelligent type
of data structure that, through programming, know their own structure and how to
manipulate it. Unlike other languages, Perl does not enforce its objectivity, but it is
beginning to be a driving force behind the development of the language.

The last part of the chapter looks at the tie system—this is an object-based interface
that allows you to tie internal data structures, such as arrays and hashes (and by design
objects), to external data. For example, suppose you want to tie an internal array to a
list of files in a directory, or a hash to the table of an external database. The tie system
handles the requests and conversion of information from operations, such as assigning
values and retrieving values, into the correct commands to operate on the external
data source.

Accessing Packed Data Structures
When storing information, and especially when exchanging information, it is essential
to use a standardized format. The only recognized standardized format is binary, but
converting textual and numerical data into a binary format is a difficult process to get
right. Perl supports two functions that will do the conversion for you: pack converts a
list into a binary structure, and unpack converts it back into a list.

pack EXPR, LIST

The EXPR is the template for the binary structure you want to create. The template
is composed of characters and numbers that determine the type and count of a specific
data type. For example, 'a12 l' would pack a string into a null-padded 12-byte sequence,

288 P e r l : T h e C o m p l e t e R e f e r e n c e

immediately followed by a packed long integer. The resulting binary string could then
be unpacked at a later date. The packing format matches that used by C structures (and
unions) and other packed formats, such as IP addresses. The individual data types are
specified using the characters shown in Table 10-1.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 289
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Character Description

@ Null fill to absolute position.

a An ASCII string, will be null padded.

A An ASCII string, will be space padded.

b A bitstring (ascending bit order).

B A bitstring (descending bit order).

c A signed char (8-bit) value.

C An unsigned char (8-bit) value.

d A double-precision float in the native format.

f A single-precision float in the native format.

H A hex string (high nibble first).

h A hex string (low nibble first).

i A signed integer value.

I An unsigned integer value.

l A signed long value (32 bits).

L An unsigned long value (32 bits).

N A long (32 bits) in “network” (big-endian) order.

n A short (16 bits) in “network” (big-endian) order.

p A pointer to a null-terminated string.

P A pointer to a fixed-length string.

q A signed quad (64-bit) value.

Q An unsigned quad (64-bit) value.

s A signed short value (16 bits).

S An unsigned short value (16 bits).

Table 10-1. pack Format Characters

To use pack, you supply a format that lists the data types that you want to pack
into a single binary structure. Each element of the supplied list is packed according
to the format specification. Specifications are of the form 'X#', where X is one of the
characters from Table 10-1, and # is a number specifying the length of the format.

Note that each format specification applies to each element within the supplied list,
so the format 'a20' packs a single element to a null-padded size of 20 characters. The
format 'a20a20' packs two elements, each null padded and each 20 characters in size.

However, the repeat for individual character types applies only to the “a,” “A,”
“b,” “B,” “h,” “H,” and “P” types. For “a” and “A,” it packs a string to the specified
length. For “b” and “B,” it packs a string that many bits long; for “h” and “H,” that
many nibbles (a nibble is 4 bits) long. For all other types, the function gobbles up that
number of elements, such that the template 'i20' will pack up to 20 elements from the
supplied list as signed integers. If you specify * as the repeat count, then it gobbles up
all the remaining elements in the list.

Using the / character within EXPR allows you to specify the size of the following
value according to length/string. For example,

pack 'C/a','\04Martin';

returns 'Mart'. The leading character (defined by the octal '\04) is extracted by 'C/',
which is then used as the repeating value for 'a'. The combination effectively changes
the preceding expression to

pack 'a4','Martin';

290 P e r l : T h e C o m p l e t e R e f e r e n c e

Character Description

u A uuencoded string.

U A Unicode character number (encodes internally to UTF8).

V A long (32 bits) in “VAX” (little-endian) order.

v A short (16 bits) in “VAX” (little-endian) order.

w A BER compressed integer.

x A null byte (effectively skips forward one byte).

X Back up a byte.

Z A null-terminated (and null-padded) string of bytes.

Table 10-1. pack Format Characters (continued)

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 291
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Note that the variable-length assertion only works with the A, a, or Z formats; if you
supply * (as in a*), the * will be ignored.

The integer types s, S, l, and L may be immediately followed by a ! suffix to signify
native shorts or longs. The actual sizes (in bytes) of native short, int, long, and long
long C data types on the current platform are always available through the Config
module. For example, to get the length (in bits) of the int data type:

use Config;

print $Config{intsize},"\n";

The floating point packed values are not platform independent, so don’t rely on
these values for exchanging information between different platforms. You might try
using a packed string instead and let Perl handle the conversion of the string into a
platform-dependent double value. This eliminates the double interpretation problem
when transferring information between different platforms as you are relying on strings
and Perl's built-in algorithm for converting scalar values between strings and numbers.
Also be aware that Perl uses doubles internally for floating point numbers, so packing
a double into a float and then unpacking again may not yield the same value.

Values can be unpacked with the unpack function:

unpack FORMAT, EXPR

This returns a list of values extracted using the specified FORMAT from the packed
binary string EXPR.

The pack and unpack functions are primarily used for converting between different
number formats, for creating fixed-length records for use internally and in external
databases, and also for accessing stored C structures within Perl.

The first use, converting between different number formats, makes use of the
number formats supported by the pack function. For example, to convert a 32-bit
binary string into a number:

print unpack('I',pack("B32",'0' x 24 . '00001111')),"\n";

This should print 15—the value of 1111 in binary.
The second use, creating fixed-length records, makes use of the fact that you can

specify field widths and store these fixed-width fields in a file. There are other issues
surrounding this, so the information on this and other database methods in Perl are
discussed in Chapter 13.

The third use, accessing stored C structures within Perl, is more complex, but it
uses many of the core principles you already know. All you need to do is know how

to read a C structure, and then use the pack and unpack functions to convert Perl lists
to and from the specified format. For example, the utmp structure, which is used to
store information about logins, has the following structure definition:

struct utmp {

char ut_user[8]; /* User login name */

char ut_id[4]; /* /etc/inittab id */

char ut_line[12]; /* device name */

short ut_pid; /* process ID */

short ut_type; /* type of entry */

struct exit_status ut_exit; /* The exit status of a process */

/* marked as DEAD_PROCESS. */

time_t ut_time; /* time entry was made */

};

This can be modeled within a pack template as "a8a4a12ssssl". The following script
outputs the information stored in the /var/adm/wtmp file, which uses the native
format of the previous structure:

my $packstring = "a8a4a12ssssl";

my $reclength = length(pack($packstring));

my @ut_types = qw(EMPTY RUN_LVL BOOT_TIME OLD_TIME

NEW_TIME INIT_PROCESS LOGIN_PROCESS

USER_PROCESS DEAD_PROCESS ACCOUNTING);

open(D,"</var/adm/wtmp") or die "Couldn't open wtmp, $!";

while(sysread(D,my $rec,$reclength))

{

my ($user,$userid,$line,$pid,$type,$eterm,$eexit,$time)

= unpack($packstring,$rec);

print("$user, $userid, $line, $pid, $ut_types[$type], ",

"$eterm, $eexit, ", scalar localtime($time),"\n");

}

close(D) or die "Couldn't close wtmp, $!";

The unpack function takes the binary string created by the C structure and returns
it as a list, which you can then use to print out the information.

You can also use the unpack function to provide a checksum for a given byte
stream. The format is to prefix the packed type with %number, where number is

292 P e r l : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L

the number of bits to use for the checksum. For example, to calculate the checksum for
a character string:

$checksum = unpack("%32C*", $string);

The same trick can be used to count the number of set bits in a bit vector (such as
that created by vec):

$bits = unpack("%32b*", $bitset);

There are other uses for the pack and unpack functions, and we’ll see some
examples of these in the next few chapters.

References
A reference is, exactly as the name suggests, a reference or pointer to another object.
That’s essentially as complicated as it gets. References actually provide all sorts of
abilities and facilities that would not otherwise be available. For C programmers using
Perl for the first time, a reference is exactly like a pointer, except within Perl it’s easier
to use and, more to the point, more practical.

Before we examine the details of references, it’s worth covering some of the termi-
nology. There are two types of references: symbolic and hard. A symbolic reference
enables you to refer to a variable by name, using the value of another variable. For
example, if the variable $foo contains the string "bar", the symbolic reference to $foo
refers to the variable $bar. We’ll look at more examples later.

A hard reference refers to the actual data contained in a data structure. However,
the form of the data structure to which it points is largely irrelevant. Although a hard
reference can refer to a single scalar, it can also refer to an array of scalars, a hash, a
subroutine, or a typeglob.

There are several ways to create references to different structures, and we’ll examine
these later. The act of extracting information from these structures is called dereferencing.
When you dereference a scalar reference, you are in fact referring to the original data
structure. The act of dereferencing information must be explicit. There is no implicit
dereferencing supported within Perl on any structure.

A reference is contained within a scalar; and because all other data structures
within Perl are essentially based on a scalar or extensions of a scalar, you can create
complex data structures. By using references, you can create complex, nested structures,
including arrays of arrays, arrays of hashes, hashes of arrays, and hashes of hashes.
The structures you create do not have to be two dimensional; you can have as many
dimensions as you like. There is no restriction for you to create an array of hashes.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 293

Remember that the array contains references, so individual elements of the array
could refer to an array or hash, or indeed, an array of arrays, a hash of hashes, and
so on. This enables you to create incredibly complex data structures with relative ease.

Creating Hard References
The unary backslash operator is used to create a reference to a named variable or
subroutine, for example:

$foo = 'Bill';

$fooref = \$foo;

The $fooref variable now contains a hard reference to the $foo variable. You can do the
same with other variables:

$array = \@ARGV;

$hash = \%ENV;

$glob = *STDOUT;

To create a reference to a subroutine:

sub foo { print "foo" };

$foosub = \&foo;

Of course, because you are assigning the references to a scalar, there is no reason why
you can’t place the information into any other scalar-based structure, and that includes
arrays and hashes. For example:

$foo = 'Bill';

$bar = 'Ben';

$xyz = 'Mary';

@arrayofref = (\$foo, \$bar, \$xyz);

The @arrayofref array now contains an array of scalars, and each scalar is a reference to
the three scalar variables.

Anonymous Arrays
When you create a reference to an array directly—that is, without creating an intervening
named array—you are creating an anonymous array. The scalar contains a reference that
does not have its own name. These are useful for creating complex structures, since you
can create an array, a hash, or a combination within the confines of a named variable within

294 P e r l : T h e C o m p l e t e R e f e r e n c e

a simple statement. This reduces the time it takes to code and also the time it takes for the
program to run (although the differences are pretty small for small, simple structures).

Creating an anonymous array is easy:

$array = ['Bill', 'Ben, 'Mary'];

This line assigns an array, indicated by the enclosing square brackets instead of the
normal parentheses, to the scalar $array. The values on the right side of the assignment
make up the array, and the left side contains the reference to this array. The significance
of this description is that you could put other data structures on the left side of the
assignment. We’ll examine examples of these later in this chapter when we look at
more complex data structures.

Remember that the significant element here is the use of square brackets around the
list of scalars to indicate an array, not a list. Thus, you can create more complex structures
by nesting arrays:

@arrayarray = (1, 2, [1, 2, 3]);

The @arrayarray now contains three elements; the third element is a reference to an
anonymous array of three elements. Furthermore, you can use the same basic notation
to create an array of arrays in a single reference:

$arrayarray = [1, 2, [1, 2, 3]];

This creates a reference to an anonymous array, whose third argument is a reference
to another 3-element anonymous array. The resulting reference is placed into $arrayarray.
Note as well that, as with all other arrays, you could equally have used expressions or
variables as elements in the arrays.

Anonymous Hashes
Anonymous hashes are similarly easy to create, except you use braces instead of square
brackets:

$hash = { 'Man' => 'Bill',

'Woman' => 'Mary,

'Dog' => 'Ben'

};

The same arguments for the anonymous array composer also apply here. You can use
any normal element—a string literal (as in the preceding code), an expression, or a
variable—to create the structure in question. Also note that the same principles for

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 295
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

arrays of arrays can be applied to hashes, too, but we’ll cover the specifics of nested
hash and array structures later in this chapter.

Note that this composition procedure only works when Perl is expecting a term—
that is, usually when making an assignment or expecting a hash or reference as an
element. Braces are not only used for creating anonymous hashes, but they are also
responsible for selecting hash subscript elements and for defining blocks within Perl.
This means you must occasionally explicitly specify the creation of an anonymous hash
reference by preceding the hash creator with a + or return:

$envref = +{ %ENV };

sub dupeenv{ return { %ENV } };

Anonymous Subroutines
An anonymous subroutine is used in many key situations within Perl. We’ll see perhaps
the most common examples in Chapter 14 when we examine the methods available
or handling signals. Again, the method for creating a reference to an anonymous sub-
routine is very straightforward:

$hw = sub { print "Hello World!\n" };

The new $hw variable now contains a reference to the anonymous subroutine, which
prints the “Hello World!” message on the screen.

The important thing to remember when creating an anonymous subroutine is that
you must have a trailing semicolon to end the declaration expression, unlike a typical
subroutine definition.

In essence, what this does is create a reference to a piece of code, which you can
execute directly using the reference. If you access the reference, then the subroutine
code you supplied will be executed, almost as if it was parsed by a do{} or eval{} block.

To dereference the anonymous subroutine (that is, to actually execute it), we need
to use the & character to denote the reference type:

&$hw;

This actually prints the “Hello World!” message. This is an example of dereferencing,
and we’re getting slightly ahead of ourselves; so we’ll take a step back and instead look
at another feature of anonymous subroutines, before we look properly at the process of
using hard references.

Closures A closure is a Lisp term, where an anonymous subroutine can be created,
and the resulting subroutine will execute within the same context as when it was
created. This only works with lexically scoped variables (those created with my),

296 P e r l : T h e C o m p l e t e R e f e r e n c e

and the results can provide you with some interesting facilities that provide alternative
ways for introducing and using information within an anonymous subroutine.

Consider the following code, in which an anonymous subroutine is created as the
return value from a function:

sub formatlist

{

my @list = @_;

return sub

{

my $title = shift;

print "$title: ", join(' ',@list),"\n";

}

}

$arguments = formatlist(@ARGV);

&$arguments('Command line');

If you run this within a script, you might get this:

Command line: -w -o file.txt

You’ll note that the contents of the @ARGV array, which was determined and
populated when the anonymous sub was created, are also available when you dereference
the function later.

Filehandles/Typeglobs
Creating a reference to a filehandle is a case of passing a reference to the corresponding
typeglob. This is, in fact, the best way to pass filehandles to or from subroutines, since
it has the optical effect of removing the ambiguity of the typeglob:

writelog(*LOG);

sub writelog

{

my $LOG = shift;

print $LOG scalar(localtime(time)),":",@_;

}

The alternative is to use a filehandle object and pass the object around instead.
We’ll see more on objects later in the chapter.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 297
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Dereferencing
The most direct way of dereferencing a reference is to prepend the corresponding data
type character ($ for scalars, @ for arrays, % for hashes, and & for subroutines) that
you are expecting in front of the scalar variable containing the reference. For example,
to dereference a scalar reference $foo, you would access the data as $$foo. Other
examples are

$array = \@ARGV; # Create reference to array

$hash = \%ENV; # Create reference to hash

$glob = *STDOUT; # Create reference to typeglob

$foosub = \&foo; # Create reference to subroutine

push (@$array, "From humans");

$$array[0] = 'Hello'

$$hash{'Hello'} = 'World';

&$foosub;

print $glob "Hello World!\n";

It’s important to get the semantics correct here. In the preceding $$array[0] and
$$hash{'Hello'} lines, the corresponding structures are not actually being dereferenced;
in fact, you are dereferencing the scalar to which the corresponding elements refer. We’ll
return to this in a moment. Also note that you do not have to explicitly dereference a
filehandle, since a reference to a typeglob points to an entry in the symbol table—see
Chapter 7 for more information on Perl symbol tables.

References and dereferences execute in order. A reference ($foo) to a string of the
form \\\"hello" can be dereferenced using $$$$foo—we need three $ characters to
dereference against each \ character, plus one for the actual reference scalar. However,
it’s unlikely you’ll be using individual scalar references in this form. When it comes to
more complex structures, there are different methods available, and these also get around
some of the difficulties surrounding the dereferencing of entire structures rather than
the individual scalars of which they are composed.

The second alternative for dereferencing a reference is to use BLOCK notation. This
works in a similar way to quotes, except that you use braces to “quote” the embedded
reference. Since the last statement in a block gives the block its return value, by putting
a reference as the only statement in a block, you end up returning the data type to which
the reference points. All you need to do is instruct Perl on how to interpret the returned
data. You can, therefore, rewrite the preceding examples as follows:

298 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 299
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

${$foo} = "Hello World";

push (@{$array}, "From humans");

${$array}[0] = 'Hello';

${$hash}{'Hello'} = 'World';

&{$foosub};

Using the block notation is trivial in these cases, but it makes more sense when you
want to identify a particular structure as a complete data type, not an element of a data
type. For example, the line

foreach $key (keys %$hash)

looks a bit cryptic compared to

foreach $key (keys %{$hash})

which is a little clearer.
This notation really comes into its own, however, when you are using nested

structures. Let’s assume, for the moment, that you have a hash of hashes, created
in a similar fashion to

$hash = { 'hash' => { 'first' => 1, 'second' => 2 } };

If you try to access the keys of the hash reference pointed to by the 'hash' element
in the parent hash reference, you might try

foreach $key (keys %$hash{'hash'})

However, Perl will report an error—because it interprets the hash element first and,
therefore, returns a scalar, not a hash reference. Instead, you need to write it as

foreach $key (keys %{$hash->{'hash'}})

Finally, the other alternative is to use the arrow operator, ->. This works only on
arrays or hashes, since the arrow operator (more correctly known as the infix operator)
provides an easier method for extracting the individual elements from both structures.

300 P e r l : T h e C o m p l e t e R e f e r e n c e

The benefit of the infix operator is that it does not require you to explicitly dereference
the original scalar. Therefore, you can rewrite the statements

$$array[0] = 'Hello';

$$hash{'Hello'} = 'World';

and

${$array}[0] = 'Hello';

${$hash}{'Hello'} = 'World';

as

$array->[0] = 'Hello';

$hash->{'Hello'} = 'World';

This is clearer than the other methods, but as usual, care should be taken to ensure you
are actually extracting or using the correct element from the array or hash.

The statements

$array[0];

and

$array->[0];

are not equal. The first is accessing the first element of the @array variable, while the
second is accessing the first element of the array pointed to by $array. The $array could
point to any array, named or anonymous. This makes the infix notation practical and
clear when using references directly within a subroutine that potentially needs to access
the information for a supplied reference.

To use one of the previous methods, you might use a subroutine like the one that
follows to print the first element of an array passed by reference:

sub first

{

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 301
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

$array = shift;

print ${$array}[0],"\n";

}

This is a little fussy and certainly less than clear, while this

sub first

{

print ${$_[0]}[0],"\n";

}

looks suspiciously like line noise, although it achieves the desired result. Using the
infix operator, the subroutine looks far clearer:

sub first

{

print $_[0]->[0],"\n";

}

Although still a little complex, it’s clearer that you are trying to access the first element
of the first argument passed to the function.

Determining a Reference Type
You can determine the type of variable that a particular reference points to by using the
ref function.

ref EXPR

ref

The function returns a true value (actually a string) if EXPR, or $_, is a reference.
The actual string returned defines the type of entity the reference refers to. The built-in
types are

REF

SCALAR

ARRAY

HASH

CODE

GLOB

LVALUE

For example, the code

$scalar = "Hello World\n";

$ref = \$scalar;

print ref $ref,"\n";

prints

SCALAR

The actual string value of a reference is a combination of the reference type (as
returned by ref) and its location in memory. For example, if you print the previous
reference, instead of dereferencing it,

print "$ref\n";

it will print out something like “SCALAR(0xaa472b4),” which doesn’t make a lot of sense.

Symbolic References
If you refer back to the start of this section, you will remember that a symbolic reference
was defined as the use of a scalar value as a string, which in turn gives a variable its
name. For example:

$var = "foo";

$$var = "bar";

Because $var is not a reference, the act of dereferencing a nonexistent reference is to
create a new variable with the name of the variable’s contents. So in the previous example,
you have set the value of $foo to "bar". In essence, you’ve done this:

$"$var" = "bar";

302 P e r l : T h e C o m p l e t e R e f e r e n c e

This statement doesn’t work, of course, and the eventual result should be clear. This
makes the system very powerful: you can name a variable or subroutine based on a
variable piece of information.

However, the problem with symbolic references is that it only takes a simple mistake
for you to inadvertently create a symbolic rather than a hard reference. It is, therefore,
important (if not imperative) that you check what you are doing or, better still, ask Perl
to do it for you. The use strict pragma enforces these checks for you. If you only want
to check references, then use

use strict 'refs';

in your script. See Chapter 19 for more information on pragmas.

Hashes and References
You must be careful when using references with hash keys. You cannot use a
hard reference as a hash key, because the hard reference will be converted to a
string for the benefit of the hash’s key. It’s unlikely that you will want a hash key
of “SCALAR(0xaa472b4)”, and even if you do, you cannot dereference the string
into the original variable anyway.

The only time this feature is useful is when you want to create a unique key within
a hash. The reference is guaranteed to be unique, since you can’t have two data types at
the same location. What you can’t do is dereference the key back to its original variable.

Complex Structures
Beyond the normal constraints of arrays and hashes, you can also create complex
structures made up of combinations of the two. These are nested, or complex, structures,
and they can be used to model complex data in an easy-to-use format.

What actually happens with a nested structure is that Perl stores the nested data
type as a reference to an anonymous variable. For example, in a two-dimensional
array, the main array is a list of references, and the subarrays are anonymous arrays to
which these references point. This means that an “array of arrays” actually means an
array of references to arrays. The same is true of all nested structures; and, although
it seems complex, it does provide a suitably powerful method for creating complex,
nested structures.

You can create any number of dimensions in an array or hash, simply by extending
the existing notation. Perl will handle the rest of the work for you. There are, of course,
some complexities and tricks associated with accessing and using these complex structures,
and we’ll look at the four basic types: arrays of arrays, hashes of hashes, arrays of hashes,
and hashes of arrays.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 303
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Arrays of Arrays
An array of arrays is a two-dimensional structure and the most basic of those available.
We’ll be using the array of arrays as a core reference point for many of the nested
structures, including how to access them, use them directly, and use arrays and array
references to access the entire array and array elements. If you want to use nested
structures, you should read this section first. We’ll cover the differences and abilities
of the other nested structures later.

An array of arrays can be used to hold any list of nested information. For example,
users on a system have a list of individual users. The first dimension is the main array,
and the second dimension is the array of group members. Another alternative is to
think about the classic Battleship game. Individual squares on the battleship grid
can be referred to by an X,Y reference. You could use an array of arrays to hold this
information.

Populating a list of lists is a case of including anonymous arrays or existing arrays
within an existing array structure. For our example, we’ll use a tic-tac-toe (or Noughts
and Crosses, depending on your nationality) board:

@tictactoe = (['X','O','O'],

['O','O','X'],

['O','X','X']

);

This creates a nested set of arrays within a parent array, @tictactoe. To print out the
bottom-right corner:

print $tictactoe[2][2];

Alternatively, you can place the array directly into a reference:

$tictactoe = [['X','O','O'],

['O','O','X'],

['O','X','X']

];

Note the use of the square brackets around the nested arrays, which indicates to Perl
that you are creating an anonymous array and you need to return a reference to it.
You assign the reference to the $tictactoe scalar, and to access the bottom-right corner,

print $$tictactoe[2][2];

304 P e r l : T h e C o m p l e t e R e f e r e n c e

Note the semantics here. The leading dollar sign shows that you are dereferencing;
and, therefore, Perl knows that the array specification must be to locations within an
array reference.

In fact, Perl automatically assumes you are dereferencing if you use pairs of brackets
together. Perl knows that this indicates a structure to a list of references, whether that’s
a hash or an array, so the infix operator (or block names) are implied. This doesn’t
prevent you from using them if you want to. The following lines are also equal:

print $tictactoe->[2][2];

print $tictactoe->[2]->[2];

The infix operator here tells Perl that you are dereferencing, so the leading dollar
sign is not required. But note that the following are wrong:

print $tictactoe[2][2];

print $tictactoe[2]->[2];

In the first, you haven’t specified the return format—you still need to tell Perl that it’s a
scalar that you’re dereferencing. In the second, the dereferencing is implied, but you’re
trying to dereference the array embedded in a standard array, not an anonymous one.

Like many other similar features, the elimination of the dereference operator is a
direct attempt to improve the overall readability of the code. The first form, shown here,

print $tictactoe->[2][2];

print $tictactoe->[2]->[2];

looks cleaner and should appeal to C programmers, since this is the same format used
in C for multidimensional arrays. The other formats would perhaps make more sense
to a hardened Perl programmer, and they help if you are particularly bothered about
the notation of one reference point to another.

We’ll need a more complex source for our next examples. I’ve used the /etc/passwd
file here, since it’s the most readily available for most people. However, the principles
will apply to any data you want to map into an array of arrays. The individual “rows”
of our array (the first dimension) will be each record; the individual fields will form the
columns (the second dimension).

The following script populates our database. I’ve assumed that the file is already open.

while(<PASSWD>)

{

chomp;

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 305
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

306 P e r l : T h e C o m p l e t e R e f e r e n c e

push @passwd,[split /:/];

}

This creates an array @passwd, and each field contains a reference to an array, the
contents of which is the list of values returned by split. Note the notation again here—
the square brackets indicate that you are returning a reference to an array.

To put the information directly into an array reference:

open(PASSWD,"/etc/passwd");

while(<PASSWD>)

{

push @{$passwd}, [split /:/];

}

You could also set it more explicitly:

while(<PASSWD>)

{

chomp;

foreach $field (split /:/)

{

push @{$passwd[$index]},$field;

}

$index++;

}

This demonstrates another important point that carries through all nested references.
The call to push requires an array as its first element, and it must begin with @; so you
must quote the reference to the nested array using block notation. Furthermore, note
the location of the index for the array reference: it’s contained within the block quotes.
This is because Perl would see the subscript reference and assume it was returning a
scalar, not an array, irrespective of the leading character you have supplied.

What the example does show is the addition of fields, individually, to the row of an
array. It uses push again, but there’s no reason why you can’t also track your location
in the nested array:

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 307
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

while(<PASSWD>)

{

chomp;

@fields = ();

@fields = split /:/;

foreach $field (0..@fields)

{

$passwd[$index][$field] = $fields[$field];

}

$index++;

}

You make sure you empty the array before you fill it with the information from
split. This prevents you from putting undefined data into the structure, since the
assignment will only update fields, not actually empty them. Then it’s a case of
assignments to the array of arrays.

Another point to note here is that if you create an entry in an index that doesn’t
currently exist within the structure (as with any other array), Perl will create the
intervening elements, filling them with undef as it goes. For example:

$passwd[120][0] = 'martinb';

Assuming $passwd has not already been defined or populated, it now contains
a reference to an array 121 elements in size, the first 120 of which contain undef.

Now, if you turn to accessing the information, there are also complications.
You can’t do this

print @passwd;

for the original form, or

print $passwd;

because you’ll get a list of hash references, and a reference to a hash back as a string
value. This is one of the most common mistakes when using nested structures or just

308 P e r l : T h e C o m p l e t e R e f e r e n c e

references in general. Perl doesn’t dereference for you, so you need to use a loop to
progress through the parent array.

Try using the simpler array, rather than a reference to an array, first:

foreach $array (@passwd)

{

print join(':',@$array);

}

or

foreach $array (@{$passwd})

{

print join(':',@$array);

}

Both of these work because the individual elements of the parent array are references,
which you can dereference using the correct prefix. If you want to step through the
child array as well, then you might use something like this:

foreach $x (0..@{$passwd})

{

foreach $y (0..@{$passwd[$x]})

{

print "$x, $y = $passwd[$x][$y]\n";

}

}

The same rules for previous constructs apply here, too. You must use the block
notation to ensure you get the correct array returned in the foreach statement. The
reference to the subarray requires you to insert the subscript operation in the block,
not outside of it.

Finally, you need to think about accessing the individual slices of a nested array.
If you were to use

@new = @passwd[0..4];

the @new array would contain the first five references contained in @passwd. If you
want to slice the fields for an individual record, you can either use loops or use a block

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 309
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

to indicate the array reference you are extracting from, and then use the normal slice
notation to extract the elements from the embedded array reference:

print @{$passwd[0]}[4..7];

To obtain a slice in the opposite direction—that is, the entire column from
your structure—you have to use loops. The following three versions don’t work:

print @{{$passwd}[0..7]}[0];

print @{$passwd[0..7]}[0];

print @{$passwd}[0..7][0];

Instead, you need to use a loop:

@users = ();

foreach $x (0..@{$passwd})

{

push @users,$passwd[$x][0];

}

Or, to create a completely nested array of arrays consisting of a two-dimensional slice,
you need either to use two nested loops, or use the slice notation used previously:

@userhome = ();

foreach $x (5..20)

{

push @userhome, [@{$passwd[$x]}[0,6]];

}

The remainder of the nested structures use the same techniques you’ve seen here,
albeit with some minor modifications.

Hashes of Hashes
Earlier in this chapter, you saw how information in a hash could be handled and
accessed almost immediately. With some clever use of the key strings, you can also
emulate a simple database system internally within a hash, but handling the keys is
complex. By using a hash of hashes, you make the structures easier to use and more
practical when storing and accessing the information.

The format for creating a hash of hashes is much the same as that for arrays of
arrays. In the following example, I’ve created a hash of hashes that describes a company
organization. The primary keys are the departments, and the nested keys are the employee
names. The values then contain the corresponding employee’s job title.

%company = ('Sales' => {

'Brown' => 'Manager',

'Smith' => 'Salesman',

'Albert' => 'Salesman',

},

'Marketing' => {

'Penfold' => 'Designer',

'Evans' => 'Tea-person',

'Jurgens' => 'Manager',

},

'Production' => {

'Cotton' => 'Paste-up',

'Ridgeway' => 'Manager',

'Web' => 'Developer',

},

);

You can also use the nested format, which is also the way you would access the
individual data types:

$company{'Sales'}{'Brown'} = 'Manager';

$company{'Sales'}{'Smith'} = 'Salesman';

$company{'Sales'}{'Albert'} = 'Salesman';

$company{'Marketing'}{'Penfold'} = 'Designer';

$company{'Marketing'}{'Evans'} = 'Tea-person';

$company{'Marketing'}{'Jurgens'} = 'Manager';

$company{'Production'}{'Cotton'} = 'Paste-up';

$company{'Production'}{'Ridgeway'} = 'Manager';

$company{'Production'}{'Web'} = 'Developer';

Next is a more practical example, which reads the contents of the file and then
outputs the contents in a formatted form using a hash of hashes to store the information.
Because you read the entire file into a hash of hashes, you can then sort and manipulate
the information before you report. This would be difficult using any of the previous
methods you have seen. This example uses the /etc/passwd file, not only because it
is easily available, but also because it can be useful to sort the file into a more friendly
format. Let’s look at the output first:

310 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 311
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

root:x:0:1:Martin Brown:/:/sbin/sh:

smtp:x:0:0:mail daemon user:/::

daemon:x:1:1:0000-Admin(0000):/::

bin:x:2:2:0000-Admin(0000):/usr/bin::

sys:x:3:3:0000-Admin(0000):/::

adm:x:4:4:0000-Admin(0000):/var/adm::

uucp:x:5:5:0000-uucp(0000):/usr/lib/uucp::

nuucp:x:9:9:0000-uucp(0000):/var/spool/uucppublic:/usr/lib/uucp/uucico:

listen:x:37:4:Network Admin:/usr/net/nls::

lp:x:71:8:0000-lp(0000):/usr/spool/lp::

mc:x:1000:1000:Martin C Brown:/users/mc:/usr/local/bin/bash:

martinb:x:1000:1000:Martin C Brown:/users/martinb:/usr/local/bin/bash:

alias:*:7790:2108::/usr/local/qmail/alias:/bin/true:

qmaild:*:7791:2108::/usr/local/qmail:/bin/true:

qmaill:*:7792:2108::/usr/local/qmail:/bin/true:

qmailp:*:7793:2108::/usr/local/qmail:/bin/true:

qmailq:*:7794:2107::/usr/local/qmail:/bin/true:

qmailr:*:7795:2107::/usr/local/qmail:/bin/true:

qmails:*:7796:2107::/usr/local/qmail:/bin/true:

nobody:x:60001:60001:uid no body:/::

noaccess:x:60002:60002:uid no access:/::

And here’s the script:

open(DATA,"</etc/passwd") || die "Couldn't open file properly";

my (%passwd, $ref);

while(<DATA>)

{

chomp;

@fields = split /:/;

$login = shift @fields;

$passwd{$login}{'passwd'} = shift @fields;

$passwd{$login}{'uid'} = shift @fields;

$passwd{$login}{'gid'} = shift @fields;

$passwd{$login}{'name'} = shift @fields;

$passwd{$login}{'home'} = shift @fields;

$passwd{$login}{'shell'} = shift @fields;

}

close(DATA) || die "Couldn't close file properly";

foreach (sort { $passwd{$a}{'uid'} <=> $passwd{$b}{'uid'} } keys %passwd)

{

print "$_:";

foreach $field (qw/login passwd uid gid name home shell/)

{

print "$passwd{$_}{$field}:";

}

print "\n";

}

There are some important parts of this script that we need to cover. A standard
sort block statement is used, but you want to sort on the nested hash—not the
numerical sequence used to store each record. The sort statement works because the
comparison will return the sorted primary key (as selected via the $a and $b sort
variables), even though what you are actually sorting on is the value of the nested hash.

If you wanted to sort the primary hash keys, you could use a much simpler statement:

foreach $key (sort keys %passwd)

And if you wanted to sort on the nested hash keys in the nested loop:

foreach $subkey (sort keys %{$passwd{$login}})

You must use the block method for selecting a variable name. The statement

foreach $subkey (sort keys %passwd{$_})

will report an error during compilation because Perl identifies the variable %passwd
as a hash, but the fragment passwd{$_} as a hash element. Therefore, the entire
%passwd{$_} is bogus, since you must reference a hash element with a leading $
to indicate a scalar value.

Here’s a different example of the same printing loop that sacrifices sorting for a
more memory-efficient method:

while ($key = each %passwd)

{

print "$key:";

foreach $field (keys %{$passwd{$key}})

{

print "$passwd{$key}{$field}:";

}

print "\n";

}

312 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 313
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Because this example does not use temporary lists, you could safely use it on large
structures without fear of running out of memory.

Arrays of Hashes
The previous example used an array of arrays to store information contained in the
password file. A hash of hashes was used to access individual information for a specific
user without having to search through the hash. As an alternative, an array of hashes
could have been used. Each element of the array would be a record and could, therefore,
be accessed in the traditional record-number format. The value of the array element is a
reference to a hash, and the hash structure consists of the normal key/value pairs, with
the key being the field name and the corresponding value the field contents.

Let’s take a look at the corresponding array of hashes script for the /etc/passwd file:

open(DATA,"</etc/passwd") || die "Couldn't open file properly";

my (%passwd, $ref);

while(<DATA>)

{

chomp;

@fields = split /:/;

$aref = {};

$aref->{'login'} = shift @fields;

$aref->{'passwd'} = shift @fields;

$aref->{'uid'} = shift @fields;

$aref->{'gid'} = shift @fields;

$aref->{'name'} = shift @fields;

$aref->{'home'} = shift @fields;

$aref->{'shell'} = shift @fields;

push @passwd,$aref;

}

close(DATA) || die "Couldn't close file properly";

foreach $ref (sort { $$a{'uid'} <=> $$b{'uid'} } @passwd)

{

foreach $field (qw/login passwd uid gid name home shell/)

{

print $$ref{$field},":";

}

print "\n";

}

The array of hashes structure is built very simply. You create a new reference to
an anonymous hash in $aref, and then populate it with the correct key/value pairs.

314 P e r l : T h e C o m p l e t e R e f e r e n c e

The new anonymous reference is then pushed onto the global @passwd array, just
the same as any array element. The result is a fully populated array of anonymous
hash references.

For sorting, you have a slightly different problem. You want to sort the records
by the uid field of the record. Therefore, you need to use a sorting expression that will
access the underlying hash element contents, returning a sorted list of array references
from the @passwd array. You do this by dereferencing the uid key from the hash,
using the hash references stored in the $a and $b variables used by the sort function.

For a simpler, nonsorted result, you could just use this:

foreach $record (@passwd)

{

foreach $field (qw/login passwd uid gid name home shell/)

{

print $record->{$field},":";

}

print "\n";

}

Again, it’s important to remember that the $record variable contains a reference to an
anonymous hash. If all you did was print that value, Perl would report something like

HASH(0xcfaf8)

If you wanted to access all the keys of the referenced hashes, you would have to use
a slightly different method. Here’s the remodeled original:

foreach $ref (sort { $$a{'uid'} <=> $$b{'uid'} } @passwd)

{

foreach $field (keys %$ref)

{

print $$ref{$field},":";

}

print "\n";

}

Unfortunately, for this particular data source, this doesn’t take into account the
required field order.

Finally, here’s a record-number alternative that uses less memory:

foreach $id (0..$#passwd)

{

foreach $field (keys %{$passwd[$id]})

{

print $passwd[$id]{$field},":";

}

print "\n";

}

Note that this example uses a more direct method of accessing an individual within a
record, although the eventual result is the same.

Using this method of record organization allows you to have different fields for
individual records. You could even use separate keys in the hash, or you could use
pack and a suitable “packstring” stored in hash keys to store complex structures. See
Chapter 13 for more details on planning and using databases with Perl’s internal and
external structures.

Hashes of Arrays
A hash of arrays is best used when you want to store and use an array, and you want
to access it by name. We’ll use the /etc/group file, a cousin to the /etc/passwd file, for
this demonstration. The file is essentially made up of a list of group names, and against
each group name is a list of group members. Here’s a sample /etc/group file:

root::0:root,dummy,martinb

other::1:dummy,martinb

bin::2:root,bin,daemon

sys::3:root,bin,sys,adm

adm::4:root,adm,daemon

uucp::5:root,uucp

mail::6:root

tty::7:root,tty,adm

lp::8:root,lp,adm

nuucp::9:root,nuucp

staff::10:

daemon::12:root,daemon

sysadmin::14:

nobody::60001:

noaccess::60002:

shared::1000:MC,SLP

qmail:*:2107:

nofiles:*:2108:

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 315
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

By modeling the file within a hash of arrays, you can access a list of group members
by referring to the group by name. The following script builds the %group hash. We’ll
deal with the printing separately.

open(DATA,"</etc/group") || die "Couldn't open file properly";

my (%passwd, $ref);

while(<DATA>)

{

chomp;

($groupname,$members) = (split /:/)[0,3];

$group{$groupname} = [split /,/,$members];

}

close(DATA) || die "Couldn't close file properly";

You build the group list by creating an anonymous array, which is generated by the
list returned by separating the member list with split. You can very quickly print the
results because there are no complicated structures to handle, aside from the parent hash:

foreach (sort keys %group)

{

print "$_: ", join(' ' ,@{$group{$_}}),"\n";

}

Note, as in previous examples, the most critical part is that the hash value contains
a reference to an anonymous array; so to access it as a complete array, you need to use
a block reference.

The following example sorts the list of groups by the number of elements in the
subarray:

foreach (sort { @{$group{$a}} <=> @{$group{$b}} } keys %group)

{

print "$_: ", join(' ' ,@{$group{$_}}),"\n";

}

And for a simpler, structured output, you can access the array by its individual index
elements:

foreach (sort keys %group)

{

316 P e r l : T h e C o m p l e t e R e f e r e n c e

print "$_ \n";

for $i (0..$#{$group{$_}})

{

print " $i = $group{$_}[$i]\n";

}

}

Finally, the following example is a less memory-intensive version, although you
lose the ability to sort the list of names.

while (($key, $array) = each(%group))

{

print "$key: ", join(' ', @$array),"\n";

}

This time you can dereference the hash value directly, rather than using block quotes.

Beyond Two Dimensions
The preceding examples still assume a relatively strict structure around your data.
Depending on your point of view when it comes to data modeling, this may be a good
or a bad thing. There is no reason why you can’t extend the preceding examples beyond
two dimensions. Consider the following nested hash of arrays of hashes, which emulates
a database that supports multiple tables.

%db = (

contacts => [

{ 'name' => 'Martin',

'email' => 'mc@mcwords.com' },

{ 'name' => 'Bob',

'email' => 'bob@bob.com' },

],

appointments => [

{ 'Date' => '22/3/98',

'Time' => '10:30',

'Title' => 'Dentist' },

{ 'Date' => '5/5/98',

'Time' => '00:00',

'Title' => 'Birthday' },

],

);

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 317
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

318 P e r l : T h e C o m p l e t e R e f e r e n c e

To make the process of building complex structures easier, you can also copy
references so that a particular element points to some other part of the structure. For
example, you might want to create a new appointment and add a new field—an array
of contacts who will attend the meeting:

%appt = ('Date' => '4/5/1999',

'Time' => '10:30',

'Title' => 'Production Meeting',

'Members' => [$db{'contacts'}[0], $db{'contacts'}[1]]

);

push @{$db{'appointments'}}, \%appt;

The new 'Members' element of the hash contains an array, which has two references
to the two contacts created in the preceding. You can access their email addresses
directly with

print ${$db{appointments}[2]{Members}[0]}{email},"\n";

But note that because it’s a reference, an assignation like this

${$db{appointments}[2]{Members}[0]}{email} = 'foo@goo.bar';

updates the value of the contact’s record directly, so that both

print ${$db{appointments}[2]{Members}[0]}{email},"\n";

and

print $db{contacts}[0]{email},"\n";

print out the new foo@goo.bar email address.
There isn’t any reason to store only literal values, either. Arrays and hashes store

lists of scalars, and a scalar can be a reference to a wide range of different entities,
including subroutines (anonymous and named), filehandles, other hashes and arrays,
and any combination thereof.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 319
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Here’s another example—this time the creation of a hash with references to
subroutines:

my %commandlist = (

'DISK' => \&disk_space_report,

'SWAP' => \&swap_space_report,

'STORE' => \&store_status_report,

'GET' => \&get_status_report,

'QUIT' => \&quit_connection,

);

You could now call the function directly, without

&{$commandlist->{STORE}};

and with these arguments:

&{$commandlist->{STORE}}(@values);

This type of table is called a dispatch table and is often used in situations in which a
program receives a string or command from a user or remote process. Perl allows
you to call the function desired directly, without having to use a long and complicated
if..elsif..else statement.

You may have problems with dispatch tables if you are using the strict pragma; this
is because you are relying on “soft” references—you can get around this limitation by
using the provided information to look up the subroutine within the symbol table, and
then creating a hard reference to that. For example:

my $func = sprintf("%s_%s",$action,$subaction);

*code = \&{$func};

if (defined(&code))

{

&code($user,$group,$session);

}

else

{

display_account($user,$group,$session);

}

This example was actually taken from a web script, where $action and $subaction are
actually components extracted from the CGI request. The benefits of using a dispatch
table are as follows:

� Allows for multiple function calls based on user input without the need for a
multioption if statement.

� Allows you to “develop” functions and facilities into the rest of a script, even
though the function may not have been created yet. You only need to supply
a function definition for the script to work.

� You can extend and expand the script without having to mange that complex
if statement.

There is really only one downside to using a dispatch table that I’ve come across:

� The functions you call must be supplied the same list of arguments—you
cannot change the argument list based on the function or operation name
without introducing another if statement.

In a properly designed script, this is unlikely to cause a problem, because you will
probably be supplying the same information—just for different processing, in each case.

Finally, here’s a filehandle hash. The keys are the names of the files you have open,
and the value is a reference to a filehandle, passed, as usual, by a typeglob:

%files = { 'source.txt' => *SOURCE,

'report.out' => *REPORT,

'scratch.tmp' => *SCRATCH

};

You can now print to a filehandle by using the file name, instead of the
filehandle directly:

print { $files->{'report.out'}} "This is a report\n";

Note that you need braces around the typeglob to dereference it properly—otherwise, Perl
treats what you return as the text that you want to print out, which is obviously incorrect.

320 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 321

Objects
In the early 1990s, object-oriented programming was seen as heralding a new age in
programming methods. Rather than dealing with data and functions as two separate
entities, an object combines the two elements into a single entity. An object knows what
kind of thing it is and, furthermore, knows what it can do based on what kind of thing
it is. In programming terms, an object is a data structure that has a number of functions
associated with it that act upon the object’s data.

A classic example of object-oriented programming is the definition of animals. You
might create a cat object. The object knows it is a cat and, therefore, knows its abilities.
When you tell a cat object to move, the object will decide that because it has four legs,
it should walk. However, a fish object would know that because it has fins, it should
swim when you ask it to move.

In theory, using objects to create programs reduces the amount of code you need
to program, promotes code reuse, and allows you to program in terms of “I want to…”
rather than “To do…, I need to ….” This is certainly the tack applied by C++ and
Java—two languages that heavily promote, and even require, the use of objects
for programming.

The practice, however, is very different. Many programs do not need object-oriented
technology to work effectively. There are instances when it is useful—GUI programming,
for example, benefits from object methods. There are also instances when object-oriented
programming takes significantly longer than the nonobject method.

Within Perl, the philosophy is simple: use objects when it makes sense to use
objects, and avoid them when it doesn’t. Within the realm of packages and modules,
object-oriented programming in Perl requires that you know how to create packages
and modules. Object classes are another form of abstraction that uses the abilities of
packages. This means that object classes can cross the boundaries associated with
individual files and modules.

Object Basics
Before covering the semantics of objects within Perl, it should be noted that you need to
know how to create packages, and how to create and use references. Refer to Chapter 7
and the section on “References,” earlier in this chapter for more information. Once again,
it’s worth covering terminology that will be used in this section before proceeding to the
details of creating and using objects. There are three main terms, explained from the
point of view of how Perl handles objects. The terms are object, class, and method.

� Within Perl, an object is merely a reference to a data type that knows what class
it belongs to. The object is stored as a reference in a scalar variable. Because a

322 P e r l : T h e C o m p l e t e R e f e r e n c e

scalar only contains a reference to the object, the same scalar can hold different
objects in different classes. When a particular operation is performed on an
object, the corresponding method is called, as defined within the class.

� A class within Perl is a package that contains the corresponding methods
required to create and manipulate objects.

� A method within Perl is a subroutine, defined with the package. The first
argument to the method is an object reference or a package name, depending
on whether the method affects the current object or the class.

Creating and Using Objects
When creating an object, you need to supply a constructor. This is a subroutine within
a package that returns an object reference. The object reference is created by blessing a
reference to the package’s class. For example:

package Vegetable;

sub new

{

my $object = {};

return bless $object;

}

The preceding code creates a new package, Vegetable, with a single method, new,
which is the default name for an object constructor. The new method returns a reference
to a hash, defined in $object, which has been blessed using the bless function into an
object reference.

You can now create a new Vegetable object by using this code:

$carrot = new Vegetable;

Note here that a hash is used as the base data type for the object. This is not required.
You could use any of the available data types as the base for an object. Hashes are the
normal receptacle only because you are usually constructing records in which you
want to be able to identify individual fields by name.

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L

The use of bless defines the difference between a normal reference and an object
reference. An object is a reference that has been blessed into a particular class, whereas
a reference is just a reference to another entity.

If you want to initialize the object with some information before it is returned, you
can put that into the subroutine itself (the following example takes the data from the
supplied arguments),

sub new

{

my $object = {@_};

return bless $object;

}

which can now populate when you create a new object:

$carrot = new Vegetable('Color' => 'Orange', 'Shape' => 'Carrot-like');

You don’t have to use the information supplied to the new method as a hash. The
subroutine can take any arguments and process them as you require. Here’s the same
constructor, but this time it assumes you are supplying the information in the arguments
to the constructor function:

sub new

{

my $object = {};

$object->{'Color' => $_[0],

'Shape' => $_[1]

};

bless $object;

return $object;

}

Normally, of course, you’d check the contents of the arguments before you started
blindly filling in the details; but the process is essentially the same.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 323

324 P e r l : T h e C o m p l e t e R e f e r e n c e

To call your own initialization routine on a newly blessed object:

sub new

{

my $object = {};

bless $object;

$object->_define();

return $object;

}

The use of a leading underscore on the method _define is a convention used to
indicate a private rather than public method. The leading underscore convention is not
enforced, however; if someone wants to use the method, they can call it directly if they
want to. Here’s a quick example of the function:

sub _define

{

my $self = shift;

$self->{'State'} = 'Raw';

$self->{'Composition'} = 'Whole';

}

Don’t worry too much about the semantics for a second; we’ll cover that shortly.
For inheritance purposes, you will need to use a two-argument call to bless. The

second argument should be the class into which you are blessing the object, and you
can derive this from the first argument to the constructor method. For example, to
explicitly define the preceding object into the Vegetable class:

sub new

{

my $class = shift;

my $object = {};

return bless $object, $class;

}

The reason you need this is that methods execute within the confines of their base class,
not their derived class. Thus, if you were to create a new class Fruit, which inherited
methods from Vegetable, a call to the new constructor would bless an object into

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 325
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

the Vegetable rather than the Fruit class. Using the preceding format with the two-
argument version of bless ensures that the new object is part of the Fruit method.

Methods
We’ll start with a reminder: an object is a blessed reference, but a reference is just a
pointer to a data structure. When writing methods, it’s important to understand this
distinction. Within the confines of the class package and corresponding methods, you
use the object as if it were a reference (which it is), but outside the class package, you
use it as an object.

There is no special way within Perl to define a method, since a method is just
a function defined within the class package. The only difference between a normal
subroutine and a method is that the method should accept at least one argument,
the contents of which will be the object you want to manipulate. There are no complications
to creating the method. All you need to do is define the function, and Perl will handle
the rest. See the later section “Classes and Inheritance” for some exceptions, but, otherwise,
this definition stands.

There are two types of methods—class and instance. A class method is one that
affects the entire class. You’ve already seen some examples of this: the constructor
subroutine is an example of a class method. The first argument a class method receives
is the name of the class. This is ignored by most functions, since they already know to
which class (package) they belong. However, as you’ve already seen in the previous
section, it is sometimes necessary to identify the class.

An instance method is a function that operates on a specific object. It should accept
at least one argument, which is the object on which you want to operate. For example,
the boil method for our Vegetable object modifies the 'State' element of the object’s
hash to 'boiled':

sub boil

{

my $self = shift;

$self->{'State'} = 'Boiled';

}

You take the first argument off with shift and then modify the object’s contents.
Note that the name of the variable that you store the reference in is $self. This is an
accepted standard, although there is no reason why you can’t call it something else.
The use is convention, rather than law. Remember that an object is just a reference
to a particular data type, so you can modify the hash “object” just as you would any
other reference.

326 P e r l : T h e C o m p l e t e R e f e r e n c e

To use this method, you use the infix operator to select the method to use on a
particular object, for example:

$carrot = new Vegetable('Color' => 'Orange', 'Shape' = 'Carrot-like');

$carrot->boil;

The “State” field of the hash has now been updated!
You can also accept arguments to the method,

sub boil

{

my $self = shift;

$self->{'State'} = 'Boiled';

if (@_ == 1)

{

$self->{'Composition'} = shift;

}

}

thus allowing you to define how the vegetable will be prepared before it’s boiled:

$carrot->boil('Chopped');

You can also create a method that behaves differently based on what information is
supplied in that first argument. The way to do this is to use ref to identify whether the
method was supplied a reference to an object or not.

sub new

{

my $self = shift;

my $type = ref($self) || $self;

return bless {}, $type;

}

If the return value of the ref is a valid reference, then it’s safe to assume you should be
blessing an object. If ref returns false, then the argument is not an object but a class name.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 327
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Method Calls
There are two ways of invoking a method. The first format looks like this:

METHOD CLASS_OR_INSTANCE LIST

This is the format you’ve used for creating objects, for example:

new Vegetable('Color' => 'Orange', 'Shape' = 'Carrot-like');

In this case, new is the method, Vegetable is the class (and indicates to Perl the
package to search for the new method), and the list is the optional list of arguments
that will be passed to the method after the initial class name. The same format can be
used for methods on existing objects:

boil $carrot 'Chopped';

This actually makes more sense (providing your methods and classes are suitably
defined). The preceding line uses the first format (METHOD CLASS LIST). The
second method-calling syntax is

CLASS_OR_INSTANCE->METHOD(LIST)

For our carrot, this means using this line to get it chopped and boiled:

$carrot->boil('Chopped');

Note that this second method requires parentheses around the arguments to the
method because this syntax cannot be used as a list operator. This means you must be
careful with the first format. It assumes that the first parenthesis defines the start of the
arguments, and the matching closing parenthesis ends the argument list.

Note also that, in both cases, you can explicitly define the method or class you want
to use with the normal qualification:

$carrot->Vegetable::boil('Chopped');

328 P e r l : T h e C o m p l e t e R e f e r e n c e

Finally, you can use a scalar variable to hold the name of a method to call, providing
you use the infix operator form of the method call:

$method = 'boil';

$carrot->$method('Chopped');

It won’t work with other constructs, so don’t attempt to use a function call or
other expression here. It won’t be parsed properly, and Perl will report an error.

Accessing Object Data
At the risk of repeating myself yet again, an object is just a reference that knows what
class it belongs to. This means you can access an element of the object by using
reference notation. For example, to print the status of one of our Vegetable objects,
you could use a line like this:

print $carrot->{'State'},"\n";

The same is true of any other data structure you decide to use. There is no need
to create a subroutine to do it for you. However, if you want to use this method of
accessing fields via methods, then you can use autoloading. See Chapter 6 for more
details on autoloading; and for an object-specific example, see the following code:

sub AUTOLOAD

{

my $self = shift;

my $type = ref ($self) || croak "$self is not an object";

my $field = $AUTOLOAD;

$field =~ s/.*://;

unless (exists $self->{$field})

{

croak "$field does not exist in object/class $type";

}

if (@_)

{

return $self->($name) = shift;

}

else

{

return $self->($name);

}

So you can print a value,

print $carrot->state();

or set a value:

$carrot->state('Peeled');

Classes and Inheritance
A class is just a package. You can inherit methods from a parent class in a new class
through the use of the @ISA array. Note that you cannot automatically inherit data.
Perl leaves that decision to you. Since an object is a reference, you should be able to
copy the information over easily, or just copy references in the new object to allow
access to the inherited object’s data. Since the normal base data type for an object is
a hash, copying “fields” is a case of accessing the corresponding hash elements. See
the previous sections for more information.

You may remember in the “Modules” section of Chapter 6 that @ISA was said
to define the list of base classes on which the package relies. This is in fact the array
used for inheriting methods. When you call a method on an object, Perl first looks for
it within the package class. It then follows the inheritance tree based on the root classes
(packages) defined in @ISA. For each class (package) defined in the array, Perl follows
the inherited classes defined in that package’s @ISA array, and so on, until the complete
tree has been followed. It then moves on to the next one. This allows you to inherit,
almost by assumption, the methods defined in the packages specified in the @ISA
array and, in turn, any methods defined within the base classes of those packages.

This is how you can identify the list of packages specified in @ISA as base classes,
and how the interpretation of the @ISA array becomes “is-a,” since a new object is a
member of the specified base classes.

The full path followed for method inheritance is actually slightly more complex,
and the full list is shown here:

1. Perl searches the class of the specified object for the specified object.

2. Perl searches the classes defined in the object class’s @ISA array.

3. If no method is found in steps 1 or 2, then Perl uses an AUTOLOAD
subroutine, if one is found in the @ISA tree.

4. If a matching method still cannot be found, then Perl searches for the method
within the UNIVERSAL class (package) that comes as part of the standard
Perl library.

5. If the method still hasn’t been found, then Perl gives up and raises a run-
time exception.

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 329

330 P e r l : T h e C o m p l e t e R e f e r e n c e

You can force Perl to examine the base class’s @ISA list first by specifying the
SUPER pseudoclass within the base class package, as in

$carrot->SUPER::fry();

which would automatically force Perl to look in the @ISA classes, rather than the local
class, for the fry method. This can only be used within the base class package. You cannot
use it on an object outside of the base class; so it’s only of use to object programmers,
rather than object users.

Destructors and Garbage Collection
If you have programmed using objects before, then you will be aware of the need to
create a “destructor” to free the memory allocated to the object when you have finished
using it. Perl does this automatically for you as soon as the object goes out of scope.

You may want to provide your own destruction mechanism, however. This is
sometimes necessary if you are using objects to define network connectivity or to
update tied persistent data (see the “Using tie” section, later in the chapter), or if you
are using other objects that access external information. You will need to close the
connections to these external sources politely; and for that, you need to define a special
method called DESTROY. This method will be called on the object just before Perl
frees the memory allocated to it. In all other respects, the DESTROY method is just
like any other, and you can do anything you like with the object in order to close
it properly.

A DESTROY method is absolutely essential in situations in which you have objects
that refer to nested structures (objects within objects), or when you have inherited
information from another class. In these instances, you will need to destroy the nested
references, yourself, as part of the special DESTROY method.

Comparing Perl Objects to Other Languages
Perl objects have some very specific features and advantages that make them easy
to use within a Perl script. The lack of a distinct compartment for object-oriented
programs may seem like a problem for programmers used to the confinement of
Python or C++. In fact, it makes programming with objects and normal structures
much more fluid and intelligent—you can use objects when the need requires it
without having to make the decision before starting to program. Let’s have a look at
some other differences between the object implementation in Perl and other languages.

Python
Python is an object-oriented language. All data structures are created within an object
environment and the individual structures, such as lists and dictionaries (which are
like Perl’s hashes), can all be accessed using a consistent object interface. The external

TE
AM
FL
Y

Team-Fly®

libraries also have an object interface. Although this all appears to be restrictive, in fact
Python makes it very easy and straightforward, and you never feel as confined as you
do with, say, C++ or Java. As such, Python is an excellent language for learning object-
oriented techniques; and although it is more structured than Perl, the fluidity of the
environment will appeal to Perl programmers.

The main difference between Python and Perl is that Perl does not impose the
structure. Perl also supports objects based on scalars, arrays, and hashes; Python only
supports objects using dictionaries (hashes).

C++ and Java
C++ and Java are very similar when it comes to their internal representation and
treatment of objects, and so we can comfortably lump the two together when we
make a comparison back to Perl.

Perhaps the most significant difference is that Perl is much more relaxed about
its object implementation. C++ (and Java) require you to explicitly declare a new class
(using the class keyword), and you must explicitly specify a function as separate from
a method using the static keyword. You must declare your classes separately from
their implementations; the class goes in a header file and the implementation in a
separate file, except in the case of inline definitions.

C++ also requires you to specify the privacy of a method, object, or class explicitly.
There is no such feature within Perl; if you need to protect the privacy of a method or
function, don’t advertise it. If you want to protect a variable, then use a lexically scoped
one instead. We can also get away with using a constructor with any name—we don’t
have to create a constructor with the same name as the class we are creating. Although
we typically use new in Perl, this is a convention, rather than a restriction.

Finally, because C++ (and indeed Java) are compiled languages, the class
information (that is the definition, supported methods, inheritance, etc.) must be
known at compile time. Perl allows the definition of everything at run time. We can
even modify the inheritance hierarchy by making modifications to the @ISA array,
while simultaneously making changes to the methods and even format dynamically.

Using tie
Within Perl (versions 5 and up) you can “tie” a variable type to a particular class.
The class implements the core methods that create, access, update, and destroy the
elements of the underlying data type they are tied to. You can tie a scalar, array, or
hash to any external data source. The most obvious use is for DBM files, which are
hash-based database files—we’ll see more of them in Chapter 13. You can tie a hash
to an external DBM file (which uses a hashing system to store data in a physical file)
and then use the normal hash constructs to access the keys and values within the
external file.

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 331
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The tie system uses objects and classes to associate a variable with the underlying
object methods that support the interface between the Perl data type and the external
data source. The base function is tie:

tie VARIABLE, CLASSNAME, LIST

The VARIABLE is just a normal variable that you will use to access the information
in the tied resource. CLASSNAME defines the name of the package that supports the
required class methods to tie the variable. Note that CLASSNAME is a string, not a
bareword or other value. It can come from a variable, but that variable must contain
the string to a valid class package.

The package that contains the class definition must have been imported via use or
require. The tie function doesn’t do this for you. The LIST is passed on directly to the
class constructor at the point when the variable is tied.

Also note that the underlying class never gets passed the variable. The tie function
creates the association, not the method class. The actual constructor name is the only
way a package can determine what type of variable is being tied. If you tie a scalar,
then it calls TIESCALAR as the constructor. With an array, it’s TIEARRAY, and
TIEHASH is used if it’s a hash variable. In addition, in each case, the constructors
are identical in all other respects to a typical object constructor. They just return a
reference to the correct object; the constructor has no way of determining whether
it was called from tie.

If you want to determine the name of the class to which a variable is tied, you use
the tied function:

tied VARIABLE

This returns a reference to the object underlying the tied VARIABLE.
Once you have finished with the variable, you need to disassociate the variable

from the underlying class methods, and for this you use untie:

untie VARIABLE

This breaks the binding between a variable and a package, undoing the association
created by the tie function. It calls the DESTROY method, if it has been defined.

Creating New tie Classes
In this section we’ll look at the creation of new base classes for tying different variable
types. In each case, the base class must define a number of methods in order for the tie
operation to work. Three methods are constant across all three variable types: FETCH,

332 P e r l : T h e C o m p l e t e R e f e r e n c e

for reading the value of a tied variable; STORE, for assigning a value to a tied variable;
and DESTROY, which deletes the tied variable when you call untie.

The FETCH and STORE methods are used to provide an interface to the variable
that has been tied, not the underlying object. Accessing the object directly doesn’t
invoke these methods. The object reference is available either by using tied or by
capturing the value returned by tie, which will be a reference to the underlying object
being used.

Tying Scalars
We’ll use the methods for tying scalars as our base reference, examining the entire
process from start to finish. For this we’ll use the example of file ownership, supported
by the FileOwner package. When you tie a scalar using the methods in the FileOwner
class, the variable tied contains the name of the file. Accessing the tied variable returns
the owner (name, or user ID if the name cannot be resolved). Assigning a value to the
tied variable sets the file’s ownership, accepting a user ID or name accordingly.

For example, consider this script:

use FileOwner;

tie $profile, 'FileOwner', '.bash_profile';

print "Current owner is: $profile\n";

$profile = 'mcslp';

print "New owner is: $profile\n";

When the tie function is called, what actually happens is that the TIESCALAR method
from FileOwner is called, passing '.bash_profile' as the argument to the method. This
returns an object, which is associated by tie to the $profile variable.

When $profile is used in the print statements, the FETCH method is called. When
you assign a value to $profile, the STORE method is called, with 'mcslp' as the argument
to the method. If you can follow this, then you can create tied scalars, arrays, and hashes,
since they all follow the same basic model. Now let’s examine the details of our new
FileOwner class, starting with the TIESCALAR method:

TIESCALAR CLASSNAME, LIST

The TIESCALAR is a class method and, as such, is passed the name of the class,
which you’ll use when blessing the new object you create, and the list of additional
arguments passed to the tie function. For our example, there is only one argument—
the name of the file to use for determining and setting file ownership. The method
should return an object, blessed accordingly. The content of the scalar object is the

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 333
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

name of the file you supplied when the object was created. Thus, you get a method
like this:

sub TIESCALAR

{

my $class = shift;

my $file = shift;

unless (-e $file)

{

carp("File $file does not exist");

return undef;

}

return bless \$file,$class;

}

Note that you must make sure the file exists before you continue. You can’t create
an object that refers to a file that doesn’t exist. The method returns an undefined object
if the file does not exist, and this will be picked up by tie. You also report an error via
the carp function, defined in the Carp module, which supports a more package-friendly
way of raising errors.

In essence, the object you have created is anonymous, since you return the reference
to the $file variable directly. tie does what it needs to with the returned object.

FETCH THIS

The FETCH method is called every time the tied variable is accessed. It takes only
one argument, THIS, which is a reference to the corresponding object that is tied to the
variable. Because we’re working with scalars, the dereferencing is easy. The complex
part is the determination of the owner of the file and the resulting resolving process to
convert the user ID returned into a user name.

sub FETCH

{

my $self = shift;

local $! = 0;

my $userid = (stat($$self))[4];

if ($!) { croak("Can't get file owner: $!") }

local $! = 0;

334 P e r l : T h e C o m p l e t e R e f e r e n c e

my $owner = getpwuid($userid);

$owner = $userid unless (defined($owner));

return $owner;

}

The return value from this method is the user name or user ID. Because of this, you
have no way of raising an error exception to the calling script, so you have to use croak
to indicate a serious problem when determining the owner of the file.

STORE THIS, VALUE

The STORE method is called whenever an assignation is made to the tied variable.
Beyond the object reference that is passed, tie also passes the value you want stored in
the scalar variable you are tied to.

sub STORE

{

my $self = shift;

my $owner = shift;

confess("Wrong type") unless ref $self;

croak("Too many arguments") if @_;

my $userid;

if ($owner =~ /$[a-zA-Z]+/)

{

$userid = getpwnam($owner)

}

else

{

$userid = $owner;

}

local $! = 0;

chown($userid,$$self);

if ($!) { croak("Can't set file ownership: $!") }

return $owner;

}

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 335
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

336 P e r l : T h e C o m p l e t e R e f e r e n c e

The only thing of note here is that you return the new assigned value, since that’s
the return value of any other assignment.

DESTROY THIS

The DESTROY method is called when the associated object is disassociated,
either because it’s gone out of scope, or when untie is called. Generally, this method
shouldn’t be used, since Perl will do its own deallocation and garbage collection.
However, as mentioned earlier, this method can be used when you want to close
opened files, disconnect from servers cleanly, and so on. In the realms of a scalar,
this is seldom required.

Tying Arrays
Classes for tying arrays must define at least three methods: TIEARRAY, FETCH, and
STORE. You may also want and/or need to define the DESTROY method. At the present
time, the methods for tied arrays do not cover some of the functions and operators
available to untied arrays. In particular, there are no equivalent methods for the $#array
operator, nor for the push, pop, shift, unshift, or splice functions.

Since you already know the basics surrounding the creation of tied objects, we’ll
dispense with the examples and cover the details of the methods required to tie arrays.

TIEARRAY CLASSNAME, LIST

This method is called when the tie function is used to associate an array. It is the
constructor for the array object and, as such, accepts the class name and should return
an object reference. The method can also accept additional arguments, used as required.
See the TIESCALAR method in the “Tying Scalars” section earlier.

FETCH THIS, INDEX

This method will be called each time an array element is accessed. The INDEX
argument is the element number within the array that should be returned.

STORE THIS, INDEX, VALUE

C h a p t e r 1 0 : C o m p l e x D a t a S t r u c t u r e s 337
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

This method is called each time an array element is assigned a value. The INDEX
argument specifies the element within the array that should be assigned, and VALUE
is the corresponding value to be assigned.

DESTROY THIS

This method is called when the tied object needs to be deallocated.

Tying Hashes
Hashes are the obvious (and most complete) of the supported tie implementations.
This is because the tie system was developed to provide more convenient access to
DBM files, which themselves operate just like hashes.

TIEHASH CLASSNAME, LIST

This is the class constructor. It needs to return a blessed reference pointing to the
corresponding object.

FETCH THIS, KEY

This returns the value stored in the corresponding KEY and is called each time a single
element of a hash is accessed.

STORE THIS, KEY, VALUE

This method is called when an individual element is assigned a new value.

DELETE THIS, KEY

This method removes the key and corresponding value from the hash. This is usually
the result of a call to the delete function.

CLEAR THIS

This empties the entire contents of the hash.

EXISTS THIS, KEY

This is the method called when exists is used to determine the existence of a particular
key in a hash.

FIRSTKEY THIS

This is the method triggered when you first start iterating through a hash with each,
keys, or values. Note that you must reset the internal state of the hash to ensure that
the iterator used to step over individual elements of the hash is reset.

NEXTKEY THIS, LASTKEY

This method is triggered by a keys or each function. This method should return two
values—the next key and corresponding value from the hash object. The LASTKEY
argument is supplied by tie and indicates the last key that was accessed.

DESTROY THIS

This is the method triggered when a tied hash’s object is about to be deallocated.

338 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 11
System Information

339

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

There are times when what you need to do is communicate with the host operating
system. This can be done at a number of different levels, but there are two core
elements that Perl provides built-in support for. The first is the user and group

system employed by Unix. The user and group functions are built into Perl, and this is
just one of the places where Perl shows its Unix heritage.

The other, more practical, set of functions relates to getting the current time from
the system and converting that time into a format that can be used effectively. Once
you’ve got the information, you’ll probably want to play with it too, so I’ve also
included information on how to manipulate time values.

Finally, we’ll also take this opportunity to look at the generic environment variables
available to Perl, how they affect Perl’s operation, as well as information on how to
determine the information by other means.

Users and Groups
For most situations, the built-in variables initialized at execution time provide the basic
user and group information for the current script. To recap, the relevant variables are
summarized in Table 11-1. Note that all of this information and the functions in this
chapter are only really relevant on a Unix machine. Neither Mac OS nor Windows has
the same facilities. However, under Windows you can use the Win32::AdminMisc or

340 P e r l : T h e C o m p l e t e R e f e r e n c e

Variable Description

$< The real user ID (uid) of the current process. This is the user ID of the
user who executed the process, even if running setuid.

$> The effective user ID (uid) of the current process. This is the user ID
of the current process and defines what directories and features are
available.

$(The real group ID (gid) of the current process contains a space-separated
list of the groups you are currently in if your machine supports
multiple group membership. Note that the information is listed in
group IDs, not names.

$) The effective group ID (gid) of the current process contains a
space-separated list of the groups you are currently in if your machine
supports multiple group membership. Note that the information is
listed in group IDs, not names.

Table 11-1. Perl Variables Containing Group and User Membership

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 341
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Win32::NetAdmin modules to determine the same information. See Appendix B for
more information on the Win32::NetAdmin module, and Web Appendix B at
www.osborne.com for a list of other Win32 modules.

The most basic function for determining your current user name is the getlogin
function, which returns the current user name (not uid) of the current process.

getlogin

Getting Unix Password Entries
The next two functions, getpwuid and getpwnam, return, in a list context, the user
information as a list of scalar values. The getpwuid function gets the information based
on the user’s supplied ID number, and getpwnam uses the supplied name. These
provide an interface to the equivalent system functions, which just return the
information stored in the /etc/passwd file (on a Unix system).

getpwuid EXPR

getpwnam EXPR

This returns the following:

($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell)

= getpwnam('MC');

In a scalar context, each function returns the most useful value. That is, getpwuid
returns the user name, while getpwnam returns the user ID. The details of the contents
of each element are summarized in Table 11-2. Note that names are advisory; you can
assign the details to any scalar.

By using these functions, you can easily print the user name by getting the user’s ID
from the built-in $< variable:

print "Apparently, you are: ",(getpwuid($<))[0],"\n";

As another example, you can obtain the user name for the current user by using

$name = getlogin || (getpwuid($<))[0] || 'Anonymous';

To read the entire contents of the /etc/passwd file, you could read and process
the individual lines yourself. An easier method, however, is to use the getpwent
function set:

getpwent

setpwent

endpwent

The first call to getpwent returns the user information (as returned by getpwnam) for
the first entry in the /etc/passwd file. Subsequent calls return the next entry, so you
can read and print the entire details using a simple loop:

while(($name,$dir)=(getpwent)[0,7])

{

print "Home for $name is $dir\n";

}

342 P e r l : T h e C o m p l e t e R e f e r e n c e

Element Name Description

0 $name The user’s login name.

1 $passwd The user’s password in its encrypted form. See
“Password Encryption” later in this chapter for more
details on using this element.

2 $uid The numerical user ID.

3 $gid The numerical primary group ID.

4 $quota The user’s disk storage limit, in kilobytes.

5 $comment The contents of the comment field (usually the full name).

6 $gcos The user’s name, phone number, and other information.
This is only supported on some Unix variants. Don’t rely
on this to return a useful name; use the $comment field
instead.

7 $dir The user’s home directory.

8 $shell The user’s default login shell interpreter.

Table 11-2. Information Returned by getpwent, getpwnam, and getpwuid

In a scalar context, the getpwent function only returns the user name. A call to
setpwent resets the pointer for the getpwent function to the start of the /etc/passwd
entries. A call to endpwent indicates to the system that you have finished reading
the entries, although it performs no other function. Neither setpwent nor endpwent
return anything.

Getting Unix Group Entries
Along with the password entries, you can also obtain information about the groups
available on the system:

getgrgid EXPR

getgrnam EXPR

In a scalar context, you can therefore obtain the current group name by using

$group = getgrgid($();

or if you are really paranoid, you might try this:

print "Bad group information" unless(getgrnam(getgrgid($()) == $();

The getgrgid and getgrnam functions operate the same as the password equivalents,
and both return the same list information from the /etc/group or equivalent file:

($name,$passwd,$gid,$members) = getgruid($();

The $members variable will then contain a space-separated list of users who are
members of the group $name. The elements and their contents are summarized in
Table 11-3.

There is also a getgrent function set for reading the entire group information
in a loop:

while(($name,$members)=(getgrent)[0,3])

{

print "$name has these members: $members\n";

}

Like the equivalent password functions, setgrent resets the pointer to the beginning
of the group file, and endgrent indicates that you have finished reading the group file.

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 343
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Password Encryption
All passwords on Unix are encrypted using a standard system function called crypt().
This uses an algorithm that is one-way—the idea being that the time taken to decode
the encrypted text would take more processing power than is available in even the
fastest computer currently available. This complicates matters if you want to compare
a password against the recorded password. The operation for password checking is
to encrypt the user-supplied password and then compare the encrypted versions
with each other. This negates the need to even attempt decrypting the password.

The Perl encryption function is also crypt, and it follows the same rules. There are
two arguments—the string you want to encrypt and a “salt” value. The salt value is
an arbitrary string used to select one of 256 different combinations available for the
encryption algorithm on the specified string. Although the rules say the size of the salt
string should be a maximum of two characters, there is no need to reduce the string
used, and the effects of the salt value are negligible. In most situations you can use
any two-character (or more) string.

For example, to compare a supplied password with the system version:

$realpass = (getpwuid($<))[1];

die "Invalid Password" unless(crypt($pass,$realpass) eq $realpass);

The fact that the password cannot be cracked means the encryption system is useless
for encrypting documents. For that process, it is easier to use one of the many
encryption systems available via CPAN.

344 P e r l : T h e C o m p l e t e R e f e r e n c e

Element Name Description

0 $name The group name.

1 $passwd The password for gaining membership to the group.
This is often ignored. The password is encrypted using
the same technique as the login password information.
See “Password Encryption” for more details.

2 $gid The numerical group ID.

3 $members A space-separated list of the user names (not IDs) that
are members of this group.

Table 11-3. Elements Returned by the getgrent, getgrnam, and getgrgid Functions

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 345
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Time
Date and time calculations are based around the standard epoch time value. This is
the number of seconds that have elapsed since a specific date and time: 00:00:00 UTC,
January 1, 1970 for most systems; 00:00:00, January 1, 1904 for Mac OS. The maximum
time that can be expressed in this way is based on the maximum value for an unsigned
integer, 231–1, which equates to Tue Jan 19 03:14:07 2038.

Although it’s a moot point now (I’m writing this in November 2000), Perl was
completely Y2K compliant. However, due to the way in which Perl returns the year
information, there were a number of problems with scripts returning “19100” on 1st

Jan because people added the string “19” to the start of the date, not the integer 1900.

gmtime and localtime
To obtain the individual values that make up the date and time for a specific epoch
value, you use the gmtime and localtime functions. The difference between the two is
that gmtime returns the time calculated against the GMT or UTC time zones, irrespective
of your current locale and time zone. The localtime function returns the time using the
modifier of the current time zone.

localtime EXPR

localtime

In a list context, both functions convert a time specified as the number of seconds
since the epoch. The time value is specified by EXPR or is taken from the return value
of the time function if EXPR is not specified. Both functions return the same
nine-element array:

0 1 2 3 4 5 6 7 8

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

The information is derived from the system struct tm time structure, which has a few
traps. The ranges for the individual elements in the structure are shown in Table 11-4.

Since the value returned is a list, you can use subscript notation to extract
individual elements from the function without having to create useless temporary
variables. For example, to print the current day, you might use

print (qw(Sun Mon Tue Wed Thu Fri Sat Sun))[(localtime)][6];

In a scalar context, this returns a string representation of the time specified by EXPR,
roughly equivalent to the value returned by the standard C ctime() function:

$ perl -e 'print scalar localtime,"\n";'

Sat Feb 20 10:00:40 1999

The Perl module Time::Local, which is part of the standard distribution, can create
an epoch value based on individual values (effectively the opposite of localtime):

$time = timelocal($sec,$min,$hours,$mday,$mon,$year);

In most situations, you should use localtime over gmtime, since localtime probably
returns what you want. The only time to use the gmtime function is in a situation
where a naturalized time is required for comparison purposes across time zones.

346 P e r l : T h e C o m p l e t e R e f e r e n c e

Element Range Notes

$sec 0–59 Seconds

$min 0–59 Minutes

$hour 0–23 Hours

$mday 1–31 Day of the Month

$mon 0–11 This has the benefit that an array can be defined directly,
without inserting a junk value at the start. It’s also
incompatible with the format in which dates may be
supplied back from the user.

$year 0– All years on all platforms are defined as the number of
years since 1900, not simply as a two-digit year. To get
the full four-digit year, add 1900 to the value returned.

$wday 0–6 This is the current day of the week, starting with Sunday.

$yday 0–366

$isdst 0–1 Returns true if the current locale is operating in daylight
saving time.

Table 11-4. Ranges for the gmtime and localtime Functions

time Function
The time function returns the number of seconds since the epoch. You use this value to
feed the input of gmtime and localtime, although both actually use the value of this
function by default.

time

In addition, since it returns a simple integer value, you can use the value returned
as a crude counter for timing executions:

$starttime=time;

for (1..100000)

{

log(abs(sin($_)))*exp(sin($_));

}

$endtime=time;

print "Did 100,000 calculations in ",$endtime-$starttime, "seconds\n";

The granularity here is not good enough for performing real benchmarks. For that,
either use the times function, discussed later, or the Benchmark module, which in fact
uses the times function.

Comparing Time Values
When comparing two different time values, it is easier to compare epoch calculated times
(that is, the time values in seconds) and then extract the information accordingly. For
example, to calculate the number of days, hours, minutes, and seconds between dates:

($secdiff,$mindiff,$hourdiff,$ydaydiff)

= (gmtime($newtime-$oldtime))[0..2,7]

The $secdiff and other variables now contain the corresponding time-value differences
between $newtime and $oldtime.

You should use gmtime not localtime when comparing time values. This is because
localtime takes into account the local time zone, and, depending on the operating
system you are using, any daylight saving time (DST) too. The gmtime function will
always return the Greenwich Mean Time (GMT), which is not affected by time zones
or DST effects.

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 347
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Converting Dates and Times into Epochs
There is no built-in function for converting the value returned by localtime or gmtime
back into an epoch equivalent, but you can use the Time::Local module, which supplies
the timegm and timelocal functions to do the job for you. For example, the script:

use Time::Local;

$time = time();

($sec,$min,$hour,$mday,$mon,$year) = (localtime($time))[0..5];

$newtime = timelocal($sec,$min,$hour,$mday,$mon,$year);

print "Supplied $time, returned $newtime\n";

should return identical values.

Time Arithmetic
There are a number of ways in which you can modify a given time when it’s expressed
as an epoch value. For example, imagine that you want to determine what the date will
be in seven days time. You could use:

($mday,$mon,$year) = (localtime($time))[3..5];

$mday += 7;

$mon++;

$year+=1900;

print "Date will be $mday/$mon/$year\n";

However, this isn’t really very useful, since it doesn’t take into account that adding
seven to the current day of the month could put us into the next month, or possibly
even into the next year. Instead, you should add seven days to the value that you
supply to the localtime function. For example:

($mday,$mon,$year) = (localtime($time+(7*24*60*60)))[3..5];

$mon++;

$year+=1900;

print "Date will be $mday/$mon/$year\n";

Here, we’ve added seven days (7 times 24 hours, times 60 minutes, times 60
seconds); because we’re asking localtime to do the calculation on the raw value we’ll
get the correct date. You can do similar calculations for other values too, for example:

$time -= 7*24*60*60; # Last week

$time += 3*60*60; # Three hours from now

348 P e r l : T h e C o m p l e t e R e f e r e n c e

$time -= 24*60*60; # This time yesterday

$time += 45*60; # Three quarters of an hour from now

The limitation of this system is that it only really works on days, hours, minutes,
and seconds. The moment you want to add months or years, the process gets more
complicated, as you would need to determine how many days in the month or year
in order to get the correct epoch value.

To resolve both problems, you might consider using a function like the one below,
which will add or subtract any time value to any other time value. It’s based on the
Visual Basic DateAdd function:

use Time::Local;

sub DateAdd

{

my ($interval, $number, $time, $sec,

$min, $hour, $mday, $mon, $year);

if (@_ <= 3)

{

if (@_ == 2)

{

$time = time();

($interval, $number) = @_;

}

else

{

($interval, $number, $time) = @_;

}

($sec,$min,$hour,$mday,$mon,$year)

= (localtime($time))[0..5];

}

else

{

($interval, $number, $time, $sec,

$min, $hour, $mday, $mon, $year) = @_;

}

$year += $number if ($interval eq 'yyyy');

if (($interval eq 'q') || ($interval eq 'm'))

{

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 349
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

350 P e r l : T h e C o m p l e t e R e f e r e n c e

$mon += $number if ($interval eq 'm');

$mon += ($number*3) if ($interval eq 'q');

if ($mon > 11)

{

$year += int ($mon/12);

$mon = $mon % 12;

}

}

$newtime = timelocal($sec,$min,$hour,$mday,$mon,$year);

$newtime += ($number*24*60*60) if (($interval eq 'y') ||

($interval eq 'd') ||

($interval eq 'w'));

$newtime += ($number*7*24*60*60) if ($interval eq 'ww');

$newtime += ($number*60*60) if ($interval eq 'h');

$newtime += ($number*60) if ($interval eq 'n');

$newtime += $number if ($interval eq 's');

return $newtime;

}

To use this function, supply the interval type (as shown in Table 11-5) and the
number to be added. If you don’t supply a time value, then the current time will be
used. Alternatively, you can supply either an epoch value or the seconds, minutes,
hours, day of the month, month, and year, in the same format as that returned
by localtime.
For example, the following adds three weeks to the current date (1st April), and then
outputs a date/time string of the new value:

print scalar localtime(DateAdd('ww',3)),"\n";

generates

Sat Apr 22 13:50:51 2000

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 351
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

times Function
The times function

times

returns a four-element list giving the CPU time used by the current process for
user-derived and system-derived tasks, and the time used by any children for user-
and system-derived tasks:

($user, $system, $child, $childsystem) = times;

The information is obtained from the system times() function, which reports the
time in seconds to a granularity of a hundredth of a second. This affords better timing

Interval Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Table 11-5. Interval Conversions

options than the time command, although the values are still well below the normal
microsecond timing often required for benchmarking. That said, for quick comparisons
of different methods, assuming you have a suitable number of iterations, both the
time and times functions should give you an idea of how efficient, or otherwise,
the techniques are.

Here’s the benchmark example (seen in the “time Function” section earlier in this
chapter), using times:

$starttime=(times)[0];

for (1..100000)

{

log(abs(sin($_)))*exp(sin($_));

}

$endtime=(times)[0];

print "Did 100,000 calculations in ",$endtime-$starttime, "seconds\n";

sleep Function
You can pause the execution of a script by using the sleep function.

sleep EXPR

sleep

The function sleeps for EXPR seconds, or for the value in $_ if EXPR is not specified.
The function can be interrupted by an alarm signal (see “Alarms,” next). The

granularity of the functions is always by the second, and the accuracy of the function
is entirely dependent on your system’s sleep function. Many may calculate the end
time as the specified number of seconds from when it was called. Alternatively, it may
just add EXPR seconds to the current time and drop out of the loop when that value
is reached. If the calculation is made at the end of the second, the actual time could
be anything up to a second out, either way.

If you want a finer resolution for the sleep function, you can use the select function
with undefined bitsets, which will cause select to pause for the specified number of
seconds. The granularity of the select call is hundredths of a second, so the call

select(undef, undef, undef, 2.35);

will wait for 2.35 seconds. Because of the way the count is accumulated, the actual
time waited will be more precise than that achievable by sleep, but it’s still prone to
similar problems.

352 P e r l : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 353

Alarms
By using signals, you can set an alarm. This is another form of timer that waits for a
specified number of seconds while allowing the rest of the Perl script to continue. Once
the time has elapsed, the SIGALRM signal is sent to the Perl script, and if a handler
has been configured, the specified function will execute. This is often used in situations
where you want to provide a time-out for a particular task. For example, here’s a user
query with a default value—if the user does not respond after 10 seconds, the script
continues with the default value:

print "What is your name [Anonymous]?\n";

eval

{

local $SIG{ALRM} = sub { die "Timeout" };

alarm 10;

chomp($answer = <STDIN>);

alarm 0;

};

if ($@ and $@ =~ /Timeout/)

{

$answer = "Anonymous";

}

print "Hello $answer!\n";

The eval block is required so that the die statement that forms the signal handler
drops out of the eval— setting the value of $@—rather than terminating the whole
script. You can then test that and decide how to proceed. Of course, if the user provides
some input; then the alarm is reset to zero, disabling the alarm timer and allowing you
to drop out of the eval block normally.

We’ll be looking in more detail at signals and signal handlers in Chapter 14, and
at the use of the eval function in Chapter 15.

Environment Variables
As we saw in Chapter 4, Perl provides an interface to the environment variables of the
current Perl interpreter using the %ENV built-in variable. For example, to access the
PATH value, you would use the following:

print $ENV{PATH};

The environment can affect the operation of different systems in subtle ways. The
PATH environment variable, for example, contains the list of directories to be searched
when executing an external program through exec, system, or backticks.

As a general rule, it’s not a good idea to always rely on the values defined in the
environment variables, because they are largely arbitrary. In Tables 11-6 and 11-7, I’ve
listed the environment variables that you are likely to come across under Unix-based
and Windows-based operating systems, respectively.

Where relevant, the tables show a probable default value that you can use. The
tables also list alternative locations where you can find the same information without
relying on an environment variable. Mac OS (but not Mac OS X, which is Unix based)
and other non-interactive platforms don’t rely so heavily on environment variables for
the execution of scripts anyway.

354 P e r l : T h e C o m p l e t e R e f e r e n c e

Variable Description Alternatives

COLUMNS The number of columns for the current display.
Can be useful for determining the current
terminal size when developing a terminal/text
interface. However, it’s probably better to rely
on a user setting or just use the Term::*
modules and let them handle the effects. If you
do need a base value, then use vt100, which
most terminal emulators support.

None

EDITOR The user’s editor preference. If it can’t be
found, then default to vi or emacs or, on
Windows, to C:/Windows/Notepad.exe.

None

EUID The effective user ID of the current process.
Use $>, which will be populated correctly by
Perl, even when using suidperl.

$>

HOME The user’s home directory. Try getting the
information from getpwuid instead.

getpwuid

HOST The current hostname. The hostname.pl script
included with the standard Perl library
provides a platform-neutral way of
determining the hostname.

hostname.pl

HOSTNAME The current hostname. hostname.pl

Table 11-6. Environment Variables on Unix Machines

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 355
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Variable Description Alternatives

LINES The number of lines supported by the current
terminal window or display. See COLUMNS
earlier in the table.

None

LOGNAME The user’s login. Use the getlogin function or,
better still, the getpwuid function with the $<
variable.

getlogin,
getpwuid($<)

MAIL The path to the user’s mail file. If it can’t be
found, try guessing the value; it’s probably
/var/mail/LOGNAME or
/var/spool/mail/LOGNAME.

None

PATH The colon-separated list of directories to search
when looking for applications to execute. Aside
from the security risk of using an external list,
you should probably be using the full path to
the applications that you want to execute, or
populating PATH within your script.

None

PPID The parent process ID. There’s no easy way to
find this, but it’s unlikely that you’ll want it
anyway.

None

PWD The current working directory. You should use
the Cwd module instead.

Cwd

SHELL The path to the user’s preferred shell. This
value can be abused so that you end up
running a suid program instead of a real shell.
If it can’t be determined, /bin/sh is a good
default.

None

TERM The name/type of the current terminal and
therefore terminal emulation. See COLUMNS
earlier in this table.

None

UID The user’s real ID. $<

USER The user’s login name. See LOGNAME earlier
in this table.

getlogin,
getpwuid($<)

Table 11-6. Environment Variables on Unix Machines (continued)

356 P e r l : T h e C o m p l e t e R e f e r e n c e

Variable Description Alternatives

VISUAL The user’s visual editor preference. See
EDITOR earlier in the table.

EDITOR

XSHELL The shell to be used within the X Windows
System. See SHELL earlier in the table.

SHELL

Table 11-6. Environment Variables on Unix Machines (continued)

Variable Platform Description Alternatives

ALLUSERS-
PROFILE

2000 The location of the generic
profile currently in use.
There’s no way of
determining this information.

None

CMDLINE 95/98 The command line, including
the name of the application
executed. The Perl @ARGV
variable should have been
populated with this
information.

@ARGV

COMPUTER-
NAME

NT, 2000 The name of the computer. Win32::Node-
Name

COMSPEC All The path to the command
interpreter (usually
COMMAND.COM) used
when opening a command
prompt.

None

HOMEDRIVE NT, 2000 The drive letter (and colon) of
the user’s home drive.

None

HOMEPATH NT, 2000 The path to the user’s home
directory.

None

Table 11-7. Environment Variables for Windows

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 357
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Variable Platform Description Alternatives

HOMESHARE NT, 2000 The UNC name of the user’s
home directory. Note that
this value will be empty if the
user’s home directory is unset
or set to local drive.

None

LOGONSERVER NT, 2000 The domain name server the
user was authenticated on.

None

NUMBER_OF_
PROCESSORS

NT, 2000 The number of processors
active in the current machine.

None

OS NT, 2000 The name of the operating
system. There’s no direct
way, but Win32::IsWin95 and
Win32::IsWinNT return true
if the host OS is Windows
95/98 or Windows NT/2000,
respectively.

Win32::IsWin95
Win32::IsWinNT

OS2LIBPATH NT, 2000 The path to the OS/2
compatibility libraries.

None

PATH All The path searched for
applications within the
command prompt and for
programs executed via a
system, backtick, or open
function.

None

PATHEXT NT, 2000 The list of extensions that
will be used to identify an
executable program. You
probably shouldn’t be
modifying this, but if you
need to define it manually,
.bat, .com, and .exe are
the most important.

None

Table 11-7. Environment Variables for Windows (continued)

358 P e r l : T h e C o m p l e t e R e f e r e n c e

Variable Platform Description Alternatives

PROCESSOR_
ARCHITECTURE

NT, 2000 The processor architecture
of the current machine. Use
Win32::GetChipName,
which returns 386, 486, 586,
and so on for Pentium chips,
or Alpha for Alpha
processors.

Win32::GetChip-
Name

PROCESSOR_
IDENTIFIER

NT, 2000 The identifier (the
information tag returned by
the CPU when queried).

None

PROCESSOR_
LEVEL

NT, 2000 The processor level: 3 refers
to a 386, 4 to a 486, and 5 to
the Pentium. Values of 3000
and 4000 refer to MIPS
processors, and 21064 refers
to an Alpha processor. See
the PROCESSOR_
ARCHITECTURE entry
earlier in the table.

Win32::GetChip-
Name

PROCESSOR_
REVISION

NT, 2000 The processor revision. None

SYSTEMDRIVE NT, 2000 The drive holding the
currently active operating
system. The most likely
location is C:.

None

SYSTEMROOT NT, 2000 The root directory of the
active operating system. This
will probably be Windows
or Win.

None

USERDOMAIN NT, 2000 The domain the current user
is connected to.

Win32::Domain-
Name

USERNAME NT, 2000 The name of the current user. None

USERPROFILE NT, 2000 The location of the user’s
profile.

None

Table 11-7. Environment Variables for Windows (continued)

C h a p t e r 1 1 : S y s t e m I n f o r m a t i o n 359
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Variable Platform Description Alternatives

WINBOOTDIR NT, 2000 The location of the Windows
operating system that was
used to boot the machine. See
the SYSTEMROOT entry
earlier in this table.

None

WINDIR All The location of the active
Windows operating system,
this is the directory used
when searching for DLLs and
other OS information. See the
SYSTEMROOT entry earlier
in this table.

None

Table 11-7. Environment Variables for Windows (continued)

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Chapter 12
Networking

361

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Before we examine the processes behind using network connections in Perl, it’s
worth reviewing the background of how networks are supported in the modern
world, and from that we can glean the information we need to network

computers using Perl.
Most networking systems have historically been based on the ISO/OSI (International

Organization for Standardization Open Systems Interconnection) seven-layer model.
Each layer defines an individual component of the networking process, from the physical
connection up to the applications that use the network. Each layer depends on the layer
it sits on to provide the services it requires.

More recently the seven-layer model has been dropped in favor of a more flexible
model that follows the current development of networking systems. You can often
attribute the same layers to modern systems, but it’s often the case that individual
protocols lie over two of the layers in the OSI model, rather than conveniently sitting
within a single layer.

Irrespective of the model you are using, the same basic principles survive. You
can characterize networks by the type of logical connection. A network can either be
connection oriented or connectionless. A connection-oriented network relies on the fact
that two computers that want to talk to each other must go through some form of
connection process, usually called a handshake. This handshake is similar to using the
telephone: the caller dials a number and the receiver picks up the phone. In this way,
the caller immediately knows whether the recipient has received the message, because
the recipient will have answered the call. This type of connection is supported by
TCP/IP (Transmission Control Protocol/Internet Protocol) and is the main form of
communication over the Internet and local area networks (LANs).

In a connectionless network, information is sent to the recipient without first
setting up a connection. This type of network is also a datagram or packet-oriented
network because the data is sent in discrete packets. Each packet will consist of the
sender’s address, recipient’s address, and the information, but no response will be
provided once the message has been received. A connectionless network is therefore
more like the postal service—you compose and send a letter, although you have no
guarantee that the letter will reach its destination, or that the information was received
correctly. Connectionless networking is supported by UDP/IP (User Datagram
Protocol/Internet Protocol).

In either case, the “circuit” is not open permanently between the two machines.
Data is sent in individual packets that may take different paths and routes to the
destination. The routes may involve local area networks, dial-up connections, ISDN
routers, and even satellite links. Within the UDP protocol, the packets can arrive in
any order, and it is up to the client program to reassemble them into the correct
sequence—if there is one. With TCP, the packets are automatically reassembled into
the correct sequence before they are represented to the client as a single data stream.

There are advantages and disadvantages to both types of networks. A connectionless
network is fast, because there is no requirement to acknowledge the data or enter into
any dialogue to set up the connection to receive the data. However, a connectionless

362 P e r l : T h e C o m p l e t e R e f e r e n c e

network is also unreliable because there is no way to ensure the information reached its
destination. A connection-oriented network is slow (in comparison to a connectionless
network) because of the extra dialogue involved, but it guarantees the data sequence,
providing end-to-end reliability.

The IP element of the TCP/IP and UDP/IP protocols refers to the Internet Protocol,
which is a set of standards for specifying the individual addresses of machines within a
network. Each machine within the networking world has a unique IP address. This is
made up of a sequence of four bytes typically written in dot notation, for example,
198.10.29.145. These numbers relate both to individual machines within a network and
to entire collections of machines.

Because humans are not very good at remembering numbers, a system called DNS
(Domain Name System) relates easy-to-remember names to IP addresses. For example,
the name www.mcgraw-hill.com relates to a single IP address. You can also have a
single DNS name pointing to a number of IP addresses, and multiple names point to
the same address. It is also possible to have a single machine that has multiple interfaces,
and each interface can have multiple IP addresses assigned to it. However, in all cases,
if the interfaces are connected to the Internet in one form or another, then the IP
addresses of each interface will be unique.

However, the specification for communication does not end there. Many different
applications can be executed on the same machine, and so communication must be
aimed not only at the machine, but also at a port on that machine that relates to a
particular application. If the IP address is compared to a telephone number, the port
number is the equivalent of an extension number. The first 1024 port numbers are
assigned to well-known Internet protocols, and different protocols have their own
unique port number. For example, HTTP (Hypertext Transfer Protocol), which is used
to transfer information between your web browser and a web server, has a port
number of 80. To connect to a server application, you need both the IP address (or
machine name) and the port number on which the server is “listening.”

The BSD (Berkeley Systems Division, which is a “flavor” of Unix) socket system was
introduced in BSD 4.2 as a way of providing a consistent interface to the different available
protocols. A socket provides a connection between an application and the network. You
must have a socket at each end of the connection in order to communicate between the
machines. One end must be set to receive data at the same time as the other end is sending
data. As long as each side of the socket connection knows whether it should be sending
or receiving information, then the communication can be two-way.

There are many different methods for controlling this two-way communication,
although none is ultimately reliable. The most obvious is to “best-guess” the state that
each end of the connection should be in. For example, if one end sends a piece of
information, then it might be safe to assume it should then wait for a response. If the
opposite end makes the same assumption, then it can send information after it has just
received some. This is not necessarily reliable, because if both ends decide to wait for
information at the same time, then both ends of the connection are effectively dead.
Alternatively, if both ends decide to send information at the same time, the two processes

C h a p t e r 1 2 : N e t w o r k i n g 363
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

364 P e r l : T h e C o m p l e t e R e f e r e n c e

will not lock; but because they use the same send-receive system, once they have both
sent information, they will both return to the wait state, expecting a response.

A better solution to the problem is to use a protocol that places rules and
restrictions on the communication method and order. This is how Simple Mail Transfer
Protocol (SMTP) and similar protocols work. The client sends a command to the server,
and the immediate response from the server tells the client what to do next. The
response may include data and will definitely include an end-of-data string. In effect,
it’s similar to the technique used when communicating by radio. At the end of each
communication, you say “Over” to indicate to the recipient that you have finished
speaking. In essence, it still uses the same best-guess method for communication.
Providing the communication starts off correctly, and each end sends the end-of-
communication signal, the communication should continue correctly.

Although generally thought of as a technique for communicating between two
different machines, you can also use sockets to communicate between two processes
on the same machine. This can be useful for two reasons. First of all, communicating
between processes on a single machine (IPC—interprocess communication) allows you
to control and cooperatively operate several different processes. Most servers use IPC
to manage a number of processes that support a particular service.

We’ll be looking at the general techniques available for networking between
processes, either on the machine or across a network to a different machine.
Techniques include those using the built-in Perl functions and those using modules
available from CPAN that simplify the process for communicating with existing
protocol standards.

If you want more information on networking with sockets and streams under TCP,
UDP, and IP, then I can recommend The UNIX System V Release 4 Programmers Guide:
Networking Interfaces (1990, Englewood Cliffs, NJ: Prentice Hall), which covers the
principles behind networking, as well as the C source code required to make it work.

Obtaining Network Information
The first stage in making a network connection is to get the information you need
about the host you are connecting to. You will also need to resolve the service port and
protocol information before you start the communication process. Like other parts of
the networking process, all of this information is required in numerical rather than
name format. You therefore need to be able to resolve the individual names into
corresponding numbers. This operation is supported by several built-in functions,
which are described in the sections that follow, divided into their different types
(Hosts, Protocols, Services, Networks, and so on).

Hosts
In order to communicate with a remote host, you need to determine its IP address.
The names are resolved by the system, either by the contents of the /etc/hosts file, or
through a naming service such as NIS/NIS+ (Network Information Service) or DNS.

C h a p t e r 1 2 : N e t w o r k i n g 365
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The gethostbyname function calls the system-equivalent function, which looks up the
IP address in the corresponding tables, depending on how the operating system has
been configured.

gethostbyname NAME

In a list context, this returns the hostname, aliases, address type, length, and physical
IP addresses for the host defined in NAME. They can be extracted like this:

($name, $aliases, $addrtype, $length, @addresses) = gethostbyname($host);

The $aliases scalar is a space-separated list of alternative aliases for the specified
name. The @addresses array contains a list of addresses in a packed format, which you
will need to extract with unpack. In a scalar context, the function returns the host’s IP
address. For example, you can get the IP address of a host as a string with

$address = join('.',unpack("C4",scalar gethostbyname("www.mchome.com")));

It’s more normal, however, to keep the host address in packed format for use in
other functions.

Alternatively, you can use a v-string to represent an IP address:

$ip = v198.112.10.128;

The resulting value can be used directly in any functions that require a packed IP
address. If you want to print an IP address, use the %v format with sprintf to extract
that value into a string. See Chapter 4, V-Strings, for more information.

In a list context, gethostbyaddr returns the same information as gethostbyname,
except that it accepts a packed IP address as its first argument.

gethostbyaddr ADDR, ADDRTYPE

The ADDRTYPE should be one of AF_UNIX for Unix sockets and AF_INET for
Internet sockets. These constants are defined within the Socket module. In a scalar
context it just returns the hostname as a string.

The *hostent functions allow you to work through the system host database,
returning each entry in the database:

gethostent

endhostent

sethostent

366 P e r l : T h e C o m p l e t e R e f e r e n c e

The gethostent function iterates through the database (normally the /etc/hosts file)
and returns each entry in the form:

($name, $aliases, $addrtype, $length, @addresses) = gethostent;

Each subsequent call to gethostent returns the next entry in the file. This works in the
same way as the getpwent function you saw in Chapter 11.

The sethostent function resets the pointer to the beginning of the file, and endhostent
indicates that you have finished reading the entries. Note that this is identical to the
system function, and the operating system may or may not have been configured to
search the Internet DNS for entries. Using this function may cause you to start iterating
through the entire Domain Name System, which is probably not what you want.

Protocols
You will need to resolve the top-level names of the transmission protocols used for
when communicating over a given service. Examples of transmission protocols include
the TCP and UDP protocols that you already know about, as well as AppleTalk, SMTP,
and ICMP (Internet Control Message Protocol). This information is traditionally stored
on a Unix system in /etc/protocols, although different systems may store it in different
files, or even internally.

The getprotobyname function translates a specific protocol NAME into a protocol
number in a scalar context:

getprotobyname NAME

It can also return the following in a list context:

($name, $aliases, $protocol) = getprotobyname('tcp');

Alternatively, you can resolve a protocol number into a protocol name with the
getprotobynumber function.

getprotobynumber NUMBER

This returns the protocol name in a scalar context, and the same name, aliases, and
protocol number information in a list context:

($name, $aliases, $protocol) = getprotobyname(6);

Alternatively, you can also step through the protocols available using the
getprotoent function:

C h a p t e r 1 2 : N e t w o r k i n g 367
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

getprotoent

setprotoent

endprotoent

The information returned by getprotoent is the same as that returned by the
getprotobyname function in a list context. The setprotoent and endprotoent functions
reset and end the reading of the /etc/protocols file.

Services
The services are the names of individual protocols used on the network. These relate to
the individual port numbers used for specific protocols. The getservbyname function
resolves a name into a protocol number by examining the /etc/services file or the
corresponding networked information service table:

getservbyname NAME, PROTO

This resolves NAME for the specified protocol PROTO into the following fields:

($name, $aliases, $port, $protocol_name) = getservbyname 'http', 'tcp';

The PROTO should be either 'tcp' or 'udp', depending on what protocol you want
to use. In a scalar context, the function just returns the service port number.

The getservbyport function resolves the port number PORT for the PROTO
protocol:

getservbyport PORT, PROTO

This returns the same fields as getservbyname:

($name, $aliases, $port, $protocol_name) = getservbyport 80, 'tcp';

In a scalar context, it just returns the protocol name.
You can step through the contents of the /etc/services file using getservent, which

returns the same fields again.

getservent

setservent

endservent

setservent resets the pointer to the beginning of the file, and endservent indicates to
the system that you’ve finished reading the entries.

Networks
A network is a collection of machines logically connected together. The logical element
is that networks are specified by their leading IP addresses, such that a network of
machines can be referred to by “198.112.10”—the last digits specifying the individual
machines within the entire network. This information is stored, mostly for routing
purposes, within the /etc/networks file. Just like the hosts that make up the network, a
network specification is composed of both a name and a corresponding address, which
you can resolve using the getnetbyname and getnetbyaddr functions.

getnetbyname NAME

This returns, in a list context:

($name, $aliases, $addrtype, $net) = getnetbyname 'loopback';

In a scalar context, it returns the network address as a string. You can also do the
reverse with the getnetbyaddr function:

getnetbyaddr ADDR, ADDRTYPE

The ADDRTYPE should be AF_UNIX or AF_INET, as appropriate.
As before, you can step through the individual entries within the network file using

the getnetent function:

getnetent

setnetent

endnetent

The getnetent function returns the same information as getnetbyaddr in a list
context. The setnetent function resets the current pointer within the available lists,
and endnetent indicates to the system that you have finished reading the entries.

The Socket Module
The Socket module is the main support module for communicating between machines
with sockets. It provides a combination of the constants required for networking, as well
as a series of utility functions that you will need for both client and server socket systems.
It is essentially a massaged version of the socket.h header file that has been converted
with the h2ph script. The result is a module that should work on your system,
irrespective of the minor differences that operating systems impose on constants.

368 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : N e t w o r k i n g 369
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The exact list of constants, including those that specify the address (AF_*) and
protocol (PF_*), are system specific, so it’s pointless to include them here. Check the
contents of the Socket.pm file for details.

Address Resolution and Conversion
The inet_aton and inet_ntoa functions provide simple methods for resolving and then
converting hostnames and numbers to the packed 4-byte structure required by most of
the other socket functions. The inet_aton function accepts a hostname or IP address (as
a string) and resolves the hostname and returns a 4-byte packed structure. Thus

inet_aton("www.mcwords.com");

and

scalar gethostbyname("www.mcwords.com");

return identical values. In fact, inet_aton returns only the first IP address resolved;
it doesn’t provide the facility to obtain multiple addresses for the same host. This
function is generally more practical than the gethostbyname or gethostbyaddr
function, since it supports both names and numbers transparently. If a hostname
cannot be resolved, the function returns undef.

The inet_ntoa function takes a packed 4-byte address and translates it into a normal
dotted-quad string, such that

print inet_ntoa(inet_aton("198.112.10.10"));

prints 198.112.10.10.

Address Constants
When setting up a socket for serving requests, you need to specify the mask address
used to filter out requests from specific addresses. Two predefined constants specify
“all addresses” and “no addresses.” They are INADDR_ANY and INADDR_NONE,
respectively. The value of INADDR_ANY is a packed 4-byte IP address of 0.0.0.0. The
value of INADDR_NONE is a packed 4-byte IP address of 255.255.255.255.

The INADDR_BROADCAST constant returns a packed 4-byte string containing
the broadcast address to communicate to all hosts on the current network.

Finally, the INADDR_LOOPBACK constant returns a packed 4-byte string
containing the loopback address of the current machine. The loopback address is the
IP address by which you can communicate back to the current machine. It’s usually
127.0.0.1, but the exact address can vary. The usual name for the local host is localhost,
and it is defined within the /etc/hosts file or the DNS or NIS systems.

Socket Structures
Socket functions within Perl call the system equivalents, which themselves use
structures to store the information for communicating with remote hosts. For Internet
communication (that is, within the AF_INET domain), the structure is sockaddr_in,
and for Unix communication (within the AF_UNIX domain), the structure is
sockaddr_un. Although you could create your own Perl versions of the structures
using pack, it’s much easier to use the functions supplied by the Socket module.

The primary function is sockaddr_in, which behaves differently according to the
arguments it is passed and the context in which it is called. In a scalar context, it
accepts two arguments—the port number and packed IP address:

$sockaddr = sockaddr_in PORT, ADDRESS

This returns the structure as a scalar. To extract this information, you call the function
in a list context:

($port, $address) = sockaddr_in SOCKADDR_IN

This extracts the port number and packed IP address from a sockaddr_in structure.
As an alternative to the preceding function, you can use the pack_sockaddr_in and

unpack_sockaddr_in functions instead:

$sockaddr = pack_sockaddr_in PORT, ADDRESS

($port, $address) = unpack_sockaddr_in SOCKADDR_IN

A similar set of functions pack and unpack addresses to and from the sockaddr_un
structure used for sockets in the AF_UNIX domain:

sockaddr_un PATHNAME

sockaddr_un SOCKADDR_UN

pack_sockaddr_un PATHNAME

unpack_sockaddr_un SOCKADDR_UN

Line Termination Constants
The line termination for network communication should be \n\n. However, because of
the differences in line termination under different platforms, care should be taken to
ensure that this value is actually sent and received. You can do this by using the octal
values \012\012. Another alternative is to use the constants $CR, $LF, and $CRLF,
which equate to \015, \012, and \015\012, respectively.

370 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : N e t w o r k i n g 371
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

These are exported from the Socket module only on request, either individually or
with the :crlf export tag:

use Socket qw/:DEFAULT :crlf/;

Socket Communication
There are two ends to all socket connections: the sender and the receiver.

Connecting to a Remote Socket
The process for communicating with a remote socket is as follows:

1. Create and open a local socket, specifying the protocol family (PF_INET or
PF_UNIX), socket type, and top-level protocol number (TCP, UDP, etc.).

2. Determine the IP address of the remote machine you want to talk to.

3. Determine the remote service port number you want to talk to.

4. Create a sockaddr_in structure based on the IP address and remote service port.

5. Initiate the connection to the remote host.

This all sounds very complicated, but in fact, it is relatively easy. Many of the
functions you need to use have already been discussed in this chapter. To speed up the
process, it’s a good idea to use something like the function connectsocket, shown here:

use Socket;

sub connectsocket

{

my ($SOCKETHANDLE, $remotehost_name, $service_name, $protocol_name) = @_;

my ($port_num, $sock_type, $protocol_num);

my ($remote_ip_addr, $remote_socket);

$protocol_num = getprotobyname($protocol_name);

unless ($protocol_num)

{

$error = "Couldn't find protocol $protocol_name";

return;

}

$sock_type = $protocol_name eq 'tcp' ? SOCK_STREAM : SOCK_DGRAM;

unless (socket($SOCKETHANDLE, PF_INET, $sock_type, $protocol_num))

{

$error = "Couldn't create a socket, $!";

return;

}

if ($service_name =~ /^\d+$/)

{

$port_num = $service_name;

}

else

{

$port_num = (getservbyname($service_name, $protocol_name))[2];

unless($port_num)

{

$error = "Can't find service $service_name";

return;

}

}

$remote_ip_addr = gethostbyname($remotehost_name);

unless ($remote_ip_addr)

{

$error = "Can't resolve $remotehost_name to an IP address";

return;

}

$remote_socket = sockaddr_in($port_num, $remote_ip_addr);

unless(connect($SOCKETHANDLE, $remote_socket))

{

$error = "Unable to connect to $remotehost_name: $!";

return;

}

return(1);

}

I’ve used a variable, $error, to indicate the type of error, thus allowing you to return
true or false from the function to indicate success or failure. The bulk of the function’s
code is given over to identifying or resolving names and/or numbers for service ports
and other base information. The core of the function’s processes is the socket function,
which associates a filehandle with the relevant protocol family. The syntax of the
socket function is

socket SOCKET, DOMAIN, TYPE, PROTOCOL

372 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : N e t w o r k i n g 373
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The SOCKET is the name of the filehandle you want to use to communicate over this
network connection. The DOMAIN is the corresponding domain type, which is typically
one of PF_UNIX for the Unix domain and PF_INET for Internet communication. The
TYPE is the type of communication, either packet stream or datagram.

A simple test is used in the above function to see if the top-level protocol (TCP, UDP,
etc.) is 'tcp', in which case it’s safe to assume that you are doing stream communication.
Valid values can be extracted from the Socket module, but it’s likely to be one of
SOCK_STREAM (for streams-based connections, such as TCP) and SOCK_DGRAM
(for datagram connections, such as UDP). The final argument, PROTOCOL, is the
protocol number, as determined by the getprotobyname function.

The next part of the function is responsible for looking up the numeric equivalents
of the service port and hostname, before you build the sockaddr_in structure within
the sockaddr_in function. You then use the newly created structure with the connect
function in order to associate the socket you have created with the communications
channel to a remote machine. The connect function’s synopsis looks like this:

connect SOCKET, NAME

The SOCKET is the socket handle created by the socket function, and NAME is
the scalar holding the sockaddr_in structure with the remote host and service
port information.

Armed with this function, you can create quite complex systems for communicating
information over UDP, TCP, or any other protocol. As an example, here’s a simple
script for obtaining the remote time of a host, providing it supports the daytime
protocol (on service port 13):

use Ssockets;

my $host = shift || 'localhost';

unless(connectsocket(*TIME, $host, 'daytime', 'tcp'))

{

die $Ssockets::error;

}

$_ = <TIME>;

print "Time on $host is $_";

close(TIME);

For convenience the connectsocket function has been inserted into its own package,
Ssockets. This is actually the module used in Chapter 5 of the Perl Annotated Archives
book (see Web Appendix A at www.osborne.com).

The daytime protocol is pretty straightforward. The moment you connect, it sends
back the current, localized date and time of the remote machine. All you have to do is
connect to the remote host and then read the supplied information from the associated
network socket.

Listening for Socket Connections
The process of listening on a network socket for new connections is more involved than
creating a client socket, although the basic principles remain constant. Beyond the
creation of the socket, you also need to bind the socket to a local address and service
port, and set the socket to the “listen” state. The full process is therefore as follows:

1. Create and open a local socket, specifying the protocol family (PF_INET or
PF_UNIX), socket type, and top-level protocol number (TCP, UDP, etc.).

2. Determine the local service port number on which you want to listen for
new connections.

3. Set any options for the newly created socket.

4. Bind the socket to an IP address and service port on the local machine.

5. Set the socket to the listen state, specifying the size of the queue used to hold
pending connections.

You don’t initiate any connections or, at this stage, actually accept any connections.
We’ll deal with that part later. Again, it’s easier to produce a simple function to do this
for you, and the listensocket function that follows is the sister function to the earlier
connectsocket:

use Socket;

sub listensocket

{

my ($SOCKETHANDLE, $service_name,

$protocol_name, $queuelength) = @_;

my ($port_num, $sock_type, $protocol_num, $local_socket);

$protocol_num = (getprotobyname($protocol_name))[2];

unless ($protocol_num)

{

$error = "Couldn't find protocol $protocol_name";

return;

}

$sock_type = $protocol_name eq "tcp" ? SOCK_STREAM : SOCK_DGRAM ;

374 P e r l : T h e C o m p l e t e R e f e r e n c e

if($service_name =~ /^\d+$/)

{

$port_num = $service_name;

}

else

{

$port_num = (getservbyname($service_name, $protocol_name))[2];

unless($port_num)

{

$error = "Can't find service $service_name";

return;

}

}

unless(socket($SOCKETHANDLE, PF_INET, $sock_type, $protocol_num))

{

$error = "Couldn't create a socket: $!";

return;

}

unless(setsockopt($SOCKETHANDLE,SOL_SOCKET,

SO_REUSEADDR,pack("l",1)))

{

$error = "Couldn't set socket options: $!";

return;

}

$local_socket = sockaddr_in($port_num, INADDR_ANY);

unless(bind($SOCKETHANDLE, $local_socket))

{

$error = "Failed to Bind to socket: $!";

return;

}

unless(listen($SOCKETHANDLE, $queuelength))

{

$error = "Couldn't listen on socket: $!";

return;

}

return(1);

}

Again, the bulk of this function is given over to determining the numerical versions
of the IP addresses, protocols, and service ports that you want to use. Most of the
function is therefore identical to the connectsocket function. The only difference is the

C h a p t e r 1 2 : N e t w o r k i n g 375
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

setting of some socket options, which we’ll return to later in this chapter, and the use
of the bind and listen functions.

The bind function attaches your newly created socket to a local IP interface and
service port. This is essentially the same as the connect function used to connect to a
remote port, except that you are attaching the socket to a local port instead.

bind SOCKET, ADDRESS

The port definition does not have to be a specific IP address (although it could be).
Instead you use the predefined INADDR_ANY to allow the connection to be accepted
on any of the local configured IP interfaces. On a machine with a single interface, this
will obviously mean only one interface, but on a machine with multiple interfaces, it
allows you to accept the connection on any of them.

The listen function switches the new socket into listen mode. Without this function,
the socket will never accept new connections. It accepts two arguments—the socket
handle and something called the queue length:

listen SOCKET, LENGTH

The LENGTH parameter is the maximum number of connections that will be held
in a queue by the operating system before the remote hosts receive an “unable to
connect” response. This allows you to control the server loading and response times. It
doesn’t affect the number of connections that can be open at any one time, since that is
controlled (we hope) by the server application. For example, with a web server, since
the response time for an individual request is quite small, you may want to specify a
relatively high value so the time between individual accept calls will be relatively low.
Setting the queue length to a low value will affect performance, since the operating
system may be refusing connections even when your server is not very busy.

It’s also worth keeping in mind the type of communication you expect. With a web
server, you tend to get a high number of relatively short requests in a short space of
time. If you consider that a typical web page consists of one HTML file and ten images,
then you could easily get 11 requests within a few seconds, and you should therefore
set the queue length to a higher value. With an FTP server, you tend to get a smaller
number of concurrent connections, but with longer times to service the actual requests.
This would tend to indicate a lower value, thus helping to reduce the overall loading
of your server.

It’s always important to remember that your server can run as many child
processes as it likes, and so you should also have other safeguards, such as connection
counters or load monitors, to ensure that you are not accepting and servicing more
requests than you can handle. The queue length will make no difference here. If the
time to accept a connection and spawn a new process is one second, you could get 100

376 P e r l : T h e C o m p l e t e R e f e r e n c e

requests every second and end up with 100 child processes. This could kill a small
server, no matter how small the individual requests might be.

Once your socket is ready and listening, you need to accept new connections as
they are made by clients. The accept function handles this, blocking the current process
until a new connection is made and accepted.

accept NEWSOCKET, SOCKET

The function monitors SOCKET, opening the NEWSOCKET filehandle on the accepted
connection. It returns the packed address of the remote host that made the connection,
or the false value if the connection failed.

This is usually used in combination with fork (see Chapter 14) to support multiple
simultaneous connections from remote hosts. For example, here is a very simple web
server (supporting HTTP) written entirely in Perl. It uses the listensocket function
and demonstrates the simplicity of the network server once you have gotten past the
complexities of creating the original listening socket.

use Ssockets;

use FileHandle;

use Cwd;

use Getopt::Std;

use Socket;

getopts('d');

$SIG{'INT'} = $SIG{'QUIT'} = \&exit_request_handler;

$SIG{'CHLD'} = \&child_handler;

my ($res);

my ($SERVERPORT) = 80;

unless(listensocket(*SERVERSOCKET, $SERVERPORT, 'tcp', 5))

{

die "$0: ", $Ssockets::error;

}

autoflush SERVERSOCKET 1;

chroot(getcwd());

die "$0: Couldn't change root directory, are you root?"

unless (getcwd() eq "/");

C h a p t e r 1 2 : N e t w o r k i n g 377
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

print "Changing root to ", getcwd(), "\n" if $opt_d;

print "Simple HTTP Server Started\n" if $opt_d;

while(1)

{

ACCEPT_CONNECT:

{

($remaddr = accept(CHILDSOCKET, SERVERSOCKET))

|| redo ACCEPT_CONNECT;

}

autoflush CHILDSOCKET 1;

my $pid = fork();

die "Cannot fork, $!" unless defined($pid);

if ($pid == 0)

{

my ($remip)

= inet_ntoa((unpack_sockaddr_in($remaddr))[1]);

print "Connection accepted from $remip\n" if $opt_d;

$_ = <CHILDSOCKET>;

print "Got Request $_" if $opt_d;

chomp;

unless (m/(\S+) (\S+)/)

{

print "Malformed request string $_\n" if $opt_d;

bad_request(*CHILDSOCKET);

}

else

{

my ($command) = $1;

my ($arg) = $2;

if (uc($command) eq 'GET')

{

if (open(FILE, "<$arg"))

{

while(<FILE>)

{

print CHILDSOCKET $_;

}

close(FILE);

}

378 P e r l : T h e C o m p l e t e R e f e r e n c e

else

{

bad_request(*CHILDSOCKET);

}

}

}

close(CHILDSOCKET);

exit(0);

}

close(CHILDSOCKET);

}

sub bad_request

{

my ($SOCKET) = shift;

print $SOCKET <<EOF;

<html>

<head>

<title>Bad Request</title>

</head>

<body>

<h1>Bad Request</h1>

The file you requested could not be found

</body>

</html>

EOF

}

sub child_handler

{

wait;

}

sub exit_request_handler

{

my ($recvsig) = @_;

$SIG{'INT'} = $SIG{'QUIT'} = 'IGNORE';

close(SERVERSOCKET);

close(CHILDSOCKET);

die "Quitting on signal $recvsig\n";

}

C h a p t e r 1 2 : N e t w o r k i n g 379
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

380 P e r l : T h e C o m p l e t e R e f e r e n c e

The main loop of this program will continue forever, until either a fatal error occurs
or the program receives the SIGINT or SIGQUIT signal. This operation is dealt with
by signal handlers, which we’ll cover in more detail in Chapter 14.

The main acceptance loop is here,

ACCEPT_CONNECT:

{

($remaddr = accept(CHILDSOCKET, SERVERSOCKET))

|| redo ACCEPT_CONNECT;

}

where you just cycle around for as long as it takes until you get a valid connection.
Remember that accept blocks process execution, so it’s not a major concern that you’ll
be continually looping through this section. In fact, you should only ever redo the
block if the accepted connection could not be opened properly.

Once you have opened a valid connection, you fork a new child process to handle
the communication using the newly created CHILDSOCKET filehandle. Since you
are forking a new process each time, you don’t have to worry about the fact that the
filehandle name is identical. You close the filehandle in the parent immediately after
the child process has been forked.

There are a couple of other important notes here. First of all, you use a command
line option to handle the printout of additional debugging information. Second, you
use chroot to change the root directory of the script to the current directory. This
guarantees the security of the web server by restricting which files can be served to
only the files within the current directory and all its subdirectories. Even attempts
to access files or directories associated by symbolic links will fail.

Finally, note the communication method employed. Because of the complexities
of two-way communication over a single socket, you have to make some assumptions
about the process involved. For HTTP, the client sends a single-line request and then
waits for the server to send the reply, sending EOF or closing the connection as
appropriate. The information returned by the server must be text based and can consist
of HTTP header information and the actual body of data.

Using IO::Socket
The standard Perl distribution actually includes a module that provides a simpler
interface to the built-in socket functions, much like the previous scripts. If you are not
designing a custom solution, you might find that the distributed module better suits
your needs. It’s also more likely to be updated regularly than my own solution, and as

TE
AM
FL
Y

Team-Fly®

part of the standard Perl distribution, it should work on a wide range of platforms
without any modifications to your scripts.

Client Side
Initiating a client network connection with the IO::Socket module is very simple and
actually follows a similar model to the connectsocket function:

use IO::Socket;

$sock = new IO::Socket::INET (PeerAddr => 'twinspark',

PeerPort => 4003,

Proto => 'tcp'

);

The $sock scalar now contains a reference to a filehandle that you can use to transfer
information to a remote host.

Server Side
The server side initialization follows a similar model:

use IO::Socket;

$sock = new IO::Socket::INET (LocalHost => 'twinspark',

LocalPort => 4003,

Proto => 'tcp',

Listen => 5,

Reuse => 1

);

This follows the same fundamental idea as the listensocket function. It creates a socket
and binds to the address and port specified by LocalHost and LocalPort. The listen
queue is set to the value of the Listen element of the passed hash, and you set the
SO_REUSEADDR option with the Reuse hash element.

Once the socket is created, you can use it as before, although many of the functions
are now available as methods to the newly created socket object. Thus, you can accept
new requests on a server socket with statements like this:

$new_sock = $sock->accept();

Note how the client- and server-side object-constructing methods are identical.
The type of socket to be created is determined by the keys passed to the constructor.

C h a p t e r 1 2 : N e t w o r k i n g 381
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

382 P e r l : T h e C o m p l e t e R e f e r e n c e

Using IO::Socket and IO::Select
You can employ IO::Select in exactly the same way as we saw in Chapter 8 when
working with more traditional filehandles. For the record, here’s a sample script that
uses IO::Select and IO::Socket to support multiple client connections:

#!/usr/local/bin/perl -w

use strict;

use IO::Socket;

use IO::Select;

use Socket;

my ($port) = (4000);

my $socket = IO::Socket::INET->new(LocalPort => $port,

Listen => 5,

Reuse => 1);

die "Can't create server socket: $!" unless $socket;

print "Listening for connections on port $port\n";

my $readable = IO::Select->new;

$readable->add($socket);

while(1)

{

my ($ready) = IO::Select->select($readable, undef, undef, undef);

foreach my $s (@$ready)

{

if($s == $socket)

{

my $new_sock = $socket->accept;

$readable->add($new_sock) if $new_sock;

print $new_sock "Status server online!\r\n";

print STDERR ("Accepted connection from: ", join('.',

(unpack('C*',$new_sock->peername))[4..7]),

"\n");

}

else

{

my $buf = <$s>;

if(defined $buf)

{

if ($buf =~ /exit/i)

{

print $s "Bye!\n";

$readable->remove($s);

$s->close;

}

elsif ($buf =~ /status/i)

{

my $uptime = `/usr/bin/uptime`;

print $s scalar localtime(time()), ': ',$uptime;

}

}

else

{

$readable->remove($s);

$s->close;

print STDERR "Client Connection closed\n";

}

}

}

}

Getting Socket Addresses
When connecting with a remote socket, you might take it for granted that you know
the remote IP address of the machine you are talking to. In fact, you can’t necessarily
guarantee it’s the one you expect. It’s possible for a single name to resolve to a number
of IP addresses, and the exact one you have connected to may not be obvious.

When you are running a script for use as a server, the same problem occurs if you
forget to use the IP address returned by the accept function. In both cases, you can
use the getpeername function to return the IP address of the remote machine you are
talking to:

getpeername SOCKET

The function returns the packed sockaddr_in structure of the remote socket
connection. You’ll need to extract the real address with something like this:

print "Remote: ",inet_ntoa((unpack_sockaddr_in(getpeername SOCKET))[1]),"\n";

C h a p t e r 1 2 : N e t w o r k i n g 383
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

384 P e r l : T h e C o m p l e t e R e f e r e n c e

The opposite is true when a script is acting as a server. If you specified one of the
wildcard addresses, such as INADDR_ANY, as the address to bind to, then you may
not know what you have bound to on a multiple-interface host. You can find out that
information with getsockname:

getsockname SOCKET

This returns the same information as getpeername, except that it’s for the local
machine, rather than the remote one.

Note that in both cases, the functions only work on open and connected sockets.
You can’t create a socket and bind it or connect to it in order to get the current IP
address of the local or remote machine. Until a connection has been accepted or
connected, the socket is not attached to any local or remote IP address.

Closing Sockets
Because Perl treats a socket just like any other filehandle, the obvious (and natural)
way to close a socket is to use the close function. However, you can use the shutdown
function to provide a controlled shutdown of a connected socket.

shutdown SOCKET, HOW

The SOCKET is the filehandle of the open socket. The HOW value defines how the
socket should be shut down. If HOW is 0, you cannot use the socket to receive more
information. If HOW is 1, you cannot use the socket for sending information. If HOW
is 2, the socket cannot be used for either sending or receiving information. Note that
this doesn’t actually close the socket connection; it just indicates to the system that the
full-duplex nature of a socket has been modified.

This is perhaps most useful when you are creating a pair of sockets at each end
of a connection—one socket purely for sending and one for receiving information.
Although shutdown doesn’t automatically redirect the socket handlers for you,
shutdown will make sure you do not send data to a remote socket that won’t be
listening for data, thus preventing deadlocking.

Socket Options
You can specify certain options on individual sockets to improve facilities or
performance. For example, the SO_SNDBUF option sets the buffer size when sending
information via a network socket, whereas the SO_REUSEADDR allows you to reuse
an existing address/port if a previous connection is still shutting down. Without
setting this option, new connections will fail, even if you know that you’ve closed
down the previous socket connection.

To set a particular option, you use

setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

The LEVEL is the level within the networking model that you want the option to
affect. Most of the time this will be SOL_SOCKET, to directly affect the BSD network
sockets. The OPTNAME is one of the constants, exported by the Socket module and
summarized in Table 12-1. Note that the list here is for guidance only. The exact
options available will depend both on your operating system and the level of the
connection that you are configuring.

The OPTVAL is the value that you want to assign to the particular option. Because
each option can have a specific value, you cannot combine multiple options into the
same setsockopt call; you must set the options individually. For options that can be
enabled or disabled, 0 indicates that the option should be disabled, and 1 indicates that
it should be enabled.

For example, to switch SO_REUSEADDR on:

setsockopt(SOCKET, SOL_SOCKET, SO_REUSEADDR, 1);

On some systems you may need to pack the setting into a long integer using pack:

setsockopt(SOCKET, SOL_SOCKET, SO_REUSEADDR, pack(‘l’,1));

C h a p t e r 1 2 : N e t w o r k i n g 385
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Option Description

SO_DEBUG Enable/disable recording of debugging information.

SO_REUSEADDR Enable/disable local address reuse.

SO_KEEPALIVE Enable/disable keep connections alive.

SO_DONTROUTE Enable/disable routing bypass for outgoing messages.

SO_LINGER Linger on close if data is present.

SO_BROADCAST Enable/disable permission to transmit broadcast messages.

SO_OOBINLINE Enable/disable reception of out-of-band data in band.

SO_SNDBUF Set buffer size for output.

SO_RCVBUF Set buffer size for input.

Table 12-1. Socket Options Under Solaris 2.4

386 P e r l : T h e C o m p l e t e R e f e r e n c e

To get the current options, use getsockopt:

getsockopt SOCKET, LEVEL, OPTNAME

This returns the current setting for OPTNAME or is undefined if the value cannot be
determined. Note that once again you must request each option value individually; it’s
not possible to request all of the currently set options.

Data Transfer
Transferring information over a network is problematic because of line termination and
other issues. However, providing you are careful, you shouldn’t have any difficulties
while using the normal print function and <FILEHANDLE> operator. Since Perl treats
sockets like filehandles, there is no reason why you shouldn’t use any of the available
functions and operators that work with filehandles for transferring information.

To avoid getting into a deadlocked situation when communicating between hosts
on a single socket, you will need to design a suitable protocol that tells each end of
the network link what state it should be in. For simple communication, it should be
enough to use a simple flip-flop situation. For example, the server end sits waiting for
data while the client sends information, and once transfer is complete, the end toggles.
Now the client waits for data while the server sends it. This is the basic idea behind
protocols such as HTTP and SMTP. However, if you are using one of these protocols
for transfer, then you might find one of the CPAN modules, such as Graham Barr’s
excellent libnet bundle, significantly easier to use.

A possible alternative solution, as already discussed, is to open two sockets at each
end of the connection. The client uses shutdown to disable sending on socket A while
disabling receiving on socket B. The server, on the other hand, disables receiving on
socket A while disabling sending on socket B. Although this improves the situation,
you can still enter a deadlocked state if you are expecting to receive data on both ends
of the connection.

You cannot even use select to solve the problem. Many people mistakenly believe
that select eliminates the deadlocking situation. It doesn’t; all it does is provide a
method for a single threaded process to communicate on more than one socket
semi-simultaneously. If both ends of the connection are listening when one of them
should be sending, all select does is monitor multiple sockets very efficiently for no data.

If you are transferring fixed blocks of information, particularly binary data or
fixed-length records, then you might find the send and recv functions to be more
practical. You may also find that your operating system does not support the use of
print and other filehandle constructs for sending information. In these instances, you
will have to use the send and recv functions.

The send function sends a message on a socket handle, just like the send() system
function:

send SOCKET, MSG, FLAGS [, TO]

C h a p t e r 1 2 : N e t w o r k i n g 387
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The MSG argument is the data string that you want to send. Since Perl automatically
knows the length of a string, you do not need to supply this information. The FLAGS
specify particular operations to be configured for this transmission. Only two are
generally supported—MSG_OOB and MSG_DONTROUTE. MSG_OOB allows you
to send the MSG as out-of-band data. This is generally only supported on Internet
streams. The MSG_DONTROUTE flag switches on the SO_DONTROUTE option
for the duration of the transfer (see the previous “Socket Options” section). The TO
argument, if specified, should be a suitable sockaddr_in structure to send the data to
if the socket has not already been connected to a remote socket.

The recv function accepts information from SOCKET, placing it into SCALAR:

recv SOCKET, SCALAR, LEN, FLAGS

It accepts up to a maximum of LEN bytes from the socket, and SCALAR will be shrunk
or grown accordingly to hold the received information. The function returns the IP
address of the host from which the data was received, or undef on error.

Graham Barr’s libnet Bundle
Graham Barr supports the libnet bundle, which consists of a large number of modules
that support communication over a network with existing TCP/IP servers and protocols,
such as HTTP, FTP, SMTP, and NNTP. Because the complexities of the protocols have
been taken care of for you, the difficulties associated with communicating using these
protocols is virtually eliminated. The interfaces provided are object based, and if you
are familiar with the protocols, then using the modules and the classes provided is very
easy. Even if you don’t understand the protocols, simplified top-level functions are
provided for the most common tasks.

For example, here’s a script that expands an email address, first by resolving the
MX (mail exchanger) hosts for the email address’s domain, and then by communicating
directly with the mail server to expand the email address. This script also uses the
Net::DNS module by Michael Fuhr, which provides an interface to the DNS name-
resolving system. Again, it’s object based and is very easy to use. (Web Appendix B
describes details on the networking modules that are available from CPAN, or use
Appendix C to locate your local CPAN mirror.)

#!/usr/local/bin/perl5

use Net::SMTP;

use Net::DNS;

while (@ARGV)

{

388 P e r l : T h e C o m p l e t e R e f e r e n c e

my $email = shift;

my ($user, $host) = split '@', $email;

my $res = new Net::DNS::Resolver;

my @mx = mx($res, $host);

if (@mx)

{

print "Expansions for $email\n";

foreach my $rr (@mx)

{

my ($mxhost) = $rr->exchange;

print "Checking $mxhost\n";

my $smtp = Net::SMTP->new($mxhost);

unless($smtp)

{

warn "Couldn't open connection to $host";

next;

}

my $realrecipient = $smtp->expand($email);

print "$realrecipient\n" if $realrecipient;

$smtp->quit();

}

print "\n";

}

else

{

warn "Couldn't find any MX hosts for $host\n";

}

}

You can see from this sample how easy it is both to resolve an address using DNS
and to communicate with an SMTP server. The complexities of opening the remote
connection and handling the protocol and communication have been eliminated, and
something that would otherwise take hundreds of lines is resolved to just 34 lines. To
use it, just specify an address on the command line:

Expansions for mc@mcwords.com

Checking mcwords.com

<mcwords@prluk.demon.co.uk>

Here’s a very simple script using the Net::FTP module that uploads all the files
from a particular directory to a remote FTP server:

C h a p t e r 1 2 : N e t w o r k i n g 389
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

use Net::FTP;

my $ftp = Net::FTP->new($collector);

die "Couldn't FTP\n" unless($ftp);

$ftp->login($colluser,$collpass);

$ftp->cwd($remlogdir);

chdir($logdir);

my @list = glob("perf.*");

for my $file (@list)

{

if ($ftp->put($file,$file))

{

unlink $file;

}

}

$ftp->quit;

Gisle Aas’ LWP Bundle
Gisle Aas supports the LWP (libwww-Perl) bundle. Unlike the libnet bundle, which
is concerned with a number of specific protocols at a protocol level, the LWP bundle
provides you with a number of simple methods for downloading and accessing web
pages. As well as allowing you to download standard pages, you can also use cookies,
passwords, and other entities in your requests, and once downloaded, the links and
images in the files can also be extracted.

At the basic level, you can use the LWP::Simple module to download a single page:

use LWP::Simple;

$url = "http://www.osborne.com";

$file = "osborne.html";

$rc = mirror($url, $file);

if ($rc == 304)

{

print STDERR "$progname: $file is up to date\n"

}

elsif (!is_success($rc))

{

print STDERR ("$progname: $rc ", status_message($rc), " ($url)\n");

}

Replace $url and $file with a URL and the file to which you want the page
downloaded, and the LWP modules will handle everything else for you.

If you want to make use of a cookies file, you need to use the LWP::UserAgent
module—the same module is actually used by LWP::Simple. The next example opens
a Netscape cookies file, and then builds a new request consisting of the cookie data
and the URL you are requesting before calling the request method to download the
homepage of BlackStar, a DVD/video seller:

use LWP::UserAgent;

use HTTP::Cookies;

my $cookie_jar = HTTP::Cookies::Netscape->new(File =>

"/.netscape/cookies");

my $ua = LWP::UserAgent->new;

$ua->cookie_jar($cookie_jar);

my $request = HTTP::Request->new('GET',"http://www.blackstar.co.uk");

$ua->request($request, "blackstar.html");

390 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Chapter 13
Database Systems

391

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Up to now, all of the chapters have concentrated on the process of utilizing
information within the Perl environment and the Perl script you have
invoked. However, it is often desirable, if not essential, to create, update,

and access information for external databases. This process is called object persistence,
since the data is created and is persistently (or permanently) available.

There are many different types of database systems. Some of them will be familiar to
many of you, as you probably already use them, although you may not always realize
that you are doing so. Most databases take one of two basic forms: flat file and relational.
With a flat-file database, the information is stored in a fixed format, and the information
stored is considered to be isolated or complete. For example, the /etc/passwd file under
Unix or an .ini file under Windows could both be considered examples of a flat-file
database. The information is stored in its entirety in a format that is easy to understand,
and it does not need to be linked to another database for the information to make sense.

A relational database, on the other hand, uses a number of separate “tables.” Each
table contains a list of information, and links between the tables enable you to store
information in a structured and relative way. For example, imagine a music database. It
might have two tables—one lists the artists and the other lists the individual recordings
they have made. You can access all of the recordings for a particular artist by
examining the links between the two tables.

When it comes to accessing and using databases, there are other problems to contend
with. First of all, you must decide how you are going to store the information within a
file. Using a single- or multicharacter delimiter is a fairly common system and one that
Unix uses in many different places. By using a tab or colon or some other character, you
can separate the individual fields within a record. The return character is often used to
separate the individual records within the entire file.

The problem with this method is that if you want to store information that may
possibly contain one of these delimiting characters, you may experience some corruption
of data or even complete loss of information. A better solution in this instance is to use
a fixed-length record system. Rather than delimiting the individual fields and
records, fixed-length systems specify the length of each field. Providing you know the
format (field sizes and types), you should be able to read entire records from the file and
determine the individual fields by their positions. This is wasteful of space for databases
with very large fields. In a database with 16K records, you can easily eat up a lot of space.
A record with 1K of useful data still takes up 16K of storage space.

Even once you have solved these problems, there are other considerations. Text
databases are great for accessing sequential information or for storing a stream of
information that will be processed by a program at a later time. What they are not so good
at is random access. Searching through a large text database can be a time-consuming
task, since you will need to read in each individual record to determine whether it is the
one you want. There are ways around this: you can use an index system to point to the
records you want, but the chances are that this also uses a text format, and you end up
back at square one.

392 P e r l : T h e C o m p l e t e R e f e r e n c e

To get around this particular problem, you need to investigate a system that
automatically handles the indexing and searching of your database in a timely manner
but still provides you with a simple interface for extracting the individual records and
fields from the database files. The easiest solution is to use the DBM system (the precise
expansion of the acronym has been lost, but it probably stands for database management).
This is a hashing database using the same key/value pair system as Perl’s internal
hash variable.

The more complex database implementations, especially those relying on relational
features, either require more complex use of the text or DBM database systems or require
the use of an external database implementation. Perl supports access to all of the major
database systems and many of the smaller systems, through a number of extensions
provided through the DBI toolkit, a third-party module available from CPAN. Using
a series of database drivers (DBDs), the DBI toolkit allows you to create and use
databases using Oracle, Sybase, mSQL/mySQL, PostgreSQL, and ODBC (open
database connectivity). Under Windows you can use either the DBI interfaces or the
Win32::ODBC toolkit, which provides direct access to any ODBC-compliant database,
including FileMaker Pro, Oracle, and Microsoft’s Visual FoxPro, Access, and SQL
Server database products.

In this chapter, we’ll look at all four solutions—text, DBM, DBI, and ODBC—and at
more general methods and practices for creating and using databases within Perl. We’ll
also look at ways of using DBM databases for storing complex data and at using DBI
with text files.

Text Databases
Although they are the most basic of the database systems, text databases provide a reliable
and safe location for storing information. Many log systems using either delimited or
fixed-length records and many of the files that you take for granted on Unix and Windows
systems are actually text based, and are only imported or reported on when required.

If you look at a typical /etc/passwd file, you will notice that it has records—one
per line—where the individual fields are separated by colons:

root:x:0:1:0000-Admin(0000):/:/sbin/sh

daemon:x:1:1:0000-Admin(0000):/:

bin:x:2:2:0000-Admin(0000):/usr/bin:

sys:x:3:3:0000-Admin(0000):/:

adm:x:4:4:0000-Admin(0000):/var/adm:

lp:x:71:8:0000-lp(0000):/usr/spool/lp:

smtp:x:0:0:mail daemon user:/:

uucp:x:5:5:0000-uucp(0000):/usr/lib/uucp:

nuucp:x:9:9:0000-uucp(0000):/var/spool/uucppublic:/usr/lib/uucp/uucico

listen:x:37:4:Network Admin:/usr/net/nls:

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 393
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

nobody:x:60001:60001:uid no body:/:

noaccess:x:60002:60002:uid no access:/:

martinb:x:1000:1000:Martin C Brown:/users/martinb:/usr/local/bin/bash

There is a problem with the type of layout shown here if you start using this technique
for more complex databases. What happens if the data you are trying to store contains a
colon? As far as the Perl script is concerned, the colon specifies the end of one field and the
beginning of the next. An additional colon would only upset the information stored in the
“record.” Even worse, what would happen if you wanted to record multiple lines of text in
the database? Individual records are often stored on individual lines; multiline fields would
confuse the script again. You could use separate record delimiters that don’t rely on the
newline character, but again, this adds more complexity.

There are ways around these problems. You could use a different character for the
field and record separators, although this is still open to the same abuse and possible
results. You could just remove the field and record separator characters from the
source before you put them in the database, but this reduces the utility of being able
to store the information in the first place. The simplest solution is to ignore any field or
record separators and instead use fixed-length records to store the information. The use
of fixed-length records implies that you know the maximum size of the data that you
are storing before you place it into the database, and therefore you need to know the
format of the database before you write to and read from it.

Using fixed-length records would allow you to store any sort of information in the
database, including multiple-line text, without worrying about how the data may affect
the database layout. The only problem with fixed-length databases is that you not only
restrict the amount of information you can store, but you also increase the size of the
data file for small records, as the individual fields are “padded” to make up the fixed
lengths. To complicate matters further, you may have trouble choosing a padding
character that won’t affect the contents of the fields you are storing. Null characters, for
example, produce all sorts of results when they are included as the text within a browser
window when writing CGI programs. In these situations, you can usually augment the
fixed-length structure by also specifying the field length for each field in each record. But
this too increases the size of the database.

To add more complexity, you will also need to overcome the problems of searching
the file if you are using it as a random-access database. If you know the record number
you want to access, then with either form of text database, you should be able to move
to the location relatively quickly. But if you don’t know the record number, the time
taken to find the data will be a factor of the database size. This is why, practically, text
databases are only good for small-scale installations or in situations where the
information flow is basically one way.

Using a text database for storing log information is an example of a one-way
information flow. One or more programs will add data to the file without referring
back to the data they have written. Another script will be responsible for taking in the

394 P e r l : T h e C o m p l e t e R e f e r e n c e

raw data and producing a summary report of the information contained in it. Again,
the information flow is one way: the data comes from the database but is not updated
or modified.

In the following sections, we’ll look at the techniques for reading from and writing
to textual databases, including some example scripts. We’ll also examine the methods
you will need to employ if you need to update, rather than read from or append,
information in a text database.

Delimited Databases
Accessing delimited databases is a case of using the split and join functions to extract fields
from and combine fields into the records used to store the information. For example, to
access the password file on a Unix system, which uses colons for the field delimiters and
newlines for record delimiters, you can use a very simple script:

open(D,"</etc/passwd") || die "Can't open file, $!";

while(<D>)

{

chomp;

@fields = split /:/;

print join(' ', @fields),"\n";

}

close(D) || dir "Couldn't close file, $!";

Of course, in this instance it’s easier to use getpwent and other functions to read the
file in a more reliable and safe format, but the principles remain the same.

If you want to import and export records using a different record separator, you can
use the $/ and $\ variables. You can set the values of the input and output field values
when you call the split and join functions. You may also want to investigate the
DBD::CSV module, which allows you to access a comma separate value file as if it were
a SQL database table. See Web Appendix B and the “DBI” section later in this chapter for
more information.

Many of the remaining technicalities surrounding the use of delimited text files also
apply to fixed-length databases, so we’ll examine the problems in the next section.

Fixed-Length Records
Using fixed-length records is also a case of using an existing function set that you
already know about. The pack and unpack functions, which you saw in the previous
chapter, can be used to create fixed-length records that can be written to a file. Because
the bytestring generated by pack is (within reason) architecture independent, using
pack and unpack can be a reliable method for storing and exchanging information
across platforms.

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 395
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Following are three simple scripts: one to add data to a task list, one to report from
it, and one to update the information in a task list. The first is relatively simple. We will
compose the information from that supplied on the command line and append a packed
bytestring to the end of the file.

my ($taskfile) = "tasks.db";

my ($taskformat) = "A40LL";

my ($sec,$min,$hour,$mday,$mon,$year) = (localtime(time))[0..5];

$mon++;

$year += 1900;

die "Usage: $0 title required-date\n" if (@ARGV<2);

($mday,$mon,$year) = split '/',$ARGV[-1];

$reqdate = ($year*10000)+($mon*100)+$mday;

open(D,">>$taskfile") || die "Couldn't open the task file, $!\n";

print D pack($taskformat,$ARGV[0],$reqdate,0);

close(D);

The only important note is that we convert the date into a numerical format. The
reason for this, which will be more important in the next script, is that the numerical
version can be more easily sorted via the standard Perl functions.

Reporting from the database is almost as simple. Once again we employ the unpack
function to extract the individual records in turn:

use Getopt::Std;

my $taskfile = "tasks.db";

my $taskformat = "A40LL";

my $tasklength = length(pack($taskformat,));

my $ref=0;

getopts('drc');

open(D,"<$taskfile") || die "Couldn't open the task file, $!\n";

while(read(D,$_,$tasklength))

{

($title,$reqdate,$compdate) = unpack($taskformat,$_);

$lref{$ref} = $title;

396 P e r l : T h e C o m p l e t e R e f e r e n c e

$lref{$ref} = "$reqdate" if ($opt_r);

$lref{$ref} = "$compdate" if ($opt_c);

$ltitle{$ref} = $title;

$lreqdate{$ref} = $reqdate;

$lcompdate{$ref} = $compdate;

$ref++;

}

close(D);

printf("%-40s %-10s %-10s\n","Title","Req. Date","Comp. Date");

foreach $key (sort_values(\%lref))

{

$lreqdate{$key} =~ s#(....)(..)(..)#$3/$2/$1#;

if ($lcompdate{$key}>0)

{

next if ($opt_d);

$lcompdate{$key} =~ s#(....)(..)(..)#$3/$2/$1#;

}

else

{

$lcompdate{$key}="";

}

printf("%-40s %10s %10s\n",

$ltitle{$key},$lreqdate{$key},$lcompdate{$key});

}

sub sort_values

{

my $lref = shift;

if ($opt_r || $opt_c)

{

sort {$lref{$a} <=> $lref{$b}} keys %$lref;

}

else

{

sort {$lref{$a} cmp $lref{$b}} keys %$lref;

}

}

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 3 : D a t a b a s e S y s t e m s 397

398 P e r l : T h e C o m p l e t e R e f e r e n c e

The final script is more complicated. Updating information in either a delimited
or fixed-length database requires that you know the location of the data that you want
to update. With a delimited database, the data can potentially be of any length, and
so you need to copy the existing information from the current database into a new
file, substituting the updated information in the new file before continuing the copy

process. It’s not possible to “insert” data into the file—you cannot move data within a
physical file without moving the information somewhere else first. You could do it in
memory, but for large databases, this wouldn’t be practical. Instead, the better solution
is to use external files for the process.

With a fixed-length database, the process is slightly easier. The length of each record
in the database is the same, so updating a record is as easy as overwriting the updated
and packed record in the same physical location within the file. To do this you use the
seek and tell functions. This is a cyclical process in which you read in each record until
you find the one you want, remembering the location of the start of the record in each
case. Then, once the information has been updated, you go back to the start of the record
and rewrite the packed record.

Here’s the script that updates our earlier task file entries:

use Fcntl;

my ($taskfile) = "tasks.db";

my ($taskformat) = "A40LL";

my $tasklength = length(pack($taskformat,));

die "Usage: modtask.pl title completed-date\n" if (@ARGV<2);

open(D,"+<$taskfile") || die "Couldn't open the task file, $!\n";

while(read(D,$_,$tasklength))

{

($title,$reqdate,$compdate) = unpack($taskformat,$_);

last if (($title eq $ARGV[0]) && ($compdate eq 0));

$lastseek=tell(D);

}

if ($lastseek >= (-s $taskfile))

{

die "Couldn't find the task specified\n";

}

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 399
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

($mday,$mon,$year) = split '/',$ARGV[-1];

$compdate = ($year*10000)+($mon*100)+$mday;

seek(D,$lastseek,SEEK_SET);

print D pack($taskformat,$title,$reqdate,$compdate);

close(D) || die "Couldn't close the database\n";

To use all three scripts, first call addtask.pl (the first script) to create and add a
record to the database, and then update the task you have added by specifying a
completion date:

$ perl -w addtask.pl 'Phone Richard' 25/3/1999

$ perl modtask.pl 'Phone Richard' 26/3/1999

$ perl listtask.pl

Title Req. Date Comp. Date

Phone Richard 25/03/1999 26/03/1999

DBM Databases
For simple structures, such as single-record databases, and especially for a sequential
series of data, text files are exceedingly practical. However, they suffer from performance
issues if you want to access the information on a random basis, or where the amount of
information you wish to store becomes unmanageable in a text database. A better solution
is to store the information in a real database where the information can be recorded and
extracted using identified and unique keys. This enables you to ignore the searching and
storage mechanisms that are required for text databases and instead to concentrate on
writing the code for using, rather than the code for accessing, the database.

The standard database under Unix is a system called DBM, which is based on a
simple key/value pair, much like Perl’s own hash data type. Each entry within the
database will have a unique key, and attached to this will be the piece of data you
want to store. To extract information from the database, you simply request the data
associated with a particular key.

Although it sounds complicated, it is really no different from the way hash variables
are stored within Perl. You access a hashed variable entry within Perl by specifying a
textual key. With some careful programming and the use of well-worded keys, you can
store information in a DBM file in the same way you would store information in any
off-the-shelf database.

400 P e r l : T h e C o m p l e t e R e f e r e n c e

DBM files are an integral part of the Unix operating system. Many of the standard
components use DBM files for their own storage. Sendmail, for example, uses DBM to
store aliases in a time-efficient manner. The alias file is converted, using the newalias
command, into a DBM database. This is quicker than manually trawling through the
text-based alias file—something that is vitally important when processing a large
number of email messages. As a demonstration of the power of the DBM system, it
is also the storage format for the Network Information Service (NIS/NIS+, formerly
called the Yellow Pages), a networked version of many of the core operating system
configuration files for everything from user data to hostnames and IP addresses.

DBM Implementations
Over the years, the original DBM system has been improved and has gone through a
number of different incarnations, although the original specification remains the same.
Most of the different DBM systems are compatible with each other, but to a greater or
lesser extent, compatibility depends on the platform and implementation involved. It
should be noted, as well, that DBM files are not portable. The storage format used is
specific to a particular hardware platform and operating system. In some cases, even
different versions of the same operating system have incompatible DBM systems.
Furthermore, the format used by DBM is very wasteful of space compared to even a
fixed-length text database. Because of this, copying a DBM file across file systems on
the same machine can be problematic because the OS doesn’t know how to copy the
“empty” space.

Depending on the implementation, a DBM database is composed of either two files or
a combined single file. In the two-file combination, one is a directory table containing a
bit-based representation of the buckets and their index location and has .dir as its suffix.
The second file contains all the data and has .pag as its suffix. The data file is often full
of “holes,” where storage space has been allocated but not used, or where the key has
been deleted. In these instances, the area within the file actually contains no useful
information, although it will be reused when new data is added to the file.

The downside to this method is that some implementations allocate too much storage
space, thereby generating a file that is reported to be 10, 100, or even 1,000 times the size
of the useful information stored within the file. There is, unfortunately, no clear method
for compacting the information into a smaller version of the database. Even using Perl to
copy the contents of the database into a new database will not necessarily provide you
with a suitable solution to the problem. Of course, the flip side to all of this is that the
speed of access, even for a very large database, is very quick.

There is a limitation on the storage size of each key/value pair, which is known as
the bucket size. Creating entries larger than this will either crash you out of Perl or just
truncate the information you attempt to store, depending entirely on how the database
has been implemented at C level. The maximum bucket size is dependent on the DBM
implementation being used, and the information is summarized in Table 13-1.

TE
AM
FL
Y

Team-Fly®

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 3 : D a t a b a s e S y s t e m s 401

The following sections describe common DBM implementations and their
advantages, disadvantages, and differences from the range available.

DBM/ODBM
The generic term for the original DBM toolkit on which all the newer toolkits are based
is DBM/ODBM. Although included as standard in most Unix variants, it has been
replaced almost entirely by NDBM as the DBM implementation of choice. Perl refers to
ODBM as “Old DBM.” The supported bucket size is 1K on most platforms, but it may
be as high as 2K on some. The database files are created with .dir and .pag extensions,
although you only specify the prefix name when opening the file.

NDBM
The “new” replacement for the original DBM, with some speed and storage-allocation
improvements, is NDBM. This has replaced the standard DBM libraries and in some cases
is the only implementation available. Depending on the operating system, the bucket size
is anything from 1K to 4K. The database files are created with .dir and .pag extensions,
although you only specify the prefix name when opening the file. NDBM should, in
theory, be compatible with files created using the DBM/ODBM implementations,
although this isn’t guaranteed. You should use this in place of ODBM if it is available.

Implementation
Module

DBM/ODBM
ODBM_File

NDBM
NDBM_File

SDBM
SDBM_File

GDBM
GDBM_File

Berkeley DB
DB_File

Bucket Limit 1–2K 1–4K 1K (none) None None

Disk Usage Varies Varies Small Big Big

Speed Slow Slow Slow Okay Fast

Data Files
Distributable

No No Yes Yes Yes

Byte-Order
Independent

No No No No Yes

User-Defined Sort
Order

No No No No Yes

Wildcard Lookups No No No No Yes

Table 13-1. DBM Modules in Perl

402 P e r l : T h e C o m p l e t e R e f e r e n c e

SDBM
Substitute/Simple DBM is a speed- and stability-enhanced version of DBM. Included
as standard with the Perl distribution, it’s supported on all Perl platforms except Mac
OS. The SDBM system supports a default bucket size of 1K, but this can be modified at
compile time. The database files are created with .dir and .pag extensions, although
you only specify the prefix name when opening the file.

GDBM
The GNU/FSF implementation of DBM is faster than all implementations except
Berkeley DB. GDBM has also been ported to a larger number of platforms than other
implementations. Unlike other systems, it also supports an unlimited bucket size
and has built-in file locking within the GDBM module. This eliminates a lot of the
complexity surrounding the normal responsibilities of file locking. Unlike other
DBM implementations, the entire hash table is stored in a single file, rather than two
separate files.

Berkeley DB
Berkeley DB is a public domain C library of database access methods, and it supports
not only the traditional DBM implementation but also a number of advanced storage
and indexing systems that allow you to store and retrieve information in a more
efficient fashion. For the technically minded, Berkeley DB supports B+Tree, Extended
Linear Hashing, record-number indexing, and both fixed- and variable-length storage
records. The DB_File Perl module puts a DBM-like wrapper around the B-Tree and
hash implementations, enabling them to be used as DBM replacements. The fixed- and
variable-length record implementation also has a Perl array wrapper for direct use
within Perl scripts.

Berkeley DB libraries also support relational database system facilities such as
multiuser updates and transactions and the ability to recover corrupt database files.
We’ll take a look at using the additional features of Berkeley DB, beyond simulating
DBM files, later in this chapter.

DBM Functions
Perl 4 used a system of functions to access DBM files. The process was basically identical
to the process used for any normal file, and the result was very similar to the tie solution
we will see shortly. In each case, the dbmopen function creates a relation between a
Perl hash and an external DBM database. Using these functions, only one type of DBM
implementation is supported, and that’s usually the standard for your operating system
(NDBM, ODBM) or the Perl-supplied SDBM if these are not available.

dbmopen HASH, EXPR, MODE

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 403
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

This binds the database file specified by EXPR to the hash HASH. If the database does
not exist, then it is created using the mode specified by MODE. The file EXPR should
be specified without the .dir and .pag extensions.

For example, to associate the aliases database on a Unix machine to a hash called
%aliases:

Use Fcntl;

dbmopen %aliases,’/etc/aliases’,O_RDWR;

foreach (keys %aliases)

{

print "$_: $aliases{$_}\n";

}

Once you have finished using the DBM database, you must disassociate the hash
from the underlying DBM file with the dbmclose function:

dbmclose HASH

Use of these functions is heavily deprecated—and it’s highly likely that they will be
dropped completed in Perl 6.0, due out late in 2001. Use the tie method unless you really
need to retain compatibility with Perl 4.

Using Tied DBM Databases
Using the tie function, which you saw in the last chapter, provides an object-oriented
interface to DBM databases and is now the preferred method within Perl 5. By using tie,
you can create a connection between a standard Perl hash and a DBM database. Since
DBM databases use the same key/value system as Perl hashes, there is no complex
handling of the information. Accessing a key in the hash automatically provides you
with the correct key/value pair in the DBM database. Creating new entries and deleting
them similarly updates the DBM file. The access and control is instantaneous, and it
eliminates so much of the complexity of using a DBM database that it’s very easy to
forget you are even using an external file instead of an internal structure.

The format of the tie function with DBM files is as follows:

tie %hash, DBMTYPE, FILENAME, MODES, FILEMODE;

The DBMTYPE element should be the name of a DBM implementation from which to
inherit the necessary methods for the tie function. For example, to create a new database
using GDBM, you might use

tie %db, 'GDBM_File', 'database.db', O_CREAT|O_RDWR, 0644;

You will need the definitions from the Fcntl module for the specification of the
different flags when opening and closing the files. The different flags available for all
DBM implementations are shown in Table 13-2. Both GDBM and Berkeley DB have
their own additional flags, which we will examine separately.

Once opened, the DBM file can be accessed using the hash it has been tied to. For
example, the following code fragment opens a text file and creates a DBM database of
the contents. The first line of the text file is assumed to be the list of fields to be used as
keys in the rest of the database.

404 P e r l : T h e C o m p l e t e R e f e r e n c e

Flags Description

O_APPEND Appends information to the given file

O_CREAT Creates a new file if it doesn’t already exist

O_EXCL Causes the open to fail if the file already
exists when used with O_CREAT

O_NDELAY Opens the file without blocking; reads or
writes to the file will not cause the process
to wait for the operation to be complete

O_NONBLOCK Behaves as O_NDELAY

O_RDONLY Opens the file read-only

O_RDWR Opens the file for reading and writing

O_TRUNC Opens the file, truncating (emptying) the file
if it already exists

O_WRONLY Opens the file write-only

Table 13-2. File Access Flags

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 405
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

#!/usr/local/bin/perl5 -w

use NDBM_File;

use Fcntl;

my ($dbfile,%db,$i,@fieldnames,@fields,$key,$n);

die "Usage:\n$0 source\n" if (@ARGV<1);

$dbfile = $ARGV [0];

open(D,"<$dbfile") || die "Can't open $dbfile, $!";

(tie %db, NDBM_File, $dbfile, O_RDWR|O_CREAT|O_EXCL, 0666)

|| die "$0: Error creating $dbfile: $!\n";

$_ = <D>;

chomp;

s/,//;

@fieldnames = split "\t";

$db{fieldlist} = join(",",@fieldnames);

while(<D>)

{

chomp;

@fields = split "\t";

for($n=0;$n<=@fields;$n++)

{

if (defined($fields[$n]))

{

$key = $fieldnames[$n] . "-$i";

$db{$key} = $fields[$n];

}

}

$i++;

}

$db{seqid} = $i;

close(D) || die "$0: Couldn't close source, $!\n";

untie %db || die "$0: Couldn't close db, $!\n";

406 P e r l : T h e C o m p l e t e R e f e r e n c e

print "Read $i records\n";

Other hash functions, such as each, keys, and delete, work the same way on a DBM
file as on a hash. The changes are immediate: if you delete an entry in the hash tied to
the DBM database, it has been deleted forever; recovery is impossible. You can also
check for the existence of a key within the database using the normal exists function,
and you can check the value of a specific key using defined. The tie object interface
performs all the necessary checks and other operations for you on the actual DBM file.

Also note that the keys and values functions should be used sparingly if the
DBM file is particularly large. Perl will quite happily create a large internal temporary
array to contain the list of information. Unless you are producing a sorted list of the
contents, it’s best to avoid the use of functions altogether. In most cases, you will be
accessing individual key/value pairs from the database, and this should not then be
a problem. However, when searching (perhaps when building a list of records to
display), use the each function (see Chapter 7) to prevent Perl from creating such large
temporary structures.

Converting Between DBM Formats
Because Perl 5 now uses the Tie module to create a link between a hash and a DBM
object, you can use Perl to convert from one DBM implementation to another. The
following example converts an NDBM_File database into a GDBM_File database:

use NDBM_File;

use GDBM_File;

use Fcntl;

die "Usage:$0 old new\n" if (@ARGV<2);

my($old,$new) = @ARGV;

tie (%oldhash, 'NDBM_File', $old, O_RDONLY, 0444)

|| die "$0: Error opening source $old: $!\n";

tie (%newhash, 'GDBM_File', $new, O_CREAT|O_RDWR|O_EXCL, 0666)

|| die "$0: Error opening dest $new: $!\n";

%newhash = %oldhash;

untie %oldhash || die "$0: Error closing old DBM file, $!\n";

untie %newhash || die"$0: Error closing new DBM file, $!\n";

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 407
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Given our earlier concerns, you may want to use a less memory-intensive process
for copying the records. Here’s the same example using each to extract the information
before writing it into the new database:

use NDBM_File;

use GDBM_File;

use Fcntl;

die "Usage:$0 old new\n" if (@ARGV<2);

my($old,$new) = @ARGV;

tie (%oldhash, 'NDBM_File', $old, O_RDONLY, 0444)

|| die "$0: Error opening source $old: $!\n";

tie (%newhash, 'GDBM_File', $new, O_CREAT|O_RDWR|O_EXCL, 0666)

|| die "$0: Error opening dest $new: $!\n";

while(($key, $value) = each(%oldhash))

{

$newhash{$key} = $value;

}

untie %oldhash || die "$0: Error closing old DBM file, $!\n";

untie %newhash || die "$0: Error closing new DBM file, $!\n";

Using AnyDBM_File
If you are not worried about the DBM implementation you are using, you can use the
AnyDBM_File module to include a DBM implementation from those available. It selects
a class from the implementations, choosing the first valid one from the following list:
NDBM_File, DB_File, GDBM_File, SDBM_File, and ODBM_File. In the unlikely event
that all of these modules are unavailable, the use statement will fail.

When using AnyDBM_File, you should be aware that the implementation selected
may differ from the one you require if you are attempting to open an existing DBM
database. If you do not know the format of the database you are trying to open, you will
have to try and work it out. In general, any DBM file set ending in .dir or .pag will be an
NDBM or ODBM database. If you know these are not supported on your system, then
it’s probably an SDBM database (except on Mac OS, where SDBM is not supported). If
the DBM database is stored in a single file, the most likely implementation is GDBM, but
it’s possible that Berkeley DB is also supported.

408 P e r l : T h e C o m p l e t e R e f e r e n c e

GDBM Features
The GDBM_File implementation, if available on your system, provides some additional
benefits over the standard DBM implementations. Although the GDBM library supports
DBM/NDBM compatibility, you cannot use the GDBM_File module to open existing
databases. If you need to do this and don’t have DBM/NDBM, try the SDBM module
that comes with Perl.

The biggest benefit with the GDBM implementation of the DBM database system is
that there is no limit on the bucket size. This, theoretically, means you can store arbitrary
pieces of data in a single key/value pair. The size of the GDBM files that are created is
slightly larger than traditional files—about 24K for a “blank” database is about average.
I’ve successfully used the GDBM system to store large data structures within a database
file—even, in one case, the graphics used for a website.

use GDBM_File;

tie %db, 'GDBM_File', 'db', &GDBM_WRCREAT, 0640;

untie %db;

You can use the modes ordinarily supplied by the Fcntl module, or you can instead
use a set of modes defined by GDBM_File, as listed in Table 13-3.

Mode Description

GDBM_READER Open for read-only.

GDBM_WRITER Open for read/write.

GDBM_WRCREAT Open for read/write, creating a new database
if it does not already exist, using the
permissions mode specified.

GDBM_NEWDB Open for read/write, creating a new database
even if one already exists, using the
permissions mode specified.

Table 13-3. GDBM-Specific Modes

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 409
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

In addition, you can specify the GDBM_FAST mode when opening a file for
read/write. This forces disk synchronization with the memory version of the hash only
when the file is closed. This improves performance, but it may produce unpredictable
results if the script exits ungracefully.

Berkeley DB Features
The Berkeley DB system is a more involved and enhanced version of the base DBM
implementation. The module provides a number of different database formats, accessed
and used by means of the same tie function. The modules are the standard key/value
pair database supported by other DBM systems (DB_HASH); a B-Tree–based system,
accessible via a hash (DB_BTREE); and a record-number system using arrays
(DB_RECNO).

Standard Hash Database
A DB_HASH is identical in most respects to Perl’s internal hash structure, only the
key/value pairs are stored in data files, not memory. The functionality provided is
basically identical to that provided by the other DBM-style database engines. DB_File
uses its own hashing algorithm for storing and retrieving the key/value pairs, but you
can supply your own system if you prefer.

use DB_File ;

[$X =] tie %hash, 'DB_File', $filename, $flags, $mode, $DB_HASH;

The value of $flags is identical to that of other databases and refers to the mode in
which the file will be opened. The $mode is the octal mode with which the file should
be created or accessible. The final item is actually a reference to a hash; I’ve used a
predefined reference in the synopsis above. We’ll return to the configuration options
available via this hash shortly.

The $DB_HASH argument should be a DB_File::HASHINFO object. The object
defines the default options that control how the database is configured, and you can
change the options by simply updating the hash keys. The supported options are listed
in Table 13-4.

410 P e r l : T h e C o m p l e t e R e f e r e n c e

Hash Key Description

bsize Defines the hash table bucket size. The default is 256
bytes, and you may want to increase this if you know
you are storing information larger than this size.
Remember that the size defined here will apply to all
new entries created in the database. Arbitrarily
increasing this may degrade performance and
increase the storage space used by the database.

ffactor Indicates the density of information. The value
assigned becomes the number of keys that will
accumulate within a single bucket allocation. The
default is 8, and therefore a maximum of 8 key/value
pairs of 32 bytes each could be stored in a single
bucket. Reducing the value to 1 will increase the file
size by the bucket size (defined in bsize) for each
record. Specifying too large a value may decrease
performance.

nelem An estimation of the final size of the hash table
(number of buckets or the number of elements
divided by ffactor). If you know the number of
elements you are going to store, you can use this to
achieve a slight increase in performance. The value
set is not restrictive; the database will automatically
grow in size if you set a value that is too low. The
default value is 1.

cachesize The maximum size in bytes of physical memory to
allocate as a buffer between the in-memory database
and the physical file store. Specifying a large value
will increase performance, since more of the database
will be kept in memory. However, it may also cause a
synchronization error if there is a crash or other
problem, since there may still be data in the cache
that has not been written to a file. A value of 0 lets
the system choose a reasonable value for you.

Hash A reference to a user-defined function that returns a
32-bit quantity suitable for ordering and referencing
a hash.

Table 13-4. Customizable Elements for DB_HASH Databases

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 411
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

For example, to create a database with a bucket size of 1,024 bytes:

$options = new DB_File::HASHINFO;

$options->{'bsize'} = 1024;

tie %db, 'DB_File', "file.db", O_RDWR, 0644, $options;

The hash element should point to a function that you want to use for creating a
hash value.

B-Tree Hash Database
The B-Tree hash is architecturally identical to the standard hashing system used on
most other DBM systems. The difference is that the keys are stored in an ordered
format using a binary tree. This allows you to use a hash database in an ordered form
without having to resort to the use of sort to order the data before it is used.

use DB_File ;

tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE;

As before, the $flags and $mode are identical to other DBM databases. The
$DB_BTREE argument is another object with a set of base properties that you can
modify according to the options listed in Table 13-5.

Hash Key Description

Lorder The byte order to be used for storing integers within
the metadata in the file. The number specified should
represent the order as an integer (that is, 4321 is big
endian, and 1234 is little endian). If a value of 0 (the
default) is specified, the current host order is used
instead. If the file you are using already exists, the
format used within that file is always used. This can
help with compatibility across platforms if you are
sharing a database file on multiple systems that
support different byte orders.

Table 13-4. Customizable Elements for DB_HASH Databases (continued)

412 P e r l : T h e C o m p l e t e R e f e r e n c e

Hash Key Description

Flags A value that should be composed of values or’d
together. Two values are currently available:
R_DUP and R_NOOVERWRITE. The value
R_DUP allows duplicate keys to be entered into
the database. The R_NOOVERWRITE prevents
you from overwriting existing keys. You cannot
specify the two flags together, since they
effectively cancel each other out.

Cachesize The maximum size in bytes of physical memory
to allocate as a buffer between the in-memory
database and the physical file store. Specifying a
large value will increase performance, since more
of the database will be kept in memory. However,
it may also cause a synchronization error if there
is a crash or other problem, since there may still
be data in the cache that has not been written to
a file. A value of 0 lets the system choose a
reasonable value for you.

maxkeypage The maximum number of keys that will be stored
in a single page. This currently has no effect on the
process within Perl.

minkeypage The minimum number of keys that will be stored
in a single page. This value defines which keys
will be stored on overflow rather than main pages.
The default value is 2, and this value will be
selected if you try to define a value of 0.

psize The size, in bytes, of the pages used to store nodes
of the B-Tree structure. The minimum page size is
512 bytes and the maximum is 65,535 (64K).
Ideally, you should choose a size that matches
your data and the minkeypage value, or a value
that matches the underlying size of your operating
system allocation blocks.

Table 13-5. Options for DB_BTREE Databases

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 413
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The method for defining these flags is identical to the system for standard hash
databases:

$options = new DB_File::BTREEINFO;

$options->{'cache'} = 16384;

tie %db, 'DB_File', "file.db", O_RDWR, 0644, $options;

Hash Key Description

compare A reference to a function that operates the
comparison between keys that will be used when
storing the information. (See the discussion of the
comparison function in this section for more
information.) If none is specified, or if the undef
value is used, then a default function that uses
lexical comparisons is used instead. This function
is basically alphanumeric, with shorter keys
considered as being less than longer keys.

prefix A reference to a function that returns the number
of bytes necessary to determine whether the
second key supplied is greater than the first key.
The basic point behind the function is to optimize
the size of the search tree used to find key/value
pairs. For lexical comparisons, the built-in
function should suffice. See the discussion of the
prefix option in this section for more information.

lorder The byte order to be used for storing integers
within the metadata in the file. The number
specified should represent the order as an integer
(that is, 4321 is big endian, and 1234 is little
endian). If a value of 0 (the default) is specified,
the current host order is used instead. If the file
you are using already exists, the format used
within that file is always used. This can help with
compatibility across platforms if you are sharing a
database file on multiple systems that support
different byte orders.

Table 13-5. Options for DB_BTREE Databases (continued)

414 P e r l : T h e C o m p l e t e R e f e r e n c e

The comparison function (defined through the compare option) should accept
and compare two keys, returning a numerical value depending on how key1 compares
to key2. The function should return 0 if the two keys are equal, –1 if key1 is less than
key2, and 1 if key1 is greater than key2. For example, to use the default Perl string
comparisons, you might use the following functions:

sub compare

{

my ($key1, $key2) = @_;

return 0 if ("\L$key1" eq "\L$key2");

return -1 if ("\L$key1" lt "\L$key2");

return 1 if ("\L$key1" gt "\L$key2");

}

More simply, you could just use the cmp operator:

sub compare

{

my ($key1, $key2) = @_;

"\L$key1" cmp "\L$key2";

}

Note in both examples that you convert the keys to lowercase to ensure that the
comparison works in proper alpha order rather than the normal ASCII order that
would be implied otherwise.

The prefix option allows you to specify the number of bytes that should be used
when making comparisons between keys. The value should simply return the number of
bytes used to make the comparison. This works with the comparison function to decide
at what size a specific key is given priority over another key in the sorting process.

Record Number Database
The DB_RECNO option enables you to store fixed-length or variable-length records
within a database file. The format used is basically text based. If you want to open and
use a comma-separated file (CSV), you can use the DB_RECNO system to open and
then use the database. Alternatively, you can make use of the fixed-length approach we
looked at, at the start of this chapter.

Unlike the other Berkeley DB databases, the record number database is tied to a
standard array rather than a hash, and individual records are accessed by their record
number using the standard index you would use with any normal hash:

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 415
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

use DB_File ;

tie @array, 'DB_File', $filename, $flags, $mode, $DB_RECNO ;

The options for the $DB_RECNO object are listed in Table 13-6.

Hash Element Description

flags This is a value based on or’d predefined flags, and
three values are currently defined: R_FIXEDLEN,
R_NOKEY, and R_SNAPSHOT.
The R_FIXEDLEN flag signifies that the records are
of fixed length rather than being byte delimited. Use
the reclen option to specify the length of the record
and bval to specify the character to be used for
padding the record to the specified size. Records are
automatically padded if you supply a record with a
length less than that specified.
The R_NOKEY flag forces the routines and methods
that are used to access the database not to include
the key information. This allows you to access
records that are at the end of the database without
having to read the intervening records.
The R_SNAPSHOT flag specifies that a snapshot of
the file’s contents be taken when the file is opened.

cachesize The maximum size, in bytes, of physical memory to
allocate as a buffer between the in-memory database
and the physical file store. Specifying a large value
will increase performance, since more of the database
will be kept in memory. However, it may also cause a
synchronization error if there is a crash or other
problem, since there may still be data in the cache
that has not been written to a file. A value of 0 lets the
system choose a reasonable value for you.

Table 13-6. Options for DB_RECNO Databases

416 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, to set the record length in a fixed-length database:

$options = new DB_File::BRECNOINFO;

$options->{'reclen'} = 1024;

tie @db, 'DB_File', "file.db", O_RDWR, 0644, $options;

If you want, you can use the array as a stack. Versions of Perl newer than 5.004_57
can use the normal pop, push, shift, and unshift functions directly with the tied array.

Hash Element Description

psize Records from a DB_RECNO database are stored in
memory in a B-Tree format. The psize specifies the
number of pages to be used for the nodes of the
B-Tree structure.

lorder The byte order to be used for storing integers within
the metadata in the file. The number specified
should represent the order as an integer (that is,
4321 is big endian, and 1234 is little endian). If a
value of 0 (the default) is specified, the current host
order is used instead. If the file you are using
already exists, the format used within that file is
always used. This can help with compatibility across
platforms if you are sharing a database file on
multiple systems that support different byte orders.

reclen The length, in bytes, of a fixed-length record.

bval The value of the character to be used to mark the
end of a record in a variable-length database, and
the character to use for padding in a fixed-length
database. If no value is specified, then a newline is
used to specify the end of a record in a
variable-length database, and spaces are used to pad
fixed-length records.

bfname The name of the B-Tree file to be used for the B-Tree
structure of the in-memory record-number database. If
none is specified, the hash is stored entirely in memory.

Table 13-6. Options for DB_RECNO Databases (continued)

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 417
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Older versions will need to use the object methods for the object reference returned
when the database is first opened, for example:

$DBX = tie @db, 'DB_File', "file.db", O_RDWR, 0644, $DB_RECNO;

You can then use the methods shown in Table 13-7 to push, pop, shift, and unshift
information from the stack.

In-Memory Databases
You can use the features of the Berkeley DB databases for in-memory databases. This
can be useful if you want to use a hash with information stored in an ordered format
(as with DB_BTREE) but don’t want to create a file in the process. To do this, you
specify the undef value as the name of the database file. For example

tie %db, 'DB_File', undef, O_CREAT|O_RDWR, 0666, $DB_BTREE;

or, for the standard hash:

tie %db, 'DB_File', undef, O_CREAT|O_RDWR, 0666, $DB_HASH;

If you want to use an in-memory standard hash, the preceding line can be
shortened to

tie %db, 'DB_File';

Method Description

$DBX->push(list) Pushes the elements of list onto the end of the
tied array

$DBX->pop Pops the last element of the array

$DBX->shift Removes and returns the first element of
the array

$DBX->unshift(list) Pushes the elements of list onto the start of the
tied array

$DBX->length Returns the number of elements in the array

Table 13-7. Object Methods for DB_RECNO Databases

Storing Complex Data in a DBM Database
The simplest model for storing information in a DBM database is identical to the model
used for a Perl hash. You have a unique key of information and use that key to refer to
a single piece of data. However, this is a fairly flat model if you want to store complex
pieces of information in a structured format. Instead, you can use the key/value pairs
to store the more traditional records used in a database system.

By using a formatted key or value, you can store the information for individual
fields within a DBM file. The entire record can be stored either in multiple keys or
within a single key with a structure value. For example, imagine the simple record
structure below:

Firstname, 10 characters

Lastname, 10 characters

Email, 40 characters

You could use a formatted key value of the form field-id, such that a single record
could be entered into the database as

$db{'firstname-1'} = 'Martin';

$db{'lastname-1'} = 'Brown';

$db{'email-1'} = 'mc@mcwords.com';

The first name of the next person in the table would be stored in the key firstname-2,
the last name in lastname-2, and so on. Although this seems like a practical method, it
is a relatively complex system to implement, and it is wasteful of database keys, which
will need to be processed individually.

An alternative solution is to use one of the methods described earlier for text-based
databases. By using delimiters or fixed-length records, an entire record can be stored
within a single key/value pair. Using delimiters, the preceding information could be
written into the database and then recovered from it using the following Perl code:

use Fcntl;

use GDBM_File;

tie %db, 'GDBM_File', 'Test_GDBM', O_CREAT|O_RDWR, 0644

|| die "Can't open DB File, $!";;

$db{'1'} = join(',',qw/Brown Martin mc@mcwords.com/);

$db{'2'} = join(',',qw/Foo Bar foo@foobar.com/);

$db{'3'} = join(',',qw/Bar Foo bar@barfoo.com/);

418 P e r l : T h e C o m p l e t e R e f e r e n c e

foreach $id (sort keys %db)

{

($lastname, $firstname, $email) = split(/,/,$db{$id});

print "$id: lastname: $lastname\n";

print "$id: firstname: $firstname\n";

print "$id: email: $email\n";

}

untie %db || die "Can't close DB File, $!";

In this example, the database is populated using a simple numeric key, with the
data added via a join using a comma as the delimiter. To print the information you’ve
just stored, you work through the database and, using split, place each field’s data into
individual variables, which you then print.

As you know, however, delimited text requires very careful selection of the
delimiter to ensure that the information is stored correctly. Here is the same result
using pack and fixed-length records, which gets around this problem.

use Fcntl;

use GDBM_File;

tie %db, 'GDBM_File', 'Test_GDBM', O_CREAT|O_RDWR, 0644

|| die "Can't open DB File, $!";

$db{'email-pstr'} = 'a10a10a30';

$db{'email-fields'} = join(',', qw/Lastname Firstname Email/);

$db{'email-1'} = pack($db{'email-pstr'},qw/Brown Martin mc@mcwords.com/);

$db{'email-2'} = pack($db{'email-pstr'},qw/Foo Bar foo@foobar.com/);

$db{'email-3'} = pack($db{'email-pstr'},qw/Bar Foo bar@barfoo.com/);

@fieldnames = split(/,/,$db{'email-fields'});

foreach $id (sort grep(/^email-[0-9]+/,keys %db))

{

@fields = unpack($db{'email-pstr'},$db{$id});

for($i=0;$i<@fields;$i++)

{

$id =~ s/email\-//;

print "$id: $fieldnames[$i]: $fields[$i]\n";

}

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 419
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

420 P e r l : T h e C o m p l e t e R e f e r e n c e

}

untie %db || die "Can't close DB File, $!"

Note in this example that you also manage to keep track of the field names and sizes
by recording this information into keys within the database. This makes the format of the
database and its contents completely database defined. Also note that I’ve used a prefix
in the base keys. Although it’s relatively useless here, it can be useful if you want to store
multiple tables within a single database file. Each table has its own name and, in turn, its
own pack string, field list, and sequence.

There is still a problem with this particular solution. It is even more wasteful of
space than a flat text file using fixed-length records. This is because of the internal
storage method used for DBM databases and the problems associated with fixed-length
records. In this example, every record will take up at least 60 bytes. A more complex
record structure will take up significantly more.

Of course, Perl allows you to do more than just use simple key/value pairs. In Chapter 10
we looked at the complex data structures you can create to model information using
nested Perl variables, such as hashes of hashes and arrays of hashes. Unfortunately, you
cannot use normal DBM implementations to create nested hashes of hashes and hashes of
arrays. If we return to our first solution, we can expand it by using a hash of hashes to
store the data in a more structured format:

use Fcntl;

use GDBM_File;

tie %db, 'GDBM_File', 'Test_GDBM', O_CREAT|O_RDWR, 0644;

|| die "Can't open DB File, $!";

$db{1} = 'Record';

$db{1}{lastname} = 'Brown';

$db{1}{firstname} = 'Martin';

$db{1}{email} = 'mc@mcwords.com';

$db{2}{lastname} = 'Foo';

$db{2}{firstname} = 'Bar';

$db{2}{email} = 'foo@foobar.com';

$db{3}{lastname} = 'Bar';

$db{3}{firstname} = 'Foo';

$db{3}{email} = 'bar@barfoo.com';

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 421
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

foreach (sort keys %db)

{

foreach $field (sort keys %{$db{$_}})

{

print "$_: $field: $db{$_}{$field}\n";

}

}

untie %db || die "Can't close DB File, $!"

However, the MLDBM module by Gurusamy Sarathay (available from CPAN)
uses existing DBM modules and the Data::Dumper module to convert such complex
references into a simple format that can be stored within an ordinary hash file. It
implements the same basic idea, using the tie function to associate a hash with a hash
file—the MLDBM object handles all of the complexity for you:

use GDBM_File;

use MLDBM qw(GDBM_File);

use Fcntl;

tie (%db, 'MLDBM', 'Test_MLDBM', O_CREAT|O_RDWR, 0644) || die $!;

This overcomes all the previous problems. The data is stored in a structured format,
which can be accessed simply using standard hash techniques. Furthermore, the
storage space used for this system is significantly lower than the fixed-length database
example shown earlier. The storage space is still slightly higher than the delimited
system, due to the use of a secondary level key, but it overcomes the problem of
choosing a suitable delimiter.

Relational Databases with DBM
The relational element of a relational database that most people think of is actually the
automatic lookup of information. When you report from a database that is composed
of many tables, you can choose to print out the “merged” information from all of the
linked tables in order to produce the desired set of results. The clever bit is the linking
between the individual tables, and this is something that is actually possible to do
manually using any database system—text, DBM, or otherwise. With DBM, you have
the advantage over text databases of convenient random access, which is the only
practical way of achieving a “flat” relational system.

You can model relational data in any database system. The only requirement for
using it is that you are able to access all of the tables simultaneously. The actual
method of linking between the tables can be done automatically or manually. With the

422 P e r l : T h e C o m p l e t e R e f e r e n c e

tie interface, you can have as many physical DBM databases open at any one time as
you like (operating system limits permitting). Through the use of the principles you
saw in the previous section, there is no reason why you couldn’t actually model the
information in a single database with structured key/value pairs.

The most critical part of the development of a relational system is the modeling of
the data. Once you have decided on the format of the information and how it is going
to be linked, you also need to consider how the links will work. Let’s look briefly at a
relational system for storing multiple contact information for multiple people using a
DBM database.

The first table is the list of contact names—this will be the lynchpin for our database
because it contains our contact names. The contact table has three fields—first name,
last name, and a list of record numbers for the second table, the numbers table. The
numbers table has two fields—the number type and the number itself. “Number” can
mean pager, phone, fax, or mobile number, email address, and so on.

The first table might be populated like this:

$db{‘contact-1’} = "Martin;Brown;1,3,4";

$db{‘contact-2’} = "Bob;Smith;2,5";

The key is made up of the table name and a unique ID within that table. The
information is stored using delimited text fields in the value portion of the key/value
pair. Note that semicolons separate the individual fields, but commas separate the link
data in the third field.

The numbers table could be populated with the following information:

$db{‘numbers-1’} = "Email;mc@mcwords.com";

$db{‘numbers-2’} = "Email;bsmith@foobar.com";

$db{‘numbers-3’} = "Fax;01234 456789";

$db{‘numbers-4’} = "Phone;09876 543210";

$db{‘numbers-5’} = "Mobile;0789 123456";

To access the complete contact information for Martin Brown, you need to access
record number one of the contact table and then access the related information listed in
field three of that record. In this case, this is records 1, 3, and 4 from the numbers table.
To dump the information from the database in a formatted formation, you might use a
script like this:

use Fcntl;

use GDBM_File;

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 423
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

tie %db, 'GDBM_File', 'Test_Rel', O_CREAT|O_RDWR, 0644

|| die "Can't open DB File, $!";;

foreach $id (sort grep(/^contact-[0-9]+/,keys %db))

{

($lastname, $firstname, $relations) = split(/;/,$db{$id});

print "$firstname $lastname\n";

foreach $subid (sort split(/,/,$relations))

{

($type,$num) = $db{"numbers-$subid"}

if (exists($db{"numbers-$subid"}));

print " $type: $num\n";

}

}

untie %db || die "Can't close DB File, $!";

The method is basically very similar to the tricks you saw in the previous section for
modeling complex data structures within a DBM database. When run on the database
above, it produces the following results:

Brown Martin

Email: mc@mcwords.com

Fax: 01234 456789

Phone: 09876 543210

Smith Bob

Email: bsmith@foobar.com

Mobile: 0789 123456

If you want to use some of the earlier techniques for including information in the
database about the database, you can even begin to drive the links using formatted
structures. I’ve developed a simple relational database system, originally designed for
complex contact management, using this type of relational system. It needed to be
ultimately portable to a variety of platforms, and the client wanted to keep away from
proprietary database systems.

Database File Locking
Without at least some form of file locking, it will be possible for two processes,
Perl-based or otherwise, to access and update the database file at the same time. When
reading from the database, this is not an issue; there is no reason (normally) to lock
people out from the database if all they want to do is look up a value. When updating,
however, the end results could be disastrous. With more than one person updating
different lines, sections, and key/value pairs in the different database types, you could
end up with, at best, a corrupt database and, at worst, one that is completely unreadable.

The best solution is to use the Perl flock function, which uses the best of the underlying
locking mechanisms (flock, lockf, or fcntl). You may also want to consider using a separate
file to indicate the lock condition. See the example in Chapter 7 for information on using
and checking the file locks with the flock function.

You will need to take care about how you implement the locking mechanism. With
a text-file database, you can use flock directly on the filehandle you use to access the
database. With DBM databases, the system is more complex, since the actual file is
hidden from you via the tie object interface. For the ODBM_File, NDBM_File, and
SDBM_File, this will mean checking and imposing locks on both files used to store the
DBM data. For GDBM_File, you only need to check the locks on one file.

For DB_File, you can use a method applied to a DB_File object in order to discover
the file descriptor, and then use the duplication notation with the open function to
assign it to a filehandle that can be used with flock. For example:

use Fcntl qm/:flock:/;

use DB_File;

$dbobj = (tie(%db, 'DB_File', 'dbfile.db', O_RDWR, 0644)

|| die "Can't tie database to hash, $!";

$fileno = $dbobj->fd;

open(DBHANDLE, "+<&=$fileno") || die "Can't open FH, $!";

unless (flock(DBHANDLE, LOCK_EX|LOCK_NB)) { die "Can't lock: $!" }

...

Update the database

...

flock(DBHANDLE, LOCK_UN);

close(DBHANDLE);

untie %db;

This only sets and releases a lock for update. You’ll also need to include the necessary
tests to ensure that the file is not already locked.

424 P e r l : T h e C o m p l e t e R e f e r e n c e

Using the DBI and Win32::ODBC Toolkits
Although text and DBM databases have their place, as the quantity of information
starts to grow, even the best organized DBM systems start to degrade in speed and
become more difficult to manage and update. Professional, and often commercial,
databases have been part of the computing world almost from the start, and using
them has a number of advantages over designing your own DBM system. The
advantages of a relational database management system (RDBMS) include

� Faster access—because an RDBMS is written in C, and often highly optimized
in its routines and storage and indexing methods, it will be much faster than a
typical DBM file for databases with large (>5,000) records.

� Easier management—with a DBM or flat-file database, you have a lot of
management overhead controlling what you delete, how it’s deleted, and the
general housekeeping of the files themselves. An RDBMS does it for you.

� Easier access—most, if not all, RDBMSs use SQL to create, modify, and access
information, and this makes the entire process much easier as all you have to
worry about is writing a suitable query; the RDBMS will do all the actual work.

There are a number of ways to access RDBMS systems from within Perl. Some have
their own interfaces and modules, while others have had a number of modules written
specifically to access their contents. However, a much better solution is to use either
the DBI toolkit, which is available under Unix and Windows, or the Win32::ODBC
toolkit under Windows. Which you choose will largely depend on the database you are
connecting to, your current platform, and how portable and compatible you want your
scripts to be with different database systems.

DBI
The DBI toolkit, developed for the most part by Tim Bunce, is a suite of objects and
methods that allow you to connect and execute queries to a database. What actually
happens is that the DBI module talks to a DBD (database driver) module, which is usually
a C/C++ API to the actual database engine. At all times, you actually communicate with
the DBI module, so the underlying database becomes a relative non-issue.

This ability to separate the methods for executing queries—and getting back
information—from the specifics of talking to the different databases has a number of
advantages, and first and foremost is the ease of use and programming. Because there
are a fixed number of methods for accessing the database, you will always know how
to send a query, check for errors during execution, and get any information back. You
don’t have to worry about the specifics of the database you are using.

More importantly, though, you can develop a database-driven application that
uses one database on your system, but that could be used with just about any
database supported by the DBI kit. Since the currently supported database list

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 425
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

includes DB2, Informix, Ingres, JDBC, ODBC, Oracle, PostGreSQL, Sybase, Unify,
Xbase, mSQL/mySQL, and even flat CSV files, you’re not going to be short of a
suitable database either for development or production purposes.

Win32::ODBC
The Win32::ODBC module comes as part of the standard ActivePerl distribution,
and like DBI, it supports a generic interface for accessing databases, providing those
databases are accessible through the ODBC system. ODBC, open database connectivity,
is a standard now followed by all the major database players, including IBM, Oracle,
and Microsoft. Both DBI and ODBC work in essentially the same manner, supporting
a single API to the database. The difference is in where the interface sits within the
connectivity model.

Under DBI, the DBI module talks to a DBD driver that in turn communicates with
the database. We’re therefore using the RDBMS libraries to access the database; we’re
just doing it through DBI. ODBC, however, is an API that sits within the RDBMS;
we just use a library to talk using ODBC protocols to the ODBC driver supplied by the
database vendor.

When communicating with a database over a network, the DBD and the database
API that supports it must have network connectivity. The ODBC, on the other hand,
includes a network communication layer, so I can talk to an ODBC-compliant database
over a network through the ODBC system, whether that data source supports network
connectivity or not.

With DBI, I can talk to any database that has had a DBD written for it and to any
networked database that has network ability; with ODBC, I can communicate with any
ODBC-compliant database over a network.

Under Windows, ODBC connectivity is a standard part of the operating system—if
I install an ODBC-capable application, then a driver is installed and I can access that data
source from any ODBC client. For example, if I install Microsoft Office, ODBC interfaces
are installed for CSV, Excel spreadsheets, and Access databases. Now from within Excel,
I can run queries on flat files, excel spreadsheets, or Access databases. I can do the same
from Perl too. If I were using DBI, I’d need a DBD to access those sources. In reality, DBI
supports CSV databases, and an ODBC DBD exists to communicate with any
ODBC-compliant source.

The other point at which the two differ is in the extended support. The DBI toolkit
explicitly works on a relatively basic level, providing the necessary interface for
communicating with the database and executing queries. The Win32::ODBC toolkit is
a complete API to the ODBC system, including the ability to control the operation and
default data handling of a suitable database. This level of ODBC support is likely to be
incorporated into DBI in due course, but for now, if you want to exercise a significant
level of control over a Windows RDBMS, especially SQL Server, you’d be better off
with Win32::ODBC.

426 P e r l : T h e C o m p l e t e R e f e r e n c e

Database Mechanics and Compatibility
The basic operation of both databases is more or less identical. A relatively simple
process of getting information from the database can be summarized on both systems
like this:

1. Open a database connection.

2. Submit a query.

3. Start a loop to retrieve each row.

4. Extract each record.

5. Close the database connection.

Whichever database and interface you decide to use, the query method is the
same—you use SQL statements to create tables, add or modify data, and to get it back.
Although there are minor differences in the exact SQL implementation (as with all
standards) the same statements should return the same information. If you are not
familiar with SQL, then see the “SQL Refresher” section later in this chapter.

If you are developing a script that may use a number of different databases, then here
are some tips for making the process of moving from one driver to another a bit easier:

� Check that the return value from a DBD module matches what you expect. The
DBI module doesn’t normalize all the error codes and values from all database
drivers, so check the documentation specific to the DBD module.

� Write SQL queries as tightly as possible so as to remove ambiguity and reduce the
return dataset to only what you need. Also, don’t rely too much on engine-specific
SQL components, especially data types. Some engines support 20 to 30 different
types for different pieces of information. In reality, you could probably get away
with the types listed in the SQL Refresher section later in the chapter.

� Don’t rely on engine-specific features. Transactions are not supported by all
engines, and other features like outer joins, triggers, and persistent sequences
are not always available.

� Avoid making assumptions about what is available. Ensure that your script
knows which database interface it’s using.

The easiest way to get around the issues raised in the previous tips is to write an
extra level of interface between your application and the DBI module. From that
interface you can make decisions about which tools and tricks to use, according to the
database driver. For example, you could create a function called add that sits between
your script and the DBI interface. If your database supports transactions, add would
use them, but for databases that do not support transactions, the function would just
supply the SQL statement without using transactions.

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 427
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

428 P e r l : T h e C o m p l e t e R e f e r e n c e

Connecting to a Database
The act of connecting to a database associates an object with a connection to the
database itself, and it’s this object through which you communicate with the database.

DBI
Under DBI, you only import the DBI module, not the DBD that you want to use to
connect to the database, and then you create a DBI object using the connect method:

use DBI;

my $dbh = DBI->connect(DSN);

The DSN, or Data Source Name, defines the DBD driver, and therefore the RDBMS that
you want to communicate with. For example, to connect to a mySQL database called tv:

use DBI;

my $dbh = DBI->connect("DBI:mysql:tv");

To connect to a database with the same name using PostGreSQL:

use DBI;

my $dbh = DBI->connect("dbi:Pg:dbname=mctv","","");

Note here the inclusion of two null arguments after the DSN—under most DBDs, this
is the user name and password required to connect to the database.

The object will be undefined if an error occurs.

Win32::ODBC
When using the Win32::ODBC module, the process is slightly more complex. You can
use the same basic method—import the module and then create a new object using a
specific DSN:

Use Win32::ODBC;

$database = new Win32::ODBC("DSN" [, CONNECT_OPTION, ...]);

The difference is in the DSN specification. It can be either the name of a predefined DSN,
created through the ODBC Data Sources control panel, or you can specify the name of

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 429
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

the database driver and database within the DSN. The optional CONNECT_OPTION
arguments set additional options to be enabled when connecting to the database. The
available options are ODBC-driver specific, so check the database driver for more
information.

To connect to a predefined DSN, just specify the DSN name, in quotes; for example,
to connect to our Acronym DSN, you would use the following line:

$db = new Win32::ODBC("Acronym");

The string form of the DSN allows you to specify additional information when
connecting to a DSN. The options are supplied as a list of keyword=value pairs, each
pair separated by a semicolon. See Table 13-8 for details of the keywords you can use.

Keyword Value

DSN The name of an existing, preconfigured DSN.

FILEDSN The path to a DSN file, which contains the list of
configured options to allow you to connect to an
ODBC database. A DSN file must have the
extension .dsn.

DRIVER The name of the driver to use for opening this
connection. You can get a list of drivers by
calling the Win32::ODBC::Drivers() function.

UID The user ID to use to connect to the ODBC
database.

PWD The password to use to connect to the ODBC
database.

SAVEFILE The path to a file in which to save the DSN
string information as a DSN file. This file can
then be used with the FILEDSN option.

Table 13-8. DSN String Keywords

430 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, to connect to an Access database that requires a login and password:

$db = new Win32::ODBC("DSN=Acronym;UID=MC;PWD=Hello");

The new object will be undefined if the connection to the database fails. To trap
errors, enclose the call in an if statement or check the value of the new object after you
try to connect.

Executing Simple Queries
Simple queries include the single statement operations that do not return information.
For example, the creation of a table, index, or even adding a row of information or
updating it are simple queries that return nothing more than their success (or otherwise)
to the caller.

DBI
Under DBI, the do method will execute a query for you:

$dbh->do("create table names (first char(20), second char(20))");

Because the query will only return a success or failure, all we need to do is actually
check the return value of the whole operation to determine whether it succeeded. The
same method can be used for any statement. For example:

$dbh->do("insert into names values('Fred','Flintstone')");

$dbh->do("create index names on names (first,second)");

$dbh->do("delete from names where first = 'Fred'");

For more SELECT statements, you’ll need to use the extended query methods.

Win32::ODBC
The Sql method handles simple queries under Win32::ODBC:

$sql->Sql("create table names (first char(20), second char(20))");

Again, the return value from the whole operation indicates the success (or
otherwise) of the operation.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 431
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Executing Extended Queries
When you are performing a SELECT or similar query on a database and expect more
than just a success/failure return value, then you need to use more advanced methods
to get the information back, usually on a row-by-row basis.

DBI
The DBI toolkit provides a number of methods and method sequences for pulling
information from the database. You start by defining the query that you want to run on
the database and prepare a select table handler; this is a new object, which will be used
to access the individual rows returned by the SELECT statement. You then execute the
statement—this actually sends the query to the database engine. For example:

my ($sth) = $dbh->prepare("select * from tv where title LIKE " .

$dbh->quote("$title%") .

" order by date,time,channel");

$sth->execute();

To access the information, you call one of the fetch functions in a while or other
loop to extract each row of information from the query. For example:

while(my $row = $sth->fetchrow_hashref())

The fetchrow_hashref method is probably the most practical, as it returns the row
in the form of a hash reference, with each key being the name of a returned column,
and the corresponding value being the value of the field. For example, to extract the
date and time:

$date = $row->{date};

$time = $row->{time};

Other methods include fetchrow_array, which returns an array of fields in the
order they were specified in the select statement, and fetchrow_arrayref, which returns
a reference to an array on the same basis.

Once you’ve read all of the rows, you must call finish on the select object ($sth in
the examples above) to complete the sequence.

432 P e r l : T h e C o m p l e t e R e f e r e n c e

Win32::ODBC
The Win32::ODBC module supports the same basic sequence, although you don’t have
to explicitly create a handler to operate the query and extraction process:

$db->Sql("SELECT Acronym,Expansion from Acronyms");

while($db->FetchRow())

{

($acronym,$expansion) = $db->Data();

print "$acronym: $expansion\n";

}

The FetchRow method gets a single row as returned by the query—it’s the Data
method that actually extracts and returns the information from the row. By default, it
returns an array of the fields in the order they were specified in the SELECT statement.
You can also extract individual fields by name:

$db->Sql("SELECT * from Acronyms");

while($db->FetchRow())

{

($expansion, $acronym) = $db->Data('Expansion', 'Acronym');

print "$acronym: $expansion\n";

}

Or, you can return the information as a hash and then access the fields directly:

$db->Sql("SELECT * from Acronyms");

while($db->FetchRow())

{

%row = $db->DataHash();

print "$row{Acronym}: $row{Expansion}\n";

}

The result is the same in each case. Note, however, that you don’t have to explicitly
finish the process as you do with DBI.

Closing the Connection
Once you’ve finished using a database, you must formally close the connection from
within DBI or Win32::ODBC. On some databases, including mySQL and PostGreSQL,
failing to formally close the connection causes a rollback, undoing any insertions,
updates, or deletions that you’ve conducted within that process.

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 433
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Using the DBI module, it’s as simple as

$dbh->disconnect();

and under Win32::ODBC, you use the Close method:

$sql->Close();

Identifying Errors
Both modules work on the same basic premise as the rest of Perl—a false return value
from a function or method call indicates a failure, while a true value indicates success.
However, to get an error message describing why the process failed, you must use a
separate method defined by each module.

DBI
The errstr method returns the error string reported by the last statement—you should
use it in combination with the result code from an operation to actually report an error.
For example:

$result = $dbh->do($query);

print $dbh->errstr(),"\n" unless ($result);

Win32::ODBC
You can use the Win32::ODBC::Error function to get the extended error from the
ODBC interface:

$db = new Win32::ODBC("Acronym");

if ($db)

{

Do some querying

}

else

{

die "Couldn't connect to DB:" . Win32::ODBC::Error();

}

Doing More
Although this has been a fairly quick overview of what’s possible, you should be able
to do 95 percent of the tasks you need to using the information given in this chapter.

434 P e r l : T h e C o m p l e t e R e f e r e n c e

The important part of the equation when talking to a SQL database using either the
DBI or Win32::ODBC module is not how to use the modules themselves—they are
actually very simple, and really only support a conduit through which to execute
SQL statements.

The real trick and advantages come from understanding, first, how to design the
database effectively, and second, how to write SQL statements to create, update, and
maintain information in the database. Good database design is beyond the scope of this
book, and indeed, good DB design and implementation only comes from experience.

To try and plug at least some of the gap, I’ve included a SQL refresher course at the
end of this chapter that covers most of the SQL statements you will need to use.

SQL Refresher
SQL has been around for many years—it was the standard query language supported
by many of the early relational systems and was actually designed and developed by
IBM. Other companies, perhaps now better known for their database systems, such
as Oracle and Microsoft, have adopted SQL as their main query language. The SQL
language is now further developed by a consortium of database developers, led
primarily by IBM, Microsoft, and Oracle, the leading players in the database market.

The role of the consortium is to define the SQL language standard. Although some
companies have their own extensions to the SQL language, the core operations of
creating, updating, and querying tables remain the same across all the different
database systems.

Actually, this isn’t entirely true. There are some semantics of the language that are
optional on some systems, and these can occasionally cause problems when migrating
between different database systems. Often, the differences relate to how the databases
have been developed over the years. As a classic example, examine these two CREATE
statements:

CREATE table AUDIO (ID numeric (10,0) identity,

TITLE varchar (30) not null,

ARTIST varchar (30) not null)

and

CREATE table AUDIO (ID number,

TITLE varchar2(30),

ARTIST varchar2(30))

The two statements create the same table, AUDIO, with a numeric ID field, and two
character fields for TITLE and ARTIST. The first is valid on Microsoft SQL Server 7,

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 3 : D a t a b a s e S y s t e m s 435

while the second version works on an Oracle8 database. The differences here are to do
with the supported data types. We’ll look at data types later in this chapter when we
look at creating new tables. We’ll also look at other places where there are possible
differences as we work through the different basic statements.

Also note, in the examples given above, that certain words are in uppercase. Although
SQL is not case sensitive, by convention certain words are typed in uppercase so that
you can identify different portions of a SQL statement more quickly. Those that are
normally specified in uppercase are leading statement keywords (CREATE, INSERT,
SELECT) and any additional keywords for the statement (WHERE, INTO, FROM, etc.).
All other elements, such as the file names, are specified in title case or lowercase.

SQL Statements
Although it’s difficult to summarize all of the different operations available via SQL
into a number of distinct statements, essentially there are four main SQL statements
that can be executed on a SQL database. They are SELECT, INSERT, UPDATE, and
DELETE. You might also want to use a fifth statement, CREATE, which creates new
objects (tables, indexes) within a database file. We’ll look at all five statements before
moving on to the topic of executing these statements within Perl.

SELECT
When you want to extract information from the database, you use the SELECT statement.
The SELECT statement retrieves a set of rows and columns from the database, returning a
dataset. The basic format of the SELECT statement is

SELECT [ALL|DISTINCT] field [, field, ...]

FROM table

[WHERE condition]

ORDER BY field [ASC|DESC] [, field [ASC|DESC]]

The field is the name (or names) of the fields from the table that you want to select.
Because the SELECT statement allows you to specify the individual fields from the table
that you want to extract, you can avoid many of the problems normally associated with
extracting data from a database. Instead of manually ignoring the fields you don’t want
to access, you can instead only select the fields you want. You can also specify an asterisk
(*) as the field name, and this will select all fields within the table.

The optional ALL prefix tells the SQL engine to select all of the columns from the
table matching the condition, and is equivalent to the asterisk specification just
mentioned. The optional DISTINCT prefix forces the SELECT statement to only return
a list of distinct (unique) rows from the database. This removes any duplicates from the
table column, irrespective of their location in relation to each other. For example, if you
wanted a list of all of the acronyms in our database, you could use the following code.

436 P e r l : T h e C o m p l e t e R e f e r e n c e

SELECT Acronym from Acronyms

However, the list returned contains a lot of duplicates:

AAMOF

AFAIC

AFAIK

...

RSN

RTFM

RTFM

RTFM

RTFM

RTFMA

...

To just get a list of the acronyms, without any duplicates, change the SELECT
query to include the DISTINCT keyword:

SELECT DISTINCT Acronym from Acronyms

This now returns:

AAMOF

AFAIC

AFAIK

...

RSN

RTFM

RTFMA

...

The use of the DISTINCT keyword is especially useful in situations where you
want to give a user a list of possible values, but don’t want to use a separate table to
hold the information. Instead, just use DISTINCT to reduce all of the values already
in the table to a list of accepted values.

You can select fields from multiple tables by specifying the table and field names in
the query, separated by a single period. For example, to extract the contact name and
business from the contact and company tables:

SELECT contact.name, company.name FROM contact, company

WHERE contact.company = company.id

The condition is an expression that refines the selection of rows from the table. If
the WHERE keyword is not specified, then all rows from the table are selected. Most of
the syntax for conditions are identical to those you will find within Perl. See Table 13-9
for a list of valid conditional operators. Note that in all cases in the table, A is the name
of a field from one of the selected tables, and B (or C) are either constants or further
SELECT statements. For example, to select all of the addresses where the city is
London, you might use the condition city = “London”.

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L
C h a p t e r 1 3 : D a t a b a s e S y s t e m s 437

Operator Description

A = B A is equal to B.

A > B A is greater than B.

A >= B A is greater than or equal to B.

A < B A is less than B.

A <= B A is less than or equal to B.

A <> B A does not equal B.

A [NOT] BETWEEN B AND C Value of A is (is NOT) between the range
of values specified by B and C.

A [NOT] LIKE B Value of A is (is NOT) like the value of B.
The value of B should be a string specifying
the string (and wildcard characters) to
match against the contents of A.

EXISTS (B) Returns true for every row returned by the
subquery specified by B.

A IS [NOT] NULL Value A is (is NOT) null (empty).

A [NOT] IN (B, C, …) Value A is (is NOT) in the list of values
specified within the parentheses.

A <operator> {ALL|ANY} (B) Value A is compared to all or any of the
records returned by subquery B. If the ALL
keyword is used, then all the returned
rows must match the operator condition. If
ANY is specified, then only one of the
returned values must match.

Table 13-9. Condition Operators for the SELECT Statement

438 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, to extract the acronym and expansion from out of the acronyms
database, but only for acronyms that match “RTFM” we could use the query

SELECT Acronym,Expansion from Acronyms

WHERE Acronym = 'RTFM'

You can also combine multiple statements using the AND and OR keywords to
perform logical comparisons with individual conditions:

SELECT Acronym, Expansion from Acronyms

WHERE Acronym = 'RTFM' AND Expansion = 'Read The Factual Manual'

You can also nest logical comparisons using parentheses to group comparisons and
conditions together.

We can also get more complex and perform wildcard searches. Imagine you are looking
for an acronym that contains the word “Fact”; you might use the following query:

SELECT Acronym,Expansion from Acronyms

WHERE Expansion LIKE '%Fact%'

The percent (%) character is a wildcard, and it matches zero or more characters, and
any character. Think of it as shorthand for the “.*” you would normally use in a regular
expression. Conversely, the underscore (_) matches any one character; thus, we can look
for all three-letter abbreviations using this query:

SELECT Acronym from Acronyms WHERE Acronym LIKE '___'

If you want to include either of the two wildcard characters in your queries, you
can escape the character with the familiar backslash:

SELECT Salespc from Sales WHERE Salespc LIKE '__\%'

Not all SQL engines support the escaping of the wildcard characters. You can work
out whether the ODBC driver supports escaping and what character to use by using
the following script:

use Win32::ODBC;

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 439
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

$db = new Win32::ODBC("Acronym");

if ($db->GetInfo($db->SQL_LIKE_ESCAPE_CLAUSE()) eq 'Y')

{

print "ODBC Driver supports wildcard escapes\n";

$char = $db->GetInfo($db->SQL_SEARCH_PATTERN_ESCAPE());

print "Escape Character is: $char\n";

}

SQL accepts single quotes as delimiters to text strings. The single quotes tell SQL to
treat anything between them as text, rather than as a keyword. For most queries within
Perl, it’s best to use the double quotes to specify the query, so that you can use single
quotes within the string:

$db->Sql("SELECT Acronym from Acronyms WHERE Acronym LIKE '___'");

However, be careful when using the single quote in text strings where the quote
has its normal apostrophe meaning. The following query would raise an error:

SELECT Acronym, Expansion from Acronyms WHERE Expansion LIKE '%I'm%'

The error would be raised, even if you embedded the query in a string within Perl,
since you are still including three single quotes in the query you are supplying the SQL
engine. The trick is to use the escape character for SQL. Confusingly, the escape
character for most SQL interfaces is the single quote, so you would rewrite the above
query as follows:

SELECT Acronym, Expansion from Acronyms WHERE Expansion LIKE '%I''m%'

Since you can’t always control the query strings that you are supplying to the SQL
engine, you should probably create a simple function to replace single quotes in query
strings to double quotes:

sub SqlEscape($)

{

$_[0] =~ s/'/''/g;

}

440 P e r l : T h e C o m p l e t e R e f e r e n c e

Now you can use the function inline to the queries you supply to the database:

$db->Sql("SELECT Acronym, Expansion from Acronyms " .

"WHERE Expansion LIKE " . SqlEscape("%I'm%"));

When using the DBI toolkit, the quote method of the database connection object
will do this for you:

$dbh->do("SELECT Acronym, Expansion from Acronyms " .

"WHERE Expansion LIKE " . $dbh->quote("%I'm%"));

The last thing to be aware of is that double quotes can be used to quote identifiers.
For example, imagine you have created a table called “Audio Tapes”. If you tried to
select data from this table using the following query, an error would be raised:

SELECT * FROM Audio Tapes

Instead, you need to quote the table name by using quoted identifiers. SQL accepts
the double quote as a delimiter for quoted identifiers:

SELECT * FROM "Audio Tapes"

Within a Perl statement, you’ll need to escape the double quotes by using the
backslash character:

$db->Sql("SELECT * FROM \"Audio Tapes\"");

The final part of the SELECT statement is the ORDER BY clause. This allows you
to specify the order in which information will be returned, according to the normal
sorting orders. You can order the entire dataset by one or more fields within the tables
you have selected. The default operation is to sort in ascending order (lowest to highest
number, and A–Z) or you can explicitly request ascending order by using the ASC
keyword. You can also sort in descending order by using the DESC keyword. For
example, to sort our acronyms, we might use:

SELECT Acronym, Expansion FROM Acronyms ORDER BY Acronym

Joins Joins are a critical part of the relational process. A join is where you create a
logical connection between two columns in two different tables. For example, in an

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 441
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

order processing system, you might have two tables. One contains the list of orders, the
other contains a list of order lines. A join between the two would enable you to obtain
all of the information from a single order.

You specify a logical join using the WHERE clause to the SELECT statement,
specifying an expression that links the two tables together. For example:

SELECT Order.Order_ID, Item.Order_ID, Item.Item_ID, Item.PLU,

Order.Total FROM Order, Item

WHERE Order.Order_ID = Item.Order_ID

The join can be to another table, or to the same table in the case of nested information,
such as staff and their supervisors. There are other types of joins, such as inner and
outer joins, and left, right, and full outer joins. For more information on the different
types of joins and the results they produce, see SQL from the Ground Up, by M. Pyefinch
(Osborne/McGraw-Hill, 1999).

INSERT
The INSERT statement adds a row of information to a table. An INSERT statement
has the following syntax:

INSERT INTO table

[(colname [, colname] ...)]

VALUES (value [, value] ...)

The table is the name of a table into which the data will be inserted, and colname
and value are the fields and values that you want to insert. The order of the field
names and the data must match, in order for the information to be inserted correctly.
The specification of field names is optional if you want to insert information into all the
columns of the database.

For example, to add a new record to our acronym database, we might use the
following SQL statement:

INSERT INTO Acronyms (Acronym, Expansion)

VALUES ('PDQ', 'Pretty Darn Quick')

Since we are creating entries in both columns, we can simplify the statement:

INSERT INTO Acronyms VALUES ('PDQ', 'Pretty Darn Quick')

442 P e r l : T h e C o m p l e t e R e f e r e n c e

UPDATE
The UPDATE statement updates the information for one or more rows in a table. The
syntax for the UPDATE statement is

UPDATE table

SET column=value

[, column=value ...]

[WHERE condition]

The table is the name of the table in the database. The column and value are the
column names and values that you want to assign to those columns. If the WHERE
keyword is included, then the statement will only update those columns that match
condition. The condition uses the same operators and syntax as the SELECT statement.
Note that if the condition matches multiple rows, all of the rows will be updated with
the given information.

For example, to modify the entry for IIRC in our acronyms database:

UPDATE Acronyms SET Expansion='If I Recall Correctly'

WHERE Acronym='IIRC'

Note, of course, that this would update all of the IIRC entries in the table—we
could supply a more specific statement to ensure we update the correct row:

UPDATE Acronyms SET Expansion='If I Recall Correctly'

WHERE Acronym='IIRC' AND Expansion='If I Remember Correctly'

DELETE
The DELETE statement is essentially identical to the SELECT statement, except that
instead of returning a matching list of rows from a table, it deletes the rows from
the database:

DELETE [FROM] table [WHERE condition]

The table is the name of the table that you want to delete rows from, and condition
is the expression to use to find the rows to be deleted. Note that the FROM keyword is
not really optional; some data sources require it, and others do not.

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 443
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

For example, to delete all of the IIRC entries from the Acronyms table:

DELETE FROM Acronyms WHERE Acronym = 'IIRC'

You can also delete all of the rows in a table by omitting the search condition:

DELETE FROM Acronyms

CREATE
If you are developing a database system, then there may be times when you need to
build your tables pragmatically within Perl. One major benefit of creating databases
in this way is that you can transport an application to another machine and have the
script create the tables it needs to operate. For turnkey solutions, this is invaluable—it
automates the process of installing a new application, right down to the creation of the
storage mechanisms required.

Not all databases support the creation of database tables. Many have some
constraints or limitations on what can be done with a CREATE statement. However,
for those that do allow it, the basic format for a CREATE statement is shown below.
Not all of the options are included here—if you need to use a more complex SQL
statement to create your tables, use a guide, such as SQL from the Ground Up, by M.
Pyefinch (Osborne/McGraw-Hill, 1999).

CREATE TABLE table

(field type[(size)] [NOT NULL] [index]

[, field type[(size)] [NOT NULL] [index], ...])

The table is the name of the table to be created. The field is the name of the field to
be created in the table, and type and size define the field’s type and width. The NOT
NULL keywords indicate that the field must contain a value; INSERT and UPDATE
statements that do not populate a NOT NULL field will fail.

The valid data types depend on the ODBC driver that you are using, but there are
some generic types that should work on most systems. See Table 13-10 for a list of the
base types that should be translated by most drivers into the local format.

444 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, here's how to create a table that will hold the time information for a task:

CREATE TABLE Tasktime (TaskID Integer NOT NULL,

TaskName Char(40),

StartDate Date,

CompDate Date,

TotalHours Decimal(4.2),

Completed Logical)

Formatting Dates
Although the SQL language is standardized, the format for storing specific data strings,
such as dates, is not. Different systems record dates in different orders (d/m/y,
m/d/y, y/m/d, etc.) and to different precisions (2- and 4-digit years). To get around
this, the SQL language allows for an escape clause that accepts a standard format that
is translated by the ODBC driver into the database’s native format.

Data Type Size Specification Description

Char (x) A simple character field, with
the width determined by the
value of x

Integer N/A A field of whole numbers,
positive or negative

Decimal (x,y) A field of decimal numbers,
where x is the maximum length
in digits for the number, and y is
the maximum number of digits
after the decimal point

Date N/A A date field (see the “Formatting
Dates” section that follows)

Logical N/A A field that can have only two
values: true or false

Table 13-10. Generic SQL Data Types

C h a p t e r 1 3 : D a t a b a s e S y s t e m s 445
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

You use the escape sequence just as you would a quoted text block:

SELECT Date, Event FROM Event WHERE Date > {d '1999-03-26'}

The SQL language supports three such formats: one for dates, one for times, and a
final one for dates and times called the timestamp. The formats for each are as follows:

{d 'yyyy-mm-dd'} # Date

{t 'hh:mm:ss'} # Time

{ts 'yyyy-mm-dd hh:mm:ss'} # Timestamp

Note that the formats are explicit—you must specify all the digits, using zeros to fill the
gaps where necessary.

This page intentionally left blank.

Chapter 14
Interprocess
Communication

447

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The ability to control or interact with another process is called interprocess
communication (IPC). It can take many different forms, from reading or writing
information from or to another process, through to terminating or restarting

processes, all the way to exchanging large volumes of information between two
or more processes.

There are many different ways of doing this by using internal methods, such as
open, and external methods that make use of the networking techniques you saw
in Chapter 12. Network communication is expensive resource-wise, and is probably
overkill for many solutions that simply require a conduit for exchanging small
pieces of discrete data.

Most of the solutions center around the use of pipes, which, as the name suggests,
provide the necessary conduit for data exchange. Unix users will be familiar with
the use of pipes, and Windows users will probably have used them without realizing.
We’ve also looked at their simplified use once already, back in Chapter 8.

In this chapter, we’ll look at all the different facilities built into Perl for interprocess
communication. This will include process creation, control, and communication to
allow you to interact with other processes. We’ll also look at the signal system, supported
under most platforms as a way of signaling a specific state to a process, and then
look at some IPC-specific techniques.

Processes
Processes are the individual programs that are running on your machine. Some of
these are obvious to you, like the applications and utilities that you use. Others
are hidden from view and control different parts of the operating system operation.
On a Unix machine, these include everything from the core operating system and
scheduler right through to the shell you use to run other programs.

Under Windows, the core operating system is hidden, but there are still references
to the underlying applications and background processes used to support different
services. You can view the individual processes using the Task Manager. The same
effect can be seen under Mac OS, although you will be unable to see the background
processes without a special application—the normal About This Computer window
won’t show them.

Note that most of the functions in this section do not work under the Mac OS, but
the actual interpretation under Windows NT and Unix should be more or less identical
because of the common POSIX support on both platforms. The only feature with
processes that does work under Mac OS is the value of the $$ variable, which is in fact
always 1. This makes the use of the $$ variable when creating unique references—such
as for sessions in web programming—untenable.

448 P e r l : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L

Controlling Perl Execution
You already know about the statements and the operators that can help to control the
execution of a Perl program. You also know about die and warn. The die function reports
an error to STDERR and quits the program, while warn just reports an error to STDERR.

However, there are times when you want to exit a program without triggering an
error message to STDERR, or when you want to trigger an installed signal handler (see
the “Signal Handlers” section, later in the chapter). In these instances, the solution is to
use the exit function:

exit 1;

This immediately causes the script to exit, passing a value of 1 back to the caller.
If you do not specify a value, then a value of 0 is returned, which is generally accepted
as indicating a successful completion.

You should really only use exit within the main part of a script, because using it
within a subroutine is bad practice. What you should do is call return, passing a
suitable value back to the caller to deal with. Furthermore, if you want to trap the
execution of a block, use die within eval to trap the error.

Process Information
The process ID of the current script is permanently available within the $$ variable. Since
this value will be different for each execution, you cannot rely on this number to store
persistent information. On the other hand, the process ID can be used as part of a random
identification number if combined with date, time, and even a random number.

If you want to get the process ID of the parent process, you need to use the getppid
function:

print "The parent of $$ is ",getppid,"\n";

This information is useful if you want to modify process groups or send the parent
process a signal. Under Unix, your parent process ID should be greater than 1; a parent
process ID of 1 indicates that the parent has died and that you’ve been adopted by
the init process.

Process Groups
A collection of processes is logically grouped into process groups. For example, all the
programs run within a shell belong to the same process group, providing they don’t

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 449

450 P e r l : T h e C o m p l e t e R e f e r e n c e

elect to change the process group. You can obtain the process group of a process using
the getpgrp function:

print "Group of current($$): ", getpgrp(0),

", parent(",getppid,"):", getpgrp(getppid),"\n";

If you do not specify a process, or use a process ID of 0, it returns the process group of
the current process.

You can “daemonize” a process—that is, make it act like a typical Unix daemon
process that runs in the background without a controlling terminal—by calling the
setpgrp function. A daemon process is one that is running in the background, and by
using setpgrp, you can emulate a Unix command line like this:

$ script.pl &

To do this, you need to change the process group for the current process to 0. This
needs to be done after forking a new process to ensure that you are not automatically a
member of an existing process group:

my $childpid = fork;

exit if $childpid;

setpgrp(0, $$);

Because you are starting a daemon process, it’s also a good idea to ensure that
the new process you are creating is safe and well behaved. For example, you should
consider redirecting STDIN, STDOUT, and STDERR either to /dev/null or to an
external log file. You’ll see some more examples of this later in this chapter when we
look at the fork function in more detail.

Process Priority
You can obtain and set the priority of a given process, process group, or user, using the
getpriority and setpriority functions:

getpriority WHICH, WHO

setpriority WHICH, WHO, PRIORITY

The value of WHICH should be one of PRIO_PROCESS for an individual process,
PRIO_PGRP for a process group, and PRIO_USER for an individual user. The WHO
value should then be the corresponding process ID, process group ID, or user ID (all
numerical) that you want to obtain or set the priority for. The current priority will be
returned by the getpriority function, and you can set it by supplying a new priority
value in PRIORITY.

TE
AM
FL
Y

Team-Fly®

Note that the priorities are arbitrary values, and different values will have different
meanings on different operating systems. For most instances, however, the priority is
in reverse order. The higher the priority number, the lower the actual priority of the
process. All users can decrease the priority of a process (just as they can with nice), but
only the superuser can increase the priority (by setting a lower value).

Under Windows, the getpriority and setpriority functions don’t work. If you want to
control the priority of a Windows process, then use the Win32::Process module to create
the process. This supports two methods on the newly created process object called
GetPriorityClass and SetPriorityClass that allow you to control the process’s priority.

Signals
Signals do exactly what the name suggests. They provide a method for signaling a
particular process. Since a single signal is not very practical, there are a whole range of
signals that indicate different events to the process. Some signals are generated by the
operating system and signify some problem with the current execution process. Other
signals can be user generated. Almost all signals can be trapped, both by other
processes and by Perl scripts. The list of POSIX signals is shown in Table 14-1.

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 451
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

POSIX Name Perl Name Description

SIGABRT ABRT Abnormal termination

SIGALRM ALRM The timer set by the alarm function has expired

SIGFPE FPE Arithmetic exceptions; for example, divide
overflow or divide by zero

SIGHUP HUP Hang-up detected on the controlling terminal or
death of a controlling process

SIGILL ILL Illegal instruction indicating a program error

SIGINT INT Interrupt signal (special character from the
keyboard or signal from another application)

SIGKILL KILL Termination signal; cannot be caught or ignored

SIGPIPE PIPE Attempt to write to a pipe with no application
reading from it

Table 14-1. POSIX Signals

Different Perl implementations will support a different range of signals. On most
Unix systems, the list will be longer than that shown in Table 14-1 to cater to the
OS-specific entries supporting features such as threads and resource limits. Under
Windows NT, there is a subset of the full POSIX list, which includes most of the POSIX
signals. Under the Mac OS implementation, there is a very short subset, since the Mac
OS does not treat or handle processes in the same way as Unix or Windows. Mac OS X
however works the same as a Unix implementation. For more information on the list of
signals supported under your current operating system, use this simple script:

foreach $signal (sort keys %SIG)

{

print "$signal\n";

}

452 P e r l : T h e C o m p l e t e R e f e r e n c e

POSIX Name Perl Name Description

SIGQUIT QUIT Quit signal (special character from the keyboard or
signal from another application)

SIGSEGV SEGV Attempt to access an invalid memory address

SIGTERM TERM Termination signal (from another application or OS)

SIGUSR1 USR1 Application-defined (user-defined) signal

SIGUSR2 USR2 Application-defined (user-defined) signal

SIGCHLD CHLD A child process terminated or stopped

SIGCONT CONT Continue the process if currently stopped

SIGSTOP STOP Stop signal; stops the specified process

SIGTSTP TSTP Stop signal from special character from keyboard

SIGTTIN TTIN A read was attempted from the controlling terminal
by a background process

SIGTTOU TTOU A write was attempted to the controlling terminal
by a background process

Table 14-1. POSIX Signals (continued)

Signal Handlers
If you have used signal-handling systems within C before, then you will find the
signal-handling abilities of Perl something of a shock. Perl provides an incredibly
simple interface to signal handling using a single %SIG hash. The individual keys of
the %SIG hash are the signal names (as seen in the second column of Table 14-1), and
the corresponding value indicates the operation that should be performed when that
signal is received by the script. For example,

$SIG{INT} = { print "Got SIGINT" };

This example sets up a signal handler to an anonymous subroutine, which will print a
message when an interrupt signal is received. This is a fairly impractical example, as
we don’t do anything with the signal once we’ve caught it.

Usually, you’d create a special signal-handling function:

sub sig_int

{

my $signal = shift;

print "Got the signal $signal\n";

$SIG{$signal} = \&sig_int;

}

$SIG{INT} = \&sig_int;

This example has a number of advantages. First of all, the signal handler is now a
separate function, which means you can use the same handler for a number of signals.
Furthermore, it ensures that the signal is reset to the current signal handler after it has
been received, which guarantees that the handler will always be in place. Also note
from this example that the first argument given to a signal handler is the name of the
signal received.

It’s important to remember that you should be passing a reference to the desired
signal-handler function—not simply a bare word, which could be misinterpreted, or
the return value from a function call itself. The following are bad examples that you
should try to avoid:

$SIG{INT} = sig_int;

$SIG{INT} = sig_int();

Both could cause problems. The bare word doesn’t guarantee that the function will be
called correctly. The function call is positively lethal—the value of the signal handler is
now the value returned by the sig_int function.

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 453
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Care should be taken with signal handlers. Since a signal can be received at any
time, it’s possible to receive a signal while another signal handler is executing. It’s
unusual, for example, to do this:

sub sig_int

{

my $signal = shift;

print "Got the signal $signal\n";

do_some_work();

$SIG{$signal} = \&sig_int;

}

$SIG{INT} = \&sig_int;

The obvious solution is to keep the contents of the signal handler as short as possible.
Alternatively, you can set the condition of a signal (or signals) to IGNORE during the
signal handler. This setting will cause Perl to ignore the specified signal until a new
signal handler has been installed, thereby allowing you to work uninterrupted (if you’ll
excuse the pun).

sub sig_int

{

my $signal = shift;

$SIG{$signal} = IGNORE;

do_some_work();

$SIG{$signal} = \&sig_int;

}

$SIG{INT} = \&sig_int;

An alternative solution is to use Perl’s local keyword to inherit the signal hash from
the enclosing block. This will allow you to set an alternative handler, or IGNORE
status on signals within the current handler, while retaining the handler information
for the parent block, as in

sub sig_int

{

my $signal = shift;

local $SIG{$signal} = 'IGNORE';

do_some_work();

$SIG{$signal} = \&sig_int;

454 P e r l : T h e C o m p l e t e R e f e r e n c e

}

$SIG{INT} = \&sig_int;

To reset a signal to its original state (before you started installing your own handlers),
you can set the signal value to DEFAULT:

$SIG{INT} = 'DEFAULT';

A common use for the alarm signal (ALRM) is as a time-out system for different
operations. This can be used for many things, such as setting file options, file locking,
networking communication, or, as in the example below, for accepting input and
setting a default value:

print "Your name is? :\n";

eval

{

local $SIG{ALRM} = sub { die "Timeout"; };

alarm 10;

$name = <STDIN>;

chomp $name;

alarm 0;

};

if ($@ and $@ =~ /Timeout/) { $name = 'Anonymous' }

print "Hello $name!\n";

The action you want to place a time-out on is put within the eval block, and the
signal handler calls die when the alarm time has been exceeded. This causes the eval
block to drop out, and you check the return status with the $@ variable, setting a
default name if the user hasn’t supplied one.

Not all signals can be trapped or ignored. You’ll need to check your operating system for
the exact list. Typical signals that cannot be trapped include KILL and STOP.

The __WARN__ and __DIE__ Signals
The special signals __WARN__ and __DIE__ can be used to execute statements when
warn and die are called. This allows you greater control over exactly what happens
when these two functions are called. Normally, warn reports the supplied error to
STDERR and then continues, while a call to die reports the error and then calls exit().
This automatic operation causes a problem if you want to close files safely or even to
report the problem to the user directly and still use the “standard” error-trapping tools.

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 455
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

You can, of course, use any of the tricks we’ve seen so far—both the eval and
exception signals will work in most cases, but they still require micromanagement of
your scripts in order for the processes to work effectively. By using these two signals
instead, you can trap errors dynamically and even make decisions about how to report
the error without making major modifications to your code.

Using $SIG{__WARN__}
The warn handler is called whenever the warn function is called. The handler is passed
any arguments passed to the warn function, but the warn function does not actually
operate—the handler acts as a complete replacement for the operation normally
handled by the function. For example,

sub warn_handler

{

print STDERR "Woah - trapped a warning!\n\t",@_;

}

$SIG{__WARN__} = \&warn_handler;

warn "Something went awry\n";

warn "Something went awry again\n";

Running this produces the following output:

Woah - trapped a warning!

Something went awry

Woah - trapped a warning!

Something went awry again

You can see that the message is printed out only once—in this case, from the embedded
call to print in the signal handler.

The __WARN__ handler is best employed when you want to provide an alternative
way of reporting or recording an error. You’ll find examples elsewhere in this chapter
for reporting information directly to logs; all you need to do is install a handler at the
top of your script that traps and handles the warning in an alternative fashion. For
example, here’s a handler that uses a function called writelog to report the error to a
file, instead of to the screen:

sub warn_handler

{

writelog("warning: (%s)",join(', ',@_));

456 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 457
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

}

$SIG{__WARN__} = \&warn_handler;

We don’t need to make any further modifications to the code (aside from adding
the writelog function definition). From now on, all calls to warn will trigger this
handler and force the output to be written to a file instead of STDERR. Similar tricks
allow us to report warnings through Tk:

sub warn_handler

{

dialog(undef,"Warning", join(', ',@_),

'warning',1,"OK");

}

Using $SIG{__DIE__}
Unlike __WARN__, the __DIE__ handler merely acts as an interloper in the
process—the handler is called, but the die continues as normal, both printing out the
error and calling exit(). Consider the following script:

sub die_handler

{

print "Woah - trapped a call die\nTrying to exit

gracefully...\n";

}

$SIG{__DIE__} = \&die_handler;

die "Something went completely wrong\n";

Note that the handler will be passed the text as formatted by die—this means we can
adapt the text and then call die again to actually output the updated version of the text.
For example, the line

die "Just couldn't do it anymore!";

generates

Just couldn't do it anymore! at sigdiemod.pl line 7.

458 P e r l : T h e C o m p l e t e R e f e r e n c e

but add a handler:

sub die_handler

{

my ($error) = @_;

die "Trapped an error: $error";

}

$SIG{__DIE__} = \&die_handler;

and the error becomes:

Trapped an error: Just couldn't do it anymore! at sigdiemod.pl line 9.

The die_handler function will be called only once, as the signal handler is reset after
the first call.

The __DIE__ handler is best used when you want to gracefully exit from a
script—perhaps providing a simple prompt to the user and safely closing files or
network connections before finally allowing the script to die. It’s true that you could
use an END block for this process, but doing so means that the closing statements are
executed after die has actually been called. It also relies on the functions, filehandles,
and other artifacts being accessible to the END block at the time of termination.

Currently the __DIE__ (and __WARN__) handler is called even within an eval block.
This can cause problems, so consider using the $^S variable to check the status of the
interpreter at the point the handler is called. The $^S variable will be true if the
statements are being called from within an eval string or block.

Sending Signals
You can send signals to other processes using the kill function, which actually just calls
the Unix kill() function. For example, to call the SIGINT handler within the function,
you could use

kill('INT', $$);

You can use short names or numbers as the first argument to the function, and the
second argument should be the process ID or process group to which you are sending
the signal. To send the signal to all of the processes in the specified signal group, prefix
the process ID with a minus sign:

kill INT => -$$;

Note here that the hash notation has also been used to specify the signal. Since
the => operator is just an alias for the comma, this works perfectly. It also has the
advantage of automatically quoting the signal number to send, which makes more
sense if you think about the process logically. In the preceding example, you are
sending the signal INT to the process group -$$.

By sending the signal number 0 to a process, you can determine whether it is
currently running, or whether it’s possible to send a valid signal. Since you can only
send a signal to processes that you own, this is a good way to test whether a specific
process is still running and whether it is still yours. It is particularly useful when
forking and subsequently monitoring a child process.

For example, the following code checks that the schedule is running on a Solaris
(and indeed most other Unix flavors) machine:

unless (kill 0 => 0)

{

die "Panic: Scheduler not running!\n";

}

Pipes
Pipes are a one-way communication channel that can be used to transfer information
between processes. Because they are one-way, they can only be used to communicate
information to or from a process, although there are ways to get around this.

The most typical use of pipes is within the open function when you want to read
from and write to a particular command, instead of a typical file. This class of pipe is
called an anonymous pipe. You can also have named pipes (within Unix only) that
provide a method for two unconnected processes to communicate with each other.

There are other methods available using pipes, but these are only practical when
used with child processes, so we’ll cover them at a later stage. For now, let’s
concentrate on the basics of opening, reading from, and writing to pipes.

Anonymous Pipes
An anonymous pipe is one implied through the use of the pipe symbol at the beginning
or end of an open statement. For example, to read the output from gzcat, which
decompresses a Gzipped file to the standard input:

open(COMPRESSED, "gzcat file.gz|") or die "Can't fork: $!";

while(<COMPRESSED>)

{

print;

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 459
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

460 P e r l : T h e C o m p l e t e R e f e r e n c e

}

close(COMPRESSED) or die "Error in gzcat: $!";

Alternatively, to write information and have it immediately compressed, you can pass
input directly to the gzip command:

open(COMPRESS, "|gzip - >file.gz") or die "Can't fork: $!";

print COMPRESS "Compressed Data";

close(COMPRESS) or die "Gzip didn't work: $!";

When using pipes, you must check the return status of both open and close. This is
because each function returns an error from a different element of the piped command.
The open function forks a new process and executes the specified command. The
return value of this operation trapped by open is the return value of the fork function.
The new process is executed within a completely separate process, and there is no
way for open to obtain that error. This effectively means that the open will return true
if the new process could be forked, irrespective of the status of the command you
are executing. The close function, on the other hand, picks up any errors generated by
the executed process because it monitors the return value received from the child
process via wait (see the “Creating Child Processes” section, later in this chapter).

Therefore, in the first example, you could actually read nothing from the command,
and without checking the return status of close, you might assume that the command
failed to return any valid data.

In the second example, where you are writing to a piped command, you need to
be more careful. There is no way of determining the status of the opened command
without immediately calling close, which rather defeats the purpose. Instead, you can
use a signal handler on the PIPE signal. The process will receive a PIPE signal from
the operating system if the piped command fails.

Two-Way Communication
As convenient as it may seem, you can’t do the following:

open(MORE, "|more file|");

This is because a pipe is unidirectional—it either reads from or writes to a piped
command. Although in theory this should work, it can result in a deadlocked process
where neither the parent nor piped command know whether they should be reading
from or writing to the MORE filehandle.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 461
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

The solution is to use the open2 function that comes as part of the IPC::Open2
module, which is part of the standard distribution:

use FileHandle;

use IPC::Open2;

$pid = open2(*READ, *WRITE, "more file");

WRITE->autoflush();

You can now communicate in both directions with the more command, reading
from it with the READ filehandle and writing to it with the WRITE filehandle. This
will receive data from the standard output of the piped command and write to the
standard input of the piped command.

There is a danger with this system, however, in that it assumes the information
is always available from the piped command and that it is always ready to accept
information. But accesses either way will block until the piped command is ready to
accept or to reply with information. This is due to the buffering supported by the
standard STDIO functions. There isn’t a complete solution to this if you are using
off-the-shelf commands; if you are using your own programs, you’ll have control
over the buffering, and it shouldn’t be a problem.

The underlying functionality of the open2 function is made possible using the pipe
function, which creates a pair of connected pipes, one for reading and one for writing:

pipe READHANDLE, WRITEHANDLE

We’ll look at an example of this when we look at creating new child processes
with fork.

Named Pipes
A named pipe is a special type of file available under Unix. It resides, like any file, in the
file system but provides two-way communication between two otherwise unrelated
processes. This system has been in use for some time within Unix as a way of accepting
print jobs. A specific printer interface creates and monitors the file while users send
data to the named pipe. The printer interface accepts the data, spools the accepted file
to disk, and then spawns a new process to send it out to the printer.

The named pipe is treated as a FIFO (First In, First Out) and is sometimes simply called
a FIFO. You create a named pipe using the mknod or mkfifo command, which in turn
creates a suitably configured file on the file system. The following example,

system('mknod', 'myfifo', 'p');

is identical to this one:

system('mkfifo', 'myfifo');

Once created, you can read from or write to the file just like any normal file, except
that both instances will block until there is a suitable process on the other end. For
example, here is a simple script (the “server”) that accepts input from a FIFO and
writes it into a permanent log file:

my $fifo = 'logfifo';

my $logfile = 'logfile.txt';

unless (-p $fifo)

{

unlink $fifo;

if (system('mkfifo','logfifo'))

{

die "Can't create FIFO: $!";

}

}

open(FIFO, "<$fifo") or die "Can't open fifo for reading: $!";

open(LOG, ">>$logfile") or die "Can't append to $logfile: $!";

while(<FIFO>)

{

my $date = localtime(time);

print LOG "$date: $_"\n;

}

close(FIFO) or die "Can't close fifo: $!";

close(LOG) or die "Can't close log: $!";

Here’s the corresponding log reporter (the “client”), which takes input from the
command line and writes it to the FIFO:

my $fifo = 'logfifo';

die "No data to log" unless @ARGV;

open(FIFO,">$fifo") or die "Can't open fifo for writing: $!";

462 P e r l : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L

print FIFO @ARGV;

close(FIFO) or die "Can't close fifo: $!";

If you run the “server” (the first script above) and then call the “client,” you should
be able to add an entry to the log file. Note, though, that the server will quit once it has
accepted one piece of information, because the client closes the pipe (and therefore
sends eof to the server) when it exits. If you want a more persistent server, call the
main loop within a forked subprocess. For more information, see the discussion of fork
later in the “Creating Child Processes” section.

Named Pipes Under Windows
The Windows named pipe system works slightly differently to that under Unix. For
a start, we don’t have access to the mkfifo command, so there’s no immediately
apparent way to create a named pipe in the first place. Instead, Windows supports
named pipes through the Win32::Pipe module.

The Win32::Pipe module provides the same pipe communication functionality
using Windows pipes as the built-in functions and the mknod or mkfifo commands
do to normal Unix named pipes. One of the biggest differences between Unix and
Windows named pipes is that Windows pipes are network compliant. You can use
named pipes on Win32 systems to communicate across a network by only knowing
the UNC of the pipe—we don’t need to use TCP/IP sockets or know the server’s IP
address or name to communicate. Better still, we don’t need to implement any type of
communications protocol to enable safe communication across the network—the named
pipe API handles that for us.

The Windows implementation also works slightly differently from the point of
view of handling the named pipe. The server creates the named pipe using the API,
which is supported by Perl using the Win32::Pipe module. Once created, the server
uses the new pipe object to send and receive information. Clients can connect to the
named pipe using either the normal open function or the Win32::Pipe module.

Creating Named Pipes
When you create a named pipe, you need to use the new method to create a suitable
Win32::Pipe object:

$pipe = new Win32::Pipe(NAME);

The NAME should be the name of the pipe that you want to create. The name you give
here can be a short name; it does not have to be fully qualified (see the “Pipe-Naming
Conventions” sidebar for more information).

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 463

464 P e r l : T h e C o m p l e t e R e f e r e n c e

There are some limitations to creating and using pipes:

� There is a limit of 256 client/server connections to each named pipe. This
means you can have one server and 255 client machines talking to it through
a single pipe at any one time.

� There is no limit (aside from the disk and memory) resources of the machine
to the number of named pipes that you can create.

� The default buffer size is 512 bytes, and you can change this with the
ResizeBuffer method.

� All named pipes created using this module are streams, rather than being
message based (see note).

Dave Roth, the original author of this module, has updated the module, but the updated
version is not included as standard in the ActivePerl 615 distribution, though it should
have been rolled into the 616 distribution. The new version does allow for message-based
communication, where client and server communicate using fixed-size messages, with
the buffer size determining the message size.

Opening Named Pipes
The easiest way to open an existing pipe is to use the open function:

open(DATA,NAME);

Pipe-Naming Conventions
When you are creating a new pipe, you give it a simple name. For example, you
can create a pipe called “Status”. Any clients wishing to access the pipe must,
however, use the full UNC name of the pipe. Pipes exist within a simple structure
that includes the server name and the special “pipe” shared resource. For example,
on a machine called “Insentient”, our pipe would be available for use from a
client via the name “\\INSENTIENT\pipe\Status”.

If you do not know the name of the server, then you should be able to use
“\\.\pipe\Status”, where the single dot refers to the current machine.

You can also nest pipes in their own structure. For example, you could have
two pipes: one in “\\INSENTIENT\pipe\Status\Memory” and the other in
“\\INSENTIENT\pipe\Status\Disk”.

The structure is not an actual directory, nor is it stored on the file system—
it’s just another shared resource made available by the Windows operating system
that is accessible using the UNC system.

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 465
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

NAME is the UNC of the pipe to open. For example:

open(DATA,"\\\\INSENTIENT\\pipe\\MCStatus");

Alternatively, and in my experience more reliably, you can use the Win32::Pipe
module to open an existing pipe by supplying the UNC name:

$pipe = new Win32::Pipe("\\\\INSENTIENT\\pipe\\MCStatus");

Note, in both cases, the use of double backslashes—these are required to ensure that
the first backslash is not parsed by the Perl interpreter.

Accepting Connections
Once the pipe has been created, you need to tell the server to wait for a connection
from a client. The Connect method blocks the current process and returns only when
a new connection from a client has been received.

$pipe->Connect();

Once connected, you can start to send or receive information through the pipe using
the Read and Write methods.

Note that you do not need to call this method from a client—the new method
implies a connection when accessing an existing pipe.

Reading and Writing Pipes
If you have opened the pipe using open, then you can continue to use the standard
print and <FILEHANDLE> formats to write and read information to and from the
filehandle pointing to the pipe.

If you have used the module to open a pipe, or to create one when developing a
server, you need to use the Read and Write methods. The Read method returns the
information read from the pipe, or undef if no information could be read:

$pipe->Read();

Note that you will need to call Read multiple times until all the information within the
pipe’s buffer has been read. When the method returns undef, it indicates the end of the
data stream from the pipe.

To write to a pipe, you need to use the Write method. This writes the supplied
string to the pipe.

$pipe->Write(EXPR);

466 P e r l : T h e C o m p l e t e R e f e r e n c e

The method returns true if the operation succeeded, or undef if the operation
failed—usually because the other end of the pipe (client or server) disconnected before
the information could be written. Note that you write information to a buffer when
using the Write method and it’s up to the server to wait long enough to read all the
information back.

The Pipe Buffer
The information written to and read from the pipe is held in a buffer. The default buffer
size is 512 bytes. You can verify the current buffer size using the BufferSize method.

$pipe->BufferSize()

This returns the current size, or undef if the pipe is invalid.
To change the buffer size, use the ResizeBuffer method. For most situations, you

shouldn’t need to change the buffer size.

$pipe->ResizeBuffer(SIZE)

This sets the buffer size to SIZE, specified in bytes.

Disconnecting and Closing Pipes
Once the server end of a pipe has finished using the open pipe connection to the client,
it should call the Disconnect method. This is the logical opposite of the Connect
method. You should only use this method on the server of a connection—although it’s
valid to call it from a client script, it has no effect because clients do not require the
Connect method.

$pipe->Disconnect();

To actually close a pipe because you have finished using it, you should use the
Close method. From a client, this destroys the local pipe object and closes the connection.
From a server, the Close method destroys the pipe object and also destroys the pipe
itself. Further client connections to the pipe will raise an error.

$pipe->Close();

Getting Pipe Errors
You can get the last error message raised by the pipe system for a specific pipe by
using the Error method.

$pipe->Error();

P
R

O
G

R
A

M
M

IN
G

W
ITH

P
ER

L

When used on a pipe object, it returns the error code of the last operation. An
error code of 0 indicates a success. When used directly from the module, that is
Win32::Pipe::Error(), the function returns a list containing the error code and associated
error string for the last operation, irrespective of the pipe on which it occurred.

In general, you should probably use the $^E variable or the Win32::GetLastError
functions to obtain an error from a function. For example,

$pipe = new Win32::Pipe('MCStatus') or die "Creating pipe: $^E ($!)";

Safe Pipes
You might remember that Chapter 8 briefly discusses the different methods you can
use to open pipes with the open command. Two of these options are –| and |–, which
imply a fork and pipe, providing an alternative method for calling external
programs. For example:

open(GZDATA,"-|") or exec 'gzcat', 'file.gz';

This example forks a new process and immediately executes gzcat, with its standard
output redirected to the GZDATA filehandle. The method is simple to remember. If
you open a pipe to minus, you can write to the filehandle, and the child process will
receive the information in its STDIN. Opening a pipe from minus enables you to read
information that the child sends to its STDOUT from the opened filehandle.

This can be useful in situations where you want to execute a piped command when
running as a setuid script. More useful in general, though, is the fact that you can use
this in combination with exec to ensure that the current shell does not parse the command
you are trying to run. Here’s a more obvious version of the previous example that also
takes care of the setuid permission status:

$child = open(GZCAT, "-|");

if ($pid)

{

while(<GZCAT>)

{

print $_;

}

close(<GZCAT>);

}

else

{

($EUID, $EGID) = ($UID, $GID);

exec 'gzcat', 'file.gz';

}

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 467

Here, the exec’d program will be sending its output (a decompressed version
of file.gz) to the standard output, which has in turn been piped through the GZCAT
filehandle in the parent. In essence, this is no different from a standard piped open,
except that you guarantee that the shell doesn’t mess with the arguments you supply
to the function.

Executing Additional Processes
There are times when you want to run an external program but are not interested in
the specifics of the output information, or if you are interested, you do not expect vast
amounts of data that needs to be processed. In these situations, a number of avenues
are open to you. It’s also possible that you want to create your own subprocess, purely
for your own use. You’ve already seen some examples of this throughout this book.
We’ll look at both techniques in this section.

Running Other Programs
To run an external command, you can use the system function:

system LIST

This forks a new process and then executes the command defined in the first argument
of LIST (using exec), passing the command any additional arguments specified in LIST.
Execution of the script blocks until the specified program completes.

The actual effect of system depends on the number of arguments. If there is more
than one argument in LIST, the underlying function called is execvp(). This bypasses
the current shell and executes the program directly. This can be used when you do not
want the shell to make any modifications to the arguments you are passing. If there is
only one argument, it is checked for shell metacharacters. If none are found, the argument
is split into individual words and passed to execvp() as usual. If any metacharacters
are found, the argument is passed directly to /bin/sh -c (or the current operating
system equivalent) for parsing and execution.

Note that any output produced by the command you are executing will be displayed
as usual to the standard output and error, unless you redirect it accordingly (although
this implies metacharacters). If you want to capture the output, use the qx// operator or
a piped open. For example:

system("rm","-f","myfile.txt");

The return value is composed of the return status of the wait function used on the
forked process and the exit value of the command itself. To get the exit value of the
command you called, divide the value returned by system by 256.

468 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 469
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

You can also use this function to run a command in the background, providing
you are not dependent on the command’s completion before continuing:

system("emacs &");

The preceding example works on Unix, but other operating systems may use
different methods.

The system function has one other trick. It can be used to let a command
masquerade as a login shell or to otherwise hide the process’s name. You do this
by using a slightly modified version of the command:

system PROGRAM LIST

The first argument is an indirect object and should refer to the actual program you want
to run. The entries in LIST then become the values of the called program’s @ARGV
array. Thus, the first argument becomes the masquerading name, with remaining
arguments being passed to the command as usual. This has the added benefit that LIST
is now always treated as a list, even if it contains only one argument. For example,
to execute a login shell:

system {'/bin/sh'} '-sh’;

A more convenient method for executing a process, especially if you want to
capture the output, is to use the qx// quoting operator:

my $hostname = qx/hostname/;

This is probably better known as the backticks operator, since you can also rewrite this as

my $hostname = `hostname`;

The two are completely synonymous. It’s a question of personal taste which one
you choose to use. Backticks will be more familiar to shell users, since the same
characters are used. The string you place into the `` or qx// is first interpolated, just like
an ordinary double-quoted string. Note, however, that you must use the backslash
operator to escape characters, such as $and @, that would otherwise be interpreted by
Perl. The command is always executed via a shell, and the value returned by the
operator is the output of the command you called.

Also note that like other quoted operators, you can choose alternative delimiter
characters. For example, to call sed from Perl:

qx(sed -e s/foo/bar/g <$file);

Note as well, in this example, that $file will be parsed by Perl, not by the shell.
In the previous examples, for instance, you assigned a variable $hostname to the

output of the hostname command. If the command is called in a scalar context, then
the entire output is placed into a single string. If called in a list context, the output is
split line by line, with each line being placed into an individual element of the list.
The list is split using the value of $/, so you can parse the output automatically by
changing the value of $/.

The return value of the command you called is placed in the special $? variable directly.
You do not need to parse the contents in any way to determine the true exit value.

The function used to support the qx// operator is readpipe, which you can also
call directly:

readpipe EXPR

Replacing the Current Script
You can replace the currently executing script with another command using the
exec function. This works exactly the way the system command works, except that
it never returns. The command you specify will completely replace the currently
executing script. No END blocks are executed, and any active objects will not have
their DESTROY methods called. You need to ensure, therefore, that the current
script is ready to be replaced. It will be, and should be treated as, the last statement
in your script.

exec LIST

All the constructs noted for system apply here, including the argument-list handling.
If the call fails for any reason, then exec returns false. This only applies when the
command does not exist and the execution was direct, rather than via a shell. Because
the function never returns, Perl will warn you (if you have warnings switched on)
if the statement following exec is something other than die, warn, or exit.

Note that the masquerading system also works:

exec {'/bin/sh'} '-sh';

Creating Child Processes
It is common practice for servers and other processes to create “children.” These
subprocesses can be controlled from the parent (see the “Processes” section at the start
of this chapter). You do this by using fork, which calls the fork() system call. fork
creates a new process that is identical in nearly all respects to the parent process. The
only difference is that the subprocess has a new process ID. Open filehandles and

470 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

their buffers (flushed or otherwise) are inherited by the new process, but signal handlers
and alarms, if set, are not:

fork

The function returns the child process ID to the parent and 0 to the child process. The
undef value is returned if the fork operation fails.

Use of the fork function needs some careful consideration within the Perl script.
The execution contents of the new process are part of the current script; you do not call
an external script or function to initiate the new process (you are not creating a new
thread—see Chapter 15 for that). For example, you can see from the comments in the
following code where the boundaries of the child and parent lie:

#Parent Process

print "Starting the parent\n";

unless ($pid = fork)

{

#Start of Child Process

sleep 2;

for (1..10)

{

print "Child, Count $_\n";

sleep 1;

}

exit 0;

}

#End of Child

#Continuation of Parent

for (1..5)

{

print "Parent, Count $_\n";

sleep 2;

}

waitpid($pid,0);

#End of Parent

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 471
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

As soon as the fork function returns, the child starts execution, running the script
elements in the following block. You can do anything within this block. All the
functions, modules, and variables are inherited by the child. However, you cannot use
an inherited variable to share information with the parent. We’ll cover the method
for that shortly.

Also note that execution of the parent continues as soon as the fork function
returns, so you get two simultaneously executing processes. If you run the preceding
script, you should get output similar to this:

Starting the parent

Parent, Count 1

Child, Count 1

Parent, Count 2

Child, Count 2

Child, Count 3

Parent, Count 3

Child, Count 4

Child, Count 5

Parent, Count 4

Child, Count 6

Child, Count 7

Parent, Count 5

Child, Count 8

Child, Count 9

Child, Count 10

You can therefore use fork as a quasi-multithreading solution. Many HTTP, FTP,
and other servers use this technique to handle more than one request from a client at
the same time (see the simple web server example in Chapter 12). Each time a client
connects to the server, it spawns a new process solely for servicing the requests of the
client. The server immediately goes back to accepting new requests from new clients,
spawning additional processes as it goes.

Open filehandles are inherited, so had you redirected STDOUT to a different
file, the child would also have written to this file automatically. This can be used
for parent-child communication, and we’ll look at specific examples of this in the
“Communicating with Children” section, later in the chapter.

Support for fork Under Windows
As a rule, Windows does not support fork() at an operating system level. Historically, the
decision was made during development of the Win32 series (Windows 9x/NT/2000)
to instead support threads. Rather than duplicating the current process, which is a
relatively time-consuming task, you just create a new thread through which to execute
the function that you want to run simultaneously.

472 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 473
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

However, despite this lack of support, the need for a fork-like function under
Windows was seen as a major part of the cross-platform compatibility puzzle. To that
end, a fork function has been developed which works under the Windows platform.
Support is currently fairly limited, and some of the more useful tricks of the fork
system are not implemented, but the core purpose of the function—to duplicate the
currently executing interpreter—does work. This means that it’s now possible to do
most operations that rely on the fork function within ActivePerl.

Rather than creating a child process in the strict sense, the Windows fork function
creates a pseudo-process. The pseudo-process is actually a duplication of the current
interpreter created within a new thread of the main interpreter. This means that using
fork does not create a new process—the new interpreter will not appear within the
process list. This also means that killing the “parent” kills the parent and all its “children,”
since the children are just additional threads within the parent.

The Windows fork function returns the pseudo-process ID to the parent and 0 to
the child process, just like the real fork function. The pseudo-process ID is separate
from the real process ID given to genuine additional processes. The undef value is
returned if the fork operation fails.

Although the Windows fork function makes use of the threading system built into
Windows to create the processes, you don’t actually have access to the threads within
Perl. If you want to use threads instead of fork, see Chapter 15.

ActivePerl fork Limitations There are some limitations and considerations that
you should keep in mind when using the fork function under ActivePerl—all because
of the way the system works. A brief list of these issues is given here:

� Open filehandles are inherited, so had you redirected STDOUT to a different
file, the child would also have written to this file automatically. This can be
used for parent-child communication, and we’ll look at specific examples of this
in the “Communicating with Children” section, later in the chapter. Note,
however, that unlike Unix fork, any shared filehandles also share their position,
as reported by seek. This means that changing the position within a parent
will also change the position within the child. You should separately open the
file in the child if you want to maintain separate file pointers.

� The $$ and $PROCESS_ID variables in the pseudo-process are given a unique
process ID. This is separate from the main process ID list.

� All pseudo-processes inherit the environment (%ENV) from the parent and
maintain their own copy. Changes to the pseudo-process environment do not
affect the parent.

� All pseudo-processes have their own current directory.

� The wait and waitpid functions accept pseudo-process IDs and operate normally.

� The kill function can be used to kill a pseudo-process if it has been supplied with
the pseudo-process’s ID. However, the function should be used with caution, as
killed pseudo-processes may not clean up their environment before dying.

� Using exec within a forked process actually calls the program in a new external
process. This then returns the program’s exit code to the pseudo-process, which
then returns the code to the parent. This has two effects. First, the process ID
returned by fork will not match that of the exec’d process. Secondly, the –| and
|– formats to the open command do not work.

Since the operation of fork is likely to change before this book goes to print, you
should check the details on the fork implementation at the ActiveState web site. See
Appendix F for details.

Waiting for Children
As you fork new processes and they eventually die, you need to wait for the child
processes to exit cleanly to ensure they do not remain as “zombies” within the process
table. Child processes send the SIGCHLD signal to the parent when they exit, but
unless the signal is caught, or the processes are otherwise acknowledged, they remain
within the process table. They are called zombies because they have completed
execution but have not been cleared from the table.

In order to acknowledge the completion of the child process, you need to use one of
the two available functions, wait and waitpid. Both functions block the parent process
until the child process (or processes) has exited cleanly. This should not cause problems
if the functions are used as part of a signal handler, or if they are called as the last
function within a parent that knows its children should have exited, probably because
it sent a suitable signal.

wait

waitpid PID, FLAGS

The wait function simply waits for a child process to terminate. It’s usually used
within a signal handler to automatically reap child processes as they die:

$SIG{CHLD} = sub { wait };

This should guarantee that the child process completes correctly. The other alternative
is to use the waitpid, which enables you to wait for a specific process ID and condition.

Valid flags are defined in the POSIX module, and they are summarized here in
Table 14-2.

Of course, there are times when you specifically want to wait for your children to
exit cleanly.

474 P e r l : T h e C o m p l e t e R e f e r e n c e

Communicating with Children
It’s possible to do one-way communication between a parent and its children using
the |– and –| methods to the open command. However, this is a one-way transfer, and
the fork is implied by the open command, which reduces your flexibility somewhat.
A better solution is to use the pipe function to create a pair of filehandles.

pipe READHANDLE, WRITEHANDLE

Information written to WRITEHANDLE is immediately available on READHANDLE
on a simple first in, first out (FIFO) basis. Since a forked process inherits open filehandles
from the parent, you can use a pair of filehandles for communicating between the child
and parent and for reading from and writing to the corresponding filehandle. The
following example creates a new subprocess, which accepts calculations that are then
evaluated by eval to produce a result.

use IO::Handle;

pipe(PARENTREAD, PARENTWRITE);

pipe(CHILDREAD, CHILDWRITE);

PARENTWRITE->autoflush(1);

CHILDWRITE->autoflush(1);

if ($child = fork) # Parent code

{

close CHILDTREAD; # We don't need these in the parent

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 475
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Flag Description

WIFEXITED Wait for processes that have exited

WIFSIGNALED Wait for processes that received a signal

WNOHANG Non-blocking wait

WSTOPSIG Wait for processes that received STOP signal

WTERMSIG Wait for processes that received TERM signal

WUNTRACED Wait for processes stopped by signals

Table 14-2. Flags for waitpid

476 P e r l : T h e C o m p l e t e R e f e r e n c e

close PARENTWRITE;

print CHILDWRITE "34+56;\n";

chomp($result = <PARENTREAD>);

print "Got a value of $result from child\n";

close PARENTREAD;

close CHILDWRITE;

waitpid($child,0);

}

else

{

close PARENTREAD; # We don't need these in the child

close CHILDWRITE;

chomp($calculation = <CHILDREAD>);

print "Got $calculation\n";

$result = eval "$calculation";

print PARENTWRITE "$result\n";

close CHILDREAD;

close PARENTWRITE;

exit;

}

You can see that the calculation is sent to CHILDWRITE, which is then read by
the child from CHILDREAD. The result is then calculated and sent back to the parent
via PARENTWRITE, where the parent reads the result from PARENTREAD. Note
that you must use newlines as terminators when communicating between the parent
and the child to identify the end of the communication. You could have used any
string (see “Data Transfer” in Chapter 12), but newlines are the natural choice, since
it’s what you use elsewhere.

Another alternative is to use sockets, and you saw many examples of this in Chapter 12.
There is, however, one trick particularly relevant to communication between parents
and children. This is the socketpair function, which is only supported on a small number
of platforms. It works in a similar way to pipe, except that you can use just two
filehandles to communicate between the two processes. Here’s another version of the
preceding example, this time using socketpair:

use IO::Handle;

use Socket;

socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

or die "socketpair failed: $!";

PARENT->autoflush(1);

CHILD->autoflush(1);

if ($child = fork) # Parent code

{

close PARENT;

print CHILD "34+56;\n";

chomp($result = <CHILD>);

print "Got a value of $result from child\n";

waitpid($child,0);

close CHILD;

}

else

{

close CHILD;

chomp($calculation = <PARENT>);

$result = eval "$calculation";

print PARENT "$result\n";

close PARENT;

exit;

}

Note that this works slightly differently, although the basic theory is the same.
The socketpair function creates a pair of network sockets where information sent to
CHILD is readable on PARENT, and vice versa. This means you write information
to the CHILD filehandle in the parent, but read it from PARENT in the child. This is
the same as the PARENTWRITE and PARENTREAD filehandles in the previous
pipe example, except that you have only one filehandle in each to deal with.

Note the importance of the close statements in both this and the previous example.
The filehandles will remain open if you do not explicitly close them correctly in the
child and parent. You must make sure all filehandles in both the parent and child are
closed correctly. This is less important in the pipe version, since Perl will close them
for you, but in the socketpair version you run the risk of either child or parent assuming
that the connection is still open.

Other Function Calls
Although not strictly a method of IPC, Perl does provide a mechanism for calling
functions that are part of the system library, but that are not available as a directly
supported function. In order for this to work, you’ll need to create the syscall.ph
Perl header file using the h2ph script:

h2ph /usr/include/sys/syscall.h

C h a p t e r 1 4 : I n t e r p r o c e s s C o m m u n i c a t i o n 477
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

This will install the Perl header file into the Perl library structure so it’s available via a
normal require statement.

require syscall.ph;

syscall(&SYS_chown,"myfile",0,0);

You can supply up to 14 arguments to be passed to the function, and they are
interpreted according to their types. If the scalar is numeric, it is passed to the system
function as an int; otherwise a pointer to a string is passed. If the system call populates
a variable, you may supply a suitable variable, but make sure it’s large enough to
contain the returned value.

The syscall function always returns the value returned by the function you have
called. If the call fails, the return value is –1, and the $! variable is populated accordingly.

A better solution if you regularly make use of a system function not supported
within Perl is to create an XSUB definition for it. See Chapter 17 for more information.

System V IPC
The System V flavor of Unix introduced a number of different methods for interprocess
communication. It centers around three basic premises: messages, semaphores, and
shared memory. The messaging system operates a simple message queue for the
exchange of information. Semaphores provide shared counters across processes and
are usually used to indicate the availability of shared resources. Shared memory allows
for segments of memory to be shared among processes.

From my point of view, as well as a practical one, network sockets (Chapter 12)
provide a much better system for communicating and transferring information between
processes, both locally and remotely. For a start, they are supported on many more
platforms than the System V IPC. Furthermore, they are far more practical in most
instances than the System V IPC functions, which restrict you, necessarily, to a few
minor facilities. System V IPC is not supported on many Unix flavors and certainly not
under Mac OS or Win32 systems. If you want to use this system, I suggest you refer
to the man pages for more information on these functions.

478 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 15
Other Execution
Enhancements

479

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

480 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl code can be executed in a number of different ways. You can execute a script
written in a text, supply a miniscript on the command line, or execute Perl scripts
within other Perl scripts. Using the embedding techniques we’ll see in Chapter 20,

you can even execute Perl statements and scripts within the confines of a C program.
The term “advanced” is perhaps a little over the top, but in this chapter we’ll look

at alternative methods for executing Perl subroutines and scripts beyond the normal
direct interpretation of a file.

The first method we’ll look at is using Perl on the command line, along with the
options you can supply to Perl to change the way it operates. For example, the -w
command line option turns on warnings—a list of problems that may exist in your
script. There are other tricks, though: you can use Perl on the command line as a form
of scriptable editor and with only a few more keystrokes, it can even operate as a “do it
all” utility.

We’ll then move on to the use of threads—a sort of miniprocess within the main
execution of a script. You can use threads as a way to execute a number of subroutines
simultaneously without resorting to the complexities and overheads of the fork
function we saw in Chapter 14. On suitable operating systems (thread support is
very operating-system limited) this allows multiple operations to occur simultaneously—
a great way for handling complex GUIs or client/server systems. It can also be used
where you are processing many files simultaneously without using the round-robin
approach of IO::Select.

We have already seen some examples of using the eval function, which effectively
operates as another Perl interpreter. The eval function has many uses, but its primary use
is as an exception handler to trap operations that would otherwise cause the main
interpreter to fail. A good example here is calling a function that may not be supported on
the current platform—you call the function within an eval, and it’s the embedded Perl
interpreter that fails, not the interpreter running your script.

Finally, we’ll consider the security implications of using Perl and how to get
around them using the standard Perl distribution. Perl has always supported a “tainting”
mechanism, which highlights variables and information Perl considers possibly unsafe.
For a more secure environment, you can use the Safe module to create a new, unique
compartment where you can restrict the list of available opcodes (the smallest executable
part of a Perl script). This can reduce the resources and methods available to a script,
preventing it from using functions, or even operators, that you do not want it to run.

Perl on the Command Line
During the normal execution process, Perl looks for a script in one of the following
places, in this order:

1. On the command line (via the -e option).

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 481
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

2. Contained in the file specified by the first non-option argument to the Perl
interpreter.

3. Piped in to the interpreter via the standard input. This works either if there are
no arguments or if there is a command line argument.

Perl supports a number of command line options. These can either be specified on
the actual command line, if you are manually executing Perl, or they can be specified
within the #! line at the start of the script. The #! line is always processed by Perl,
irrespective of how the script is invoked. If you are using this method, be aware that
some Unix systems place a limit on the size of the line—usually 32 characters. You
will therefore need to make sure you place the most significant of the command line
options early in the arguments. Although there are no hard-and-fast rules, the -T (taint
checking) and -I arguments should be placed as early as possible in the command line
options, irrespective of where they are specified.

Whether they are specified on the command line or within the #! line, command
line options can either be selected individually, as in,

$ perl -p -i.bak -e "s/foo/bar/g"

or they can be combined:

$ perl -pi.bak -e "s/foo/bar/g"

-a
Turns on autosplit mode (implies the split function); fields are split into the @F array.
The use of the -a option is equivalent to

while (<>)

{

@F = split(' ');

}

This is generally used with the -F, -n, or -p option to automatically split and/or
summarize a group of input files.

-C
Tells Perl to use the native wide character APIs, currently only implemented on the
Windows platform.

482 P e r l : T h e C o m p l e t e R e f e r e n c e

-c
Checks the syntax of the script without executing it. Only BEGIN and END blocks
and use statements are actually executed by this process, since they are considered
an integral part of the compilation process. The INIT and END blocks, however, are
skipped. Executing a program that does not have any syntax errors will report “syntax
ok”. For example:

$ perl -wc myscript.pl

myscript.pl syntax OK

If you want to check a number of scripts concurrently, then you will need to use the
looping features of your shell to execute each script as follows:

for file in *.pl

do

perl -wc $file

done

It’s also a good idea, as shown here, to switch on warnings while testing.

-d[:module]
Without the optional module, this invokes the Perl debugger after your script has been
compiled and places the program counter within the debugger at the start of your
script. If module is specified, the script is compiled and control of the execution is
passed to the specified module. For example, -d:Dprof invokes the Perl profiling
system and -d:ptkdb starts the ptkdb debugger interface in place of the normal
command line debugger. See Chapter 21 for more information.

-Dflags
Specifies the debugging options defined by flags, as seen in Table 15-1. Note that
options can be selected either by their letter combination or by specifying the decimal
value of the combined options. For example, to switch on taint checks and memory
allocation, you would use -Dmu or -D2176.

You will need to have compiled Perl with the -DDEBUGGING compiler directive for
these debugging flags to work. See Chapter 21 (and also Appendix C) for more details
on debugging Perl scripts, or see my book, DeBugging Perl (Osborne/McGraw-Hill) for
a complete description of what each of these options provides.

-e commandline
The commandline will be interpreted as a single-line Perl script. For example,

$ perl -e 'print 4+5,"\n";'

will print 9.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 483
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Number Letter Description

1 p Tokenizing and parsing

2 s Stack snapshots

4 l Context (loop) stack processing

8 t Trace execution

16 o Method and overloading resolution

32 c String/numeric conversions

64 P Print preprocessor command for -P

128 m Memory allocation

256 f Format processing

512 r Regular expression parsing and execution

1024 x Syntax tree dump

2048 u Tainting checks

4096 L Memory leaks (you need to have used the
-DLEAKTEST directive when compiling Perl)

8192 H Hash dump

16384 X Scratchpad allocation

32768 D Cleaning up

65536 S Thread synchronization

Table 15-1. Debugging Flags

-Fregex
Specifies the pattern to use for splitting when the -a command line option is in use. By
default, the value used is a single space. The regex can be specified including any of the
normal delimiters allowed by split, that is '', "", and //.

-h
Prints the Perl usage summary but does not execute the Perl interpreter.

-iext
Edits the file “in place”—that is, edits are conducted and written straight back to
the file. The optional ext defines the extension to append to the old version of the file.
Actually, what happens is that the file is moved to the “backup” version, and then the
file and edits are written back into the original. If ext is not specified, a temporary file is
used. Note that you must append the extension, including a period if desired; Perl does
not add any characters to the backup file except those specified.

This is generally used with the -p, -n, and -e options to edit a series of files in a
loop. For example, the command line

$ perl -pi.bak -e "s/foo/bar/g" *

replaces every occurrence of “foo” with “bar” in all files in the current directory.

-Idir
Prepends the directory, dir, to the list used to search for modules (@INC) and the
directories used to search for include files included via the C preprocessor (invoked
with -P). See also the use lib pragma in Chapter 19 and the effects of the PERLLIB
and PERL5LIB environment variables later in the chapter.

-l[char]
Sets the character, char, that will automatically be appended to all printed output.
The specification should be via the octal equivalent. By default, no characters are
automatically added to printed lines. If char is not specified, this makes the value
of the output record separator ($\) equal the value of the input record separator ($/).

-mmodule and -Mmodule
Includes the module specified by module before executing your script and allows
you to specify additional options to the use statement generated. For example, the
command line

$ perl -MPOSIX=:fcntl_h,:float_h

484 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 485
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

is equivalent to

use POSIX qw/:fcntl_h :float_h/;

The -M form also allows you to use quotes to specify the options. For example, the
preceding line could be written as

$ perl -M'POSIX qw/:fcntl_h :float_h/'

In both cases, a single hyphen as the first character after -M or -m indicates that no
should be used in place of use.

-n
Causes Perl to assume the following code around your script for each file specified on
the command line:

while(<>)

{

}

Note that the contents of the files are not printed or otherwise output during
execution, unless specified within the script itself. Any files in the list of those to be
opened that cannot be opened are reported as errors, and execution continues to the
next file in the list.

-p
Causes Perl to assume the following code around your script for each file specified on
the command line:

while(<>)

{

}

continue

{

print or die "-p destination: $!\n";

}

As you can see, an error during printing/updating is considered fatal. The -p option
overrides the -n option.

486 P e r l : T h e C o m p l e t e R e f e r e n c e

Any files in the list of those to be opened that cannot be opened are reported as
errors, and execution continues to the next file in the list.

-P
Invokes the C preprocessor on the script before it is parsed by the Perl interpreter.
Care should be taken when using comments in the original C source, since lines
starting with a # character and a keyword, such as if or define, will be interpreted
as a preprocessor directive.

-s
Enables basic command line switching. Once this option has been set, any command
line options specified after the script name are interpreted as the names of variables,
with their values being set to true within the script. For example,

$ perl -s t.pl -true

will create a variable $true within the current invocation of t.pl.
A more advanced system is to use the Getopt::Long or Getopt::Std modules.

-S
Uses the $PATH environment variable to find the script. It will also add extensions to
the script being searched for if a lookup on the original name fails.

-T
Switches on “taint” checking. Variables and information that originate or derive from
external sources are considered to be “unsafe” and will cause your script to fail when
used in functions such as system. This is most often used when a script is executed on
behalf of another process, such as a web server. You should specify this option at the
start of the command line options to ensure that taint checking is switched on as early
as possible. See the “Security” section later in this chapter for more information.

-u
Causes Perl to dump the program core of the interpreter and script after compilation
(and before execution). In theory, this can be used with an undump program to
produce a stand-alone executable, but the Perl-to-C compiler has superseded this
option. See Chapter 19 for more information on these and other methods for generating
stand-alone Perl binaries.

-U
Allows the Perl script to do unsafe operations. These currently include only the
unlinking of directories when you are superuser or when running setuid programs.
This option will also turn fatal taint checks into warnings, providing the -w option is
also specified.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 487
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

-v
Prints the version and patch level of the Perl interpreter, but does not execute the
interpreter.

-V[:var]
Prints the version and configuration information for the Perl interpreter. If the optional
var is supplied, it prints out only the configuration information for the specified element
as discovered via the Config module. Here is the default output from the function:

$ perl -V

Summary of my perl5 (revision 5.0 version 6 subversion 0) configuration:

Platform:

osname=solaris, osvers=2.8, archname=i86pc-solaris-thread-multi

uname='sunos twinsol 5.8 generic_108529-03 i86pc i386 i86pc '

config_args='-ds -e -Dcc=gcc -Dthreads'

hint=previous, useposix=true, d_sigaction=define

usethreads=define use5005threads=undef useithreads=define usemultiplicity=define

useperlio=undef d_sfio=undef uselargefiles=define

use64bitint=undef use64bitall=undef uselongdouble=undef usesocks=undef

Compiler:

cc='gcc', optimize='-O', gccversion=2.95.2 19991024 (release)

cppflags='-D_REENTRANT -fno-strict-aliasing -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64'

ccflags ='-D_REENTRANT -fno-strict-aliasing -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64'

stdchar='char', d_stdstdio=define, usevfork=false

intsize=4, longsize=4, ptrsize=4, doublesize=8

d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=12

ivtype='long', ivsize=4, nvtype='double', nvsize=8, Off_t='off_t',

lseeksize=8

alignbytes=4, usemymalloc=y, prototype=define

Linker and Libraries:

ld='gcc', ldflags =' -L/usr/local/lib '

libpth=/usr/local/lib /lib /usr/lib /usr/ccs/lib

libs=-lsocket -lnsl -ldb -ldl -lm -lposix4 -lpthread -lc -lcrypt -lsec

libc=/lib/libc.so, so=so, useshrplib=false, libperl=libperl.a

Dynamic Linking:

dlsrc=dl_dlopen.xs, dlext=so, d_dlsymun=undef, ccdlflags=' '

cccdlflags='-fPIC', lddlflags='-G -L/usr/local/lib'

Characteristics of this binary (from libperl):

Compile-time options: MULTIPLICITY USE_ITHREADS USE_LARGE_FILES PERL_IMPLICIT_CONTEXT

Built under solaris

Compiled at Nov 17 2000 18:12:25

@INC:

/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi

/usr/local/lib/perl5/5.6.0

/usr/local/lib/perl5/site_perl/5.6.0/i86pc-solaris-thread-multi

/usr/local/lib/perl5/site_perl/5.6.0

/usr/local/lib/perl5/site_perl

.

The specification of var can be a specific option; for example:

$ perl -V:lns

lns='/usr/bin/ln -s';

shows the name of the symbolic link command.
Alternatively, var can be a regular expression:

$ perl -V:install.*lib

installarchlib='/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi'

installprivlib='/usr/local/lib/perl5/5.6.0'

installsitelib='/usr/local/lib/perl5/site_perl/5.6.0'

installvendorlib=''

-w
Prints out warnings about possible typographical and interpretation errors in the
script. Note that this command line option can be overridden by using the no warnings
pragma or adjusting the value of the $^W variable in the source script. See Chapter 19
for more information on the Perl warnings system.

-W
Enables all warnings, ignoring the use of no warnings or $^W. See Chapter 19 for more
information on the Perl warnings system.

-X
Disables all warnings, even if $^W and use warnings have been employed. See
Chapter 19 for more information on the Perl warnings system.

-x[dir]
Extracts the script from an email message or other piped data stream. Perl will ignore
any information up to a line that starts with #! and contains the word perl. Any
directory name will be used as the directory in which to run the script, and the
command line switches contained in the line will be applied as usual. The script
must be terminated either by an EOF or an __END__ marker.

This option can be used to execute code stored in email messages without first
requiring you to extract the script element.

-0[val]
Specifies the initial value for the input record separator $/.

488 P e r l : T h e C o m p l e t e R e f e r e n c e

Special Handling
When running Perl via the command line, there are special treatments for some of the
functions and operators we have already seen. In general, these only affect Perl when
you have called it with the -p and/or -i options. For example:

$ perl -pi.bak -e "print" *

As we already know, this puts a notional loop around the single print statement to
iterate through the files on the command line. In fact, the loop is slightly more complex,
and more correctly actually looks like this:

while($ARGV = shift)

{

open(ARGV, $ARGV) or warn "Can't open $ARGV: $!\n";

while(<ARGV>)

{

}

continue

{

print or die "-p destination: $!\n";

}

}

The special filehandle ARGV is attached to the current file within the list of files
supplied on the command line.

The effect of the eof function is now changed slightly. The statement

eof();

only returns the end of file of the last file in the list of files supplied on the command
line. You have to use eof(ARGV) or eof (without parentheses) to detect the end of file
for each file supplied on the command line.

Perl Environment Variables
The effects of certain elements of Perl and Perl functions can be modified by
environment variables. Many of these variables are set automatically by your shell. In
the case of MacPerl, these values can be configured within the MacPerl environment.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 489
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

HOME
The home directory for the script. This is used by chdir if no argument is specified.

LOGDIR
Used by chdir if no argument is specified and the HOME environment variable is not set.

PATH
This is the list of directories searched when invoking a command via system, exec,
backticks, or other external application callers. This is also the directory list searched
with the -S command line option.

PERLLIB
The colon-separated list of directories used to look for the modules and libraries
required for the Perl script. Note that this list overrides the values defined within the
interpreter. This variable is ignored if PERL5LIB has been set.

PERL5LIB
The colon-separated list of directories used to look for the modules and libraries required
for the Perl script. Note that this list overrides the values defined within the interpreter.

The values here can be added to or overridden entirely using the use lib pragma
(see Chapter 16) and the -l command line option (explained earlier in this chapter).
Note that only the use lib pragma is supported when taint checking is in effect.

PERL5OPT
Allows you to predefine any of the DIMUdmw command line switches for every
invocation of the Perl interpreter. The variable is ignored when taint checking is in effect.

PERL5DB
The command used to load the debugger code when the -d option is specified on the
command line. The default value is

BEGIN {require 'perl5db.pl' }

You can use this variable to permanently enable profiling or to use an alternative
debugger (including those with windowed interfaces). See Chapter 21 for more
information on using the Perl debugger.

PERL5SHELL
This is specific to the Win32 port of Perl (see Chapter 22). It specifies the alternative
shell that Perl should use internally for executing external commands via system or

490 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

backticks. The default under Windows NT is to use the standard cmd.exe with the /x/c
switches. Under Windows 95 the command.com /c command is used.

PERL_DEBUG_MSTATS
This option causes the memory statistics for the script to be dumped after execution. It
only works if Perl has been compiled with Perl’s own version of the malloc() function.
You can use

$ perl -V:d_mymalloc

to determine whether this is the case. A value of define indicates that Perl’s malloc() is
being used.

PERL_DESTRUCT_LEVEL
Controls the destruction of global objects and other references, but only if the Perl
interpreter has been compiled with the -DDEBUGGING compiler directive.

Perl in Perl (eval)
A favorite function of many Perl programmers is eval. This function provides a
great number of facilities, the most useful of which is the ability to execute a piece of
arbitrary Perl source code during the execution of a script without actually affecting
the execution process of the main script.

Normally when you run a Perl script, the code contained in the script is parsed,
checked, and compiled before it is actually executed. When the script contains a call to
the eval function, a new instance of a Perl interpreter is created, and the new interpreter
then parses the code within the supplied block or expression at the time of execution.
Because the code is handled at execution time, rather than compile time, the source
code that is executed can be dynamic—perhaps even generated within another part
of the Perl script.

Another advantage of eval is that because the code is executed in a completely
separate instance of the interpreter, it can also be used for checking the availability of
modules, functions, and other elements that would normally cause a break during the
compilation stage of the script.

The basic format for the execution of an expression or block with eval is

eval EXPR

eval BLOCK

In both cases, the variables, functions, and other elements of the program are accessible
within the new interpreter. We’ll look at the specifics of each technique in more detail.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 491
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Using eval EXPR
When eval is called with EXPR, the contents of the expression (normally a string or
scalar variable) will be parsed and interpreted each time the eval function is called.
This means that the value of EXPR can change between invocations, and it also implies
a small overhead because the code contained within the expression is parsed and
compiled just like any other Perl script.

For example, the following code attempts to import a module based on the value of
a variable, but we already know (from Chapter 6) that use statements are interpreted at
run time, and therefore the following will not work:

if ($windows)

{

use DBI::W32ODBC;

}

else

{

use DBI;

}

What will actually happen is that Perl will parse both use statements, which are
interpreted at compile time, rather than execution time, and therefore probably fail.

However, we can use eval to do the job for us:

$module = $windows ? 'DBI::W32ODBC' : 'DBI';

eval " use $module; ";

Because the eval statement is evaluating the string in a new instance of the
interpreter, the above example will do what we wanted, loading the correct based
on the value of a variable. Also, because the new interpreter is a subset of the main
interpreter, the newly imported module will also be available to the parent script.

Using eval BLOCK
With the BLOCK form, the contents are parsed and compiled along with the rest of
the script, but the actual execution only takes place when the eval statement is reached.
This removes the slight performance delay, but it also reduces the ability to dynamically
parse and execute a piece of Perl code.

Because the code is parsed at the time of compilation of the rest of the script,
the BLOCK form cannot be used to check for syntax errors in a piece of dynamically
generated code. You also cannot use it in the same way as the example we used for
EXPR formats. If you try the previous operation using the BLOCK form,

492 P e r l : T h e C o m p l e t e R e f e r e n c e

$module = $windows ? 'DBI::W32ODBC' : 'DBI';

eval { use $module; };

the compilation will fail because we’re trying to use a variable in a use statement. Even
if it did work, $module doesn’t have a value yet—the preceding line has not been
executed, so $module is undefined.

The BLOCK form of eval must have a semicolon at the termination of the block. The
BLOCK you are defining is not the same as that used by while, for, or sub.

Trapping Exceptions
Because eval starts a new instance of an interpreter, any exceptions (serious errors)
raised during the parsing of the statement can be trapped without affecting the
execution of the main script. The text or error message from an exception raised during
the execution of an eval statement, either from the parser (in the case of eval EXPR)
or through an embedded call to a die function, is placed directly into the $@ variable,
and execution of the expression ends. For example, to check for the existence of a
specific module,

eval { use DBI; };

print "Error loading DBI: $@" if ($@);

Alternatively you can force the error using die:

eval { die "Quitting..."; };

print "Error: $@" if ($@);

In all other respects, the eval statement executes a script as normal. The filehandles
STDIN, STDOUT, and STDERR are all still valid, and calls to warn print an error
message to STDERR as normal. Only a call to die, exit, or an exception (missing
function or module or a syntax error) can cause the termination of an eval statement.

You can, however, use the $SIG{__WARN__} signal handler to interrupt the
normal warn execution and update the $@ variable if necessary. See Chapter 14 for
more information on signals, propagation, and the $SIG{__WARN__} signal handler.

Returning Information
The eval statement returns information in the same way as a subroutine—the return
value (not $@) from eval is the value specified in a call to return, or it is the last
evaluated statement in the block or expression. For example,

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 493
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

$retval = eval "54+63";

should contain the value 117.

eval and the __DIE__ signal handler
If you have installed the __DIE__ signal handler, you need to take care when using
the die function within an eval block. If you do not want the signal handler to be called
when the die function is used, you can localize the $SIG{__DIE__} function, which
effectively disables the main signal handler for die (if installed) for the duration of the
eval statement. This is as easy as placing the localize statement within the eval block.

This becomes even more useful if you actually make use of the localized signal
handler within the confines of the eval sequence. Since the signal handler is cyclical,
once the localized signal handler has completed, you can call die again to exit the eval
block, thereby producing a customized error message. The following example
prepends some information to the error message produced:

{

local $SIG{'__DIE__'} =

sub { die "Fatal Error: $_[0]"; };

eval { die "Couldn't open...." };

print $@ if ($@);

}

Threads
Threads are a relatively new to Perl, and they have been heavily rewritten under Perl 5.6
to make better use of the facilities offered by the operating systems that support threads,
such as Solaris, Linux, and Windows. Before we look at how Perl handles threads,
we’ll take a look at what threads are and how most operating systems handle and
take advantage of the thread facility.

How Multitasking Works
If you look at a typical modern operating system, you’ll see that it’s designed to handle
the execution of a number of processes simultaneously. The method for employing this
is either through cooperative multitasking or preemptive multitasking. In both cases, the
actual method for executing a number of processes simultaneously is the same—the
operating system literally switches between applications every fraction of a second,
suspending the previous application and then resuming the next one in a round-robin
fashion. So, if the operating system has 20 concurrent processes, each one will be executed
for a fraction of a second before being suspended again and having to wait for 19
other processes to do their work before getting a chance to work again.

494 P e r l : T h e C o m p l e t e R e f e r e n c e

The individual processes are typically unaware of this switching, and the effects on
the application are negligible—most applications couldn’t care less whether they were
working as a single process or as part of a multiprocessing environment, because the
operating system controls their execution at such a low level.

The two different types of multitasking—cooperative and preemptive—describe
how the operating system controls the applications that are executing. With cooperative
multitasking, all processes are potentially given the same amount of execution time as
all others. Some operating systems are more specific and provide the “main” application
with the bulk of the processor time (say 80 percent), and the “background” applications
with equal amounts of the remainder (20 percent). This is the model used by the Mac
OS, and it allows the GUI environment to give the most time to the application the
user is currently employing.

Preemptive multitasking is much more complex. Instead of just arbitrarily sharing the
processor time between all of the processes that are executing, an operating system with
preemptive multitasking gives the most processor time to the process that requires it. The
operating system does this by monitoring the processes that are running and assigning
priorities to each process; those with higher priorities get more time, and those with the
lowest priorities get the least. Because we can control the priorities of the processes, we
have much greater control over how different processes are executed. On a database
server, for example, you’d want to give the database process the highest priority to
ensure the speed of the database. Preemptive multitasking is one of the main features
of server-oriented operating systems, including Unix, Linux, and NT-based Windows
implementations, including Windows 2000 and NT itself.

The different multitasking solutions also determine the different hardware types
that can be used with an operating system. Cooperative multitasking is really only
practical on a single-processor system. This is because of the round-robin approach,
which requires that the process resides on the same processor for its entire duration.

With preemptive multitasking, multiprocessor solutions are available. Because the
operating system knows how much time each process requires, it can assign individual
processes to different processors depending on how busy each processor is, in order
to make the best use of the available processor capacity and to spread the load more
effectively. However, the division of labor is only on a process-by-process basis, so
if you have one particularly intensive process, it can only be executed on a single
processor, even if it has enough load to be spread across multiple processors.

From Multitasking to Multithreading
With a multitasking operating system, there are a number of processes all executing,
apparently, concurrently. In reality, of course, each process is running for a fraction of a
second, and potentially many times a second, to give the impression of a real multitasking
environment with lots of individual processors working on their own application.

For each process, there is an allocation of memory within the addressing space
supported by the operating system that needs to be tracked, and for multiuser

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 495
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

operating systems, such as Unix, there are also permission and security attributes and,
of course, the actual code for the application itself. Tracking all of this information is a
full-time job—under Unix there are a number of processes that keep an eye on all of
this information, in addition to the core kernel process that actually handles many
of the requests.

If an individual process wants to be able to perform a number of tasks concurrently,
then there are two possible solutions. The first solution is a round-robin approach, as used
by the main operating system, but without the same level of control. Each function that
needs to be executed is called in sequence in a loop, but because we can’t arbitrarily
terminate a function mid-execution, there are often problems with “lag-time”—if a
function has a large amount of information to process, then its execution will hold up
the entire loop.

For file processing, you can get around this by using select and parsing fixed blocks
of information for each file. In this instance, we only process the information from the
files that have supplied (or require) more data, and providing we only read a single
line, or a fixed-length block of data, the time to process each request should be
relatively small.

For solutions that require more complex multitasking facilities, the only other
alternative is to fork a new process specifically to handle the processing event. Because
fork creates a new process, its execution and priority handling can be controlled by the
parent operating system. This is usually the solution used by network services, such as
Apache and IMAP or POP3 daemons. When a client connects to the server, it forks a
new process designed to handle the requests of the client.

The problem with forking a new process is that it is a time-consuming and very
resource-hungry process. Creating a new process implies allocating a new block of
memory and creating a new entry in the process table used by the operating system’s
scheduler to control each process’s execution. To give you an idea of the resource
implications, a typical Apache process takes up about 500K—if 20 clients connect all
at the same time, it requires the allocation of 10MB of memory and the duplication
of the main image into each of the 20 new processes.

In most situations, we don’t actually need most of the baggage associated with a
new process. With Apache, a forked process doesn’t need to read the configuration
file—it’s already been done for us, and we don’t need to handle any of the complex
socket handlers. We only need the ability to communicate with the client socket we
are servicing.

This resource requirement puts unnecessary limits on the number of concurrent clients
that can be connected at any one time—it is dependent on the available memory and
ultimately the number of processes that the operating system can handle. The actual code
required to service the client requests could be quite small, say 20K. Using
multiprocessing on a system with 128MB might limit the number of clients to around
200—not a particularly large number for a busy website. To handle more requests than
that, you’d need more memory, and probably more processors—switching between 200
processes on a single CPU is not recommended because the amount of time given to each

496 P e r l : T h e C o m p l e t e R e f e r e n c e

process during a single pass (executing each process once), would be very small, and
therefore it would take minutes for a single process to service even a small request.

This is where threads come in. A thread is like a slimmed-down process—in fact
they are often called “lightweight processes.” The thread runs within the confines of
the parent process and normally executes just one function from the parent. Creating
a new thread doesn’t mean allocating large areas of memory (there’s probably room
within the parent’s memory allocation) or require additions to the operating system’s
schedule tables either. In our web server example, rather than forking a new process to
handle the client, we could instead create a new thread using the function that handles
client requests.

By using multithreading, we can therefore get the multiprocessing capability offered
by the parent operating system, but within the confines of a single process. Now an
individual process can execute a number of functions simultaneously, or alternatively
execute the same function a number of times, just as you would with our web server.

On an operating system that supports preemptive multitasking and multithreading,
we get the prioritizing system on the main process and an internal “per-process”
multitasking environment. On a multiprocessor system, the operating system will also
spread the individual threads from a single process across all of the processors. So, if
we have one particularly intensive process, it can use all of the available resources
by splitting its operation into a number of individual threads.

Threading is, of course, very OS-specific. Even now, there are only a handful of
operating systems that provide the functionality to a reasonable level, and some require
additional or different libraries to enable the functionality. Most of the operating systems
that support threading are either Unix based (Solaris, AIX, HP-UX, some Linux
distributions, BSD, Mac OS X) or Windows based (Windows 98/NT/2000/Me).

Comparing Threads to Multiple Processes
The major difference between multithreaded and multiprocess applications is directly
related to the relative resource cost, which we’ve already covered. Using fork to create
duplicate instances of the same process requires a lot of memory and processor time.
The overhead for a new thread is only slightly larger than the size of the function you
are executing, and unless you are passing around huge blocks of data, it’s not
inconceivable to be able to create hundreds of threads.

The only other difference is the level of control and communication that you can
exercise over the threads. When you fork a process, you are limited in how you can
communicate and control the process. To exchange information, you’ll need to open
pipes to communicate with your children and this becomes unwieldy with a large
number of children. If you simply want to control the children, you are limited to
using signals to either kill or suspend the processes—there’s no way to reintegrate
the threads back into the main process, or to arbitrarily control their execution without
using signals.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 497
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Comparing Threads to select()
The select function provides an excellent way of handling the data input and output
from a number of filehandles concurrently, but this is where the comparison ends. It’s
not possible, in any way, to use select for anything other than communicating with
filehandles, and this limits its effectiveness for concurrent processing.

On the other hand, with threads you can create a new thread to handle any aspect of
your process’s execution, including, but not limited to, communication with filehandles.
For example, with a multidiscipline calculation you might create new threads to handle
the different parts of the calculation.

Threads and Perl
Threads have been heavily updated in Perl 5.6 to form a significant, if still largely
experimental, part of the Perl language. In fact, in some circumstances, threads actually
form a core part of the language’s new architecture, and on the Windows platform
threads are used to emulate the operation for fork, a function that is missing from
the operating system itself.

Within Perl, the thread system is controlled using the Thread module, which
provides an object-oriented interface for the creation and control of individual threads.
To create a new thread, you create a new Thread object and supply the name of a
predefined subroutine, which forms the basis of the thread’s execution sequence.
Once started, a thread can be paused, stopped, split into other threads, or bonded with
other threads to create a “superthread.” In all instances, the threads remain attached to
the parent process—it’s not possible to convert a thread into a new process, although
there’s potentially no reason why you couldn’t call fork!

Creating a New Thread
To create a new thread, import the Thread module and then create a new Thread
object. For example, to create a new thread that uses the subroutine process_queue:

use Thread;

$thread = new Thread \&process_queue,"/usr/local/queue";

The object accepts the name of the subroutine to execute, and any further arguments
are supplied as arguments to that subroutine. The $thread variable in the preceding
example contains a reference to the newly created thread and will provide a link from
the main program to the thread.

The thread can obtain a reference to itself with the self method:

$me = Thread->self;

498 P e r l : T h e C o m p l e t e R e f e r e n c e

Each thread is given its own unique thread ID. The main program has a thread ID
of 0, and subsequent threads are given a sequential thread number up to a current
maximum of 232–1. You can discover the thread ID using the tid method,

$tid = $thread->tid;

or for a thread to find its own ID:

$mytid = Thread->self->tid;

You can also get a list of all the running and finished threads (providing the thread
has not been joined—see the section on the next page) by using the list method:

@threads = Thread->list;

You’ll need to process the information yourself, but the list of object references should
be enough for you to determine the current status of each thread using the methods
we’ve already seen.

If all you want is a unique identifier for a thread (perhaps for tracking or logging
purposes), the best solution is to use the Thread::Specific module, which creates a
thread-specific key. To use it, call the key_create function within a thread:

use Thread::Specific;

my $k = key_create Thread::Specific;

Creating a Thread Using an Anonymous Subroutine
You can supply an anonymous subroutine as the first argument to the new constructor
when creating a new thread, although it looks a little bit like line noise:

$t = Thread->new(sub { print "I'm a thread" });

Note that closures work as normal, so this

my $message = "I'm another thread";

$t = Thread->new(sub { display $message });

does what you expect, and displays the message using whatever method
display handles.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 499
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

As an alternative to the anonymous subroutine form, you can also import the
special async function from Thread, which creates a new anonymous subroutine
thread for you. For example, we could rewrite the preceding example as

use Thread ‘async’;

$t = async { display $message; };

Note that the block is treated as an anonymous subroutine and must be terminated by
a closing semicolon. It returns a thread object, just like the new function/constructor.

Controlling a Thread
Once you have created a new thread, it continues running until the subroutine that you
supplied terminates. However, there is the issue of what happens to the thread when it
returns. Unless the parent process is actually waiting for a return value (which defeats
the object!), you need a way of harvesting the threads at some later date, in a similar
fashion to harvesting child processes started with fork.

The method for handling this is called join, and it works in a similar fashion to
waitpid—if the thread has already terminated, then it returns immediately. If the thread
is still running, then join blocks the process until it has been completed. For example,

$result = $thread->join;

Note that the join method actually does what it suggests, it joins the thread on which
you apply the method to the current process, even if that happens to be another thread.
This allows you to spawn a number of threads that can be set to wait for each other’s
return values—great for cooperative processing tasks where each thread is working on
a different part of a calculation.

There are only two exceptions to the use of join; you cannot join a thread to itself,
and you can’t join a thread that has already been joined by another thread.

Note, as well, that the return value from the join method is always evaluated in a
list context. This means that the return value from the subroutine can be a scalar, array,
hash, or other object, but it also means that in a scalar context, the last value of the list
is assigned to the scalar.

Trapping join Exceptions
If you want to trap any exceptions raised during the join process, you must use the
eval method instead of join. This automatically wraps an eval function around the join
method. Return values from the thread are placed into $@, as usual.

500 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 501
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

Detaching Threads
If you want a thread to execute, but you are not worried about its return value, then
you can call the detach method. This effectively relinquishes your control of the thread,
although it remains part of the current process. This allows the thread to continue and
to die of its own accord without having to call the join method to clean up after the
thread—Perl will handle the clean-up operation for you.

Note, however, that this doesn’t absolve you of all responsibility for the thread. If
the thread is still executing when the main parent dies, then execution will wait until
the thread has completed—it doesn’t actually detach the thread into its own process.

The thread will also continue to consume memory if you neither join nor detach it.
This is because Perl keeps the allocation of memory around just in case it’s needed,
even though you may have decided to ignore it.

Yielding
The yield function is designed to free up processor cycles in use by the calling thread
so that they can be used for any child threads. This provides a crude method for
prioritizing individual threads and assigning them processor time, but it’s not very
portable or practical in the long term.

Controlling Variables
Sharing variables across threads is as dangerous and prone to error as sharing a
database file across many processes (see Chapter 13). The basis for controlling access
to the variables is much the same. You set a “lock” on the variable to indicate its status.
Also, like the file locks that are available, the variable locks are advisory. Although you
can lock a variable, there is nothing to prevent a thread from accessing or updating it.
It is entirely up to the programmer to check the lock status and decide whether the
variable should or should not be used. The main function for locking a variable is
the lock function:

lock($var);

The lock set on the variable lasts as long as the scope of the current block. If a
lock is already set on the variable by another thread, then the lock function will block
execution of the current thread until the other has finished using it. Note that the lock
is on the entity, not the contents, so a call such as

lock(@var);

only sets the lock on the @var variable, not on the individual elements of the array.
Therefore, another call to lock($var[0]) will not block. Also, references are only followed to
one level, such that an attempt to lock the reference \$var will work, but trying to lock
\\$var will not work.

Once a variable is locked, you can control the unlocking process with three separate
functions: cond_wait, cond_signal, and cond_broadcast. The cond_wait function is the
main one. It unlocks the variable and blocks until another thread does a cond_signal or
cond_broadcast call for the variable. The function therefore enables you to wait until
another process indicates (either through the cond_signal or cond_broadcast function)
that the thread has finished using the variable. Once the cond_wait unblocks, the
variable is locked again.

The cond_wait function takes one argument—a locked variable—and unblocks
a random thread that is waiting for the variable via cond_wait. It is not possible to
specify which thread is unblocked. You can unblock all waiting threads using the
cond_broadcast function, which also takes a single (locked) variable as an argument.

This is a very complicated description of what is basically a simple process of
indicators and signals that allow you to control access to a variable. Consider that you
have two threads, A and B, and they both want to update a variable $var. Thread A
locks the variable with lock and then starts its update. Meanwhile, thread B decides
that it needs to update the variable, so it calls cond_wait($var), effectively halting
the B thread until A has finished.

Once A has completed the update, it calls cond_signal($var), indicating to thread B
that it has finished with the variable. The cond_wait function called from thread B then
locks the variables for its own use and continues execution. This process of waiting and
signaling the status of locked variables allows you to control access to them and
prevent the corruption that could occur if two threads were to update the variable at
the same time.

Fortunately, in the example, there are only two threads, and so the locking method
is relatively straightforward. In a multithreaded process, controlling access to a single
variable may be more difficult. You may want to try using either the queuing or
semaphore methods for divining information about the variables that you want to
share among processes.

Controlling Subroutines
Since subroutines are just other objects, you can also lock them using the lock function.
However, unlike locks on variables, a lock on a subroutine is mandatory—no one else
but the thread with the lock can use that subroutine.

There are times, however, when you want a subroutine to be locked automatically
on execution. You can set this behavior using the locked attribute when you define the
subroutine. For example:

502 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 503
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

sub process : locked

{

}

Queues
Although you can use ordinary variables for exchanging information between running
threads, it often requires careful use of the lock function to ensure you are using the
right value at the right time. If all you want to do is exchange simple information
between threads, a better method is to use a simple stack. However, you can’t use a
simple scalar array, since that will exhibit the same (if not more complex) problems
regarding locking and access you already know about regarding the lock and other
functions.

Instead, the Perl thread system supports a message queue object. This is basically
a standard array, except that it is thread compatible and so handles additions and
removals from the list safely, without the normal risk to corruption of the variables.
To create a new queue:

use Thread::Queue;

my $queue = new Thread::Queue;

The list operates strictly on a LILO (last in, last out) format, so new entries are
added to the end of the list, and entries are removed and returned from the start of list.
The enqueue method adds a list of values to the end of the queue:

$thread->enqueue('Martin', 'Brown');

The dequeue function returns and removes a single scalar from the beginning of
the queue:

$value = $thread->dequeue;

If the queue is empty, the thread blocks until there is an entry in the queue. To
immediately return from a dequeue operation, you use dequeue_nb, which does not
block; it simply returns undef if the list is empty.

Finally, you can use the pending method to find out how many items are left on the
queue. Note that this information is correct at the time the method is called, but it does
not guarantee that this is the current value if multiple threads are accessing and using
the queue simultaneously. To get around this potential problem, you can use the lock

504 P e r l : T h e C o m p l e t e R e f e r e n c e

function to lock the object so that its state is consistent between the pending method
and the time you use it.

Semaphores
A semaphore is defined in the dictionary as a system of signaling. In the realm of
threads, a semaphore can be used to indicate a particular occurrence to a thread. The
information is provided in the form of a number, and this number can be increased
or decreased as necessary. The method for employing the semaphore is to use the
Thread::Semaphore module and create a new object:

$sema = new Thread::Semaphore;

The default value is 1, or you can specify the initial value:

$sema = new Thread::Semaphore(256);

Two methods, up and down, then increase or decrease the value, either by the default
value of 1, or by the amount specified. The lowest value however is 1, so the code

$sema->up;

$sema->down(256);

will set the value of the $sema semaphore back to 1.
How you use the semaphore value is entirely up to you. The usual method is to

create a semaphore that relates to the available quantity of a specific resource.

Signals
Because signals could interrupt the normal execution process of the script, particularly
when working with threads, it can be a good idea to create a separate thread just for
handling signals. This is practical not only for multithreaded applications, but also for
applications that make use of pipes, non-blocking I/O, and even networking. Of course,
by creating a new thread for signals, your script is now multithreaded, but it doesn’t
mean you have to create additional threads for handling the rest of your script.

To create a new signal-handling thread, all you do is import the Thread::Signal
function:

use Thread::Signal;

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 505
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

This automatically generates a new thread and causes all signals to the program to
be handled within this thread. There is no difference in the way you set up signal
handlers. They can be assigned to existing functions or handled by anonymous
subroutines, as usual. The difference is that the signal handlers execute within the
realm of a new thread. This allows execution of the current process to continue when
a signal is received.

There are some traps in using this technique. Using die within a signal handler
executed in the signal thread will cause the thread to exit, but won’t necessarily cause
the main thread to quit. This also means you will have problems when using exit
within an extension, since this too will affect the signal handler thread and not the
main program.

Security
The security of the script you are running may be an issue, whether you are running a
secure service or when you are using Perl as the CGI interface on a web server. There
are two basic threats. The first is of introducing bogus or dangerous information from
the outside world into the data structures within a Perl script. The second threat is
from the execution of a specific feature of Perl that might otherwise make the script
unsafe. These two dangers can potentially cause all manner of problems.

Solving the first problem is a case of checking and marking the information so that
it can be recognized as possibly being dangerous. Perl will do this automatically by
“tainting” the data that has come from external sources, such as from the command
line or the outside environment. Using “tainted” information in functions and
statements that run an external program could be dangerous. Imagine, for example,
getting an email address from a user, entered on the command line. If you passed this
unchecked to the sendmail program, it could potentially send back to the cracker any
information they wanted or it could even be used to modify information in the system
files through the use of pipes. The taint mode gets around this problem.

The second problem is more difficult to solve, but a method is also provided
with the standard Perl distribution. Execution of certain functions and even of some
operators could be a potential problem. Using the Safe module (which also makes use
of the Opcode module), you can enable and disable different functions and operators,
and then execute a Perl script within this restricted environment.

Using Taint Mode
Perl provides a facility called taint checking. This option forces Perl to examine the
origin of the variables used within a script. Information gleaned from the outside
world is tainted, or marked as possibly unsafe, depending on the context in which it’s

used. Further, variables derived from tainted variables are also tainted. Perl then
examines where the variables are used, and in what context, to decide whether the
code breaks any of the prebuilt rules.

Some of the checks are relatively simple, such as verifying that the directories
within a given path are not writable by other users. Some are more complex and rely
on Perl’s compiler and syntax checker to accept or reject the statement.

The rule is straightforward: you cannot use any data from the outside world that
may directly or indirectly affect something outside of your program. In essence, this
means you can use external variables internally for everything except specific system
calls, subshell executions, or destinations for data files. The following code fragment
shows the results of running some statements with taint checking switched on:

$cmd = shift; # tainted - its origin is the command line

$run = "echo $cmd"; # Also tainted - derived from $cmd

$alsoran = `echo Hello`; # Not tainted

system "echo $cmd"; # Insecure - external shell with $cmd

system "$alsoran"; # Insecure - until $PATH set

system "/bin/echo", $cmd; # Secure - doesn’t use shell to execute

If you try to execute this as a script with taint checking switched on, you will receive
errors similar to “Insecure dependency” or “Insecure $ENV{PATH}” for lines 4 and 5.

Also note that anything that implies the use of an external command or function
also makes the data insecure. Therefore, anything that accesses the environment (via
%ENV), that calls to file globbing routines (glob or <*.c>), as well as some open
constructs also returns tainted information. Finally, any system functions, such as
umask, unlink, link, and others, when used with tainted variables, are also considered
insecure. In each case, there are some exceptions.

If you modify the environment from Perl before accessing it, then the information is
not tainted (Perl remembers that you made the modification); so the code

$ENV{'PATH'} = '/bin:/usr/bin';

$path = $ENV{'PATH'};

does not taint $path, since its source was actually internal.
In the case of the open command, reads from tainted file names are allowed, since

reading is nondestructive. However, writes to files referred to by tainted variables are
not allowed; thus the code

$file = shift;

open(DATA,">$file");

will generate an error, since the $file variable has come from an external source.

506 P e r l : T h e C o m p l e t e R e f e r e n c e

Using pipes is also an insecure option if the command or data you are using with a
command has come from an external source. Therefore,

$file = shift;

open(FOO,"gunzip -c $file|");

is considered unsafe, since you must call a shell in order to interpret the entire
command line. You can get around this by using the alternative pipe notation,

$file = shift;

open(FOO,"-|") or exec 'gunzip', '-c', $file;

which is considered safe, because you do not use a shell to execute the command.
To switch on taint checking, you must specify the -T option on the command line.

This works for Unix and Windows NT. Taint checking with MacPerl is not strictly
available, and even if it were, it wouldn’t make a huge difference since the Mac OS is
not capable of executing external programs. In any case, it is not prone to the same
security breaches as a Unix or NT system.

Taint checking is also automatically enabled by Perl if you attempt to run a script
that is running with different real and effective user and group IDs. If the setuid or
setgid bit has been set on a Unix system, this automatically implies taint checking.
Once switched on, taint checking is enabled for the rest of your script; you cannot
switch it off until the script ends.

To detect whether a variable is tainted, you can use the function is_tainted from the
tainted.pl script supplied in the standard library of the Perl distribution. The only way
to untaint variables is to reference substring regular expression matches. For example,
for an email address, you might use the following code fragment to extract an
untainted version of the address:

If ($addr =~ /^([-\@\w.]+)$/)

{

$addr = $1;

}

else

{

die "Bad email address";

}

Obviously, running an expression match on every tainted element defeats the
object of taint checking in the first place. You can switch this untainting behavior off
by using the re pragma,

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 507
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

use re 'taint';

which means that all regular expressions taint data if their source data is already tainted.
Because variables from CGI scripts are tainted (they come from either an external

environment variable or the standard input), tainting Perl CGI scripts is a good idea.

The Safe and Opcode Modules
The Safe module makes use of Perl’s ability to run code within a separate compartment.
Normally this is done via the eval function. The difference with the Safe module is that
the compartment can be configured to allow only certain internal Perl functions to
execute. This allows you to disable or enable functions that you want to allow or
prevent the use of in the script you want to execute.

The new compartment is completely restrictive. You cannot access subroutines or
variables outside of the compartment, regardless of the methods you try to use. In fact,
the only variables that are shared between the main script and the safe compartment
are $_, @_, %_, and the _ special filehandle. You can place variables into the
compartment for the main script if you need to.

The method for creating the new compartment is to create a new Safe object and
then, optionally, create a new opcode mask that limits the list of available opcodes that
form the basis of any Perl script (see Chapters 16 and 17):

$safe = new Safe;

You can create a new name space to use for the new compartment by specifying it
as an argument:

$safe = new Safe("Compartment");

By default, the value is Safe::Root0, and it is incremented for each new compartment
created within the scope of the current script.

There are five main methods for controlling the compartment once it has been created:

$safe = new Safe;

$safe->permit(OP,...);

$safe->permit_only(OP,...);

$safe->deny(OP,...);

$safe->deny_only(OP,...);

$safe->share(NAME,...);

The permit and deny methods add opcodes to the lists of allowed and restricted
opcodes for the new compartment, respectively. Thus, additional calls to these

508 P e r l : T h e C o m p l e t e R e f e r e n c e

methods add or remove the specified opcodes from the list of those that can be used.
The permit_only and deny_only methods explicitly define the entire list of allowed
and restricted opcodes for the compartment.

The share method specifies the list of variables and subroutines from the enclosing
script that can be shared with the compartment. The NAME should include the variable
type ($foo, @foo, and so on), and all the main object types are allowed. All the shared
items are assumed to be in the calling package. Alternatively, you can use the share_from
method to specify the package from which you want to share the symbols:

$safe = new Safe;

$safe->Share_from('main',['calc_sin', '$PI']);

Once you have completed the mask and specified the opcodes that you want to
enable (or disable), you run a Perl script either by supplying a text string or by using
the reval method:

$safe = new Safe;

$safe->reval($script);

Or you can point execution to an external file with the rdo method:

$safe = new Safe;

$safe->rdo($file);

For the list of available opcodes on your machine, refer to the Opcode module for
your platform. The available list of opcodes is specific both to your platform and the
current version of Perl, so a list here would be useless without the cross-reference of
the specific module for your platform.

C h a p t e r 1 5 : O t h e r E x e c u t i o n E n h a n c e m e n t s 509
P

R
O

G
R

A
M

M
IN

G
W

ITH
P

ER
L

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Part III
Developing Applications

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 16
User Interface Tools

513

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

514 P e r l : T h e C o m p l e t e R e f e r e n c e

The title of this chapter is a bit of a misnomer, but the practicalities are clear. All
the uses of Perl discussed so far have centered around the specifics of the Perl
language. When using Perl in the wide world, however, there are some niceties

that can make the use of Perl easier for both the programmer and the user. The most
basic of these is to allow the user to supply information and instructions to a Perl script
on the command line. Most users will be familiar with command line arguments to
programs, under both Windows and Unix. Command line arguments can consist of
either straight information (usually a file or hostname) or a series of options, signified
by a preceding hyphen. A number of methods, both manual and automatic, can help to
extract the information from the command line, and we’ll look at them in the beginning
of this chapter.

If you are a programmer, you may have already encountered the problems
associated with reporting information in a formatted presentation. The most obvious
method is to use the printf function to arrange the output data into a normalized
format, but it suffers from numerous problems. The most fundamental of these is that
information may stretch beyond the width of an element specified in the printf format
definition. This means using regular expressions and/or functions to extract a specific
number of characters from the data.

This is all too complex and still doesn’t get around the difficulties presented by
producing a report, such as accounting for page length and printing headers (and
footers) on a page. The solution to this with Perl is to use the Perl reporting mechanism
(otherwise known as Formats). This allows you to define a fixed output format for
printed information. The format allows you to specify the justification (left, right, or
centered) and even the template that should be used when printing floating point
numbers. Formats also automatically handle page sizes, line numbers, and headers,
although you will need to work out a method for printing footers for yourself.

Processing Command Line Arguments
Command line arguments are available to any script via the @ARGV array. You can
access this directly, either by referencing individual elements or by using the shift and
pop functions. The important thing to remember about the @ARGV array is that unlike
many other languages (most notably C/C++), element zero is not the name of the
script. This is contained in the $0 variable. This means that the first argument is at
index zero, and therefore you can print out the entire command line argument list by
printing the array:

print join(' ',@ARGV),"\n";

You can also use shift to take off individual arguments in sequence:

$filein = shift;

$fileout = shift;

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 515
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Note, though, that this technique only works when you use shift in the main script
block; calling it within a subroutine takes values off the @_ array instead.

It can also sometimes be necessary to put arguments back onto the command line
before it is processed, perhaps to insert default or required options. Because the command
line arguments are simply available as the @ARGV array, you can push or unshift
elements onto the command line. For example:

unshift @ARGV,qw/-v --/ if (@ARGV == 0);

Refer back to Chapter 2 if you want more information on the manipulation of arrays.
If you want to process command line arguments, rather than doing it yourself, the

best method is to use either the standard or extended options supported by the
Getopt::Std and Getopt::Long modules, respectively.

Both Getopt::Std and Getopt::Long support functions that process the individual
elements of the @ARGV array looking for command line options. When the function
finds a valid argument, it removes it from the array. Any elements of the @ARGV array
that cannot be identified as options remain in the @ARGV array, so you can continue to
use the values supplied in your script.

Getopt::Std
The Getopt::Std module provides a very simple interface for extracting options from
the command line arguments. Each option can only be specified with a single letter,
for example:

$ script.pl -ol file.in

There are two functions, getopt and getopts:

use Getopt::Std;

getopt('ol');

getopts('ol:');

Both functions require a single argument that specifies the list of single-letter
arguments you would like to identify on the command line.

In the case of the getopt function, it assumes that all arguments expect an
additional piece of information, such that the example above would accept the
following line:

$ script.pl -o -l

516 P e r l : T h e C o m p l e t e R e f e r e n c e

However, it would incorrectly assume that “-l” was the data for the -o option. With
the getopts function, each character is taken to be a Boolean value. If you want to accept
arguments with additional information, then append a colon. This means that the
preceding script fragment will accept

$ script.pl -o -l file.input

correctly identifying the -l as a simple switch.
The getopts function supports combined options. For example,

$ script.pl -eafl

which would correctly be recognized as four individual options, setting the values of
$opt_e, $opt_a, $opt_f, and $opt_l to 1.

Both getopt and getopts create new variables starting with a prefix of $opt_. The
preceding script would create two variables: $opt_o will have a value of 1, and $opt_l
will have a value of “file.input.” If a letter defined to the function is not found, then no
variable will be created. In addition, for either function, you can also supply a second
argument, which should be a reference to a hash:

getopts('i:',\%opts);

Each supplied argument will be used as the key of the hash, and any additional
information supplied will be placed into the corresponding values. Thus, a script with
the preceding line when called,

$ getopts -i Hello

will place the string “Hello” into the $opts{‘i’} hash element.
If you have the strict ‘vars’ pragma in effect (see Chapter 19), you will need to

predefine the $opt_ and hash variables before they are called. Either use a my definition
before calling the function, or, better still, predeclare them with use vars.

Getopt::Long
The Getopt::Std module is suitable for simple scripts and argument passing. However,
it falls over if you try to do more complex processing or want to place the extracted
information into specific variables and structures. The Getopt::Long module implements
a more advanced system. The function is identical in operation to the one that is defined
as part of the POSIX standard, and it is therefore suitable for use in scripts that require
POSIX compliance.

POSIX compliance allows not only the standard single-character matching
supported by the Getopt::Std module, but also string arguments. For example:

$ script.pl --inputfile=source.txt

The command line option in this case is --inputfile. Note that long names as arguments
are supported by both the single and double hyphen, although the double hyphen is
the POSIX default. The older, single-hyphen style is still supported, but you cannot
support the combined options, such that,

$ script.pl -eafl

is interpreted as a single argument, “eafl”.
The module uses a different format from the previous functions in the Getopt::Std

module to support the extended functionality. The specification for the command line
arguments is passed to the GetOptions functions in one of two ways. The first is to supply
a hash. The keys of the hash specify the command line arguments to accept, and the
value should be a reference to the variable in which you want to store the value. The
following code sets the value of $verbose to 1 if the word “verbose” is found as a command
line argument:

use Getopt::Long;

GetOptions("verbose" => \$verbose);

The alternative is to supply a reference to a hash as the first argument. As with the
Getopt::Std module, each further argument to the function is then treated as a command
line argument to match. The name specified will be used as the key, with the value, if
supplied, being inserted into the corresponding value:

use Getopt::Long;

GetOptions(\%options, "verbose");

The default interpretation for all arguments is as Boolean values. However, like the
getopts function in the Getopt::Std module, you can signify that additional values can
be supplied on the command line. The module supports two constructs for specifying
values: you can either use a space separator or an equal sign. For example:

--inputfile source.txt

--inputfile=source.txt

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 517
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The + sign is also supported, but its use is deprecated and not part of the POSIX
specification.

The list of available modifiers, which should be specified, is given in Table 16-1.
For example, to set debugging in a script from a value on the command line, you

might use

use Getopt::Long;

GetOptions("debug:i" => \$debug);

This allows you both to use

$ script.pl -debug

518 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

! The option does not accept an optional piece of information and
may be negated by prefixing no. For example, opt! will set the
value of an option --opt to 1, and --noopt to 0.

+ The option does not accept an additional piece of information.
Each appearance in the command line options will increment the
corresponding value by one, such that --opt --opt --opt will set a
value of 3, providing it doesn’t already have a value.

=s The option requires a mandatory additional string argument. The
value of the string will be placed into the corresponding variable.

:s The option accepts an optional string argument. The value of the
string will be placed into the corresponding variable.

=i The option requires a mandatory integer argument. The value will
be placed into the corresponding variable.

:i The option accepts an optional integer argument. The value will be
placed into the corresponding variable.

=f The option requires a mandatory real number argument.
The value will be placed into the corresponding variable.

:f The option accepts an optional real number argument. The value
will be placed into the corresponding variable.

Table 16-1. Options for the Getopt::Long Module

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 519
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

to simply set debugging, or

$ script.pl -debug 256

to specify a debug level.
The function also allows you to use a single hyphen, which will be treated as a

valid argument with the corresponding entry name as the empty string. The double
hyphen (--) on its own will be interpreted by the GetOptions function as the
termination of the command line arguments.

Linkage
When using a hash reference as the first argument to the GetOptions function, there
are additional facilities available to you for processing more-complex command lines.
By default, the operation is identical to the getopts function, that is,

GetOptions(\%options, "file=s");

will perform the equivalent of the following assignment:

$options{file} = "source.txt";

By using a trailing @ sign,

GetOptions(\%options, "files=s@");

you can process command lines like this:

$ script.pl --files source.txt --files sauce.txt

The result is an assignment to the hash, as follows:

$options{files} = ['source.txt', 'sauce.txt'];

Finally, you can process more complex “name=value” command line assignments
by using a trailing % in the definition:

GetOptions(\%options, "users=s%");

Thus, you can now process a command line,

$ script.pl --users Bob=Manager --users Fred=Salesman

520 P e r l : T h e C o m p l e t e R e f e r e n c e

which is roughly equivalent to:

$options{users} = { 'Bob' => 'Manager', 'Fred' => 'Salesman' };

If you do not specify a hash reference as the first argument, the function will
instead create a new variable of the corresponding type, using the argument name
prefixed by opt_. Thus, the previous examples could be translated as follows:

$opt_file = "source.txt";

@opt_files = ('source.txt', 'sauce.txt');

%opt_users = ('Bob' => 'Manager',

'Fred' => 'Salesman');

Providing you supplied a function call like this,

GetOptions("file=s","files=s@","users=s%");

you could also use the hash argument feature to update your own variables directly:

GetOptions("file=s" => \$file,

"files=s@" => \@files,

"users=s%" => \%users);

This last specification method also supports a function that will handle the
specified option. The function will receive two arguments—the true option name
(see the next section) and the value supplied.

Aliases
You can support alternative argument names by using the pipe character (|) to
separate individual names. For example:

GetOptions("file|input|source=s");

The “true” name would be “file” in this instance, placing the value into $opt_file.
This true name is also passed to a function if specified (as mentioned previously).

Callback Function
If GetOptions cannot identify an individual element of the @ARGV array as a true
argument, then you can specify a function that will handle the option. You do this by
using a value of “<>“ as the argument name. For example:

GetOptions("<>" => \&nonoption);

TE
AM
FL
Y

Team-Fly®

Remember that the GetOptions function removes identifiable arguments from
@ARGV and leaves the remainder of the elements intact if you don’t use this facility.
You can then process the arguments as you wish, after GetOptions has completed
successfully.

Identifying Errors
The GetOptions function returns true (1) if the command line arguments can be
identified correctly. If an error occurs (because the user has supplied a command line
argument the function wasn’t expecting), the function returns false and uses warn to
report the bad options.

If the definitions supplied to the function are invalid, then the function calls die,
reporting the error.

Perl’s Reporting Mechanism
Using your own custom reporting mechanisms for complex structures, such as arrays
and hashes, can be a practical way of outputting information in a formatted fashion.
However, if you are reporting simpler structures, or you want to produce reports that
would be reported and formatted using the printf function, then you can use a specially
designed feature of Perl to format the output for you. The Perl mechanism actually
inherits much of its functionality from a variety of sources, including FORTRAN
and BASIC.

The Perl mechanism (otherwise called Formats) is a complete reporting environment
that is very similar to many systems in commercial database-oriented packages, such as
those used for accounting and contacts systems. The Perl reporting mechanism keeps
track of all the different parameters that affect a report, including the number of lines
on the page, the page number you are currently printing to, and even the production
of formatted page headers for each generated page. The format for a format definition
is as follows:

format NAME =

FORMLIST

.

A format is treated like another core structure within Perl, and so it can be defined
anywhere in your script, just like a subroutine or package declaration. Just like other
structures, a format also has its own name space, so a format called Foo can coexist
with a function called Foo. The tradition is for format names to be uppercase and
usually have the same name as the filehandle to which they are output. The default
format NAME is STDOUT, for example.

The FORMLIST portion is just like a subroutine definition, but without the brace
enclosure, and is made up of one of three types of information: a comment, a “picture,”

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 521
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

or an “argument” line. A comment is signified by a # character in the first column and
is treated just like any other comment within Perl.

The picture line is a text string that specifies how the information will be output.
It is printed verbatim, apart from the field definitions that are used to print out the
information you want to output. Special characters, as summarized in Table 16-2,
specify the individual field formats for the pictures.

Using the information in Table 16-2, you can create definitions accordingly.
For example,

format STDOUT =

@<<<<<<<< @|||||| @####.## @>>>>

$prodid, $type, $cost, $instock

.

prints out each line with an eight-character, left-justified product ID; a centered type;
a cost, printed as a formatted floating point value; and a right-justified stock level. The
repetition of the individual format characters specifies the field width; so in the example
of the cost field, it is printed as four digits, a decimal point, and two more digits.

522 P e r l : T h e C o m p l e t e R e f e r e n c e

Picture Character Description

@ Defines a field picture.

< Specifies left justification; the number of repetitions
specifies the field width.

> Specifies right justification; the number of repetitions
specifies the field width.

| Specifies centered justification; the number of repetitions
specifies the field width.

Specifies numbered justification; usually used for
floating point fields. See the example in the text.

^ Defines a split field; information will be printed at the
specified width, but will span multiple lines.

~ Indicates that blank lines in a format should be ignored.
This means that if you specify multiple ^ fields but the
information does not fill all the lines, then blanks won’t
be printed instead.

Table 16-2. Field Formats

Note that this format is used for each line in the printed report. How you treat and
refer to this line is entirely dependent on how you decide to use the reporting mechanism.
For most uses, the individual line will be a record of information. We’ll return to the
significance of this shortly.

Note that the previous example also includes the third type of line, the argument
line, which specifies the information that will be printed on each line. This is defined
quite simply using a list of variables, separated by commas. Each variable is printed
using each format, in order. The actual values supplied are evaluated at run time, so
the values can also be functions and even arrays and hash references.

You can define multiline records by specifying a multiline format. That means you
can modify the above example to

format STDOUT =

Product: @<<<<<<<<

$prodid

Type: @||||||

$type

Cost: \$@####.##

$cost

Stock: @>>>>

$instock

Note that, in each case, for each output line, you have to specify the value you want
printed on the next line. This means that although the preceding format is eight lines
long, the report will only produce four lines for each record of output.

There are a number of ways of producing reports that output a single variable or
record on multiple lines. The first method is to use the ^ field definition. This allows
you to specify a justified format for a field, and each invocation of the picture and the
variable that goes with it will produce an additional string of information extracted
from the variable supplied. Perl puts as much information as possible into the field,
removing the information each time the picture format is called.

To get a clearer idea, let’s add a description to the preceding example, printed next
to the existing details:

format STDOUT =

Product: @<<<<<<<< Description:

$prodid

Type: @|||||| ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$type, $description

Cost: \$@####.## ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$cost, $description

Stock: @>>>> ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 523
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

$instock, $description

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

Unfortunately, this process means that the variable itself is modified during the
reporting procedure. If you want to preserve the contents of the data, you should use
a temporary variable to hold the information. The individual lines are correctly separated
so that words do not cross line boundaries. You can also change the list of characters
that Perl considers it sensible to break a line on by modifying the value of the $: variable.

Also note that this method presents a very different problem. The preceding
example uses a field width of 44 characters. If the data contained in $description is
longer than 176 characters (4 SYMBOL 205 \f "Wingdings 2" \s 12 44), then it will be
truncated; and if it is shorter, you will get a blank line printed where you probably
don’t want one.

The latter problem is easier to solve. You just insert a ~ character anywhere on the
line. This indicates that the line should be ignored if it contains no useful information.
The first problem is more complex, since you have to get around the problem of
printing an infinitely long text field. There are two ways to avoid this. The first is
to use a double ~ on a line, which indicates that the line should be repeated until
the corresponding variable is empty. The other option is to use the special @* format.
This prints multiline values without truncating them, but it also reduces your ability
to specify a maximum width or any justification for the item and is therefore less
useful and practical than the ~~ method.

Once you have written your format, it’s then up to you to process the results and
call write for each set of values that you want to report. To complete the preceding
example, you might use something like the following:

format STDOUT =

Product: @<<<<<<<< Description:

$prodid

Type: @|||||| ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$type, $description

Cost: \$@####.## ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$cost, $description

Stock: @>>>> ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$instock, $description

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

open(DATA,"<datafile.db") or die "Can't open database";

524 P e r l : T h e C o m p l e t e R e f e r e n c e

while(<DATA>)

{

chomp;

($prodid, $type, $cost, $instock, $description) = split /:/;

write;

}

close(DATA);

This does the absolute minimum to produce a report from the information supplied
in an external file. For each input line from the file, the data is extracted and the write
function is called. This tells the reporting mechanism to build the line according to the
specified format, and then to output it. In this case, the output is STDOUT, but it could
have been any open filehandle, providing you named the format accordingly.

Headers and Footers
If you want to print a header for each page of output, you can create a format with the
same name as the main format, with _TOP attached. The information contained in this
format will be printed at the top of every page (see the “Format Variables” section that
follows). This can be helpful both for printing column headers and for printing titles
and page numbers.

For example, the two formats for printing a columnar version of the previous report
might look like this:

format STDOUT_TOP =

Product Type Cost Stock Description

------- ------ -------- ----- -------------------------------------

.

format STDOUT =

@<<<<<<<< @|||||| @####.## @>>>> ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$prodid, $type, $cost, $instock,$description

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~

Footers are more difficult, because there is no built-in device for printing a footer
on each page. The best method is to check the value of $- ($FORMAT_LINES_LEFT
when the English module is used) and then print out the new footer before calling
write. Note, however, that you will need to update the value of $- to account for the
number of lines you have added to the current page. Setting $- to 0 triggers the generation
of a new page.

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 525
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Format Functions
The format process makes use of three main functions: format, formline, and write.
The format function you already know about. The formline function takes a PICTURE
specification and a list of values, and places the value into the accumulate variable,
$^A. It is this variable that is printed to the filehandle when write is called. For example,
the function call

formline "@<<<<<<<< @|||||| @####.##", $prodid, $type, $cost;

write;

is equivalent to:

format STDOUT =

@<<<<<<<< @|||||| @####.##

$prodid, $type, $cost

.

write;

You can think of formline as the reporting mechanism’s own version of printf.
Note, as well, that because the $^A variable is populated during the process, you can
create a function that returns a formline formatted string:

sub sformline

{

my $picture = shift;

$^A = '';

formline($picture,@_);

return $^A;

}

Care should be taken, of course, to ensure that you don’t unwittingly overwrite the
values currently stored in the accumulator using this method.

The write function populates the $^A accumulator variable (using formline and the
predefined format). It then writes the contents of $^A to the current output filehandle, or to
the filehandle specified:

write FILEHANDLE

write

526 P e r l : T h e C o m p l e t e R e f e r e n c e

Note that the format used changes when you specify a different filehandle. This is
not normally a problem, since it’s unlikely that for most installations you’ll be using
more than one filehandle with more than one type of format.

Format Variables
The main format variables, including their English module names and their
descriptions, are shown in Table 16-3.

Use of any of these variables affects the currently selected default filehandle
(defined using the select function). However, if you want the effects to be felt on a
different filehandle, you will either have to change filehandles with the select function
or use the FileHandle module, which provides methods for all of the special variables.
For example, to specify the format name for the REPORT filehandle:

use FileHandle;

REPORT->format_name("Financial_Report");

C h a p t e r 1 6 : U s e r I n t e r f a c e T o o l s 527
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

SVariable English Description

$~ $FORMAT_NAME Current format name

$^ $FORMAT_TOP_NAME Current top-of-form format name

$% $FORMAT_PAGE_NUMBER Current page number (within
current format)

$= $FORMAT_LINES_PER_PAGE Number of printable lines on a
current page

$- $FORMAT_LINES_LEFT Number of printable lines left on
the page

$^L $FORMAT_FORMFEED String to be output before each
top of the page (except the first)

Table 16-3. Variables Used by the Format System

This page intentionally left blank.

Chapter 17
Advanced User
Interfaces

529

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Designing an effective user interface is a difficult task. There are the complexities
of designing the interface elements: the display boxes, buttons, menus, and the
general layout of the interface. More difficult is the implementation. There is no

single user-interface toolkit (although Tk does a pretty good job), and depending on
your platform, you may choose a number of different possible solutions.

For an operating system that supports a text-based interface, the difficulties are even
more significant. Many would argue that the number of people actually using text
interfaces is very small, and few would disagree. Although Windows and Unix have
had windowed environments for many years, both still support a text interface, and
many well-known programs rely heavily on that interface as their way of supporting
functionality. Two of the best applications under Unix are emacs, an editor, and Lynx,
a web browser.

Working directly with a terminal to control an interface is not a step to be taken
lightly. It only really affects Unix and Win32 systems, since the Mac does not support
a text-based interface anyway. Irrespective of the platform, you will need to “drive”
the terminal directly. Although toolkits and modules are available (such as Term::Cap
for Unix and Win32::Console for Windows), you will still need to design and manage
your own on-screen elements, such as menus, buttons, and text areas, and none of it is
easy, even with a simplified toolkit.

Generally, if you’re developing a stand-alone (rather than web) application in any
programming language, it’s highly likely you’re planning on building a GUI environment
to work with it. There is no standard toolkit for designing GUI interfaces, but Tk is a
good choice. It removes a lot of the complexity of implementing an interface, although
the individual design is still your responsibility.

Tk is cross-platform compatible and there are systems that work on Unix (through
the X Window System), Windows, and Mac OS. Unfortunately, an interface for Perl
under Mac OS is not available yet, but that still means we can develop a Tk-based
application that will present a consistent user interface to Windows and Unix users.

If you are not worried about cross-platform compatibility, and you want something
that looks a little less generic, you can use the Gtk interface builder for Unix or the
Win32::GUI system for Windows. Both support a more natural interface that works
in harmony with the host GUI, rather than trying to build its own style of interface on
top of an existing solution.

Of course, a traditional GUI doesn’t support every type of application, and there’s
been a significant increase in the number of applications that are actually developed
either with the Web in mind, or solely as web-based applications. These require a
completely different set of skills, and we’ll be looking in more detail at those in
Chapter 18.

For this chapter, we’ll start by looking at the basis of interface development for
terminal-based applications. The main focus, however, will be on using the Tk interface-
building system to develop a GUI for your application.

530 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

Working with a Terminal
Most terminal interfaces rely on the use of the special escape code sequences that the
terminal driver supports for moving the cursor around the screen, changing the text to
inverse, and so on. The information is held in a central database, and it’s the accessibility
of this database that causes problems within Perl.

In the early years of Unix development, editing was handled by ed. The ed program
was advanced for its time, allowing you to edit individual lines of a document. You
could even search for text and replace it. Unfortunately, working on a document more
than ten lines long when you can only view and edit one line at a time becomes tedious.

Editors progressed in the late 1970s with the introduction of vi, the visual version of
ed. The same basic functionality remained; what was different was that you were able
to view multiple lines of the document and move around them in a way never before
possible. This presented something of a problem for the developer of vi, Bill Joy. The
problem was that different terminals used different sets of control characters and control
codes to perform even basic tasks like moving the cursor around the screen. Out of the
vi project grew the termcap terminal-capabilities database. This described the abilities
of each terminal, and a set of functions allowed a programmer to access the functions
in a standard way.

The termcap system was eventually improved upon and became the curses package.
This package offered the same basic functionality, but with some higher-level and more
complex functions added to take advantage of the clever features being introduced to
the newer terminals. The next development phase was carried out by the Unix Systems
Group (USG), which improved upon the curses package to produce terminfo. Like curses
before it, terminfo provided the same basic interface to the terminal as termcap, albeit
via a different set of functions. Also, like curses, terminfo was intended to eliminate
some of the shortcomings of the termcap system.

The result is that we now have two basic systems for using terminals. The termcap
system is found largely on BSD-based Unix variants. The terminfo package is found
mainly on System V—based Unix variants. Some Unix systems, such as Solaris, SunOS,
and HP-UX, supply both termcap and terminfo.

Within Perl, the Term::Cap module provides an interface to the termcap system. The
processes behind the termcap system and how to make the best use of it are beyond the
topic of this book, but the Term::Cap module should provide you with everything you
need to access and control your terminal. Since the bulk of the development effort
concentrates on Tk GUI interfaces, we’ll move straight on to using that for building
user interfaces.

Under Windows, there is a more extensive solution in the form of the Win32::Console
module. This sits at essentially the same level as the Tk extension that we’ll see later in
this chapter. The Win32::Console module allows you to control the display and output
of a typical Windows console—the same environment used when you start a DOS session.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 531

532 P e r l : T h e C o m p l e t e R e f e r e n c e

Using Win32::Console, it’s possible to place text at specific areas, copy, move, and
scroll text areas, and control the colors used to display the text. You can even have multiple
buffers that you can populate offline and then display into the console at will, making
quite complex interfaces possible. We won’t go into the details here, as the module
itself is quite complex—instead, look at Chapter 10 of the ActivePerl Developer’s Guide;
see Appendix C for more information.

Using Tk
Tk was originally developed by Dr. John Ousterhout, who was at the University
of California, Berkeley, before moving to Sun Microsystems. A new commercial
development was created by Ousterhout to help develop Tk and Tcl in preparation
for a commercial release. Called Scriptics, the company has now been bought by
Interwoven, although development of Tcl and Tk continues under the Scriptics name.
The original Tcl and Tk projects are still free, while Scriptics also develops commercial
products such as TclPro.

The role of Tk is to make the process of designing a user interface significantly
easier. The core of the windowing system provides the methods and basis for simple
operations and events, such as opening windows, drawing lines, and accepting input
and actions from the keyboard and mouse.

Creating even a simple on-screen element, such as a button or even a simple text
pane, originally involved hundreds of lines of code. The result was the development of
individual elements of a GUI environment called widgets. A single widget can define a
core element of the interface, such as a button, scroll bar, and even more complex elements,
such as scales and hierarchical lists, which themselves can be composed of other simpler
widgets. Within Unix and the X Window System, a number of different widget toolkits
have been produced, including Motif, Athena, OpenWindows, and, of course, Tk.

Because of the natural relationship between widgets and objects, developing GUIs
within a scripting language is incredibly easy, and Tk was originally developed in
cooperation with the Tcl language. Tcl (short for Tool Command Language) is essentially
a macro language for making development of complex programs within the shell easier.
However, Tcl is itself difficult to use in comparison to Perl, Python, and other scripting
languages, so efforts were made to support the Tk widgets directly within these languages.

The first real solution was designed by Malcolm Beattie. He embedded a Tcl
interpreter within a Perl layer to enable a connection between Perl and Tk. It was Nick
Ing-Simmons who developed the now-standard Perl/Tk interface by stripping the Tk
system of its Tcl-specific code. On top of the base Tk functionality was built a generic
porting layer, called pTk, which is now the basis for a number of Tk interfaces to scripting
languages, including Perl, Python, Scheme, and Guile.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 533
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The result is Perl/Tk—an interface system that you access within Perl as the Tk
module. This has been successfully supported on Unix for a number of years. At Sun,
Tcl and Tk were ported to Windows and Mac OS, and although the Windows version
of Perl/Tk has been available for some time, a Mac version has yet to materialize.

If you are serious about developing interfaces with Tk, or any other system, I
suggest for the benefit of you and your users that you read a suitable human-computer
interface book. I can heartily recommend all of Apple’s texts; they are the basis for
many of the best interfaces you will find. You may also want to check Alan Cooper’s
About Face: The Essentials of User Interface Design, or the excellent introductory guide
The Elements of User Interface Design, by Theo Mandel.

Installing Tk Under Unix
You should use the CPAN module for all of your module installation—see
Web Appendix B at www.osborne.com for more information on using the CPAN
module. For the purposes of installing Tk, you should probably use:

$ perl -MCPAN -e shell

cpan> install Bundle::Tk

This will download and install everything you should need—including the sources
for the libraries required by the Perl/Tk interface.

Installing Tk Under Windows
The best way to install Tk under Windows is to use either the basic Perl Package Manager
(PPM) or the Visual Package Manager (VPM) that come with ActivePerl and the Perl
Development Kit respectively.

Within PPM, just typing:

PPM> install Tk

should be enough to download and then install everything you need.

Hello from Tk
Developing a user interface with Tk is a case of creating a number of nested objects.
The first object you create is the main window for your application. The nested objects
are the individual widgets that make up the user interface. A widget is a button, text
box, menu, or any of a variety of other components used to build up your interface
within your window.

534 P e r l : T h e C o m p l e t e R e f e r e n c e

Once you have defined the individual widgets that make up the window, the script
then goes into a loop, called the event loop. The script accepts events from the user and
performs the commands and actions that were defined when the widgets were created.
This is different from most other Perl scripts, which follow a logical process. However,
unlike many Perl scripts, users control the execution and choose a number of different
options, depending on which button, text box, or other widget they manipulate.

The basic process for creating a Tk-based GUI application is as follows:

1. Create a window to hold all of your objects. The main window is generally
known as main or top-level, although it could be called anything.

2. Create a number of widgets, defining their contents, actions, and other
elements. In this example, a label, to hold a simple message, and a button,
which when pressed will exit the script, are created.

3. Display and arrange the widgets within the window. This is frequently handled
by the Pack geometry manager, although there are other managers available.
The geometry manager supplies a function that allows you to control the
orientation and spacing of the widgets within the window. Although you can
exercise a certain amount of control, the geometry manager actually does a lot
of the work for you. It makes decisions, based on your recommendations, about
how to lay out the individual components.

4. Start the event loop. The main execution of the script has now finished, and the
rest of the script will be driven by the events configured for individual widgets.

Here is a very quick Perl/Tk script that demonstrates this:

use Tk;

$main = MainWindow->new();

$main->title("Hello World!");

$label = $main->Label(text => 'Hello from Tk!');

$button = $main->Button();

$icon = $button->Photo(-file => 'icon.gif');

$button->configure(image => $icon,

command => sub { exit; }

);

$label->pack(side => 'left');

$button->pack(side => 'left',

padx => 5

);

MainLoop();

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 535
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The result, when run, looks like this on a Windows 98 machine:

You can see the effects of the script quite clearly. As a comparison, you can see
the same script executed on a Red Hat Linux machine here:

The insides of the two windows are identical. It is only the window manager
dressing for resizing the window, minimizing or maximizing the window, or
closing it altogether that are different. The window decorations are specific to
the platform and window manager, and any window you create within Tk will
have these decorations.

There are five important elements that you should remember when developing
Tk interfaces: windows, widgets, nesting, the geometry manager, and callbacks.

Windows
The window is the main container for all widgets and the only way in which you can
develop an interface with Tk. Without a window, you cannot create a widget. It’s possible
to create a number of different “main” windows within the same application; you
are not restricted to only one window. This makes Tk much more practical from
an application-development point of view—you can actually develop most of the basic
artifacts that you would expect from a GUI interface. This includes not just the basic
windows, but also floating palettes, pop-up boxes, and warning messages.

Widgets
It’s also worth paying attention to how the individual widgets are created. You cannot
create a widget outside of a window—a widget must be within a container of some kind.
Most containers are windows, although you can have widgets that are containers for
others—for example, the Frame widget can contain other widgets and is used to help
confine one or more widgets within certain areas of your window. Furthermore, because
the Frame is a widget itself, you can nest multiple frames to produce complex layouts.

Nesting
The nesting of widgets is another important principle. Within Microsoft Windows
applications, each application window generally consists of two main areas. The very
top of the window contains the menu bar, and the remainder of the window is given to
either a single frame of other components, or an interface that allows multiple windows
to exist within the larger frame. For example, within Microsoft Word, you can have
multiple documents open that all share the same menu bar.

As an aside, the inclusion of a per-window menu bar is different in other environments—
Mac OS is a prime example, there is one menu bar at the top of the screen, and all
applications share this menu bar. When you switch applications, the contents of the
menu bar changes to match the active application. This makes the menu bar a completely
separate item to deal with, almost as if it’s within its own window.

The contents of a menu bar within a Windows application are somewhat limited.
Although some applications feign certain abilities, most Windows menus are limited
to simple lists of options. The menu bar is, in fact, a container widget—there is nothing
special about the MenuBar object—it’s, in fact, largely based on the Frame widget. Into
that MenuBar widget you place MenuButtons, and each MenuButton is made up of a
number of menu items. However, unlike our typical Windows application, a Tk-based
application can put anything into the menu item: buttons, checkboxes, radio buttons,
and in fact, any other widget you like.

Furthermore, because a MenuBar is just another widget, we can place menus
anywhere within the window—we’re not tied to just producing the menu at the top
of the window. The combination of flexible menus and nested widgets within those
menus is great for tool and color palettes, or when you want to introduce a complex
list of possibilities within a confined space.

I would be willing to argue that the nesting ability of the Tk interface system
is perhaps the most powerful feature, after Tk’s cross-platform compatibility.

Geometry Manager
Finally, you must not dismiss the need for a geometry manager. The geometry
manager actually does a lot more than just organizing the layout of the individual
widgets within the window. Because the geometry manager is also ultimately responsible
for drawing the widgets on the screen (since only it knows where they should be drawn),
it’s the geometry manager that actually displays each widget.

If you didn’t call the geometry manager, then no widgets would be displayed,
because Tk doesn’t inherently know where to display them—it only knows how to
display them.

536 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 537
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Callbacks
In our demonstration script, the main Button widget had a command property. This
pointed to the function exit via an anonymous subroutine. This command is what’s
called a callback—it calls back a piece of code from another part of the script when you
perform a certain action. In this case, when you clicked on the button, the scripted ended.

To fully understand callbacks, and how the other elements of the Tk window work,
we need to understand event loops.

Event Loops
The MainLoop function executes a simple loop that dispatches requests from the
underlying windowing system to the corresponding widgets. For each event, the
function defined in the command property is executed. However, it’s the responsibility
of the called function to perform its job and relinquish control as soon as possible, so as
to allow other waiting events to execute.

For complex systems that are CPU intensive, you will also need to make sure that
you can effectively multitask between the different threads of execution so that you
don’t lock up the process while servicing an earlier event loop. For some applications
and some systems, this will require you to manually divide a task into manageable
chunks. This will allow the event loop to send requests to other callback functions.
An alternative solution is to use a multithreaded application model.

Any system call that blocks is generally a bad idea within a GUI interface, since
events in the event stack will not be processed while the system blocks. This is a
particular problem on Windows, where the process blocking can actually freeze the
whole machine (although it’s not supposed to). The best method is to use something
like select, which will do the job of multiplexing between open filehandles for you.
Unfortunately, this doesn’t get around the problem of handling GUI and file events
for you.

The MainLoop function is not configurable; it’s impossible to supply your own
version. The loop only exits when users click on the close box within their windowed
environment, or when a call to exit is made. Without multithreaded support, there will
be no way for you either to use the select function or to handle the data. The solution
is to use the fileevent function. This notifies a callback function when the specified
filehandle is ready to accept or supply data. You use it much like you use any other
callback function within the Tk environment:

open(DATA, "file.txt) or die "Can't open $!";

$label->fileevent(DATA, "readable", \&accept_data);

538 P e r l : T h e C o m p l e t e R e f e r e n c e

The callback function will be called, in this instance, when data is waiting to be read
from the file and when an end-of-file is identified. The callback function will need to
handle both these instances. For example:

sub accept_data

{

if (eof(DATA))

{

$label->fileevent(DATA, "readable", undef);

return;

}

else

{

$text .= <DATA>;

}

}

Of course, this doesn’t guarantee that the operator or function you have chosen will
not block the process if there isn’t as much information as it was expecting. You should
be using non-blocking I/O for this sort of process anyway. See Chapter 8 for more
information.

Event Bindings
Beyond the basic event bindings handled by the command property, it is possible to
bind specific events, such as keypresses and mouse clicks, to other functions. This is how
you make keys equate to specific function calls and provide shortcuts to commands
and functions. Tk provides the bind function, which allows you to map these low-
level events to corresponding functions. It is also the method employed by individual
widgets when you define the command property. The format for the function is

$widget->bind(event, callback);

The event is the name of the event you want to bind and can include keypresses or
a mouse click (which is defined as a press and release). The bind function also supports
more complicated events, such as a mouse click and drag, general mouse motion, the
mouse pointer entering or leaving a window, and whole-window events, like resizing
and iconifying.

The event is defined as a string containing the sequence you want to map, which
can be made up of one or more individual events called event sequences. For example,
the code

$widget->bind("<z>", \&pressed_z);

maps the user pressing the Z key, without any modifier, to the function. Other possible
values for event are

$widget->bind("<Control-z>", \&undo);

which occurs when the CTRL key and Z are pressed at the same time, and

$widget->bind("<Escape><Control-z>", \&redo);

which will call redo when the ESC key is pressed, followed by CTRL and Z. For mouse
clicks, you would use

$widget->bind("<Button1>", \&redo);

Individual events are grouped into different classes called modifiers, types, and
details. A modifier is a special key, such as ESC, CTRL, META, ALT, and SHIFT. Mouse
buttons are also grouped into this class, so you get Button1, Button2, Double (for a
double click), and Triple (for a triple click). There is also a special modifier, Any, which
matches all of the modifiers, including none.

The type of event is one of KeyPress, KeyRelease, ButtonPress, ButtonRelease,
Enter, Leave, and Motion. Note that you can identify both a keypress and its release,
so you can configure a game, for example, to accept a certain keypress, and only stop
processing when the key is finally released. The same is true of button presses and
releases. Finally, the Leave option identifies when the pointer leaves the confines of a
widget (useful for tear-off menus and palettes), and Motion identifies when the pointer
has been moved whilst a button and/or keyboard combination is pressed.

The detail class is only used for keyboard bindings and is a string defining the
character that has been pressed. In addition, it also supports ENTER, Right, DELETE,
BACKSPACE, ESC, F1, and the basic ASCII characters, A–Z, punctuation, and so on.

To make life easier, the Tk library also allows you to use abbreviations of the
most common keypresses so that <KeyPress-z> can be specified simply as <z> and
<Button1-ButtonPress> as <1>.

In addition, the Text and Canvas widgets allow an even finer granularity on
individual bindings, allowing you to attach a binding to a specific tag. The format
of bind changes accordingly: the first argument now defines the tag to identify, and
the second and third arguments define the binding and function to be called. Thus,
you can create a binding for pressing the second button on a piece of tagged text:

$text->bind('word', '<2>', \&synonym_menu);

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 539
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Obtaining Event Details
Since it’s possible to bind any key or button sequence to a function, it’s also possible
to assign multiple bindings to a single handler. In these instances, the handler must
be able to determine what key or button was pressed and where the cursor was at the
time the event occurred. To obtain the event details, you use the Ev function, which
extracts the information from the event itself, since it is the event that records the
information about what was pressed and where.

The Ev(‘k’) call returns the keycode that triggered the event, as previously defined,
and Ev(‘x’) and Ev(‘y’) return the x and y coordinates of the mouse pointer when
the event was received. To use this, you need to supply an array as the value to the
function-binding argument:

$widget->bind("<Button1>", [\&redo, Ev('k')]);

The first element of the array reference is the function to be called, and further
elements are the arguments to be passed to the function.

Widgets
To understand how the Tk system works, we’ll take a brief look at the most commonly
used widgets. There are many exceptions that are not listed, due to space constraints. If
you want more information, check the well-organized and voluminous documentation
supplied with the Perl/Tk package.

The Core Widgets
The Tk library comes with a number of predefined widgets. Some are the basic building
blocks of your typical GUI application, such as Button and Label. Others are composites
of other widgets. Table 17-1 lists the basic widgets that are supported by the Tk system.

540 P e r l : T h e C o m p l e t e R e f e r e n c e

Widget Class Description

BitmapImage A subclass of the Image widget for displaying bitmap images

Button A simple push-button widget with similar properties to the
Label widget

Canvas A drawing area into which you can place circles, lines, text,
and other graphic artifacts

Table 17-1. The Basic Widget Set

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 541
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Widget Class Description

Checkbutton A multiple-choice button widget, where each item within the
selection can be selected individually

Entry A single-line text entry box

Frame A container for arranging other widgets

Image A simple widget for displaying bitmaps, pixmaps
(color bitmaps), and other graphic objects

Label A simple box into which you can place message text
(not editable)

Listbox A multiline list of selection choices

Menu A list of menu selections that can be made up of Label,
Message, Button, and other widgets

Menubutton A menu (within a single menu bar) that lists the selections
specified in a Menu object

Message A multiline Label object (not editable)

OptionMenu A special type of Menu widget that provides a pop-up list of
items within a selection

PhotoImage A subclass of the Image widget for displaying full-color images

Radiobutton A multiple-choice button widget, where you can choose only
one of multiple values

Scale A slider that allows you to set a value according to a
specific scale

Scrollbar A slider for controlling the contents of another widget, such as
Text or Canvas

Text A multiline text widget that supports editable text that can
also be tagged for display in different fonts and colors

Toplevel A window that will be managed and dressed by the parent
window manager

Tributton An adaptation of the Button widget that allows it to support
three different states instead of the normal bipolar on/off

Table 17-1. The Basic Widget Set (continued)

542 P e r l : T h e C o m p l e t e R e f e r e n c e

One of the advantages of Tk is that because it supports such basic levels of widgets,
they can be combined or modified to build other widgets. For example, the ScrolledText
widget is a combination of the Scrollbar and Text widgets that allows you to control
what part of the Text widget’s text is displayed, according to the position of the Scrollbar.

At first, this makes Tk look far less practical than other more feature-rich toolkits.
For example, unlike Windows and some of the Unix-based toolkits, Tk doesn’t support
a “standard” dialog box widget—you have to make one yourself. On the other hand,
because you have to make it yourself, you can produce a custom version, perhaps
including an error or reference number—something that the predefined toolkits
wouldn’t be able to support. The downside is that the development process can take
longer—you spend a long time introducing the “standard” artifacts of a good GUI—
but the flexibility wins out in the end.

We’ll take a closer look at some of the more commonly used widgets as we go
through the rest of this chapter.

Generic Widget Properties
The configuration of individual widgets is controlled through a series of properties.
All widgets have a set of properties that define everything from the existence of
borders and colors, through to font styles and sizes. Individual specialized widgets
also have properties for the unique elements that make up that widget. For example,
a MenuButton widget has a property called state, which indicates whether the menu
is active or disabled.

When you define a widget, you set the properties by specifying the property name
and value as part of the hash that you supply to a widget method called configure. For
example:

$label->configure(text="Hello World!\n", foreground = 'red');

The generic properties that are configurable for all widgets are shown in Table 17-2.
Note that although the properties shown here are without leading hyphens (as required
by Tk normally), you may need to add them. The Perl/Tk interface allows you to use
specifications both with and without the hyphen prefix.

All widgets also support a number of methods for controlling and configuring their
options. There are two basic methods. The first is configure, which allows you to set
multiple properties on a widget object at once:

$label->configure(text => 'Hello World!', foreground => 'red');

The second, cget, returns the value of a specific property:

$color = $label->cget('foreground');

Specifying Fonts Font values are traditionally specified in the XLFD (X Logical Font
Description) format. This is a complex string consisting of 14 fields, each separated by a
hyphen. Each field defines a different property. For example, the font

-sony-fixed-medium-r-normal--16-120-100-100-c-80-iso8859-1

defines a font from the “sony” foundry, the “fixed” family, of medium weight. It’s
a regular (rather than italic) font—identified by the “r”—and the width is normal.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 543
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Property Description

font The font name in X or Windows format

background, bg The color of the background, specified either by a name or
hexadecimal RGB value

foreground, fg The color of the foreground, specified either by a name or
hexadecimal RGB value

text The string to be displayed within the widget, using the
foreground and font values specified

image, bitmap The image or bitmap file to be displayed within the widget

relief The style of the widget’s border, which should be one of
raised, sunken, flat, ridge, or groove

borderwidth The width of the relief border

height The height of the widget; specified in the number of characters
for labels, buttons, and text widgets, and in pixels for all
other widgets

width The width of the widget; specified in the number of characters
for labels, buttons, and text widgets, and in pixels for all
other widgets

textvariable The name of a variable to be used and/or updated when the
widget changes

anchor Defines the location of the widget within the window, or the
location of the text within the widget; valid values are n, ne,
e, se, s, sw, w, nw, and center

Table 17-2. Generic Widget Properties

The size of the font is 16 pixels or 12 points high (point size is specified in tenths of
a point, so the size specified is 120 rather than 12). The next two fields specify the
resolution—in this instance 100 pixels wide and 100 pixels high—with an overall
character (“c”) width of 80. The last field is the registry or character locale name.

Usually, however, you can get away with specifying an asterisk or question mark
as wildcards in particular fields so that you can request a more general font, and then
let the Tk and windowing interface determine the correct font. You should be able to
get away with specifying the foundry, family, weight, slant, and points fields. For
example, to use 12-point Helvetica, you might use:

$label->configure(font=>'-adobe-helvetica-medium-r-*--*-120-*-*-*-*-*');

Obviously this is quite a mouthful, and it doesn’t really apply to the Windows font
system, which is much simpler. The Tk libraries also accept the simpler Windows style
definition, which is also backward compatible with the Unix Tk libraries. This definition
includes the font name, point size, and weight; for example:

$label->configure(font => 'Helvetica 12 regular');

Specifying Colors The X Window System supports a file called rgb.txt, which maps
red, green, and blue intensities to color names. This allows you to specify a color with a
simple name. Here’s a short extract from the beginning of a sample rgb.txt file:

255 250 250 snow

248 248 255 ghost white

248 248 255 GhostWhite

47 79 79 DarkSlateGray

0 191 255 DeepSkyBlue

46 139 87 SeaGreen

178 34 34 firebrick

147 112 219 MediumPurple

Obviously, Windows does not use X Windows, but it still has access to the core
set of colors described here. If you want to be more specific, you can explicitly specify
the RGB values precisely in the form #RGB, #RRGGBB, #RRRGGGBBB, and
#RRRRGGGGBBBB, where the R, G, and B refer to an individual hexadecimal
digit of the corresponding color’s intensity.

For example, the GhostWhite color could be described as “#F8F8FF”. For many
situations, it may be easier to use sprintf to create the string:

$color = sprintf("#%02x%02x%02x",142,112,219);

544 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 545
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Specifying Sizes When specifying the size for a specific widget parameter, there are
a number of choices available to you, depending on the widget you are using. If the
widget is of a graphical, rather than textual, base—for example Canvas—then the size
specification accepted by the height and width properties is in pixels. This also extends
to labels and buttons that have a graphical, rather than textual, value. For all widgets
that are text based, the specification is in characters, according to the size of the font
being used to display the text.

Images and Bitmaps Certain widgets support the use of images rather than text.
For example, you can use an image in place of the text that would normally appear
on a button. There are essentially two types of images—a two-color bitmap and a
multicolored pixmap. In an effort to help improve performance, Tk considers an image
to be a unique element. If it needs to be displayed in more than one place, you render it
once and use the rendered image object as the source for the widget image. This means
there are two steps to using an image within a widget.

The first step is to create the rendered image object. You use a different function to
render individual image formats, although the return value from each function is always
of the same type. To create an image object from X Bitmap (XBM):

$image = $label->Bitmap(file => 'icon.xbm');

For an X Pixmap (XPM):

$image = $label->Pixmap(file => 'icon.xpm');

And for a GIF or Portable Pixmap (PPM) format, you need to use the Photo constructor:

$image = $label->Photo(file => 'icon.gif');

When you want to configure a particular widget with an image object, use the
image property:

$label->configure(image => $image);

For bitmaps, the foreground and background properties of the widget control the
foreground and background color of the bitmap.

Labels
A Label widget is the basic widget and provides a simple way of displaying a small
text label within a window. It supports all the basic properties shown in Table 17-2.
Because labels are such a basic element, they often form parts, or the basis, of many
of the other widgets in the Tk toolkit.

546 P e r l : T h e C o m p l e t e R e f e r e n c e

Buttons
Button widgets are essentially just labels with an additional property, command,
which is a pointer to a function that will be called when the button is clicked. The
list of additional properties and methods beyond the base list are shown in Table 17-3.

You saw an example of both the label and button in the introductory script.

Radio Buttons
The Radiobutton widget is used to provide either a simple on/off button, or to act as a
toggle between several different options. The valid properties and methods for a radio
button are shown in Table 17-4.

For example, the following script shows a very simple radio button that allows you
to choose between different names:

use Tk;

$name = 'martin';

$main = MainWindow->new();

$main->Radiobutton(text => 'Martin',

value => 'martin',

variable => \$name)->pack(side => 'left');

$main->Radiobutton(text => 'Sharon',

value => 'sharon',

variable => \$name)->pack(side => 'left');

Property Description

command A reference to the Perl function to be called when the button is
clicked with mouse button 1

Method Description

flash Flashes the button briefly by reversing and resetting the
foreground and background colors

invoke Starts the subroutine defined in the command property

Table 17-3. Properties and Methods for Buttons

$main->Radiobutton(text => 'Wendy',

value => 'wendy',

variable => \$name)->pack(side => 'left');

MainLoop();

Note that the same variable is used in each property definition, so the information
is shared. A change to the value will update the corresponding radio-button family
with the correct selection. The resultant window is shown here:

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 547
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Property Description

command A reference to the Perl function to be called when the button is
clicked with mouse button 1. The variable referred to by the
variable property is updated with the value in the value property
before the referenced subroutine is invoked.

variable Takes a reference to a variable and updates it with the value
property when the button is clicked. When the value of the
referenced variable matches the value property, the button is
selected automatically.

value Specifies the value to store within the variable pointed to by the
variable property when the button is selected.

Method Description

select Selects the radio button and sets the variable to value

flash Flashes the button briefly by reversing and resetting the
foreground and background colors

invoke Starts the subroutine defined in the command property

Table 17-4. Properties and Methods for Radio Buttons

548 P e r l : T h e C o m p l e t e R e f e r e n c e

Check Buttons
A Checkbutton widget, perhaps better known as a checkbox, depending on your
background, is like a radio button, except that it is normally used to allow the user to
select multiple checkboxes for a single option. The possible properties and methods for
a Checkbutton widget are shown in Table 17-5.

Property Description

command A reference to the Perl function to be called when the button
is clicked with mouse button 1. The variable referred to by
the variable property is updated with the value in the value
property before the referenced subroutine is invoked.

variable Takes a reference to a variable and updates it with the value
property when the button is clicked. When the value of the
referenced variable matches the value property, the button is
selected automatically.

onvalue Specifies the value to store within the variable pointed to by the
variable property when the button is selected

offvalue Specifies the value to store within the variable pointed to by the
variable property when the button is not selected

indicatoron If false (zero), then rather than displaying the checkbox indicator,
it toggles the relief base property of the entire widget, effectively
making the whole widget the checkbox.

Method Description

select Selects the check button and sets the variable to value

flash Flashes the button briefly by reversing and resetting the
foreground and background colors

invoke Starts the subroutine defined in the command property

toggle Toggles the selection state and values of the button on and off

Table 17-5. Properties and Methods for Check Buttons

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 549
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Text
A Text widget is a simple text box used for displaying multiple lines of text, unlike a
label, which is really only useful for a small number of words on a single line. A Text
widget becomes an editable entry box for information. It supports the emacs keyboard
shortcuts for data entry and for moving around the box. In addition to the editing
features of a Text widget, you can also “tag” individual pieces of text and change their
properties. This allows you to create a fully featured text editor with multiple font, point
size, and color support without any additional programming.

Text widget methods take one or more index specifications as arguments. An
argument can be an absolute number (base) or a relative number (base and modifier),
and both are specified as strings. Supported base index specifications are shown below.
Items in italics indicate the components of the index specification that you can modify.
Anything else is a keyword.

line.char Indicates the character at char characters across (left to
right) and line lines down (top to bottom). The specification
starts at 0 for characters within a line, and 1 for lines within
a text box.

end The end of the text, as defined by the character just after the
last newline

insert The location of the insertion cursor

mark The character just after the marker whose name is mark

tag.first, tag.last Used to specify the first and last characters of a tag

These index specifications can also be qualified with an additional modifier:

+count chars, -count
chars, +count lines,
-count lines

Adjust the base index specification by count characters
or lines.

wordstart, wordend,
linestart, lineend

Adjust the index to point to the first character on the word
or line specified by the index (wordstart, linestart) or to
the character immediately after the word or line(wordend,
lineend).

A sample of supported properties and methods is shown in Table 17-6.
For example, to insert a piece of text at the end of a text box:

$text->insert('Beginning!', 'end');

Or to insert the same piece of text at character 20 on line 5:

$text->insert('Beginning!', '5.20');

To specify and configure the tags, you need the methods and properties shown in
Table 17-7.

550 P e r l : T h e C o m p l e t e R e f e r e n c e

Property Description

tabs The list of tab stops for the Text widget.
Specification should be as a reference
to a list of strings. Each string should
be composed of a number defining
the character location within the line,
followed by l, c, or r for left, center, or
right justification for the specified tab.

state One of normal for a standard editable
text box, or disabled for an unmodifiable
text box.

Method Description

insert(INDEX [, STRING [, TAG]] ...) Insert STRING with an optional TAG
at the specified INDEX.

delete(INDEX1 [,INDEX2]) Delete the character at INDEX1 or the
text from INDEX1 to INDEX2.

get(INDEX1 [,INDEX2]) Get the character at INDEX1 or the text
from INDEX1 to INDEX2.

index(INDEX) Returns an absolute index for the
corresponding INDEX supplied

see(INDEX) Returns true if the text at INDEX
is visible

markSet(NAME, INDEX) Gives the text at INDEX the bookmark
name NAME

markUnset(NAME) Unsets a bookmark NAME

Table 17-6. Properties and Methods for Text Widgets

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 551
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

For example, to create a simple tag:

$text->tagAdd('tagged', '1.0', '3.0');

This creates a tag called “tagged” from lines 1 through 3 inclusive. The tag name
should be unique because you need it when configuring the options on an individual

Method Description

tagAdd(NAME [,INDEX1[.INDEX2]] ...) Adds the tag NAME at the position
specified in INDEX1 or bounded
by INDEX1 and INDEX2

tagRemove(NAME [,INDEX1[.INDEX2]] ...) Removes the tag NAME from the
character or range specified by
INDEX1 and INDEX2, but does
not delete the actual tag definition

tagDelete(NAME) Removes and deletes the tag
NAME

tagConfigure Configures one or more properties
for a tag

Property Description

-foreground, -background, -font Same as for the basic properties

-justify Justification for the tagged text,
one of center, left, and right

-relief, -borderwidth The border width and relief style

-tabs Same as for basic text widget
properties, but applies only if
the first character in that line also
belongs to the same tag. You cannot
add “subtabs” to a tagged block.

-underline Underlines the tagged text

Table 17-7. Tag Methods and Properties

552 P e r l : T h e C o m p l e t e R e f e r e n c e

tag. Therefore, to change the text tagged with the name “tagged” to 24-point Times,
boldfaced:

$text->tagConfigure('tagged', font => 'Times 24 Bold');

You can also use the tie function with a Text widget to tie the text box contents to
a filehandle. Once tied, you can print and read from the text widget just like any other
filehandle. Thus, you can create a very simple text-file viewer with code like this:

use Tk;

$main = MainWindow->new();

$main->title("Text Viewer");

$maintext = $main->Scrolled('Text');

open(SOURCE, "myfile.txt") or die "Can't open source";

tie(*TEXT, 'Tk::Text', $maintext);

print TEXT <SOURCE>;

close (SOURCE);

$maintext->pack();

MainLoop();

Entry
An Entry widget is essentially a single-line text box, and it inherits many features and
methods from the Text widget. However, because it’s only a single line, the indexing
and methods are much simpler. The indexing options are as follows:

number An index into the widget’s contents, starting with zero as the
first character

end The end of the text

insert The position immediately after the insertion cursor

sel.first, sel.last Indicates the first and last characters of a tag

The supported properties and methods are shown in Table 17-8.

List Boxes
A Listbox widget enables you to create a list, from which you can select an individual
item. It displays a list of strings, one per line, and all the strings displayed have the

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 553
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

same characteristics. When creating the list, the easiest way to populate it is to create
the widget and then use the insert method to add items to the list. The width and height
properties for the Listbox widget define the width of the list box and the height in
characters. Or you can specify values of zero, which will cause the list box to grow
to display all of the objects.

Here is an example of using the Listbox widget:

use Tk;

$main = MainWindow->new();

$list = $main->Listbox(height => 5,

width => 0)->pack();

$list->insert('end', qw/Martin Sharon Wendy Sharon Chris/);

MainLoop();

Property Description

show A simple Boolean option. If set, it displays * for each
character entered, and is primarily used for password
entry. Note that although the characters are displayed
in this manner, copying and pasting the contents of a
“hidden” field will reveal the real contents.

Method Description

get(INDEX) Gets the string starting at INDEX

insert(INDEX, STRING) Inserts STRING at INDEX

index(INDEX) Returns an absolute index from a relative one

selectionFrom(INDEX) Sets the selection from INDEX to the end of the field

selectionTo(INDEX) Sets the selection from the beginning of the field to
INDEX

selection(FROM, TO) Sets the selection to the characters starting at FROM
and ending at TO

selectionClear Clears the selection

selectionPresent True if a selection is currently active

Table 17-8. Properties and Methods for the Entry Widget

554 P e r l : T h e C o m p l e t e R e f e r e n c e

The result is shown here:

Note that you will need to use the bind method shown earlier in this chapter to
bind a particular operation, such as a double-click, to a function. Within the function,
you’ll need to use the get method to obtain the current selection.

You can refer to individual elements within a Listbox in a similar fashion to
selecting text within a Textbox widget. Specification is by a string defining the row,
row selection, or relative location within the list. The details are shown here.

number The index of the row, starting with zero for the first element

end Indicates the end of the current row

active Where the location cursor is currently positioned, and the active
location appears underlined in the list view

anchor The anchor point of the selection

The properties and methods supported by the Listbox widget are shown in
Table 17-9.

Menus
Menus are logically split into MenuButton widgets, which are the menu names. The
MenuButton widget then becomes a container that holds the individual menu item
widgets, which are split into different types to allow you to add normal menu items
(actually just labels), buttons, checkboxes, and radio buttons to your menus.

The normal method for a creating a menu is as follows:

1. Create a menu bar frame, using the Frame widget, to hold individual
menu buttons.

2. Create the individual menu buttons within the new frame.

3. Use the MenuButton widget methods to create the individual menu items.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 555
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Every method of the MenuButton widget supports the now familiar index format,
although the index refers to the individual menu item:

number The index of the menu item, starting at zero for the first item. When
the menu is configured for tear-off, the first entry is a separator
automatically inserted by the widget.

end, last Indicates the last entry

active Where the location cursor is currently active

none Indicates that none of the menu options are active

pattern A pattern to be matched against all entries. This only matches
exactly; regular expressions are supported.

Property Description

height, width The height and width of the list in rows and characters.
If either is zero, then the widget resizes to incorporate
all of the list elements.

selectMode Defines the selection mode of the list; one of single,
browse, multiple, or extended

Method Description

get(INDEX) Gets the string, starting at INDEX

insert(INDEX, STRING) Inserts STRING at INDEX

delete(INDEX [, LAST]) Deletes the row at INDEX, or the rows between
INDEX and LAST

see(INDEX) Brings the element INDEX into the current view

selectionFrom(INDEX) Selects all the rows from INDEX to the end of the list

selectionTo(INDEX) Selects all the rows from the beginning of the list
to INDEX

selection(FROM, TO) Selects the rows starting at FROM and ending at TO

selectionClear() Clears the selection

selectionPresent() Returns true if there is an active selection

curselection() A list of the index values of all the selected items

Table 17-9. Properties and Methods Supported by the Listbox Widget

556 P e r l : T h e C o m p l e t e R e f e r e n c e

Properties and methods for the MenuButton widget are shown in Table 17-10.

Property Description

indicatorOn If true, shows a small diamond to the right
of the menu

state The state of the menu—one of normal,
active, or disabled

Method Description

menu Returns the underlying menu associated
with this menu button

command(OPTIONS) Creates a standard menu item using the
properties in OPTIONS

separator(OPTIONS) A separator

radiobutton(OPTIONS) A radio button menu item using the
properties in OPTIONS

checkbutton(OPTIONS) A check button menu item using the
properties in OPTIONS

cascade(OPTIONS) Inserts a new cascading (hierarchical)
menu using the properties in OPTIONS

add(TYPE, OPTIONS) Adds a new menu of TYPE with
OPTIONS

delete(INDEX1 [, INDEX2]) Deletes the menu item INDEX1 or the
items from INDEX1 to INDEX2

insert(INDEX1, TYPE, OPTIONS) Inserts a menu item of TYPE with
OPTIONS into the location INDEX1

entryconfigure(INDEX, OPTIONS) Changes the properties of the menu item
according to OPTIONS pointed to by
INDEX

entrycget(INDEX) Gets the configuration options for the
menu item at INDEX

Table 17-10. Menu Item Methods

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 557

The configurable options supported for the methods in Table 17-10 work like
all other properties and are listed in Table 17-11. Note that because you can have
hierarchical menus, individual items can use further methods from Table 17-10.

Property Description

indicatorOn If true, places a small diamond next to the menu option,
which allows an option to be toggled on and off by a menu

selectColor The color of the indicator, if indicatorOn is true

tearOff If true, the first element of the menu is a separator. Clicking
on the separator “tears off” the menu into a separate
top-level window. This is not always supported on all
implementations.

label The text to use for the menu item. This should be used in
place of the normal text property.

underline The index of a character to underline. This is used in
combination with the accelerator property to indicate
which keyboard shortcut should be used for this menu.

accelerator Shows the string to be displayed, right justified, as the
keyboard equivalent for the menu option. This doesn’t
bind the key to the command for you—you’ll have to do
that separately.

state Status: normal, active, or disabled

command The reference of a subroutine to call when the menu item
is selected

value The value of the attached radio button (see Table 17-4)

variable The variable used to store value

onvalue, offvalue Identical to the options in Table 17-5 for check button
style entries

Table 17-11. Menu Item Properties

558 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, to create a simple Help menu, you might use a script like this:

use Tk;

$main = MainWindow->new();

$menu = $main->Frame()->pack(side => 'top');

$help_menu = $menu->Menubutton(text => 'Help',

relief => 'raised',

borderwidth => 2,

)->pack(side => 'left',

padx => 2

);

$help_menu->command('-label' => 'About',

accelerator => 'Meta+A',

underline => 0,

command => sub { print "All about me\n" }

);

$help_menu->separator();

$help_menu->command('-label' => 'Help Index',

accelerator => 'Meta+H',

underline => 0,

command => \&draw_help_window(),

);

$help_menu->command('-label' => 'Help on Help',

command => sub { print "Try Help Index\n" }

);

MainLoop();

The result can be seen here:

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 559
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Frame
A Frame widget is simply a container for other widgets. It’s used when you need to
create a complex layout that requires more advanced geometry management than
you can normally do with the available tools. The way it works is that you divide
individual areas of the window into frames and pack the collection of objects into the
frame. For example, you might create a new frame that contains the menu bar, which
you gravitate to the top of the window, while the actual menu buttons within the menu
bar are arranged horizontally. We’ll see an example later in this chapter when we look
at the Scale widget.

Scroll Bars
Scroll bars are available either as separate widgets, in which case you are responsible
for managing the corresponding widget you are scrolling, or they can be automatically
added to any suitable widgets.

We’ll deal with the automatic scroll bars first. To create an automatically scrolled
widget, you use the special Scrolled widget method, and then specify the type of widget
to create with a scroll bar. For example, here’s the line from the text viewer that creates
a scrolled Text widget:

$maintext = $main->Scrolled('Text');

Internally, this creates a Frame widget that contains the main Text widget and the
horizontal (and vertical) scroll bars. The reference returned actually refers to the newly
created Frame widget.

Alternatively, you can create and manage your own scroll bars using the methods
and properties in Tables 17-12 and 17-13. The methods in Table 17-13 allow you to set
the current view within the widget to which you want to associate the scroll bar. The
set function controls the current view, and the command property is called when the
scroll bar is moved.

All widgets that are scrollable also support the methods and properties shown in
Table 17-13. The properties define the functions and increments that the scroll bars
control. The scroll bar widget automatically calls the correct method (xview or yview)
to modify the display of the linked widget.

Scale
Scales are like thermometers. You define a size and range, and the widget displays a
horizontal or vertical slider. The slider automatically has a label (if you’ve defined one)
and tick marks to indicate individual divisions. You can see a sample in Figure 17-1,
and we’ll look at the code required to build this application shortly.

560 P e r l : T h e C o m p l e t e R e f e r e n c e

Property Description

xscrollincrement, yscrollincrement The scrolling in the x and y axis will be
according to the supplied increment.

xscrollcommand, yscrollcommand A reference to the function used to
reposition the widget when the scroll
bar is moved

Method Description

xview(‘moveto’, FRACTION)
yview(‘moveto’, FRACTION)

Moves the scrollbar to the location
specified by fraction; the new value
will indicate the leftmost, or topmost,
character or pixel of the scrollbar tab.
Note that the first argument is a constant.

xview(‘scroll’, NUMBER, WHAT)
yview(‘scroll’, NUMBER, WHAT)

Indicates that the view should be moved
up or down, or left or right, for NUMBER
increments. If WHAT is “units,” then it is
scrolled according to the increment in the
xscrollincrement and yscrollincrement
properties. If WHAT is “pages,” then the
widget is scrolled NUMBER pages.

Table 17-13. Properties and Methods for Scrollable Widgets

Property Description

command A reference to a subroutine used to change the view in
the widget

Method Description

set(FIRST, LAST) Indicates the current view. The FIRST and LAST elements
should be fractions between 0 and 1. For example, a value
of 0.1 and 0.2 should indicate that the area between 10
percent and 20 percent of the item should be shown.

get Returns the current scroll bar settings

Table 17-12. Properties and Methods for Scroll Bars

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 561
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The supported properties and methods are shown in Table 17-14.
Here’s the script that generated Figure 17-1. It provides a simple tool for converting

feet into meters and vice versa.

use Tk;

my ($feetscale, $metrescale) = (0,0);

$main = MainWindow->new();

$feetframe = $main->Frame()->pack(side => 'left');

Figure 17-1. A Scale widget for converting feet into meters

562 P e r l : T h e C o m p l e t e R e f e r e n c e

$feetframe->Scale(command => \&update_feet,

variable => \$feetscale,

width => 20,

length => 400,

orient => 'vertical',

from => 0,

to => 328,

resolution => 1,

tickinterval => 25,

label => 'Feet'

)->pack(side => 'top');

$feetframe->Label(textvariable => \$feetscale)->pack(side => 'top',

pady => 5);

$metreframe = $main->Frame()->pack(side => 'left');

$metreframe->Scale(command => \&update_metre,

variable => \$metrescale,

width => 20,

length => 400,

orient => 'vertical',

from => 0,

to => 100,

resolution => 1,

tickinterval => 10,

label => 'Metres'

)->pack(side => 'top');

$metreframe->Label(textvariable => \$metrescale)->pack(side => top,

pady => 5);

MainLoop();

sub update_feet

{

$metrescale = $feetscale/3.280839895;

}

sub update_metre

{

$feetscale = $metrescale*3.280839895;

}

A Frame widget is used to specify two frames, side by side, and then within each
frame, the scale and the floating-point value are shown one above the other.

Controlling Window Geometry
Throughout this chapter, you’ve seen examples of the pack function, and you already
know it is a required element of the window-building process. However, there are
some tricks you can do with pack to aid in the arrangement of individual widgets
within a window. Tk also supports two other methods of arranging widgets: the placer
and the grid. You must use the same geometry manager within a single parent, although
it’s possible to mix and match individual geometry managers within multiple frames
within a single window to suit your needs.

The placer requires some careful planning to use properly, since you must specify
the location of each widget within the window using x and y coordinates. This is the
same system used within the Bulletin Board widget under Motif and Visual Basic, so
people moving from those systems may be more comfortable with this system.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 563
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Property Description

command Reference to a subroutine, which will be called when the scale’s
value is changed

variable Reference to a variable to be updated whenever the slider moves.
Works like the variable base property; updating this value will
also set the slider position.

width, length The width and length of the scale in pixels (not characters)

orient Allows you to select horizontal or vertical orientation

from, to The real range of values that the widget should scale from and to

resolution The value displayed and set into variable will always be a
multiple of this number. The default is 1.

tickinterval The spacing, in real values, between tick marks on the scale

label The label to be displayed to the top (horizontal) or left (vertical)
of the scale

Method Description

set(VALUE) Identical to modifying the value of variable

Table 17-14. Properties and Methods for Scale Widgets

The grid geometry manager uses a simple table layout, as you might use within a
word processor or when designing web pages with HTML. Each widget is placed into
a table cell, and you specify its location by defining the row and column in which the
widget should appear. Individual widgets can span multiple rows and columns if
necessary. As with the placer geometry manager, you will need to give some careful
thought to how to lay out your widgets in this system.

The packer geometry manager is the one we’ve been using in this chapter, and
it’s the most practical if you do not want to think too much about the geometry
management process. As such, it’s the one we’ll pay the most attention to in this
chapter. If you want details on the systems, please see the documentation that comes
with the Perl/Tk module.

Packer
The packer geometry manager is similar to Motif’s Form widget and uses a much simpler
system for defining the location of widgets within a frame of a window. Remember that
the pack function is just that—it only provides the algorithm used to organize the layout
of widgets. Individual calls to the pack method pack the corresponding widget into the
next available space within the frame or window. This means that widgets are added to
the window or frame in the order in which they are packed. This is similar to how you
would pack a bag or fill a shelf: you start from a single point and add items until the space
is all used up.

The algorithm works like this:

1. Given a frame, the packer attaches a widget to a particular side (top, bottom,
left, or right).

2. The space used up by the widget is taken off from the space available in the
frame, an area called the parcel. If the widget does not fill the parcel completely
(if the parcel is wider or taller than the area sliced for the widget), then that
space is essentially wasted. This is, in fact, the reason for supporting additional
Frame widgets to make the best use of the space.

3. The next widget is then placed into the remaining space, and once again the
widget can attach itself to the top or bottom or one of sides to use up the
available space.

4. Note that all widgets that specify a particular anchor point will be grouped
together and share that space. Thus, if you specify multiple widgets with “left”
anchor, they will be organized left-to-right within the frame. Once again, if you
want to do more complex layouts (as in the Scale widget example), you will
need to create separate frames.

The available options to the packer method are shown in Table 17-15. Like other
elements of the Tk system, options are specified as a hash to the pack method. If you
do not specify an option, the packer geometry manager inserts widgets from top
to bottom.

564 P e r l : T h e C o m p l e t e R e f e r e n c e

The padx, pady, ipadx, and ipady properties accept a string, rather than a numeric
value. Depending on the value’s suffix, the value is interpreted either as pixels,
centimeters, inches, millimeters, or points. For values other than pixels, the geometry
manager will interrogate the window manager and determine the screen resolution
and density to decide how many actual pixels to use—for example, on a typical
Windows screen running at 96dpi, a specification of “1i” would introduce padding
of 96 pixels. The valid suffixes are shown in Table 17-16.

Grid
The grid geometry manager works in an identical fashion to tables within HTML.
Individual widgets are placed into a grid of rows and columns. Individual widgets
are confined to each cell within the grid, but individual cells can be made to span more
than one row or column, if required.

The grid function/method is the interface to the grid manager. You specify the
location of each widget according to the row and column in which it should appear.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 565
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Property Description

side The side of the frame to which the widget should be added.
Should be one of left, right, top, or bottom

fill Specifies whether the widget should fill up the space in the parcel
in the x or y direction. You can also specify both, to fill in both
directions, or none, to prevent filling altogether. The ipadx or
ipady options can be used to specify some additional blank
padding space around the widget within the parcel.

expand Specifies whether the widget should expand to take up all of the
remaining space after the other widgets have been placed. This
is useful for Textbox widgets where you are defining an outer
menu and toolbar and want the main widget to take up all the
remaining space.

padx, pady The spacing between widgets, specified in pixels, millimeters,
inches, or points (see also Table 17-16)

ipadx, ipady The spacing around a widget that is “filling” the space provided
by the parcel; specified in pixels, millimeters, inches, or points
(see also Table 17-16)

Table 17-15. Options to the pack Function

The final size of the grid is based on the maximum row and column that you specify.
The properties for the grid function are shown in Table 17-17.

566 P e r l : T h e C o m p l e t e R e f e r e n c e

Suffix Description

none Size is calculated in pixels.

c Size is interpreted as onscreen centimeters.

i Size is interpreted as onscreen inches.

m Size is interpreted as onscreen millimeters.

p Size is interpreted as printer’s points (1 point is approximately 1/72 inch).
This is the same unit as the point size used when specifying font sizes.

Table 17-16. Padding Character Suffixes

Property Value

column The column in which to insert the widget

columnspan The number of columns that the widget should span within
the grid

row The row in which to insert the widget

rowspan The number of rows that the widget should span within the grid

sticky Defines the side of the parent widget to which the widget will
stick. Should be specified as zero or more of the characters n, s,
e, or w. If none are specified, the widget becomes centered within
its cell. If both n and s (or e and w) are specified, then the widget
will stretch to fill the height (or width) of the cell. If all four are
specified, then the widget grows to fill the entire cell.

padx, pady The spacing between widgets; specified in pixels, millimeters,
inches, or points (see Table 17-16)

ipadx, ipady The spacing around a widget that is “filling” the space provided
by the parcel; specified in pixels, millimeters, inches, or points
(see Table 17-16).

Table 17-17. Properties for the Grid Geometry Manager

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

Placer
The placer works slightly differently than the other two geometry managers. Whereas
the packer and grid work on the basis of aligning widgets according to the other widgets
on the page, the placer allows you to specify very precisely where you want a widget
to be placed. The specification is based on the location and size of the window into
which the widget is placed. If you consider each window to be similar to a cell with
the grid manager, you should get the idea. The widget is then placed into the window
that is created.

The specification for the size of the window, itself, is defined in relation to the
widget’s parent (either a Window or Frame or other container widget). Armed with
this principle, you can specify:

� The location (in pixels) and size of the window within the parent.

� The location and size of the window in relation to the parent.

� A combination of the two, so you can have a fixed size, but a variable location,
or a fixed location, but a variable size.

Thus, you can have a widget centered within a parent that expands with the parent,
increasing both the border and widget size. These options are incredibly useful for
Canvas, Text, and other widgets where you want to expand the display area without
affecting the other widgets within the window.

The interface to the placer manager is via the place method to your widgets.
The key/value pairs accepted by the function are shown in Table 17-18.

The x, relx, y, and rely settings can be combined. A value of 0.5 for relx and 5 for x
would place the widget 5 pixels to the right of the center of the parent. The same is true
for width, relwidth, height, and relheight, where a specification of 1.0 for relwidth
and 5 for width would produce a window 5 pixels smaller than the parent.

Easing the Process
If you are designing a relatively static window for your Perl script rather than one with
many dynamic elements, you may find the SpecTcl application of some use. SpecTcl is
a GUI designer, which is itself written in Tcl and Tk. The newer versions include the
ability to design Tk-based user environments that generate the necessary code for Tcl,
Java, HTML, and Perl. The Java 1.1, HTML, and Perl extensions are still experimental,
but they will allow you to generate most of the required code to build your application.

SpecTcl will particularly appeal to people who have had experience using a visual
interface development environment, such as Access or Visual Basic. You lay out widgets
of static pages by simply dragging and dropping the individual elements into a window
and configuring the properties, such as fonts and colors, from lists of suitable values.
SpecTcl creates all the Perl/Tk code for you; all you need to do is supply the callback
functions and the rest of the support code to go with it.

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 567

568 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, Figure 17-2 shows the SpecTcl application in action, in this case
developing the basic layout for a calculator (actually based on a Python application,
although SpecTcl doesn’t currently support Python). When you have finished drawing
and configuring all of the individual components, then you click on the “build” icon,
and the Perl code is generated.

Property Description

in The widget (object) that the widget should be placed relative
to. The value must be a valid widget object, and must either
be the window parent or a descendant of the window parent.
You must also ensure that the widget and its parent are both
descendants of the same window.

x, y The x (horizontal) and y (vertical) coordinates to use as the
anchor point for the widget. See Table 17-16 for a list of valid
qualifiers for the number.

relx, rely The relative x (horizontal) coordinate within the parent
window. The number should be specified as a floating point
number, where 0.0 refers to the left edge of the parent, and 1.0
to the right edge; thus, the setting 0.5 would center the widget
in the parent.

anchor Defines which point of the window should be treated as the
anchor point. Uses the normal n, ne, e, se, s, sw, w, nw values.

width, height Specifies the width or height of the window. See Table 17-16
for a list of valid qualifiers for the values. Note that in both
cases the measurement defines the outer width of the window,
including any border.

relwidth,
relheight

The relative width or height of the window compared to the
size of the parent, where 0.5 means the window is half as big
as the parent, and 1.0 means that the window and parent are
the same width or height

bordermode One of inside (default), outside, or ignore. If set to inside, then
the area for the window is calculated less any border on the
parent. If outside, it includes the area set by the parent’s border.
If set to ignore, then the calculations are taken irrespective of the
border size, making the entire parent window available for use.

Table 17-18. Properties for the Placer Geometry Manager

The code generated for our calculator application can be seen here.

use Tk;

my $expression ='Welcome';

interface generated by SpecTcl (Perl enabled) version 1.1

from C:/Program Files/SpecTcl1.1/demo/calctest.ui

For use with Tk400.202, using the gridbag geometry manager

sub evalexpression

{

my $result;

$result = eval($expression);

if ($@)

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 569
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Figure 17-2. SpecTcl at work

{

$expression = $@;

}

else

{

$expression = $result;

}

}

sub all_clear

{

$expression = '';

}

sub insert

{

$expression .= $_[0];

}

sub calctest_ui {

my($root) = @_;

widget creation

my($expression) = $root->Entry (-textvariable => \$expression,);

my($button7) = $root->Button (-text => '7',);

my($button8) = $root->Button (-text => '8',);

my($button9) = $root->Button (-text => '9',);

my($buttonoff) = $root->Button (-text => 'Off',);

my($buttonAC) = $root->Button (-text => 'AC',);

my($button4) = $root->Button (-text => '4',);

my($button5) = $root->Button (-text => '5',);

my($button6) = $root->Button (-text => '6',);

my($buttontimes) = $root->Button (-text => '*',);

my($buttondivide) = $root->Button (-text => '/',);

my($button1) = $root->Button (-text => '1',);

my($button2) = $root->Button (-text => '2',);

my($button3) = $root->Button (-text => '3',);

my($buttonplus) = $root->Button (-text => '+',

my($buttonminus) = $root->Button (-text => '-',

my($button0) = $root->Button (-text => '0',);

my($buttonperiod) = $root->Button (-text => '.',);

570 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

my($buttonleft) = $root->Button (-text => '(',);

my($buttonright) = $root->Button (-text => ')',);

my($buttonequals) = $root->Button (-text => '=',);

widget commands

$button7->configure(-command => sub { insert '7'; });

$button8->configure(-command => sub { insert '8'; });

$button9->configure(-command => sub { insert '9'; });

$buttonoff->configure(-command => sub { exit(); });

$buttonAC->configure(-command => \&all_clear);

$button4->configure(-command => sub { insert '4'; });

$button5->configure(-command => sub { insert '5'; });

$button6->configure(-command => sub { insert '6'; });

$buttontimes->configure(-command => sub { insert '*'; });

$buttondivide->configure(-command => sub { insert '/'; });

$button1->configure(-command => sub { insert '1'; });

$button2->configure(-command => sub { insert '2'; });

$button3->configure(-command => sub { insert '3'; });

$buttonplus->configure(-command => sub { insert '+'; });

$buttonminus->configure(-command => sub { insert '-'; });

$button0->configure(-command => sub { insert '0'; });

$buttonperiod->configure(-command => sub { insert '.'; });

$buttonleft->configure(-command => sub { insert '('; });

$buttonright->configure(-command => sub { insert ')'; });

$buttonequals->configure(-command => \&evalexpression);

Geometry management

$expression->grid(-in => $root,

-column => '1',

-row => '1',

-columnspan => '5');

$button7->grid(-in => $root,

-column => '1',

-row => '2');

$button8->grid(-in => $root,

-column => '2',

-row => '2'

);

$button9->grid(-in => $root,

-column => '3',

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 571
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

-row => '2');

$buttonoff->grid(-in => $root,

-column => '4',

-row => '2');

$buttonAC->grid(-in => $root,

-column => '5',

-row => '2');

$button4->grid(-in => $root,

-column => '1',

-row => '3');

$button5->grid(-in => $root,

-column => '2',

-row => '3');

$button6->grid(-in => $root,

-column => '3',

-row => '3');

$buttontimes->grid(-in => $root,

-column => '4',

-row => '3');

$buttondivide->grid(-in => $root,

-column => '5',

-row => '3');

$button1->grid(-in => $root,

-column => '1',

-row => '4');

$button2->grid(-in => $root,

-column => '2',

-row => '4');

$button3->grid(-in => $root,

-column => '3',

-row => '4');

$buttonplus->grid(-in => $root,

-column => '4',

-row => '4');

$buttonminus->grid(-in => $root,

-column => '5',

-row => '4');

$button0->grid(-in => $root,

-column => '1',

-row => '5');

$buttonperiod->grid(-in => $root,

-column => '2',

572 P e r l : T h e C o m p l e t e R e f e r e n c e

-row => '5');

$buttonleft->grid(-in => $root,

-column => '3',

-row => '5');

$buttonright->grid(-in => $root,

-column => '4',

-row => '5');

$buttonequals->grid(-in => $root,

-column => '5',

-row => '5');

Resize behavior management

container $root (rows)

$root->gridRowconfigure(1, -weight => 0, -minsize => 30);

$root->gridRowconfigure(2, -weight => 0, -minsize => 17);

$root->gridRowconfigure(3, -weight => 0, -minsize => 8);

$root->gridRowconfigure(4, -weight => 0, -minsize => 7);

$root->gridRowconfigure(5, -weight => 0, -minsize => 2);

container $root (columns)

$root->gridColumnconfigure(1, -weight => 0, -minsize => 2);

$root->gridColumnconfigure(2, -weight => 0, -minsize => 13);

$root->gridColumnconfigure(3, -weight => 0, -minsize => 13);

$root->gridColumnconfigure(4, -weight => 0, -minsize => 30);

$root->gridColumnconfigure(5, -weight => 0, -minsize => 30);

additional interface code

end additional interface code

}

$main = MainWindow->new();

$main->title("Calculator");

calctest_ui($main);

MainLoop();

The amount of code generated is quite high when compared to that generated
manually, because the properties are created in separate sections (basic, then
commands), but otherwise the code generated works. The three functions used

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

C h a p t e r 1 7 : A d v a n c e d U s e r I n t e r f a c e s 573

by the buttons have been added at the top, in addition to the glue code required to
generate a window and then call the MainLoop function to kick the process off, but
it works. You can see the finished calculator here:

It’s primarily aimed at producing simple form-based windows for data entry and
other similar static window development, but it may also provide you with enough
base code to start you on your way with Tk development.

Development of the SpecTcl system has now stopped, since it was actually developed
at Sun whilst the Tcl and Tk projects were being developed at the company. Even so,
the package still remains solid, and for projects that require very quick development,
it may provide an immediate solution without the manual labor.

You can download SpecTcl from Scriptics, www.scriptics.com. The SpecPerl
portion of the development is handled by Mark Kvale, and you can download the
latest version from http://www.keck.ucsf.edu/~kvale/specPerl.

574 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 18
Developing for the
World Wide Web
(WWW)

575

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

576 P e r l : T h e C o m p l e t e R e f e r e n c e

Despite the recent and historical criticisms of the web (too slow, too passive, not
interactive enough), the fact remains that more and more people are using it
and more and more companies are developing web-related products and

services. Right now, you can log on to the web and order a pizza, buy the latest book,
video, jacket, and a million other items, send an email to your friends around the
world, and even become part of a virtual community.

Most hardware and operating system companies will tell you that the equipment
that runs the web is theirs. What they often don’t tell you is that one of the main
languages that runs web applications is Perl. Although it’s unfair (but not uncommon)
for people to class Perl as an “Internet” language, it does have some benefits not found
(easily) within other languages.

Perl’s biggest advantage over many other languages, especially C and Visual Basic,
is that it handles raw text and the textual information returned from a database so well.
Since most of the web applications rely in one form or another on processing text (from
web forms) and then processing, reformatting, and regurgitating that content back out,
it’s all text in one form or another.

In this chapter, we’re going to have a look at most of the issues that surround working
with web applications in Perl, starting from the basics of web mechanics (HTML and
URLs), through to the interfaces and mechanisms required for Perl to communicate with
the web server and ultimately with the user. Along the way, we’ll also look at methods for
post-processing HTML (using the HTML::TreeBuilder module), using cookies, and
parsing and reformatting XML documents into HTML format.

HTML
The core of any web application is HTML (Hypertext Markup Language). Despite what
design agencies and professional web authors tell you, it is not difficult to learn and
use. What is difficult, however, is ensuring that the HTML you have generated does
what you want and displays correctly. A lot of the complexity comes from the coding
required to produce the format and layout of the HTML you are writing; a much
smaller, but perhaps more significant, proportion comes from the semantics of the
HTML itself.

I don’t really want to get into the precise details of how HTML is formed. If you
want more information on how to write good HTML, refer to the www.w3c.org
website, which gives full details. Alternatively, visit a bookstore and select almost any
HTML title off the shelf. HTML is a simple text format that uses tags to format text in
different point sizes and type styles. For example,

Hello World!

would produce a boldfaced “Hello World!” within a web browser window. The tags
are the at the beginning of the text section and the at the end.

This format is used throughout HTML coding, so the fragment

<i>Hello World!</i>

<u>This is a test message</u>

would produce “Hello World!” in italics and “This is a test message” underlined. This
tagging technique has developed over the years, and actually borrows a lot from the
principles of typesetting systems, where they used tags within a document to indicate
how it should be laid out to the manual typesetter. It’s interesting to see that the old
techniques are still practical, even though the technology that uses them has moved on.

One very useful tag is <a>, which is short for “anchor” or “address.” It denotes the
hypertext links that allow you to jump from one HTML document to another (that is,
the sections of a WWW document that are often underlined and allow you to jump to
other documents).

About us

Another significant tag is <img…, which allows you to incorporate graphics into
your pages. Unlike the other links discussed so far, there is no closing tag, since you are
simply inserting another element into the web page.

Generating HTML code within Perl is normally a case of using print or a “here”
document to embed the HTML tags and accompanying text in the page that is output.
The danger with this very manual solution is that you could generate HTML that is
missing tags or contains badly formed tags that don’t produce what you expect. For
example, forgetting to place the </table> tag at the end of an HTML table will stop it
from being displayed (although the precise interpretation of a missing tag depends
on the browser).

There is an alternative that allows you to generate HTML that will automatically
have the correct start and end tags. The CGI module, which is part of the standard Perl
library, can generate HTML tags through a series of functions. For example:

h1('All About Me');

correctly produces

<H1>All About Me</H1>

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 577
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

578 P e r l : T h e C o m p l e t e R e f e r e n c e

You can even use it to introduce more complex elements—for example, a table row.
The following line is taken from a script that displays a website directory using Perl to
get and then format a list of files:

print Tr({-valign=>TOP},

[th(['Mode','File/Directory',

'User', 'Group', 'Mod Time', 'Size'])]);

Obviously this is only outputting the header row for the table, but you can see how
easy it is to introduce the information. The first argument to the Tr function (which
generates a matching <tr></tr> tag) is a hash reference that contains the table row
properties. The second argument is a table header function, embedded in an array
reference, whose first argument is an array reference—each element in this array will
appear as a separate table header cell in the single row. Further elements within the
embedded array reference in Tr would have become additional rows, and we could
have embedded the entire sequence into a table function to have everything output
as a table with all the correct start and end tags.

Uniform Resource Locators
Before we continue, we need to take a slight detour to ensure that you understand the
basic principles of how the Internet, and more specifically, the World Wide Web, is
used. Everybody who uses the Internet uses Uniform Resource Locators (URLs). A
URL is an address for a resource on the Internet that consists of the protocol to be used,
the address of the server, and the path to the file that you want to access. For example,
the address

http://www.mcwords.com/index.shtml

indicates that you want to use the HTTP protocol, that you are connecting to the machine
known as www.mcwords.com, and that you want to retrieve the file index.shtml.

URLs can also incorporate login names, passwords, and optional service port
number information:

http://anonymous:password@ftp.mcwords.com:1025/cgi/sendme.pl?sendme=info.zip

The preceding example shows downloading information from the server
ftp.mcwords.com, using service port 1025, with a login of anonymous and a
password of password.

Also shown in the preceding example is the feature that we are particularly
interested in with respect to Perl. Although it’s difficult to tell with any certainty from

the URL here, it looks like you’re accessing a Perl script called sendme.pl. It’s actually
up to the web server to identify a file’s type. In this example, the /cgi path is the default
name given to CGI scripts—the web server will treat files in this directory as being as
being executable.

When the web server sees a URL requesting a path that refers to a script, rather
than the server returning the contents of the Perl script, it will instead be executed.
You’ve supplied it some information—in this case a list of field/value pairs. Each field
and value is separated by the “=” character, and pairs are separated by ampersands.
In this case, we have a field called sendme that contains the name of a file
(info.zip)—although exactly what the script does is not clear.

This demonstrates, from the browser end, how an end-user executes a script on
a server. The user accesses a URL. The file path that is supplied is parsed by the web
server, which identifies the file that the user has requested as, in fact, a script, and
the web server executes that script. What the script is, what it does, or indeed what
language it is written in are completely hidden from the user (and, normally the web
server). Incidentally, although by convention Perl scripts terminate in .pl, this does
not guarantee that the script you are accessing is a Perl script.

Now let’s take a wider look at the whole process, including how the script interacts
with the web server software.

Web Operation Overview
At the start of this chapter, I stated that a web-based application using a Perl script is
not really a client/server application. In fact, a web application (written in Perl or any
other language) exhibits many traits of a client/server application, even though the
connection is not permanent. The definition of a client/server application is one that
makes use of the client to act as a user interface to a server, which hosts the information
and runs the application. The client does not store any data, and the server does not
provide any user interface.

In some systems, both ends can do some form of processing on the information.
In the case of a web application, the browser supports a certain amount of processing.
You can select checkboxes and pop-up lists. If you need more complex systems, you
can use JavaScript or even Java to provide a more interactive client interface.

What the server provides is a communications channel for exchanging information
between the stored information and the client. With a web server, the information
includes the HTML files, graphics, animations, and other downloadable elements.
It also includes any other data sources that can be accessed via an application, and
this is where CGI scripts are used.

Here’s the normal execution sequence of a user accessing a script on a web server:

1. The user’s browser (the client) opens a connection to the server.

2. The user’s browser requests a URL from the server.

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 579
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

3. The server parses the URL and determines whether a file is to be returned or
whether it needs to run an external application. For this run-through we’ll
assume the latter.

4. The external application is called. This can be a binary executable, a batch file, a
shell script, an awk script, or perhaps one written in Python. In our case, we’re
only interested in Perl scripts.

5. Any additional information supplied by the user’s browser, such as that from a
form, is supplied to the application, either by using an environment variable or
by passing the data as a stream to the application’s standard input.

6. Any output produced by the application is sent back directly to the user’s browser.

This is a very simplified outline of how the process works, but it does show the basic
process. The steps we are interested in are 4, 5, and 6.

In step 4, you need to think about the environment in which an application is
executed. The environment defines the physical and logical confines of the Perl script
you want to run. In addition to the standard environment variables, such as PATH,
there is also some web-specific information. In step 5, you have to extract any
information supplied by the browser, either from one of the environment variables,
which requires the GET method, or from the standard input, using the POST method.
These names, GET and POST are the commands sent by the browser—according to the
configuration of the form—when it sends the form data to the server. In step 6, you
have to know how to communicate information back to the user’s browser.

We’ll take a look at each of these issues separately in the next few sections of
this chapter.

The Environment
The environment in which a script is executed does not normally affect the script’s
operation, except where otherwise noted in the general operation of Perl. For example,
a Perl script executed within an environment that defines an alternative PATH will
affect which programs the script has direct access to. The environment doesn’t change
how the script executes.

However, the environment does act as a useful conduit for exchanging information
about the browser and web server with an executing script. What you really need to
know is the environment variables that are available within the confines of your script.
You can see a list of the most useful environment variables in Table 18-1.

The exact list of environment variables supported depends on your web server, and
also on the instance in which the URL was requested. For pages that are displayed as
the result of a referral, you will also get a list of “referrer” information—the site from
which the reference to the requested URL was made. You can find out this information
using a CGI script like the one that follows. Don’t worry too much about the details of
this script at this stage.

580 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 581
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Environment Variable Description

DOCUMENT_ROOT The root document directory for this web server

GATEWAY_INTERFACE The interface name and version number

HTTP_ACCEPT The formats accepted by the browser. This
information is optionally supplied by the browser
when it first requests the page from the server. In
our example, the default types accepted include all
of the major graphics types (GIF, JPEG, X bitmap),
as well as all other MIME types (*/*).

HTTP_ACCEPT_
CHARSET

The character sets accepted by the browser

HTTP_ACCEPT_
ENCODING

Any special encoding formats supported by the
browser. In our example, Netscape supports Gzip-
encoded documents; they will be decoded on the
fly at the time of receipt.

HTTP_ACCEPT_
LANGUAGE

The languages accepted by this browser. If
supported by the server, then only documents of a
specific language will be returned to the browser.

HTTP_CONNECTION Any HTTP connection directives. A typical
directive is Keep-Alive, which forces the server
to keep a web-server process and the associated
network socket dedicated to this browser until
a defined period of inactivity.

HTTP_HOST The server host (without domain)

HTTP_USER_AGENT The name, version number, and platform of the
remote browser. In our preceding example output,
this was Mozilla (actually Microsoft Internet
Explorer) v4.5b2, for Macintosh PPC. Don’t be
fooled into thinking that the name Mozilla applies
only to Netscape Navigator; other browsers,
including Microsoft Internet Explorer, also report
themselves as being Mozilla browsers—this helps
with compatibility identification, even though all
browsers render HTML differently.

Table 18-1. Web Server Environment Variables for CGI Scripts

582 P e r l : T h e C o m p l e t e R e f e r e n c e

print "Content-type: text/html\n\n";

print "Environment<p>\n";

foreach (sort keys %ENV)

{

print "$_: $ENV{$_}
\n";

}

Environment Variable Description

PATH The path for the CGI script

CONTENT_LENGTH The length of the query information. It’s available
only for POST requests, and it can help with the
security of the scripts you produce.

QUERY_STRING The query string, used with GET requests

REMOTE_ADDR The IP address of the browser

REMOTE_HOST The resolved name of the browser

REMOTE_PORT The remote port of the browser machine.

REQUEST_METHOD The request method; for example, GET or POST

REQUEST_URI The requested URI (Uniform Resource Identifier)

SCRIPT_FILENAME The full path to the CGI script

SCRIPT_NAME The name of the CGI script

SERVER_ADMIN The email address of the web-server administrator

SERVER_NAME The fully qualified name of the server

SERVER_PORT The server port number

SERVER_PROTOCOL The protocol (usually HTTP) and version number

SERVER_SOFTWARE The name and version number of the server
software that is being used. This can be useful if
you want to introduce a single script that makes
use of specific features of multiple web servers.

TZ The time zone of the web server

Table 18-1. Web Server Environment Variables for CGI Scripts (continued)

On my web server, which is Apache 1.3.14 running under Solaris 8, the following
ends up being displayed within a browser window (Microsoft Internet Explorer for
Mac 5.01):

DOCUMENT_ROOT: /export/http/webs/test

GATEWAY_INTERFACE: CGI/1.1

HTTP_ACCEPT: */*

HTTP_ACCEPT_LANGUAGE: en

HTTP_CONNECTION: Keep-Alive

HTTP_EXTENSION: Security/Remote-Passphrase

HTTP_HOST: test

HTTP_IF_MODIFIED_SINCE: Tue, 05 Dec 2000 13:48:09 GMT

HTTP_UA_CPU: PPC

HTTP_UA_OS: MacOS

HTTP_USER_AGENT: Mozilla/4.0 (compatible; MSIE 5.0; Mac_PowerPC)

PATH: /usr/sbin:/usr/bin

QUERY_STRING: data=sometestinfo

REMOTE_ADDR: 198.112.10.134

REMOTE_PORT: 52566

REQUEST_METHOD: GET

REQUEST_URI: /test.cgi?data=sometestinfo

SCRIPT_FILENAME: /export/http/webs/test/test.cgi

SCRIPT_NAME: /test.cgi

SERVER_ADDR: 198.112.10.1

SERVER_ADMIN: mc@test.com

SERVER_NAME: test.mchome.com

SERVER_PORT: 80

SERVER_PROTOCOL: HTTP/1.1

SERVER_SIGNATURE:

Apache/1.3.14 Server at test.mchome.com Port 80

SERVER_SOFTWARE: Apache/1.3.14 (Unix)

TZ: GB

You can glean lots of useful information from this that you can use in your script.
For example, the SCRIPT_NAME environment variable contains the name of the
CGI script that was accessed by the client. The most important fields as far as a CGI
program are concerned, however, are the REQUEST_METHOD, which defines the
method used to transfer the information (request) from the browser, through the web
server, to the CGI application.

The CONTENT_LENGTH defines the number of bytes contained in the query
when using the POST method. This is useful primarily for verifying that some data
has been supplied (and therefore needs processing). The CONTENT_LENGTH

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 583
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

584 P e r l : T h e C o m p l e t e R e f e r e n c e

environment variable is not provided by all web servers and shouldn’t be your only
way of verifying whether any query has been sent. However, if used properly, it can
also aid in the security of your web scripts. See the “Security” section later in this
chapter for more information. The QUERY_STRING is the environment variable used
to store the data from the client’s browser when using the GET method.

The Common Gateway Interface
The Common Gateway Interface, or CGI, is a set of standards that define how
information is exchanged between the web server and a script. In fact, web applications
are often called CGI scripts, but don’t make the mistake of calling a CGI script simply
“CGI.” The term CGI refers to the standards and isn’t the name of an application.

The part of the process you need to worry about at this stage is the transfer of
information from the browser, through the web server, to the CGI script. The reason
you need to accept information is to enable you to process information entered into an
HTML form. For example, the form shown in Figure 18-1 comes from my own site and
is used to accept book errors.

Each of the fields in the form can contain free-form data or, in the case of the Type
and Book Title fields, the information in the pop-up menus. The information and
definition of the form is done in HTML. Although in this case a static file supplies the
definition, there is no reason why it couldn’t be script driven.

When the user clicks the Send button, the information will be transferred to the
web server and then on to the CGI script. The CGI script to be used is defined within
the HTML definition for the form. The information is transferred using one of two main
methods, GET and POST. The difference between the two methods is directly attributable
to how the information is transferred. With the GET method, the information is placed
into the QUERY_STRING environment variable, and with the POST method, the
information is sent to the standard input of the application that has been called. There
are other methods supported for transferring information, but these are the main
two that are used.

There are advantages and disadvantages to both methods. The GET method
supports two ways of transferring information from the client. With GET, you can supply
information either through HTML forms or through the use of an extended URL. If you
remember, back at the start of this chapter we looked at the following URL:

http://anonymous:password@ftp.mcwords.com:1025/cgi/sendme.pl?sendme=info.zip

The sendme.pl is the name of a script, and the question mark at the end of the
script’s name indicates the start of the information that you want to supply to the
script. This has major benefits because you can generate new URLs and include the
information as links in normal HTML pages, thus saving time. The limitation is that

the GET method has a limited transfer size. Although there is officially no limit, most
people try to keep GET method requests down to less than 1K (1,024 bytes). Also note
that because the information is placed into an environment variable, your operating
system might have limits on the size of either individual environment variables or the
environment space as a whole.

The POST method has no such limitation. You can transfer as much information as
you like within a POST request without fear of any truncation along the way. However,
you cannot use a POST request to process an extended URL. For the POST method,
the CONTENT_LENGTH environment variable contains the length of the query
supplied, and it can be used to ensure that you read the right amount of information
from the standard input.

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 585
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Figure 18-1. The Book Bug Report form from www.mcwords.com

Extracting Form Data
No matter how the field data is transferred, there is a format for the information that
you need to be aware of before you can use the information. The HTML form defines a
number of fields, and the name and contents of the field are contained within the query
string that is supplied. The information is supplied as name/value pairs, separated by
ampersands (&). Each name/value pair is then also separated by an equal sign. For
example, the following query string shows two fields, first and last:

first=Martin&last=Brown

Splitting these fields up is easy within Perl. You can use split to do the hard work for you.
One final note, though—many of the characters you may take for granted are

encoded so that the URL is not misinterpreted. Imagine what would happen if my
name contained an ampersand or equal sign!

The encoding, like other elements, is very simple. It uses a percent sign, followed
by a two-digit hex string that defines the ASCII character code for the character in
question. So the string “Martin Brown” would be translated into,

Martin%20Brown

where 20 is the hexadecimal code for ASCII character 32, the space. You may also find
that spaces are encoded using a single + sign (the example that follows accounts for
both formats).

Armed with all this information, you can use something like the init_cgi function,
shown next, to access the information supplied by a browser. The function supports
both GET and POST requests:

sub init_cgi

{

my $query = $ENV{QUERY_STRING}; # get the query string

my $length = $ENV{CONTENT_LENGTH}; # get the content length

my (@assign, %formlist); # create some temporaries

if ($query =~ /\w+/) # Check if GET query contains data

{

@assign = split('&',$query); # Extract the field/value pairs

}

elsif (defined($length) and $length > 0) # GET is empty, POST instead

{

sysread(STDIN, $_, $length); # Read in CONTENT_LENGTH bytes

chomp;

@assign = split('&'); # Extract the field/value pairs

}

586 P e r l : T h e C o m p l e t e R e f e r e n c e

foreach (@assign) # Now split field/value pairs to hash

{

my ($name,$value) = split /=/;

$value =~ tr/+/ /;

$value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

if (defined($formlist{$name})) # If the field exists, append data

{

$formlist{$name} .= ",$value";

}

else # Otherwise, create new hash key

{

$formlist{$name} = $value;

}

}

return %formlist; # Return the hash to the caller

}

The steps are straightforward, and they follow the description. First of all, you
access the query string—either by getting the value of the QUERY_STRING environment
variable or by accepting input up to the length specified in CONTENT_LENGTH—from
standard input using the sysread function. Note that you must use this method rather
than the <STDIN> operator because you want to ensure that you read in the entire
contents, irrespective of any line termination. HTML forms provide multiline text entry
fields, and using a line input operator could lead to unexpected results. Also, it’s possible
to transfer binary information using a POST method, and any form of line processing
might produce a garbled response. Finally, sysread acts as a security check. Many “denial
of service” attacks (where too much information or too many requests are sent, therefore
denying service to other users) prey on the fact that a script accepts an unlimited amount
of information while also tricking the server into believing that the query length is small
or even unspecified. If you arbitrarily imported all the information provided, you could
easily lock up a small server.

Once you have obtained the query string, you split it by an ampersand into the
@assign array and then process each field/value pair in turn. For convenience, you
place the information into a hash. The keys of the hash become the field names, and
the corresponding values become the values as supplied by the browser. The most
important trick here is the line

$value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

This uses the functional replacement to a standard regular expression to decode the
%xx characters in the query into their correct values.

To encode the information back into the URL format within your script, the best
solution is to use the URI::Escape module by Gisle Aas. This provides a function,

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 587
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

uri_escape, for converting a string into its URL-escaped equivalent. You can also use
uri_unescape to convert it back. See Appendix D for more information.

Using the above function (init_cgi), you can write a simple Perl script that reports
the information provided to it by either method (this uses the init_cgi script shown
earlier, but it’s not included here for brevity):

#!/usr/local/bin/perl –w

print "Content-type: text/html\n\n";

%form = init_cgi();

print("Form length is: ", scalar keys %form, "
\n");

for my $key (sort keys %form)

{

print "Key $key = $form{$key}
\n";

}

If you place this on a server and supply it a URL such as this:

http://www.mcwords.com/cgi/test.cgi?first=Martin&last=Brown

the browser window reports this back:

Form length is: 2

Key first = Martin

Key last = Brown

Success!
Of course, most scripts do other things besides printing the information back. Either

they format the data and send it on in an email, or search a database, or perform a myriad
of other tasks. What has been demonstrated here is how to extract the information
supplied via either method into a suitable hash structure that you can use within Perl.
How you use the information depends on what you are trying to achieve.

The process detailed here has been duplicated many times in a number of different
modules. The best solution, though, is to use the facilities provided by the standard
CGI module. This comes with the standard Perl distribution and should be your first
point of call for developing web applications. We’ll be taking a closer look at the CGI
module in the next chapter.

588 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 589
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Sending Information Back to the Browser
Communicating information back to the user is so simple, you’ll be looking for ways to
make it more complicated. In essence, you print information to STDOUT, and this is
then sent back verbatim to the browser.

The actual method is more complex. When a web server responds with a static file,
it returns an HTTP header that tells the browser about the file it is about to receive. The
header includes information such as the content length, encoding, and so on. It then
sends the actual document back to the browser. The two elements—the header and the
document—are separated by a single blank line. How the browser treats the document it
receives is depends on the information supplied by the HTTP header and the extension of
the file it receives. This allows you to send back a binary file (such as an image) directly
from a script by telling the application what data format the file is encoded with.

When using a CGI application, the HTTP header is not automatically attached to
the output generated, so you have to generate this information yourself. This is the
reason for the

print "Content-type: text/html\n\n";

lines in the previous examples. This indicates to the browser that it is accepting a file
using text encoding in html format. There are other fields you can return in the HTTP
header, which we’ll look at now.

HTTP Headers
The HTTP header information is returned as follows:

Field: data

The case of the Field name is important, but otherwise you can use as much white
space as you like between the colon and the field data. A sample list of HTTP header
fields is shown in Table 18-2.

The only required field is Content-type, which defines the format of the file you
are returning. If you do not specify anything, the browser assumes you are sending
back preformatted raw text, not HTML. The definition of the file format is by a MIME
string. MIME is an acronym for Multipurpose Internet Mail Extensions, and it is a
slash-separated string that defines the raw format and a subformat within it. For
example, text/html says the information returned is plain text, using HTML as a
file format. Mac users will be familiar with the concept of file owners and types,
and this is the basic model employed by MIME.

590 P e r l : T h e C o m p l e t e R e f e r e n c e

Field Meaning

Allow: list A comma-delimited list of the HTTP request
methods supported by the requested resource (script
or program). Scripts generally support GET and
POST; other methods include HEAD, POST,
DELETE, LINK, and UNLINK.

Content-encoding: string The encoding used in the message body. Currently
the only supported formats are Gzip and compress.
If you want to encode data this way, make sure you
check the value of HTTP_ACCEPT_ENCODING
from the environment variables.

Content-type: string A MIME string defining the format of the file being
returned.

Content-length: string The length, in bytes, of the data being returned. The
browser uses this value to report the estimated
download time for a file.

Date: string The date and time the message is sent. It should be
in the format 01 Jan 1998 12:00:00 GMT. The time
zone should be GMT for reference purposes; the
browser can calculate the difference for its local time
zone if it has to.

Expires: string The date the information becomes invalid. This
should be used by the browser to decide when a
page needs to be refreshed.

Last-modified: string The date of last modification of the resource

Location: string The URL that should be returned instead of the URL
requested

MIME-version: string The version of the MIME protocol supported

Server: string/string The web server application and version number

Title: string The title of the resource

URI: string The URI that should be returned instead of the
requested one

Table 18-2. HTTP Header Fields

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 591
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Other examples include application/pdf, which states that the file type is
application (and therefore binary) and that the file’s format is pdf, the Adobe Acrobat
file format. Others you might be familiar with are image/gif, which states that the file
is a GIF file, and application/zip, which is a compressed file using the Zip algorithm.

This MIME information is used by the browser to decide how to process the file.
Most browsers will have a mapping that says they deal with files of type image/gif so
that you can place graphical files within a page. They may also have an entry for
application/pdf, which either calls an external application to open the received file or
passes the file to a plug-in that optionally displays the file to the user. For example,
here’s an extract from the file supplied by default with the Apache web server:

application/mac-binhex40 hqx

application/mac-compactpro cpt

application/macwriteii

application/msword doc

application/news-message-id

application/news-transmission

application/octet-stream bin dms lha lzh exe class

application/oda oda

application/pdf pdf

application/postscript ai eps ps

application/powerpoint ppt

application/remote-printing

application/rtf rtf

application/slate

application/wita

application/wordperfect5.1

application/x-bcpio bcpio

application/x-cdlink vcd

application/x-compress

application/x-cpio cpio

application/x-csh csh

application/x-director dcr dir dxr

It’s important to realize the significance of this one, seemingly innocent, field.
Without it, your browser would not know how to process the information it receives.
Normally the web server sends the MIME type back to the browser, and it uses a
lookup table that maps MIME strings to file extensions. Thus, when a browser requests
myphoto.gif, the server sends back a Content-type field value of image/gif. Since a
script is executed by the server rather than sent back verbatim to the browser, it must
supply this information itself.

592 P e r l : T h e C o m p l e t e R e f e r e n c e

Other fields in Table 18-2 are optional but also have useful applications. The
Location field can be used to automatically redirect a user to an alternative page
without using the normal RELOAD directive in an HTML file. The existence of the
Location field automatically instructs the browser to load the URL contained in the
field’s value. Here’s another script that uses the earlier init_cgi function and the
Location HTTP field to point a user in a different direction:

%form = init_cgi();

respond("Error: No URL specified")

unless(defined($form{url}));

open(LOG,">>/usr/local/http/logs/jump.log")

or respond("Error: A config error has occurred");

print LOG (scalar(localtime(time)),

" $ENV{REMOTE_ADDR} $form{url}\n");

close(LOG)

or respond("Error: A config error has occurred");

print "Location: $form{url}\n\n";

sub respond

{

my $message = shift;

print "Content-type: text/html\n\n";

show_debug();

print <<EOF;

<head>

<title>$message</title>

</head>

<body>

$message

</body>

EOF

exit;

}

This is actually a version of a script used on a number of sites I have developed that
allows you to keep a log of when a user clicks onto a foreign page. For example, you
might have links on a page to another site, and you want to be able to record how

many people visit this other site from your page. Instead of using a normal link within
your HTML document, you could use the CGI script:

MCwords

Every time users click on this link, they will still visit the new site, but you’ll have a
record of their leap off of your site.

Document Body
You already know that the document body should be in HTML. To send output, you
just print to STDOUT, as you would with any other application. In an ideal world,
you should consider using something like the CGI module to help you build the pages
correctly. It will certainly remove a lot of clutter from your script, while also providing
a higher level of reliability for the HTML you produce. Unfortunately, it doesn’t solve
any of the problems associated with a poor HTML implementation within a browser.

However, because you just print the information to standard output, you need to
take care with errors and other information that might otherwise be sent to STDERR.
You can’t use warn or die, because any message produced will not be displayed to the
user. While this might be what you want as a web developer (the information is
usually recorded in the error log), it is not very user friendly.

The solution is to use something like the function shown in the previous redirection
example to report an error back to the user. Again, this is an important thing to grasp.
There is nothing worse from a user’s point of view than this displayed in the browser:

Internal Server Error

The server encountered an internal error or misconfiguration and was

unable to complete your request. Please contact the server administrator,

webmaster@mchome.com and inform them of the time the error occurred,

and anything you might have done that may have caused the error.

Smarter Web Programming
Up until now, we have been specifically concentrating on the mechanics behind Perl
CGI scripts. Although we’ve seen solutions for certain aspects of the process, there are
easier ways of doing things. Since you already know how to obtain information
supplied on a web form, we will instead concentrate on the semantics and process for
the script contents. In particular, we’ll examine the CGI module, web cookies, the
debug process, and how to interface to other web-related languages.

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 593
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The CGI Module
The CGI module started out as a separate module available from CPAN. It’s now
included as part of the standard distribution and provides a much easier interface
to web programming with Perl. As well as providing a mechanism for extracting
elements supplied on a form, it also provides an object-oriented interface to building
web pages and, more usefully, web forms. You can use this interface either in its
object-oriented format or with a simple functional interface.

Along with the standard CGI interface and the functions and object features
supporting the production of “good” HTML, the module also supports some of the
more advanced features of CGI scripting. These include the support for uploading
files via HTTP and access to cookies—something we’ll be taking a look at later in this
chapter. For the designers among you, the CGI module also supports cascading style
sheets and frames. Finally, it supports server push—a technology that allows a server
to send new data to a client at periodic intervals. This is useful for pages, and especially
images, that need to be updated. This has largely been superseded by the client-side
RELOAD directive, but it still has its uses.

For example, you can build a single CGI script for converting Roman numerals into
integer decimal numbers using the following script. It not only builds and produces the
HTML form, but also provides a method for processing the information supplied when
the user fills in and submits the form.

#!/usr/local/bin/perl -w

use CGI qw/:standard/;

print header,

start_html('Roman Numerals Conversion'),

h1('Roman Numeral Converter'),

start_form,

"What's the Roman Numeral number?",

textfield('roman'),p,

submit,

end_form,p,hr,p;

if (param())

{

print(h3('The value is ',

parse_roman(uc(param('roman')))),p,hr);

}

sub parse_roman

594 P e r l : T h e C o m p l e t e R e f e r e n c e

{

$_ = shift;

my %roman = ('I' => 1,

'V' => 5,

'X' => 10,

'L' => 50,

'C' => 100,

'D' => 500,

'M' => 1000,

);

my @roman = qw/M D C L X V I/;

my @special = qw/CM CD XC XL IX IV/;

my $result = 0;

return 'Invalid numerals' unless(m/[IVXLXDM]+/);

foreach $special (@special)

{

if (s/$special//)

{

$result += $roman{substr($special,1,1)}

- $roman{substr($special,0,1)};

}

}

foreach $roman (@roman)

{

$result += $roman{$roman} while s/$roman//;

}

return $result;

}

The first part of the script prints a form using the functional interface to the CGI
module. It provides a simple text entry box, which you then supply to the parse_roman
function to produce an integer value. If the user has provided some information, you
use the param function to access that information. To access the data within the
username field, for example, you would use

$name = param('username');

Note that it doesn’t do any validation on that information for you; it only returns the
raw data contained in the field. You will need to check whether the information in the

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 595
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

field matches what you were expecting. For example, if you want to check for a valid
email address, then you ought to at least check that the string contains an @ character:

if ($name =~ /.*\@.*/)

{

Do something...

}

else

{

raise_error("Didn't get a valid email address");

}

You can see what a sample screen looks like in Figure 18-2.
Because you are using the functional interface, you have to specify the routines or

sets of routines that you want to import. The main set is :standard, which is what is
used in this script. See Appendix B for a list of other supported import sets.

596 P e r l : T h e C o m p l e t e R e f e r e n c e

Figure 18-2. Web-based Roman numeral converter

Let’s look a bit more closely at that page builder:

print header,

start_html('Roman Numerals Conversion'),

h1('Roman Numeral Converter'),

start_form,

"What's the Roman Numeral number?",

textfield('roman'),p,

submit,

end_form,p,hr,p;

The print function is used, since that’s how you report information back to the
user. The header function produces the HTTP header (see Chapter 14). You can supply
additional arguments to this function to configure other elements of the header, just as
if you were doing it normally. You can also supply a single argument that defines the
MIME string for the information you are sending back; for example:

print header('text/html');

If you don’t specify a value, the text/html value is used by default. The remainder
of the lines use functions to introduce HTML tagged text. You start with start_html,
which starts an HTML document. In this case, it takes a single argument—the page
title. This returns the following string:

<HTML><HEAD><TITLE>Roman Numerals Conversion</TITLE>

</HEAD><BODY>

This introduces the page title and sets the header and body style. The h1 function
formats the supplied text in the header level-one style.

The start_form function initiates an HTML form. By default, it assumes you
are using the same script—this is an HTML/browser feature rather than a Perl CGI
feature, and the textfield function inserts a simple text field. The argument supplied
defines the name of the field as it will be sent to the script when the Submit button is
clicked. To specify additional fields to the HTML field definition, you pass the function
a hash, where each key of the hash should be a hyphen-prefixed field name; so you
could rewrite the previous start_form code as

textfield(-name => 'roman')

Other fields might include -size for the size of the text field on screen and -maxlength
for the maximum number of characters accepted in a field.

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 597
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Other possible HTML field types are textarea for a large multiline text box, or
popup_menu for a menu field that pops up and provides a list of values when clicked.
You can also use scrolling_list for a list of values in a scrolling box, and checkboxes
and radio buttons with the checkbox_group and radio_group functions. Refer to
Appendix C for details.

Returning to the example script, the submit function provides a simple Submit button
for sending the request to the server, and finally the end_form function indicates the end
of the form within the HTML text. The remaining functions, p and hr, insert a paragraph
break and horizontal rule, respectively.

This information is printed out for every invocation of the script. The param
function is used to check whether any fields were supplied to the script, either by a
GET or POST method. It returns an array of valid field names supplied. For example:

@fields = param();

Since any list in a scalar context returns the number of elements in the list, this is a safe
way of detecting whether any information was provided. The same function is then
used to extract the values from the fields specified. In the example, there is only one
field, roman, which contains the Roman numeral string entered by the user.

The parse_roman function then does all the work of parsing the string and
translating the Roman numerals into integer values. I’ll leave it up to the reader to
determine how this function works.

This concludes our brief look into the use of the CGI module for speeding up and
improving the overall processing of producing and parsing the information supplied
on a form. Admittedly, it makes the process significantly easier. Just look at the
previous examples to see the complications involved in writing a non-CGI-based
script. Although you can argue that it works, it’s not exactly neat. But to be fair, the
bulk of the complexity centers around the incorporation of the JavaScript application
within the HTML document that is sent back to the user’s browser.

Cookies
A cookie is a small, discrete piece of information used to store information within a
web browser. The cookie itself is stored on the client, rather than the server, end, and
can therefore be used to store state information between individual accesses by the
browser, either in the same session or across a number of sessions. In its simplest form,
a cookie might just store your name; in a more complex system, it provides login and
password information for a website. This can be used by web designers to provide
customized pages to individual users.

In other systems, cookies are used to store the information about the products you
have chosen in web-based stores. The cookie then acts as your “shopping basket,”
storing information about your products and other selections.

598 P e r l : T h e C o m p l e t e R e f e r e n c e

In either case, the creation of a cookie and how you access the information stored in
a cookie are server-based requests, since it’s the server that uses the information to
provide the customized web page, or that updates the selected products stored in your
web basket. There is a limit to the size of cookies, and it varies from browser to
browser. In general, a cookie shouldn’t need to be more than 1,024 bytes, but some
browsers will support sizes as large as 16,384 bytes, and sometimes even more.

A cookie is formatted much like a CGI form-field data stream. The cookie is
composed of a series of field/value pairs separated by ampersands, with each
field/value additionally separated by an equal sign. The contents of the cookie is
exchanged between the server and client during normal interaction. The server sends
updates back to the cookie as part of the HTTP headers, and the browser sends the
current cookie contents as part of its request to the server.

Besides the field/value pairs, a cookie has a number of additional attributes. These
are an expiration time, a domain, a path, and an optional secure flag.

� The expiration time is used by the browser to determine when the cookie
should be deleted from its own internal list. As long as the expiration time has
not been reached, the cookie will be sent back to the correct server each time
you access a page from that server.

� The definition of a valid server is stored within the domain attribute. This is a
partial or complete domain name for the server that should be sent to the
cookie. For example, if the value of the domain attribute is “.foo.bar”, then any
server within the foo.bar domain will be sent the cookie data for each access.

� The path is a similar partial match against a path within the web server. For
example, a path of /cgi-bin means that the cookie data will only be sent with
any requests starting with that path. Normally, you would specify “/” to have
the cookie sent to all CGI scripts, but you might want to restrict the cookie data
so it is only sent to scripts starting with /cgi-public, but not to /cgi-private.

� The secure attribute restricts the browser from sending the cookie to unsecure
links. If set, cookie data will only be transferred over secure connections, such
as those provided by SSL.

The best interface is to use the CGI module, which provides a simple functional
interface to updating and accessing cookie information. For example, here’s a function
that builds a cookie based on a username and password combination:

sub set_cookie

{

my ($query,$login,$password) = @_;

print STDERR "Setting a cookie\n";

my %cookie = (

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 599

-name => 'bookwatch',

-value => $login . '::' . $password,

-path => '/',

-domain => $host,

-expires => '+1y',

);

return join("\n",

"Date: " . CGI::expires(0, 'http'),

"Set-Cookie: " . $query->cookie(%cookie));

}

To actually send the cookie back to the browser, you need to print it out as part of the
HTTP header:

print set_cookie($query,param('email'),param('password')),"\n";

Alternatively, you can do it as part of the header function from the CGI module:

print header(-cookie => $cookie);

We can fetch a cookie back from the browser by using the fetch function:

my %cookies = fetch CGI::Cookie;

This actually returns all of the cookies set for this host or domain and path, so to pick
out an individual cookie, you need to access it by name, as I do here by passing the
cookie information to my own validate_cookie function, which takes the information
and checks it against the site’s login database:

my ($ret,$userid,$password) = validate_cookie($cookies{bookwatch});

The value of the specified cookie is a cookie object, so you need to use methods to
extract the information—here’s the validate_cookie used above:

sub validate_cookie

{

my ($cookie) = @_;

if ($cookie)

600 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

{

my ($login,$password) = split /::/,$cookie->value();

return (1,$login,$password);

}

return 0;

}

Parsing HTML
There are times when what you want to do is not generate new HTML, but modify
some existing HTML. This is often a requirement both for managing the sites and
HTML that you produce, and also sometimes to parse the contents of an HTML page
before it’s sent back to the user. For example, I have scripts that download the cartoons
and comics I like to read in the morning and others that access the TV listing pages so
that I always know what’s on TV for the next week—useful when setting the video
recorder!

Processing HTML from another site to extract information from it is generally done
by regular expressions and just requires you to key on the elements you want, and as
such it’s a fairly monotonous task. (See Perl Annotated Archives, the scripts for which are
available on my website, for some examples. More information on the book is available
in Appendix C.)

Modifying existing HTML is more difficult. Although we could use regular
expressions, there are complex issues that need to be addressed. For example, how do
you cope with the fact that tags can cross multiple lines, or that some tags may not
have been closed properly?

The simple answer is that you need to parse the HTML. In short, you need to be
able to understand the HTML as if it were a language, just as if you were writing a web
browser. There are some third-party modules, available from CPAN, that handle this.
The HTML::Element and HTML::TreeBuilder modules allow you to do this by
parsing the HTML and allowing you to work through the HTML by element, or
you can search for specific elements and make modifications.

For example, the following code is a script that allows you to modify an HTML
tag’s properties with a source HTML file:

use HTML::Element 1.53;

use HTML::TreeBuilder 2.96;

my $root = HTML::TreeBuilder->new;

my ($source,$destination,$tag,@attr) = @ARGV;

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 601
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

$root->parse_file($source) or die "Couldn't parse source: $source";

open(OUTPUT,">$destination")

or die "Couldn't output destination: $destination";

foreach $elem ($root->find_by_tag_name($tag))

{

print "Found: ",$elem->as_HTML();

my ($attr,$value);

my @my_attr = @attr;

while (@my_attr)

{

$attr = shift @my_attr;

$value = shift @my_attr;

$elem->attr($attr,$value);

}

print "Found: ",$elem->as_HTML();

}

print OUTPUT $root->as_HTML(),"\n";

For example, using the preceding script, we can add alignment and background
colors to table cells using:

$ cvhtml.pl source.html dest.html td align right bgcolor \#000000

The modules do all the work for this, including updating the tags if they already
contain alignment and color specifications.

Parsing XML
XML (eXtensible Markup Language) is a side-set of SGML, the same father of the
HTML standard. Unlike HTML, however, which has a restricted set of tags and
properties that control a document’s format and how it should be displayed, XML
is extensible. With XML, you can create a completely new set of tags and then use
those tags to model information.

XML is not really a web technology, although a lot of its development and design
has actually relied on and learnt from the mistakes and restrictive nature of HTML.
Strictly, XML is seen as a way of modeling complex, text-based data in a format that
frees the information from the constraints of a normal type-driven (integers, floats,

602 P e r l : T h e C o m p l e t e R e f e r e n c e

strings, dates, etc.) database. For example, here’s an XML document that contains
two “records”:

<contact>

<name>Martin C Brown</name>

<email>mc@mcwords.com</email>

<company>MCwords</company>

<title>MD</title>

</contact>

<contact>

<name>Joe Foobar</name>

<email>joe@foobar.com</email>

</contact>

It’s actually become clear over the past year that XML can also be used as a
practical way of storing any type of information and can even be used to exchange
information. If you take the humble contacts database, for example, exchanging data
between your desktop contacts and those in Palm or other handheld organizers
requires a certain amount of mental gymnastics on the part of the integration tool.
What do you do about the fields not supported by one database, and what happens
if you have more than one email address?

XML should hopefully get around this by supporting a set of extensible fields for
a given contact. Each database can then make up its own mind, at the time of import,
what to use and what to ignore, and should even be able to modify itself to handle the
data stored in the XML document. In all likelihood, we’ll probably see a move to a suite
of applications that reads an XML contact document directly—when you want to
exchange the information between programs, you’ll exchange the XML document
directly, and then all the application has to do is format it nicely!

However, we can also use the same basic process to allow us to model information
in XML and then convert that XML format into the HTML required for display on the
web. Again, there is a suite of XML-related modules in Perl that will allow us to
process XML information. There’s even a parser that allows us to approach an XML
document by its individual tags.

The following script will take an XML contacts database and format it for display
through a web browser by first identifying each XML tag, and then applying an HTML
format to the embedded information.

#!/usr/local/bin/perl -w

use strict;

use XML::Parser;

print "Content-type: text/html\n\n";

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 603
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

print <<EOF;

<HTML>

<HEAD>

<Title>Contacts</title>

<head>

<body bgcolor="#ffffff" fgcolor="black">

<table>

EOF

my $parse = new XML::Parser();

$parse->setHandlers(Start => \&handler_start,

End => \&handler_end,

Char => \&handler_char,);

my %elements = ('contact' => [{ tag => 'tr'}],

'email' => [{ tag => 'td', attr => 'align=left'},

{ tag => 'b'}

],

'name' => [{ tag => 'td', attr => 'align=right'},

],

);

$parse->parsefile('contacts.xml');

print <<EOF;

</table>

</body>

</html>

EOF

sub handler_start

{

my ($parser, $element) = @_;

if (defined($elements{$element}))

{

foreach my $tag (@{$elements{$element}})

{

print '<',$tag->{'tag'}, ($tag->{'attr'} ? ' ' . $tag->{'attr'} : ''), '>';

}

}

}

sub handler_end

{

my ($parser, $element) = @_;

604 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 605
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

if (defined($elements{$element}))

{

foreach my $tag (reverse @{$elements{$element}})

{

print '</',$tag->{'tag'},'>';

}

}

}

sub handler_char

{

my ($parser,$data) = @_;

print $data;

}

The core of the process is the %elements hash, which maps the XML document tags
into the corresponding HTML tags and attributes to make it suitable for display.

This is just a simple example of what you can do—the XML::Parser module
provides the basis for extracting XML data; all you need to do is work out what you
want to do with those tags and the information they delimit.

Debugging and Testing CGI Applications
Although it sounds like an impossible task, sometimes you need to test a script without
requiring or using a browser and web server. Certainly, if you switch warnings on and
use the strict pragma, your script may well die before reporting any information to the
browser if Perl finds any problems. This can be a problem if you don’t have access to
the error logs on the web server, which is where the information will be recorded.

You may even find yourself in a situation where you do not have privileges or even
the software to support a web service on which to do your testing. Any or all of these
situations require another method for supplying a query to a CGI script, and
alternative ways of extracting and monitoring error messages from your scripts.

The simplest method is to supply the information that would ordinarily be
supplied to the script via a browser using a more direct method. Because you know
the information can be supplied to the script via an environment variable, all you have
to do is create the environment variable with a properly formatted string in it. For
example, for the preceding phone number script, you might use the following lines
for a Bourne shell:

QUERY_STRING='first=Martin&last=Brown'

export QUERY_STRING

This is easy if the query data is simple, but what if the information needs to be
escaped because of special characters? In this instance, the easiest thing is to grab a
GET-based URL from the browser, or get the script to print a copy of the escaped
query string, and then assign that to the environment variable. Still not an ideal
solution.

As another alternative, if you use the init_cgi from the previous chapter, or the CGI
module, you can supply the field name/value pairs as a string to the standard input.
Both will wait for input from the keyboard before continuing if no environment query
string has been set. It still doesn’t get around the problem of escaping characters and
sequences, and it can be quite tiresome for scripts that expect a large amount of input.

All of these methods assume that you cannot (or do not want) to make modifications
to the script. If you are willing to make modifications to the script, then it’s easier, and
sometimes clearer, just to assign sample values to the form variables directly; for example,
using the init_cgi function:

$SCGI::formlist{name} = 'MC';

or, if you are using the CGI module, then you need to use the param function to set the
values. You can either use a simple functional call with arguments,

param('name','MC');

or you can use the hash format:

param(-name => 'name', -value => 'MC');

Just remember to unset these hard-coded values before you use the script; otherwise
you may have trouble using the script effectively!

For monitoring errors, there are a number of methods available. The most obvious is
to use print statements to output debugging information (remember that you can’t use
warn) as part of the HTML page. If you decide to do it this way, remember to output the
errors after the HTTP header; otherwise you’ll get garbled information. In practice, your
scripts should be outputting the HTTP header as early as possible anyway.

Another alternative is to use warn, and in fact die, as usual, but redirect STDERR
to a log file. If you are running the script from the command line under Unix using one
of the preceding techniques, you can do this just by using the normal redirection
operators within the shell; for example:

$ roman.cgi 2>roman.err

606 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 607
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Alternatively, you can do this within the script by restating the association of STDERR
with a call to the open function:

open(STDERR, ">>error.log") or die "Couldn't append to log file";

Note that you don’t have to do any tricks here with reassigning the old STDERR to
point elsewhere; you just want STDERR to point to a static file.

One final piece of advice: if you decide to use this method in a production system,
remember to print out additional information with the report so that you can start to
isolate the problem. In particular, consider stacking up the errors in an array by just
using a simple push call, and then call a function right at the end of the script to dump
out the date, time, and error log, along with the values of the environment variables.
I’ve used a function similar to the one that follows to dump out the information at the
end of the CGI script. The @errorlist array is used within the bulk of the CGI script to
store the error lines:

sub error_report

{

open (ERRORLOG, ">>error.log") or die "Fatal: Can't open log $!";

$old = select ERROR;

if (@errorlist)

{

print scalar localtime,"\n\n";

print "Environment:\n";

foreach (sort %ENV)

{

print "$_ = $ENV{$_}\n";

}

print "\nErrors:\n";

print join "\n",@errorlist;

}

select $old;

}

That should cover most of the bases for any errors that might occur. Remember to
try and be as quick as possible though—the script is providing a user interface, and the
longer users have to wait for any output, the less likely they are to appreciate the work
the script is doing. I’ve seen some, for example, that post information to other scripts
and websites, and even some that attempt to send email with the errors in them. These
can cause both delays and problems of their own. You need something as plain and
simple as the print statements and an external file to ensure reliability; otherwise you
end up trying to account for and report errors in more and more layers of interfaces.

Remember, as well, that any additional modules you need to load when the script
initializes will add seconds to the time to start up the script: anything that can be
avoided should be avoided. Alternatively, think about using the mod_perl Apache
module. This provides an interface between Apache and Perl CGI scripts. One of its
major benefits is that it caches CGI scripts and executes them within an embedded Perl
interpreter that is part of the Apache web server. Additional invocations of the script
do not require reloading. They are already loaded, and the Perl interpreter does not
need to be invoked for each CGI script. This helps both performance and memory
management.

Security
The number of attacks on Internet sites is increasing. Whether this is due to the
meteoric rise of the number of computer crackers, or whether it’s just because of the
number of companies and hosts who do not take it seriously is unclear. The fact is, it’s
incredibly easy to ensure that your scripts are secure if you follow some simple
guidelines. However, before we look at solutions, let’s look at the types of scripts that
are vulnerable to attack:

� Any script that passes form input to a mail address or mail message

� Any script that passes information that will be used within a subshell

� Any script that blindly accepts unlimited amounts of information during the
form processing

The first two danger zones should be relatively obvious: anything that is potentially
executed on the command line is open to abuse if the attacker supplies the right
information. For example, imagine an email address passed directly to sendmail
that looks like this:

mc@foo.bar;(mail mc@foo.bar </etc/passwd)

If this were executed on the command line as part of a call to sendmail line, the
command after the semicolon would mail the password file to the same user—a severe
security hazard if not checked. You can normally get around this problem by using
taint checking to highlight the values that are considered unsafe. Since input to a script
is either from standard input or an environment variable, the data will automatically
be tainted. See Chapter 11 for more details on enabling and using tainted data.

There is a simple rule to follow when using CGI scripts: don’t trust the size,
content, or organization of the data supplied.

Here is a checklist of some of the things you should be looking out for when
writing secure CGI scripts:

608 P e r l : T h e C o m p l e t e R e f e r e n c e

� Double-check the field names, values, and associations before you use them.
For example, make sure an email address looks like an email address, and that
it’s part of the correct field you are expecting from the form.

� Don’t automatically process the field values without checking them. As a rule,
come up with a list of ASCII characters that you are willing to accept, and filter
out everything else with a simple regular expression.

� It’s easier to check for valid information than it is to try to filter out bad data.
Use regular expressions to match against what you want, rather than using it to
match against what you don’t want.

� Check the input size of the variables or, better still, of the form data. You can
use the $ENV{CONTENT_LENGTH} field, which is calculated by the web
server to check the length of the data being accepted on POST methods, and
some web servers supply this information on GET requests too.

� Don’t assume that field data exists or is valid before use; a blank field can
cause as many problems as a field filled with bad data.

� Don’t ever return the contents of a file unless you can be sure of what its
contents are. Arbitrarily returning a password file when you expected the
user to request an HTML file is open to severe abuse.

� Don’t accept that the path information sent to your script is automatically valid.
Choose an alternative $ENV{PATH} value that you can trust, hardwiring it into
the initialization of the script. While you’re at it, use delete to remove any
environment variables you know you won’t use.

� If you are going to accept paths or file names, make sure they are relative, not
absolute, and that they don’t contain .., which leads to the parent directory. An
attacker could easily specify a file of ../../../../../../../../../etc/passwd, which
would reference the password file from even a deep directory.

� Always validate information used with open, system, fork, or exec. If nothing
else, ensure any variables passed to these functions don’t contain the characters
;, |, (, or). Better still, think about using the fork and piped open tricks you saw
in Chapter 10 to provide a safe interface between an external application and
your script.

� Ensure your web server is not running as root, which opens up your machine
to all sorts of attacks. Run your web server as nobody, or create a new user
specifically for the web server, ensuring that scripts are readable and
executable only by the web server owner, and not writable by anybody.

� Use Perl in place of grep where possible. This will negate the need to make a
system call to search file contents. The same is true of many other commands
and functions, such as pwd and even hostname. There are tricks for gaining
information about the machine you are on without resorting to calling external

C h a p t e r 1 8 : D e v e l o p i n g f o r t h e W o r l d W i d e W e b (W W W) 609
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

commands. For a start, refer back to Table 18-1. Your web server provides a
bunch of script-relevant information automatically for you. Use it.

� Don’t assume that hidden fields are really hidden—users will still see them if
they view the file source, and don’t rely on your own encryption algorithms to
encrypt the information supplied in these hidden fields. Use an existing system
that has been checked and is bug free, such as the DES module available from
your local CPAN archive.

� Use taint checking, or in really secure situations, use the Safe or Opcode
module. See Chapter 11 for more details.

If you follow these guidelines, you will at least reduce your risk from attacks, but
there is no way to completely guarantee your safety. A determined attacker will use a
number of different tools and tricks to achieve his goal.

Again, at the risk of repeating myself, don’t trust the size, content, or organization
of the data supplied.

610 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Chapter 19
Controlling Execution
with Pragmas

611

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

All languages and their compilers and interpreters have rules about how the
language operates and its semantics, and a similar set of rules that govern how
the compiler looks for libraries and how it treats different sequences. In Perl

these operations are controlled by a series of pragmas—really just a set of Perl modules
that change the way the interpreter parses your script.

Most languages have some form of checking sequence before the code is actually
compiled or executed. In the case of a language like C or C++, the checking happens
before the source is compiled into its binary format, but no checks are done during
execution. With Perl, things are slightly more complicated.

Perl is not a compiled language in the true sense like C/C++. There is a compilation
stage, and before this there is also a parsing stage where the code is checked. All of this
happens in the milliseconds before the code is actually executed. Perl also supports
run-time errors. These are errors or potential problems that Perl identifies while the
code is executing; they include simple warnings like undefined values, and more
serious problems like attempts to divide by zero.

The level of information provided by these two stages (compile-time and run-time)
can be controlled using the Perl warnings feature. Normally, Perl only reports serious
errors or severe warnings—those events that Perl feels would cause the script to fail
or that fail to pass the standard language semantics. You can also enable a number
of nonfatal warnings that may highlight potential problems in your script, including
potential naming and typographical errors.

You can also use the strict pragma. Unlike the warnings pragma (or in older
versions the -w command line option), the strict pragma directly deals with how Perl
interprets certain elements of the source code. In particular, it directly addresses the
problems relating to Perl’s Do What I Mean (DWIM) philosophy.

As a general rule, to prevent many of the problems that users experience with Perl,
you should have both warnings and the strict pragma enabled at all times. This will
help to ensure that your scripts are written to as tight a definition of the Perl language
as possible, and as such we’ll give these two systems extended attention in this chapter.

The last part of the chapter deals with the other Perl pragmas. These change the
way in which Perl operates, such as by adding additional library directories to the
search path, signal trapping, and Unicode support.

Warnings
Warnings are one of the most basic ways in which you can get Perl to check the quality
of the code that you have produced. As the name suggests, they just raise a simple
warning about a particular construct that Perl thinks is either potentially dangerous
or ambiguous enough that Perl may have made the wrong decision about what it
thought you were trying to do.

There are actually two types of warning, mandatory warnings and optional warnings:

� Mandatory warnings highlight problems in the lexical analysis stage.

612 P e r l : T h e C o m p l e t e R e f e r e n c e

� Optional warnings highlight occasions where Perl has spotted a possible anomaly.

As a rough guide, the Perl warnings system will raise a warning under the following
conditions:

� Filehandles opened as read-only that you attempt to write to

� Filehandles that haven’t been opened yet

� Filehandles that you try to use after they’ve been closed

� References to undefined filehandles

� Redefined subroutines

� Scalar variables whose values have been accessed before their values have
been populated

� Subroutines that nest with recursion to more than 100 levels

� Invalid use of variables—for instance, scalars as arrays or hashes

� Strings used as numerical values when they don’t truly resolve to a number

� Variables mentioned only once

� Deprecated functions, operators, and variables

These errors in your code are not serious enough to halt execution completely, but
you can make Perl worried enough about them that it will raise a warning during
compilation. For example, the code

$string = "Hello";

will pass the compiler checks if warnings are switched off, but if you turn warnings on,
you get an error about a term that has only been used once:

Name "main::string" used only once: possible typo at -e line 1.

The traditional way of enabling warnings was to use the -w argument on the
command line:

perl -w myscript.pl

You can also supply the option within the "shebang" line:

#/usr/local/bin/perl -w

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 613
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

But be careful about using command line options on operating systems that restrict the
length of the shebang line you can use or that restrict the number of arguments that can
be supplied.

You can also enable warnings using the $^W special variable. Older versions of
Perl include the warnings pragma, which enables warnings within the script without
needing the command line option. The pragma has been updated in Perl 5.6 to be more
flexible—it even allows you to determine which type of warnings are displayed.

The $^W Variable
The $^W variable allows you to change—or discover—the current warnings setting
within the script. If set to zero, the variable disables warnings; if set to one, they are
enabled. In general, though, the use of the variable is not recommended—although it
could be used to enable warnings on a lexical basis, it is open to far too many potential
problems. It’s possible, for example, to accidentally reset the warnings setting without
realizing what you’re doing. It is also difficult to differentiate between compile-time
and run-time warnings.

Ideally you should either use the command line options or use the warnings
pragmas outlined here.

The Old warnings Pragma
Older versions of Perl (before 5.6) supported a simple pragma that allowed you to
switch warnings on and off within your script without the use of the command line.
The options were fairly limited; in fact, you could only choose three options, all,
deprecated, and unsafe, as detailed in Table 19-1.

You can switch on options with

use warnings 'all';

614 P e r l : T h e C o m p l e t e R e f e r e n c e

Warnings
Option Description

all All warnings are produced; this is the default if none are specified.

deprecated Only deprecated feature warnings are produced.

unsafe Lists only unsafe warnings

Table 19-1. Options for the warnings Pragma

or you can switch off specific sets with no:

no warnings 'deprecated';

Lexical Warnings in Perl 5.6
Perl 5.6, released at the beginning of April 2000, has changed slightly the way warnings
are handled with the warnings pragma. This new method is actually now the preferred
way of enabling warnings and has a few advantages over the traditional command line
switch or the $^W variable:

� Mandatory warnings become default warnings and can be disabled.

� Warnings can now be limited to the same scope as the strict pragma—that is,
they are limited to the enclosing block and propagate to modules imported
using do, use, and require.

� You can now specify the level of warnings produced.

� Warnings can be switched off, using the no keyword, within individual
code blocks.

� Both mandatory and optional warnings can be controlled.

If you’ve got Perl 5.6, use the warnings pragma instead of the -w command line switch
for your warnings, and get used to using it alongside the strict pragma, which we’ll
look at later in this chapter. However, if you are creating a script that requires backward
compatibility with older versions of Perl, then use -w instead.

For example, the code

use warnings;

$a;

{

no warnings;

$b;

}

$c;

produces the following output:

Useless use of a variable in void context at t2.pl line 2.

Useless use of a variable in void context at t2.pl line 7.

Name "main::a" used only once: possible typo at t2.pl line 2.

Name "main::c" used only once: possible typo at t2.pl line 7.

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 615
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The use of $b in line 5 does not raise an error.
To enable warnings within a block, use

use warnings;

use warnings 'all';

and to switch them off within a block,

no warnings;

no warnings 'all';

More specific control of warnings is described in the remainder of this section.

Command Line Warnings
The traditional -w command line option has now been replaced with those shown in
Table 19-2.

The switches interact with the $^W variable and the new lexical warnings
according to the following rules:

� If no command line switches are supplied, and neither the $^W variable nor
the warnings pragma is in force, then default warnings will be enabled, and
optional warnings disabled.

� The -w sets the $^W variable as normal.

� If a block makes use of the warnings pragma, both the $^W and -w flag are
ignored.

� Lexical warnings enabled/disabled with the warnings pragma can be
overridden only by the -W/-X command line switches.

616 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

-w Works just like the old version—warnings are enabled everywhere.
However, if you make use of the warnings pragma, then the -w option
is ignored for the scope of the warnings pragma.

-W Enables warnings for all scripts and modules within the program,
ignoring the effects of the $^W or warnings pragma

-X The exact opposite of -W, it switches off all warnings, ignoring the
effects of the $^W variable or the warnings pragma.

Table 19-2. Command Line Switches for Enabling Warnings

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 617
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Warning Options
Beyond the normal control of warnings, you can now also define which warnings will
be raised by supplying warning names as arguments to the pragma. For example, you
can switch on specific warnings:

Yes. MCuse warnings qw/void syntax/;

or turn off specific warnings:

no warnings qw/void syntax/;

The effects are cumulative, rather than explicit, so you could rewrite the preceding as

no warnings 'void'; # disables 'void' warnings

no warnings 'syntax'; # disables 'syntax' warnings in addition to 'void'

The warnings pragma actually supports a hierarchical list of options to be enabled
or disabled; you can see the hierarchy in the list that follows. For example, the severe
warning includes the debugging, inplace, internal, and malloc warnings options:

all chmod

closure

exiting

glob

io closed
exec
newline
pipe
unopened

misc

numeric

once

overflow

pack

portable

recursion

redefine

regexp

severe debugging
inplace
internal
malloc

signal

substr

syntax ambiguous
bareword
deprecated
digit
parenthesis
printf
prototype
qw
reserved
semicolon

taint

umask

uninitialized

unpack

untie

utf8

void

y2k

Making Warnings Fatal
Normally warnings are reported only to STDERR without actually halting execution
of the script. You can change this behavior, marking the options as “FATAL” when
importing the pragma module:

use warnings FATAL => qw/syntax/;

618 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 619
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Getting Warning Parameters Within the Script
When programming modules, you can configure warnings to be registered against the
module in which the warning occurs. This effectively creates a new category within the
warnings hierarchy. To register the module within the warnings system, you import
the warnings::register module:

package MyModule;

use warnings::register;

This creates a new warnings category called MyModule. When you import the module
into a script, you can specify whether you want warnings within the module category
to be enabled:

use MyModule;

use warnings 'MyModule';

To actually identify if warnings have been enabled within the module, you need to
use the warnings::enabled function. If called without arguments, it returns true if
warnings have been enabled. For example,

package MyModule;

sub test

{

if (warnings::enabled())

{

warnings::warn('deprecated',

'test is deprecated, use the object io');

}

}

The warnings::warn function actually raises a warning—note that it raises an error
even if warnings are disabled, so make sure you test that warnings have been enabled.
Also note that the warnings::warn function accepts two arguments—the first is the
word used to describe the warning, and the second is the additional text message
printed with the warning. So, the line

warnings::warn('deprecated','test is deprecated, use the object io');

620 P e r l : T h e C o m p l e t e R e f e r e n c e

actually produces

test is deprecated use the object io at t2.pl line 5

The function name is inserted first—or the package or file name if it’s within the global
scope—just as in the core warn function.

You can also be more specific about the warnings that you want to test for; if you
supply arguments to the warnings::enabled function, for instance, it returns true only
if the warning type specified has been enabled:

if (warnings::enabled('deprecated'))

...

The strict Pragma
The strict pragma restricts those constructs and statements that would normally be
considered unsafe or ambiguous. Unlike warnings, which raise errors without causing
the script to fail, the strict pragma will halt the execution of the script if any of the
restrictions enforced by the pragma are broken. Although the pragma imposes limits
that cause scripts to fail, the pragma generally encourages (and even enforces) good
programming practice. For some casual scripts it does, of course, cause more problems
than you might be trying to solve.

As with warnings, you should have the strict pragma enforced at all times. It will
help you to pick more of those ambiguous instances where your script may fail without
warning. It is no replacement for a full debugger, but it will highlight problems that a
normal debugging process might overlook.

The basic form of the pragma is

use strict;

The pragma is lexically scoped, so it is in effect only within the current block. This
means you must specify use strict separately within all the packages, modules, and
individual scripts you create. If a script that uses the strict pragma imports a module
that does not, only the script portion will be checked—the pragma’s effects are not
propagated down to other modules.

By using the pragma, you should be able to identify the effects of assumptions
Perl makes about what you are trying to achieve. It does this by imposing limits on
the definition and use of variables, references, and barewords that would otherwise be

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 621
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

interpreted as functions (subroutines). These can be individually turned on or off using
the vars, refs, and subs options to the pragma. You supply the option as an argument
to the pragma when the corresponding module is imported. For example, to enable
only the refs and subs options, use the following:

use strict qw/refs subs/;

The effects are cumulative, so this could be rewritten as

use strict 'refs';

use strict 'subs';

The pragma also supports the capability to turn it off through the no keyword, so you
can temporarily turn off strict checking:

use strict;

no strict 'vars';

$var = 1;

use strict 'vars';

Unless you have any very special reason not to, I recommend using the basic strict to
enable all three levels of checking.

The vars Option
The vars option requires that all variables be predeclared before they are used, either
with the my keyword, with the use vars pragma, or through a fully qualified name that
includes the name of the enclosing package in which you want the variable to be
defined.

When using the pragma, the local keyword is not sufficient because its purpose is
only to localize a variable, not to declare it. Therefore the following examples work,

use strict 'vars';

$Module::vara = 1;

my $vara = 1;

use vars qw/$varb/;

but these will fail:

use strict 'vars';

$vars = 1;

local $vars = 1;

One of the most frustrating elements of the vars option is that you’ll get a list of errors
relating to the use of variables. For example, the script

use strict;

%hash = ('Martin' => 'Brown',

'Sharon' => 'Penfold',

'Wendy' => 'Rinaldi',);

foreach $key (sort keys %hash)

{

print "$key -> $hash{$key}\n";

}

raises these errors when executed:

$ perl -w t2.pl

Global symbol "%hash" requires explicit package name at t2.pl line 3.

Global symbol "$key" requires explicit package name at t2.pl line 7.

Global symbol "%hash" requires explicit package name at t2.pl line 7.

Global symbol "$key" requires explicit package name at t2.pl line 9.

Global symbol "%hash" requires explicit package name at t2.pl line 9.

Global symbol "$key" requires explicit package name at t2.pl line 9.

Execution of t2.pl aborted due to compilation errors.

The obvious solution to the problem is to declare the variables using my:

use strict;

my %hash = ('Martin' => 'Brown',

'Sharon' => 'Penfold',

'Wendy' => 'Rinaldi',);

foreach my $key (sort keys %hash)

{

print "$key -> $hash{$key}\n";

}

622 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 623
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

When developing modules, the use of my on variables that you want to export will
not work, because the declared variables will be lexically scoped within the package.
The solution is to use the vars pragma:

package MyModule;

use vars qw/@ISA @EXPORT/;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = qw/

open_db

/;

As a general rule, you should always use the vars option, even if you neglect to use the
other strict pragma options.

The refs Option
The refs pragma generates an error if you use symbolic (soft) references—that is, if you
use a string to refer to a variable or function. Thus, the following will work,

use strict 'refs';

$foo = "Hello World";

$ref = \$foo;

print $$ref;

but these do not:

use strict 'refs';

$foo = "Hello World";

$ref = "foo";

print $$ref;

Care should be taken if you’re using a dispatch table, because the traditional
solutions don’t work when the strict pragma is in force. The following will fail, because
you’re trying to use a soft reference to the function that you want to call:

use strict refs;

my %commandlist = (

624 P e r l : T h e C o m p l e t e R e f e r e n c e

'DISK' => 'disk_space_report',

'SWAP' => 'swap_space_report',

'STORE' => 'store_status_report',

'GET' => 'get_status_report',

'QUIT' => 'quit_connection',

);

...

my ($function) = $commandlist{$command};

die "No $function()" unless defined(&$function);

&$function(*CHILDSOCKET, $host, $type);

To get around this, find a reference to the subroutine from the symbol table, and
then access it as a typeglob and call it as a function. This means you can change the last
three lines in the preceding script to

if (defined($main::{$commandlist{$command}}))

{

*code = \$main::{$commandlist{$command}};

&code($user,$group,$session);

}

You can also use the exists function to determine if a function has been created, but
it will return true even if the function has only been forward-defined by the subs
pragma or when setting up a function prototype, not just when the function has
actually been defined.

The subs Option
The final option controls how barewords are treated by Perl (see Chapter 2 for a
description of barewords). Without this pragma in effect, you can use a bareword to
refer to a subroutine or function. When the pragma is in effect, then you must quote or
provide an absolute reference to the subroutine in question.

Normally, Perl allows you to use a bareword for a subroutine. This pragma disables
that ability, best seen with signal handlers. The examples

use strict 'subs';

$SIG{QUIT} = "myexit";

$SIG{QUIT} = \&myexit;

will work, since we are not using a bareword, but

use strict 'subs';

$SIG{QUIT} = myexit;

will generate an error during compilation because myexit is a bareword.

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 625
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Other Perl Pragmas
Beyond the warnings and strict pragmas, there are others that can help to control and
change the way Perl treats different aspects of your script. Although not always useful
when debugging, the effects of pragmas can cause unexpected problems in scripts if
you fail to notice that the pragma is in effect. Others help you get by the effects of the
strict pragma, such as the vars and subs pragmas.

You’ve already seen how the strict pragma works, and other pragmas operate in
exactly the same fashion. Pragmas are in fact just modules, which by convention have
their names in lowercase. You enable them with the use keyword, supplying any
optional parameters as a string or array after the pragma name. For example,

use vars qw/$var $string/;

To turn off a specified pragma, you need the no keyword, which is the logical opposite
of the use keyword. If you specify no at the same level as a previous use statement, it
acts as a toggle, switching off the earlier pragma until a new use statement is seen, or
until the end of the block. If you use no within an enclosed block (a function or loop)
inside a block with the corresponding use statement, the pragma is disabled only for
the duration of the enclosed block. For example,

use integer;

function intdivide

{

print "67/3","\n"; #Uses integer math

}

function divide

{

no integer;

print "67/3","\n"; #Uses floating point math

}

print "67/3","\n"; #Integer math

no integer;

print "67/3","\n"; #Floating point math

Other pragmas work in similar ways, although some of the effects are dependent
on other pragmas or on the specific implementation.

attributes
The attributes pragma (new in 5.6) replaces the old attrs pragma and allows you to get
or set the subroutine and variable attributes. The new pragma works in conjunction

with the new attributes system for subroutines (heavily expanded in Perl 5.6) and will
work with other systems, such as the planned variable attribute system. The pragma
itself has two purposes, creating attribute lists and obtaining the attribute lists during
run time. Because the attribute system is largely an internally declared system, such as
that used to create lvalue subroutines, the pragma is really only useful for the getting
attribute lists.

To obtain the attribute list for a given object you use the attributes::get function.
The basic usage is

sub func : method;

my $closure = sub : method {};

use attributes;

@attributes = attributes::get(\&func);

The pragma also defines the attributes::reftype function. This works like the
built-in ref, except that it always returns the real data type of the reference, as used
internally by Perl. This means it ignores any package that the object might have been
blessed into, and just returns the base type.

autouse
The autouse pragma postpones the loading of the module until a specified function has
actually been called. This allows you to delay the loading of a module for functions
that are used only infrequently, thereby improving the loading and overall execution
time. For example, to delay the loading of Module until one of funca or funcb is
actually used,

use autouse 'Module' => qw(funca funcb);

This is similar in principle, but not identical, to the Autoload module. Note that you
must specify the functions that will trigger the autouse process; otherwise, there is no
way for the Perl interpreter to identify the functions that should be imported. The
preceding example is therefore equivalent to the method for importing selected
functions from a module:

use Module qw(funca funcb);

You can also supply function prototypes to the autouse pragma to trap errors
during the compilation, rather than execution, stage:

626 P e r l : T h e C o m p l e t e R e f e r e n c e

use Module qw(funca($$) funcb($@));

The effect of the autouse pragma is to reduce the loading and compilation time for
a script and also to reduce the number of modules that are loaded at startup in scripts
where specific external functions are used only in certain execution trees. Unfortunately,
the pragma also has the effect of delaying the loading of the module until execution
time, thus bypassing the usual checks that are made when importing a module and
shifting the responsibility of reporting any errors to the execution stage, rather than
the compilation stages.

Problems can occur when there are bugs or typographical errors in the modules
being autoused, because your program will not fall over when the module is imported,
but when a function is actually used. Additionally, any module that relies on early
initialization (say, within a BEGIN {} block) may fail because it expects the initialization
to occur during the initial compilation of the whole script.

You can get around the bugs in autouse modules during the development phase by
placing a genuine use statement for the autouse modules. For example,

use File::Basename

use autouse 'File::Basename' => qw(basename dirname);

The first line masks the second; when you come to release your script and/or module
to the public, just comment out the first line and let the autouse pragma do its work.

base
The base pragma establishes a relationship with a base class at compile (rather than
execution) time. In effect, this operation is equal to adding the specified classes to the
@ISA array during the module initialization, such that

package Object;

use base qw(Foo Bar);

is effectively equal to

BEGIN

{

require Foo;

require Bar;

push @ISA, qw(Foo Bar);

}

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 627
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Because of this, any base class not yet loaded but explicitly listed to the base pragma
will be loaded automatically via require. Note, however, that the normal inheritance rules
are not followed and the %INC hash is not used to determine whether a base class has
already been loaded. This is because use of base could cause Perl to enter a cycle where it
tries to load a class from a file that has already been imported with require. Instead, base
sets the value of $VERSION in the base class to the string “–1, defined by base.pm”.

Note that in addition to setting the inheritance, the base module also causes any
special field attributes for the classes named to be initialized, providing they use the
fields pragma to set the attributes. See the entry for fields later in this chapter.

blib
The blib pragma forces Perl to look for modules in the blib directory structure, as created
by the MakeMaker module. This feature is especially useful for testing modules before
they are finally installed when using ExtUtils::MakeMaker (see Chapter 25 for more
information). Ideally, it should be used only on the command line with the -M option:

perl -Mblib script

perl -Mblib=dir script

If dir is specified, it looks in that directory (and subdirectories) for the blib structure. If
you do not specify dir, it assumes you want to include the current directory.

You can also use

use blib;

use blib 'dir';

but this is not the preferred solution, because it requires modification of the script to
disable the behavior.

bytes
The bytes pragma forces Perl to consider information in terms of individual bytes,
rather than characters (which could be multibyte) for data sources that imply character
semantics. See Chapter 9 for more information on Unicode and multibyte character sets.

The bytes pragma is lexically scoped, and you can use no to reverse the effects:

use bytes;

no bytes;

628 P e r l : T h e C o m p l e t e R e f e r e n c e

charnames
The charnames pragma allows you to embed characters by name into any interpolated
string. For example:

use charnames ':short';

print "\N{greek:Sigma}";

The actual format of the pragma is

use charnames HOW;

print "\N{CHARSPEC}";

Here, HOW is an argument that defines either how you refer to the characters you
want (using either ":full" or ":short"), or by supplying the name of a specific character
script (for example Roman or Greek), as defined by the Unicode Consortium.

If HOW is specified as “:full,” then CHARSPEC is assumed to be a full Unicode
character specification, for example “GREEK SMALL LETTER SIGMA”. If HOW is
specified as “:short,” then CHARSPEC is taken as SCRIPT:CHARNAME, where
SCRIPT is the Unicode script, and CHARNAME is the character within that script.

If HOW is any other string, then it’s taken as the script name, and CHARSPEC
becomes the name of the character within that script.

The character name, in its long form, can be defined using

SCRIPTNAME CAPTIAL LETTER CHARNAME

SCRIPTNAME SMALL LETTER CHARNAME

SCRIPTNAME LETTER CHARNAME

The CAPITAL, SMALL, and LETTER components are merely modifiers to change
whether the upper- or lowercase letter is inserted. If CHARNAME is specified entirely
in lowercase, then CAPITAL is ignored.

See the unicode directory installed with the standard Perl library for the files that
contain the character scripts. See also Chapter 9 for information on Unicode and how it
operates within Perl.

constant
Although there are other techniques for introducing constant variables, the most
practical solution is the constant pragma. The advantages of a constant are obvious: if
you use the same constant value throughout all your calculations and programs, you
can be guaranteed that the values calculated will also remain constant.

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 629
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The rule applies even when the constant is used over many different platforms.
For example, the value of <<Unicode: 70>> can be endlessly calculated, and there are
varying methods and degrees of precision used for the value. You can create a constant
value to be used in all calculations like this:

use constant PI => 3.141592654;

The value can be any normal Perl expression, including calculations and functions such
that the following also work:

use constant PI => 22/7;

use constant USER => scalar getpwuid($<);

However, you can’t define more than one constant at the same time, so

use constant PI => 22/7, USER => scalar getpwuid($<);

will not work.
Once it’s defined, you can use a constant directly; there is no need for a preceding

character to denote the variable type:

$zero = (cos(PI/2));

The values supplied are evaluated in a list context, allowing you to define constant lists
as well as scalars. Note that constants are lists, so you must use subscript, not array,
notation. Therefore, the statement

$quota = USERDATA[5];

will not work; you must use

$quota = (USERDATA)[5];

Also note that constants can be directly interpolated, although you must use indirect
notation:

print "I want to eat some @{[PI]}\n";

It’s also worth noting that, because constants are actually just subroutines, you
cannot use them in contexts where a bareword is automatically quoted, such as hashes.

630 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Instead, use an empty parenthesis or the + operator in front of the constant to force Perl
to identify it as a function:

$hash{PI()};

$hash{+PI};

Although it is not essential, constants should have names composed only of uppercase
characters to help distinguish them from normal variables. All constants must begin
with a letter.

Constant definitions are package-scoped rather than block-scoped, so you can have
different constant values within the confines of different packages, and you can also
refer to constants using fully qualified names.

Be careful when using constants; the uppercase convention can interfere
with filehandles.

diagnostics
The diagnostics pragma inserts additional diagnostic capabilities into the Perl
script. Although Perl normally outputs a fair number of errors and warnings when it
discovers a problem, at both compile time and run time, the messages are often terse
single-line descriptions. Even if you know what the error message signifies, the exact
cause of the problem may be difficult to determine.

The diagnostics pragma prints out not only the terse one-line warnings that you
normally see when a warning is displayed, but also the additional descriptive text that
you find in the perldiag main page. Although you still don’t have the further benefit of
a more in-depth description of the problem, the description can often highlight things
you have overlooked.

To use, insert the diagnostics pragma at the top of the script you want to examine
for problems, and then run the script (preferably with warnings switched on) and
examine the extended output. This program will produce a few errors:

use diagnostics;

print DUMMY 'Wont work';

When it’s run, you get the following:

$ perl -w nodiag.pl

Name "main::DUMMY" used only once: possible typo at t.pl line 2 (#1)

(W) Typographical errors often show up as unique variable names.

If you had a good reason for having a unique name, then just mention

it again somehow to suppress the message. The use vars pragma is

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 631
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

provided for just this purpose.

Filehandle main::DUMMY never opened at t.pl line 2 (#2)

(W) An I/O operation was attempted on a filehandle that was never

initialized. You need to do an open() or a socket() call, or call

a constructor from the FileHandle package.

Alternatively, leave your script as it is and pipe the error output to a file. The splain
program (installed with Perl) can then be used to analyze the errors and produce the
full descriptions for the error messages and warnings:

perl -w nodiag.pl 2> nodiag.err

./splain <nodiag.err

Under MacPerl there is no separate splain application, but the diagnostics pragma
still works if specified within the script.

If you specify the -verbose option when specifying the pragma, the introduction
from the perldiag main page will be printed out before the diagnostic warnings and
extended information:

use diagnostics -verbose;

Once they are imported, you can control the behavior of individual elements of
the script by switching the diagnostics messages on and off using the enable and
disable functions:

enable diagnostics;

disable diagnostics;

These changes affect only any run time errors. It’s not possible to switch off the
diagnostics process during the parsing/compilation stage.

If your program is making use of the $SIG{__WARN__} and $SIG{__DIE__}
handlers to trap errors in your program (see Chapter 21), you can still use them in
conjunction with the diagnostics module. However, the diagnostics::splainthis
function will be executed first, so you’ll get the extended warning information before
your own extensions are executed. See Chapter 9 for information on using signals
for error trapping.

If you want to examine exactly what the diagnostics module is doing, you can
switch on “debugging” for the diagnostics module by defining

632 P e r l : T h e C o m p l e t e R e f e r e n c e

BEGIN { $diagnostics::DEBUG =1 }

before the script starts the rest of the execution process.

fields
The fields pragma affects the compile-time error checking of objects. Using the fields
pragma enables you to predefine class fields, such that a call to a specific class method
will fail at compile time if the field has not been specified. This is achieved by populating
a hash called %FIELDS. When you access a hash with a typed variable holding an object
reference, the type is looked up in the %FIELDS hash, and if the variable type exists, the
entire operation is turned into an array access during the compilation stage. For example,

{

package Foo;

use fields qw(foo bar _private);

}

...

my Foo $var = new Foo;

$var->{foo} = 42;

If the specified field (in this case “foo”) does not exist, a compile time error is produced.
For this to work, the %FIELDS hash is consulted at compile time, and it’s the fields

and base pragmas that facilitate this. The base pragma copies fields from the base class
definitions, and the fields pragma adds new fields to the existing definitions. Field
names that start with an underscore character are private to a class; they are not even
accessible to subclasses.

The result is that objects can be created with named fields that are as convenient
and quick to access as a corresponding hash. You must access the objects through
correctly typed variables, or you can use untyped variables, providing a reference to
the %FIELDS hash is assigned to the 0th element of the array object. You can achieve
this initialization with the following:

sub new

{

my $class = shift;

no strict 'refs';

my $self = bless [\%{"$class\::FIELDS"}], $class;

$self;

}

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 633
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

filetest
The filetest pragma improves on the standard file testing techniques offered by Perl
and the -X operators. By default, the built-in -r, -w, -x, -R, -W and -X operators actually
check only the permissions bitset that is normally returned by stat. These do not take
into account the facilities of some operating systems that support access control lists
(ACLs) or other extended permission systems. Use of the filetest pragma overloads
these operators so that the tests return true values under these conditions.

use filetest;

The pragma is lexically scoped, so the effects are only felt until the end of the
current block. You can also use no to disable the effects.

integer
Perl does all its calculations in floating point by default. Although you can normally
force integer results from specific calculations using the int function, it can be more
useful to specify that all calculations are performed with integers only. For example,

use integer;

print 67/3,"\n";

The use integer pragma lasts only as long as the current block, so it can safely be
used within individual functions without affecting the rest of the script. In addition,
you can switch off the integer pragma with the no keyword:

use integer;

print 67/3,"\n";

no integer;

print 67/3,"\n";

You can also use no within an enclosed block to temporarily turn off integer math,
as seen earlier in the introductory example under “Other Perl Pragmas.”

less
The less pragma is currently unimplemented.

use less;

634 P e r l : T h e C o m p l e t e R e f e r e n c e

The intention is to allow you to specify reductions for certain resources, such as
memory or processor space. This capability might be useful in situations where you
want to ensure that the effects of the script do not upset the rest of your system.

lib
When importing modules with use, the interpreter examines the @INC array for
a list of directories to search for the modules to be imported. Since use statements are
evaluated during the compilation process, you cannot insert additional directories in
the main part of the script. You can, of course, use a BEGIN {} block:

BEGIN { unshift @INC, LIST }

or you can use the lib pragma. The equivalent of the preceding block would be

use lib LIST;

Note that the directories are added before (using unshift) the standard directories
to ensure that you use the local modules in preference to the standard ones. For all
directories added in this way, the lib module also checks that a $dir/$archname/auto
exists, where $archname is the name of the architecture of the current platform. If it
does exist, it is assumed to be an architecture-specific directory and is actually added
to @INC before the original directory specification.

Once added, it is not normally necessary to remove directories. Furthermore, you
shouldn’t ever remove standard directories from the array. It’s also worth remembering
that you may affect the future operation of a later module if you remove a directory that
contains a module on which it relies. Although you could argue that it is the module’s
responsibility to make sure it has access to the modules it needs, it’s also sensible to
assume that in the interests of good relations you shouldn’t be removing directories
anyway. There is no advantage to removing them; it doesn’t take a considerable amount
of extra memory or processing power for the interpreter to search for what it’s looking for.

With all this in mind, you remove directories with a no lib pragma, which removes
the first instance of the named directory from @INC. If you want to remove multiple
instances, you will need to call no lib multiple times. You can also remove all the
specified names from @INC by specifying “:ALL” as the first parameter of no lib.
For example,

no lib qw(:ALL .);

For each directory, the opposite of the earlier process is executed. The architecture-specific
directories are also searched for in the @INC array before they too are removed.

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 635
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

636 P e r l : T h e C o m p l e t e R e f e r e n c e

Although in practice you shouldn’t need to, if you want to reinstate the original
(standard) list of directories in @INC, you need to use

@INC = @lib::ORIG_INC;

locale
The locale pragma tells the compiler to enable the use of POSIX locales for built-in
operations. This has the effect of enforcing the case conversion and pattern matching
semantics according to the punctuation and characters used within the current setting.
The environment variables LC_CTYPE and LC_COLLATE should define the locale to
be used for regular expression and string comparison respectively. Note that it only
applies where your system and C libraries are POSIX compliant.

use locale;

The pragma is lexically scoped, so the effects are only felt until the end of the
current block. You can also use no to disable the effects.

open
The open pragma works in conjunction with the open (and other) function to change
the default character conversion discipline. When used, any open or readpipe (such as
backticks) operation within the current lexical scope will be subject to the defaults set.
For example

use open IN => "crlf", OUT => ":raw";

would set the input discipline to crlf and the output discipline to raw. At the time of
writing, these were the only two supported. See Chapter 8 for more information on the
disciplines used with open.

Also planned is a special :DEFAULT discipline, which can be specified to an open
call to use the default values defined by the enclosing open pragma.

ops
The ops pragma switches off specific opcodes during the compilation process. The
synopsis is as follows,

perl -Mops=:default

which enables only reasonably safe operations, or you can specify that opcodes be
removed from those available, using

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 637
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

perl -M-ops=system

Note that the best way to use this option is via the command line incorporation;
otherwise, you open yourself up to abuse before the compilation process starts through
the use of BEGIN {} statements. Alternatively, you can use the Safe and Opcode
modules (see Chapter 15), which provide a more comprehensive method for executing
Perl code using a restricted set of opcodes.

overload
The overload pragma allows you to overload the built-in operators when used with
objects to instead use local functions. For example, in your class definition:

package SomeThing;

use overload

'+' => \&myadd,

'-' => \&mysub;

Then in your script:

use SomeThing;

$a = new SomeThing 57;

$b=5+$a;

Overloading is a complex process, and more details on this pragma, and overloading
functions in general, are given in Chapter 7.

re
The re pragma alters regular expression behavior. The pragma has three options: taint,
debug, and eval. One additional pragma is really just a modification of an earlier one,
called debugcolor. The only difference is in the color of the output. In all cases the re
pragma applies to the entire file (it is not lexically scoped), and the effect is felt at both
compile and execution time.

The taint option ensures that variables modified with a regular expression are
tainted in situations where they would otherwise be considered cleaned during the
regular expression exercise:

use re 'taint';

That is, in situations where matches or substitutions on tainted variables would ordinarily
produce an untainted result, the results are in fact marked as tainted. Information that is
already untainted remains unchanged—the use of the taint option does not taint all
regular expression data.

The debug and debugcolor options force Perl to produce debugging messages
during the execution of a regular expression:

use re 'debug';

use re 'debugcolor';

This is equivalent to using the -Dx switch during execution if the -DDEBUGGING
option was specified during the build process. The information provided can be very
large, even on a relatively small regular expression. The debugcolor option prints out a
color version if your terminal supports it. See Chapter 21 for more information on the
effects of the -D switch.

The eval option enables regular expressions to contain the (?{...}) assertions, even if
the regular expression contains variable interpolation,

use re 'eval';

Ordinarily this is disabled because it’s seen as a security risk, and the pragma is
ignored if the use re ‘taint’ pragma is in effect.

Individual pragmas can be switched off with no re.

sigtrap
The sigtrap pragma enables simple signal handling without the complexity of the
normal signal handling routines.

use sigtrap;

The pragma supports three handlers: two are supplied by the module itself (one
provides a stack trace and the other just calls die), and the third is one that you supply
yourself. Each option supplied to the module is processed in order, so the moment a
signal name is identified, the signal handler is installed.

Without any options specified, the module defaults to the stack-trace and
old-interface-signals options. The individual options are listed here.

use sigtrap qw/stack-trace HUP INT KILL/;

Generates a Perl stack trace to STDERR when the specified signals are received by the
script. After the trace has been generated, the module calls dump to dump the core.

use sigtrap qw/die HUP INT KILL/;

638 P e r l : T h e C o m p l e t e R e f e r e n c e

Calls croak (see Chapter 9), reporting the name of the message that was caught.

use sigtrap 'handler' => \&my_handler, HUP, INT, KILL;

Installs the handler my_handler for the specified signals.
The pragma defines some standard signal lists. If your system does not support one

of the specified signals, the signal is ignored rather than producing an error.

normal-signals

These are signals that might ordinarily be trapped by any program: HUP, INT,
PIPE, and TERM.

error-signals

These are the signals that indicate a serious error: ABRT, BUS, EMT, FPE, ILL, QUIT,
SEGV, SYS, and TRAP.

old-interface-signals

The list of signals that were trapped by default by the old sigtrap pragma. This is the
list of signals that are used if you do not specify others; they include ABRT, BUS,
EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS, TERM, and TRAP.

untrapped

This special option selects from the list of signals that follows or specifies all the signals
that are not otherwise trapped or ignored.

any

applies handlers to all subsequently listed signals; this is the default.

subs
The subs pragma predeclares a function so that the function can be called without
parentheses even before Perl has seen the full definition.

use subs qw(func);

C h a p t e r 1 9 : C o n t r o l l i n g E x e c u t i o n w i t h P r a g m a s 639
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

This option can also be used to override internal functions by predefining the
subroutines you want to override:

use subs qw(chdir);

chdir $message;

sub chdir

{

...

}

The overriding versions can be defined in the local file (as in the preceding
example), or they can be imported from an external module, although it’s possible to
override functions from external modules by defining the function specifically to the
import process, as in

use MyBuiltin 'chdir';

Obviously, you will need to define the chdir function in the @EXPORT_OK array as
part of the module initialization. See Chapter 6 for more information on creating
modules and using the Exporter module for creating Perl modules.

The subs pragma is not block scoped, so the function definitions are global to the
entire execution—as you’d expect.

vars
The vars pragma predeclares the variables defined in the list, which has the effect of
preventing typographical warnings for variables not yet created. It is also the best way to
declare variables that are to be shared with other modules if you do not want to use the
local keyword. The use of my variables won’t work, since the variables will be localized
strictly to the module. Because the variables are declared globally, it’s also the easiest way
to declare global variables that would otherwise trip up the use strict pragma.

use vars qw($scalar @array %hash);

Note that vars is not block-scoped. The variables are truly global within the
current file.

The use of vars is now deprecated in favor of the our keyword for declaring
variables, but is retained for backward compatibility. See Chapter 6 for more
information on our.

640 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Chapter 20
Extending and
Embedding Perl

641

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Many people’s understanding of Perl comes to the point we have already reached
(if you have followed this book sequentially). However, there is a lot more to the
language, even within the realms of writing a simple program. Some of it has

been hinted at already—pragmas, the different processes in the execution of a Perl script,
and some of the internal structures used by Perl to represent information.

In this chapter, we’ll lift the hood of the Perl engine and have a look at how the
language works at its lowest level and how we can affect that behavior. Our first goal is
to examine the individual components that make up the Perl interpreter. By examining
each component of the system, you should gain insight into how the entire application
works. Armed with this information, we’ll then dig further and follow the execution
process of a script from the time it is finished being written to the point at which it
completes its execution cycle, including all the intervening steps.

The bulk of the chapter, however, is given to communicating with functions and
extensions that extend beyond the capabilities or accessibility of Perl. This process,
called extension programming, provides a method for writing a simple mapping file
that equates Perl functions with external C functions.

This is, in fact, how much of the functionality we take for granted is provided in
Perl. The Perl distribution uses this system to provide an interface between Perl and
network sockets, threads, and DBM databases (such as GDBM_File and DB_File),
and also the more advanced elements (such as the Perl compiler).

For the end user, extension programming provides you with unlimited flexibility to
interface your Perl scripts with external C functions, whether self-written or provided by
external libraries and systems. The CPAN archives contain countless examples of this sort
of interface, from simple math libraries up to some of the more complex systems you have
already seen. The DBI toolkit, for example, provides access to a wide range of external
database systems through the use of C functions and the Perl extension interface.

For others, the practicalities and facilities provided by Perl are too attractive, and
they want or need to embed the Perl interpreter within their C programs. This has
some advantages, such as the ability to parse regular expressions within a C program
more easily than is possible with many of the available libraries. Other people have
also made good use of the features provided by embedding to improve facilities within
their software. On CPAN, for example, there is a module called mod_perl that embeds
a Perl interpreter within the Apache web server, enabling you to execute Perl CGI
scripts much faster than you otherwise could by calling an external Perl interpreter.

Finally, Perl also provides facilities for cooperating with other languages, either
through the coercive use of Perl as a language producer or through the supplied scripts
that provide you with facilities for converting programs written in other languages,
such as awk and sed, into Perl scripts.

642 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 643
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Perl Internals
There comes a time for most programmers when they want to understand how a
particular application works. For many commercial applications, this information is just
not available. But for open-source projects, such as Perl, anybody can read the source code
for the application. The more inquisitive may even take the code and go off and do their
own thing (see the upcoming sidebar, “Every Hacker’s Goals”). In this chapter, the aim is
really to take a step back from that level of detail, and instead look at the architecture and
process involved in interpreting and executing a script.

My intention is not to dissuade you from examining the source code if you
want to. The code is available; and despite the fact that it’s largely uncommented and
is composed of a number of complex macros and optimizations, it’s still readable by
a hardened C programmer. My best suggestion is to get the latest source and start by
examining the source code for the different variable types (hv.c for hash values, and so
on). Once comfortable with the concepts there, you should then move on to op.c and
doop.c, which handle the opcode (see the “Opcodes” section, later in the chapter),
before finally examining the execution process in run.c, preferably with a debugger
such as gdb or the debugger that comes with Microsoft’s Developer Studio Product.

Every Hacker’s Goals
It has been said, by others as well as me, that the ultimate dream of all serious
computer programmers is to achieve three simple goals in their lifetime:

� Write their own computer language

� Write their own operating system

� Build their own computer from individual components (microchips,
resistors, and so on)

I’m pleased to say that I’ve managed to achieve all three—although for the last
two, I’m not sure that an embedded computer for controlling a model lift is what
one would call a real achievement.

I should probably add at this point that you should not confuse the term “hacker”
with the term “cracker.” A hacker is someone who enjoys toying with computers
and, often, programming them. A cracker is a malicious individual who tries to
break in (crack) a secure program, website, nuclear facility, and so on. Don’t get
the two mixed up; you’ll offend a hacker by calling him a cracker!

644 P e r l : T h e C o m p l e t e R e f e r e n c e

If you want to skip the technicals and examine the lexical process of converting the
written Perl script into the internal structures and opcodes, then look at perly.y. This is
a yacc definition file that outlines the main components and structures for the Perl
language. Some of the more complex lexical analysis is hand coded within the other
source files, most notably toke.c. For regular expressions, Perl uses a modified standard
regular-expression library, although all of the functionality has actually been written
from scratch. The regular expression compiler and Executor are in the regcomp.c and
regexec.c files, respectively.

If you want to avoid the source code, or perhaps just cannot follow it, three tools
are available on CPAN (see Appendix A) that provide access to the internal structures
within Perl. The Devel::Peek module allows you to dump the internal information
associated with a variable, while Devel::Symdump will dump the symbol table. The
Devel::RegExp module can examine and monitor regular expressions.

We’ll be examining other ways of monitoring the execution process of a Perl script in
the coming sections, but first you need to understand how the Perl interpreter works.

Architecture
You can see in Figure 20-1 the basic architecture for the entire Perl interpreter. The
shaded blocks show the internal components of the Perl interpreter, including the
internal data structures and the execution components. Some of the components can
have multiple instances (we’ll cover this later). The unshaded blocks on the diagram
are the compiled C source code.

You may recognize the diagram as looking mildly similar to the virtual machine
diagram often used to describe the operation of the Java language. There are some
similarities between the two languages: Perl uses the optimized opcodes (the smallest
executable component of a compiled Perl script) in combination with the Executor
component to actually run the Perl script. We’ll look at these similarities more closely
as we examine the execution process.

Internal Objects
The Perl object API in Figure 20-1 represents the functions and structures used to
support the four main internal data structures for any Perl program: variables, symbol
tables, stacks, and external data streams.

The data formats supported by Perl are familiar by now. We’ll examine the gory
details of these variable types and how to use them later in this chapter. For now,
a summary of the supported types is all we’ll need. Each variable can be identified
by a two-letter acronym, as seen in Table 20-1.

The scalar value can also be further subclassed as an IV (integer value), PV (string
value), or DV (double value). Other internal data structures, such as the symbol tables
and stacks, are also represented by these core value types, which are strictly managed
and controlled with efficient memory management.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 645
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Figure 20-1. The Perl architecture

Acronym Full Name

SV Scalar value

AV Array value

HV Hash value

CV Code value

GV Glob value (typeglobs)

RV Reference value

Table 20-1. Internal Perl Data Type Acronyms

Perl’s internal symbol tables (see Chapter 6) are actually just HVs. Identifiers are
stored as the keys, and the corresponding data value is a pointer to a GV.

Temporary information (including that passed to functions as arguments), the
current location within a script, and variables used to store temporary data are all held
on stacks. These are AVs, which are treated as simple stacks similar to the principles
you saw in Chapter 8. When function foo wants to call function bar with arguments,
the arguments are pushed onto the argument stack and the bar is called. The first
operation performed by bar internally is to pop the arguments off the stack and
populate the function’s @_ array.

Other individual stacks are used to hold the other temporary variables, such as
local variables, loop iterators, and control information for the Perl interpreter. We’ll be
examining the stack and how it can be accessed and modified within a C program later
in the chapter.

External data streams are handled by the I/O abstraction API. This is a suite of
functions that provide a thin porting layout for the standard stdio and sfio libraries.
For most people, there is no need to refer to the I/O abstraction, even when producing
new C-derived Perl functions, but it can be useful background information.

Translator
The translator converts the Perl script into a series of opcodes, which we’ll take a
closer look at shortly. The opcodes are listed in a tree format to allow for branching, for
argument passing, and for a structured logical progression through the original script.
The translator is made up of a combination of the yacc-based parser file, a hand-coded
lexical analyzer, and the actual opcode generator. This is also the point at which regular
expressions are compiled (assuming they can be compiled at compilation time) using a
customized regular-expression engine.

646 P e r l : T h e C o m p l e t e R e f e r e n c e

Multiple Simultaneous Interpreters
When embedding Perl into a C program, you can create multiple instances of
PerlInterpreter()—the main interpreter function. Each instance will have its own
“global” name space, rather than the normal shared name space that uses global C
variables to store the main data structures. Unless you have a real need for
multiple interpreter instances, you should use the single instance. This is faster
(because the data structures do not need to be copied around), and you can create
separate packages to separate most user variables.

In a secure installation, there may well be a need for isolating instances of the
Perl interpreter in your programs. You can also use the Safe module to create a
secure environment for script execution. See Chapter 15 for more information on
Safe and its companion Opcode module.

Opcodes
An opcode is the smallest executable component within a Perl program. There are
opcodes for all of the built-in functions and operators in the Perl language. During
the execution stage, it is the opcodes and the functions on which they rely that are
executed by the Perl interpreter. It is at this point that Perl begins to resemble the
Java-style virtual machine.

However, within Java, all operations are resolved down a machine-code–like
format, not vastly dissimilar to the assembly language for a RISC (Reduced Instruction
Set Computing) processor. RISC processors use a small number of instructions, with
more complex operations being based on collections of the reduced set of instructions.
When you execute a Java program, you are effectively emulating a RISC processor and
all of the baggage that goes with it. This has some advantages, since it makes building
a hardware-based Java processor as easy as building any other processor.

However, this is where the similarities between Java and Perl end. In Perl, the
level of abstraction is much higher. Many of the functions in Perl that you use at a
scripting level are, in fact, entire opcodes (much like CISC—Complex Instruction Set
Computing—processors). Even functions as seemingly complex as the grep function
are handled by a single opcode. The current distribution defines 350 opcodes. The
source code for the opcode is hand optimized, which explains why Perl code executes
so fast. When you “interpret” a Perl script, you are almost running native C code, just
written (nay, translated) from Perl.

The use of such high-level opcode abstraction, and the hand-coded and optimized
C source code that executes it, is why building a Perl compiler, which creates very
fast stand-alone executables, is so easy. It also explains why the difference between
interpreted Perl scripts and the generated executables is often minimal; in fact, I’ve
often seen the so-called interpreted version working faster than the compiled version.
This could be due to the effects of loading the wrapper that sits around the opcodes in
order to make the run, or it could just be a complete fluke.

An opcode is defined by a C structure called op in the op.h header file. The
important fields for any opcode are defined as follows:

OP* op_next;

OP* (*op_ppaddr)();

OPCODE op_type;

The op_next field is a pointer to the next opcode to be executed when the current
opcode has completed. The op_type field defines the type of opcode that will be
executed. Different opcodes require different additional fields in order to define their
execution. The list of opcode types can be determined from the opcodes.pl script,
which is itself executed during the compilation of the interpreter. This file also
conveniently lists all of the opcodes.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 647
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The op_ppaddr field contains the pointer to the function that will actually be
executed. The functions are defined in the pp.c, pp_ctl.c, pp_sys.c, and pp_hot.c source
files in the Perl distribution. The first three define a range of opcode functions that
support the standard operators and functions, but the last is the most important from a
speed point of view.

The pp_hot.c file contains all of the opcode functions that are hand optimized and
are expected to be executed a number of times in a typical Perl script. The opcodes
defined in this file include those related to assignments, regular expressions,
conditional operators, and functions related to handling and converting scalar and list
values.

It’s also worth noting that there are opcodes for defining and obtaining different
variables and constants. Even the definition of a constant within a Perl script is actually
handled by an opcode. The significance of this will become apparent very shortly.

Remember that I described the opcode sequence as being a tree? This is because
certain opcode functions require calls to additional opcodes for their information.
Consider the following Perl script:

$a = $b + 2;

There are four opcodes in this statement. There are two operators—one is the
assignment of the expression to the $a scalar, and the other is the addition of the $b
scalar and the constant. There are also two values—one, the $b scalar; and the other,
the constant value of 2. Each of these items—operators and values—is an opcode.

You can view the opcodes produced by the statement if your version of Perl has been
built with the -DDEBUGGING option. The opcode tree is reproduced when you execute
a Perl program using the -Dx command line option. For example, the command

perl -Dx -e '$a = $b +2;'

produces

{

8 TYPE = leave ===> DONE

FLAGS = (VOID,KIDS,PARENS)

{

1 TYPE = enter ===> 2

}

{

2 TYPE = nextstate ===> 3

FLAGS = (VOID)

LINE = 1

648 P e r l : T h e C o m p l e t e R e f e r e n c e

}

{

7 TYPE = sassign ===> 8

FLAGS = (VOID,KIDS,STACKED)

{

5 TYPE = add ===> 6

TARG = 1

FLAGS = (SCALAR,KIDS)

{

TYPE = null ===> (4)

(was rv2sv)

FLAGS = (SCALAR,KIDS)

{

3 TYPE = gvsv ===> 4

FLAGS = (SCALAR)

GV = main::b

}

}

{

4 TYPE = const ===> 5

FLAGS = (SCALAR)

SV = IV(2)

}

}

{

TYPE = null ===> (7)

(was rv2sv)

FLAGS = (SCALAR,KIDS,REF,MOD,SPECIAL)

{

6 TYPE = gvsv ===> 7

FLAGS = (SCALAR)

GV = main::a

}

}

}

}

You can follow the execution through the opcode tree by following the opcode
numbers. Each pair of braces defines the information about a single opcode, and nested
braces show the parent-child relation between the opcodes. Execution starts at opcode
number one, which simply passes execution to opcode number two, which actually just
passes execution to number three after initializing the statement as being part of the

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 649
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

first line (and only line) of the script. Opcode number three gets the scalar value of the
main::b variable and places it onto the stack.

Execution is then passed to opcode number four, which places the static integer
value of 2 onto the stack, which then passes execution to opcode number five, the
“add” opcode. It takes the two arguments from the stack and adds them together,
placing the result back on the stack for opcode six, which obtains the reference for the
variable named main::a and places it on the stack. Then opcode seven assigns main::a
the value of addition placed on the stack in opcode five. This is the end of the script.

The tree structure can be understood from this description. The assignation opcode
has two siblings: the variable to which the value is to be assigned, and the value. The
value is calculated from the result of the addition, which as a binary operator has two
children: the values it is adding together. You can see this opcode structure more
clearly in Figure 20-2.

Obviously, the more complex the statement, the more complex the opcode tree.
Once you examine the output from a multiline script, you’ll begin to identify just how
efficient and complex the Perl opcode system is.

Compilation
The actual compilation stage is a multipass process that first processes the basic Perl
script using the yacc parser. Language parsed by yacc is actually processed from the
bottom up—the most complex expressions within single statements are processed first.

650 P e r l : T h e C o m p l e t e R e f e r e n c e

Figure 20-2. Opcode tree structure

TE
AM
FL
Y

Team-Fly®

Therefore, the nodes at the deepest points (leaves) of an execution tree are populated
first, before the higher opcodes (twigs and branches) are finally produced. Once all of
the entire statements have been parsed, you can follow the execution line by line, by
examining the trunk of the opcode tree.

Once all the opcodes have been produced, the compiler then goes over a number of
optimization processes. The first is called constant folding and identifies entries that can
be executed at the point of compilation. For example, the statement

$a = 4 + 5;

can be reduced from four opcodes to three by instead creating a parent opcode that
assigns a value of 9 to the $a variable:

$a = 9;

You can see the effect of this by comparing the opcode tree for the more complex
statement with the variable and constant tree you saw earlier:

{

6 TYPE = leave ===> DONE

FLAGS = (VOID,KIDS,PARENS)

{

1 TYPE = enter ===> 2

}

{

2 TYPE = nextstate ===> 3

FLAGS = (VOID)

LINE = 1

}

{

5 TYPE = sassign ===> 6

FLAGS = (VOID,KIDS,STACKED)

{

3 TYPE = const ===> 4

FLAGS = (SCALAR)

SV = IV(9)

}

{

TYPE = null ===> (5)

(was rv2sv)

FLAGS = (SCALAR,KIDS,REF,MOD,SPECIAL)

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 651
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

{

4 TYPE = gvsv ===> 5

FLAGS = (SCALAR)

GV = main::a

}

}

}

}

The next optimization process is context propagation, which is the act of defining the
context to a specific opcode and its children. You are used to the terms scalar context or
list context when creating and using functions. Internally, Perl also supports contexts
for void, Boolean, and lvalue statements. Context propagation works top down—that
is, parent opcodes are examined first, and the context requirement is then propagated
down to child opcodes.

The final optimization stage is a process of reduction and is handled by the peephole
optimizer. This process effectively executes the opcode tree, but without actually doing
anything. The purpose is to look ahead to future opcodes in the tree and reduce them
as much as possible. In Perl, the lookahead is currently only two statements, which
means that a maximum of three statements could be reduced to just one statement.

Any larger figure would slow down the optimization process to the point that any
gains made in optimizing the opcode tree would be lost in the optimization process
itself. Remember that Perl is still essentially an interpreter, and—unlike C or Java—the
opcode tree is regenerated each time a script is executed. When you execute a Perl
script, Perl doesn’t simply reexecute the previously optimized opcode tree. Perl
assumes the source file has changed (probably a good idea).

Ultimately, this makes individual executions of the same script slower than they
might be if the peephole optimization were allowed to look ahead further. On the other
hand, it ensures that every execution of a script is optimized to a reasonable point,
even if you change just one character in the original script each time.

Unfortunately, there is no way of controlling the peephole process. You cannot
specify, for example, that when creating a stand-alone executable, the peephole
lookahead value be greater than two, although this would be a great idea.

Execution
Once all three stages of the optimization have taken place, it’s time to execute the code.
The actual path of execution is not as sequential as it may have appeared earlier. All
opcodes are numbered, and it’s the value of the op_next (from the op structure) that
defines the actual execution path. Since Perl supports conditional statements like if and
loops like while, some opcodes may never be executed, or may be executed several

652 P e r l : T h e C o m p l e t e R e f e r e n c e

times. Perl, therefore, relies on the value of op_next returned by each opcode to decide
which opcode to execute next.

For each opcode, Perl calls the corresponding function with the information on any
child opcodes that are also required to call what the programmer recognizes as the
original statement. Once all the opcodes in the desired execution path have been
executed, the process ends, and Perl quits.

Perl’s Internal Structures
For writing extensions to Perl and for embedding Perl within your C programs, you
will need to understand the different structures used internally by the Perl interpreter.
Although it’s possible to skip this section, proper extension development requires that
you know at least the basis of the different Perl data types and how they can be used
with C functions rather than Perl functions and operators.

There are two core data structures that you need to consider: variables and the
stack. The variables are the data-storage entities that you are accustomed to using
within Perl. The stack is a special type of array that is used to pass information to
functions and pass return values from functions back to the calling statement.

Note that the information here assumes you know C, at least well enough to know the
basic structure of the program and how to call functions and handle variables. For some
of the more complex elements, you will also need to understand C pointers. Although we
are still talking about Perl, we will not be dealing with Perl source, only C.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 653
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Opcodes and Safety
Many of the various methods for executing Perl in a safe manner rely on the
ability of a single opcode to derive the source of its information. The taint-checking
mechanism uses opcodes to ensure that any variable derived from data external to
the current program is marked as possibly dangerous. Because you can trace the
flow of data within a program via the opcode tree, it’s easy for the taint-checking
module to track external information.

If you want a very secure environment, you can use the Safe module, which
we looked at briefly in Chapter 15 (see also Web Appendix B), to restrict the
execution of code (rather than data) in a script. The Opcode module even allows
you to restrict execution to a specific number of opcodes and then to execute a
program within a safe compartment. If the compilation process creates an opcode
tree that falls outside the environment you have specified, then an error is
returned.

Without opcodes, the tracking and filtering at this level would not be possible,
and it’s one reason Perl is considered a secure environment for many development
and e-commerce applications.

654 P e r l : T h e C o m p l e t e R e f e r e n c e

If you prefer, you can skip this section now and just use it as a reference for the
later parts of this chapter.

Variables
You already know that a number of different variables are available in Perl. At a base
level, these are scalars, arrays, and hashes. You’re probably also aware that there are
references, typeglobs, and objects. A reference is essentially just a scalar variable that refers
to a particular entity. A typeglob is a special structure that is mapped to all of the variables
of different types with the same common name. An object is a special, or “magic,” variable
type and is treated separately, even though it’s essentially a scalar value.

In each case, the value is stored internally as a structure that has been created as a new
variable type with the typedef keyword. The name of each type is the two-letter acronym
for the Perl data type; so a scalar value is stored in an SV structure, an array in an AV
structure, and so on. There are two basic value types used in all the definitions: The I32
is a signed integer that is guaranteed to be at least 32 bits wide, irrespective of the host
platform. The U32 value is an unsigned integer, also 32 bits wide. On a 64-bit machine,
the values will be 64 bits wide.

In this section, we’ll look at the macros that are defined within the Perl environment
for accessing, modifying, and converting between the different variable types in their raw
C format. We’ll leave the use of these different functions to the remainder of this chapter.

Scalar Values
A scalar value, abbreviated SV, contains the contents of a scalar variable. Since a scalar
variable can contain many different types of information, SVs are subclassified as
integer values (IVs), doubles (NVs), strings (PVs), and references (RVs). The functions
for using SVs are shown in Table 20-2.

Mortals If you create an SV, it is up to you to automatically delete it once you have
finished using it. If you set a variable to be mortal with sv_2mortal or one of the other
mortal functions, Perl will delete it at the end of the current scope, unless it is used by a
reference. Once the reference count reaches 0, Perl will call sv_free for you to free the SV.

Do not call sv_free yourself; rely on the internal functions to do it for you.

References You can reference a reference using the SvRV() function, and this can
be used in combination with the SvTYPE() function to obtain the type of value that is
referenced. The following code fragment will return a number relating to the value
type. Refer to Table 20-1 for a list of definitions to use when identifying the type.

SvTYPE(SvRV(SV*)

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 655
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Function/Macro Description

SV* newSViv(I32) Creates a new SV from an integer value.

SV* newSVnv(double) Creates a new SV from a float or double
value.

SV* newSVpv(char *str, int len) Creates a new SV from a string of length len.
The length will be calculated if len is 0.

SV* newSVsv(SV *) Duplicates the scalar value. Creating a new
empty scalar value requires the use of the
special sv_undef global scalar.

SV* newSVrv(SV* rv, char
*pkgname)

Creates a new SV and points rv to it. If
pkgname is not null, then it blesses rv into
that package. This is the method used to
create references to scalars.

SV* newRV_inc(SV* other) Creates a reference pointing to any type of
value, specified by other, incrementing the
reference count of the entity referred to. Can
be used to create references to any type of
value.

SV* newRV_noinc(SV* other) Creates a reference pointing to any type of
value, specified by other, without
incrementing the reference count of the entity
referred to. Can be used to create references
to any type of value.

SvIOK(SV*) Returns true if the SV is an IV.

SvNOK(SV*) Returns true if the SV is an NV.

SvPOK(SV*) Returns true if the SV is a PV.

SvROK(SV*) Returns true if the SV is a reference (RV).

SvOK(SV*) Returns true if the SV is not undef.

SvTRUE(SV*) Returns true if the SV is true.

Table 20-2. Functions for Accessing and Using SVs

656 P e r l : T h e C o m p l e t e R e f e r e n c e

Function/Macro Description

SVTYPE(SV*) Returns a value referring to the SV type.
Macros exist for the following:

SVt_IV (integer)
SVt_NV (double)
SVt_PV (string)
SVt_RV (reference)
SVt_PVAV (array)
SVt_PVHV (hash)
SVt_PVCV (code)
SVt_PVGV (glob)
SVt_PVMG (magic/blessed scalar)

IV SvIV(SV*) Converts an SV to an IV. Returns 0 if the SV
contains a non-numeric string.

double SvNV(SV*) Converts an SV to a double.

char* SvPV(SV*, int len) Converts an SV to a pointer to a string and
updates len with the string’s length.

SV* SvRV(SV*) Dereferences a reference, returning an SV.
This can then be cast to an AV or HV as
appropriate.

sv_setiv(SV*, int) Gives SV an integer value, converting SV to
an IV if necessary.

sv_setiv(SV*, double) Gives SV a double value, converting SV to an
NV if necessary.

sv_setsv(SV* dest, SV* src) Copies dest to src, ensuring that pointers dest
!= src.

sv_setpv(SV*, char *) Gives SV a string value (assuming a
null-terminated string), converting SV to a
string if necessary.

sv_setpvn(SV*, char *, int len) Gives SV a string value of length len,
converting SV to a string if necessary.

sv_catpv(SV*, char*) Concatenates the string to the SV.

Table 20-2. Functions for Accessing and Using SVs (continued)

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 657
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Function/Macro Description

svcatpvn(SV*, char*, int len) Copies len characters from the string,
appending them to the SV.

svcatsv(SV* A, SV* B) Concatenates the SV B to the end of SV A.

sv_setref_iv(SV* rv, char
*classname, int value)

Creates a new IV with the value of value, and
points rv to it. If classname is non-null, then
it blesses rv into that package.

sv_setref_nv(SV* rv, char
*classname, double value)

Creates a new NV with the value of value,
and points rv to it. If classname is non-null,
then it blesses rv into that package.

sv_setref_pv(SV* rv, char
classname, char value)

Creates a new PV with the value of value,
and points rv to it. If classname is non-null,
then it blesses rv into that package.

svREFCNT_dec(SV*) Decrements the reference count for SV,
calling sv_free if the count is 0.

SV* sv_bless(SV *rv, HV* stash) Blesses rv within the package represented by
stash.

int sv_isa(SV*, char *pkgname) Returns 1 if the SV inherits from the class
pkgname.

int sv_isobject(SV*) Returns 1 if the SV is an object.

SV* sv_newmortal() Creates a new blank mortal SV. See the
section “Mortals.”

SV* sv_2mortal(SV*) Marks an existing SV as mortal. See the
section “Mortals.”

SV* sv_mortalcopy(SV*) Duplicates an existing SV and makes the
duplicate mortal. See the section “Mortals.”

SV* perl_get_sv(char *varname,
int create)

Gets the variable name within a Perl script
specified by varname, which should be a
fully qualified reference. If create is set to 1,
then it creates a new scalar variable of that
name.

sv_dump(SV*) Pretty-prints a Perl variable (SV, AV, HV, etc.).

Table 20-2. Functions for Accessing and Using SVs (continued)

658 P e r l : T h e C o m p l e t e R e f e r e n c e

Accessing Perl Variables by Name The perl_get_sv function obtains an SV by its
fully qualified name within the script. For example, to get the value of $foo in the main
package:

SV *foo = perl_get_sv("main::foo",0);

There shouldn’t be any need to create a variable of a specified name using this
function, although it is possible. If you want to pass information back to a Perl script,
you should probably be using return values from a function anyway.

Array Values
An array is just a sequential list of scalar values. This is stored within Perl as an array
of pointers to SVs. Entries in an AV can be referenced with an index, and adding new
entries beyond the current maximum index number automatically increases the size of
the AV. The functions for accessing AVs are summarized in Table 20-3.

Function/Macro Description

AV* newAV() Creates a new, empty AV.

AV* av_make(int num,
SV **ptr)

Creates a new AV populated with the SVs
contained in **ptr.

I32 av_len(AV*) Returns the highest index of the array. Note that
this is not the number of elements in the array;
indexes start at 0, so the value is equivalent to
scalar(@array)–1, or $#array.

SV** av_fetch(AV *, I32
index, I32 lval)

Returns a pointer to the SV at location index
from an AV. Because a pointer is returned, you
can use the reference to update as well as access
the value stored. If lval is non-zero, then it
replaces the value at index with undef.

SV** av_store(AV*, I32
index, SV* val)

Stores an SV val at index within an AV and
returns the pointer to the new element.

Table 20-3. Functions for Handling AVs

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 659
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Hash Values
Hashes are only slightly more complex than AVs. A hash is a list of paired data
consisting of a string key and a pointer to an SV. You cannot have two entries in
a hash with the same key; trying to store a new value with an existing key will simply
overwrite that value. The functions for accessing HVs are summarized in Table 20-4.

Function/Macro Description

void av_clear(AV*) Deletes the references to all the SVs in an AV,
but does not delete the AV.

void av_undef(AV*) Deletes the AV.

void av_extend(AV*, int
num)

Increases the size of the AV to num elements. If
num is less than the current number of elements,
it does nothing.

void av_push(AV*, SV*) Pushes an SV onto the end of the AV. This is
identical to the Perl push function.

SV* av_pop(AV*) Pops an SV off the end of an AV. This is identical
to the Perl pop function.

SV* av_shift(AV*) Returns the first SV from an AV, deleting the
first element. This is identical to the Perl shift
function.

void av_unshift(AV*, I32
num)

Adds num elements to the end of an AV, but
does not actually store any values. Use av_store
to actually add the SVs onto the end of the AV.
This is not quite identical to the operation of the
unshift function.

AV* perl_get_av(char*
varname, int create)

Gets the AV called varname, which should be a
fully qualified name, without the leading @ sign.
Creates an AV with the specified name if create
is 1.

Table 20-3. Functions for Handling AVs (continued)

660 P e r l : T h e C o m p l e t e R e f e r e n c e

Function/Macro Description

HV* newHV() Creates a new, empty HV.

SV** hv_store(HV* hash, char* key,
U32 klen, SV* val, U32 hashval)

Stores the pointer to SV against the key.
You must supply the length of the key in
klen. The value of hashval is the hash
value used for storage. If it is 0, then the
value is computed for you. The return
value is a pointer to the location of the
new value within the hash.

SV** hv_fetch(HV* hash, char* key,
U32 klen, I32 lval)

Fetches an entry from an HV, returning a
pointer to the value.

SV* hv_delete(HV* hash, char*
key, U32 klen, I32 flags)

Deletes the element specified by key,
returning a mortal copy of the value that
was stored at that position. If you don’t
want this value, then specify
G_DISCARD in the flags element.

void hv_clear(HV* hash) Empties the contents of the hash, but does
not delete the hash itself.

void hv_undef(HV* hash) Empties the contents of the hash and then
deletes it.

I32 hv_iterinit(HV* hash) Returns the number of elements in the
HV, and prepares for iteration through
the hash.

SV* hv_iternextsv(HV* hash,
char** key, I32* pkeylen)

Returns the value for the next element in
the hash. The key is placed into the
variable pointed to by key, the physical
length of which is placed into the variable
pointed to by pkeylen. This is the function
used with the keys, values, and each
functions within Perl.

HV* perl_get_hv(char* varname,
int create)

Gets the hash named varname, which
should be a fully qualified package name.
If create is 1, the hash is created.

Table 20-4. Accessing HVs

TE
AM
FL
Y

Team-Fly®

Glob Values
A typeglob or glob value (GV) relates real value types with a symbol table entry. This
enables you to pass a typeglob in a Perl script and have the function use the correct
type of value. Normally, this is used for passing filehandles, but it can also be used for
scalars, arrays, hashes, functions, and even formats. The result is that a single identifier,
such as value, can be used as $value, @value, %value, and so on. What in fact happens
is that the main identifier is referenced to each of the different value types through the
glob value, which is an element in the symbol table hash. Strictly speaking, it’s a
“stash,” short for symbol table hash.

Some of the stash values are available directly within the C environment. These are
$_, $@, $&, $`, and $', and they relate to the C variables defgv, errgv, ampergv, leftgv,
and rightgv, respectively.

The functions for accessing glob values are a modified subset of those used to
access hash values, with functions closely tailored to the glob process. The functions
are summarized in Table 20-5.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 661
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Function/Macro Description

GvSV Returns a pointer to an SV.

GvAV Returns a pointer to an AV.

GvHV Returns a pointer to an HV.

GvIO Returns a pointer to a filehandle.

GvFORM Returns a pointer to a format.

HV *gv_stashpv(char* name,
int create)

Gets the corresponding HV for the glob named
name, and creates it if create is equal to 1.

HV *gv_stashsv(SV *, int
create)

Gets the corresponding HV for the glob named
by the SV, and creates it if create is equal to 1.

HV *SvSTASH(SV* sv) Gets the stash from a blessed object sv. You will
need to use SvRV(sv) to dereference sv if it’s a
reference.

char* HvNAME(HV* stash) Given a stash entry, returns the package name.

Table 20-5. Accessing Glob Values

662 P e r l : T h e C o m p l e t e R e f e r e n c e

Other Values
Perl also supports objects and code values (CV) within the C environment. However,
the methods for accessing these different elements are handled separately in this
chapter. A CV can be accessed using a number of special functions, which are actually
the functions used when you want to call Perl functions; therefore, they are covered
under the “Embedding Perl” section later in the chapter.

The Stack
In Chapter 8, we looked at the use of a list or array as a stack. Data was pushed onto
the top of the stack using push, and data was taken back using pop. The push/pop
stack was classed as a LIFO stack (last in, first out). The same principle is used within
Perl to store the arguments that are passed to a function during a function call.

This is better understood with an example. When the print function is called with
arguments, the strings and variables that are passed to it are pushed onto a stack. The
internal function for print is then called, and its first action is to take the variables from
the stack.

The actual sequence is slightly longer, since the Perl interpreter and the
stack-handling system need to know when a function wants to examine the stack, and
how many elements of the stack are actually destined for the function. The result is that
there are two stacks. One is the real stack where the data is stored. The other is a stack
of pointers, called the markstack, that shows where within the main stack the elements
for a particular function start. You can see a sample diagram that demonstrates a
simple function call, add(2,2), in Figure 20-3.

You can see from the diagram that the arguments to the add() function are stored
in order from bottom to top. The function can determine how many arguments it has
been passed by calculating the difference between the top of its stack and the stack
pointer information for the function in markstack.

The result is that the @_ array to the add() function is populated with the contents
of the stack. Within the realms of the Perl interpreter, this happens automatically.
Perl populates the stack when the add() function is called, and populates the contents
of @_ within the context of the add() function for you to do with what you will. When
the function exits, any return values are placed back on the Perl stack, so that the calling
function can use the returned values. If the caller does not use the values, a special function
is called, which removes the return values from the stack and also the corresponding
markstack pointer.

When you are accessing the internals of the Perl interpreter via C, you need to do
this stack manipulation manually. This is true whether you are calling Perl functions
or creating Perl extensions. In both instances, you will need to be able to exchange
information between the Perl environment and the functions that make up the
Perl interpreter.

There are some differences between the two environments that imply the need
for this interface. Most significant of these is that Perl supports multiple values to be
passed both to and from a function. Within C, a function can only return a single entity.

Although this can include structures and unions, this feature is not supported in Perl.
The use of a stack to hold the variables going in and out of a function supports the
multiple value syntax that is one of the powerful features of Perl.

We’ll deal with the use of the stack within a Perl extension first and then look at the
effects of embedding Perl on the stack.

Stack Access Within Extensions
When a C function is called from Perl, the Perl stack is used to pass any arguments to
the function. The process for retrieving arguments within the C code and then passing
return values back is as follows:

1. Initialize the stack interface (dXSARGS).

2. Retrieve an argument from the stack into a variable (ST).

3. Place the return values back on the stack (XSRETURN*).

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 663
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Figure 20-3. The Perl stack and markstack

The elements in parentheses in the preceding list show the function macro that is
used to achieve the desired operation. Returning to the add() function discussed
previously, the C function incorporating the preceding sequence can be seen here:

XS(XS_StatVFS_add)

{

dXSARGS;

if (items != 2)

croak("Usage: StatVFS::add(a,b)");

SP -= items;

{

int a = (int)SvIV(ST(0));

int b = (int)SvIV(ST(1));

XSRETURN_IV(a+b);

PUTBACK;

return;

}

}

The XS() statement at the start defines a new C function for use with the XS system.
This will be covered more fully in the “Extending Perl” section, later in this chapter. The
next call is to dXSARGS, which initializes a number of variables for use in the rest of the
function. The most important is items, which specifies the number of arguments that were
passed to the function. This is the value calculated by taking the value of the top of the
stack pointer away from the pointer on markstack, and it is used in the next line to
ensure that you have received the correct number of arguments to your function.

Next, the value of the stack pointer is reset to the beginning. You need to do this to
ensure that any return values are not added on top of the arguments passed. When you
access a value, it is not automatically removed from the stack. This is an optimization,
since doing this deletion would add overhead that just isn’t required if you manage
the stack properly in the first place.

The next two lines actually extract the arguments from the stack. ST() is a special
macro that accesses the stack directly. The first element, ST(0), is equivalent to $_[0]
within a Perl function. Note that the values are accessed in order, rather than popping
them from the stack. This is to ensure that you receive the variables in the order that
they were supplied in the code, not in the order they were pushed onto the stack.

The next line does the calculation by calling the XSRETURN_IV() macro. This
macro places a new IV (integer) value onto the stack, ready to be returned to the caller.
You can only use this and its related functions for passing back single variables to the
caller. For returning lists, you need to use a different method. See the “Extending Perl”
section for more details.

The next line is not required. The PUTBACK macro is used to specify that you have
finished placing values onto the stack. The XS stubs insert this function automatically—
although if you are hand coding the function, you can get away without using it.

664 P e r l : T h e C o m p l e t e R e f e r e n c e

That’s it. The function has been defined and the arguments have successfully been
taken from the stack and then put back. The available macros that you can use in this
process are summarized in Table 20-6.

If you want to place more than one variable onto the stack to return to the caller,
you will need to use a different method from the previous example. Instead, you will
need to push values onto the stack, either with a push function or by accessing the
stack elements directly using ST(). Either way, you should still, ideally, specify the
number of elements you have pushed back onto the stack by calling XSRETURN().
For example, the following lines push both an addition and a subtraction calculation
onto the stack:

XPUSHs(sv_2mortal(newSViv(a+b)));

XPUSHs(sv_2mortal(newSViv(a-b)));

XSRETURN(1);

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 665
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Macro Description

dXSARGS Defines the local variables used by other macros.
Defines the items variable, which contains the number
of items passed to the function via the stack.

SV* ST(n) Retrieves element n from the stack as an SV. The first
parameter is ST(0).

XSRETURN(n) Specifies the number of elements, n, you have left on
the stack, adjusting the reference stored on the
markstack.

XSRETURN_NO Returns a value of 0, and calls XSRETURN(1).

XSRETURN_YES Returns a value of 1, and calls XSRETURN(1).

XSRETURN_UNDEF Returns a value of undef, and calls XSRETURN(1).

XSRETURN_EMPTY Returns a value of 0, and calls XSRETURN(1).

XSRETURN_IV() Places a mortal integer on the stack, and calls
XSRETURN(1).

XSRETURN_NV() Places a mortal float on the stack, and calls
XSRETURN(1).

XSRETURN_PV() Places a mortal char* on the stack, and calls
XSRETURN(1).

Table 20-6. Macros for Using the Stack Within Extensions

666 P e r l : T h e C o m p l e t e R e f e r e n c e

The specification of these as mortal ensures that the values will be automatically
freed at the end of the scope. See the earlier “Scalar Values” section for more
information on marking them as mortal.

Stack Access for Embedded Perl
The process for calling a single Perl function with arguments is more or less identical to
the previous extension example, except that the process is done in reverse. The process
is as follows:

1. Initialize the environment (dSP).

2. Start the scope (ENTER).

3. Set up the environment such that temporary variables will be automatically
deleted at the end of the scope (SAVETMPS).

4. Remember the current top of the stack (PUSHMARK).

5. Push arguments onto the stack (XPUSHs).

6. Signify the end of the arguments (PUTBACK).

7. Call the Perl function.

8. Signify the start of return value reclamation (SPAGAIN).

9. Get the values from the stack (POP*).

10. Signify the end of return-value reclamation (PUTBACK).

11. Free the temporary variables.

12. End the scope (LEAVE).

The same add() function example will be used to demonstrate this sequence in practice.
We’ll assume the add() function has already been defined within the Perl environment.

void perl_add(int a, int b)

{

int retval;

dSP;

ENTER;

SAVETMPS;

PUSHMARK(sp);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

retval = perl_call_pv("add", G_SCALAR);

SPAGAIN;

if (retval == 1)

printf("Returned: %d\n",POPi);

PUTBACK;

FREETMPS;

LEAVE;

}

If you followed the sequence at the start of this section, you should be able to
follow the sequence in the code. The important parts are the calls to XPUSHs, which
place the mortal values of the two arguments passed to the perl_add function onto the
stack, and the POPi call. This pops the values placed onto the stack by the call to the
Perl add() function off the stack. In this example, it’s used in a printf() statement.

The values popped off the stack in this way come off in the inverse order in which
the values were placed onto the stack. That is, the last value in a list will be returned
first. You’ll need to account for this if you are accepting multiple values back from the
Perl function.

The macros available when embedding Perl are summarized in Table 20-7.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 667
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Macro Description

dSP Sets up the environment for the following macros.

ENTER Starts the scope of the call.

SAVETMPS Marks all mortal variables created after this call to be deleted
when FREETMPS is called.

PUSHMARK Defines the start of the arguments to be pushed onto the stack.

XPUSHs Pushes a scalar value onto the stack, extending the stack if
necessary.

XPUSHn Pushes a double onto the stack, extending the stack if necessary.

XPUSHp Pushes a string onto the stack, extending the stack if necessary.

XPUSHi Pushes an integer onto the stack, extending the stack if necessary.

XPUSHu Pushes an unsigned integer onto the stack, extending the stack
if necessary.

PUSHs Pushes a scalar value onto the stack. The stack must have room
to accept the new value.

PUSHn Pushes a double onto the stack. The stack must have room to
accept the new value.

Table 20-7. Macros Used When Embedding Perl Statements

668 P e r l : T h e C o m p l e t e R e f e r e n c e

Stack Size
The size of the stack is finite. Although you can normally add values to the stack
without having to worry about its size, you may run into problems if you are passing a
large number of variables between the C and Perl environments. The quickest way to
increase the size of the stack is to use the EXTEND macro, as in

EXTEND(sp,10);

If you use the XPUSHs macro to place values onto the stack, and you remember to
reset the stack pointer to the beginning, you shouldn’t need to use this macro, since
XPUSHs increases the stack automatically. The XS interface resets the stack pointer for
you when it creates the C code for the individual functions.

In practice, I’ve never had to use the EXTEND macro; but as a general rule, if you
are returning or accepting more than ten elements, you may want to use this function
to increase the available stack space. Remember, however, that increasing stack space
also increases the memory footprint of your application.

Macro Description

PUSHp Pushes a string onto the stack. The stack must have room to
accept the new value.

PUSHi Pushes an integer onto the stack. The stack must have room to
accept the new value.

PUSHu Pushes an unsigned integer onto the stack. The stack must have
room to accept the new value.

PUTBACK Defines the end of the arguments placed on the stack.

SPAGAIN Defines the start of the process for obtaining return values.

POPi Pops an int value from the stack.

POPl Pops a long value from the stack.

POPn Pops a double value from the stack.

POPp Pops a pointer value from the stack.

POPs Pops a char* (string) value from the stack.

PUTBACK Defines the end of the process for obtaining return values.

FREETMPS Clears the variables marked as mortal.

LEAVE Ends the scope.

Table 20-7. Macros Used When Embedding Perl Statements (continued)

Internals Summary
You should now be armed with all of the information that (in fact, more information
than) you will need for interfacing between C and Perl. The next two sections deal with
the specifics of developing extensions to the Perl environment and the different
methods for embedding Perl within an application.

Extending Perl
Writing a Perl extension is seen by many as a black art, only to be conducted by senior
programmers in the recesses of their programming environments. Unlike modules,
which only require a modicum of Perl knowledge to create, extensions require not only
knowledge of C or C++, but also knowledge of the internals in order to make your
extensions work within the Perl interpreter.

The process of creating an external C extension is actually more straightforward than
you think. An understanding of the internals of the Perl interpreter is not required, even
by a relatively advanced extension programmer. You can write complex extensions using
a small subset of the range that is available. That said, the introductory material provided
in this and the previous chapter should prove invaluable to the understanding of the
processes and conversions involved.

Once you are comfortable with the process we’ll examine—or just because your
curiosity gets the better of you—you can examine the Perl documentation for more
in-depth detail. For reference, all the internals of the extension process and of the Perl
interpreter itself are in the perlxs, perlxstut, and perlguts man pages. For further
information, you might also want to refer to the perlcall and perlembed man pages,
which contain information on the data interface between Perl and C, as well as details
of how to embed a Perl interpreter into your C programs, which is also the next major
topic in this chapter.

The process of developing the interface is made easier by two tools that eliminate
much of the complexity involved: one is called the XS interface, and the other is called
SWIG. The XS interface system is part of the standard Perl distribution and actually
refers to the language used to define the interface. The Simplified Wrapper and Interface
Generator (SWIG) is a third-party system written by Dave Beazley. It’s also based on an
intermediary language that defines the interface between the two language environments.

You will notice, as we progress through this section, that much of the information here
is not actually specific to producing extensions. The functions and methods explained will
also apply to the process of calling the Perl interpreter from a C program. Conversion of
information from C variables to the variable types used by the Perl interpreter—and,
therefore, the Perl language—make up the bulk of the information provided, and the
processes are vital for either extending or embedding Perl using C and C++.

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 669

The Extension Interface
The Perl interpreter has the ability to call external C functions. This is the basis of many of
the built-in functions. When you call a function within Perl, it looks for the definition of
the function. If it’s a Perl function, it just jumps execution of the opcode tree to the start
of the function definition. If it’s a built-in function, it makes a call to the underlying C
function, if necessary, or uses one of the data-handling functions you saw at the start of
this chapter. If the function is neither built in nor a Perl-defined function, then it can be
loaded from an external dynamic library. The development of an extension, therefore,
requires you to build the library that Perl loads in order to execute your customized
C function.

The actual process is slightly more complex than just creating a new function in C
and installing it in the Perl directory hierarchy. There are some fundamental differences
between the format of Perl data types and their C counterparts. C, for example, does not
by default support hashes, whereas Perl does.

The development process must also create some code that interfaces between the
internals of the Perl interpreter and the internals of a C function. This is called glue code,
and it solves the two main differences between Perl and C—data types and memory
management.

Data types in Perl are actually complex C structures. Some of the structure and
complexity can be found at the beginning of this chapter where we looked at the
different Perl variable types and the functions that enable you to access them. Most of
the base data types, such as integers and strings, are handled automatically by both XS
and SWIG. More complex structures and data types, including C structures and Perl
objects, must have special typemapping code written for them so that both sides of
the interface are able to access and use the information stored within them.

Perl handles all of its memory management automatically. When you create new
variables and delete or undefine them, Perl automatically allocates and deallocates the
necessary storage for each variable. C, on the other hand, expects you to do all of this
explicitly. For simple variables, this means specifying their size at the initialization
stage; but for more complex or large variables, you have to use the calloc() or malloc()
function to allocate the memory, and free() to deallocate it when you’ve finished.

In addition, both interfaces solve two further problems—that of the specializations
available in Perl and the necessary glue code to make the functions work. Specializations
include the use of objects, packages, and multiple return values, which a Perl programmer
takes for granted. The glue code is all of the necessary wrapper and interface code that
makes a simple C function accessible within Perl.

XS Overview
The XS interface is part of the standard Perl distribution; and, as such, it is given more
attention here than the third-party SWIG interface. XS, or XSUB, stands for eXternal
SUBroutine. The term “XS” is usually taken to refer to the interface system, while
“XSUB” specifies an individual function within the XS definition. Using the special

670 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

language called XS, you specify the interface between a Perl module and the C
functions you want access to. The actual layout is not hugely different from a typical
C header file, except that the information is organized and structured to include the
necessary links for the Perl side of the equation.

The XS file is then parsed by the xsubpp script, which processes the contents and
spits out the C source code ready for compilation. The code includes all the necessary
glue code and initialization procedures. You are expected to supply a suitable module
for communicating between Perl and the underlying library; but, otherwise, the
process is completed.

Because of the similarity of the XS file to a header file, there is a tool, h2xs, that will
convert existing header files into the XS format. This greatly simplifies the process of
manually writing an interface to a C library by doing most of the work for you. In most
cases, the converted file can be passed immediately onto xsubpp, and the resulting C
source file is compiled without any further intervention.

SWIG Overview
The SWIG system takes a slightly different tack. SWIG, itself, was designed as an interface
builder between C functions and a number of scripting systems. At the time of this book’s
writing, they include Perl, Python, Tcl, Guile, and Eiffel. A Java extension has also just
been released that provides yet another tool for bringing Java to the desktop.

Like XS, SWIG uses an intermediary file that defines the interface between the C
code and the high-level language at which the SWIG definitions are aimed. The result
is two files—the glue code in a C file and the Perl module file that can be used to access
it. This is more automated than the XS system, which requires you to develop your
own module file if you are producing the XS file manually. With h2xs, of course,
this is not an issue.

One big difference between SWIG and XS is that SWIG is capable of providing the
necessary code to support the complex structures within C and objects within C++. The
h2xs tool, on the other hand, is fairly dumb and can only handle simple data types and
functions. Although you can design your own interface and typemap systems, it adds
overhead to what is already a complex process.

On the other hand, I very rarely find myself passing back structures or objects
to Perl. Instead, I use the other features, such as hashes and multiple return values, to
return the information. If you consider getpwent and similar functions, they all supply
information back to the caller as structures when used in the C environment; but
within Perl, the values are returned as a list.

Because of this generalized approach, SWIG is a much more practical solution if
you are developing extensions to many scripting languages simultaneously. I’ve used
it before for providing the same basic interface to a C library for both Python and Perl,
to suit the needs of two different clients at the same time. On a personal level, I actually
prefer to use the XS system for Perl and SWIG for other languages if I’m developing
for them in isolation. If I have to develop a library that will be practical for many

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 671
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

languages, I use SWIG, if only to cut down on the headaches from developing with two
different systems.

There is a school of thought that says XS is better than SWIG because it’s a
Perl-derived tool and can, therefore, take advantage of the Perl environment better
than SWIG. I’ve never once found that to be the case. The two systems produce code
that is almost identical, and unless you are doing something very Perl specific, it’s
likely that either tool will suit you well. The other thing to consider is that all of the
modules on CPAN are provided as XS rather than SWIG extensions. If you ever plan
to provide your module to the Perl community, use XS.

Using XS
For the process of designing an extension, we’ll be examining the creation of two
sample modules. The first is our own interface to the standard C math library, which
will help us cover the basics of the XS process. The other is more complex and will
demonstrate the advanced features of the XS interface as we develop a simple module
that obtains the size of a file system using the statvfs() function that is available on
many Unix platforms. The result will be a new Perl function. You supply the directory
or file name, and the function will provide a list of scalars, detailing the total size of
the file system, and the amount of space used and available.

Although this example could be classed as platform specific (it was generated
on a Sun Solaris 2.4 machine), the principles learned here will easily translate to other
functions and modules. Where necessary, we’ll also be sidetracking to look at the other
features and capabilities of the XS system.

The h2xs Converter
For all libraries there is a corresponding header file that contains the definitions of any
constant values, structure definitions, and the prototypes of any functions contained
within the library. Although the XS system does not handle C structures, you can use
the h2xs utility to convert an existing header file into an XS file, suitable for producing
the interface.

The h2xs command reads in the contents of the header file and produces an XS file
that consists of all the basic definitions and function-interface components to make the
C functions available as an extension in Perl. The file produced is very basic and is only
suitable for functions that return one of the basic data types. You will need to modify
the file if you want to do more complex conversions or if you want to return, say, the
contents of a structure as a list of return values. The modification and production of
this information makes up the bulk of this section of the chapter.

In addition, h2xs produces a module file with all the necessary code required to
import the external C function and provide the necessary constants and other values
to a Perl script. The module file also includes a bare template of some POD (Plain Old
Documentation)–formatted documentation that you should modify if you plan to
distribute the module to other people.

672 P e r l : T h e C o m p l e t e R e f e r e n c e

The other major component is a Perl makefile called Makefile.PL. This contains
the absolute minimum of definitions required to ensure that the MakeMaker module
produces a makefile suitable for building and installing the extension. This takes a lot
of the guesswork out of the process of compiling the extension, as you will see. It’s also
the method used in the CPAN modules to automatically extract, build, and install the
extension on any destination machine. See Chapter 2, for more information.

Finally, h2xs produces a test script and two documentation files. The test.pl file
just calls each of the functions mentioned to make sure they could be loaded. Again,
this file should be modified to include more complex tests to ensure that the extension
can be used properly. By default, it’s the script used to test the distribution when a
make test command is run. The Changes file is provided for you to record any
modifications, and the MANIFEST file lists the files that make up the core files
required for the extension. These files are vital components of a typical CPAN
module, because they provide additional information to the user about the expected
contents of the package they have downloaded.

The h2xs script is very straightforward to use:

$ h2xs /usr/include/sys/statvfs.h

Writing Statvfs/Statvfs.pm

Writing Statvfs/Statvfs.xs

Writing Statvfs/Makefile.PL

Writing Statvfs/test.pl

Writing Statvfs/Changes

Writing Statvfs/MANIFEST

The file name and package name are title case, as per the usual Perl standards; and,
depending on the source content, the files are written into a separate subdirectory. In
theory, the files produced should be ready for compilation and installation. If you
need to include additional libraries when using the functions, you should append the
library names to the command line you supply.

There are also some options to the h2xs command, but refer to the man page
for more information. The core of the XS system is the XS file; and, although one is
produced by the h2xs system, it is much more likely that you will want to build in
some form of customization.

The .xs File
The XS file is the core of the XS system. It defines the interface between Perl and the
underlying C functions you are providing an interface to. Although in some cases the
file will be automatically produced by the h2xs utility, it’s unlikely that it will perfectly
match either the desired results or the interface you have come to expect between
callers and functions in the Perl language.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 673
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Once the XS file has been created, it is parsed by a Perl script, xsubpp, which takes
the information provided and produces the C source file with the necessary statements
required to build the interface library.

The format of the file is as follows:

C includes

MODULE: Name PACKAGE: Name

OPTIONS

function definitions

The top section is passed verbatim onto the C source file that is generated. The headers
you include at this point should consist of all the headers required for the functions
you are using. The PACKAGE and MODULE definitions set the module and package
names. There are then a number of OPTIONS that affect the whole interface process,
before you proceed to the function definitions.

The format of the function definitions is very strict. The return type is specified
first, on its own line, followed by the name of the function and a list of argument
names that can be supplied. Then, one per line, come the data type declarations for
the argument names. These type declarations are also very strict. If you are defining
a pointer to an argument (as in char* string), the asterisk must remain with the type,
not the argument name. Finally, there are a number of function-specific options. We’ll
cover all these different aspects as we examine the different XS file complexities.

If we look at a real function definition for our math interface, you can see the
format more clearly:

double

tan (value)

double value

As you can see, the return value is specified on its own line, and the function’s only
argument is specified on its own line. This is actually all you need to do if the function
is simple. In this case, the tan() function accepts and returns a simple value,
so there is no need to do any conversion between, say, a structure and a list of return
values for Perl. The XS interface system will handle everything else during the
compilation process. It really is that simple and straightforward.

You need to understand that the functions you “define” within the XS file are
merely function mappings between the function as it will appear in Perl, and the
function call and arguments accepted within the C environment. In the preceding
example, a map is created between the tan function in Perl and the tan() function in C.

674 P e r l : T h e C o m p l e t e R e f e r e n c e

The definition of the passed and returned values helps the XS process identify the
arguments supported by the Perl function and determine how they translate to the
underlying C function. The actual conversion of the values is handled automatically
by the XS system in conjunction with a predefined typemap.

Let’s look at a more complex example—this time the StatVFS module, which we’ll
use to discuss the more advanced components of the XS file structure. The full file can be
seen next. It defines two functions: fsavail and fsstat. The fsavail function is a simple
one-shot function to find out the number of bytes available on a file system. It returns a
long integer specifying the number of bytes. The fsstat function returns a list of values
containing the total size, space used, and space available for a file system. In both cases,
the functions take a single argument—a string containing a file path. The internal statvfs
function uses this to determine which file system to return the space for.

#include "perl.h"

#include "XSUB.h"

#include <sys/types.h>

#include <sys/statvfs.h>

MODULE = StatVFS PACKAGE = StatVFS

PROTOTYPES: DISABLE

long

fsavail (path)

char * path

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

RETVAL = (vfsrec.f_frsize * vfsrec.f_bavail);

}

else

{

RETVAL = -1;

}

OUTPUT:

RETVAL

void

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 675
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

676 P e r l : T h e C o m p l e t e R e f e r e n c e

fsstat (path)

char * path

PPCODE:

{

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

PUSHs(sv_2mortal(

newSViv(vfsrec.f_frsize *

vfsrec.f_blocks)));

PUSHs(sv_2mortal(

newSViv((vfsrec.f_frsize *

(vfsrec.f_blocks

-vfsrec.f_bavail)))));

PUSHs(sv_2mortal(

newSViv((vfsrec.f_frsize *

vfsrec.f_bavail))));

}

}

The important things to note with this file are the function definitions. For both
functions, you are no longer mapping directly between the supported C function,
statvfs(), and its identical cousin in Perl, statvfs. Instead, you are creating brand-new
functions that act as wrappers around the underlying calls to the statvfs() C function.
You no longer rely on XS to do the translation, because the underlying function you
are calling returns a C structure, not a single value. C doesn’t support multiple return
values, so you need to do some manipulation of the information returned in order to
translate it into a simple list of values.

For the fsavail function, you rely on the XS system to convert between the long that
you’ve stated as the return value, and a normal integer value within Perl. You assign
the return value to a special variable, RETVAL, and then mark that variable with the
OUTPUT: keyword as the value to be returned to Perl when this function is called.

For the fsstat function, you do this conversion within a PPCODE block, which
tells the XS interface builder that you are manipulating the contents of the Perl stack
directly, rather than supplying a return value. The first few steps create the required C
structures and then call the statvfs() library function to populate the structure with the
information you want. In addition to the PPCODE: definition, you also need to ensure

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 677
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

that the function is defined as void, since you are not directly returning any values
from the function.

Then you push values onto the Perl argument stack with the PUSHs function,
which you saw in the section “Stack Access for Embedded Perl,” earlier in this chapter.
This pushes a scalar value—in this case, an integer—onto the stack. You could (and
perhaps should) have used the XPUSHs function, to ensure that the stack was
extended accordingly. For only three values, we’re probably safe with PUSHs.

Note that the calculated values are encapsulated within a call to newSViv, which
creates a new integer scalar value; and sv_2mortal, which marks the scalar value as
mortal, allowing it to be deleted when the whole process has finished. This helps
prevent memory problems by freeing up values after they have been used—you
have no need for those temporary values in the calculation.

Also note that error checking is supported in the fsstat by returning an empty list,
the default return value on an error; fsavail returns –1 on an error, also the default
operation when calling external system functions. Remember that you can’t use 0 as
a return value, because that could equally indicate that there was no available space
on the drive.

For reference, the format for the statvfs C structure is shown here:

typedef struct statvfs {

u_long f_bsize; /* fundamental file system block size */

u_long f_frsize; /* fragment size */

u_long f_blocks; /* total # of blocks of f_frsize on fs */

u_long f_bfree; /* total # of free blocks of f_frsize */

u_long f_bavail; /* # of free blocks avail to non-root */

u_long f_files; /* total # of file nodes (inodes) */

u_long f_ffree; /* total # of free file nodes */

u_long f_favail; /* # of free nodes avail to non-superuser */

u_long f_fsid; /* file system id (dev for now) */

char f_basetype[FSTYPSZ]; /* target fs type name */

u_long f_flag; /* bit-mask of flags */

u_long f_namemax; /* maximum file name length */

char f_fstr[32]; /* filesystem-specific string */

u_long f_filler[16]; /* reserved for future expansion */

} statvfs_t;

Again, the process is relatively straightforward. If you know how to program in C,
you should be able to create and access the necessary structures and use the techniques
shown here to produce a customized interface to a C function. Of course, there is no
reason to use and translate values determined by an external function; you could use
the CODE or PPCODE block to define your C function without requiring an external
function at all.

XS Keywords
You’ve already seen some of the keywords used by the XS system to indicate different
operations and situations. The full list is given here, including all the currently
supported keywords and operations.

As a general rule, all keywords with a trailing colon expect some form of argument,
statement, or code block following them. Keywords without a trailing colon are
generally assigned to (as with RETVAL), or assign values or options to an existing
statement (as in NO_INIT). The exact location and use of these varies, so ensure you
understand the descriptions and locations given.

ALIAS: You can specify additional unique Perl names for the current XSUB using
the ALIAS: keyword. The format used is a simple assignation statement, where each
individual name should be given an incremental integer value. When the subroutine
is called, you can identify which name was used by the value of the ix variable, which
will contain the number defined in the XSUB. If ix contains 0, then it was called by its
original name. The following example shows that fsavail is also available as spaceavail
and fileavail:

long

fsavail (path)

char * path

ALIAS:

spaceavail = 1

fileavail = 2

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

RETVAL = (vfsrec.f_frsize * vfsrec.f_bavail);

}

else

{

RETVAL = -1;

}

OUTPUT:

RETVAL

BOOT: This keyword defines the code to be added as part of the extension’s
bootstrap function, which is used to register the XSUB within the current Perl
interpreter. The xsubpp program actually generates the bootstrap function, and the

678 P e r l : T h e C o m p l e t e R e f e r e n c e

statements added with the BOOT: keyword will be appended to the standard
bootstrap code. The keyword can be used at any time after the MODULE keyword,
and a blank line will terminate the bootstrap code.

C_ARGS: This keyword allows you to define an alternate sequence for passing the
arguments received to the underlying function. For example, if you were providing an
interface to a program that calculated the power of a number,

int power(raise, number);

you might want to provide the function within Perl as

power(number, raise);

The definition you would use might be

int

power(number, raise)

int number;

int raise;

C_ARGS:

raise, number

This negates the need to use the CODE: or PPCODE: keyword.

CASE: The CASE: keyword allows you to set up a multiple-choice option list within
an XSUB. The CASE: statement can switch via an XSUB parameter, via the ix variable,
via the ALIAS: keyword, or through the items variable (see the “Accepting
Variable-Length Argument Lists” section, later in the chapter). The CASE: keyword
must be the first entry in the XSUB definition, and it will swallow all remaining
arguments to the current XSUB, regardless of their contents.

The format of CASE: is very similar to a typical switch statement within the
standard Unix shell. For example, the following is an alternative to the ALIAS: and
C_ARGS: keywords. This time, the CASE: keyword is used to allow both power
(which raises a to the power of b) and r_power (which raises b to the power of a):

int

power(a, b)

CASE: ix == 1

ALIAS:

r_power = 1

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 679
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

INPUT:

int a

int b

CODE:

RETVAL = power(a,b)

OUTPUT:

RETVAL

CASE:

int a

int b

CODE:

RETVAL = power(b,a)

OUTPUT:

RETVAL

Note that you place a conditional statement after the CASE: keyword to act as the
matching value; the last CASE: becomes the default if you do not specify a conditional
statement.

CLEANUP: This keyword enables you to define additional code to be called before
the XSUB terminates. This keyword must follow a CODE:, PPCODE:, or OUTPUT:
block. The defined code will be appended to the end of these blocks as the last
statements within the XSUB.

CODE: The CODE: keyword supports the inclusion of additional wrapper code to be
used when calling the function. See the earlier fsavail definition for an example. Note
that the RETVAL is not automatically assumed to be the return value; you explicitly
define this via the OUTPUT: keyword.

INCLUDE: You can use this keyword to specify the name of another file from which
to import XS code:

INCLUDE: AddFuncs.xsh

You can also import the information from an external command by appending a
pipe symbol (|):

INCLUDE: generatedXS.pl |

INIT: The INIT: keyword allows you to insert initialization code before the
destination function is called. This can be used for initializing variables, allocating

680 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

memory, or inserting debugging statements. Unlike when using CODE:, RETVAL
works as you expect.

INPUT: This keyword causes the input parameters to be evaluated later than
normal within the function initialization. This is usually used in conjunction with the
PREINIT: keyword and may be included multiple times within the XSUB definition.

INTERFACE: The INTERFACE: keyword allows you to define a mapping for a
number of functions simultaneously. For example, when developing an interface to a
suite of functions that all have the same argument list—such as sin, cos, and tan—you
could define them as

float

interface_s(value)

float value

INTERFACE:

sin cos tan

All three functions are now available as individual functions, but you have saved some
time processing the directory.

INTERFACE_MACRO: This keyword allows you to define an INTERFACE (as
defined earlier in the chapter) using a predefined macro to extract a function pointer
for the XSUB definition. The text following this function should be the names of
the preprocessor macros that would extract and set a function pointer. The default
macros (used if you don’t explicitly specify them) are XSINTERFACE_FUNC and
XSINTERFACE_FUNC_SET. The extractor macro is given the return type, the CV*
code value pointer, and the XSANY.any_dptr pointer for the CV*. The macro for
setting the function is given cv (the code value) and the pointer to the correct function.

MODULE The MODULE keyword starts the XS definition section of the XS file:

MODULE = StatVFS

Everything before the MODULE keyword is taken as raw C code to be passed on to the
C file created by xsubpp. The name specified will be used as the basis of the bootstrap
function that will form the interface between Perl and the C functions. It will also be
the name of the package that will use the function unless you specify differently with
the PACKAGE keyword.

NO_INIT This keyword indicates that a function parameter is being used only as an
output value, as in the case of a passed parameter being populated by the function and

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 681
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

682 P e r l : T h e C o m p l e t e R e f e r e n c e

then used as the return value. This option prevents Perl from taking all the arguments
from the argument stack and assigning them to C variables upon entry. For example:

bool_t

rpcb_gettime(host, timep)

char *host;

time_t &timep = NO_INIT

OUTPUT:

timep

OUTPUT: The OUTPUT: keyword indicates that a particular value within the
function arguments has been updated, and the new values should be made available to
Perl when the function terminates. This is useful for functions when you are passing
the address of a structure to the C function. The C function updates the contents of the
array or structure directly, but may actually return an unrelated value (usually an error
code). By defining the passed variable or structure as the OUTPUT: value, Perl knows
this is the information to return to the calling Perl script.

You should also use this keyword when it is unclear what value Perl should be
returning. When you use a CODE: block, the RETVAL variable is not recognized as an
output variable, and you would need to pass RETVAL to the OUTPUT: keyword to
ensure that the XS interface returns the correct information.

Finally, an OUTPUT: keyword can be used to create an in-line typemap; so the
output parameter can be mapped to a particular piece of code, just as it would in the
standard typemap.

PACKAGE You can specify an alternative package name or the specific package
name if it’s part of a package hierarchy, using the PACKAGE keyword:

MODULE = StatVFS PACKAGE = StatVFS

It is always used with the MODULE keyword.

PPCODE: This defines a block of code, just like the CODE: block. However, the XS
system expects you to update the contents of the Perl stack directly, rather than relying
on return values. You also need to make the call to the underlying function yourself,
which allows you to use a different function name from that of the XSUB. You will also
need to handle errors and conversions within the PPCODE: block. This is also the only
way you can support a function that returns multiple values.

PREFIX The PREFIX keyword should follow the MODULE and/or PACKAGE
keywords, and specifies a string that should be removed from the C function when it is
requested within Perl:

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 683
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

MODULE = StatVFS PREFIX = prefix

For example, if the function is rpcb_gettime(), then you might specify a PREFIX of
rpcb_ so that function is available within Perl as gettime().

PREINIT: The PREINIT: keyword enables you to declare additional variables before
they are parsed through the typemap. This prevents the ordinary parsing of the supplied
variable through the typemap when it is used within a CODE: block. You can use this
keyword one or more times within the XSUB definition.

PROTOTYPE: You can specify a particular prototype for an individual function
with this keyword. This overrides all other prototypes and keywords for the current
XSUB. The prototype format follows the normal Perl conventions. See Chapter 5 for
more details.

long

fsavail (path)

char * path

PROTOTYPE: $

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

RETVAL = (vfsrec.f_frsize * vfsrec.f_bavail);

}

else

{

RETVAL = -1;

}

OUTPUT:

RETVAL

PROTOTYPES: This keyword creates Perl prototypes for the XSUB functions.
This overrides the -prototypes and -noprototypes options to the xsubpp compiler.
Prototypes are enabled by default, so to explicitly enable them,

PROTOTYPES: ENABLE

or to disable them (permanently):

PROTOTYPES: DISABLE

REQUIRE: This keyword allows you to specify the minimum version number of the
XS interface and, more specifically, the xsubpp compiler that you want to use:

REQUIRE: 1.9507

SCOPE: This keyword enables scoping for a particular XSUB. To enable scoping:

SCOPE: ENABLE

This will cause the ENTER and LEAVE macros to be called automatically (see the “The
Stack” section, earlier in the chapter). You can switch it off with

SCOPE: DISABLE

VERSIONCHECK This enables or disables version checking and overrides the
command line options to the xsubpp program. With version checking switched on (the
default), the XS module will verify that its version number matches the version number
of the host Perl module. To enable version checking,

VERSIONCHECK: ENABLE

and to disable it:

VERSIONCHECK: DISABLE

XS Tricks
Using the keywords just described and some other tricks, there are ways in which you
can easily get around problems without resorting to additional C code within the
XSUB definition.

Initializing Parameters When an argument from Perl is supplied to the underlying
function you are mapping within XS, a typemap entry is used to convert the supplied Perl
value (IV, NV, SV, etc.) into a suitable C data type. You can override the conversions
supported within a typemap (see the “Typemaps” section, later in the chapter) by
supplying your own initialization code as part of the XSUB definition. The method
required is to use typemap code directly within the XSUB definition, as shown here:

long

fsavail (path)

char * path = (char *)SvPV($arg,PL_na);

684 P e r l : T h e C o m p l e t e R e f e r e n c e

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

RETVAL = (vfsrec.f_frsize * vfsrec.f_bavail);

}

else

{

RETVAL = -1;

}

OUTPUT:

RETVAL

The supplied code will be eval’d before it is parsed by the compiler, so care should
be taken to ensure you backslash-quote any Perl variables. The special variables
supported by the typemap system are also supported here, so you can use $var, $arg,
and $type directly within the initialization code.

For more-complex operations, you can also use initialization strings that begin with ;
or +, rather than the = used in the preceding code. In the = and ; cases, the supplied code
overrides the code supplied by the typemap; while the + form is in addition to the typemap
code, which is executed before the supplied code. Both the ; and + forms output the
initialization code after the arguments have been declared, in deference to the = format,
where the initialization is placed on the same line.

Default Values Many Perl functions allow you to use them without specifying any
arguments. For example, with the fsavail function, it might be handy to use it like this:

$rootfree = fsavail;

In order to do this, you need to set a default value for this instance of a function call.
The normal operation, of course, is for Perl to accept values of the argument stack and
pass them to the XSUB. The value you assign will be used if the caller does not supply
any values. The method for doing this is to specify the default value within the
XSUB definition:

long

fsavail (path="/")

char * path

CODE:

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 685
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

if (statreturn == 0)

{

RETVAL = (vfsrec.f_frsize * vfsrec.f_bavail);

}

else

{

RETVAL = -1;

}

OUTPUT:

RETVAL

Returning undef Implicitly You can return undef from the C function by using a
CODE: block and setting the first return value to that returned by sv_newmortal(),
which returns the undefined value default. You could, therefore, rewrite the fsavail
function as follows:

SV *

fsavail (path)

char * path

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

ST(0) = sv_newmortal();

if (statreturn == 0)

{

sv_setnv(ST(0),(vfsrec.f_frsize * vfsrec.f_bavail));

}

Note the other changes to the function definition. You are returning a scalar value
directly, rather than relying on the XS system to do the conversion for you. This means a
change to the return type, which is now a pointer to a scalar value, and a modification to
the return value. You now have to set the value of ST(0), the “top” entry within the stack,
explicitly to an integer value with the sv_setnv() function.

Returning undef Explicitly You can explicitly (rather than implicitly) return an
undefined value by setting the return value to the address of &PL_sv_undef; so you
can rewrite the preceding code as follows:

686 P e r l : T h e C o m p l e t e R e f e r e n c e

SV *

fsavail (path)

char * path

CODE:

struct statvfs vfsrec;

int statreturn;

statreturn = statvfs(path,&vfsrec);

ST(0) = sv_newmortal();

if (statreturn == 0)

{

sv_setnv(ST(0),(vfsrec.f_frsize * vfsrec.f_bavail));

}

else

{

ST(0) = &PL_sv_undef;

}

Returning Empty Lists You have already seen an example of returning an empty
list. It requires the use of a PPCODE: block to ensure that the XS system recognizes that
you are manipulating the stack directly. To empty an empty list, you just neglect to
push any values onto the stack.

Accepting Variable-Length Argument Lists To accept a variable length of
arguments from Perl to a C function, you need to specify . . . (an ellipsis) in the parameter
list. This is the same structure as used by ANSI C to define a multiargument function
within Perl. Once you have specified this within the function definition, you can examine
the value of the items variable, supplied to all XSUBs, which specifies the number of
arguments supplied.

Once you have determined how many arguments have been supplied, you can
then take them off the stack directly using ST(). You will need to convert the supplied
argument yourself, using the correct function to convert from the internal Perl data
type to the C equivalent.

Typemaps
The XS system handles the translation of most of the basic data types used in C and
Perl automatically. For more complex entities, such as structures and objects, you need
to tell the XS system how to convert and translate between the different formats. The
Perl distribution installs its own basic typemap, which is composed of, and converts
between, most of the data types used as part of the standard libraries. For nonstandard
libraries, you will need to supply your own typemaps if you want XS to convert
between structures and objects transparently. Obviously, if you are using a CODE:
or PPCODE: block, then chances are that you are doing your own conversion by

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 687
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

returning a specific value or list of values to the caller; the typemap is only used for
automatic conversions.

The default typemap is contained within the ExtUtils directory within your Perl
library. Any typemap you define within the local XS directory will override the
conversions available in the default typemap.

A typemap is split into three parts: TYPEMAP, INPUT, and OUTPUT. The
TYPEMAP section contains instructions on how to translate between formats, using
the definitions in the INPUT and OUTPUT sections. The INPUT section tells the XS
system how to translate Perl values into C variables, and the OUTPUT section tells
the XS system how to translate C values into Perl values.

The file is parsed by Perl, so the constructs and code should be Perl friendly, even
though the resulting code within the typemap will be compiled as C source to perform
the conversions. The value to be converted is in the $arg variable, and the $var variable
is the destination of the translated value. Thus, you can generate a simple typemap for
converting integer values into Perl scalars and back again like this:

int T_IV

unsigned T_IV

unsigned int T_IV

long T_IV

unsigned long T_IV

short T_IV

unsigned short T_IV

INPUT

T_IV

$var = ($type)SvIV($arg)

OUTPUT

T_IV

sv_setiv($arg, (IV)$var);

The top of the example is the TYPEMAP section, which is implied if no section is
specified. The definitions show the C type on the left and the corresponding INPUT or
OUTPUT map to be used on the right. The definition, T_IV in this case, is then looked
up in the corresponding section, depending on whether you are passing an argument
to a C function or returning a value from a C function. The corresponding code is then
eval’d by Perl and used within the XSUB to do the conversion. Note that you can use
the same definition for multiple TYPEMAP entries.

If you want to convert structures, you can use the predefined T_PTROBJ and
T_PTRREF, which convert a structure to and from a blessed reference, or an unblessed
reference, respectively. This allows you to interface directly, both to normal C structures
and to C++ objects; the XS interface will handle the conversion for you.

688 P e r l : T h e C o m p l e t e R e f e r e n c e

For most situations, the use of a PPCODE: block, where you can return a list
of values, is generally the best method, since it fits in with the style of the core Perl
functions—such as getpwnam and others.

The Extension Module
Providing you have used h2xs to create a base XS file and module, you should rarely
need to make any modifications to it. However, it’s worth looking at the code to
understand the processes involved in loading and using your extension after it has
been compiled.

package StatVFS;

use strict;

use Carp;

use vars qw($VERSION @ISA @EXPORT @EXPORT_OK $AUTOLOAD);

require Exporter;

require DynaLoader;

require AutoLoader;

@ISA = qw(Exporter DynaLoader);

Items to export into callers namespace by default. Note: do not export

names by default without a very good reason. Use EXPORT_OK instead.

Do not simply export all your public functions/methods/constants.

@EXPORT = qw(

fsavail

fsstat

);

$VERSION = '0.02';

sub AUTOLOAD {

This AUTOLOAD is used to 'autoload' constants from the constant()

XS function. If a constant is not found then control is passed

to the AUTOLOAD in AutoLoader.

my $constname;

($constname = $AUTOLOAD) =~ s/.*:://;

croak "& not defined" if $constname eq 'constant';

my $val = constant($constname, @_ ? $_[0] : 0);

if ($! != 0) {

if ($! =~ /Invalid/) {

$AutoLoader::AUTOLOAD = $AUTOLOAD;

goto &AutoLoader::AUTOLOAD;

}

else {

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 689
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

croak "Your vendor has not defined StatVFS macro $constname";

}

}

*$AUTOLOAD = sub () { $val };

goto &$AUTOLOAD;

}

bootstrap StatVFS $VERSION;

Preloaded methods go here.

Autoload methods go after =cut, and are processed by the autosplit program.

1;

_ _END_ _

The most obvious items you will need to change in the module file are the names of
the functions you have defined within the XS file. Of course, there is nothing to stop
you from adding more Perl functions, variables, or statements to the generated file—it
is, after all, just an ordinary module.

Two elements are omitted from the example. One is the list of constants that may or
may not be defined within the header file from which the extension and module were
produced. There are no constants required for the StatVFS module, so there was no
constant() function to define within the XS file. However, for an example, see the
following XS interface file from a typical math.h header file. The method used is to
create a function called constant(), which accepts the name of the constant to look up.
You then use C code and a switch() statement to identify the constant that was
requested and return the correct value, which is itself taken from the macro values
defined in the header file.

#include "EXTERN.h"

#include "perl.h"

#include "XSUB.h"

#include <math.h>

static int

not_here(char *s)

{

croak("%s not implemented on this architecture", s);

return -1;

}

static double

constant(char *name, int arg)

690 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

{

errno = 0;

switch (*name) {

case 'A':

break;

case 'B':

break;

case 'C':

break;

case 'D':

if (strEQ(name, "DOMAIN"))

#ifdef DOMAIN

return DOMAIN;

#else

goto not_there;

#endif

break;

case 'E':

break;

case 'F':

break;

case 'G':

break;

case 'H':

if (strEQ(name, "HUGE"))

#ifdef HUGE

return HUGE;

#else

goto not_there;

#endif

if (strEQ(name, "HUGE_VAL"))

#ifdef HUGE_VAL

return HUGE_VAL;

#else

goto not_there;

#endif

break;

case 'I':

break;

case 'J':

break;

case 'K':

break;

case 'L':

break;

case 'M':

if (strEQ(name, "MAXFLOAT"))

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 691
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

#ifdef MAXFLOAT

return MAXFLOAT;

#else

goto not_there;

#endif

if (strEQ(name, "M_1_PI"))

#ifdef M_1_PI

return M_1_PI;

#else

goto not_there;

#endif

if (strEQ(name, "M_2_PI"))

#ifdef M_2_PI

return M_2_PI;

#else

goto not_there;

#endif

if (strEQ(name, "M_2_SQRTPI"))

#ifdef M_2_SQRTPI

return M_2_SQRTPI;

#else

goto not_there;

#endif

if (strEQ(name, "M_E"))

#ifdef M_E

return M_E;

#else

goto not_there;

#endif

if (strEQ(name, "M_LN10"))

#ifdef M_LN10

return M_LN10;

#else

goto not_there;

#endif

if (strEQ(name, "M_LN2"))

#ifdef M_LN2

return M_LN2;

#else

goto not_there;

#endif

if (strEQ(name, "M_LOG10E"))

#ifdef M_LOG10E

return M_LOG10E;

#else

goto not_there;

#endif

692 P e r l : T h e C o m p l e t e R e f e r e n c e

if (strEQ(name, "M_LOG2E"))

#ifdef M_LOG2E

return M_LOG2E;

#else

goto not_there;

#endif

if (strEQ(name, "M_PI"))

#ifdef M_PI

return M_PI;

#else

goto not_there;

#endif

if (strEQ(name, "M_PI_2"))

#ifdef M_PI_2

return M_PI_2;

#else

goto not_there;

#endif

if (strEQ(name, "M_PI_4"))

#ifdef M_PI_4

return M_PI_4;

#else

goto not_there;

#endif

if (strEQ(name, "M_SQRT1_2"))

#ifdef M_SQRT1_2

return M_SQRT1_2;

#else

goto not_there;

#endif

if (strEQ(name, "M_SQRT2"))

#ifdef M_SQRT2

return M_SQRT2;

#else

goto not_there;

#endif

break;

case 'N':

break;

case 'O':

if (strEQ(name, "OVERFLOW"))

#ifdef OVERFLOW

return OVERFLOW;

#else

goto not_there;

#endif

break;

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 693
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

694 P e r l : T h e C o m p l e t e R e f e r e n c e

case 'P':

if (strEQ(name, "PLOSS"))

#ifdef PLOSS

return PLOSS;

#else

goto not_there;

#endif

break;

case 'Q':

break;

case 'R':

break;

case 'S':

if (strEQ(name, "SING"))

#ifdef SING

return SING;

#else

goto not_there;

#endif

break;

case 'T':

if (strEQ(name, "TLOSS"))

#ifdef TLOSS

return TLOSS;

#else

goto not_there;

#endif

break;

case 'U':

if (strEQ(name, "UNDERFLOW"))

#ifdef UNDERFLOW

return UNDERFLOW;

#else

goto not_there;

#endif

break;

case 'V':

break;

case 'W':

break;

case 'X':

break;

case 'Y':

break;

case 'Z':

break;

case '_':

if (strEQ(name, "_POSIX_C_SOURCE"))

#ifdef _POSIX_C_SOURCE

return _POSIX_C_SOURCE;

#else

goto not_there;

#endif

break;

}

errno = EINVAL;

return 0;

not_there:

errno = ENOENT;

return 0;

}

MODULE = Math PACKAGE = Math

double

constant(name,arg)

char * name

int arg

The other element missing from our module is the documentation, written
in POD format, for using the function. This is extracted and used to create man or
HTML-formatted pages, depending on the platform. See Chapter 23 for more
information on the documentation format, and see Chapter 25 for details on the
installation process of a module.

Compiling and Testing Your Code
Assuming you’ve used h2xs, either on a genuine header file or a dummy one, the
process for compiling your extension should be as easy as this:

$ perl Makefile.PL

$ make

The Makefile.PL is essentially just a Perl script that uses the MakeMaker module to
produce a makefile for use with the make system. The MakeMaker module is complex
and is the topic of Chapter 25. Chapter 25 also includes a good walk-through of the
process of building and installing an extension, and the locations and methods used
for the extension system.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 695
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

Testing your extension is more critical. The rule often given is that if you divide
up the amount of time to develop and test a program, then 80 percent of that total
time should be used for the testing process. In practice, this is not always possible. A
two-month project would take a further eight months just to test the result, making the
total development time almost a year. What you can do, however, is test the ranges of
the values that your extension accepts. By this, I mean that you should test the function
at the limits of its capabilities. For example, a mathematical function that returns true if
the supplied value is even should be tested with values of zero, -LONG_MAX, and
UNSIGNED_LONG_MAX, the two definitions for the lowest and highest possible
values within the confines of a long int and an unsigned long int.

For other more complex functions, you need to ensure that suitable test data is
supplied that will stress the function to its limits. If you have written the extension (or
indeed, any program) correctly, it should trap errors before they cause problems, or
process the arguments supplied as it should.

Once again, the h2xs system builds you a sample test file, but all it does is test that
the module or extension you have tried to load actually loads and imports correctly.
You will need to add custom tests to really stress your function.

The format to follow should match that of the test suite that comes with the Perl
distribution. You need to print “OK” or “not OK” for each test you perform, remembering
to sequentially number the tests so any errors can be identified. Here’s the test script
for the StatVFS module:

Before 'make install' is performed this script should be runnable with

'make test'. After 'make install' it should work as 'perl test.pl'

######################### We start with some black magic to print on failure.

Change 1..1 below to 1..last_test_to_print.

(It may become useful if the test is moved to ./t subdirectory.)

BEGIN { $| = 1; print "1..3\n"; }

END {print "not ok 1\n" unless $loaded;}

use StatVFS;

$loaded = 1;

print "ok 1\n";

######################### End of black magic.

Insert your test code below (better if it prints "ok 13"

(correspondingly "not ok 13") depending on the success of chunk 13

of the test code):

If we don't get any sort of space reading from /

we're probably in trouble

696 P e r l : T h e C o m p l e t e R e f e r e n c e

my ($total, $used, $free) = fsstat("/");

print ((($total+$used+$free) ? '' : 'not'),"ok 2\n");

We should get a number >= 0

print (((fsavail("/")>=0) ? '' : 'not'), "ok 3\n");

The first thing you should do is check that the module—and, therefore, the XS
library—can be loaded correctly. You do this by printing the preamble in a BEGIN
block and printing an error via the END block if the module didn’t load. This will be
automatically generated for you if you use the h2xs script. Each individual test is then
executed, printing “OK” or “not OK” accordingly.

Remember to create tests that are compatible. I could have equally requested the
space on the /users file system, which is perfect for my system but may not appear on
other people’s systems. This would have caused the functions to fail, even though the
functions may be working perfectly.

Automating the Production/Compilation/Installation Process
The h2xs utility, which was covered near the start of the extension-making process
covered in this chapter, created a number of files, including one called Makefile.PL.
This file is a Perl makefile, similar in principle to the file used by make to build Perl in
the first place. The content of the file produced by the h2xs program is very basic, but it
provides enough configuration information to the MakeMaker module to generate a
makefile for automatically building your extension.

In fact, the file produced will split your module into any component parts, generate
the C source from your XS definition file, and compile the source code into a library
suitable for use within your Perl scripts. It takes all the guesswork and trials out of
the compilation process, automatically specifying the correct location of headers and
libraries so that the extension compiles correctly. If you’ve written any documentation
for your module, it will create the man file for the module, suitable for inclusion with
the man pages for other modules and extensions.

Finally, MakeMaker provides all the necessary installation routines for copying your
module, extension libraries, and documentation into the platform-specific directory of the
machine you want to install the extension on. Better still, because the source definition for
the makefile is written in Perl, you can package the raw files—that is, the Makefile.PL,
Module.pm, Module.xs, and any typemap file—and send them to another machine, or
even other users, and they can install and compile the module for their machines. The
process accounts for all of the platform specifics, such as file locations and the available
C compiler, and installs your module and extension in the right place.

This is the way most of the modules on CPAN are supplied. Even some of the Perl
extensions, such as NDBM_File, are supplied in this way within the Perl distribution.
During the build process, the main Perl makefile runs the necessary commands to

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 697
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

extract the makefile for the module in question, before asking make to parse the file
and produce and build the extension.

I frequently use the h2xs command on an empty header file. It provides a
complete set of skeleton files for any XS development. All you have to do is fill in the
blanks—something many people would argue is the complex part. This only adds
more weight to the use of h2xs, as it takes all the guesswork out of the development
process. Make a change to the XS file, and then just type make to produce and compile
the library. Then use make install to install the library, ready for use.

Because the format of the Makefile.PL file can be customized to incorporate all sorts
of features and abilities, it is the subject of Chapter 25 at the end of Part IV. Before you
refer to that chapter, I should explain that the reason it is at the end is because it should
be the last thing you do before supplying your extension to the world at large. Before
then, you should ensure that your module is debugged (see Chapter 21), and you
might want to investigate the Perl compiler, which provides other useful information
and abilities (see Chapter 22).

Embedding Perl
In the previous chapter, you saw how the core of the Perl interpreter was actually
handled by a single function call within Perl. The interpreter is obviously made up of a
number of other functions; but at the frontend, the interface between the outside world
and the interpreter is handled by a single function. Indeed, the main loop of the Perl
binary actually calls this function itself. If you separate the idea of the Perl binary being
the same as the Perl interpreter, then you could almost argue that the perl command
has a Perl interpreter embedded within it. This is a feature of the “new” version 5 of
Perl, and it provides the ability to embed a Perl interpreter within any C application.

There are a number of different ways and situations in which you may want to
incorporate a feature from Perl, or the whole Perl interpreter, within your application.
For example, you may want to make use of the regular expression features within Perl
to parse certain statements. Another alternative is that you have created an extension
to the Perl environment using the XSUB interface discussed earlier in this chapter.
However, when an error occurs within the extension function, you want it to call
not a C error handler, but a Perl one instead. Both of these situations can be achieved
by using a function that calls the internal Perl function directly.

A much more obvious reason is to provide an internal scripting system to an
existing application. Many different applications already provide this functionality,
albeit in many different forms. Microsoft applications use Visual Basic for Applications,
a specialized version of the Visual Basic environment. Emacs, the editor of choice for
many programmers, supports an internal scripting mechanism based on Lisp.

Other benefits also spring to mind. The text-processing features of Perl are difficult
to achieve directly within C without a lot of work. Using Perl to process a configuration

698 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 699
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

file provides you with an instant configuration system without all the hassles normally
associated with parsing a text file.

Strangely, the development of an embedded Perl environment is raw compared to
the development of extensions. You are, more or less, left to your own devices when
embedding Perl within your C programs. We’ll look quickly at the methods both for
embedding an entire interpreter into your C programs and for calling an individual
function, whether built into the Perl interpreter or defined within the script or an
external module.

Embedding the Perl Interpreter
Earlier in this chapter, Figure 20-1 showed the basic layout of the Perl interpreter. At
the time, I mentioned that the possibility exists to embed a Perl interpreter within a
C program. For a simple program, try the following:

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv, char **env)

{

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, (char **)NULL);

perl_run(my_perl);

perl_destruct(my_perl);

perl_free(my_perl);

}

This creates a simple Perl interpreter that accepts options from the command line. If
you don’t specify a Perl script on the command line, then just like the Perl interpreter,
it reads the script from the standard input. That means you can now do something like
this within the shell:

$ myperl <<EOF

> print 56*35,"\n";

> EOF

1960

The individual components of the C source are quite straightforward. The
PerlInterpreter is a structure that holds all of the vital information required for an

instance of the Perl interpreter. The perl_alloc() and perl_construct() functions
create an interpreter object. The perl_parse() function then does some initializations,
including supplying the arguments supplied to the C program on the command
line. The second argument is NULL, but you could equally put xs_init in there so it
initializes the XS interface, or indeed any other initialization code you think you need.
It also parses the script supplied on the command line (via -e) or from the standard
input. The perl_run() function then executes the script, before you finally shut down
and deallocate the memory allocated to the embedded interpreter with perl_destruct()
and perl_free().

To compile the preceding file, you can use the information provided via the
ExtUtils::Embed function:

$ cc -o myperl myperl.c 'perl -MExtUtils::Embed -e ccopts -e ldopts'

The embedded call to ExtUtils::Embed introduces all of the definitions, libraries,
and header file locations for you so that the program will compile properly. The exact
output will depend on how your Perl was compiled—the following sample was taken
from a Solaris 8 x86 installation:

-L/usr/local/lib

/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi/auto/DynaLoader/DynaLoader.a

-L/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi/CORE -lperl

-lsocket -lnsl -ldb -ldl -lm -lposix4

-lpthread -lc -lcrypt –lsec -D_REENTRANT

-fno-strict-aliasing -I/usr/local/include

-D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64

-I/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi/CORE

If you want, there is nothing to stop you from placing this into a makefile for building
the program; just use the preceding embedded statement. Remember, though, that if
you move the makefile to another platform, it’s unlikely to work—you should always
be compiling an embedded Perl program using the same format as the Perl interpreter
was built with.

Using a Specific Perl Function
If what you want to do is call a specific function, you need to use a slightly more
complex method, and there are many different options available. The easiest method
is to use the perl_call_argv function, which calls a specified function with an array
of string arguments, as in this example:

#include <EXTERN.h>

#include <perl.h>

700 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

static PerlInterpreter *my_perl;

main(int argc, char **argv, char **env)

{

char *print_args[] = {"Hello ", "World!\n", NULL};

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, env);

perl_call_argv("print", G_DISCARD, print_args);

perl_destruct(my_perl);

perl_free(my_perl);

}

This calls the print function with the arguments supplied in print_args. The
G_DISCARD option to the perl_call_argv function indicates that you want to discard
any values returned by the Perl function. The list of possible C functions you can call is
shown in Table 20-8.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 701
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

SFunction Description

perl_call_argv(char *sub,
I32 flags, char **argv)

This calls a subroutine, sub, using the flags (see
Table 20-9, coming up), passing the arguments to
the called functions specified in argv.

perl_call_va(char *sub,
[char *type, arg,] * ["OUT",]
[char *type, arg,] * NULL)

Calls the subroutine sub, passing the arguments
supplied by the argument pairs type and arg,
which specify the argument type and value. If an
argument "OUT" is seen, then all the arguments
following that are taken to be return value pairs
of type and variables.

perl_eval_va(char *str,
[char *type, *arg], NULL)

Evaluates an arbitrary Perl statement, str, instead
of calling a specific function. The type and arg
arguments are pairs of return argument types
and values.

Table 20-8. C Functions for Calling Perl Subroutines

You have already seen an example of the perl_call_argv function. The equivalent in
perl_eval_va would be

perl_eval_va("print (qw/Hello World!\n/)", NULL);

Note the use of qw to quote the individual arguments, thus saving you from quoting
quotes. You can do the same thing with perl_call_va:

perl_call_va("print","s","Hello","s","World!\n",NULL);

In all cases, the functions return the number of items returned by the Perl subroutine
called, or -1 on error.

The possible values for the flags argument of perl_call_argv are listed in Table 20-9.

702 P e r l : T h e C o m p l e t e R e f e r e n c e

Flag Description

G_SCALAR Calls the Perl subroutine in a scalar context.

G_ARRAY Calls the Perl subroutine in a list context.

G_DISCARD Forces Perl to remove any information placed onto the stack
by the Perl subroutine.

G_NOARGS Indicates that you are not passing parameters to the
subroutine you are calling. This has the effect of not building
or initializing the @_ array for the subroutine being called.

G_VOID Calls the Perl subroutine in a void context, and removes any
values placed onto the argument stack.

G_EVAL This places an eval{} around the subroutine call. This enables
a basic form of error checking around the subroutine you are
calling, and also handles die calls accordingly. You will have
to examine the value of the $@ variable, just as you would
within Perl, to ensure that the function executed correctly.

G_KEEPERR This flag is meant to be used in conjunction with the
G_EVAL flag. It indicates that the value of $@ should be
updated and/or reset by code that executes after the eval{}
block. Setting this flag ensures that the contents of $@ contain
the return status of the eval{} block.

Table 20-9. Execution Flags for Called Subroutines

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 703
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

In all the cases so far, we have casually ignored any return values from the
functions we have been calling. Using the perl_call_argv or perl_call_va functions, you
could take off the values returned by using the stack-manipulation functions that were
covered at the start of this chapter. That said, you could also put argument values onto
the stack in the same way and use a different method of calling the Perl subroutine.

If you look at the following code, it’s complete C source for calling a Perl function
called add that adds two numbers together:

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

void perl_add(int a, int b)

{

int retval;

dSP;

ENTER;

SAVETMPS;

PUSHMARK(sp);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

retval = perl_call_pv("add", G_SCALAR);

SPAGAIN;

if (retval == 1)

printf("Returned: %d\n",POPi);

PUTBACK;

FREETMPS;

LEAVE;

}

int main (int argc, char **Argv, char **env)

{

char *my_argv[] = { "", "add.pl" };

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);

perl_add(35, 53);

perl_destruct(my_perl);

perl_free(my_perl);

}

704 P e r l : T h e C o m p l e t e R e f e r e n c e

The perl_add C function calls a very simple function, add, defined in a file called
add.pl. The bulk of the perl_add function is given over to the process of initializing and
populating the Perl argument stack before calling the Perl function and then taking the
single value returned by the Perl function back off the stack again.

Note that the perl_parse function has also been used with our own set of
arguments. This is because you need to get the Perl interpreter to load the file that
contains the Perl source, which looks like this:

sub add

{

my ($a, $b) = @_;

return(a+b);

}

The whole process runs like this:

1. Initialize a Perl interpreter.

2. Parse the external Perl script that contains the subroutines you want to call
from the C source code.

3. Call the C function that calls the actual Perl function you want to use. The
execution path of that function performs the following steps:

a. Initialize the stack.

b. Push the first argument onto the stack.

c. Push the second argument onto the stack.

d. Call the Perl subroutine.

e. Pop the returned value back off the stack.

f. Return to the main function within Perl.

4. Destruct and free the Perl interpreter object.

Multiplicity
In some rare cases, it may be necessary to create multiple instances of the Perl interpreter
within your C code. This is something that was mentioned back in Chapter 16 when
we looked at the internal organization of the Perl interpreter. The problem with doing
this normally is that the act of initializing any Perl interpreter may actually overwrite
some of the values and structures created and required by the first interpreter.

To get around this, you need to set the value of the global variable PL_perl_
destruct_level to 1, just by placing the following statement into your C code:

PL_perl_destruct_level = 1;

D
EV

ELO
P

IN
G

A
P

P
LIC

A
TIO

N
S

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 705

This is set automatically when you compile Perl using configure with the
-Dmultiplicity directive. Once set, you can create as many PerlInterpreter structures
as you require, memory permitting, within your C source. Since all the functions you
have already seen accept a first (and sometimes only) argument, which is the name of
the PerlInterpreter object, it should be obvious that each instance should have its own
name and object and be called accordingly.

XS Initialization
If you want to call external XSUB functions from C via a Perl interpreter, then you need
to supply some initialization code. We touched on this briefly earlier. The reason you
need to specify it manually is that, by default, the embedded interpreter does not know
how to import the extensions—you have to tell it what extensions you expect to use.

To do this, you must create a C function, traditionally called xs_init(), which calls
the bootstrap function that the xsubpp script builds for you from the XS file you
supply during the extension-development process. For example, the following code
imports the DynaLoader extension, so that we can import our dynamically loaded
modules, and the Socket extension:

#ifdef _ _cplusplus

define EXTERN_C extern "C"

#else

define EXTERN_C extern

#endif

static void xs_init (void);

EXTERN_C void boot_DynaLoader (CV* cv);

EXTERN_C void boot_Socket (CV* cv);

EXTERN_C void

xs_init()

{

char *file = _ _FILE_ _;

newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);

newXS("Socket::bootstrap", boot_Socket, file);

}

Although you can write this yourself, a much easier method is to use the
ExtUtils::Embed module to do it for you:

$ perl -MExtUtils::Embed -e xsinit - -o xsinit.c

$ cc -c xsinit.c 'perl -MExtUtils::Embed -e ccopts'

$ cc -c myperl.c 'perl -MExtUtils::Embed -e ccopts'

$ cc -o myperl myperl.o xsinit.o 'perl -MExtUtils::Embed -e ldopts'

Once you’ve created your xs_init() function, you then need to supply it as the
second argument to the perl_parse() function:

perl_parse(my_perl, xs_init, argc, argv, env);

Cooperating with Other Languages
Interfacing with other languages is more complex. Since Perl is written in C, the
interpreter and extension interface are closely integrated. Without this level of integration,
and especially without the tools provided via the XSUB interface and the Perl internals,
integration is difficult, but not impossible.

The Perl distribution comes with a number of tools that allow other languages
and tools to be converted into a Perl script. Recent versions of Perl also enable you to
convert the Perl script in a number of different formats, including some C source code
that can be compiled into a stand-alone executable.

Of course, if you need to interact with another language, there are a number of
options available. Perl makes an excellent source code producer; and with some work,
you can create quite complex systems that interact with a program or language.

Converting Other Languages to Perl
As has been repeated in this and many other pieces of documentation over the years,
Perl owes a lot of its functionality to the ideas and functionality of other programs.
Because of its Unix roots, Perl used features from some of the most common and useful
Unix command line utilities. It’s no accident that the regular expression system looks
like the one available within sed, or that some of the operators and semantics of the
Perl language look similar to the awk language. Of course, Perl provides all the
features of a great number of programs built into a single application.

If you have previously been developing with one of these applications, then
conversion to Perl can be a long and complex process. To speed up the process, the Perl
distribution comes with three programs to convert sed, awk, and find programs and
statements into Perl script. This can then either be used natively or modified to fit into
an existing application or environment.

sed
Although not strictly a programming language, sed does provide a way of modifying
files in a programmable fashion. The most significant part of the sed environment is
the regular expression matching and substitution engine. This is similar to the same

706 P e r l : T h e C o m p l e t e R e f e r e n c e

regular expression system in Perl, and many of the commands are identical in
operation between sed and Perl.

The format of a sed “script” is a series of lines. Each one starts with a letter defining
the operation that should take place, followed by a number of arguments. The name
sed is short for “stream editor,” and each command is executed on each input line.
The functionality can be modeled in Perl using a simple while loop.

The s2p command is a Perl script that takes a sed program and converts it into a Perl
script using the while loop and some corresponding code to account for other features
within the sed environment. The script is capable of turning any sed script into a Perl
equivalent; it supports all of the functions and constructs of the sed language.

To use s2p, specify the name of a sed script to the s2p command, or enter the
script during standard input. The resulting Perl script is sent to the standard output.
For example,

$ s2p

s/foo/bar/g

produces

#!/usr/local/bin/perl

eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'

if $running_under_some_shell;

while ($ARGV[0] =~ /^-/) {

$_ = shift;

last if /^—/;

if (/^-n/) {

$nflag++;

next;

}

die "I don't recognize this switch: $_\\n";

}

$printit++ unless $nflag;

$\ = "\n"; # automatically add newline on print

LINE:

while (<>) {

chop;

s/foo/bar/g;

print if $printit;

}

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 707
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

The s2p command provides three options, supplied as arguments, as shown in
Table 20-10.

It’s true to say, of course, that the resulting script is less than friendly, and it’s likely
that many of the features in Perl provide quicker and cleaner ways of achieving the
same goal. In general, therefore, rewriting a sed script is probably more efficient than
using the conversion program. Since most sed programs involve regular expression
substitution, matching, or transliteration, the process should be relatively easy.

awk
The awk language was one of the few programming environments (other than the
shell) that was provided as standard with the Unix operating system. Its original
incarnation was fairly basic, and it was replaced with nawk. Most people come across
the language as gawk, the GNU version developed solely by Arnold Robbins. Like
Perl, it exists on many different platforms; and also like Perl, its primary purpose is for
parsing and processing text files. Some of the features of awk, and especially those of
nawk and gawk, are not supported by Perl. They are too numerous to list here; but
in general, the more complex regular expressions and the use of regular expressions
within certain functions (such as join) are not supported in Perl—although you do, of
course, get an easily extensible programming language so you can hack these abilities
if you need to.

The a2p command that can be used to convert from an awk script is only
compatible with awk, and your mileage may vary with nawk and gawk. Unlike the

708 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

-Dx Sets debugging, using a value of x. Depending on the value specified,
it adds a number of additional statements to the Perl script that is
produced to enable you to trace possible bugs and problems.

-n Specifies that the sed script was always invoked with the -n switch.
Functionality for this argument is normally built into the Perl script
that is produced, but this option removes this code and sets the
option on permanently.

-p Specifies that the sed script was never invoked with the -n switch.
Functionality for this argument is normally built into the Perl script
that is produced, but this option removes this code and sets the
option off permanently.

Table 20-10. Options to the s2p Converter

sed converter, a2p is written in C, although the basic operation is the same. It accepts
the awk script, either from a file or from the standard input, and generates Perl script
to the standard output. For example, this awk script sums up the values of the first
column of an input file:

{ s += $1 }

END { print "sum is", s, " average is", s/NR }

Looking at this, you can see some of the similarities between Perl and awk. The first
line adds the value of $1, which awk has automatically interpreted as the first field in
the input file, into a variable. The loop that proceeds through the input file is implied
within awk, as is the automatic splitting of the input source into individual fields. Once
the main block has completed, the END block is executed, and this prints out the sum
and average of the numbers.

Running this through the converter produces

#!/usr/local/bin/perl

eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'

if $running_under_some_shell;

this emulates #! processing on NIH machines.

(remove #! line above if indigestible)

eval '$'.$1.'$2;' while $ARGV[0] =~ /^([A-Za-z_0-9]+=)(.*)/ && shift;

process any FOO=bar switches

$, = ' '; # set output field separator

$\ = "\n"; # set output record separator

while (<>) {

($Fld1) = split(' ', $_, 9999);

$S += $Fld1;

}

print 'sum is', $S, ' average is', $S / $.;

Once again, the output produced is filled with a number of compatibility elements,
including the ability to create new variables for use within the script’s command line
using an eval function. The main bulk of the actual script is the last five lines.

Also, like the sed converter, the Perl produced in this manner should be classed
as compatible, rather than optimal. Rewriting the code in Perl, rather than using a
converter, will produce better results, albeit at a slower pace.

The a2p program accepts four command line options that affect the script
generated, as shown in Table 20-11.

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 709
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

710 P e r l : T h e C o m p l e t e R e f e r e n c e

find
The find command does not really have a language, but it does have a complex array
of command line options that can specify, fairly expertly, the definition of the files
you want to find. The find2perl script takes the command line options you would
normally supply to the find command, and generates a Perl script that will perform
the same function. The script produced actually makes use of the File::Find module,
which provides a mechanism for parsing a directory tree, following all the subdirectories.
For each file or directory found, a user-specified function is called, with the name and
location of the current file being available via the $_ variable and via some variables
located within the File::Find module.

The result is that Perl has the ability not only to locate a file within the current
directory structure, but also to do any number of other operations to convert, translate,
summarize, and so on, the contents of the files found.

The find2perl script does the basics of the file specification process for you,
producing a script that you can modify to your own ends. If you know how to use the
find command, then using the find2perl script should be easy. The command

$ find2perl / -name '*bin*' -type d -print

produces

#!/usr/local/bin/perl

Option Description

-Dx Sets debugging, using a value of x. The value affects the output
produced by the conversion process, and adds a number of
additional statements to the script to output debugging information
during the script’s progress.

-Fc Specifies that the awk script was always invoked with a -F switch,
which changes the default input field separator to c.

-nfields Specifies the names of the input fields, rather than automatically
using a value of $Fld1, $Fld2, and so on. Fields can be separated by
any of the normal separation characters.

-number Forces a2p to assume that the input is always made up of the number
of fields specified by number.

Table 20-11. Command Line Options to the awk Converter

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 0 : E x t e n d i n g a n d E m b e d d i n g P e r l 711
D

EV
ELO

P
IN

G
A

P
P

LIC
A

TIO
N

S

eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'

if $running_under_some_shell;

require "find.pl";

Traverse desired filesystems

&find('/');

exit;

sub wanted {

/^.*bin.*$/ &&

(($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) &&

-d _ &&

print("$name\n");

}

You can also specify more complex constructs directly to the find2perl script
without having to modify the code. There are two options: one to create a tar file and
the other to specify a Perl-specific evaluation for the file.

The -tar option takes a file name and adds the necessary code to the Perl script to
generate a file list to a piped tar command that then generates the tar file.

The -eval option takes a string that will be evaluated as a Perl statement; if it
returns true, the file will be considered as a match.

Converting Perl to Other Languages
With Perl 5, the facilities have been put in place to resolve a Perl script to its lowest
common denominator—the string of optimized opcodes that are executed by the Perl
interpreter proper. At the moment, two modules (B and O) provide a Perl interface to
the internals of a Perl script. The result is that the internal opcode tree can be converted
and parsed into a number of different formats to provide a range of different pieces
of information.

At present, this is limited to more extensive debugging features and the cross-
referencing abilities that are often available to other languages. The same interface also
provides you with the ability to generate a file in binary format called bytecode. This
binary code can then be executed directly by a special Perl interpreter. The code has
already been parsed and optimized, and much of the typical interpretation process has
already taken place. This makes the code execution much faster and also ensures, to a
greater or lesser extent, that the Perl source is hidden from casual view.

The most interesting feature of the B and O modules, however, is that they can
generate raw C code, which can then be compiled into a stand-alone executable. The

712 P e r l : T h e C o m p l e t e R e f e r e n c e

final executable does not require Perl and cannot be reverse engineered. The performance
benefits are debatable, but the distribution and security offered by the process are
obvious advantages.

Because this is a significant part of the entire Perl environment, it’s discussed more
fully in Chapter 22.

Calling Other Languages from Perl
You have seen many times how Perl can call and interact with an external program. In
some cases, the level of interaction has been as simple as calling the program with some
specified options. There is no reason why, with the use of dual pipes, you couldn’t call
and interact with another program, or even another programming language.

The most obvious road to cooperating with another language from Perl, however,
is to use Perl as a high-level environment that generates an optimized or customized
program that can then be executed via a separate language. Perl has many features
that make the manipulation of data, particularly strings, significantly easier; and if you
want to produce customized or optimized code automatically, it makes sense to use
a textual development environment to produce it.

When dealing with a CGI or other web-based system, you can generate the
JavaScript code that’s embedded into pages—you can even dynamically generate the
code to enable different features in the final page. What follows from this is the general
ability of Perl to generate the code for any language—it’s perfectly possible to create a
Perl application that generates, and even compiles, C source code into a final application.
In fact, this is exactly what some parts of the XS language and the Perl compiler (see
Chapter 22) actually do.

The trick is to make the best use of the Perl environment and, especially, make use
of the here document to create customized source code to be passed to the program or
language interpreter in question. Although it is possible to make use of pipes, most
languages accept an input file as their source. Remember that “compiled” languages—
such as C, C++, and Pascal—will require an external compiler, as well as additional
processes between code production and the final execution stages; but this should
not present too much difficulty.

If it truly is interaction with another language that you require, then the obvious
method is to set up some form of communication channel over which you can exchange
requests and requirements. All modern languages, including Java, Python, Rebol, and
Perl—provide the ability to open a network socket and exchange information.

Some platforms provide an interface through a Perl module for communicating with
other languages. For example, the Win32::OLE module allows you to communicate with
Windows objects, which in turn means that you can control the operation of Word, Excel,
and other Windows applications using Visual Basic semantics. Under Mac OS, you can
communicate directly with AppleScript, which in turn allows you to communicate with
the operating system and the applications, and through an application like Word to
Visual Basic again. See Appendix B in this book and Web Appendix B on the Web at
www.osborne.com for details on some of the platform-specific capabilities and the
modules that support them.

Part IV
Fine-Tuning Applications

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 21
Debugging and Tuning

715

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Once you have completed your application, there are a number of things that
you might want to do before finally releasing your code to the world. One of
the most obvious procedures is to debug your code. Despite your best efforts,

there are bound to be bugs and problems in your code that you probably didn’t realize
were there, and certainly never intended to introduce.

Debugging under Perl can be handled in a number of different ways. There are
command line switches to output different levels of information, there’s the output
from the Perl compiler, which can be a useful addition to the debugger’s toolkit, and
there’s even an interactive debugger that you can use to execute and monitor the
progress of your Perl script’s execution.

There are also other steps that you need to take before you can release your code.
Documentation is always a good idea, not only as pointers for your end-users, but also
as a tool for you, so that when you go back to the code a few months later, you know
what it does, how, and why.

If your script is a general purpose tool, then you can make it appeal to a larger user
group by making it cross-platform aware, and if possible, compatible. Knowing which
functions, facilities, and systems are available on each platform is a good start, but
there are also tricks that you can apply to make the process easier.

Finally, Perl includes some tools that make the distribution and installation of
modules and applications easier. Learning how to make the best use of these modules
can dramatically increase the ease of use and installation by your end-users.

The other chapters in this section cover these latter parts of the application
development process. In this chapter, we’re going to concentrate purely on the
processes and tools available for debugging and optimizing the applications, scripts,
and modules that you write.

Debugging is a time-consuming and laborious process. When I was at college, I was
taught that the proper ratio was 80 percent testing and 20 percent development time,
and after many years in the programming business, I can affirm that that ratio is about
right. Even in a very simple piece of code, it’s possible to introduce some potential
bugs and problems. For every bug you find and eliminate, I can guarantee that two
more will be waiting in the wings. Furthermore, the solution to one bug may well
introduce new bugs that you aren’t aware of.

There is, however, more to debugging than simply finding the bugs and squishing
them. A good programmer will take a more pragmatic approach, and try to develop a
system that will trap most of the errors before they cause any problems. Remember that
the purpose of debugging, and in turn, error trapping, is to ensure that the software does
what it is supposed to do, while simultaneously ensuring that it doesn’t do anything it
shouldn’t. A simple log-processing script should not delete or corrupt the log in the
process, for example.

We’ve already seen some examples of basic error trapping in Chapter 9—you
should use Chapter 9 as a guide to isolating potential problems before they become real
ones. In this chapter, we’ll look at two basic procedures for debugging. The second is
the use of more simplified debugging processes, such as using print and caller to

716 P e r l : T h e C o m p l e t e R e f e r e n c e

provide a history of a script’s execution, and therefore to help you to identify where
things have gone wrong. The final, but certainly not least important, option that we
will look at is the use of the Perl built-in debugger.

The final stage of any debugging process is probably the one least followed—
optimization. Although many people do not consider it a bug, a badly optimized script is
as much a danger as one that overwrites files it shouldn’t have access to. A simple CGI
script that processes a form shouldn’t take hours doing so—monitoring the execution time
can often give you a good idea of where the problems lie. Within Perl, there are a few
solutions to that particular problem, including an extension to the core debugging
extensions, the Perl Profiler. This monitors the execution time of each subroutine in your
script and gives you an excellent idea of where there could be problems.

We’ll also look at some of the manual techniques available for improving
performance, and at some of the more obvious resource sinks that can slow execution.

It’s impossible in a single chapter to cover everything you need to know about trapping
errors and debugging. For a more detailed look at debugging with Perl, see my
Debugging Perl: Troubleshooting for Programmers (Osborne/McGraw-Hill, 2000),
from which a lot of the material in this chapter comes. See Appendix C for more
information.

Debugging Techniques
There are three basic methods for debugging a script. The first two are modifications
on a single theme—the primary tool is just to use print to output the information. The
second uses caller, which returns more extended information about the caller of the
subroutine, and then uses print to output the information. The last is to use one of the
full-blown debuggers. Perl actually comes with its own debugger, which is basically a
script and module combination called when you use the -d command line option to
Perl. If you use the ActiveState version of Perl under Windows, then you also have a
GUI-based debugger.

Just to add to the confusion, there is a fourth debugging system built into Perl—the
-D command line option—but this doesn’t often give any useful information to the
“end-user programmer.” Most of the detail given by -D is intended for those dealing
with the internal workings of the Perl compiler and interpreter. See Chapter 15 for
more information on the available options supported by the -D option. For a more
detailed look at what each of the options does, check out the Debugging Perl title (see
Appendix C for more information on this book).

Using print
To me, print statements have always seemed easy, and, providing you’re careful, they can
usually provide enough information for you to trace the bug without having to resort to a
full-blown debugger. In fact, the easiest way to use the humble print statement is during

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 717
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

the development of a script—just inserting a quick “this variable has this value” is an easy
way for you to check that your script is doing what you think.

You can also use the print statement as a way of reporting debugging information
in the final version of the script. You usually use this method in combination with a
global variable, perhaps set via the script’s command line, to enable or disable some
simple debugging. The benefits of a script that outputs debugging information in this
way is that it allows both the user and programmer to perform a post-mortem debug
on the script. The only place where they are often useless is within a loop, because they
produce a voluminous amount of information that needs to be processed manually
after the execution is complete. On occasion, the loop mechanism can prove useful if
you want to continually monitor a single variable as it is processed, or when you want
to monitor the input or output to a filehandle.

Usage is pathetically simple. By using a statement such as this,

print "Got here!\n";

you can trace the execution path of a program. You can use the same basic layout for
any valid piece of data that you want to output.

Because you can print whatever you like, you can be quite explicit about the
information:

print "Data before processing: $data\n";

#process some data

print "Fieldname: $field, data: $data, leftovers: $leftover\n";

More usually, though, you’ll want to be a bit more explicit about the location in
which the debug report occurred. Here you can use the __LINE__ and __FILE__
directives, which insert the line number and current file in which the message was
printed, respectively. For example,

print __FILE__,'(',__LINE__,"): Data before processing $data\n";

might print out like this:

process.pl(19): Data before processing Name: Martin

Note that the __FILE__ and __LINE__ tokens must be outside of quotes in order for
them to be included in the printed line.

718 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 719
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Quoting Information
When using print to output data, it’s a good idea to delimit the information that you
are outputting. This limit helps to make it clear exactly what the actual data was. For
example, this report line:

process.pl(19): Data before processing Name: Martin

doesn’t tell us if there are any trailing tabs or spaces to the information, which may or
may not be important. A simple set of braces on either side of the data highlights the
full data string:

process.pl(19): Data before processing [Name: Martin]

Here it’s obvious that we have some trailing spaces.

Don’t use angle brackets, <>, to delimit information, especially when displaying
debugging data within a CGI or other HTML script. The HTML parser may either
identify the entry as a proper HTML tag or simply ignore the data entirely!

You can also go one stage further and quote the special characters. The following
script defines two functions—the interface to the whole thing is the mapascii function.
This takes a string and then converts the special characters into their equivalent
sequence:

sub mapasciichar

{

my ($char) = @_;

@map = qw/

\0 [SOH] [STX] [ETX] [EOT] [ENQ] [ACK] \a \b \t \n \v \f \r

[SO] [SI] [DCE] [DC1] [DC2] [DC3] [DC4] [SYN] [ETB] [CAN]

[EM] [SUB] [ESC] [FS] [GS] [RS] [US]

/;

return $map[ord($char)] if (exists($map[ord($char)]));

return $char;

}

sub mapascii

{

my ($string) = @_;

join('',map { $_ = mapasciichar($_) } split //,$string);

}

print mapascii("Hello\nThis is a raw test\t\r\n"),"\n";

When you run the script as a whole, you get this:

Hello\nThis is a raw test\t\r\n

Other control characters will also be printed out with their ASCII names or in the
format that you would normally use when interpolating special characters into strings.

Tracing Execution
The line and file directives that we saw earlier provide a useful way of isolating the
exact script position that raised a particular error. Of course, it makes more sense to
include a more detailed report, such that the output produced is as detailed as
necessary and describes exactly what the script was doing at the point of the error.
Here’s the output from a print-debugged script that processes a file. The output
includes the contents of the variables that we are using to process the data:

$ foo.pl

Opened file (input.dat)

Read data (hello)

Read data (world)

Closed file

Remember at all times that when producing a debug report in this way, you should
be producing an annotated sequence of events. Doing this will help you and your users
to understand what is going on without having to look back at the script.

It’s a good idea to switch off the file buffering when outputting this information, so that
it’s updated in real time, rather than in chunks. The easiest way to do this is
use IO::Handle;
autoflush FILEHANDLE 1;

720 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 721
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Using caller
Printing your own debug information requires a lot of manual entry if you are trying to
trace the execution path through a program. For each print statement you include in
your source, you will need to include a reference about the location of the statement in
order for your debug output to make sense.

To ease the process, you can use the caller function, which returns the current
context information for a subroutine. The information includes details about the
subroutine (or eval or require) statement:

caller EXPR

caller

In a scalar context, it simply returns the package name. In a simple list context, the
function returns the package name, file name, and line of the caller of the current
subroutine or eval or require statement:

($package, $filename, $line) = caller;

If EXPR is specified, caller returns extended information. The value of EXPR
should be the number of frames on the stack to go back to before the current one. That
is, if you specify a value of 1, the parent subroutine information will be printed, a value
of 2 will print the grandparent subroutine, and so forth. The information returned is

($package, $filename, $line, $subroutine,

$hasargs, $wantarray, $evaltext, $is_require) = caller($i);

The $evaltext and $is_require values are only returned when the subroutine being
examined is actually the result of an eval() statement. As an example, examine this script:

sub bar

{

Top::top();

}

bar();

package Top;

sub top

{

my $level = 0;

print "Top of the world, Ma!\n";

while ((($package, $file, $line,

$subname, $hasargs, $wantarray) = caller($level++)))

{

$hasargs = $hasargs ? 'Yes' : 'No';

if (defined($wantarray))

{

$wantarray = 'Yes';

}

else

{

$wantarray = 'No';

}

print <<EOF;

Stack:

Package: $package

File: $file

Line: $line

Subroutine: $subname

Has Arguments?: $hasargs

Wants Array?: $wantarray

EOF

}

}

When the code is executed, the resultant information shows the stack trace for the
top function, including its original call from main and from the bar function:

Top of the world, Ma!

Stack:

Package: main

File: ././t.pl

Line: 5

Subroutine: Top::top

Has Arguments?: Yes

Wants Array?: No

722 P e r l : T h e C o m p l e t e R e f e r e n c e

Stack:

Package: main

File: ././t.pl

Line: 8

Subroutine: main::bar

Has Arguments?: Yes

Wants Array?: No

The information provided should enable you to pinpoint the location within a
script. If you want to report the information to a log, you may want to introduce a
wrapper function, like this one:

sub callerlog

{

my $reference = shift;

open(DATA,">>caller.log") || return;

print DATA join(' ',@_),":$reference\n";

close(DATA);

}

Then to call the function, you would use a line such as

callerlog("Writing data",caller());

to report the information for the current stack trace. Note that you can’t directly use the
information from callerlog, since doing so would introduce its own frame of information
at location zero within the stack. You could, however, use a modified form of the
callerlog function that returns the stack trace from frame one onward:

sub callerlog

{

my $reference = shift;

my $level = 1;

while (((@data) = caller($level++)))

{

print join(' ',@data),":$reference\n";

}

}

The information provided by caller is actually used by the Perl debugger to
provide the tracing information used in the debugging environment.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 723
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Using eval
The eval function provides a very simple way of checking certain events without
affecting the overall execution of your script. In essence, the eval function just initiates a
new instance of the Perl interpreter in order to evaluate a particular string or block. It’s
used in all sorts of places within Perl—including in the debugger where it allows you to
execute those arbitrary statements—but it can also be employed as a debugging tool.

Because eval evaluates a Perl statement or block within its own interpreter, we can use
it in situations that might otherwise cause the Perl interpreter to fail. This process works
because an embedded eval block reports any errors raised by a call to die through the $@
variable. In fact, any exit is reported through eval to the $@ special variable.

We can demonstrate this with a simple eval block used to test the existence of a
particular module:

eval

{

require Net::FTP;

}

print "Error: Module failed to load ($@)" if $@;

This outputs the following:

$ perl eval.pl

Failed to load Net::FTP: Can't locate Net/LICK.pm in @INC (@INC contains:

/usr/local/lib/perl5/5.6.0/i686-linux /usr/local/lib/perl5/5.6.0

/usr/local/lib/perl5/site_perl/5.6.0/i686-linux

/usr/local/lib/perl5/site_perl/5.6.0 /usr/local/lib/perl5/site_perl .) at

eval.pl line 1.

Armed with this information, we can now check anything (except statements executed
at compile time, such as use) that might raise an error, and we can trap and report the
problem.

The same operation can be followed for simpler statements, such as for checking a
possible divide-by-zero error. You could do this:

if ($b == 0)

{

print "Can't divide by zero\n";

}

else

{

print "Result is ", $a/$b,"\n";

}

724 P e r l : T h e C o m p l e t e R e f e r e n c e

But it’s slightly more convenient to do this:

eval { $a/$b };

print $@ if $@;

Here’s another example, this time of a function that uses an eval to execute its
statements so that it can return a single error back to the caller instead of simply calling
die and executing the script completely:

if ($error = writedata("debug", "some error text\n"))

{

print("Raised an error writing to the log: \n",$error,

"Continuing...\n");

}

sub writedata

{

my ($file, $data) = @_;

eval

{

open (FILE, ">$file") or die "Can't open file ($file): $!";

print FILE $data or die "Can't write to file ($file): $!";

close(FILE) or die "Can't close file ($file): $!";

};

return $@ if ($@);

}

Here we’ve got essentially three places where we could potentially drop out of
the script. By embedding all three statements into an eval block and then checking the
return value from the whole function, we’ve managed to trap what might otherwise
be a critical failure into something that we can safely recover from. This capability
becomes incredibly useful in situations where you need to continue working even
if a particular option fails, but you want to avoid producing your own exception-
and error-handling system.

In this example, just running the script produces the following:

Raised an error writing to the log:

Can't open file (debug): Permission denied at eval.pl line 15.

Continuing...

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 725
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

In this case, we’ve just ignored the error, but you could redirect the sequence and error
report to a Tk widget or another HTML page if this was a CGI script.

The same trick also provides an ideal way of converting an existing script from a
command-line basis to a CGI or Tk basis without having to make major changes to the
code. For example, we could take out the embedded eval from the writedata function
and instead move it to surround the function call:
eval
{

writedata("debug", "some error text\n")
}
print("Raised an error writing to the log: \n",$error,

"Continuing...\n") if $@;

The writedata function remains unchanged, but the basic result is the same.

Writing a Log
There are times when you’ll need to write debugging-style information to something
other than the standard output and error filehandles. In these situations, you can
redirect the information directly to another file—we’ve already seen examples of this
with the caller function earlier in this chapter.

There are a number of different ways in which we can do this. At the simplest level,
you can just use print to send the output somewhere else. For a more comprehensive
solution, you should think about redirection. This approach will ensure that warn and
die also output their information to the log, rather to than to the real STDERR. The
final solution is to report information to the syslog daemon on a Unix machine, or to
the Event Log on a Windows machine. This procedure is useful for scripts that play a
vital role in an administration environment, where you need the information to be
reported to a central, rather than an application-specific, log.

Redirecting STDOUT/STDERR
The simplest way of creating a log without seriously affecting the output of your script
is to simply redirect the default STDOUT and STDERR to somewhere else, which you
can do like this:

open(SECOUT,">&STDOUT");

open(SECERR,">&STDERR");

open(STDOUT,">stdlog.txt");

open(STDERR,">stderr.txt");

Now, to print to the real standard output, you need to send output to SECOUT.

726 P e r l : T h e C o m p l e t e R e f e r e n c e

If you’re going to redirect the complete output of a script, consider placing the
redirection statement into a BEGIN block, so that everything is redirected to
the log files, even if an error is raised by an imported module.

In fact, it’s probably best to follow those statements with

select SECOUT;

to ensure that standard print and other calls send their output to the real STDOUT and
not the redirected one.

It’s a good idea to switch off the file buffering when sending information to a log; doing
this prevents overruns and ensures that data is written, even if the script crashes.

Since you will have control over the filehandle on which you provide the user
interface, but not the filehandle used to print the debugging information from the
contributed module, redirecting only STDERR is often a more practical solution.

It’s also possible, using this method, to create a log file of the debug output you
create. This file is especially useful when using an indirectly accessed script, such as
that used on a web server. Here, printing the debug information to the standard output
will cause the information to be included as part of the document that is sent back to
the user’s web browser.

Using a Logging Function
If you don’t want to redirect the STDOUT and STDERR filehandles, the other solution
is to create a function that opens and then writes the information you supply directly to
a log file.

sub writelog

{

my ($format,@rgs) = @_;

open(LOGFILE,">>debug.log")

or die "Can't open debug log!: $!\n";

printf LOGFILE ($format,@args);

close LOGFILE;

}

Now you can just make calls to the writelog function:

writelog("Had an error in the line %s from %s", $line, $file);

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 727
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

A more efficient solution is to use a global variable as the filehandle and then
change the function so that it only opens the file if it isn’t already open:

my $logfile = undef;

sub writelog

{

my ($format,@rgs) = @_;

unless(defined($logfile))

{

open($logfile,">>debug.log")

or die "Can't open debug log!: $!\n";

}

printf $logfile ($format,@args);

}

Now the file will be opened once—when the first call to writelog is made—and log
information will then just be appended for each subsequent call.

Note that we’ve removed the call to close; I suggest that you instead put it into an
end block:

END

{

close($logfile) if (defined($logfile));

}

Doing this will ensure that the file is properly closed when the script terminates.

728 P e r l : T h e C o m p l e t e R e f e r e n c e

Debug Logs in the Real World
It’s probably a good idea to keep some form of logging system in a major
application. By logging the output of your application, you can track problems
as the application is used by the end-users. Then, when it comes to tracking a
reported problem, you have all of the information to hand.

To get the best use out of a debug log, make sure you also record the time
that the error was reported, the process ID, and, if relevant, the machine and/
or user name. When the user reports the error, get them to email you the log.
That way, when you examine the log, it should be easier to determine why the
error occurred.

Reporting to syslog
Perl comes with the Sys::Syslog module, which provides a very simple interface for
reporting information to the syslog system, which in turn is written to the system logs,
often held at /var/log/syslog (or similar). The best way to use the system if you intend
to log information in this way is to call the openlog function at the start of your script,
and then use syslog, which actually writes log entries, as a replacement for warn or
die. Remember to call closelog at the end to close the connection to syslogd (the syslog
daemon). A full example looks like

use Sys::Syslog;

openlog('perl', 'cons,pid', 'user');

syslog('warning' ,'Something happened');

closelog();

The preceding example produces the following entry on a Solaris system:

Jul 19 11:13:57 twinspark perl[2686]: Something happened

See Appendix B and the Sys::Syslog module for more information.

Reporting to the Windows NT/2000 Event Log
The Windows NT Event Log is a central logging system similar in principle to the
syslog system, but slightly more advanced. Primarily, the Event Log is used to record
errors and warnings, but it can also be used just to store simple informational messages
and also audit events—that is, those events configured by the administrator to be
specifically tracked and recorded.

The Event Log also stores a lot more information than syslog does in its standard
format. For example, the syslog system can be configured and set to report the computer
and user information, but it’s not enforced. With the Event Log, this information is
automatically recorded. In addition, you can include any data that was being processed
at the time, extended message strings, categories, and event types.

For example, this snippet

use Win32::EventLog;

my $eventlog = new Win32::EventLog('Application');

%event = (Data => 'Some data',

Source => 'Perl',

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 729
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

EventID => 1,

EventType => EVENTLOG_WARNING_TYPE,

Strings => 'I failed to get the info I was expecting',

Category => 0);

$eventlog->Report(\%event);

will log an Application error into the Event Log. Note here that I’ve used a hash and
then called the Report method instead of embedding the information directly—it’s
quicker and easier to use the same hash and update only the relevant information
when you need to report a new error.

Using a Debugger
There are three basic tools available to you when you are using a debugger: watches,
stepping, and breakpoints. We’ll have a look at each of these tools and describe how
they can best be used to help you when debugging your scripts.

Watches
Watches are the variables that you want to monitor as you execute a script. You set a
watch on a variable, and then, for each statement that is executed, you are shown the
corresponding value of the variable. By using watches, you can monitor how a variable
is updated and isolate those instances where a variable is modified without you
realizing it.

Stepping
Stepping is the action of executing Perl statements, either individually or as a group
(as when you execute an entire function call in one go). By stepping, you can monitor
the execution and variables used and affected by a statement on a line-by-line basis.
There are three basic step commands, although some debuggers will offer some
additional options:

� Step Into executes the current statement, following the execution of any
functions or methods found within the statement. Execution goes as far as
calling the function or method, bypassing any variable initialization, and
stopping at the first executable statement within the called function.

� Step Over executes the current statement. Any functions or methods that are
called are executed without being processed by the debugger, so execution
stops on the next executable statement within the current file.

730 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

� Step Out continues execution until the current function or method ends.
Execution stops at the next executable statement, either within the next
function call of the current line from the calling script or on the next statement
from the caller.

The advantage of stepping over breakpoints is that it allows you to monitor each
line individually. This capability is particularly useful when you want to study a
sequence or each iteration of a loop in detail.

Breakpoints
Breakpoints offer a different approach. Instead of laboriously stepping through each
line of a script, you can set a breakpoint at a future point in the script and then start
execution. The debugger will execute all of the lines up until the given breakpoint. In
addition, you can also set a breakpoint to be triggered only when a variable matches a
certain condition.

For example, imagine you are having trouble within a loop, but only when the
loop counter reaches 1,000; you can set a breakpoint to be triggered when the counter
value is greater than or equal to 1,000. The loop will parse and execute 1,000 times, and
then the debugger will halt to allow you to process each individual line until you trace
the problem.

The Perl Debugger
The name Perl Debugger is a bit of a misnomer. The debugger is in fact just a suite of
modules and a script that ends up sitting almost simultaneously between and behind
the script you are attempting to run and the Perl interpreter that will execute it. By
sitting in this position, the debugger script can extract the individual lines of your
source file and incrementally execute each one—the stepping process.

In addition, the debugger allows you to set watches and breakpoints and provides you
with a way of directly executing Perl statements that can interface with the underlying
script. For example, when reaching a breakpoint, you might want to perform a simple
calculation on a value generated by the script.

The main difference between Perl and many other languages is that you can run
the debugger directly—in fact, straight from the command line. There isn’t a separate
application for doing the debugging, and there’s no reason to make any changes to
your code.

The User Interface
To start the debugger, you need to specify the -d option on the command line to the
Perl interpreter:

perl -d t.pl

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 731
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Alternatively, it can be used with a dummy -e statement to drop you straight into a
dummy debugger environment:

perl -de 1

Once the debugger is invoked, you are placed into it at the first executable
statement within the defined script:

Loading DB routines from perl5db.pl version 1.0401

Emacs support available.

Enter h or `h h' for help.

main::(-e:1): 1

DB<1>

The value in the angle brackets—1, in this example—is the number of the debugger
command. This can be recalled with the ! debugger command. The number of angle
brackets shows the current depth of the debugger. Calling a new subroutine via an s, n,
or t command will introduce a new set of brackets as a new execution path is created
within the script. You can specify multiline commands by using the \ character, which
has the effect of escaping the newline that would ordinarily end the command.

Rather confusingly, the line that is displayed before the prompt is the line that is
about to be executed, rather than the line that has been executed. Therefore, on first
entry into the debugger, no lines (other than compiler directives and package imports)
have actually been executed.

The normal operation is to set a breakpoint on a line or statement that you want to
monitor, and then use the T command to produce a stack trace. For example:

DB<4> b 16

DB<5> r

Top of the world, Ma!

main::callerlog(t.pl:16): print join(' ',@data),":$reference\n";

DB<6> T

. = main::callerlog('Printed Message') called from file 't.pl' line 23

. = main::top() called from file 't.pl' line 5

. = main::bar() called from file 't.pl' line 8

The actual execution process for each line in the script is as follows:

1. Check for a breakpoint.

2. Print the line, using tracing if the AutoTrace option has been set.

3. Execute any actions defined.

732 P e r l : T h e C o m p l e t e R e f e r e n c e

4. Prompt the user if there is a breakpoint or single step.

5. Evaluate the line.

6. Print any modified watchpoints.

Once the execution has halted, you can step through the script, either by every line,
using the s command, or by each line, stepping over subroutine calls, using the n
command.

Note that compile-time statements are not trapped by the debugger, which means
that those enclosed in a BEGIN block, or statements such as use, are not stopped by the
debugger. The best method for trapping them is to specify the value of the $DB::single
variable that is part of the Perl debugger. Although it requires modification of the code,
it does not affect anything if the debugger is not running. A value of 1 for the
$DB::single variable is equivalent to having just typed s to the debugger. A value of 2
indicates that n should be used. Alternatively, you can monitor the status of the
commands using the AutoTrace option.

You can set watchpoints, which display the value of a variable if it has been
modified in the just-executed statement. For example, in the script,

while (<DATA>)

{

chomp;

...

}

you could set a watchpoint for $_, which would print the value of $_ for each iteration
of the loop.

Debugger Commands
The debugger supports a wide range of commands that are outlined next. As a general
rule, anything that is not immediately identified as a command, or alternatively any
input line beginning with a space, is interpreted as a Perl statement that is executed via
an eval function.

Any debugger command can be piped through an external program by using the pipe
symbol, just as at a Unix shell prompt. This feature is primarily useful for parsing
output through a pager, but could be used for anything.

h

h COMMAND

h

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 733
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

734 P e r l : T h e C o m p l e t e R e f e r e n c e

Prints out help information for COMMAND or general help if COMMAND is not
specified. If you use the special h h command, a condensed version of the general help
is printed—it should fit onto a standard screen without scrolling. See the O command
later for details on how to change the default paging program.

p

p expr

Prints the evaluated value of expr using the standard print built-in function. The
value of expr can include variables and functions defined within the current script
being debugged.

The usual rules for the print function apply—nested structures and objects will not
be printed correctly. (See the x command for a more useful version of this command.)

x

x expr

Evaluates its expression in list context and dumps out the result in a pretty printed
fashion. Nested data structures are printed out recursively, unlike with the print
function. See the options in Table 21-1, further on in the chapter.

V

V PACKAGE VARS

V PACKAGE

V

Displays the list of variables specified in VARS within the package PACKAGE
if both are specified. If VARS is omitted, all variables for PACKAGE are printed.
If no arguments are specified, it prints out all the variables for the main package.
Information is intelligently printed, with the values of arrays and hashes and nested
structures being formatted before being output. Control characters are also converted
into a printable format.

If you specify the variables, you should omit the variable type characters ($, @, or
%). You can also specify a pattern to match, or a pattern not to match, using
~PATTERN and !PATTERN arguments.

X

X VARS

X

Same as V VARS for the current package.

T

T

Prints a stack backtrace, as determined by the caller function and the value of the
current stack frame array.

s

s EXPR

s

Executes only the next statement (single step), following subroutine calls if necessary. If
EXPR is supplied, it then executes EXPR once, descending into subroutine calls as
necessary. This process can be used to drop directly into a subroutine outside of the
normal execution process.

n

n EXPR

n

Single-steps the next statement, but steps over the subroutines instead of stepping into
them. If EXPR is specified, then any subroutines are stepped into.

Carriage Return Repeats the last n or s command.

c

c LINE

c SUB

c

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 735
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Continues execution (all statements) until the next configured breakpoint or the end of
the script. If LINE or SUB is specified, then a breakpoint, active for one break only, is
inserted before LINE or the subroutine SUB.

l

l

Lists the next page of lines for the current script from the current line.

l MIN+INCR

Lists INCR+1 lines from the line specified by MIN.

l MIN-MAX

Lists the lines from line MIN to MAX.

l LINE

Lists the line LINE.

l SUB

Lists the first page of lines for the subroutine SUB.

− Lists the previous page of lines.

w

w LINE

w

Lists a page of lines surrounding the current line, or LINE if specified.

. Returns the line pointer to the last line executed and prints it out.

f

f FILENAME

736 P e r l : T h e C o m p l e t e R e f e r e n c e

Changes the file currently being viewed to FILENAME. The value of FILENAME
should match either the main script or the name of a file identifiable within the %INC
variable. If still not found, then it is interpreted as a regular expression that should
resolve to a file name.

/PATTERN/ Searches forward within the current file for the regular expression
PATTERN.

?PATTERN? Searches backward within the current file for the regular expression
PATTERN.

L Lists all the currently set breakpoints and actions.

S

S PATTERN

S !PATTERN

S

Lists all subroutines matching the regular expression PATTERN. If PATTERN is
preceded by an exclamation mark, then lists those not matching the regular expression
PATTERN.

t

t EXPR

t

Toggles trace mode. Trace mode enables the printing of each statement as it is
executed. If EXPR is specified, traces the execution of EXPR. See also the AutoTrace
option in Table 21-1.

For example, this script

sub one { 1 };

sub two { 2 };

print one()*two();

prints out only the final value of 2. With trace mode switched on, it also prints the
statements:

DB<1> r

main::one(t2.pl:1): sub one { 1 };

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 737
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

738 P e r l : T h e C o m p l e t e R e f e r e n c e

main::two(t2.pl:2): sub two { 2 };

2

b

b LINE CONDITION

b LINE

b CONDITION

b

Sets a breakpoint on the current line when no arguments are specified. If LINE is
specified, then the breakpoint is set on the specified line. If CONDITION is specified,
then each time the breakpoint is reached, it breaks execution only if the condition
resolves to true. The CONDITION does not use an if statement; it is purely the test. If
you use /PATTERN/, then the breakpoint breaks only if the statement matches the
regular expression PATTERN.

b SUB CONDITION

b SUB

Sets a breakpoint on subroutine SUB, using CONDITION if specified.

b postpone SUB CONDITION

b postpone SUB

Sets a breakpoint on subroutine SUB only after it has been compiled.

b compile SUB

Sets a breakpoint on the first executable statement of the subroutine SUB after it has
been compiled.

b load FILENAME

Sets a breakpoint at the first executed line of FILENAME.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 739
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

d

d LINE

d

Deletes the breakpoint specified on LINE, or the breakpoint on the line that is about to
be executed if LINE is omitted.

D Deletes all the currently set breakpoints.

a

a LINE COMMAND

a COMMAND

Sets the action specified by COMMAND to be executed before the current line, or the
line specified by LINE, is executed. For example, this can be used to print the value of a
variable before it is used in a calculation.

A Deletes all currently installed actions.

W

W EXPR

W

Sets a watch on the variable specified by EXPR. A change to the specified variable will
be printed before the next line to be executed is printed. If EXPR is not specified, then
all watchpoints are deleted.

O

O OPT?

O OPT=VALUE

O

The first form, O OPT?, prints the value of the option named OPT. The second format
specifies the value for OPT; if no value is specified, it defaults to 1. If no arguments are

given, then the values of all the current options are printed. The option name can be
abbreviated to the minimum identifiable name; for example, the pager option can be
reduced to p.

A list of the most commonly used options is shown in Table 21-1. For others, refer
to the perldebug man page.

740 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

RecallCommand The character(s) used to recall a command.

ShellBang The character(s) used to spawn a shell.

Pager The program to use for paging the output using the |
command within the debugger. The value of the PAGER
environment variable will be used by default.

TkRunning Run Tk when prompting. (See the “Alternative Interfaces”
section later in this chapter for a discussion of the Tk
interface to the Perl debugger.)

SignalLevel The level of verbosity applied to signals. Default operation is
to print a message when an uncaught signal is received. Set
to 0 to switch this off.

WarnLevel The level of verbosity applied to warnings. Default
operation is to print a backtrace when a warning is printed
out. Set to 0 to switch this off.

DieLevel The level of verbosity applied to warnings. Default
operation is to print a backtrace when a warning is printed
out. Set this option to a value of 2 to enable messages to be
printed by surrounding eval statements. Set to 0 to switch
this off.

AutoTrace Trace mode, identical to the t option on the command line.
Set to 0 to disable tracing.

LineInfo The file or pipe to print line-number information to. This is
used by debugger interfaces with a pipe to enable them to
obtain the information.

inhibit_exit When set to 0, allows you to step to a point beyond the
normal end of the script.

Table 21-1. Internal Options for the Debugger

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 741
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Option Description

PrintRet When set to 0, does not print the return value resolved when
the r command is used. When set to 1 (the default), the
return value is printed.

Frame Controls how messages are printed during the entry and exit
process from subroutines. The value is numeric, based
against a bitset. If the value is 0, then messages are printed
only on entry to a new subroutine. If bit 1 (value of 2) is set,
then both entry and exit to the subroutine is printed. If bit 2
(value of 4) is set, then the arguments to the subroutine are
printed, and bit 4 (value of 8) prints the values parsed to tied
functions and methods. Bit 5 (value of 16) also causes the
return value from the subroutine to be printed.Thus, a value
of 18 prints the entry and exit to a subroutine with the
returned value.

MaxTraceLen The maximum number of arguments printed when bit 4 of
the frame option is set.

ArrayDepth The maximum number of elements printed from an array.
An empty string prints all elements.

HashDepth The maximum number of keys and values printed from a
hash. An empty string prints all keys.

CompactDump Sets the style of the array or hash dump. Short arrays may be
printed on a single line.

VeryCompact Sets the style of the array or hash dump to be very compact.

GlobPrint Sets whether the resolved file name globs are printed.

TTY The TTY device to use for debugging I/O.

NoTTY If set, goes into a nonstop debugging mode, as if there were
no controlling terminal. See the examples under the O
command for more information.

ReadLine When set to 0, disables readline support within the debugger,
so that scripts that use ReadLine can be debugged.

NonStop Automatically set by noTTY; sets the debugger to
non-interactive mode.

Table 21-1. Internal Options for the Debugger (continued)

The default values for the options can be obtained by typing O into a new
debugger process:

perl -de 1

Loading DB routines from perl5db.pl version 1.0401

Emacs support available.

Enter h or `h h' for help.

main::(-e:1): 1

DB<1> O

hashDepth = 'N/A'

arrayDepth = 'N/A'

DumpDBFiles = 'N/A'

DumpPackages = 'N/A'

DumpReused = 'N/A'

compactDump = 'N/A'

veryCompact = 'N/A'

quote = 'N/A'

HighBit = 'N/A'

undefPrint = 'N/A'

globPrint = 'N/A'

PrintRet = '1'

UsageOnly = 'N/A'

frame = '0'

AutoTrace = '0'

TTY = '/dev/tty'

noTTY = ''

ReadLine = '1'

NonStop = '0'

LineInfo = '/dev/tty'

maxTraceLen = '400'

recallCommand = '!'

ShellBang = '!'

pager = '|more'

tkRunning = ''

ornaments = 'us,ue,md,me'

signalLevel = '1'

warnLevel = '1'

dieLevel = '1'

inhibit_exit = '1'

742 P e r l : T h e C o m p l e t e R e f e r e n c e

ImmediateStop = 'N/A'

bareStringify = 'N/A'

<

< EXPR

<

Sets a Perl command, specified in EXPR, to be executed before each debugger prompt.
If EXPR is omitted, the list of statements is reset.

<<

<< EXPR

Sets a Perl command, specified in EXPR, to be executed before each debugger prompt.

>

> EXPR

>

Sets the Perl command EXPR to be executed after each debugger prompt and after any
command on the prompt has been executed. If EXPR is not specified, the list of
commands is reset.

>>

>> EXPR

Sets the Perl command EXPR to be executed after each debugger prompt and after any
command on the prompt has been executed.

{

{ EXPR

{

Sets a debugger command, specified in EXPR, to be executed before each debugger
prompt. If EXPR is omitted, the list of statements is reset.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 743
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

{{

{{ EXPR

Sets a debugger command, specified in EXPR, to be executed before each debugger
prompt.

!

! EXPR

!

Redoes the previous command specified by the number EXPR (as shown in the
debugger prompt), or the previous command if EXPR is not specified.

! -EXPR

Redoes the EXPR to the last command.

! PATTERN

Redoes the last command starting with PATTERN.

!!

!! EXPR

Runs EXPR in a subprocess.

H

H -EXPR

Displays the last EXPR commands—if EXPR is omitted, then it lists all of the
commands in the history.

q or ^D Quits from the debugger.

r Returns immediately from the current subroutine. The remainder of the statements
are ignored.

744 P e r l : T h e C o m p l e t e R e f e r e n c e

R Restarts the debugger. Some options and history may be lost during the process,
although the current specification allows for histories, breakpoints, actions, and
debugger options to be retained. Also, the command line options specified by -w, -I,
and -e are also retained.

|

|EXPR

Runs the command EXPR through the default pager.

||

||EXPR

Runs the command EXPR through the default pager, ensuring that the filehandle
DB::OUT is temporarily selected.

=

= ALIAS EXPR

ALIAS

Assigns the value of EXPR to ALIAS, effectively defining a new command called
ALIAS. If no arguments are specified, the current aliases are listed. Note that the
aliases do not accept arguments, but you can simulate the effects of arguments by
defining EXPR as a regular expression:

$DB::alias{'strlen'} = 's/strlen(.*)/p length($1)/';

This effectively reexecutes the original strlen command as print length($1), where $1 is
the value within the first matching parentheses.

m

m EXPR

Evaluates EXPR and lists the currently valid methods that could be applied to it.

m PACKAGE

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 745
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

746 P e r l : T h e C o m p l e t e R e f e r e n c e

Lists the available methods defined in PACKAGE.

Using Noninteractive Mode
The interactive interface is great if you’re trying to locate a very specific bug or problem,
but it may be overkill if all you want is a quick guide or overview of the execution path of
a particular script. There are other, perhaps better, tools—for example, the Perl Compiler
in Chapter 22 provides some other, often useful, information.

You can get around this by using a “noninteractive” mode, which is basically just a
trick using the PERLDB_OPTS environment variable to get Perl to execute a series of
debugger commands when the debugger is started. It’s not officially a way of
executing the debugger, but it is a solution when you want to print a stack trace or
watch variables during execution without having to manually introduce print
statements or having to drop into the interactive debugger interface.

To do this, you need to set the value of the PERLDB_OPTS environment variable
before running the debugger. The following example, which assumes you have the bash
shell, switches on full frame information for called subroutines and runs the debugger
without human intervention, outputting the full trace to the standard output:

$ export set PERLDB_OPTS="N f=31 AutoTrace"

$ perl -d t.pl

Package t.pl.

8: bar();

in .=main::bar() from t.pl:8

5: top();

in .=main::top() from t.pl:5

22: print "Top of the world, Ma!\n";

Top of the world, Ma!

23: callerlog("Printed Message");

in .=main::callerlog('Printed Message') from t.pl:23

12: my $reference = shift;

13: my $level = 1;

14: while (((@data) = caller($level++)))

15: {

16: print join(' ',@data),":$reference\n";

main t.pl 5 main::top 1 :Printed Message

14: while (((@data) = caller($level++)))

15: {

16: print join(' ',@data),":$reference\n";

main t.pl 8 main::bar 1 :Printed Message

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 747
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

14: while (((@data) = caller($level++)))

15: {

out .=main::callerlog('Printed Message') from t.pl:23

out .=main::top() from t.pl:5

out .=main::bar() from t.pl:8

The PERLDB_OPTS environment variable is actually part of the customization
system for the debugger, which we’ll have a look at separately.

Customization
There are two ways of customizing the Perl debugger. The first is to specify the internal
debugger options within the value of the PERLDB_OPTS environment variable, as
you have already seen. The other option is to specify options and aliases and
commands to be executed when the debugger starts, by placing commands into the
.perldb file, which is parsed at the time of execution by the debugger module.

The normal use for this file is to specify new aliases to the debugger, which you do
by specifying the keys and values of the %DB::alias hash. The key is the name of the
alias, and the value is the command that should be executed. See the = command in the
earlier “Debugger Commands” section for details.

You can change options to the debugger by calling the parse_options function,
which takes a single argument—a string such as would be specified in the
PERLDB_OPTS variable. Note, however, that the definitions in .perldb are parsed
before the string defined in the environment PERLDB_OPTS variable.

Alternative Interfaces
The emacs editor provides an interface to the Perl debugger that enables you to use the
emacs editor as a complete development and debugging environment. There is also a
mode available that allows emacs to understand at least some of the debugger
commands that can be used during the debugging process.

There are also a number of modules available on CPAN that provide Windows-based
interfaces to the Perl debugger. The most friendly of the interfaces I have come across is
the ptkdb interface.

The ptkdb debugger interface uses the Tk interface system to provide a windowed
interface to the Perl debugger. All of the normal interface elements are available, with
buttons and entry points for the most regularly used items. You invoke the ptkdb
interface (once it has been installed) using the debug extension command line option:

$ perl -d:ptkdb t.pl

748 P e r l : T h e C o m p l e t e R e f e r e n c e

You can see in Figure 21-1 a sample window for the chapter’s example debug
script. The left side of the window shows the listing of the original Perl script. The
right panel displays variables, expressions, subroutines, and breakpoints for the
current debugger invocation. The information printed is the same as that produced
within the normal text-based debugger interface, albeit within a nice preformatted
and windowed environment.

The ActivePerl Debugger
While there is actually nothing wrong with the text-based debugger, for many
Windows-based programmers used to tools like CodeWarrior and Visual Studio, it
will feel a little restrictive and complicated to use. The ActiveState Perl Debugger
(APD), which comes with the Perl Development Kit (a chargeable extra), provides a
GUI interface to a debugger that will be familiar to users of Visual Studio and other
integrated development environments.

Figure 21-1. The ptkdb debugger interface

The basic features of the ActivePerl debugger are essentially identical to those of
the core Perl debugger, but it’s augmented with a nice GUI in a similar way to the
ptkdb interface. You can actually see a sample of some of the options in Figure 21-2. In
use, there is little real difference between the standard and ActivePerl debuggers—you
have access to the same Step Into and Step Over features, and the Watches panel
displays a list of the variables that you want to monitor.

Because it’s not a standard part of either the Perl or ActivePerl distributions, I won’t
go into any more detail here. For more information on the ActivePerl debugger, see the
online documentation that comes with the Perl Development Kit, the Debugging Perl
book, or the ActivePerl Developer’s Guide book—see Appendix C for more information.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 749
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Figure 21-2. The ActivePerl Debugger

750 P e r l : T h e C o m p l e t e R e f e r e n c e

Traps for Programmers of Other Languages
Most of the traps listed in this section are the common things that trip up the majority
of people. I’ve done my best to be as comprehensive as possible, but it’s difficult to
account for all situations. The errors or traps that are covered here will probably solve
any remaining errors—the simple traps like missing quotes and termination generate
more errors than are probably necessary.

Differences from awk/gawk
Most of the differences between Perl and awk/gawk relate to the built-in variables and
regular expression systems in each language.

� The English module in Perl allows you to use the full variable names used by
awk for variables as the record separator ($RS in awk is identical to $RS in the
English module).

� Perl uses a semicolon to signify the end of a statement; the newline as used in
awk is not sufficient.

� All blocks require braces, including those used with if and while statements.

� Variables in Perl begin with a prefix character—$ for scalars, @ for arrays
(numeric indices), and % for hashes (string indices). Indices in arrays and
subscripts begin at zero, as do references to specific characters within strings.

� Numeric and string comparisons are different in Perl. Numeric comparisons
use special characters, such as != for “not equal to.” String comparisons use
letters; the equivalent of “not equal to” when comparing strings is ne.

� Input lines from files must be manually split using the split function. The
results will go to the array you specify, or to the global @_ if you don’t specify a
destination (this also clobbers any function arguments). The current input line
(or default pattern space) is $_ in Perl; if you want the newline stripped, you
must use chop or chomp (better).

� Once the fields have been split, you cannot access them using the variables $1,
$2, (and so on) to extract each field. These variables are filled only on a match or
substitution of a regular expression with grouping. To actually extract the fields
from an input line, use split.

� The pattern binding operator is =~ in Perl, and the range operator is .. not ,. The
exponential operator is **.

� Field and record separators are not automatically added to arrays printed
with print. Use $ (or $OFS) for the field separator and $\ ($ORS) for the
record separator. If you want to concatenate variables, the concatenation
operator is the period.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 751
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

� Files must be opened before you can print to them—use the open function to
assign a filehandle to the open file and then use print FILEHANDLE.

� Within loop control, the keywords next, exit, and continue work differently.
For next, Perl always proceeds to the next iteration of the enclosing loop, or the
next iteration of the named loop if a name is supplied. The exit keyword in Perl
terminates the entire script. The continue statement indicates a BLOCK of code
that should be executed before the conditional test for the loop is reevaluated.

The variables in awk are equivalent to those in Perl, as shown in Table 21-2.

awk Perl

ARGC $#ARGV or scalar @ARGV

ARGV[0] $0

FILENAME $ARGV

FNR $. is only valid for the current/last used filehandle.

FS No equivalent; use split to split fields.

NF No equivalent; you could count the number of fields returned by
split.

NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/ can only be set to a string; regular expressions are not
supported when using this variable. Use split if you need to
separate by an expression.

RSTART length($`)

SUBSEP $;

Table 21-2. awk/Perl Variable Differences

752 P e r l : T h e C o m p l e t e R e f e r e n c e

C Traps
Within C, most of the traps relate to variable types and conversions. Perl does not
support separate variable types for numbers and strings. Perl supports only a scalar
type that can contain virtually any data:

$value = 99;

$value = "String";

Also, you cannot access the individual characters of a string using a subscript. The
following will not work:

$char = $value[0];

What it will try to do is access the first element of the array @value, which is probably not
defined. Use the substr function to access individual characters or slices; for example:

$char = substr($value,0,1);

Alternatively, if you need to iterate over the characters within an array, use split:

foreach $char (split //,$string)

This also highlights a performance issue. When working through the elements of an
array, don’t use indexing. For example, you might iterate over an array using

for($index=0;$index<scalar @array;$index++)

Instead, use foreach:

foreach $element (@array)

All code blocks require curly brackets, {}. The statement

if (1) print "Hello";

will fail in Perl. You can, however, do

print "Hello" if (1);

if the statement you want to execute fits on one line.

There is no switch statement in C, although you can emulate it in a number of
different ways in Perl. The most obvious is a messy if..elsif..else conditional block.
Note that the secondary test is elsif in Perl, not else if. A better alternative for the
switch statement, and also one that will look familiar, is

SWITCH:

{

($date == $today) && do {

print "Happy Birthday!\n";

last SWITCH;

};

($date != $today) && do {

print "Happy Unbirthday!\n";

last SWITCH;

};

($date == $xmas) && do {

print "Happy Christmas!\n";

last SWITCH;

};

}

Note from this example that the keyword to break out from the statement is last,
not break. The last and next keywords are direct replacements for the C break and
continue keywords. However, be aware that the Perl versions do not work within
a do { } while loop.

Here are some other differences between C and Perl to watch out for:

� Perl uses special characters to identify a variable (and its type). Variables
start with $, @, and % in Perl and relate to scalars (normal variables), arrays,
and hashes.

� The & symbol in C takes the address of an object, but this is not supported in
Perl, although you can use \ to pass a reference to an object instead of the object
itself.

� Arguments to a Perl script, which are accessed via $ARGV[0], start at zero. This
rule refers to the first argument to the script, not the name of the script, which
can instead be found in the $0 special variable.

� The Perl printf function does not accept the * character in a format definition
for inserting a variable field width. However, since Perl does support variable
interpolation, you can insert the variable directly into the format and let Perl
interpolate the value into the format string.

� Comments in Perl start with the hash sign and continue until the end of line.
They do not need to be terminated as in the C /*..*/ construct.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 753
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

� The system call functions built into Perl (and indeed most functions) return
non-zero for success and 0 for failure. In cases where a 0 would be a valid
return result, the function returns 0 but true, which evaluates to 0 when
interpreted as a number.

� When using a signal handler, Perl allows you to use the signal name (without
the prefix SIG) instead of the signal numbers.

sed Traps
Much of the functionality for Perl, including a large bulk of the regular expression
syntax, was inherited from sed. There are some minor differences that relate mostly to
the way in which sed and Perl expect to take in and process data.

Logical groupings of regular expression elements are specified using
unbackslashed brackets. The line

s/\([A-Z]+\)/\1/;

in sed should be written like this in Perl:

s/([A-Z]+)/$1/;

The same is true for the logical or operator, which is also unbackslashed. A
backslashed bracket or | operator within a regular expression will be interpreted by
Perl as a literal. Group references in substitutions should use $1 instead of \1. Also
note that in Perl, the $1..$xx variables are populated generally—their values are present
after the regular expression.

Finally, when specifying a range of values in Perl, the ... operator should be used
instead of the comma.

Note that a translator is available (s2p) which will convert sed programs into Perl
equivalents.

emacs Traps
The regular expression syntax in emacs is more or less identical to the sed syntax. Refer
to the preceding “sed Traps” section for details on the differences.

Shell Script Traps
The most fundamental difference between any shell and the Perl interpreter is that
Perl compiles the program into a series of opcodes before execution, whereas a shell
interprets lines (and sometimes blocks) at once, ignoring the remainder of the code
until it reaches it.

754 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 755
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

The interpolation of variables is different. Perl always interpolates variables into
backticked and double-quoted strings, and into angle brackets and search patterns, and
the interpolation is done only once (not recursively).

Variables in Perl start with $, @, and %. You must specify the prefix character in
Perl. You cannot get away with

var = "Hello"

as you can in shell script. To confuse matters, you can’t do the reverse in shell script
either. The example

$var = "Hello"

will fail in most shells.
Three more differences are worth noting:

� All statements in Perl must end with a semicolon (except when the last
statement is in a block).

� The command line arguments in Perl are available via the @ARGV array, and
not in the variables $1, $2 (and so on) that the shell uses; Perl uses these for
grouped regular expression matches.

� With particular reference to csh, return values from backticks in Perl are not
parsed in any way.

Python Traps
Python and Perl are two very different languages, and since both are available on
identical platforms, which one you use is likely to be driven by personal choice or
the requirement of a client. However, necessity dictates all sorts of things, so here is a
list of differences that may trip up a Python programmer trying to work in Perl. It’s
intended as a quick checklist of things you may have done wrong, not a list of all
the differences, which would probably take up an entire book!

� All statements in Perl end in a semicolon, unlike in Python, which effectively
doesn’t have a statement terminator other than the newline, and even then it’s
only implied as the statement terminator.

� Variables in Python are free-form: there is no difference between creating a
scalar, array, or hash. You must remember to specify your Perl variables by
their type and to use the prefix of $ for scalars (strings or numbers), @ for
arrays, and % for hashes (the Perl term for Python dictionaries).

� Accessing an element from an array or a hash changes the prefix character to a $
within Perl. For example, this would access the sixth element of an array:

print $array[5];

Note that square brackets are still used to refer to the individual elements. With
a hash, you use braces:

print $hash{elem};

� When splicing elements from an array in Perl, you can either use the splice
function or use commas and list operators in the square brackets to define the
elements to splice (similar to, and identically named as, the subscript operator
in Python). The splice function is the preferred option on named arrays; the
subscript option should be used on the return values from lists.

� You must specify lists in Perl in surrounding brackets. The Python statement

a, b = 1, 2

will not work in Perl, even if you add the semicolon and $ prefix to make

$a, $b = 1, 2;

What actually happens is that Perl sees three separate expressions in one large
statement; only $b will actually be assigned a value. It should be rewritten as

($a, $b) = (1, 2);

� Variables within Perl are the actual storage containers of the data. Within
Python all data storage is via a reference to an object. If you want to pass a variable
reference to a function in Perl, you need to prefix the variable with a backslash to
indicate to Perl that it is a reference. When dereferencing a variable, you need to
specify the type of variable you are attempting to dereference.

� Perl supports a number of internal functions that provide a lot of the
functionality that Python requires external modules for. These functions
include those for reading and writing files, using network sockets, handling
arrays and hashes, and many other things.

� Perl includes most of the operating system information within the main
interpreter. You can access the environment through the %ENV hash and the
command line arguments via the @ARGV array without having to import them
from an external module.

� External modules are imported via the use function in Perl, which is effectively
equivalent to the import keyword in Python. Note that when you use a
module, the function is imported into the calling package:

use Cwd;

print getcwd();

756 P e r l : T h e C o m p l e t e R e f e r e n c e

The from construct in Python to import specific functions is supported by
appending a list of functions, variables, and other objects after the module
name. For example,

use Cwd qw/getcwd/;

is synonymous with the Python construct:

from Cwd import getcwd

� If you are using objects in Perl, then to call a method, you use the -> operator:

FILEHANDLE->autoflush(1);

� Strings are concatenated in Perl using a single period; the Python statement

"Hello" "World" "\n";

in Perl would become

"Hello" . "World" . "\n";

Also, Perl interpolates variables and escape sequences (such as the preceding
newline) only in certain quotes, excluding, unfortunately, single quotes; in Perl
the value of

'\n'

is a string composed of a backslash and the lowercase character “n”. However,
this aspect does make print statements easier. You can place the variables
straight into the double quotes without having to specify a print format. If you
want a formatted version of a string, use the printf function.

� Perl does not automatically append a new line to a print statement; you must
add the string \n within double quotes somewhere to your print statement.

� Code blocks in Perl must be enclosed in braces. An if statement looks like this:

if ($test)

{

}

The block starts after the opening brace and ends before the last brace.

Optimization
Optimization is all about squeezing the last few processor cycles out of your scripts.
There are some obvious resource sinks that will affect your script that you can’t ignore
or optimize away—for example, when you have a script that processes the lines of an
Apache log, it’s difficult to improve upon the line-reading mechanism built into Perl.
However, you could change the way you track the information, so that instead of

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 757
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

calling a subroutine hundreds if not thousands of times to add some data to a hash,
you just add the information within the main loop.

Spotting these and other sinks is not easy, which is where the Perl Profiler comes in.
An extension to the basic debugging API, the profiler tracks the execution of every single
subroutine and counts up how long it takes to execute each call to the subroutine. The
information is nested, so you can also trace the subroutines called by other subroutines,
and the whole report is printed out in a nice easy-to-digest format.

For a quicker view, or perhaps an in-line view, of the execution time of a piece of
code, you can use the time function to count the seconds between two points, or you
can use the Benchmark module to get a finer level of detail.

Once you’ve found the problem, you need to know how you can improve on your
algorithm, and I’ve included some ideas and pointers for you to try.

The Perl Profiler
The Perl Profiler takes a typical script and, using the debugging backend, monitors the
execution of individual subroutines within the script. The profiler monitors both the
functions or methods defined within the confines of the script itself and any subroutines
or methods imported from outside—including the import method employed during
a use statement.

The actual process is in two stages:

� Run the script using the DProf debugging extension. Doing this produces a
separate file called tmon.out.

� Run the dprofpp script, which analyzes the information within tmon.out and
produces a variety of reports based on that information.

The first stage is easy—just supply the DProf extension as the name of the
debugger to use when you execute the script. For example:

$ perl -d:DProf slow.pl

The tmon.out file contains information for each individual subroutine call,
including how long it took to execute and the name of the subroutine that called it.
From this information, you can gain a fairly clear understanding of precisely what was
executed, and when, and how long it took. Although you can analyze and process this
information yourself, Perl comes prepared with its dprofpp script.

The dprofpp script is installed when you install Perl and should exist within your
execution path, ready to use to post-process the profiling. It takes the tmon.out file,
collates all of the information, and then outputs a summary of the timing information
as a straight list, a nested tree, or in a variety of other formats.

758 P e r l : T h e C o m p l e t e R e f e r e n c e

The options for the dprofpp script are shown in Table 21-3. If you regularly use a
specific set of options, you can use the DPROFPP_OPTS environment variable to store
the list of default options. The default value would be -z -O 15 -E.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 759
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Option Description

-a Sorts the list of subroutines alphabetically.

-A Reports the time for functions loaded via the AutoLoad module
as *::AUTOLOAD, showing the total time for all autoloaded
modules. The default is for individual functions (autoloaded or
otherwise) to have their own time calculated.

-E This is the default option, displaying all subroutine times
exclusive of child subroutine times.

-F Generates fake exit time values. This gets around the problem
introduced by subroutines calling exit or exec, which causes the
normal execution process of the script to end prematurely.

-g subroutine Shows the results only for subroutine and the subroutines it calls.

-I Displays child as well as parent execution times.

-l Sorts the list of subroutines by the number of times each
subroutine has been called.

-O count Displays only the first count subroutines.

-p script Executes script and then outputs report.

-Q Quits after profiling the script with -p without producing a
report.

-q Displays report without headers.

-R Counts anonymous subroutines within the same package scope
individually. The normal operation is to count each invocation
separately.

-r Displays only elapsed real times. Individual user and system
times are not displayed.

-s Displays only system times. User times are not displayed.

Table 21-3. Options for the dprofpp Profiling System

760 P e r l : T h e C o m p l e t e R e f e r e n c e

The default output of the dprofpp script is shown here:

Total Elapsed Time = 40.28038 Seconds

User+System Time = 40.18038 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

100. 40.21 40.215 1001 0.0402 0.0402 First::foo

0.31 0.125 40.291 1 0.1254 40.290 Second::foo

0.00 0.000 40.340 1 0.0000 40.340 main::bar

Option Description

-S Displays merged subroutine call tree, with statistical
information for each branch, to STDOUT. Making multiple
calls to the same function within the same branch creates a new
branch at the next level. Repeat counts are displayed for each
function within each branch. Sort order is by total time per
branch.

-T Displays subroutine call tree to STDOUT. Statistics are not
printed.

-t Displays subroutine call tree to STDOUT, and subroutines
called multiple consecutive times are simply displayed with a
repeat count. Statistics are not printed.

-U Do not sort subroutine list.

-u Displays only user times. System times are not displayed.

-V Prints the version number of the dprofpp script and prints the
Devel::Dprof version number stored in the statistics file if
found or specified.

-v Sorts by the average time elapsed for child calls within each call.

-z Sorts the subroutine list by the amount of user and system time
used.

Table 21-3. Options for the dprofpp Profiling System (continued)TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 761
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

By default, the information output shows the total amount of time elapsed to produce
the script. Note that this might give a slightly extended figure, since it will depend on the
other processes running on your machine. The user and system time is the total time spent
actually executing your script. User time is that spent by Perl actually processing, and the
system time is that spent by the system servicing requests—for example, reading data
from a file or outputting information to the screen.

The remainder of the figures relate to the individual functions in a columnar
format, and the descriptions for each column are summarized here:

� %Time The amount of time relative to the other functions spent in this
single function.

� ExclSec The amount of time spent executing this function—this figure does
not include the time taken by other functions called by this one.

� CumulS The amount of time spent executing this function and any functions
called by this function.

� #Calls The number of calls to this function.

� Sec/call The average number of seconds spent executing each invocation of
this function—this figure does not include the time taken by other functions
called by this one.

� Csec/c The average number of seconds spent executing each invocation of
this function and any other functions called by this one.

You can see from this example that the function called most often, and the one that
soaks up the most amount of time, is the foo function in the First package.

You can also produce a report that shows the nesting and relative execution times
of the individual functions and how they were called:

main::bar x 1 40.34s = (0.00 + 40.34)s

Second::foo x 1 40.29s = (0.13 + 40.17)s

First::foo x 1000 40.17s

First::foo x 1 0.05s

The remainder of the command line options essentially just modify these two basic
reports, either changing the order, the calculation parameters, or the tree display.

Sample Script Profile
Let’s have a look at a sample script which we’ll use to demonstrate the features of
the Perl profiler. We’re going to use a simplified version of an HTTP log processor.

It extracts a single field (the date/time string) and then produces a list of the unique
entries. The log file used is about 8MB in size—consisting of 90,300 lines. It’s actually
a 180K file duplicated many times—this is deliberate, both to stress-test the script and
provide us with enough samples to get a good idea of the relative execution times. The
first version of the script looks like this:

#!/usr/local/bin/perl -w

use strict;

my @datetime;

process();

sub process

{

open(DATA,"../access.log") or die "can't open log: $!";

while(<DATA>)

{

chomp;

my @fields = split;

process_fields(@fields);

}

}

sub process_fields

{

my (@fields) = @_;

add_to_datetime($fields[3]);

}

sub add_to_datetime

{

my ($datetime) = @_;

foreach (@datetime)

{

return if ($datetime eq $_);

}

push @datetime,$datetime;

}

The profiler doesn’t pick up on the main section of the script, aside from lumping
it all into the overall execution time; we’ve therefore split out the main processing loop
into its own function to get a precise timing value. Those who’ve followed the tips in

762 P e r l : T h e C o m p l e t e R e f e r e n c e

the last chapter should already be able to spot the two obvious resource sinks in the
preceding example.

Running the profiler on this script and then calling dprofpp without any arguments
gives the following output:

Total Elapsed Time = 91.55104 Seconds

User+System Time = 91.79165 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

72.4 66.47 65.511 90300 0.0007 0.0007 main::add_to_datetime

23.7 21.84 95.886 1 21.841 95.885 main::process

11.5 10.58 74.044 90300 0.0001 0.0008 main::process_fields

0.01 0.010 0.010 1 0.0100 0.0099 main::BEGIN

0.00 0.000 -0.000 1 0.0000 - strict::import

0.00 0.000 -0.000 1 0.0000 - strict::bits

The biggest sink is the add_to_datetime function, which is responsible for adding a
unique entry to the datetime array. This is a lengthy process, because it means stepping
through the array each time (in fact, 90,300 times). Although there’s only about 405
unique items, there’s still a lot of iterations to go over before we either pick up the one
we need or determine that we need to add the current entry to the list. This particular
resource sink is a good example of where using an array is a really bad idea—we could
replace it with a hash and eliminate the loop.

The main process function we can ignore for the moment—there’s not a lot we can
do to speed up the parsing of the individual lines that we read from the file. Actually,
there is the fact that we call an external function to process. This final execution sink,
the process_fields function, accepts a relatively large array from the process function,
and in turn calls the add_to_datetime function.

Again, according to the last chapter, calling a function repetitively, especially when
there are a number of different arguments, is a resource sink. This is because Perl has
to copy the arguments onto the stack before calling the function. We could try using
references or a global variable, but, in conjunction with the other sink, there’s probably
a better solution.

If we fix both of these problems, we can produce a new script that uses a hash
rather than two functions and an array. The new version of the script looks like this:

#!/usr/local/bin/perl -w

use strict;

my %datetime;

process();

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 763
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

sub process

{

open(DATA,"../access.log") or die "can't open log: $!";

while(<DATA>)

{

chomp;

my @fields = split;

$datetime{$fields[3]} = 1;

}

}

Running the script with the profiler enabled, and then reporting on it using
dprofpp, we get:

Total Elapsed Time = 19.75992 Seconds

User+System Time = 19.68992 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

99.6 19.62 19.620 1 19.620 19.620 main::process

0.00 0.000 -0.000 1 0.0000 - main::BEGIN

0.00 0.000 -0.000 1 0.0000 - strict::import

0.00 0.000 -0.000 1 0.0000 - strict::bits

A big difference—we’ve managed to reduce the execution time from 91 seconds
down to less than 20, just by using a hash. We’ve also eliminated two function
calls—because we don’t need them anymore—and ended up with just one function
that does all of the work.

This is a great demonstration of why hashes are faster for these sort of summary
calculations. The hashing algorithm has done all of the nasty work for us. For a
description of the hashing algorithm and why it is so much faster than a normal
progressive array lookup, see Chapter 10 of Debugging Perl, under “Command-Line
Debugging: Hash Dump” (see Appendix C of this book for more information about
the Debugging Perl book).

One-Hit Profiling
If all you want to do is produce a profile for a single hit of a script, you can use the
dprofpp script directly:

$ dprofpp -S -p t.pl

764 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 765
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

However, if what you want is to continually probe the original results for different
combinations and different reports, perhaps targeting a different selection of functions
each time, then you should run the script through the profiler to create the tmon.out
file. You can then compile reports based on the raw data without having to run the
script again. Comparing the results of multiple executions of the script is often a waste
of time, since the minor differences between each execution may introduce wildly
different figures for certain functions.

Also, be aware of the size of the raw data file created. For this small script, a 16K
data file is generated. Larger scripts with more functions and, more importantly, more
function calls will generate significantly more data. Our previous slow script example
produces a 1.6MB data file for processing.

Profiling by Hand
You can profile areas of your script by hand by simply recording the time before and
after a section of code that you want to test. At the simplest level, just record the
timings given by time before and after calling a function:

$before = time();

myfunction();

$after = time();

$duration = $before-$after;

The only problem with this solution is that you get to know the duration only in
seconds—useful when you are calling a function that will take a long time, but not fine
enough if you want to profile the individual calls to functions.

A better solution is the Benchmark module, which is part of the standard Perl
distribution. This works in the same basic fashion as the previous time example, except
that we get a granularity of milliseconds (through the use of the times function). For
example, the code:

$t = timeit(1000000,'cos(3.141)');

print "Calculation time: ", timestr($t), "\n";

will place the timing information for a million iterations of the calculation into $t,
which will be a reference to a Benchmark object. The timestr function then prints out
a suitably formatted message:

Calculation time: 1 wallclock secs (1.70 usr + -0.07 sys = 1.63

CPU) @ 6134969.33/s (n=10000000)

Alternatively, you can calculate the timings for an arbitrary set of statements:

$ta = new Benchmark;

&render_object();

$tb = new Benchmark;

print "Calculation time: ", timestr(timediff($ta,$tb)), "\n";

The problem with both of these solutions is that they require you to modify your
scripts before you get any useful data. While this is not a huge problem, it adds to the
development time. The profiler doesn’t have this problem—you can just get the
information instantly.

The tricks are, on the other hand, useful either if you want to provide information
directly to your users or if you want to monitor a sequence of statements as a whole.
The profiler will deal only with functions, so without splitting your code into a number
of subroutines (which will, of course, slow it down) there’s no way to identify the
timing information for small sections of code.

Optimization Guide
Manually optimizing scripts is not the perfect solution. It will take a significant amount
of time to manually trawl through your scripts and make all of the changes suggested
here. However, once you’ve located a problem, either using the manual tricks or
dprofpp, these tips should give you enough information to at least start the process.

The two areas we will be looking at are ways to increase the speed of execution
and ways to reduce memory usage. As in all things, there is usually a trade-off for both
sides of the equation. It is possible to increase speed—but often at the risk of increasing
memory usage. Reading a large file into memory, for example, will reduce the number
of calls to the system for more data, but on the other hand, it will also mean allocating
a large chunk of memory to hold the file content.

There is no hard-and-fast rule for which to choose. In the modern world, speed is
more important than memory, especially when disk and RAM storage is so cheap.
However, keep in mind that large memory usage will slow down the execution of
web-based solutions, where the possibility of multiple instances of a script executing
simultaneously is a reality.

There’s also a certain amount of crossover—some of the techniques that are listed
as purely speed improvements will actually also help to reduce memory usage. I’ve
tried to note both the crossover and complimentary techniques where possible.

Increasing Speed
Increasing the speed of execution relies on your ability first to produce a good algorithm
and second to make the best use of Perl’s abilities to help the algorithm along. Simple
things like keyword lists are much better handled by a hash than an array because the
internal hashing algorithms have already been optimized. We can go straight to a hash

766 P e r l : T h e C o m p l e t e R e f e r e n c e

value, and even using hashes as a way of de-duping material is still more efficient than
using arrays and iteration.

Program Structure The program structure is the general layout of the script and
some of the generic statements that you’ll use in all parts of the application.

� Avoid using goto when a function or loop-control statement will achieve the
same result. Any call to goto causes the parser to search for the specified label;
Perl doesn’t keep an internal table.

� Don’t use eval when you can use braces to expand information (such as
variable names) inline. You can use something like this:

${$prefix . $var} = "String";

� Also, avoid using eval inside a loop, since doing so will cause Perl to run the
parser over the eval statement for each iteration. Instead, put the iteration
inside the eval so the block will only have to be parsed once.

� Within the context of a loop, always place control statements as early as
possible to prevent Perl from executing statements it then never uses. For
example, the following code is wasteful:

while (<DATA>)

{

chomp;

next if /^#/;

...

}

You don’t have to take the newline off the end of the string in order for the
regular expression test to match.

� Replace if..else statements used to select from a range of single values with a
logical or. You can always use

$login = getlogin || (getpwuid($<))[0] || "Anonymous";

� Avoid calling complex subroutines in large loops, especially those with few
other steps. The overhead in copying arguments to the stack and back again
will slow the process down. If you can, use references rather than static lists;
or, if that becomes a real problem, rewrite the function in C.

� Use lists to functions that accept them in place of concatenating a string. Using
concatenation with print, for example, involves copying each value into a new
string before returning the concatenated version and moving on to the next
element. Using a list speeds up the process considerably. Alternatively, try
using join with a null separator value, since join will add each string to a
new string, instead of performing multiple copies on each element.

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 767
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

768 P e r l : T h e C o m p l e t e R e f e r e n c e

Variables and Constants Good variable design should help to reduce most of the
overhead—for example, using arrays instead of lists of individual variables. Other tips
are listed here:

� Avoid using default values for variables. Perl always initializes variables to 0 or
empty anyway.

� Preextending an array or string can save time, as it preallocates memory that
Perl would otherwise attempt to allocate on the fly.

� Use hashes instead of arrays to hold information like keywords (for which you
would otherwise use an array and a search mechanism to find). Also, remember
that you can use hashes to remove duplicates from a list.

� Don’t waste time doing the manual math on static expressions:

$day_seconds = 24*60*60;

Perl will optimize this away into a single value during compilation for you.
Even better, use the expression where it’s needed and don’t waste time
introducing yet another variable.

� Use my instead of local.

� Don’t undef variables you may want to use again later for a different purpose.
More specifically, don’t create multiple variables when a single temporary
variable will do. Better still, use $_ if you can get away with it.

Printing, Interpolation, and Manipulation The display and interpolation of text
can be quite a time-consuming process, especially within a script that makes heavy use
of text output—for example, parsers or CGI scripts.

� Avoid using quotes that interpolate on text that doesn’t require interpolation.
Although doing this won’t save you much time, it will mean that Perl has to
investigate fewer strings when interpolating data.

� Use print in place of printf unless you absolutely have to print a specific
format. Remember that variables can be interpolated directly into certain
quoted strings.

� Avoid using substr many times on a long string when a regular expression
could perform the conversion or extraction quicker. For example, to extract the
elements from a date in the form “19980326” using substr, this

$date = '19980326';

$year = substr($date,0,4);

$month = substr($date,4,2);

$day = substr($date,6,2);

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 769
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

is almost certainly quicker using a regular expression:

$date = '19980326';

($year, $month, $day) = $date =~ /(\d{1,4})(\d{1,2})(\d{1,2})/;

Better still, use pack and unpack for strings. You could rewrite the preceding
example as

($year, $month, $day) = unpack("c4c2c2",$date);

� Use substr to modify a string, rather than extracting the elements and
concatenating the new version. Better still, use a regular expression substitution.

� Use tr/// instead of s///g to delete characters from a string.

� When working with multiple filehandles, especially if they are network sockets,
use select rather than a round-robin approach. Better still, consider using fork
or the new Thread module so that you can service requests asynchronously.
Remember, though, that fork implies an overhead as the process is copied, and
threads imply a memory overhead.

Regular Expressions Regular expressions can be huge resource sinks. The
backtracking process used to match groups and repeating elements implies a large
overhead as it requires a number of iterations over the same section of text. Other traps
and solutions are outlined here:

� Optimize regular expressions by reducing the number of quantifiers and
assertions in a single expression. Doing this is especially useful when using
expression groups, since this causes the regular expression engine to backtrack
and populate the $# variables each time.

� Avoid using the $&, $`, and $' variables. At the first point of use, Perl starts to
track the information for every regular expression used afterward.

� Using a logical or, ||, outside of a regular expression can sometimes be quicker
than using the alternate within a regular expression. So use

$found = if /one/ || /two/;

instead of

$found = if /one|two/;

� When testing a string for a number of times with many regular expressions,
group all the a’s, all the b’s, and so on. Perl works faster this way because the
internal tables will have already been built.

� If the string is large and the regular expressions are complex, use the study
function to improve performance.

770 P e r l : T h e C o m p l e t e R e f e r e n c e

Files and File Systems Because they are external, many people neglect to consider
the effects of a file or file system call in the overall equation. Although such a call
won’t affect the Perl script execution, it does take time for the operating system to process
the request. Reducing the number of calls, or the size of such calls, will help both
performance and memory usage.

� Use sysread to get information in blocks, not getc.

� Use grep and opendir for reading directory listings to avoid large lists being
returned from the glob function.

� Use the operating system mkdir command (if supported) when creating
multiple directories, instead of using multiple calls to the built-in mkdir.

� Don’t use eof when operators and functions detect eof automatically.

Calling External Applications You don’t have any control over the execution time
and sequence of an external program, but you can reduce the effects by using internal
functions or by forcing direct, rather than shell-based execution.

� Avoid making calls to operating system functions when the predefined
variables built into every Perl script at execution time are likely to contain the
information you want.

� Use the Cwd module instead of making an external call to pwd. Using system
creates a subprocess and possibly a shell, involving a lot of extra instructions
and processor time.

� Use lists with system and exec instead of using one big string that you have to
quote and format in order to get the right information.

Reducing Memory
When we’re talking about reducing the memory footprint for Perl, we’re really talking
about reducing the RAM footprint, rather than disk space. Internally, Perl will allow
you to do all sorts of things that potentially increase the memory footprint without
your being aware that this is happening. The obvious instances are loading entire files
into memory for processing, but less obvious problems can be caused by creating
temporary arrays and lists.

The places where we can reduce the memory footprint are few and far between.
Perl’s practicality comes from its automatic handling of things like memory and variable
allocation, and garbage collection when variables go out of context. There is no way to
control Perl’s memory usage beyond the tips given here, although such control is planned
for a future version.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 1 : D e b u g g i n g a n d T u n i n g 771
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Variables and Data It’s very easy to let Perl use a lot of memory without considering
the consequences. The following tips should help you to reduce the memory footprint of
your variables:

� Use the vec function to store very small numbers in a single variable, rather
than individual variables for each.

� Use pack and unpack to store information efficiently in external files.

� Use substr to store small fixed-length strings in one larger string.

You can also follow this through to arrays and hashes, which can be stored in a file
if memory space is really tight. If necessary, use temporary files to store very large
arrays. In addition, consider using a DBM file to store hash and list information out of
memory. If you want to store small pairs of information in hashes, consider using the
Tie::SubstrHash module, which will compact hash data much more tightly than the
normal 1K (or larger) key/value pair size.

Iteration and Program Control Certain Perl statements automatically imply large
memory overheads. The more significant ones are listed here:

� Use each in place of keys for iterating through hashes when order is not
important. It reduces the size of the temporary list passed to the loop-control
statement.

� Try to avoid creating large temporary lists; for example:

foreach (0..$#array)

{

#Do something with $array[$_];

}

Although this has been optimized in recent versions of Perl, it’s still best
avoided if possible. Use a while or for loop with a simple variable and test.

� In general, try to avoid any list operations that can be avoided; creating an
array and then using it frequently uses a lot of temporary storage space, even
on relatively small arrays.

� Use undef and delete to remove variables or hash elements that you no
longer need.

� Pass around references to variables, especially lists and hashes, rather than
supplying lists to the function each time.

� Avoid creating temporary lists that are used solely to support a sequence for a
hash; for example:

@sort = keys %hash;

foreach (sort @sorted)

...

Sort the list inline:

foreach (sort keys %hash)

If the list is complex, and you need to process each element in order to sort,
remember that you can supply your own sorting function to sort. This process
can even be used on complex data—for example, to sort dates, you could use:

foreach (sort sortdate keys %errors)

{

print "$_\n";

}

sub sortdate

{

my ($c,$d) = ($a,$b);

$c =~ s{(\d+)/(\d+)/(\d+)}{sprintf("%04d%02d%02d",$3,$1,$2)}e;

$d =~ s{(\d+)/(\d+)/(\d+)}{sprintf("%04d%02d%02d",$3,$1,$2)}e;

$c <=> $d;

}

Here we’ve copied the values of $a and $b supplied to the function and then
compared the modified values—doing this prevents us from modifying the
originals, since $a and $b are really references to the list contents. In this
instance the space optimization means a decrease in speed!

772 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 22
Perl Compiler

773

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Perl is, in the strict sense at least, an interpreted rather than a compiled language.
Unlike languages such as C/C++ and Java, you don’t have to compile Perl code
into a separate binary format before you can actually execute the program you

have written. Instead, the Perl interpreter takes the “raw” textual script code and then
executes each statement.

In fact, Perl does work in a similar fashion to C/C++ and other compiled languages—
there is, in fact, a compilation stage in the execution process. What actually happens is
that Perl takes the raw script, parses and then compiles it into a special binary code
called bytecode, and then uses the Perl engine to execute the binary code. The bytecode is
in many ways similar to the machine code used by the CPU in your computer, but it’s
highly optimized for executing Perl statements.

In effect, Perl works just like C/C++, except that instead of compiling the source
file into a machine-dependent form, the Perl interpreter does the compilation and
execution on the fly each time you run the script. Because Perl, its parser and compiler,
and the virtual machine that executes the final code are all very heavily optimized, the
entire process, from starting the interpreter to actually running the compiled code,
takes milliseconds on most modern machines. Even on a 20-year-old machine, Perl
takes only a second to compile an average-length script into a form ready to be executed.

There are advantages to this approach—Perl can execute raw source code at a
speed not vastly different to executing a compiled program. But because it’s executing
the source code, that code can be edited and reexecuted in seconds. You don’t have to
recompile and then reexecute the code first. Comparing even a fairly simple program
shows just how optimized Perl is. Taking the simple “Hello World” example, it takes
0.158 milliseconds on my Linux machine to compile and execute the C version, but just
0.013 milliseconds to execute the Perl alternative.

The more astute of you will have recognized a potential bottleneck in the whole
process, however. For scripts that don’t actually change very regularly, such as those
on a website, there is a massive overhead of reading, parsing, and compiling the source
code each time Perl is asked to execute the script. There’s also the issue of the libraries
and modules used by Perl—these change even less frequently, and yet they are
imported, parsed, and compiled in exactly the same way as the original script.

Other languages, including C/C++, Java, and Python, get around the library
problem by always making use of a precompiled library—if I change the main script,
only the script source needs to be recompiled. With Perl, it recompiles everything.

Currently, there are no solutions to the library problem, but there are ways of
improving the execution speed of a script by taking the script in its compiled form and
using that as the basis of the new script during execution. This is the approach used by
extensions such as mod_perl and the PerlEx extension for ActivePerl—they both store
the bytecode and execute that using a built-in interpreter. This avoids both the
compilation stage and the requirement to fork() a new process and load the Perl
interpreter each time the script is called.

These are web solutions, however, and not all problems are web based. They also
don’t resolve the need by some people to supply a “static” binary file that cannot be
modified, mangled, or hacked by a third party.

774 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : P e r l C o m p i l e r 775
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

This is where the Perl compiler comes in. It can convert a raw script into a C file
that can then be compiled into a final binary. It’s not combining the Perl interpreter and
the raw source code; it’s combining the Perl interpreter and the compiled bytecode into
a single file. The bytecode is embedded into the C source and just becomes the data
stream employed by the Perl interpreter to execute the “script.”

In actual fact, the Perl compiler is much more useful than that. Because it’s looking
at the Perl code in its parsed and compiled form, it can also provide information about
the source script—such as cross-referencing variable and subroutine references, or
regurgitating the script in its parsed form—accounting for any optimization and
precedence rules that have been implied during the parsing and compilation process.

In this chapter, we’re going to take a detailed look at the Perl compiler and what it
can do before we look at the interface, which allows you to take Perl scripts and turn
them into stand-alone executables. We’ll also do a speed comparison between a C and
a Perl version of the same application that shows both the speed of the Perl interpreter
and the advantage of an optimized language with advanced data-handling techniques.
Before all that, however, we’ll look at how not to create Perl executables—using dump.

Using dump
Perl—in combination with some operating systems—provides a method for dumping
the core image of the current executable, that is, the currently executing Perl interpreter
and its current script. The function that supports this is dump. Its use is very
operating-system specific, since it relies on a separate operating system command to
turn the dumped core into an application. The file that is actually produced is a core
image, identical to that produced when an application crashes; when used with the
undump command, this can be translated back into an executable.

dump LABEL

dump

If specified, execution will start from LABEL (by doing a goto LABEL when executed),
or execution just starts from the beginning of the script.

What actually happens is that Perl calls the abort function, which causes a core
dump. The contents of the core dump consist of all the current application data and
code (core dumps are usually used when debugging an application). The state of the
program, including any initialization in the original code, will be in place, so a script
of the form

$message = "Hello World\n";

dump START;

START:

print $message;

776 P e r l : T h e C o m p l e t e R e f e r e n c e

will already have the value of $message set when it is executed after being dumped.
If you do not specify a label to the dump function, the program will just execute from
the start.

Once dumped, you need to use the undump program to convert the dumped core
into an executable. The undump program is not available on all platforms; and, in fact,
on some systems it is not even possible. Most notably, any system that uses ELF
(Executable and Linking Format) for its object format will not be able to use undump,
and this includes Solaris and Linux. ELF is incompatible with the principle of the
undump process, although it does support the creation of an executable directly
(see the discussion of unexec() further on in this section).

In order to get the system working with Perl, you will need to have a version of
undump installed on your system (it’s available within the TeX distribution) and a
copy of Perl compiled with static rather than dynamic libraries. You use the static
version of Perl in combination with the dumped core file to produce an executable,
for example:

$ dumpscript.pl

$ undump perl core

$ b.out

This example runs the dumpscript.pl script, which calls dump, and then uses undump
and the static Perl executable to create a new application, b.out, using the core file.

Although dump is very clumsy, it does provide the facility for creating a “saved
state” of an executable program. Of course, without an easy way to return the execution
to this state, the function is virtually useless.

In fact, dump can also be used in the debugging process, since it causes a core
dump that could be used by an external symbolic debugger, such as dbx or gdb. You’ll
need to know the internals of Perl pretty well for it to be of any specific use, since no
C-level debugger will be able to understand the opcode format used internally by
Perl scripts.

You can also use dump with the unexec() function (which is part of emacs) if you
compile Perl with the -DUNEXEC flag. Unlike dump, unexec() attempts to make an
executable directly, instead of relying on an external program to produce the final
executable. In theory, any platform that supports a “dumped” version of emacs should
be able to use this method of producing executable Perl scripts.

Irrespective of which method you use to produce the executable, dumping an
image of a running program is not very reliable. With the introduction of a Perl
compiler, there seems little need for such convoluted methods.

Using the Compiler
The Perl compiler is a relatively new inclusion in the Perl distribution and is still
considered largely experimental. It’s been updated and improved upon heavily in

C h a p t e r 2 2 : P e r l C o m p i l e r 777
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Perl 5.6, to the point where most of the features of the compiler now work more or less
as expected; but there is still lots of work to do to make it as easy to use and efficient as
something like a C or Java compiler.

When producing a stand-alone executable, the opcode tree is embedded along with
some C-based wrapper code into a C source file. This, in turn, can be compiled using a
standard C compiler, such as gcc, to produce the final executable. Because the source
file includes the Perl source code and is linked to the Perl interpreter, we get a fully
stand-alone application. Further, because the Perl source is taken after the normal Perl
parsing and optimization procedures have taken place, we end up with an already
optimized version of the original script.

The entire system works using a series of backend modules, such as B::C for the
C source code creator, or B::Xref for the cross-reference backend. When producing
a stand-alone executable, you can also use the perlcc frontend, which does the
conversion and compilation stages for you. We’ll have a look at the backends first.

The Backends
There are two parts to the compiler backends. The B modules actually contain the
backend code itself—these modules turn the raw opcode tree into a number of
different formats. The O module just provides a nice friendly frontend to enable us
to use the available backends.

We will examine nine backends with respect to both optimization and debugging:
C, CC, Bytecode, Terse, Debug, Xref, Lint, Deparse, and Showlex. All backends work
in the same basic way. You call the O module as part of the command line to a normal
Perl interpreter, and then specify the backend and any options you want to define:

$ perl -MO=Backend[,OPTIONS] foo.pl

Most backends support three options. The -v option forces the backend to report
extensive information about the compilation process. The -D option enables
debugging—different backends support a number of different debugging options, so
check the individual backends for more information on how to use these. The -o option
(followed by a file name) redirects the output of the backend to another file. Multiple
options to the frontend can be separated by commas.

C Backend
The C backend is the fundamental part of the conversion of a Perl script into its C
opcode equivalent. The backend produces code based on the state of the Perl script just
before execution begins—that is, the compilation, parsing, and optimization processes
normally conducted by the interpreter have already been completed. The compiled
program can, therefore, execute more or less identically to the original interpreted
version. Unfortunately, this process also means that the speed of execution is identical.

The basic options, shared with the CC backend, are shown in Table 22-1. There are
also a number of options specific to the C backend, shown in Table 22-2.

778 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

- End of options.

-uPackname Include functions defined in Packname to be compiled if they
have not otherwise been selected. Normally, only functions that
are identified as being used are included in the opcode tree.
Unused functions are ignored. Using this option allows functions
that are used via an eval to be compiled with the rest of the Perl
script. Obviously, this also increases the size of the source code
created, as well as the eventual size of the executable.

Table 22-1. Basic C Backend Options

Option Description

-Do Debug opcodes; prints each opcode as it is processed.

-Dc Debug construct opcodes (COPs); prints COPs as they are processed,
including file and line number.

-DA Debug; prints array value information.

-DC Debug; prints code value information.

-DM Debug; prints magic variable information.

-fcog Copy-on-grow; string values are declared and initialized statically.
Can have an effect on speed, since each time the string grows in size,
a new string variable is created and the information is copied over.
The opposite action, -fno-cog, incurs less of a penalty but may also
cause memory-related failures during execution of the final
application.

-fno-cog No copy-on-grow; string values are initialized dynamically.

-On Set optimization to the value of n. Values of 1 and higher set -fcog.

Table 22-2. Options Specifically for the C Backend

For example, the following creates the C source code of the foo.pl Perl script to the
file foo.c, with optimization:

$ perl -MO=C,-O1,-ofoo.c foo.pl

You can then compile the foo.c program using any C compiler, remembering to link to
the Perl library in order to produce a final executable. It’s quicker and easier to use the
perlcc frontend to the whole process, which will not only produce the source, but also
compile the file for you.

CC Backend
The CC backend produces C code equivalent to the tree that would be executed at run
time. This is, in effect, like writing the script as it would be executed. The optimization
and reduction stages have taken place already, allowing for much better performance.
See the “Compilation” section in Chapter 20 for an explanation of the sort of
optimizations that take place during the compilation of a Perl script.

At present, the compiler still deals with the raw bytecode of the script directly.
This is not as efficient as it could be. For example, when using an integer within a Perl
script, we still actually deal with a Perl scalar variable object, instead of just using a
genuine C integer—which obviously affects performance.

The CC backend supports the basic options of the C backend that are shown in
Table 22-1. The CC-specific options are shown in Table 22-3.

For example, to create the C source code of the foo.pl Perl script to the file foo.c:

$ perl -MO=CC,-ofoo.c foo.pl

Again, it’s probably better to use the perlcc frontend, which we’ll look at shortly, to
produce and compile your script into its executable format.

Bytecode Backend
We can produce a permanently optimized version of a Perl script by storing the
bytecode produced during the normal parsing and optimization stage. That way, when
we execute the produced bytecode, we’ve already gone through the parsing and
optimization process, thus saving us some time. This is the solution offered by web
accelerators like mod_perl and PerlEx; they store the compiled version and execute it
using an already loaded interpreter.

The easiest interface for producing a bytecode version of a script is to use perlcc
with the -b option:

$ perlcc -b foo.pl

C h a p t e r 2 2 : P e r l C o m p i l e r 779
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

780 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

-mModulename Generates source code for an XSUB, creating a hook
function named boot_Modulename, suitable for
identification by the DynaLoader module.

-Dr Debug; outputs debugging information to STDERR.
If STDERR is not specified, the debugging
information is included as comments in the C source
code produced.

-DO Debug; prints with opcode as it’s processed.

-Ds Debug; prints the shadow stack of the opcode as it’s
processed.

-Dp Debug; prints the contents of the shadow pad of
lexical variables as loaded for each block (including
the main program).

-Do Debug; prints the name of each fake PP function just
before it is processed.

-D Debug; prints the source file name and line number of
each line of Perl code as it is processed.

-Dt Debug; prints the timing information for each
compilation stage.

-ffreetmps-each-bblock Forces the optimization of freeing temporaries to the
end of each block until the end of each statement.

-ffreetmps-each-loop Forces the optimization of freeing temporaries to the
end of each enclosing loop, instead of the end of each
statement. You can set only one of the freetmps
optimizations at any one time.

-fomit-taint Disables the generation of the tainting mechanism.

-On Sets the optimization to level n. A level of -O1
implies -ffreetmps-each-bblock, and -O2 implies
-ffreetmps-each-loop.

Table 22-3. Options Specifically for CC Backend

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 2 : P e r l C o m p i l e r 781
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

This will produce a file, foo.plc, that is actually ready-to-run Perl script. It includes the
bytecode and the ByteLoader module, which reads and executes the bytecode for you.
The produced file is platform independent—it’s still essentially a Perl source file, just in
its compiled, rather than raw, state. To execute it, just run the script as normal:

$ perl foo.plc

Alternatively, you can produce a bytecode file, without the ByteLoader preamble,
by using the backend directly:

$ perl -MO=Bytecode,-ofoo.bc foo.pl

Note that, by default, the bytecode file is sent to STDOUT, which will most likely
upset your terminal. You should always use the -ofilename option to specify an
alternative file in order to store the compiled program. Other options are listed in
Table 22-4.

Terse Backend
The Terse backend is useful when you want to examine the exact execution path of a
script in its opcode-compiled format. The information output is, as the name suggests,
very terse, but it should provide you with a basic idea of the process that is taking
place when a script executes. By default, the information is formatted and printed in
syntax order; for example:

$ perl -MO=Terse -e '$a = $b + 2;

-e syntax OK

LISTOP (0x13c530) pp_leave

OP (0x1349a0) pp_enter

COP (0x13c5f0) pp_nextstate

BINOP (0x1435a0) pp_sassign

BINOP (0x12eb40) pp_add [1]

UNOP (0x12eb00) pp_null [15]

GVOP (0x12eae0) pp_gvsv GV (0xc9864) *b

SVOP (0x1435c0) pp_const IV (0xbc9d8) 2

UNOP (0xbf6c0) pp_null [15]

GVOP (0xbf660) pp_gvsv GV (0xc6ba0) *a

782 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

-Do Debug; prints out each opcode as it is processed.

-Dt Debug; prints out the compilation progress.

-Da Debug; includes source assembler lines in the
bytecode as comments.

-DC Debug; prints each code value as taken from the
final symbol tree.

-S Produces bytecode assembler source instead of the
final bytecode binary.

-m Compiles the script as a module.

-fcompress-nullops Completes only the required fields of opcodes that
have been optimized by the compiler. Other fields
are ignored (saves space). Can be switched off with
-fno-compress-nullops.

-omit-sequence-numbers Ignores the code normally produced that populates
the op_seq field of each opcode (saves space). This is
normally used only by Perl’s internal compiler. Can
be switched off with -fno-omit-sequence-numbers.

-fbypass-nullops Ignores null opcodes; the code skips to the next
non-null opcode in the execution tree (saves space
and time). Can be switched off with -fno-bypass-
nullops.

-f-strip-syntax-tree Does not produce the internal pointers that compose
the syntax tree. This does not affect execution, but
the produced bytecode cannot be disassembled. This
has the effect of rendering goto LABEL statements
useless. It also works as a suitable security measure
to stop bytecode-compiled scripts from being reverse
engineered. Can be switched off with -fno-strip-
syntax-tree.

-On Sets optimization to level n. Currently, -O1 implies
-fcompress-nullops and -fomit-sequence-numbers.
-O6 implies -fstrip-syntax-tree.

Table 22-4. Options Specifically for the Bytecode Backend

The Terse backend supports only one option, exec, which outputs the opcodes in
execution order. Unfortunately, it removes much of the formatting available in the
default mode:

$ perl -MO=Terse,exec -e '$a = $b + 2;'

-e syntax OK

OP (0x1349a0) pp_enter

COP (0x13c5f0) pp_nextstate

GVOP (0x12eae0) pp_gvsv GV (0xc9864) *b

SVOP (0x1435c0) pp_const IV (0xbc9d8) 2

BINOP (0x12eb40) pp_add [1]

GVOP (0xbf660) pp_gvsv GV (0xc6ba0) *a

BINOP (0x1435a0) pp_sassign

LISTOP (0x13c530) pp_leave

Debug Backend
For a more detailed view of the execution of opcodes than that provided by the Terse
backend, you can use the Debug backend instead, which works in a similar way but
provides more detailed information. By default, the information is output in syntax
order:

$ perl -MO=Debug -e '$a = $b + 2;'

-e syntax OK

LISTOP (0x133530)

op_next 0x0

op_sibling 0x0

op_ppaddr pp_leave

op_targ 0

op_type 177

op_seq 7065

op_flags 13

op_private 0

op_first 0x151bf8

op_last 0x141dc0

op_children 3

OP (0x151bf8)

op_next 0xcf1d0

op_sibling 0xcf1d0

op_ppaddr pp_enter

op_targ 0

op_type 176

C h a p t e r 2 2 : P e r l C o m p i l e r 783
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

784 P e r l : T h e C o m p l e t e R e f e r e n c e

op_seq 7058

op_flags 0

op_private 0

COP (0xcf1d0)

op_next 0x12eae0

op_sibling 0x141dc0

op_ppaddr pp_nextstate

op_targ 0

op_type 173

op_seq 7059

op_flags 1

op_private 0

cop_label

cop_stash 0xbc87c

cop_filegv 0xbca50

cop_seq 7059

cop_arybase 0

cop_line 1

...

This output has been trimmed for brevity. The full list from this simple statement is
173 lines long!

Like the Terse backend, Debug also supports the output in execution order (exec),
but once again the formatting is lost:

$ perl -MO=Debug,exec -e '$a = $b + 2;'|more

-e syntax OK

OP (0x151bf8)

op_next 0xcf1d0

op_sibling 0xcf1d0

op_ppaddr pp_enter

op_targ 0

op_type 176

op_seq 7058

op_flags 0

op_private 0

COP (0xcf1d0)

op_next 0x12eae0

op_sibling 0x141dc0

C h a p t e r 2 2 : P e r l C o m p i l e r 785
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

op_ppaddr pp_nextstate

op_targ 0

op_type 173

op_seq 7059

op_flags 1

op_private 0

cop_label

cop_stash 0xbc87c

cop_filegv 0xbca50

cop_seq 7059

cop_arybase 0

cop_line 1

The information provided here is probably only of real use to someone who is
investigating the internal opcodes of a script.

Xref Backend
During the development of a project with Perl, it’s sometimes difficult to see the wood
for the trees. Looking for that elusive function definition, or trying to find where a
particular function is used, can be a time-consuming process. Sure, we could use the
debugger, or perhaps even grep, but there is an easier way that also gives us a useful
document that we can keep with the Perl source code and use for future reference.

The Xref backend produces a report that details the use of all the variables,
subroutines, and formats in a program. The report includes cross-references (including
line numbers) indicating where the variables are used and which subroutine uses
which variable, along with other valuable cross-referencing details.

The level of detail includes not only the subroutines and variables from the original
file, but also all of the modules and files the original script relies upon. This means that
even a relatively short script can produce a huge amount of information. The format of
the report is as follows:

File filename1

Subroutine subname1

Package package1

object1 C<line numbers>

object2 C<line numbers>

...

Package package2

...

Here’s an example from a five-line script that prints the contents of a DBM file:

File dbmdump.pl

Subroutine (definitions)

Package UNIVERSAL

&VERSION s0

&can s0

&isa s0

Subroutine (main)

Package main

$! 11

$0 3, 11

$datafile 7

$df i5, 11, 11

$key 15, 15

%db 11, 13, 15, 17

&O_RDONLY &11

*key 13

@ARGV 3

The output has been trimmed for brevity; the full report runs to 246 lines.
The information can prove invaluable if you are trying to optimize the original

source or find out which functions rely on certain variables. Normally, this information
should be obtainable through the use of the internal debugger or by using one of the
debugging methods outlined in Chapter 21. There are instances, however, when a
cross-reference report is quicker, and it provides ancillary information that can help
trace other bugs.

The function supports only two options, -r and -D. The -r option produces raw
output. Rather than the formatted version shown previously, a single line is printed for
each definition or use of a function, package, or variable. Here’s a fragment from the
same script used to produce the previous report:

dbmdump.pl (main) 3 main @ ARGV used

dbmdump.pl (main) 3 main $ 0 used

dbmdump.pl (main) 5 main $ df intro

dbmdump.pl (main) 7 main $ datafile used

dbmdump.pl (main) 11 main % db used

dbmdump.pl (main) 11 main $ df used

dbmdump.pl (main) 11 main & O_RDONLY subused

dbmdump.pl (main) 11 main $ 0 used

dbmdump.pl (main) 11 main $ df used

dbmdump.pl (main) 11 main $! used

786 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : P e r l C o m p i l e r 787
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

dbmdump.pl (main) 13 main % db used

dbmdump.pl (main) 13 main * key used

dbmdump.pl (main) 15 main $ key used

dbmdump.pl (main) 15 main % db used

dbmdump.pl (main) 15 main $ key used

dbmdump.pl (main) 17 main % db used

I’ve stripped the full pathname from this example and, once again, trimmed it for
size. Otherwise, this is identical to the output produced. The columns are, in order, file,
full package name (includes references to functions included via AutoLoad), line
number, short package name, object type, object name, and how it was used in the
specified line. Once the information is produced, it is quite voluminous. Using a
suitable Perl script, it should be possible to summarize the information in a more
readable form, perhaps by selectively excluding those modules you are not interested
in. I’ll leave that particular exercise to you.

The -D option supports two sub-debugging flags, both of which are best used in
combination with the -r option. Using -Dt, the object on top of the object stack is
printed as it is tracked, allowing you to trace the object as it is being resolved in each of
the packages. The -DO function prints each operator as it is processed during the
cross-referencing process.

Remember that much of the information that can be gleaned from the data supplied
is also available via more traditional debugging methods. By the same token, a similar
proportion of the information is also only available via this backend.

Lint Backend
Under many C environments, there is a program called Lint, which checks C source
code for any parsing errors, including those that may not normally have been picked
up by the C compiler. The Lint backend is a similar module for Perl. It can pick up
many errors that may not be identified by the Perl interpreter, even with warnings
switched on.

You can see from the options shown in Table 22-5 the errors that Lint attempts
to identify.

Note that the use of this module is not intended as a replacement for either the -w
command line option or the strict pragma (see Chapter 19 for more information). It
augments the options available for finding possible performance and/or parser
problems.

Deparse Backend
We’ve already seen some examples of the Deparse engine. It takes in a script and
regurgitates it in its optimized form; but, unlike the Bytecode backend, the regurgitated

788 P e r l : T h e C o m p l e t e R e f e r e n c e

script is in its source format. This means that we can use the Deparse engine to get an
idea, in source format, of what the Perl interpreter thinks it is executing, rather than
what you wrote. When debugging and optimizing code, it picks out the following:

� Statements and expressions that can be folded or optimized away

� Ambiguous statements, and how Perl interpreted them

� Badly formed expressions that didn’t take into account the precedence rules

The specific options for the Deparse backend are shown in Table 22-6.

Option Description

context Warns when an array is used in an implied scalar context,
such as $foo = @bar. Ordinarily, the Perl interpreter ignores
this and just sets the value of $foo to the scalar value of
@bar (the number of elements in the array). You can
prevent the error from being reported by explicitly using
the scalar function.

implicit-read Warns whenever a statement implicitly reads from one of
Perl’s special variables, such as $_.

implicit-write Warns whenever a statement implicitly writes to a
special variable.

dollar-underscore Warns when the $_ variable is used, either explicitly or
implicitly, as part of a print statement.

private-names Warns when a variable, subroutine, or method is used
when the name is not within the current package, or when
the name begins with an underscore.

undefined-subs Warns when an undefined subroutine is called.

regexp-variables Warns when one of the special regular expression variables,
$', $&, or $`, is used.

All Turns on all warnings.

None Turns off all warnings.

Table 22-5. Options for the Lint Backend

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S

The parentheses option is useful for demystifying the operator precedence that Perl
uses. For example, here’s a deparsed calculation:

$ perl -MO=Deparse,-p -e '$a + $b * $c / $d % $e;'

-e syntax OK

($a + ((($b * $c) / $d) % $e));

C h a p t e r 2 2 : P e r l C o m p i l e r 789

Option Description

-p Prints additional parentheses that would otherwise have been
optimized away. Many parentheses can be ignored (or are
implied) in the source code. For example, parentheses are not
necessarily required around function arguments. This option
ensures that all locations where parentheses are implied are
actually printed. This can be useful when you want to discover
how Perl has interpreted your implied parentheses in a
statement. (See the examples that follow for more information.)
Perl will reduce away any constant values, which will appear
as ??? in the resulting output.

-uPACKAGE Includes subroutines from PACKAGE that are not called
directly (that is, those loaded by AutoLoad or those that are not
resolved to subroutines during run time). Normally, these are
ignored in the parsed output.

-l Adds #line declarations to the output, based on the source code
line and file locations.

-sC “Cuddle” elsif, else, and continue blocks, for example,
if ()
{
}
else
{
}

will be printed as

if () {
} else {
}

Table 22-6. Options for the Deparse Backend

See Chapters 3 and 6 for the list of operators and their precedence.

Showlex Backend
The Showlex backend shows the lexical variables (those defined by my rather than
local) used by a subroutine or file. Any options to the backend are assumed to be the
names of the subroutines whose list of lexical variables you want to summarize.

For example, to summarize the lexical variables in the uplsite.pl script:

$ perl -MO=Showlex uplsite.pl

Pad of lexical names for comppadlist has 30 entries

0: PV (0x810af00) "@_"

1: PVNV (0x8315e48) "$debug"

2: PVNV (0x8339de8) "$remserver"

3: PVNV (0x8339dc4) "$remport"

4: PVNV (0x8339db8) "$user"

5: PVNV (0x8339ecc) "$password"

6: PVNV (0x8339ef0) "$dir"

7: PVNV (0x8339f14) "$localdir"

8: PVNV (0x8339f38) "$curxfermode"

9: SPECIAL #1 &PL_sv_undef

10: SPECIAL #1 &PL_sv_undef

11: SPECIAL #1 &PL_sv_undef

12: PVNV (0x8339ff8) "$ftp"

13: SPECIAL #1 &PL_sv_undef

14: SPECIAL #1 &PL_sv_undef

15: SPECIAL #1 &PL_sv_undef

16: SPECIAL #1 &PL_sv_undef

17: SPECIAL #1 &PL_sv_undef

18: SPECIAL #1 &PL_sv_undef

19: SPECIAL #1 &PL_sv_undef

20: SPECIAL #1 &PL_sv_undef

21: SPECIAL #1 &PL_sv_undef

22: SPECIAL #1 &PL_sv_undef

23: SPECIAL #1 &PL_sv_undef

24: SPECIAL #1 &PL_sv_undef

25: SPECIAL #1 &PL_sv_undef

26: SPECIAL #1 &PL_sv_undef

27: SPECIAL #1 &PL_sv_undef

28: SPECIAL #1 &PL_sv_undef

29: PVNV (0x833a154) "$currentdir"

etc/mcslp/books/paa/ch07/uplsite.pl syntax OK

790 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 2 : P e r l C o m p i l e r 791
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

The perlcc Frontend
The main method for compiling a Perl script into a final executable is the perlcc script.
This takes a number of command line options that control the generation process. It
also automates the entire process from the generation of the C source code right through
to the compilation and linking stages. Using it at its simplest level, the command

$ perlcc foo.pl

will compile the foo.pl script into the executable foo.
When converting a script into a stand-alone executable, the process assumes you

have installed Perl and have a C compiler on your system. The perlcc script (which is
written in Perl) should account for the specific file locations of your Perl installation
and the required tools for building.

The Perl compiler is not currently supported under Windows or Mac OS. Under
Windows, you can use the PerlApp extension supplied with the Perl Development Kit
from ActiveState to convert an application into a stand-alone executable.

The perlcc frontend supports a number of command line arguments. These control
the compilation, code generation, and linking process for translating a Perl source
script into an executable program. Most of the options are actually passed on to the
underlying backend modules. The command line options also control the calls to the
compiler and linker used to build the final executable. Certain options simplify both
the process of compiling large programs consisting of many Perl scripts and modules,
and the compilation of multiple scripts into multiple executables.

Using perlcc
The basic way of using perlcc is just to supply the name of the script on the command
line:

$ perlcc foo.pl

Doing this will convert and compile foo.pl into the ready-to-run executable foo. Note
that, because it converts and compiles the full version of the script (including any
imported modules), we don’t need any other options. It will determine any required
modules, extensions, or libraries, and either incorporate the extensions into the
executable or provide the necessary hooks so that dynamic libraries can be loaded.

If you supply a Perl module, then it gets converted into a shared library that you
can use directly within Perl using use Module:

$ perlcc Bar.pm

This produces the library Bar.so.
Finally, you can produce a stand-alone bytecode script using the -b option:

$ perlcc -b foo.pl

which produces foo.plc, ready for running directly through Perl.

Command Line Arguments
The frontend also supports a number of additional arguments that control different
aspects of the compilation process. They are outlined here for reference.

-L DIRS

adds the directories specified in DIRS to the C/C++ compiler. Each directory should
be separated by a colon.

-I DIRS

adds the directories specified in DIRS to the C/C++ compiler. Each directory should
be separated by a colon.

-C FILENAME

gives the generated C code the file name specified by FILENAME. Only applicable
when compiling a single source script.

-o FILENAME

gives the generated executable the file name specified by FILENAME. Only applicable
when compiling a single-source script.

-e LINE

is identical to the Perl -e option. Compiles LINE as a single-line Perl script. The default
operation is to compile and then execute the one-line script. If you want to save the
executable generated, use the -o flag.

-regex NAME

792 P e r l : T h e C o m p l e t e R e f e r e n c e

NAME should specify a regular expression to be used when compiling multiple source
files into multiple executables. For example, the command

$ perlcc -regex 's/\.pl/\.bin/' foo.pl bar.pl

would create two executables, foo.bin and bar.bin.

-verbose LEVEL

sets the verbosity of the compilation process to the level specified by LEVEL. This
should be in the form of either a number or a string of letters. Except where specified
via the -log option, the information is sent to STDERR. The available levels are given
in Table 22-7.

For example, to set the maximum verbosity level, you might use

$ perlcc -v 63 -log foo.out foo.pl

Note that some options require that the name of a suitable file be given via the -log
option (described next). If the -log tag has been given, and no specific verbosity level
has been specified, the script assumes a verbosity level of 63. If no verbosity or log file
is specified, a level of 7 is implied.

-log NAME

C h a p t e r 2 2 : P e r l C o m p i l e r 793
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Numeric Letter Description

1 g Code generation errors to STDERR.

2 a Compilation errors to STDERR.

4 t Descriptive text to STDERR.

8 f Code generation errors to file (-log flag needed).

16 c Compilation errors to file (-log flag needed).

32 d Descriptive text to file (-log flag needed).

Table 22-7. Verbosity Levels for the perlcc Command

logs the progress of the compilation to the file NAME. Note that the information is
appended to the file; the contents are not truncated before more information is added.
The effect of this option is to make the entire process of compilation silent—all output
is redirected to the specified file.

-argv ARGS

must be used with the -run or -e option. Causes the value of @ARGV to be populated
with the contents of ARGS. If you want to specify more than one argument, use single
quotes and separate each argument with a space.

-sav

causes the intermediate C source code that is generated during the compilation to be
saved in a file with the same name as the source with “.c” appended.

-gen

tells perlcc to generate only the C source code—the file will not be compiled into an
executable.

-run

immediately runs the executable that was generated. Any remaining arguments to
perlcc will be supplied to the executable as command line arguments.

-prog

specifies that all files supplied are programs. The option causes Perl to ignore the
normal interpretation that .pm files are actually modules, not scripts.

-mod

specifies that the files should be compiled as modules, not scripts. The option overrides
the normal interpretation that files ending in .p, .pl, and .bat are Perl scripts.

Environment Variables
You can change some of the implied logic of the perlcc process by using environment
variables. These modifications will affect all compilation, unless you use the command
line arguments to override the new defaults.

794 P e r l : T h e C o m p l e t e R e f e r e n c e

The PERL_SCRIPT_EXT variable contains a list of colon-separated regular
expressions. These define the extensions that perlcc automatically recognizes as scripts.
For example, the default value is

PERL_SCRIPT_EXT = '.p$:.pl$:.bat$';

Note the use of $ to define that the extension should be at the end of the file name.
The PERL_MODULE_EXT variable operates in the same way, only for those files

that should be recognized as modules. The default value is .pm$.
During the compilation process, the perlcc module creates a number of temporary

files. All of these files’ names are based on the value of the $$ Perl variable, which
refers to the current process ID. Thus, the temporary file for the -e option is perlc$$.p,
the file for temporary C code is perlc$$.p.c, and a temporary executable is stored in
perlc$$.

Differences Between Interpreted and Compiled Code
Because of the methods used to produce an executable version of a Perl script, there
are minor differences between interpreted and compiled code. For the most part, the
differences are related to the behavior of the compilation process, and in time they
should be able to be modified such that the compiled and interpreted versions of the
same script work identically. Unfortunately, other bugs are directly related to the way
the compiler operates, and it’s unlikely that these will be able to be changed.

The currently known list of differences is as follows:

� Compiled Perl scripts calculate the target of next, last, and redo loop control
statements at compile time. Normally, these values are determined at run time
by the interpreter.

� The decision of Perl to interpret the . . operator as a range or flip-flop operator
is normally decided at run time, based on the current context. In a compiled
program, the decision is made at compile time, which may produce unexpected
results.

� Compiled Perl scripts use native C arithmetic instead of the normal
opcode-based arithmetic used in interpreted scripts. This shouldn’t cause too
many problems (in fact, it makes things quicker); but it may affect calculations
on large numbers, especially those at the boundaries of the number ranges.

� Many of the deprecated features of Perl are not implemented in the compiler.

Comparing Script and Executable Speeds
Many factors affect the speed of execution of a typical program. The platform on which
you are running obviously has an effect, including the memory, hard disk, and other

C h a p t e r 2 2 : P e r l C o m p i l e r 795
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

application requirements at the time the program is run. When considering a Perl
script, there are additional overheads to the execution process.

With a C program, the time to execute a program can be split into three elements:

� The time to load the program, including any dynamic loading of libraries.

� The execution of any user-defined components.

� The execution of any system functions. These include any access to the
operating system proper, such as files and network sockets, and any access to
the memory system. Depending on the implementation, you can also add the
library loading time to this figure.

With a Perl script that is interpreted, the list is longer; and, as such, the equivalent
process should take longer, even for a very simple statement:

� The time to load the Perl interpreter

� The time for Perl to load the Perl script

� The time taken for the Perl interpreter to parse the script and translate it into
the opcode tree

� The execution of the Perl opcode tree

� The execution of any system functions

It should be obvious that Perl should, in theory, be a lot slower than a compiled
version of the same program written in C. When a Perl script is compiled into a binary
executable, two of the preceding elements can be removed. The script is already in the
format of a binary executable; all you need to do is load the binary and execute it. This
is where the speed advantage becomes apparent.

When comparing times, you need to compare the following operations:

� Time taken to compile the C program

� Time taken to execute the C program

� Time taken to execute the interpreted Perl script

� Time taken to compile the Perl script into a binary

� Time taken to execute the Perl binary

It’s also worth considering the overall time taken to do the following:

� Compile the C program and then execute it 100 times.

� Execute the Perl script 100 times with the interpreter.

� Compile the Perl script into a binary and then execute it 100 times.

796 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : P e r l C o m p i l e r 797
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

These figures will show the difference in total execution time between the C program,
interpreted Perl, and compiled Perl. Remember that when a Perl script is interpreted, it
must be compiled before it is executed, which takes a finite amount of time.

Usually, the reason for using a compiled binary is to increase the speed of execution.
By checking the combined times for running the script 100 times, you should get a rough
idea of how much of a speed increase you can expect. Obviously, it’s likely that the script
will be run significantly more than 100 times, but the same calculation can be applied to
any number of executions.

Tests
We’ll be comparing three basic programs. The first performs a repetitive calculation on
an ascending number for a specific number of iterations. This tests the relative speed of
calculations and loops, something we already know is slower in Perl than in a compiled
C program. Here is the C version used in the tests:

#include <math.h>

int main()

{

int i;

for(i=0;i<10000;i++)

{

sqrt(abs(sin(i)+cos(i)));

}

}

The following code shows the Perl version. Note that it’s much shorter; it shows the
brevity with which programs can be written in Perl. You don’t have to worry about
any of the initialization that the C equivalent requires. Also notice that, otherwise, the
two versions are very similar.

for(my $i=0;$i<10000;$i++)

{

sqrt(abs(sin($i)+cos($i)));

}

The next test is a simple text-processing test. We’ll count the number of lines in
a document. The document in question is actually a list of all the words in a public
domain dictionary that begin with “a” (for reasons that will become apparent in the

next script). This tests basic I/O in the two languages. Essentially, the performance of
the two should be largely identical, since Perl will optimize the process down to an
almost identical structure.

#include <stdio.h>

int main()

{

char *line;

FILE *data;

long count=0;

data = fopen("wordlist","rw");

while(!feof(data))

{

fgets(line,255,data);

count++;

}

printf("%d lines\n",count);

}

The Perl version of the second test can be seen next. Once again, note that the
overall structure is largely identical, although Perl’s <FH> operator makes reading in
the information much easier.

open(DATA,"<wordlist")

while(<DATA>)

{

$lines++;

}

close(DATA);

print "$lines lines\n";

The final test is an advanced version of the second test. We’ll read in the words
from the file and then calculate the number of unique lines. Within C, we’ll use a
simple keyword table stored in the words array. This will hold the list of words we
have already recorded. To identify whether the word has already been seen, we just
compare the new word against every entry in the array. This process is slow and
inefficient, but it is the shortest (in lines) of the methods available. We could have used

798 P e r l : T h e C o m p l e t e R e f e r e n c e

a binary tree or even a hashing system, but doing so would have added significantly
more lines to an already long C program.

#include <stdio.h>

char words[32000][260];

long wordidx=0;

void addtolist(char word[255])

{

int i=0;

for(i=0;i<wordidx;i++)

{

if (strcmp(word,words[i]) == 0)

return;

}

strcpy(words[++wordidx],word);

}

int main()

{

char line[255];

FILE *data;

long count=0;

data = fopen("wordlist","rw");

while(!feof(data))

{

fgets(line,255,data);

addtolist(line);

}

printf("%ld unique lines\n",wordidx);

}

The Perl script for the third test is significantly shorter, but only because we can
directly use hashes, instead of having to use a separate function and loop to search
an array.

open(DATA,"<wordlist") || die "Can't open file";

my %words;

C h a p t e r 2 2 : P e r l C o m p i l e r 799
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

while(<DATA>)

{

$words{$_} = 1;

}

close(DATA);

print scalar keys %words," unique lines\n";

Summary Results
Each test was run three times, and the times command that is standard with the bash
shell was used to test the execution of each item. This calculates the elapsed time, and
the user and system time for each command. The times shown are the elapsed amount
of time for the program to load, execute, and quit.

The tests show a significant difference in execution times both between the C and
Perl programs, and also between the interpreted and compiled versions of the Perl
scripts. The times (in seconds) are shown in Table 22-8. The figures show two things:
first, the difference in execution time between a C program and a Perl script and,
second, the performance gain between executing a Perl script in its interpreted form

800 P e r l : T h e C o m p l e t e R e f e r e n c e

Operation Test 1 Test 2 Test 3

Compile C to binary 0.201 0.174 0.181

Execute C program 0.018 0.051 128.81

Compile C program once,
execute 100 times

2.001 5.274 12.881

Execute interpreted Perl script 0.048 0.174 0.456

Compile Perl script to binary 3.164 3.213 3.214

Execute Perl script as binary 0.058 0.18 0.489

Execute interpreted Perl script
100 times

4.8 17.4 45.6

Compile Perl program once,
execute 100 times

8.964 21.21 52.114

Table 22-8. Summary Times for Comparison Tests (in Seconds)

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 2 : P e r l C o m p i l e r 801
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

and then its compiled form. For additional comparison, the table also shows the time
taken to perform 100 C, interpreted Perl, and compiled Perl executions.

Irrespective of the values, it should be noted that these are fairly immature
benchmark tests, although they do show many of the advantages of compiling a Perl
script into an executable. It’s also worth remembering why the time taken to compile
the Perl script into a binary is relatively high. Creating a Perl binary involves not only
the compilation of the script into its native Perl format, but also a significant amount of
translation to make that into a C source that can be compiled. It also needs to be linked
to the Perl library that supplies all of the core Perl functions and the Perl interpreter.

The most obvious difference is the drop in speed from a raw C program to a Perl
version. In the case of the interpreted version of the script, some of this difference can
be attributed to the time taken to compile the script into opcodes, optimize it, and then
execute the opcode tree. However, it could equally be related to the speed of the
mathematical calculations in Perl.

The compiled version of the Perl script does at least narrow the gap. It is likely that
a good deal of the overhead here is related to loading a binary that is about 820K,
compared to the 12K for the C version. The Perl binary is large because we used a
static, rather than a dynamic, Perl library. With a dynamic Perl library, the size is much
smaller—about 11K—but many of the functions from the dynamic library will also
need to be loaded.

For the second test, both the Perl and C versions are incredibly quick; the program
is very simple, and probable differences between the cores of both programs are likely
to be very small. The biggest difference is, of course, in the last test, in which the Perl
version is significantly quicker than the C equivalent. The main reason is that we’ve
cheated and used a hash to do the deduping operation. Within the C source we had to
use a different method to achieve the same result. The C version is also much longer,
by source lines, and the algorithm used here is not ideal. Had I coded a binary tree or
even a hash system in the C program, there might have been a smaller difference in the
speed tests between the two. However, to add a C-based hashing system or binary tree
system would have increased the length of the C program considerably.

The figures comparing the execution of the interpreted Perl script 100 times and the
compiled and then interpreted version are much more telling. You can see very clearly
that executing the compiled Perl script is much faster than executing the interpreted
version. This difference is significant if you are expecting to install a script in a live
environment where it may be called a large number of times, as, for example, on a
website.

The other benefit of a compiled executable is that you can continue to develop and
test with the interpreted version while using a final compiled production version in the
live environment. You can be guaranteed that the interpreted and compiled versions
will work identically, and they will both retain the same compatibility. They can even
use the same configuration and data files without requiring any modifications.

This is a much more efficient development environment than using C or some other
language that requires a separate compilation each time you want to test a feature or
bug fix. As you saw in the last chapter, when debugging a Perl program, you only need
to change the source and run the interpreter again. A C program needs to be
recompiled and relinked between each test of a bug fix.

As a further comparison, let’s imagine the program in the second test is riddled
with 100 bugs, and we recompile the program between each fix. Ignoring the time
to edit the source, the C version would take 129 seconds for each compilation and
execution, and a total of 214 minutes for the entire process. The Perl version would
take 52 seconds, including a final compilation to an executable binary. That’s an
efficiency gain of 247 percent!

802 P e r l : T h e C o m p l e t e R e f e r e n c e

Chapter 23
Perl Documentation

803

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

An application is next to useless without documentation. The current trend is
not to supply the hefty multipage manuals that used to be supplied with the
software that you bought. But even here, you’re not bereft of information—

even if the single slip of paper just directs you to a README or other document on
the supplied CD. This move to online documentation has sparked a completely new
range of software purely dedicated to the task of displaying documentation on screen.

These applications can stretch from very simple text viewers to complex help
systems, and, more usually these days, a set of HTML documents that can be viewed,
searched, and bookmarked just as with any other HTML-based document.

There are some advantages to using online documentation—the obvious one is
that the documentation can normally be searched much more effectively than using a
contents page or index. Another advantage, and one of the reasons that it’s so popular
with shareware and free software (including Perl), is that it can be provided along with
the software as part of the downloaded package. However, the main problem with
online documentation is that it’s never easily available if you’re having a problem with
your machine!

If you’re going to supply online documentation, then you have to choose a suitable
format, and in the case of Perl, it needs to be something that is ultimately cross-
platform compatible and practical for use while you are programming. Perl’s
development predates the invention of HTML by a few years, and at the time there
wasn’t a truly cross-platform documentation solution. There still isn’t one now—
HTML is not really designed to be used for “documents” in the true sense of the word,
but it would have filled the gap nicely.

Instead, a new document format was invented, called POD—Plain Old Documentation.
This actually works much like HTML, using a combination of tags and raw text to
build up the document. Unlike HTML, POD was designed purely with online
documentation in mind. This means you are limited to two levels of header, lists,
and inline italic, bold, and link elements.

The advantage of POD over all the other formats is that it can be easily translated
into HTML, the Unix man pages, plain text, and even word processor formats such as
RTF (Rich Text Format). Once you’ve gone as far as converting to one of these base
formats, you’ve got free reign to go from there and convert to PostScript, Microsoft
Word, or Adobe Acrobat PDF (Portable Document Format). Furthermore, POD
documents can be embedded into Perl source code, so as you write a function, you
can also document it.

In this chapter, we’ll concentrate on three aspects of the documentation process.
First is understanding how to use the documentation that is supplied with Perl in its
different distributions. Next we’ll look at how to write and include your own
documentation in your applications. The last part of the chapter looks at converting a
POD document into an alternative format, including plain text and HTML, and a trick
for converting the installed documentation into HTML through a web browser.

804 P e r l : T h e C o m p l e t e R e f e r e n c e

Using the Supplied Documentation
Perl comes with its own extensive documentation that covers virtually every angle
of the language, from the core components and language descriptions through to the
information on the internals. All of the modules that come with the standard distribution
also include their own documentation.

You can see a list of the main Perl POD documentation in Table 23-1. The table lists
the core documents, loosely referred to as perlpod, that make up the core documentation
for the Perl language. They don’t document any of the individual modules that come
with Perl, only the built-in functions, language syntax, and other language-specific
(rather than library-specific) information.

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 805
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Document Description

perl The main Perl document that describes the core language
and the contents of the other POD documents

perldelta Perl changes since the previous version

perl5005delta Perl changes in version 5.005

perl5004delta Perl changes in version 5.004

perlfaq The root document of the Perl “Frequently Asked
Questions” documents tree

perltoc Perl documentation table of contents

perldata Description of the built-in data formats

perlsyn Guide to Perl’s syntax

perlop Perl operator list, descriptions, and precedence

perlre Details on the Perl regular-expression engine syntax

perlrun Perl command line execution options and operations

perlfunc Core reference for the Perl built-in functions

perlopentut Tutorial for the open function

perlvar List/description of the predefined Perl variables

perlsub Design and method guidelines for Perl subroutines

Table 23-1. Perl POD Documents

806 P e r l : T h e C o m p l e t e R e f e r e n c e

Document Description

perlmod Information on how Perl modules work

perlmodlib How to write and use Perl modules

perlmodinstall Installing Perl modules from CPAN

perlform The Perl format system

perlunicode Perl Unicode support

perllocale Perl locale support

perlreftut Perl reference tutorial

perlref Perl references

perldsc Perl data structures introduction

perllol “List of lists” data structure examples

perlboot Object orientation tutorial for beginners

perltoot Object orientation tutorial, part 1

perltootc Object orientation tutorial, part 2

perlobj Perl objects

perltie Using tie for providing object-based interfaces to complex
external data sources

perlbot Object orientation tricks and examples

perlipc Perl interprocess communication

perlfork Perl fork information

perlthrtut Perl threads tutorial

perllexwarn Perl warnings and their control

perlfilter Perl source filters

perldbmfilter Perl DBM filters

perlcompile Perl compiler suite introduction

perldebug Perl debugging, including guide to the debugger

perldiag Perl warning, error, and other diagnostic messages

perlnumber Perl number semantics

Table 23-1. Perl POD Documents (continued)

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 807
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Document Description

perlsec Perl security

perltrap Perl traps for the unwary

perlport Perl portability guide

perlstyle Perl style guide

perlpod Perl plain old documentation definition

perlbook List of suggested Perl books

perlembed Details on how to embed perl in your C or C++ application

perlapio Perl internal I/O abstraction interface

perldebguts Perl debugging guts and tips

perlxs XS application programming interface for extensions

perlxstut XS tutorial

perlguts Perl internal functions for use with XS extensions

perlcall Perl calling conventions from C

perlapi Perl API listing (autogenerated)

perlintern Perl internal functions (autogenerated)

perltodo Perl things to do

perlhack Perl hackers guide

perlhist Perl history records

perlamiga Perl notes for Amiga

perlcygwin Perl notes for Cygwin

perldos Perl notes for DOS

perlhpux Perl notes for HP-UX

perlmachten Perl notes for Power MachTen

perlos2 Perl notes for OS/2

perlos390 Perl notes for OS/390

perlvms Perl notes for VMS

Table 23-1. Perl POD Documents (continued)

808 P e r l : T h e C o m p l e t e R e f e r e n c e

The library modules both from the original distribution and those that you download
and install from elsewhere, should include their own POD documentation embedded
into the module files themselves.

How you view this documentation is entirely dependent on the platform you
are using Perl on. Different platforms also have some tools that can be used to make
browsing and finding the right documentation easier. We’ll look at the three main
operating systems, Unix, Windows, and Mac OS, in this section. If you are using Perl
on another platform, then either try the README document that came with your
distribution, or see the “Converting POD to Other Formats” section later in this chapter
to convert POD documents into a format you can read more easily.

Unix
Under Unix, Perl documentation is converted into man page format, accessible through
the man command. The initial installation procedures convert all of the perlpod
and standard library files into manual pages installing them within the man directory
structure under the main installation directory. For example, if the install directory
is /usr/local, then the pages are installed under /usr/local/man. The perlpod
documentation is put into section 1, and module documentation into section 3. The
MakeMaker system will also force the installation of new modules so that their
documentation is installed into the same location.

The primary tool for viewing the perlfunc document under Unix is therefore

$ man perlfunc

To view a library module, such as Net::Ping, supply the module name instead:

$ man Net::Ping

If you use emacs or xemacs, then you have access to a man-mode. This allows you
to view a manual page within a buffer, providing the usual scrolling and cut and paste
facilities available in any read-only buffer. To use it, type M-x man, and then enter the
name of the manual page to view. It’ll be located, parsed, and then displayed. Once
within a buffer with man-mode, you can press m to open a linked document. You can
see a sample of the main Perl manual page as viewed within emacs in Figure 23-1.

As an augmentation to the man tool, Perl installs the perldoc command. This allows
you to view more than just entire documents, it’ll also display components of the perlpod

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 809

documentation set, which makes it exceedingly useful for picking out specific elements,
especially from the perlfunc document, which includes every single function in one long
document. For example, to view only the localtime function, you’d use

$ perldoc -f localtime

The output format is in man (nroff) format, so it should be displayed using the
appropriate highlights. You can see a list of the full command line options for perldoc
in Table 23-2.

Figure 23-1. A Perl man page in emacs

810 P e r l : T h e C o m p l e t e R e f e r e n c e

Windows
Windows installations always convert the documentation into HTML format. With the
ActiveState distributions, you’ll get a very well organized set of HTML documents, as
well as Win32-specific documentation and a separate ActiveState/Win32 FAQ. You can
see a sample in Figure 23-2. You also have access to the perldoc command, but it
outputs a text version in the command window, rather than opening a browser and
displaying the formatted version.

Option Description

-h Prints out a help message.

-v Annotates the process followed when looking for an individual
item.

-t Displays using plain text, instead of nroff.

-u Outputs the raw POD-formatted documentation; useful if you
want to convert to something other than nroff or plain text.

-m Displays the entire module, including the code and unformatted
POD documentation.

-l Displays the name of the file that contains what you’re looking for.

-F Uses the next argument as a file name, and disable searching of
the standard directories.

-f function Displays the documentation for the built-in function, as
contained within the perlfunc page.

-q perlfaq Displays the FAQ entries matching the regular expression perlfaq.

-X Tells perldoc to use an index, if one is present, for the item you
are searching for.

-U Run insecurely. By default, perldoc will fail when called by root
because it’s not strictly secure. Using -U sets the real and
effective user IDs to nobody, nouser, or -2.

Table 23-2. Command Line Options for perldoc
TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 811
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Installed modules should install HTML versions of their documentation. The PPM
and VPM tools both work this way, and if you use the CPAN module, then MakeMaker
will install HTML versions of the documentation as well.

Mac OS/Mac OS X
Because the Mac OS doesn’t have a command line or a convenient place to install a
suite of documentation, MacPerl comes with its own POD viewer called Shuck. Unlike

Figure 23-2. ActiveState Perl Installed Documentation

all the other forms we’ve seen so far, Shuck actually views POD documents directly,
without converting the documents into another format. You can access the core Perl
documents, the additional MacPerl documents, and the FAQ through the MacPerl
application’s Help menu. You can see an example in Figure 23-3.

If you’ve installed a third-party module, things get more complicated. You can drag
and drop Perl modules and scripts onto the Shuck application, but only if they have the
right four-letter type. This should be TEXT, which is fine for most editor documents
and for scripts created and edited by the MacPerl application. If you need to change the
file type, then try using FileTyper, which you can download from http://www.ugcs.
caltech.edu/~dazuma/filetyper/.

Writing POD Documentation
Perl is a cross-platform language, so using an architecture-specific format is not an
option. Using a more neutral format, such as HTML, causes its own problems on

812 P e r l : T h e C o m p l e t e R e f e r e n c e

Figure 23-3. Viewing Perl documents with Shuck

machines where it may be possible, but not necessarily practical, to have an HTML
browser around all the time. Instead, Perl documentation is written in POD format,
which uses a similar tag-based system to HTML, but the overall format is much
simpler and straightforward.

Because POD is very simple, it can also be easily translated into other formats—
this is done automatically into nroff under Unix and HTML under Windows. Perl
even comes with the tools to allow you to convert the documentation yourself.

POD Components
The POD format works slightly different than HTML, even though it uses the same
basic premise of simple text tabs. A POD document is made up of three different types
of paragraphs: verbatim, command, and ordinary text. The purpose of each paragraph
type is fixed in terms of the POD documentation but unique when translated.

The translation of the paragraph information is up to the translation script that
turns the original POD documentation into its final state. For example, ordinary
paragraphs are turned into justified text paragraphs when converted to text but are
embedded into paragraph tags when converted to HTML.

Each element can also have embedded escape sequences, which allow you to specify
an alternative printed format for a word or sentence. This includes boldfacing and
underlining text, for example, as well as introducing references and links to other
documents or other parts of the same document, just like HTML. Again, it’s up to the
translation scripts to convert the embedded tags into the corresponding format: for
HTML, they become a clickable link, and for Unix manual pages (as available through
the man command), they are underlined references.

There is no standard format or layout for a POD document, but different translators
place certain levels of significance on different elements within the source POD file;
for example, the text translator ignores links. We’ll have a look at a sample document
shortly, but it’s worth remembering that all of the different encoding samples can be
used to create some very simple documentation with little effort.

Command Paragraph
Command paragraphs specify that some special element or formatting should be
applied to the supplied word, sentence, paragraph, or section. It allows you to insert
headings, subheadings, and lists into the document. All command paragraphs start
with an equal sign and a keyword that specifies the formatting to be applied. The
paragraph may include an additional keyword or reference. For example, the paragraph

=head1 This is a main heading

creates a level-one heading, the text of which is “This is a main heading”. Other
command paragraphs are shown in Table 23-3.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 813

Of all the command paragraphs, the head paragraphs are the most important, as
they help to define the major and minor headings within the document.

There are some accepted standards for laying out the individual components of
your document. At the top level (indicated by =head1) are the major sections of the
document, such as the title or synopsis of the POD document. At the second level are
the subheadings, perhaps major components or functions. If you need an additional

814 P e r l : T h e C o m p l e t e R e f e r e n c e

Command Result

=head1 text Applies first-level heading, using text as the description.

=head2 text Applies second-level heading, using text as the
description.

=over n Starts indentation of paragraphs with n specifying the
number of characters to use for indentation. Ends the
indentation with =back.

=item text Specifies the title for an item in a list. The value of text will
be interpreted differently, according to the translator.

=back Ends a list or indentation.

=for format Allows you to specify that the following paragraph
should be inserted exactly as supplied, according to the
specified format. For example,

=for html Heading

would be inserted into the translated file only by an
HTML translator.

=begin format
=end format

Acts similarly to =for, except that all the paragraphs
between =begin and =end are included by the specified
format translator as preformatted text.

=pod Specifies the start of a POD document. It is best used
when the documentation is included as part of a script.
The =pod command paragraph tells the compiler to
ignore the following text.

=cut Specifies the end of a =pod section.

Table 23-3. Command Paragraphs

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 815
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

level beyond those two, you can use =item entries to add new levels: just use in
combination with the =over command paragraph to indent each additional heading.

Table 23-4 lists, in the rough order in which they should appear, the major headings
that you should include for all POD documentation. You don’t have to include all of

Element Description

NAME Mandatory comma-separated list of the functions or
programs documented by the man page

SYNOPSIS Outline of the function’s or program’s purpose

DESCRIPTION Longer description or discussion of the program’s
purpose

OPTIONS The command line options or function arguments

RETURN VALUE What the program returns if successful

ERRORS Any return codes, errors, or exceptions that may be
produced

EXAMPLES Examples of the program’s or function’s use

ENVIRONMENT The environment or variables used by and modified
by the program

FILES The files used

SEE ALSO Other entries to refer to

NOTES Any additional commentary

CAVEATS/WARNINGS Anything to be aware of during the program’s use

DIAGNOSTICS Errors or messages produced by the program and
what they mean

BUGS Things that do not work as expected

RESTRICTIONS Items that are built-in design features and
limitations

AUTHOR Who wrote the function or program

HISTORY The source or origin of the program or function

Table 23-4. POD Document Section Names

the elements—don’t include a BUGS heading if there aren’t any—but you should
include the NAME, SYNOPSIS, DESCRIPTION, and AUTHOR sections, especially
if you are aiming to release the code and its document to the public.

Ordinary Text Paragraph
Ordinary paragraphs of text are justified and filled during the translation process,
according to the destination format. How the justification takes place is entirely
dependent on the translator and the reader of the file that it creates.

Verbatim Paragraph
A verbatim paragraph will be reproduced within the final document exactly; you
cannot use formatting escapes, and the translator won’t make any assumptions about
the contents of the paragraph. A verbatim paragraph is identified by indentation in
the source text, either with spaces or tabs. The best use for a verbatim paragraph is to
reproduce code within the document to ensure that it appears as working code within
the final document. Without this facility, the code would be justified and filled just
like any other paragraph.

Escape Sequences
Escape sequences are recognized within both ordinary text and command paragraphs.
The escape sequences allow you to specify that a block of text is to be displayed as
italicized, boldfaced, underlined, and so on. An escape sequence consists of a single
letter and a pair of angle brackets that contain the text to be modified. For example,
the POD fragment

B<Hello World!>

specifies that the string should be boldfaced, producing Hello World!
Other escape sequences include linking to other types of documents and inserting

literal (non-translated) text elements. How the escape sequences are interpreted is
again up to the translation and destination format—some will be ignored and others
will imply that additional information be added to the embedded sequence.

Table 23-5 provides a list of the escape sequences supported by the POD format,
and Table 23-6 lists the link-specific interpretations.

Embedding Documentation
Unlike most other forms of documentation, Perl allows you to embed POD-formatted
sequences directly into your Perl source code. This is not necessarily new; other systems
have allowed this, but generally only as part of the header or footer to the script or
module. Perl allows you to embed sequences at will anywhere within your code, so

816 P e r l : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 817
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Sequence Description

I<text> Italic text

B<text> Boldface text

S<text> Text with non-breaking spaces (spaces within text that will not
be used to wrap or split lines)

C<code> Literal code fragment (for example, C <printf()>)

L<name> A link or cross reference to another section, identified by name.
See Table 23-6.

F<file> Used for file names

X<index> An index entry

Z<> A zero-width character

E<escape> A named character (similar to HTML escapes)

E<lt> A literal <

E<gt> A literal >

E<n> Character number (in ASCII)

Table 23-5. POD Escape Sequences

Sequence Description

L<name> Manual page

L<name/ident> Item or section within a manual page

L<name/"sec"> Section in other manual page

L<"sec"> Section within the current manual page (quotes are
optional, as in L<name>)

L</"sec"> Same as above

L<text|name>
L<text|name/ident>
L<text|name/"sec">
L<text|"sec">
L<text|/"sec">

Same as above, but destination is identified by name
but displayed as text; the text element cannot contain
| or >

Table 23-6. Link Escape Sequences

you can document a function where the function is defined within the code, which is
useful as a cross reference.

The embedding process keys on a command paragraph, and all text after that is
taken as POD documentation until the interpreter sees the =cut command paragraph.
The opposite of this approach is used by the POD translators: they ignore the Perl
script and only work on the POD documentation sequences.

For example, when documenting two functions, we might use the following:

=item * add function

Adds two numbers together.

=cut

sub add

{

$_[0]+$_[1];

}

=item * subtract function

Subtracts the second number from the first.

=cut

sub subtract

{

$_[0] - $_[1];

}

This does nothing when executed as a Perl script (except defining two functions
that we never use!). However, if you convert it to another format and view the document,
you get a nicely formatted document.

Converting POD to Other Formats
It should be obvious by now that POD documentation on its own is fairly useless.
Without a great deal of effort, it can’t be viewed and easily understood directly, and
there is no POD reader (unless you have a Mac, in which case you can use the Shuck
application).

Before POD documents can be useful, we therefore need to use a translator to
convert them into something we can read. The base Perl distribution comes with

818 P e r l : T h e C o m p l e t e R e f e r e n c e

stand-alone tools for converting POD documentation into text, HTML, and Unix man
pages (nroff), all of which are actually supported by a series of modules.

You can also download a number of additional modules from CPAN that help
convert to other formats or provide POD-related utilities. You can see a sample in
Table 23-7.

Text
If you do not want to view formatted output from a POD document, you can convert it
into textual format. The resulting output is not completely without formatting—the
capabilities of your display are taken into account during the translation process. The

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 819
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Module Description

Pod::DocBook Translates to the SGML-based DocBook format.

Pod::Html The supplied translation module for HTML documents.

Pod::Man The supplied conversion module to the man-based nroff
format.

Pod::PlainText Translates to raw plain text, essentially stripping all of
the formatting from the POD document—paragraphs are
justified and attempts are made to make the conversion
clear, but it doesn’t attempt the same sort of formatting
as Pod::Text.

Pod::RTF Converts to RTF (Rich Text Format) files. RTF files can
be imported and formatted in most word processors,
including Microsoft Word, Sun’s StarOffice, and Lotus
WordPro.

Pod::SimpleText Converts to the SimpleText format used on the Mac for
README files.

Pod::Text The supplied text conversion module; this supports
terminal formatting on suitable devices.

Pod::Text::Color An extension that allows POD documents to be
formatted and viewed using color-based formatting.

Pod::Text::Termcap An extension that makes use of the terminal abilities for
bold and underlining on terminals that support it.

Table 23-7. Conversion Formats

Pod::Text module provides the capabilities you need, and the base distribution
includes a command line interface to the module in the form of the pod2text script.

$ pod2text [-a] [-width] script.pl

The script takes only one argument—the name of the file to translate. The resulting
text will be sent to STDOUT after it has been converted. There are two additional,
optional arguments. The -a argument assumes an alternative, and in fact less capable,
terminal, which removes more of the POD formatting, but it is useful on terminals that
don’t support formatting (see also the Pod::PlainText module).

The -width argument specifies the width of the output device, where width is the
width in characters of the output device.

HTML
The most compatible destination format (especially across platforms) is HTML. The
pod2html script works in the same way as the pod2text script:

$ pod2html script.pl

Output is also sent to the standard out, so you will need to redirect the generated
HTML to a file if you want to install it on a web server or view it with a browser.

You can also write your own script using the Pod::Html module, which exports a
single function, pod2html, which accepts the same arguments as the stand-alone script;
you just supply them as you would on the command line:

pod2html("--infile=Module.pm","--netscape");

You can see a list of the supported arguments in Table 23-8.

Unix man Pages
The online documentation on Unix is stored in *roff format, using the man macro
extensions. This is a special formatting system that has been part of Unix and, many
years ago, part of full-scale print production systems. To create a man page from raw
POD source, you use the pod2man script:

$ pod2man script.pl

The formatted output is sent to STDOUT, so you will need to redirect the output.
The conversion process will highlight different entities correctly. Headings, page
headers and footers, and formatting will all be translated to the manual pages. The

820 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 821
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Option Description

--flush Flush the contents of the item and directory caches created during
the parsing of a POD document.

--help Print out a help message.

--htmlroot The base directory from which you reference documents
relatively. This is required if you expect to install the generated
HTML files onto a web server. The default is /.

--index Generate an index of =head1 elements at the top of the HTML file
generated (default).

--infile The file name to convert. You don’t have to use this element; the
first nonhyphenated argument is taken as a file name. If you don’t
specify a file by either method, then it will accept input from
standard input.

--libpods A colon-separated list of pages searched when referencing =item
entries. These are not the file names, just the page names as they
would appear in L<> link elements.

--netscape Use Netscape-specific browser directives when necessary.

--nonetscape Prevent the use of Netscape-specific browser directives (default).

--outfile The destination file name for the generated HTML; it uses
standard output if none is specified.

--podpath A colon-separated list of directories containing POD files and
libraries.

--podroot The base directory prepended to each entry in the podpath
command line argument. The default is . (dot) and the current
directory.

--noindex Don’t generate an index at the top of the HTML file generated.

--norecurse Don’t recurse into the subdirectories specified in the podpath
option.

--recurse Recurse into the subdirectories specified in the podpath option
(this is the default behavior).

--title The contents of the <TITLE> tag in the created HTML document.

--verbose Produces status and progress messages during production.

Table 23-8. Arguments When Converting POD to HTML

script converts the references to other manual pages, such that interactive man-page
readers, such as emacs, can access the linked pages correctly.

Manual pages are stored according to a series of sections that help to isolate and
identify individual pages; for example, the mkdir command is in section 1, while the
mkdir function is in section 3, sometimes 3C. The actual section names are dependent
on the variety of Unix you are using, although the major sections of 1–8 are unchanged
on most systems.

If your POD documentation relates to a command, put it in section 1, and a
extension module should be in section 3. A full list of the sections supported under
System V Release 4 based Unix variants is shown in Table 23-9.

822 P e r l : T h e C o m p l e t e R e f e r e n c e

Section Contents

1 User commands

1C Basic networking commands

1F FMLI commands

1M Administration commands

2 System function calls

3 BSD routines

3C C library functions

3E ELF library functions

3G Libgen functions

3M Math functions

3N Network services functions

3S Standard I/O functions

3X Specialized libraries

4 File formats

5 Miscellaneous

6 Games

7 Special files

8 System maintenance procedures

9 Device-driver interface/driver-kernel interface (DDI/DDK)

Table 23-9. Unix Manual Sections

Typically, the Perl-specific manual pages are installed in the man directory of the
main Perl library directory. The location of this depends on the version of Perl you are
using and on the platform. Again, you should let MakeMaker (see Chapter 25) sort this
out for you.

PostScript/PDF
If you can convert to HTML, you should be able to view the HTML in a browser and
then output to PostScript format. To do this under Unix versions of Netscape/Mozilla,
just select the PostScript file option, instead of printing through the lp or lpr filter.
Under Windows, you’ll need to set up a printer that uses FILE: as the output device.
Use the Apple LaserWriter II/IIg driver—this produces some of the cleanest PostScript,
which should be compatible with any PostScript printer, and with other tools such as
GhostScript and Acrobat for conversion to PDF format.

Under Mac OS, you can select the Output to File pop-up within the Print dialog
box and then send the file straight to a PostScript file, or if you have Adobe Acrobat
installed, straight to an Acrobat PDF file.

Converting POD to HTML On The Fly
I’ve written a script that works in a similar fashion to the perldoc tool, but instead of
outputting the information in man or text format, it’s designed to work as a CGI script
through a web server so that you can browse the Perl documentation directly through
your browser. The script uses pod2html and sets the options so that links to other
documents in the Perl tree are marked up as normal hyperlinks in the displayed
document.

Because it converts the POD documentation on the fly, you don’t need to install a
set of HTML documents separately. It uses the installed files, so you can even view
HTML versions of third-party installed modules without having to convert the
documents to HTML format separately.

You can download the tool from the http://www.mcwords.com website.

C h a p t e r 2 3 : P e r l D o c u m e n t a t i o n 823
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

This page intentionally left blank.

Chapter 24
Cross-Platform
Migration Traps

825

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

826 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl is a cross-platform language—it runs on a myriad of different Unix flavors,
all the different Windows versions from 3.1 up to 2000 and Millennium Edition,
and on Mac OS. It’s also available less widely for operating systems like VMS

and BeOS, and there are lots of ports for different devices, including one for the Psion
Series 5/7—there’s even a version under production for Palm OS!

When programming Perl on a number of different platforms, you tend to take some
things for granted. Although Perl is pretty platform independent, there are some
differences that will trip you up if you’re not concentrating. Most of the problems are
relatively obvious, but some are obscure and difficult to treat.

The problem with Perl is that it owes a lot of its history to the Unix world. Many of
the built-in functions like chmod and getpwuid are Unix specific and rely on functions
found only under Unix. It’s also a textually driven language, from the production and
development of the scripts to many of the interfaces that are used. This means that
certain elements of Perl are not compatible across platforms.

Just to add to the complexity, not all platforms are the same either. The Mac OS
doesn’t have a command line interface, and Microsoft is slowly trying to remove the
command line interface from their operating systems, which can make using Perl
interesting. Other problems, such as line termination (the newline/carriage-return
and carriage-return/newline issue) just add to the confusion. As a general rule, don’t
assume that Perl supports all functions on all platforms, and don’t use data without
considering where it might have come from.

In this chapter, we’ll take a quick look at all of the factors that affect the development
of Perl scripts under the different platforms and at some of the solutions we can use to
correct them. (For a recap of how Perl works and is available under the different
platforms, refer back to Chapter 2.)

Function Support
The most obvious difference between platforms is the support for different functions
and operators. The Perl porters are responsible for keeping things as flexible as
possible across different platforms. However, Perl’s Unix roots show through all too
often, and you should keep the following points in mind if you find you have problems
on a different platform:

� Functions that involve looking up details in one of the Unix files contained in
/etc (generally these functions start with set or get) are pretty Unix-centric.
They include network information routines and also those routines related to
group and/or password information. There are usually equivalents in a
platform-specific module.

� All the basic file interfacing options will work; but others, such as –X, stat, and
more Unix-centric functions such as chmod and chgrp, are unsupported. You
should also remember that although Mac OS and Windows support the notion
of links via aliases and shortcuts, respectively, the link and lstat functions often
do not work.

C h a p t e r 2 4 : C r o s s - P l a t f o r m M i g r a t i o n T r a p s 827
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

� Access to the internals of the operating system tables are also unsupported on
many other platforms, particularly those that return unique process and group
IDs, or those that return parent group and parent owner information for a
process ID. Most of the time, however, the $$ variable should provide you with
a reasonable amount of information.

� Unix-specific utility functions are also generally unimplemented, such as the
IPC systems shm*, msg*, and sem*.

� Functions and operators that rely on the ability to run an application by name
through a command line–like interface may not work on all platforms. In
particular, the Mac OS, which doesn’t have a command line interface, does not
natively support functions like system and the backticks or qx operator.
However, you can use the shell provided with the MPW (Macintosh
Programmer’s Workshop) environment to run some commands in this manner.

You can get a more up-to-date list in the perlport manual page supplied with the
Perl distribution.

Constant Compatibility
If you have problems with the operation of a function that normally uses a constant,
make sure that you use the generic name rather than a fixed number. Although in
theory the constants used for setting options with functions like fcntl and ioctl should
be the same, some platforms use different values. Make sure you import the POSIX
module and use the constant names defined there, rather than your own values.

Also, make sure you use the POSIX module when using the seek function—
although the function itself is supported on nearly all platforms, the numbers used to
search forward and backward, and to move to the start and end of the file, can differ
between platforms.

Execution Environment
The environment in which Perl is executed can have a significant effect on your script.
Many problems can arise because you rely on information or capabilities outside of
Perl, but that may be directly available internally. Some examples are listed here:

� Try not to rely on the Unix environment variables or Perl’s built-in variables to
get certain pieces of information. In particular, avoid using things like $> and
$< and other user and group ID variables, which are not set on all platforms.
This advice is especially pertinent if you decide to use one of these variables in
a unique ID or other identification string.

� Related to the preceding point, don’t rely on hostnames—or user names, either—
especially if you intend to use them to store unique or identification information.

828 P e r l : T h e C o m p l e t e R e f e r e n c e

� Don’t rely on commands that you want to execute being available within the
PATH environment variable—set it yourself or, better still, use a full path to
the application.

� Don’t rely on signals unless you have to. Some platforms support signals and
signal handlers, others don’t, and those that do may only support a reduced set.

� Use shared files, network sockets, or a platform-specific module, such as
Win32::Pipe, to exchange information. The shm*, msg*, and sem* functions
are not supported on all platforms.

Errors
Perl reports most errors using the $! variable, but platform-specific errors on platforms
other than Unix may not be included. Remember to report the information from $^E on
platforms other than Unix, or use a platform-specific error function, such as
Win32::GetLastError.

Line Termination
One of the most fundamental problems of using Perl on multiple platforms is the line
termination when reading and writing files. Different operating systems use different
characters for line termination. In particular, Unix uses a newline (the \n or \012
character) to terminate, whereas Mac OS uses a carriage return (the \r or \015
character). To complicate matters, DOS/Windows uses the carriage return, newline
sequence (\r\n or \015\012).

Perl will automatically account for this difference under most conditions; but if
you are transferring data as well as scripts between platforms, then beware. Perl will
automatically interpret \n as the correct character or character sequence for the current
platform. Under Mac OS, Perl simply interprets \n as \015; but under DOS/Windows,
it is interpreted as \015\012 when a file is accessed in text mode.

Under platforms other than Unix, you will need to use the binmode function on an
open filehandle to read and write raw data and prevent Perl from doing the conversion
automatically. Also, be careful when using seek, tell, and similar functions—the line
termination is not taken into account automatically when calculating seek values.

When used with network sockets, more direct specification is required. In all
communication between sockets, you should use numerical values instead of their
character versions to ensure that \012 can be identified correctly. Otherwise, the
interpretation of \n on the two platforms may differ. See the discussion on character
sets next. To make the process easier, the Socket module, which is part of the standard
Perl distribution, can supply the values for you.

use Socket qw(:DEFAULT :crlf);

print "Message$CRLF";

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 4 : C r o s s - P l a t f o r m M i g r a t i o n T r a p s 829

These import tags provide three constant variables—$CR, $LF, and $CRLF—which
map to \015, \012, and \015\012, respectively, and are identical irrespective of the
platform on which you are running.

Character Sets
Another popular misconception is that all platforms use the same character set.
Although it’s true that most use the ASCII character set, you can rely only on the first
128 characters (values 0 to 127, or \00 to \0177) as being identical. Even with this
consideration, you shouldn’t necessarily rely on the values returned by chr or ord
across different platforms. The actual values of the character set may include all
manner of characters, including those that may have accents and may be in any order.

Since version 5.6, Perl is completely Unicode compliant, so you should be able to
guarantee that the first 128 characters match the ASCII table, with each character being
represented by a single byte. Further characters are represented by one or more bytes,
and include many of the accented and special characters. See the perlunicode
documentation supplied with Perl.

Data Differences
Different physical and operating system combinations use different sequences for
storing numbers. This characteristic affects the storage and transfer of numbers in
binary format between systems, either within files or across network connections. The
solution to the problem is either to use strings, which will, of course, be displayed in
standard form, or to use the n and N network orders with the pack and unpack
functions (see Chapter 7).

All times are represented in Perl by the number of seconds since the epoch. On
nearly all systems, the epoch is 0:00:00, 1 January 1970. However, other platforms
define other values (Mac OS, for example). If you want to store a date, use a format that
is not reliant on the epoch value, such as a single string like YYYYMMDDHHMMSS.

Files and Pathnames
The main three platforms show the range of characters used to separate the directories
and files that make up a file’s path. Under Unix, it is /; but under DOS/Windows it is \,
and on the Mac it is :. The Windows and DOS implementations also allow you to use
the Unix / to separate the elements. To further complicate matters, only Unix and a
small number of other operating systems use the concept of a single root directory.

On Windows and DOS, the individual drives, or partitions thereof, are identified
by a single letter preceded by a colon. Under Mac OS, each volume has a name that can
precede a pathname, using the standard colon separator. The File::Spec module can
create paths that use the appropriate character set and separator for you. Also be aware

that different platforms support different file names and lengths. The following is a
rough guide:

� DOS supports only names of no more than eight characters and extensions of
three characters, and ignores case.

� Under Windows 95/NT, the definition is slightly more complex: the full
pathname has a maximum length of 256 characters and is case conscious.

� Under Mac OS, any element of a path can have up to 31 characters, and names
within a directory are case insensitive—you cannot have two files called “File”
and “file.”

� Older versions of Unix support only 31 characters per path element; but newer
versions, including Solaris and HP-UX 10.x and above, as well as Linux,
support a full 256 characters per path element.

You should also try to restrict file names to use only standard alphanumeric
characters.

Modules
Be careful when using modules that contain platform-specific elements or that require
the use of a C compiler when the module is built. You cannot guarantee that the
module will be supported on all platforms or even that a C compiler will be available
if you need it.

Performance and Resources
Not all platforms have the seemingly unlimited resources of the Unix operating
system available to them. Although Windows provides a similar memory interface,
the available memory on a Windows machine may be significantly less in real terms
(physical/virtual) than that available under a typical Unix implementation, although
this condition is changing as RAM becomes cheaper. MacPerl must be allocated its own
block of memory; and, once exhausted, it cannot automatically gain new memory, even
if there is some available. You should, therefore, take care with statements that
arbitrarily create large internal structures; for example,

foreach (1..1000000)

creates a list with one million elements, which will take up a significant amount of
memory. This has been fixed in Perl 5.005; but earlier versions, including MacPerl,
which is currently based on 5.004, will generate the huge list.

830 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Also remember that other operating systems do not provide the same protected
memory spaces or the multitasking features of Unix.

Platform Migration Tricks
There are a few things we can do within a script to identify where, and on what, the
script is being executed. Most of the information is available as standard to the Perl
interpreter; other pieces of information are available through the use of a supplied
Perl module.

Knowing the following will help you identify and trap some problems before
they occur:

� Platform and operating system

� Perl version

� Supported function lists

You can also use the information that is generated by Perl during the build process
to help identify supported functions and abilities. Alternatively, you can use the eval
function to trap and test for functions before you try to use them properly.

As a final trick, we’ll look at the function-overloading system that allows us to
implement locally a built-in function that is not supported by the current Perl version.

Determining Your Platform
The $^O variable contains the name of the current platform. The information provided
may not be very descriptive if you don’t know the significance of the name returned,
but it should at the very least enable you to identify the main platform. Alternatively,
you can use the value of the $Config{'archname'} variable (available via the Config
module), which contains the name of the architecture on which the current Perl
interpreter was compiled. The architecture string returned includes the platform name
and the hardware architecture on which the binary was built.

Note the difference here: the build and the current platform are not essentially
identical, although it may be safe to assume they are compatible. For example, a Perl
binary built on Solaris 2.4 will also run on Solaris 2.6, or even Solaris 7. However, a Perl
binary for the Intel version of Solaris will not run on the SPARC version. The value of
$Config{'osname'} will tell you the name of the operating system on which the binary
was built.

Some sample operating system names and $^O and $Config{'archname'} values are
shown in Table 24-1.

On many platforms (particularly those derived from Unix), the value is extracted
from that returned by uname. In all cases, the value of $^O is probably of more use
than the architecture name for writing cross-platform scripts.

C h a p t e r 2 4 : C r o s s - P l a t f o r m M i g r a t i o n T r a p s 831
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

832 P e r l : T h e C o m p l e t e R e f e r e n c e

Determining the Perl Version
The Perl version relates very little to the level of support on different platforms.
However, it can sometimes be a useful indicator of whether an official release exists for
a platform, as well as a useful reference point for a specific feature, irrespective of the
platform on which you are working.

If all you want to do is find out what version of Perl you are using, the obvious
solution is to check the version of Perl using the $] variable. This is the version number
of the Perl interpreter added to the patch level divided by one thousand. For example,
v5.004 is Perl version 5, patch level 4. Sub-version numbers to the patch level are
included for the maintenance and development releases of Perl and are indicated as the
release number divided by 100,000: a value of 5.00553 is made up of Perl version 5,
patch level 5, and development release 53. The maintenance release number increases
from 1 to 49 and developmental releases from 50 to 99.

Since Perl 5.6, the information returned is much easier to determine. For a start, the
location of the version number has changed. An old-style version number can still be
found in $], but the new, post-5.6 version number is stored in $^V. It’s also stored as a
v-string, so you need a different way to print the version:

printf("Perl Version: %vd\n",$^V);

There are actually three components to the new-style version number: the major
version number, the minor version number, and the patch level. For example, the first
version of Perl 5.6 was actually 5.6.0.

OS $^O/$Config{'osname'} $Config{'archname'}

MS-DOS dos

Windows 95 MSWin32 MSWin32-x86

Windows NT MSWin32 MSWin32-x86

Mac OS MacOS

Linux linux i686-linux

SunOS 4 sunos sun4-sunos

Solaris solaris sun4-solaris

Table 24-1. Operating Systems and Their Internal Equivalents

You can use the contents of the perldelta man page to determine what functions
and abilities are available within each version of the Perl interpreter. The next section
presents specific ways of determining the supported functions without requiring prior
knowledge.

If you want to restrict a script so it runs only on certain versions, you should use
the require keyword with a numerical or v-string value. When you supply a numerical
value, the comparison is made against the $] special variable—if the value of $] is
numerically higher than the value supplied, the script is allowed to continue:

require 5.005_03;

However, if you supply a v-string, the value of the string is compared with $^V:

require v5.6.1;

require 5.6.1;

Thus, to ensure the script runs only on the very latest stable version of Perl, you might
want to try,

require v5.6;

although this will probably be out of date by the time you read this. If the value
specified does not match the current Perl interpreter, a run-time error will be
produced:

perl -e 'require 6;'

Perl 6 required—this is only version 5.00553, stopped at -e line 1.

Checking for Supported Functions
The Config module we used earlier to determine the architecture and operating system
name used to build the current Perl interpreter actually contains all the information
discovered during the configuration process. You can use this information to determine
the functions and the extensions supported within the current Perl interpreter. The data
is stored in the form of a hash, %Config; so, to determine all of the values, you might use

use Config;

foreach (sort keys %Config)

{

print "$_ : $Config{$_}\n";

}

C h a p t e r 2 4 : C r o s s - P l a t f o r m M i g r a t i o n T r a p s 833
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

834 P e r l : T h e C o m p l e t e R e f e r e n c e

The values output are not cryptic, but also are not obvious. The keys for underlying
operating system functions start with d_, such that the existence of chown can be
determined by

print "Have chown\n" if ($Config{'d_chown'} eq 'define');

Other features, such as extension modules to Perl (NDBM or Socket, for example),
are in other keys within the same hash:

print "Extensions: $Config{extensions}\n";

To check for a specific function, use an eval block to execute the function within its
own interpreter. If the call fails, the eval block will drop out, setting $@ in the process.
For example, to check once again for the chown function, you might use

eval { chown() };

warn "chown() $@" if $@;

Because eval blocks are executed within their own space at run time, this will report a
suitable error.

Function Overloading
When you want to support a particular operation within a script that is not supported
under multiple platforms, you may want to consider developing a special module
that provides a personal interface to the built-in Perl functions. Another alternative is
to provide your own set of “built-in” functions, and then overload the real built-in
functions with your own versions. You can do this through the use of a BEGIN block
in your script and the use subs pragma.

The code fragment that follows shows the method required to determine which
functions are supported:

BEGIN

{

eval { chown() };

push @functions,'chown' if $@;

}

use subs @functions;

use MyBuiltin @functions;

chown();

C h a p t e r 2 4 : C r o s s - P l a t f o r m M i g r a t i o n T r a p s 835
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Note that the actual test must be done within the BEGIN block so that it is executed
at compile rather than run time; then, by the time compilation reaches the use subs
pragma, the contents of @functions has already been populated with the required
information.

The definition for chown is then placed into the MyBuiltin package, which is
defined just like any other:

package MyBuiltin;

require Exporter;

@ISA = qw/Exporter/;

@EXPORT = ();

@EXPORT_OK = qw/chown/;

sub chown

{

print "Changed mode!";

return 1;

}

The contents of @EXPORT should be empty, since you don’t want to import
anything as standard. The value of @EXPORT_OK contains the list of built-in functions
that you want to support and overload, if necessary. Thus, when you call use
MyBuiltin with a list of unsupported built-in functions, you import your own list
of replacements. In this example, a simple print statement is used to show that the
overloading is working. In an actual case, you’ll probably want to put some real
functionality into the functions you want to overload.

If you are testing a lot of functions, you will need to use loops and references to test
the functions you want to overload:

BEGIN

{

@subtest = qw/chown exec/;

foreach $function (@subtest)

{

eval { &$function };

push @functions,$function if $@;

}

}

It’s not possible in this to optimize the loop by placing the foreach loop within
the eval block, since you’re using each eval invocation to test the existence of each
function. This is a performance hit, but the overall process improves compatibility,
and it’s one of the trade-offs examined at the beginning of the chapter.

This page intentionally left blank.

Chapter 25
Distributing Modules
and Applications

837

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Once you’ve written your Perl module or application, there are a few more steps
you need to follow before it can finally be unleashed on the public. Although
there’s no fixed route to this process, it will probably go something like this:

� Debug and optimize the module or application

� Optionally compile the script into a stand-alone application or library

� Document the script and update the comments to reflect any changes

� Ensure cross-platform compatibility, providing you want to support
multiple platforms

We’ve actually covered all these stages in the past chapters in this section, but there
is one final stage—that of packaging up and making your module or application for
distribution to the rest of the world.

In this last chapter, we’re going to concentrate purely on the process behind
packaging up your module or application for distribution. The core of this process
centers around the ExtUtils::MakeMaker module and Perl makefiles. These are
essentially the same as normal makefiles as used by make, but are parsed by the
MakeMaker utility into the real thing, substituting the correct directories, command
names, and other information to allow easy installation of your module or application.

We’ll also look at some examples of using Perl makefiles, how to package a module
up for distribution to CPAN, and how to package up modules for use with the
ActiveState Perl Package Manager (PPM) format.

Perl Makefiles and ExtUtils::MakeMaker
We looked at the use of Perl makefiles in Chapter 20, when we set up and built an
extension. The makefile system is an integral part of the XS extension system, and a
makefile is automatically built for you when you use the h2xs utility. Although its
primary use is for building and installing modules and extensions, it can actually be
used for practically any installation that requires some form of automatic process.

The Perl makefile is, like many other parts of the Perl environment, just a Perl
script. It uses a module, ExtUtils::MakeMaker, and a configuration supplied in the
form of a hash to work out how to build and install the different elements of a package.
When the script executes, it loads the ExtUtils::MakeMaker module, determines the
local configuration parameters, such as the location of the active Perl binary, the
library directories, and other information, and then builds a makefile that can be
used in combination with the standard make command to actually extract, compile
(if necessary), and install the module or application into its correct location.

In this section, we’re going to look at how the ExtUtils::MakeMaker module works
and how to configure the system for your own uses above and beyond the default files
produced by h2xs.

838 P e r l : T h e C o m p l e t e R e f e r e n c e

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 839

The ExtUtils::MakeMaker module actually splits the task of makefile generation
into several subroutines, and the overall configuration that is used with these
subroutines is infinitely configurable. In each case, the subroutines provided by the
module return the text that is required to be written to the makefile. The whole system
is object oriented, and the production of individual files within the MakeMaker system
is possible at all levels. Each file created is treated as a single object, and therefore a
single MakeMaker configuration can generate a number of makefiles both for the
original target and for subdirectories and their targets.

Perl Makefiles and CPAN
To the untrained eye, it might appear that the CPAN module and the MakeMaker
module are closely linked, since we can use CPAN to download and automatically
install these modules for us. In fact, the two items are relatively independent. The
MakeMaker tool works just as well if used “manually” at the command line—it still
produces a makefile that needs to be parsed by make before it does anything.

The CPAN module knows the required sequence of downloading, extracting,
running the MakeMaker tool, and then running make—if it wasn’t for the ease of use
provided by MakeMaker, CPAN would be difficult to write because the process
would be different for each module.

If you want to supply your module to CPAN, then check www.cpan.org for the
precise submission details. You’ll need to package up your source files and the
Makefile.PL script using tar and gzip. If you want to support the module under
Windows, then check the “Packing for PPM/VPM” section later in this chapter.

For more information on CPAN, see Chapter 2, Appendix B, and Web Appendix B.

Perl Makefiles and PPM
The Perl Package Manager (PPM) and the Visual Package Manager (VPM) are part
of ActivePerl and the Perl Developer’s Kit, respectively. These work in a similar
way to CPAN, downloading an extension or application automatically from a central
repository and then installing the extension for you. However, unlike CPAN, extensions
supplied through PPM are precompiled and ready to install, rather than requiring the
usual make step.

ActivePerl was, up until Perl 5.6, a Windows-only solution, but since the 5.6 release,
other versions are now available for a number of Linux and Unix platforms. The main
advantage of PPM over CPAN is that it doesn’t require the end-user to have access to a
compiler and development environment to install the extension. See Chapter 2 for
more information on how to use PPM, and see the “Packing for PPM/VPM” section
later in this chapter.

Extension Building and Installation Overview
Most of this process will be familiar; we’ve seen a lot of it already in Chapter 20.
However, the build and installation process is slightly more complex than the
examples we have already seen. You should already be aware that the extension uses
the AutoLoader module to decide which function should be included. The AutoLoader
module is actually capable of a number of different operations. Depending on the
context and requirements, it can do one of the following:

� Perform the function itself; the caller will never know that the AutoLoader has
been used.

� Create the function on the fly using an eval statement.

� Use the system function to launch an external program of the same name.

� Dynamically load a library using the DynaLoader module.

It is the last option that is used to load an external C library extension. The
AutoSplit module is used to separate the original Perl module file into separate files,
one per function, and a mapping within the split file then tells DynaLoader which
library to load in order to implement the function. This loading mechanism requires
a bootstrap file and an autoload file, which are both used to select the correct library
location for the function, based on the library that was built and the split module.
The whole system uses a specialized structure within the Perl module directory that
accounts for both site and architecture differences.

The entire process for the makefile produced by MakeMaker (under Solaris) is
shown here. Entries taken from the StatVFS module we saw in Chapter 20 are used for
reference:

1. A directory structure is created within the extensions directory that will hold
the files produced during the build process before they are installed:

mkdir blib

mkdir blib/lib

mkdir blib/arch

mkdir blib/arch/auto

mkdir blib/arch/auto/StatVFS

mkdir blib/lib/auto

mkdir blib/lib/auto/StatVFS

mkdir blib/man3

cp StatVFS.pm blib/lib/StatVFS.pm

2. The module is split into individual functions. Each function is placed into the
auto/StatVFS directory:

AutoSplitting blib/lib/StatVFS.pm (blib/lib/auto/StatVFS)

840 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

3. The XS file is parsed by xsubpp, producing the C file that contains the
necessary functions:

/usr/bin/perl -I/usr/local/lib/perl5/5.00553/sun4-solaris

-I/usr/local/lib/perl5/5.00553

/usr/local/lib/perl5/5.00553/ExtUtils/xsubpp

-typemap

/usr/local/lib/perl5/5.00553/ExtUtils/typemap

StatVFS.xs >xstmp.c && mv xstmp.c StatVFS.c

4. The source code is compiled into object format:

gcc -B/usr/ccs/bin/ -c -I/usr/local/include

-DDEBUGGING -O -DVERSION=\"0.01\"

-DXS_VERSION=\"0.01\" -fPIC

-I/usr/local/lib/perl5/5.00553/sun4-solaris/CORE

StatVFS.c

5. The bootstrap code required for DynaLoader is produced. The StatVFS.bs file
contains the necessary information to enable DynaLoader to relate the Perl call
to the C function:

Running Mkbootstrap for StatVFS ()

chmod 644 StatVFS.bs

6. The library file is generated in its dynamic format:

LD_RUN_PATH="" gcc -B/usr/ccs/bin/

-o blib/arch/auto/StatVFS/StatVFS.so

-G -L/usr/local/lib StatVFS.o

7. The library and the bootstrap code are copied into the correct location ready for
installation, and the file modes are set to their correct values:

chmod 755 blib/arch/auto/StatVFS/StatVFS.so

cp StatVFS.bs blib/arch/auto/StatVFS/StatVFS.bs

chmod 644 blib/arch/auto/StatVFS/StatVFS.bs

8. The POD format documentation in the Perl module is extracted and converted
into a man page, ready for installation:

Manifying blib/man3/StatVFS.3

The main process is now finished. The installation process just copies the structure
below the blib directory into the site- or architecture-specific directories within the Perl
library directory. At this point, if you want to test the module, you can use the make
test command. The test files will need to include the just-built version of the library.
See the blib pragma in Chapter 19 for more information on this.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 841

The actual installation process has its tricks too. The following sample is a
continuation of the StatVFS module example.

1. The files are copied to the specified installation directory. This is defined as a
whole by the PREFIX option and individually with the INSTALL* options.

Installing /usr/local/lib/perl5/site_perl/5.00553/sun4-

solaris/auto/StatVFS/StatVFS.so

Installing /usr/local/lib/perl5/site_perl/5.00553/sun4-

solaris/auto/StatVFS/StatVFS.bs

Files found in blib/arch -> Installing files in blib/lib into

architecture dependent library tree!

Installing /usr/local/lib/perl5/site_perl/5.00553/sun4-

solaris/auto/StatVFS/autosplit.ix

Installing /usr/local/lib/perl5/site_perl/5.00553/sun4-solaris/

StatVFS.pm

Installing /usr/local/lib/perl5/5.00553/man/man3/StatVFS.3

2. A list of the files installed during the installation process is written in a special
file, called .packlist in the module’s AutoLoader directory. The actual location
will depend on whether you have installed an architecture or site version. See
the INSTALLDIRS option later in the chapter.

Writing /usr/local/lib/perl5/site_perl/5.00553/sun4-

solaris/auto/StatVFS/.packlist

3. The installation information, including the configuration details, is written to a
general file that can later be consulted (preferably via a POD file viewer) to
study which packages and extensions have been installed and when. This can
also be a helpful starting point for tracing problems when a script or module
suddenly stops working.

Appending installation info to /usr/local/lib/perl5/5.00553/sun4-

solaris/perllocal.pod

The rest of this chapter is devoted to describing the configurable parameters to the
MakeMaker module. We’ll also take the opportunity to look at some of the other
modules that are used by the MakeMaker module to do its work.

MakeMaker Overview
The basic use of the MakeMaker module is very simple. The synopsis for the module is

use ExtUtils::MakeMaker;

WriteMakefile(ATTRIBUTE => VALUE [, ...]);

842 P e r l : T h e C o m p l e t e R e f e r e n c e

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S

The basic method of operation is to create a simple file that imports the module and
then calls the WriteMakefile function. You need to specify at least one attribute to the
function, which is the name of the module. For example, to create the makefile for
building the StatVFS module we created in Chapter 20, you could get away with as
little as the following in Makefile.PL:

use ExtUtils::MakeMaker;

WriteMakefile('NAME' => 'StatVFS');

When run through a Perl interpreter, like this,

$ perl Makefile.PL

it automatically produces a makefile capable of building and installing the extension.
It accounts for the location of all the necessary libraries and include files, and it selects
the correct C compiler and definitions in order to ensure that the extension is compiled
properly. This information is selected from the information produced at build time and
is specific to the platform on which you use the MakeMaker file. Thus, the Perl
makefile is completely platform independent. Any platform on which you can build
Perl should be able to produce a suitable makefile for the platform for building an
extension. The resulting makefile produced is, of course, platform- and build-specific,
even though the original Makefile.PL file is completely platform independent. It’s the
MakeMaker module that provides the platform-independent information required to
build the module.

The resulting makefile is big—751 lines long. It is too long, and completely
pointless, to reproduce here. The point about MakeMaker is that it hides all the
complexity of the makefile production from the user and just ensures that the file
produced should work on whatever platform Perl is installed on.

Start with h2xs
It doesn’t matter what sort of module, extension, or application you are dealing with—
it’s almost certainly easier to create the makefile using h2xs. The h2xs tool is actually
designed to convert a header file into a suitable set of stub XS extensions ready for
integrating into Perl. However, it can also be used to create a simple MakeMaker
template. The command line options for the tool are shown in Table 25-1.

If you want just to create a dummy MakeMaker template, then you should use

$ h2xs -f -n MyModule -X

Writing MyModule/MyModule.pm

Writing MyModule/Makefile.PL

Writing MyModule/test.pl

Writing MyModule/Changes

Writing MyModule/MANIFEST

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 843

Note that it creates most of the files that you need, including a blank module, test
script, MANIFEST file (which lists the files that make up your module), and the
MakeMaker template in Makefile.PL. The default template looks like this:

use ExtUtils::MakeMaker;

See lib/ExtUtils/MakeMaker.pm for details of how to influence

the contents of the Makefile that is written.

WriteMakefile(

'NAME' => 'MyModule',

'VERSION_FROM' => 'MyModule.pm', # finds $VERSION

'PREREQ_PM' => {}, # e.g., Module::Name => 1.1

);

844 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

-A Omit the autoloading definitions (implies the -c option).

-F Additional flags for C preprocessor (used with -x).

-O Allow overwriting of a preexisting extension directory.

-P Omit the stub POD section.

-X Omit the XS portion.

-c Omit the constant() function and specialized AUTOLOAD from the
XS file.

-d Turn on debugging messages.

-f Force creation of the extension.

-n Specify a name to use for the extension—defaults to a title case
version of the header file’s base name.

-p Specify a string that will be removed from the start of the C functions
when they are reproduced as Perl functions.

-s Create subroutines for specified macros.

-v Specify a version number for this extension.

-x Autogenerate XSUBs using C::Scan.

Table 25-1. Command Line Options for h2xs

Now it’s up to you to populate the module and the rest of the directory contents. Of
course, there are times when you want to support a more complex system, and in those
situations you need to know how to configure MakeMaker.

MakeMaker Configurable Options
The bulk of the information that is produced by MakeMaker is gleaned from the
configuration and environment of the machine on which the makefile is extracted.
MakeMaker uses a number of additional modules, including Config, which contains
all of the information gained at the configuration of the Perl version.

All of the options can be modified to specify alternative installation locations,
installation procedures, and even the architecture and version of Perl that you want
to install. The usual method is to specify the alternative values within Makefile.PL as
part of the hash argument passed to WriteMakefile; for example:

use ExtUtils::MakeMaker;

WriteMakefile('NAME' -> 'StatVFS',

'PREFIX' -> '/usr/lib',

'VERSION' -> '1.01');

Alternatively, they can be specified as NAME=VALUE pairs on the command line;
for example:

$ perl Makefile.PL PREFIX=/usr/lib

What follows is a list of all the configurable options for the field names supported
by the WriteMakeFile function from ExtUtils::MakeMaker.

AUTHOR The name and email address of the package author(s)—this information is
used by the PPD file used by the PPM/VPM system (see “Packing for PPM/VPM”
later in this chapter).

ABSTRACT A one-line description of the module—used by the PPM/VPM systems
in the PPD file.

ABSTRACT_FROM The name of the file that contains the package description.
This overrides ABSTRACT and is extracted from a POD file, normally taking the first
=head1 NAME section.

BINARY_LOCATION Defines the location of the binary package of the actual
module, relative to the PPD that is created when building a PPM file.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 845

C This should be a reference to an array of C source-file names. The information is
not currently used by MakeMaker, but it can be a handy reference if you want to use
some of the extensions available within MakeMaker and other modules. See the
“Related Modules” section later in this chapter.

CCFLAGS The string that will be passed to the compiler between the INC and
OPTIMIZE options on the command line. You might want to include debugging
options or special format handling (such as -traditional to gcc).

CONFIG An array reference to a list of configuration elements to be incorporated
from the configuration information built at Perl’s compile time. The following values
are added to Config by MakeMaker: ar, cc, cccdlflags, ccdlflags, dlext, dlsrc, ld,
lddlflags, ldflags, libc, lib_ext, obj_ext, ranlib, sitelibexp, sitearchexp, and so.

CONFIGURE Should contain a reference to a section of code (anonymous or named
function), which in turn should return a reference to a hash. The hash can contain the
list of configurable elements for the MakeMaker module.

DEFINE A string containing the definitions required to compile the extension. For
example, you may need to specify -DHAVE_STRING_H.

DIR A reference to an array containing a list of subdirectories that have their own
Makefile.PL. The list will be used to determine the list of subdirectories and extensions
that need to be included when each makefile is written, and also when the main
makefile is parsed by the make command.

DISTNAME The distribution name of the package that will be created when the
directory is packaged by tar or zip—defaults to the value of NAME

DL_FUNCS A hash reference to a list of symbol names for functions that should be
made available as universal symbols at compile time. This is currently only used under
AIX and VMS.

DL_VARS An array reference to a list of symbol names for variables that should be
made available as universal symbols at compile time. This is currently only used under
AIX and VMS

EXCLUDE_EXT An array reference to a list of extension names to be excluded when
creating a new static Perl binary

EXE_FILES An array reference to a list of executable files that will be installed into
the INST_SCRIPT directory

846 P e r l : T h e C o m p l e t e R e f e r e n c e

FIRST_MAKEFILE A string defining the name of the makefile to be produced for the
MAP_TARGET—defaults to the value of the MAKEFILE option

FULLPERL A string defining the name of the Perl binary able to run this extension

H A reference to an array of the header files within the extension distribution

HTMLLIBPODS Reference to a hash of .pm and .pod files to be converted into HTML
format and installed with the other HTML files—defaults to all .pod and .pm files that
contain any POD directive

HTMLSCRIPTPODS Reference to a hash of files containing POD-based
documentation that should be converted to HTML and installed—defaults to the value
of the EXE_FILES configuration option

IMPORTS Valid only on the OS/2 version of Perl

INC A string listing the names of the directories to be searched for header files
during extension compilation, for example, -I/usr/local/include

INCLUDE_EXT A reference to an array of extension names to be included in the Perl
binary when creating a new statically linked Perl. Normally, MakeMaker
automatically includes the list of currently installed extensions. This allows both the
new extension and all the extensions already installed to be incorporated into the new
static Perl binary. However, if you specify a list of specific options in INCLUDE_EXT,
then only the extensions listed will be included in the final binary.

The DynaLoader extension (if supported) will always be included in the binary. If
you specify an empty array, only the current extension (and DynaLoader) will be
included.

INSTALLARCHLIB A string defining the name of the directory in which to install the
files contained in INST_ARCHLIB if the value of INSTALLDIRS is perl

INSTALLBIN A string defining the directory in which executable binaries should
be installed

INSTALLDIRS A string specifying in which of the two directory sets to install the
extension. The options are perl, which specifies that the extension should be installed
into the architecture-specific INSTALLPRIVLIB and INSTALLARCHLIB directories,
and site, which installs the extensions into the site-specific INSTALLSITELIB and
INSTALLSITEARCH directories.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 847

INSTALLHTMLPRIVLIBDIR The directory into which library documentation in
HTML format will be installed during compilation time—defaults to
$Config{installhtmlprivlibdir}

INSTALLHTMLSCRIPTDIR The directory into which script documentation in HTML
format will be installed during compilation time—defaults to
$Config{installhtmlscriptdir}

INSTALLHTMLSITELIBDIR The directory into which site-specific library
documentation in HTML format will be installed during compilation time—defaults to
$Config{installhtmlsitelibdir}

INSTALLMAN1DIR A string specifying the directory to be used for the section 1
(commands) man pages during installation. The value defaults to the value contained
in $Config{installman1dir}.

INSTALLMAN3DIR A string specifying the directory to be used for the section 3
(functions/extensions) man pages during installation. The value defaults to the value
contained in $Config{installman3dir}.

INSTALLPRIVLIB A string specifying the directory in which to install the built
libraries; see INSTALLDIRS.

INSTALLSCRIPT A string specifying the directory in which to install any scripts.
The contents of the directory specified by INST_SCRIPT is copied to this directory
during installation.

INSTALLSITELIB A string specifying the directory in which to install the built
libraries; see INSTALLDIRS.

INSTALLSITEARCH A string specifying the directory in which to install the contents
of INST_ARCH during installation; see INSTALLDIRS.

INST_ARCHLIB A string specifying the local directory to be used for storing
architecture-dependent libraries during build and before installation

INST_BIN A string specifying the local directory to be used for storing binaries
during build and before installation.

INST_EXE Deprecated; use the INST_SCRIPT option instead.

INST_HTMLLIBDIR The directory that will hold the HTML documents during
build time; they will be copied from here into INSTALLHTMLPRIVLIBDIR during
a make install.

848 P e r l : T h e C o m p l e t e R e f e r e n c e

INST_HTMLSCRIPTDIR The directory that will hold the HTML documents during
build time; they will be copied from here into INSTALLHTMLSCRIPTDIR during a
make install.

INST_LIB A string specifying the local directory to be used for storing libraries
during build and before installation

INST_MAN1DIR A string specifying the local directory to be used for storing
section 1 man pages during build and before installation

INST_MAN3DIR A string specifying the local directory to be used for storing
section 3 man pages during build and before installation

INST_SCRIPT A string specifying the local directory to be used for storing binaries
and other executables during build and before installation—defaults to blib/bin

LDFROM A string specifying the list of files to be used to build the final library—
defaults to the value of $OBJECTS

LIBPERL_A A string defining the name of the Perl library to be used with the
extension—defaults to libperl.a

LIB A string specifying the directory into which the libraries will be installed—
has the effect of setting the values of INSTALLPRIVLIB and INSTALLSITELIB

LIBS A reference to an anonymous array listing the library specifications to be
searched for, in order, until a suitable library is found. Each element should contain the
full list of libraries to be searched. This can be used in situations where the functions
required may be in any number of files. For example, DBM interfaces can exist in
compatible forms in GDBM, NDBM, ODBM, and SDBM libraries. Other examples
include compatibility libraries (such as BSD on an SVR4 platform) and extension
libraries such as Tk and Tcl.

Note that because each element specifies the whole list, you will need to specify the
same library a number of times if you are looking for other compatibility; for example:

‘LIBS’ => ["-ltk -lgdbm", "-ltk -lndbm", "-ltk -lodbm"]

If you only want to supply one list of libraries, you can supply a scalar, and MakeMaker
will turn it into an array with only one element. Note that the specifications can also
include a library path, as in -L/usr/local/lib, in addition to the library list.

LINKTYPE A scalar specifying the type of linking to be used when creating the
extension. This is usually dynamic unless your operating system does not support it.
For a static build, use static.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 849

MAKEAPERL A scalar; a value of 1 indicates that MakeMaker should incorporate
the rules to make a new Perl binary.

MAKEFILE A scalar specifying the name of the makefile to be produced.

MAN1PODS A reference to a hash of files containing documentation in POD format
to be converted to man pages during installation—defaults to EXE_FILES

MAN3PODS A reference to a hash of files containing documentation in POD format
to be converted to man pages during installation—defaults to EXE_FILES

MAP_TARGET A string containing the name of the new Perl binary to be produced
if static linking is requested—defaults to “perl”

MYEXTLIB A string containing the name of a custom library file built by the
extension that should be included when linking the extension.

NAME A string specifying the name of the extension. If left unspecified, it will
default to the name of the directory containing Makefile.PL.

NEEDS_LINKING If set, it indicates to MakeMaker that there is linkable code in one
of the subdirectories. If not specified, MakeMaker will try to work it out and set this
value as necessary.

NOECHO A string specifying the prefix to be placed in front of commands in the
produced makefile. By default, it is set to @, which hides all the commands as they are
executed. You can set this to an empty string to force the make process to output all of
its commands, which can be useful for debugging.

NORECURS If set, MakeMaker will not recurse into subdirectories to create
additional makefiles. The default behavior is for MakeMaker to both create the
makefiles and ensure that the parent makefile is capable of recursing into
subdirectories to build additional targets.

NO_VC Normally MakeMaker will check the current version of
ExtUtils::MakeMaker against the version used to create the makefile and fail if it
determines that there could be an incompatibility. Setting this disables the version
check, but you should use the option on the command line, rather than setting the
value directly in the script.

OBJECT A string defining the list of object files to be created into a single library.
Defaults to the single file specified by $(BASEEXT)$(OBJ_EXT).

850 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 851

OPTIMIZE A string containing the flag to be passed to the compiler to make it
optimize the code during compilation. Defaults to -O. Other options you may want to
try are -g, to switch on debugging, and -g -O, to switch on debugging and optimization
for the compilers that support it (GNU C does).

PERL A string containing the location of a Perl binary capable of doing the tasks
normally executed by the miniperl binary created during a Perl build.

PERLMAINCC A string defining the program to use for compiling the perlmain.c
file. The default is to use the value of $(CC).

PERL_ARCHLIB A string defining the libraries to be used for building the Perl binary.

PERL_LIB A string specifying the directory containing the Perl library.

PERL_MALLOC_OK Should be set to true if you are happy to have the extension
built using the Perl malloc(), rather than the system’s own implementation. Defaults
to false (0).

PERL_SRC A string specifying the location of the Perl source code. Normally
unnecessary, since the Perl source code is not required to build extensions or a new
Perl binary.

PERM_RW A string defining the octal mode to be used for files that should be
available for reading and writing. Defaults to 0644, or read/write for the owner and
read-only for everybody else.

PERM_RWX A string defining the octal mode to be used for files that should be
executable. Defaults to 0755, or read, write, and execute for the owner and read and
execute for everybody else.

PL_FILES A reference to a hash that specifies the list of files to be processed as Perl
scripts rather than native commands. The default is to use any files in the directory
structure for the extension that end in .PL. The keys should be the full file name, and
the corresponding value should be the base name of the file. This can be used to create
custom installation routines.

PM A reference to a hash specifying the list of .pm and .pl files to be installed.
The key should be the name of the file, and the corresponding value should equal
the final installation location. By default, this will be all the matching files found
in PMLIBDIRS.

PMLIBDIRS A reference to an array of subdirectories containing library files to be
installed. Defaults to ['lib', $(BASEEXT)]. The entire contents of the directories are
installed into the corresponding location according to their file type. The libscan
method can be used to alter this behavior. See the section “Customizing Commands”
for more details.

POLLUTE Pollutes the name space with the preprocessor macros used for installing
extensions—shouldn’t be required under Perl 5.6 and later.

PPM_INSTALL_EXEC The name of the executable to be used when installing a
package using PPM.

PPM_INSTALL_SCRIPT The name of the script to be executed after the module has
been installed using PPM.

PREFIX A string defining the default prefix to be used in front of installation
directories. The default is to use the value determined at configuration time.

PREREQ_PM A reference to a hash defining the list of modules that need to be
available to run this extension. The key for the hash is the module or extension name,
and the corresponding value is the minimum version number. If the value of the
version number is 0, then MakeMaker only checks that the module or extension has
been installed.

SKIP A reference to an array listing the parts of the makefile that should be skipped
during production—should be avoided in nearly all cases

TYPEMAPS A reference to an array of alternative typemap files to be used with
xsubpp. This should only be used when you want to use a typemap file that is either
not in the current directory or isn’t called typemap. A typemap file in the current
directory has the highest precedence, followed by the last element of $(TYPEMAPS).
The system typemap has the lowest precedence.

VERSION A string containing the version for this distribution of the package. This is
gleaned from an alternative file if VERSION_FROM is defined.

VERSION_FROM A string specifying the name of a file to be searched to define the
version number of the package distribution. The regular expression
/([\$*])(([\w\:\']*)\bVERSION)\b.*\=/ is used to find the version number in the file.
This allows for unqualified definitions in the file, for example:

$VERSION = '1.00';

852 P e r l : T h e C o m p l e t e R e f e r e n c e

The result is parsed with eval to get the final value, which means you can also use
arrays, hashes, and even functions if referenced by $VERSION or something similar.
Variables qualified with my or local, or those specified with their full package name,
will not be found. If you are using the strict pragma, then use the vars pragma to
predeclare the VERSION variable before assigning it a value.

XS A reference to a hash of XS files to be processed into C files. The key to the hash
should contain the XS file name, and the value should contain the corresponding
C source file name.

XSOPT A string specifying the options to be passed to xsubpp. Use the TYPEMAP
option if you want to specify typemap files and the XSPROTOARG option for
including prototypes.

XSPROTOARG A string that defines whether prototypes should be included
(see Chapter 20). If blank (default), it assumes prototypes should be included;
a value of -noprototypes specifies that prototypes should not be created.

XS_VERSION A string defining the version number for the XS file in the current
package. Defaults to VERSION.

Creating a Dummy Makefile
Not all Makefile.PL files are intended to create a makefile suitable for creating an
extension module. In these cases, you can get MakeMaker to create a dummy makefile
that just does nothing. It will succeed for all the specified targets, but otherwise achieve
nothing. To do this, you use a different function in the MakeMaker module:

ExtUtils::MakeMaker::WriteEmptyMakefile();

In most instances, this is really only useful for creating a dummy makefile that
will be used by some automated process, such as the CPAN module. The CPAN
module tries to determine which packages and modules are required, automatically
downloading and installing them as necessary. However, if the functionality of the
module is supported by some other method on the current platform, you need some
way to “trick” CPAN into believing that the installation was a success.

Default Makefile Targets
The makefile created by MakeMaker produces a set of standard targets to be used
during the build process. The default target always triggers the build process up to, but
not including, the installation process. Other default targets are shown in Table 25-2.

Other targets deserving special mention are covered in the following sections.

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S
C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 853

854 P e r l : T h e C o m p l e t e R e f e r e n c e

Creating a New Perl Binary
The default operation for the produced makefile is to create a library suitable for
dynamic loading. A library file ending with .so on a Unix system and .dll on a Windows
system signifies a dynamic library. However, not all systems support dynamic loading,
and in these and other situations you may wish to create your own statically linked
Perl executable that includes the new extension. If this is the case, you can use a special
target, perl, to the makefile produced by the MakeMaker module. The operation is
then slightly different from the normal build process:

1. The extension is recompiled into a static rather than a dynamic library.

2. A new makefile is created—Makefile.aperl, although the exact name is system
dependent. This contains the definitions for building a new Perl binary.

3. The new makefile is used to produce the new binary, first by creating a new
file with a modified main() function, and then by linking the resulting object file
with the main Perl library and the extension library.

The new Perl binary is created within the current directory and can be installed
over the existing binary using

$ make -f Makefile.aperl inst_perl

The final binary actually includes all the extensions specified in the INST_ARCHLIB,
SITELIBEXP, and PERL_ARCHLIB options defined within the main MakeMaker
definition.

You can create a Perl binary with a different file name by defining the value of
MAP_TARGET in the Perl makefile. The best way to do this is on the command line,

Target Description

test Runs the defined test script(s)

testdb Runs the defined test script(s) within the Perl debugger

install Installs the extension, modules, and support files, including
documentation. The values of the INSTALL* options are used
to define the final locations for the specified files.

Table 25-2. Default make Targets

because that overrides any options defined in the makefile itself, which might well
specify the default. For example, to change the name to vfsperl:

$ perl Makefile.PL MAP_TARGET=vfsperl

$ make vfsperl

As a final alternative, you may want to build a static Perl version on a dynamically
capable system. In this instance, you use the LINKTYPE value to specify the
destination type:

$ perl Makefile.PL LINKTYPE=static

Targets for Package Builders
The built makefile provides for some standard targets primarily aimed at developers.
The targets are designed to test and package the final distribution file. Note that the
tests are aimed at verifying that all of the required files are in the current directory
structure. This is achieved by checking the contents of the MANIFEST file, which
contains a list of all the files required before the package can be distributed.

The packaging process uses the defined archiving and compression programs
to produce a final distributable package file. This is normally a combination of tar
and gzip, but you can modify this if the file is aimed at Windows (which uses zip)
or Linux (which occasionally uses bzip2). The list of “package” targets is summarized
in Table 25-3.

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 855
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Target Description

distcheck Provides a list of files that appear in the current directory structure,
but not in MANIFEST, and vice versa. See the section on
“ExtUtils::Manifest” later in this chapter for more details.

skipcheck Provides a list of files that are skipped due to the list provided in
MANIFEST.SKIP. See the section on “ExtUtils::Manifest” later in this
chapter for more details.

distclean Executes the realclean target and then the distcheck target. The result
should be a set of files suitable for building a new distribution file or
for returning the current directory to its distributed (supplied) state.

Table 25-3. Extension Developers’ Targets

856 P e r l : T h e C o m p l e t e R e f e r e n c e

Target Description

manifest Re-creates the MANIFEST file using the list of files found in the
current directory

distdir Creates a new directory in the parent called
$(DISTNAME)-$(VERSION) and copies the files listed in
MANIFEST to the new directory. This does all of the steps necessary
to create a new version-specific directory for the extension.

disttest Does a distdir first and then runs perl Makefile.PL, make, and make
test in the new directory. This should perform all of the steps
necessary to create and test a new version of an extension.

tardist Does a distdir, and then runs $(PREOP) followed by $(TOUNIX).
Then it runs $(TAR) on the new directory (using $(TARFLAGS))
before deleting the directory and running $(POSTOP).
This target is intended to create, package, and delete a new version
directory for the extension as a tar file, suitable for use by Unix
machines. You can modify $(TAR) and the other options according
to taste. See the following section, “Customizing Commands.”

dist Defaults to $(DIST_DEFAULT), which in turn defaults to tardist

uutardist Runs a tardist first and then uuencodes the tar file (using uuencode)

shdist Does a distdir, and then runs $(PREOP) followed by $(TOUNIX).
Then it runs $(SHAR) on the new directory before deleting the
directory and running $(POSTOP).
This target is intended to create, package, and delete a new version
directory for the extension as a shar file, suitable for ASCII
transmission. You can modify $(SHAR) and the other options
according to taste. See the following section, “Customizing
Commands.”

zipdist Does a distdir, and then runs $(PREOP). Then it runs $(ZIP) on the
new directory (using $(ZIPFLAGS)) before deleting the directory
and running $(POSTOP).
This target is intended to create, package, and delete a new version
directory for the extension as a zip file, suitable for use by Windows
machines. You can modify $(ZIP) and the other options according to
taste. See the following section, “Customizing Commands.”

ci Checks in a version of each file in MANIFEST (using the value of
$CI) and updates the RCS label (using $RCS_LABEL).

Table 25-3. Extension Developers’ Targets (continued)

Customizing Commands
The developer targets default to use a number of commands that are expected to be on
the host machine. The options can be configured where the destination or source
requires a different format. For example, Linux often uses the bzip2 command for
compression, rather than gzip or compress.

The options in Table 25-4 should be passed as a hash reference to the special dist
option to the WriteMakefile function.

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 857
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

Option Default Description

CI ci -u Program for “checking in” a
revision

COMPRESS gzip -best Program for compression

POSTOP @ : Commands to be run after
archive creation

PREOP @ : Commands to be run before
archive creation

RCS_LABEL rcs -q -Nv$(VERSION_SYM): Extract the RCS label for a file.

SHAR shar Program to use for creating a
shar file

SUFFIX .gz Default suffix for
compressed files

TAR tar Program to use for creating a
tar format archive

TARFLAGS cvf Command line options to use
for creating the tar file

TO_UNIX System dependent Program used to convert the
files into Unix format

ZIP zip Command to use for zip files

ZIPFLAGS -r Command line options to use
for creating a zip file

Table 25-4. Options for Extension Developers’ Targets

858 P e r l : T h e C o m p l e t e R e f e r e n c e

Related Modules
A number of different modules are used and can help in the process of creating a
makefile using MakeMaker. It’s unlikely that you will need to delve into the bowels of
any of these modules, even when creating quite complex extensions. The information
provided is merely background detail.

Config
The Config module exports a hash, %Config, that lists all of the configurable options
that were calculated when Perl was built, with the values containing the necessary
information. The MakeMaker module uses this information to select the correct C
compiler and installation directories, among many other things.

ExtUtils::Command
This function is used under Win32 implementations. It defines a list of alternative
functions to be used by the building and installation process in place of the usual
Unix command line utilities.

ExtUtils::Embed
This module provides the necessary command line options and other information for
use when you are embedding a Perl interpreter into an application. See Chapter 20 for
more information.

ExtUtils::Install
This module defines two functions, install and uninstall, which are used during the
installation and uninstallation process.

ExtUtils::Installed
This module defines a suite of functions that can be used to query the contents of the
.packlist files generated during module installation. If you call the new function, it
constructs the internal lists by examining the .packlist files. The modules function
returns a list of all the modules currently installed. The files and directories both
accept a single argument—the name of a module. The result is a list of all the files
installed by the package. The directory_tree function reports information for all the
related directories. In all cases, you can specify Perl to get information pertaining to
the core Perl installation.

The validate function checks that the files listed in .packlist actually exist. The
packlist function returns an object as defined by ExtUtils::Packlist for the specified
module. Finally, version returns the version number of the specified module.

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 859
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

ExtUtils::Liblist
This module defines the libraries to be used when building extension libraries and other
Perl-based binaries. The information provided here broaches much of the complexity
involved in getting an extension to work across many platforms; the bulk of the code
relates to the information required for individual platforms.

ExtUtils::Manifest
This module provides the functions that produce, test, and update the MANIFEST file.
Five of the functions are the most useful, beginning with mkmanifest, which creates a
file based on the current directory contents. The maincheck function verifies the current
directory contents against the MANIFEST file, while filecheck looks for files in the
current directory that are not specified in the MANIFEST. Both maincheck and
filecheck are executed by the fullcheck function, and skipcheck lists the files in the
MAINFEST.SKIP file.

ExtUtils::Miniperl
This module provides the list of base libraries and extensions that should be included
when building the miniperl binary.

ExtUtils::Mkbootstrap
This module makes a bootstrap file suitable for the DynaLoader module.

ExtUtils::Mksymlists
This module produces the list of options for creating a dynamic link library.

ExtUtils::MM_OS2
MakeMaker specifics for the OS/2 operating system are produced by this module.

ExtUtils::MM_Unix
MakeMaker specifics for the Unix platform are produced by this module. It also includes
many of the core functions used by the main MakeMaker module, irrespective of the
host platform.

ExtUtils::MM_VMS
This module produces MakeMaker specifics for VMS.

ExtUtils::MM_Win32
This module produces MakeMaker specifics for Windows 95/98/NT.

ExtUtils::Packlist
This module supplies the Packlist object used by the ExtUtils::Installed module.

MakeMaker Tricks
Beyond the basics of generating a simple makefile, MakeMaker can be made to
perform some more complex operations for those times when the basic MakeMaker
configuration just doesn’t seem flexible enough. It’s worth remembering at all times
that a Perl makefile is just a script that often (but not always) makes use of the
ExtUtils::MakeMaker module. Anything that you can do in a script can be done
with a Perl makefile.

Checking for Prerequisites
Some modules that you develop may require the preinstallation of other modules that
are not included in the standard Perl distribution. The PREREQ_PM configuration
option can be used to list the modules and version numbers that are required. For
example, here’s the configuration line used in the LWP bundle:

PREREQ_PM => { 'URI' => "1.03",

'MIME::Base64' => "2.1",

'Net::FTP' => "2.4",

'HTML::HeadParser' => 0,

'Digest::MD5' => 0,

},

Sometimes, however, you want a more interactive and informative method for
reporting these problems. To do this, you need to add your own set of tests before the
call to MakeMaker to test for the existence of the modules. For example, you might
place some code like this to check for an individual module:

print "Checking for My::Module ..";

eval

{

require My::Module;

};

if ($@)

{

print " failed\n";

$missing_modules++;

print <<EOT;

860 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

$@

You need the My::Module in order to ensure that you have

the right modules installed for installation

EOT

}

else

{

print " ok\n";

}

Because eval uses its own interpreter, it’ll raise an exception if the module you
need can’t be found without actually interrupting the current script. In this case,
we report an error and also increment the $missing_modules++ variable. Using this
method, you could insert multiple tests just like this and then fail the installation script
if $missing_modules is greater than 0.

Application Installation
Installing an application is really just a case of supplying the configuration options to
MakeMaker to copy the scripts into the correct location. This is as simple as

use ExtUtils::MakeMaker;

WriteMakefile(

NAME => 'mctest',

EXE_FILES => [qw/ping.pl/],

);

The EXE_FILES option specifies the list of scripts that should be copied first into
the directory pointed to by INST_SCRIPT (defaults to ./blib/scripts) during the build
phase, and then into the INSTALLSCRIPT directory (usually /usr/local/bin) during
the installation phase.

If you want to do something more complex during the build phase, you need to
configure MakeMaker to write the commands you want to execute directly into the
makefile. Because these are module specific, there is no “automatic” way of getting
MakeMaker to do this stage for you. Remember that the process needs to be completed
during the call to make, not when actually creating the makefile itself.

The way to do this is to override one of the methods used by MakeMaker during
the production of the makefile. You can override methods used in MakeMaker by
defining the methods within the MY package. For modifying what happens after the
main build process, you need to override the postamble method, which by default is
undefined. The return value from your postamble subroutine should be the string

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 861
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

containing the make target and commands. For example, here’s another extract from
LWP’s Perl makefile:

package MY;

sub postamble

{

my @m;

if (@request_aliases && grep($_ eq 'lwp-request', @programs_to_

install)) {

push @m, "all ::\n";

if ($^O eq 'MSWin32') {

push @m, "\t\$(FULLPERL) -e \"use Config; chdir q[\$(INST_EXE)

]; "

."foreach (qw(@request_aliases)) { \" \\\n";

push @m, <<'EOT';

-e "unlink \"$$_\"; " \

-e "system(\"copy lwp-request $$_\") && die; }"

EOT

} else {

push @m, "\t\$(FULLPERL) -e 'use Config; chdir q{\$(INST_EXE)}; "

."foreach (qw(@request_aliases)) {' \\\n";

push @m, <<'EOT';

-e 'unlink "$$_";' \

-e 'system("$$Config{\"lns\"} lwp-request $$_") && die; }'

EOT

}

}

join "", @m;

}

What’s happening here is that we are building a string that will create symbolic
links to the lwp-request script so that users can type GET url or POST url at the
command line. The output produced in the makefile under Unix looks like this:

--- MakeMaker postamble section:

all ::

$(FULLPERL) -e 'use Config; chdir q{$(INST_EXE)}; foreach (qw(GET

HEAD POST)) {' \

-e 'unlink "$$_";' \

-e 'system("$$Config{\"lns\"} lwp-request $$_") && die; }'

862 P e r l : T h e C o m p l e t e R e f e r e n c e

FIN
E-TU

N
IN

G
A

P
P

LIC
A

TIO
N

S

You can see here the Perl code to install links for GET, HEAD, and POST. The
$Config{"lns"} is the name of the link command determined by Perl during the build
process, and the rest is just a foreach loop that first deletes and then creates the link.
The links are made in the blib/script directory and will be copied into the final script
directory (/usr/local/bin) during the installation phase.

Packing for CPAN
When packing up your module and makefile for CPAN, all you need to do is clean
the extension or module directory for your application and then use tar and gzip to
package the entire directory. You’ll need to delete any unnecessary files and also clean
the directory of any of the build files specific to your development platform. For the
former, it’s a case of manually deleting those files; for the latter, the easiest way to do
this is to change to your directory and then type

$ make distclean

To actually package the module up, use something like this

$ tar cf - ./MyModule|gzip -c - >MyModule.tar.gz

where MyModule is the name of your module. When supplying to CPAN, you should
include the version number and then separate the module name from the version by a
single hyphen; for example, MyModule-1.13.tar.gz.

Alternatively, make sure your MANIFEST file is up to date and then use

$ make dist

This will package up all the files listed in MANIFEST into a tar file and then zip them
using gzip. The name of the resultant file will be based on the NAME and VERSION
options in the Perl makefile.

Packing for PPM/VPM
The Perl Package Manager is actually very similar to the CPAN module, and it provides
a way for users of the ActivePerl distribution to download and install modules
precompiled for a number of platforms, but primarily the Windows series. This is the
only major difference between a traditional MakeMaker package and PPM—with PPM
you package up a precompiled version of the module, rather than its raw source.

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 863

You need to develop the Perl makefile and the options and other tricks you use
with MakeMaker as normal, build it on your target platform, and then produce a
separate file, the PPD, which contains all of the information about the module required
by the PPM system. There is, of course, a simple way of doing this.

For example, consider this makefile template:

use ExtUtils::MakeMaker;

WriteMakefile(

'NAME' => 'MyModule',

'VERSION_FROM' => 'MyModule.pm',

($] ge '5.005') ? (

'AUTHOR' => 'Me (me@me.org)',

'ABSTRACT' => 'Does my stuff',

) : (),

);

Normally at this point, with all the modules and the Perl makefile ready-written,
we’d package everything up into a distributable package ready for posting on CPAN.
However, we need to perform the build process on behalf of the end-user, since we
cannot guarantee they will have the utilities required to extract the file themselves.
To do this, type:

C:\> perl Makefile.PL

C:\> nmake

If you don’t have a copy of nmake (which comes with Visual Studio) you can
download a copy from ftp://ftp.microsoft.com/Softlib/MSLFILES/nmake15.exe.

This will go through the build process creating the standard directory structure
used by MakeMaker. PPM uses this base structure when installing the module into its
final location—normally this would be handled by make or a similar utility. You might
see output like the following, although it will depend on the make utility you are using.

mkdir blib

mkdir blib/lib

mkdir blib/arch

mkdir blib/arch/auto

mkdir blib/lib/auto

mkdir blib/man3

copy MyModule.pm blib/lib/MyModule.pm

864 P e r l : T h e C o m p l e t e R e f e r e n c e

You now need to package the blib directory up using tar and gzip.
You can get these utilities from a variety of places—ActiveState recommends
http://www.itribe.net/virtunix/. For example:

C:\> tar cvf MyModule.tar blib

C:\> gzip MyModule.tar

This will create a file called MyModule.tar.gz.
The final step is to create the PPD (Perl Package Definition) file that specifies the

package information required by PPM. This is, in essence, a condensed version of the
information that is normally extracted from a number of files by the CPAN module.
The PPD is read by PPM/VPM when you are searching for a given package. To make
the process easier, the MakeMaker utility places the necessary steps into the makefile,
based on the definitions you’ve already provided, so we can type

C:\> nmake ppd

The resulting file that is produced should be called MyModule.PPD, and it’ll look
something like this:

<SOFTPKG NAME="MyModule" VERSION="1,0,0,0">

<TITLE>MyModule</TITLE>

<ABSTRACT>Does my stuff</ABSTRACT>

<AUTHOR>Me (me@me.org)</AUTHOR>

<IMPLEMENTATION>

<OS NAME="MSWin32" />

<ARCHITECTURE NAME="MSWin32-x86-object" />

<CODEBASE HREF="" />

</IMPLEMENTATION>

</SOFTPKG>

The file is actually in XML format and defines all of the information required by
PPM when you search a repository. You will need to change the value of the
CODEBASE property to point to the location of the source package file.

If you want to actually supply your final package to a public repository, like the
one at ActiveState, you need to put the MyModule.tar.gz file in an x86 directory, and
then Zip the x86 directory and send it to the repository concerned. (See Chapter 2 for
more information on PPM/VPM repositories.)

C h a p t e r 2 5 : D i s t r i b u t i n g M o d u l e s a n d A p p l i c a t i o n s 865
FIN

E-TU
N

IN
G

A
P

P
LIC

A
TIO

N
S

This page intentionally left blank.

Part V
Appendixes

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Appendix A
Function Reference

869

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix is a quick guide to the functions and major operators (including
regular expression and quoting mechanisms) support by Perl v5.7 (the latest
developmental release at the time of writing).

Because of the way in which most of the Perl functions operate, it’s difficult to give
a strict or coherent meaning to all of the functions. Most of the functions and operators
have their own special meaning and treatment, depending on the context in which they
are used. It’s also impossible to qualify functions according to what they return, since
different functions return different information according to their context. For example,
the localtime function returns a date/time string in scalar context, but the individual
time and date components when used in a list context.

Each function description includes details of the function’s operation and the effects
of the function (using the short codes listed in Table A-1). References to other functions,
chapters, or modules that may extend or provide a better interface to the facilities
offered by the function are also mentioned.

For a quick reference to some of the more popular problems and effects of the Perl
built-in functions, see Table A-2. This lists functions and the variables they use or
modify, or the types of exceptions they raise. The same codes are used within the
function definitions. The column descriptions for Table A-2 are given in Table A-1.

870 P e r l : T h e C o m p l e t e R e f e r e n c e

Effect Description

$_ Uses $_, @_, or similar as a default value if no arguments have
been supplied

$! Sets $! on an error

$@ Raises an exception that can be trapped by embedding the call
within eval, setting the value of $@ with the error string

$? Sets $? when a child process exits

T Taints the data returned by this function

XA Raises an exception when supplied an invalid argument

XR Raises an exception if you modify a read-only argument

XT Raises an exception if fed tainted data

U (Support is only guaranteed on Unix) Raises an exception if
unsupported on the current platform; you should be able to trap
the function call and error using eval

Table A-1. Effect Codes Used on Functions

TE
AM
FL
Y

Team-Fly®

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 871

Function $_ $! $@ $? T XA XR XT U

abs X

accept X X X

alarm X X

atan2

bind X X X X

binmode X

bless X

caller

chdir X X

chmod X X

chomp X X

chop X X

chown X X X

chr X

chroot X X X X

close X X X

closedir X X X

connect X X X X

cos X

crypt X

dbmclose X X

dbmopen X X

defined X

delete

die X

do (block)

Table A-2. Attributes for Built-In Perl Functions

872 P e r l : T h e C o m p l e t e R e f e r e n c e

Function $_ $! $@ $? T XA XR XT U

do (file) x X X

do (subroutine) X

dump

each

endgrent X

endhostent X

endnetent X

endprotoent X

endpwent X

endservent X

eof X

eval X X

exec X X

exists

exit

exp X

fcntl X X X X X

fileno X

flock X X X

fork X X

format

formline

getc X X

getgrent x

getgrgid x

getgrnam x

Table A-2. Attributes for Built-In Perl Functions (continued)

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 873

Function $_ $! $@ $? T XA XR XT U

gethostbyaddr x

gethostbyname x

gethostent x

getlogin x

getnetbyaddr x

getnetbyname x

getnetent x

getpeername X X x

getpgrp X X

getppid X

getpriority X X

getprotobyname X

getprotobynumber X

getprotoent X

getpwent X X

getpwnam X X

getpwuid X X

getservbyname X

getservbyport X

getservent X

getsockname X X X

getsockopt X X X

glob X X X X

gmtime

goto X

grep

Table A-2. Attributes for Built-In Perl Functions (continued)

874 P e r l : T h e C o m p l e t e R e f e r e n c e

Function $_ $! $@ $? T XA XR XT U

hex X

import

index

int X

ioctl X X X X X

join

keys

kill X X X X

last X

lc X X

lcfirst X X

length X

link X X X

listen X X X

local

localtime

log X X

lstat X X X

m// X X

map

mkdir X X

msgctl X X

msgget X X

msgrcv X X

msgsnd X X

my

Table A-2. Attributes for Built-In Perl Functions (continued)

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 875

Function $_ $! $@ $? T XA XR XT U

next X

no X

oct X

open X X X X

opendir X X X X

ord X

pack X

package

pipe X X X

pop

pos X

print X X X

printf X X X

prototype X

push

quotemeta X

rand

read X X X X

readdir X X X X

readline X X X

readlink X X X X

readpipe X X X X X

recv X X X X X

redo X

ref X

rename X X

Table A-2. Attributes for Built-In Perl Functions (continued)

876 P e r l : T h e C o m p l e t e R e f e r e n c e

Function $_ $! $@ $? T XA XR XT U

require X X X X

reset

return X

reverse

rewinddir X X X

rindex X X X

rmdir

s/// X X X

scalar

seek X X

seekdir X X X

select (filehandle) X

select (files) X X

semctl X X

semget X X

semop X X

send X X X

setgrent X

sethostent X

setnetent X

setpgrp X X X

setpriority X X X

setprotoent X

setpwent X

setservent X

setsockopt X X X

Table A-2. Attributes for Built-In Perl Functions (continued)

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 877

Function $_ $! $@ $? T XA XR XT U

shift

shmctl X X

shmget X X

shmread X X

shmwrite X X

shutdown X X X

sin X

sleep

socket X X X X

socketpair X X X X

sort X

splice X

split X X

sprintf

sqrt X X

srand

stat X X X

study X

sub

substr X X X

symlink X X X

syscall X X X X

sysopen X X

sysread X X X X X

sysseek X X

system X X X

Table A-2. Attributes for Built-In Perl Functions (continued)

878 P e r l : T h e C o m p l e t e R e f e r e n c e

Function $_ $! $@ $? T XA XR XT U

syswrite X X X

tell X

telldir X X

tie X

tied

time

times

tr/// X

truncate X X X X

uc X X

ucfirst X X

umask X X

undef X

unlink X X X

unpack X

unshift

untie

use X X

utime X X X

values

vec X

wait X X X

waitpid X X X

wantarray

warn X

write X X X

y/// X

Table A-2. Attributes for Built-In Perl Functions (continued)

-X

-X FILEHANDLE

-X EXPR

This performs a file test, where X is one or more of the letters listed in Table A-3. The
function takes one operator, either a file name (contained in EXPR) or a FILEHANDLE.
The function tests the file and then returns true if the test was true and false otherwise.
Some tests may also return a value, which will be zero (false) under some circumstances.
If EXPR and FILEHANDLE are omitted, the function tests $_, except for -t, which
tests STDIN.

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 879

Test Result

-r File is readable by effective uid/gid.

-w File is writable by effective uid/gid.

-x File is executable by effective uid/gid.

-o File is owned by effective uid.

-R File is readable by real uid/gid.

-W File is writable by real uid/gid.

-X File is executable by real uid/gid.

-O File is owned by real uid.

-e File exists.

-z File has zero size.

-s File has non-zero size (returns the file size in bytes).

-f File is a plain file.

-d File is a directory.

-l File is a symbolic link.

-p File is a named pipe (FIFO), or FILEHANDLE is a pipe.

-S File is a network socket.

-b File is a block special file.

Table A-3. File Tests

880 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects $_

Returns in Scalar Context Returns in List Context

0 if false
1 if true
Special conditions exist for some
operators; see Table A-3

See also Chapter(s) Function(s) Module(s)

Chapter 7 stat

abs

abs EXPR

Returns the absolute value of EXPR or $_.

Test Result

-c File is a character special file.

-t File is opened to a tty (terminal).

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is a text file.

-B File is a binary file (opposite of -T).

-M Age of file in days when script started

-A Time of last access in days when script started

-C Time of last inode change when script started

Table A-3. File Tests (continued)

TE
AM
FL
Y

Team-Fly®

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 881

Effects $_

Returns in Scalar Context Returns in List Context

Absolute value

See also Chapter(s) Function(s) Module(s)

Chapter 8

accept

accept NEWSOCKET, GENERICSOCKET

Accepts an incoming connection on the existing GENERICSOCKET, which should
have been created with socket and bound to a local address using bind. The new
socket, which will be used for communication with the client will be NEWSOCKET.
GENERICSOCKET will remain unchanged.

Effects $_, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
Packed address of remote host on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 connect, listen IO::Socket

alarm

alarm EXPR

alarm

Sets the “alarm,” causing the current process to receive a SIGALRM signal in EXPR
seconds. If EXPR is omitted, the value of $_ is used instead. The actual time delay is not
precise, since different systems implement the alarm functionality differently. The
actual time may be up to a second more or less than the requested value. You can only
set one alarm timer at any one time. If a timer is already running and you make a new

882 P e r l : T h e C o m p l e t e R e f e r e n c e

call to the alarm function, the alarm timer is reset to the new value. A running timer
can be reset without setting a new timer by specifying a value of 0.

Effects $_, U

Returns in Scalar Context Returns in List Context

Integer, number of seconds remaining for
previous timer

See also Chapter(s) Function(s) Module(s)

Chapter 14

atan2

atan2 Y,X

Returns the arctangent of Y/X in the range . to - .

Effects None

Returns in Scalar Context Returns in List Context

Floating point number

See also Chapter(s) Function(s) Module(s)

Chapter 8

bind

bind SOCKET, ADDRESS

Binds the network ADDRESS to the filehandle identified by SOCKET. The ADDRESS
should be a packed address of the appropriate type for the socket being opened.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 connect, accept, socket IO::Socket

binmode

binmode FILEHANDLE

Sets the format for FILEHANDLE to be read from and written to as binary on the
operating systems that differentiate between the two. Files that are not in binary have
CR LF sequences converted to LF on input, and LF to CR LF on output. This is vital for
operating systems that use two characters to separate lines within text files (MS-DOS),
but has no effect on operating systems that use single characters (Unix, Mac OS, QNX).

Effects XA

Returns in Scalar Context Returns in List Context

undef on failure or invalid FILEHANDLE
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7

bless

bless REF, CLASSNAME

bless REF

Tells the entity referenced by REF that it is now an object in the CLASSNAME
package, or the current package if CLASSNAME is omitted. Use of the two-argument
form of bless is recommended.

Effects XA

Returns in Scalar Context Returns in List Context

The reference to an object blessed into
CLASSNAME

See also Chapter(s) Function(s) Module(s)

Chapter 10 ref

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 883

caller

caller EXPR

caller

Returns information about the current subroutines caller. In a scalar context, returns
the caller’s package name or the package name of the caller EXPR steps up.

In a list context, with no arguments specified, caller returns the package name,
file name and line within the file for the caller of the current subroutine:

($package, $filename, $line) = caller;

If EXPR is specified, caller returns extended information for the caller EXPR steps
up. That is, when called with an argument of 1, it returns the information for the caller
(parent) of the current subroutine, with 2 the caller of the caller (grandparent) of the
current subroutine, and so on. The information returned is

($package, $filename, $line, $subroutine,

$hasargs, $wantarray, $evaltext, $is_require) = caller($i);

The $evaltext and $is_require values are only returned when the subroutine being
examined is actually the result of an eval() statement.

Effects None

Returns in Scalar Context Returns in List Context

undef on failure Basic information when called
with no arguments
Extended information when called
with an argument

See also Chapter(s) Function(s) Module(s)

Chapter 21

chdir

chdir EXPR

chdir

884 P e r l : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 885

Changes the current working directory to EXPR, or to the user’s home directory if none
is specified.

Effects $!, XT

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 Cwd

chmod

chmod MODE, LIST

Changes the mode of the files specified in LIST to the MODE specified. The value of
MODE should be in octal. You must check the return value against the number of files
that you attempted to change to determine whether the operation failed.

Effects $!, XT

Returns in Scalar Context Returns in List Context

Integer, number of files
successfully changed

See also Chapter(s) Function(s) Module(s)

Chapter 7 –X, stat

chomp

chomp EXPR

chomp LIST

chomp

Removes the last character if it matches the value of $/ from EXPR, each element of
LIST, or $_ if no value is specified. Note that this is a safer version of the chop function

886 P e r l : T h e C o m p l e t e R e f e r e n c e

because it only removes the last character if it matches $/. Removes all trailing newlines
from the string or strings if in paragraph mode (when $/ = '').

Effects $_, XR

Returns in Scalar Context Returns in List Context

Integer, number of bytes
removed for all strings

See also Chapter(s) Function(s) Module(s)

Chapter 8 chop

chop

chop EXPR

chop LIST

chop

Removes the last character from EXPR, each element of LIST, or $_ if no value
is specified.

Effects $_, XR

Returns in Scalar Context Returns in List Context

The character removed from EXPR The character removed from the last
element of LIST

See also Chapter(s) Function(s) Module(s)

Chapter 8 chomp

chown

chown USERID, GROUPID, LIST

Changes the user and group to the IDs specified by USERID and GROUPID on the
files specified in LIST. Note that USERID and GROUPID must be the numeric IDs,
not the names. If you specify a value of -1 to either argument, then the user or group ID
are not updated. Note that you must compare the number of files that were actually

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 887

changed against the number of files you wanted to change to determine if the
operation was successful.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

Number of files successfully changed

See also Chapter(s) Function(s) Module(s)

Chapter 7 chmod

chr

chr EXPR

chr

Returns the character represented by the numeric value of EXPR, or $_ if omitted,
according to the current character set. Note that the character number will use the
Unicode character numbers for numerical values above 127.

Effects $_

Returns in Scalar Context Returns in List Context

Character

See also Chapter(s) Function(s) Module(s)

Chapter 8 ord

chroot

chroot EXPR

chroot

Changes the root directory for all pathnames beginning with “/” to the directory
specified by EXPR, or $_ if none is specified. For security reasons, this function, which

888 P e r l : T h e C o m p l e t e R e f e r e n c e

is identical to the system chroot() function, is restricted to the superuser and cannot
be undone.

Effects $_, $!, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 chdir

close

close FILEHANDLE

close

Closes FILEHANDLE, flushing the buffers, if appropriate, and disassociating the
FILEHANDLE with the original file, pipe, or socket. Closes the currently selected
filehandle if none is specified.

Effects $!, $?, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 if buffers were flushed and
the file was successfully closed

See also Chapter(s) Function(s) Module(s)

Chapters 7, 12 open, socket IO::File,\IO::Socket

closedir

closedir DIRHANDLE

Closes the directory handle DIRHANDLE.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 opendir

connect

connect SOCKET, EXPR

Connects to the remote socket using the filehandle SOCKET and the address specified
by EXPR. The EXPR should be a packed address of the appropriate type for the socket.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 accept, socket IO::Socket

continue

continue BLOCK

Not a function. This is a flow control statement that executes BLOCK just before the
conditional for the loop is evaluated.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 5

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 889

cos

cos EXPR

cos

Returns the cosine of EXPR, or $_ if EXPR is omitted. The value should be expressed
in radians.

Effects $_

Returns in Scalar Context Returns in List Context

Floating point number

See also Chapter(s) Function(s) Module(s)

Chapter 8 atan2, sin Math::Trig

crypt

crypt EXPR,SALT

Encrypts the string EXPR using the system crypt() function. The value of SALT is
used to select an encrypted version from one of a number of variations. Note that there
is no equivalent decryption function. You cannot (easily) decrypt a string that has been
encrypted in this way. It’s normally used one way, first to encrypt a string, and then to
encrypt a password to compare against the encrypted string. If you’re using it in this
form, then consider supplying the encrypted password as the SALT.

Effects U

Returns in Scalar Context Returns in List Context

Encrypted string

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpw*

dbmclose

dbmclose HASH

890 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Use of this function is heavily deprecated.

Closes the binding between a hash and a DBM file. Use the tie function with a
suitable module.

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 13 dbmopen, tie DBM_File, GDBM_File,
SDBM_File

dbmopen

dbmopen HASH, EXPR, MODE

Use of this function is heavily deprecated.

Binds the database file specified by EXPR to the hash HASH. If the database does not
exist, then it is created using the mode specified by MODE. The file EXPR should be
specified without the .dir and .pag extensions. Use is now deprecated in favor of tie
and one of the tied DBM hash modules, such as SDBM_File.

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 13 dbmclose, tie DBM_File, GDBM_File,
SDBM_File

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 891

defined

defined EXPR

defined

Returns true if EXPR has a value other than the undef value, or checks the value of $_
if EXPR is not specified. This can be used with many functions to detect a failure in
operation, since they return undef if there was a problem. A simple Boolean test does
not differentiate between false, zero, an empty string, or the string “0”, which are all
equally false.

If EXPR is a function or function reference, then it returns true if the function has
been defined. When used with entire arrays and hashes, it will not always produce
intuitive results. If a hash element is specified, it returns true if the corresponding value
has been defined, but does not determine whether the specified key exists in the hash.

Effects $_

Returns in Scalar Context Returns in List Context

0 if EXPR contains undef
1 if EXPR contains a valid value or
reference

0 if EXPR has not been defined
1 if EXPR has been defined

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8

delete

delete LIST

Deletes the specified keys and associated values from a hash, or the specified elements
from an array. The operation works on individual elements or slices. For example:

delete $array[0];

delete $hash{$key};

Note that deleting from the $ENV hash modifies the current environment, and deleting
from a hash tied to a DBM database deletes the entry from the database file. Also note
that when deleting an array item, only the item’s value is emptied; it doesn’t remove
the item from the list or close the gap between the preceding and subsequent item(s).

892 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects None

Returns in Scalar Context Returns in List Context

undef if the key does not exist
Value associated with the deleted hash
key or array index.

undef if the key does not exist
Value associated with the deleted hash
key or array index.

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8

die

die LIST

Prints the value of LIST to STDERR and calls exit with the error value contained in $!.
If $! is 0, then it prints the value of ($? >> 8) (for use with backtick commands). If ($?
>> 8) is 0, then the exit status value returned is 255.

Inside an eval, the value of LIST is inserted in the $@ variable, and the eval block
exits with an undefined value. You should therefore use die to raise an exception
within a script.

If the value of LIST does not end in a newline, then Perl adds the current script
and input line number to the message that is printed. If LIST is empty and $@ already
contains a value, then the string “\t…propagated” is appended, and if LIST is empty,
the string “Died” is printed instead.

If you want to insert the filename and line into the output yourself, make sure to
add a newline to the end of the list, and then use __FILE__ and __LINE__ accordingly.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 7, 9, 15, 16, 21 exit, eval, warn

do

do BLOCK

do EXPR

do SUB(LIST)

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 893

When supplied a block, do executes as if BLOCK were a function, returning the value
of the last statement evaluated in the block. When supplied with EXPR, do executes the
file specified by EXPR as if it were another Perl script. This is usually used to import
the contents of a script for loading subroutines or values, and is essentially equivalent to
loading the text from the source file and parsing that text directly to eval. If supplied a
subroutine, SUB, do executes the subroutine using LIST as the arguments, raising an
exception if SUB hasn’t been defined.

Effects None for do {}
$_, T, XT for do file
$@ for do subroutine

Returns in Scalar Context Returns in List Context

undef if file is not accessible
(for do EXPR)
0 on failure (not a Perl script, for do EXPR)
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 15 eval

dump

dump LABEL

Dumps the currently executing Perl interpreter and script into a core dump. Using
the undump program, you can then reconstitute the dumped core into an executable
program. If so, execution in the dumped program starts at LABEL. The process is
usually unsuccessful, since core dumps do not necessarily make good fodder for a
new program. If you want to produce an executable version of a Perl script, use the
Perl-to-C compiler.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 22

894 P e r l : T h e C o m p l e t e R e f e r e n c e

each

each HASH

In a list context, returns a two-element list referring to the key and value for the next
element of a hash, allowing you to iterate over it. In a scalar context, returns only the
key for the next element in the hash. Information is returned in a random order, and a
single iterator is shared among each—keys and values. The iterator can be reset by
evaluating the entire hash or by calling the keys function in a scalar context.

Effects None

Returns in Scalar Context Returns in List Context

undef at end of hash
Key only for the next element of a hash

Null array at end of hash
Key and value for the next element
of a hash

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8 keys, values

endgrent

endgrent

Tells the system you no longer expect to read entries from the groups file using
getgrent. Under Windows, use the Win32API::Net function to get the information
from a domain server.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 11 getgrent, setgrent Win32API::Net

endhostent

endhostent

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 895

Tells the system you no longer expect to read entries from the hosts file
using gethostent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 gethostent, sethostent

endnetent

endnetent

Tells the system you no longer expect to read entries from the networks list
using getnetent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getnetent, setnetent

endprotoent

endprotoent

Tells the system you no longer expect to read entries from the protocols list
using getprotoent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getprotoent, setprotoent

896 P e r l : T h e C o m p l e t e R e f e r e n c e

endpwent

endpwent

Tells the system you no longer expect to read entries from the password file using
getpwent. Under Windows, use the Win32API::Net function to get the information
from a domain server.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwent, setpwent Win32API::Net

endservent

endservent

Tells the system you no longer expect to read entries from the services file
using getservent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getservent, setservent

eof

eof FILEHANDLE

eof()

eof

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 897

Returns true if the next read on the specified FILEHANDLE will return an end-of-file
condition, or if FILEHANDLE is not currently associated with an open file. If
FILEHANDLE is not specified, it returns the condition for the last accessed file.

If the eof() format is used, it checks the input status of the list of files supplied on
the command line and hence allows you to detect the end of the file list, instead of the
end of the current file.

Normally, you should never need to use eof, because all filehandle-compatible
functions return false values when no data remains, or if there was an error.

Effects XA

Returns in Scalar Context Returns in List Context

undef if FILEHANDLE is not
at end of file
1 if FILEHANDLE will report end
of file on next read

See also Chapter(s) Function(s) Module(s)

Chapters 7, 12 while, open, close

eval

eval EXPR

eval BLOCK

Evaluates EXPR at execution time as if EXPR were a separate Perl script. This allows
you to use a separate, perhaps user-supplied, piece of Perl script within your program.
An eval EXPR statement is evaluated separately each time the function is called. The
second form evaluates BLOCK when the rest of the script is parsed (before execution).

In both cases, the evaluated EXPR or BLOCK has access to the variables, objects,
and functions available within the host script. Any exceptions raised by the interpreter,
die, or warn are contained in $@.

Effects $_, XT

Returns in Scalar Context Returns in List Context

Value of last evaluated statement in EXPR
or BLOCK

See also Chapter(s) Function(s) Module(s)

Chapter 15

898 P e r l : T h e C o m p l e t e R e f e r e n c e

exec

exec EXPR LIST

exec LIST

Executes a system command (directly, not within a shell) and never returns to the
calling script, except if the command specified does not exist and has been called
directly, instead of indirectly through a shell. The operation works as follows:

� If there is only one scalar argument that contains no shell metacharacters, then
the argument is converted into a list and the command is executed directly,
without a shell.

� If there is only one scalar argument that contains shell metacharacters, then the
argument is executed through the standard shell, usually /bin/sh on Unix.

� If LIST is more than one argument, or an array with more than one value, then
the command is executed directly without the use of a shell.

If called with EXPR and LIST, then EXPR is used in the same way as the indirect object
in print or printf. Here, EXPR is used as the real path to the command to be executed,
and the first argument of LIST is used as the name that the program was executed as.
This is useful for calling programs like gzip or gunzip, which are usually the same
program, but operate differently based on the name used to execute them.

The EXPR and LIST format can also be used to execute a program defined in a
single element list.

You should use system if you want to run a subcommand as part of a Perl script.

Effects $!, XT

Returns in Scalar Context Returns in List Context

0 only if the command specified cannot be
executed

See also Chapter(s) Function(s) Module(s)

Chapter 15 system

exists

exists EXPR

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 899

Returns true if the specified hash key exists, regardless of the corresponding value,
even if it’s undef. If EXPR is a subroutine, then exists will return 1 if the subroutine has
been declared (but not necessarily defined), 0 if not.

Effects None

Returns in Scalar Context Returns in List Context

0 if hash element or array index does not
exist, or if the subroutine has not been
declared
1 if hash element or array index does exist,
or if the subroutine has not been declared

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8 undef, delete

exit

exit EXPR

exit

Evaluates EXPR, exits the Perl interpreter, and returns the value as the exit value.
Always runs all END{} blocks defined in the script (and imported packages) before
exiting. If EXPR is omitted, then the interpreter exits with a value of 0. Should not be
used to exit from a subroutine; either use eval and die or use return.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 11, 14, 15

exp

exp EXPR

exp

900 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

A
P

P
EN

D
IX

ES

Returns e (the natural logarithm base) raised to the power of EXPR, or $_ if omitted.

Effects $_

Returns in Scalar Context Returns in List Context

e raised to the power

See also Chapter(s) Function(s) Module(s)

Chapter 8

fcntl

fcntl FILEHANDLE, FUNCTION, SCALAR

The Perl version of the system fcntl() function. Performs the function specified by
FUNCTION, using SCALAR on FILEHANDLE. SCALAR either contains a value to be
used by the function or is the location of any returned information. The functions
supported by fcntl() are entirely dependent on your system’s implementation. If your
system does not support fcntl(), then a fatal error will occur.

Effects $!, XA, XR, XT, U

Returns in Scalar Context Returns in List Context

undef on failure
0 but true if the return value from the
fcntl() is 0
Value returned by system

See also Chapter(s) Function(s) Module(s)

Chapter 7 ioctl Fcntl

fileno

fileno FILEHANDLE

A p p e n d i x A : F u n c t i o n R e f e r e n c e 901

Returns the file descriptor number (as used by C and POSIX functions) of the specified
FILEHANDLE. This is generally useful only for using the select function and any
low-level tty functions.

Effects XA

Returns in Scalar Context Returns in List Context

undef if FILEHANDLE is not open
File descriptor (numeric) of
FILEHANDLE

See also Chapter(s) Function(s) Module(s)

Chapter 7 select IO::File, IO::Handle

flock

flock FILEHANDLE, OPERATION

Supports file locking on the specified FILEHANDLE using the system flock(), fcntl()
locking, or lockf(). The exact implementation used is dependent on what your system
supports. OPERATION is one of the static values defined in Table A-4.

In nearly all cases, file locking is generally advisory, especially if the underlying
implementation is through the flock() function.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure to set/unset lock
1 on success to set/unset lock

See also Chapter(s) Function(s) Module(s)

Chapter 7 fcntl

902 P e r l : T h e C o m p l e t e R e f e r e n c e

Operation Result

LOCK_SH Set shared lock.

LOCK_EX Set exclusive lock.

LOCK_UN Unlock specified file.

LONG_NB Set lock without blocking.

Table A-4. Locking Operations

A
P

P
EN

D
IX

ES

fork

fork

Forks a new process using the fork() system call. Any shared sockets or filehandles are
duplicated across processes. You must ensure that you wait on your children to prevent
“zombie” processes from forming.

When you call fork and then use exec to execute a program, only the filehandles
up to the value of $^F ($SYSTEM_FD_MAX) are inherited by the new program. The
default value is 2, allowing only STDIN, STDOUT, and STDERR to be inherited. You
can correct this behavior by increasing the value of $^F before opening the filehandles
that you want to have inherited.

The fork() system call is emulated within Perl under Windows by using threads
and multiple Perl interpreters. You might be better off using threads or the
Win32::Process module.

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on failure to fork
Child process ID to parent on success
0 to child on success

See also Chapter(s) Function(s) Module(s)

Chapter 15 wait Win32::Process

format

format NAME =

picture line

LIST

...

Declares a picture format for use by the write function.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 16 write

A p p e n d i x A : F u n c t i o n R e f e r e n c e 903

formline

formline PICTURE, LIST

An internal function used by the format function and related operators. It formats
LIST according to the contents of PICTURE into the output accumulator variable $^A.
The value is written out to a filehandle when a write is done.

Effects None

Returns in Scalar Context Returns in List Context

1 (always)

See also Chapter(s) Function(s) Module(s)

Chapter 16 format, write

getc

getc FILEHANDLE

getc

Reads the next character from FILEHANDLE (or STDIN if none specified), returning
the value.

Effects T, XA

Returns in Scalar Context Returns in List Context

undef on error or end of file
Value of character read from
FILEHANDLE

See also Chapter(s) Function(s) Module(s)

Chapter 7 read IO::File, IO::Handle

getgrent

getgrent

904 P e r l : T h e C o m p l e t e R e f e r e n c e

Iterates over the entries in the /etc/group file. Returns the following in a list context:

($name, $passwd, $gid, $members)

The $members scalar contains a space-separated list of the login names that are
members of the group. Returns the group name only when used in a scalar context.
Under Windows, consider using the Win32API::Net module.

Effects U

Returns in Scalar Context Returns in List Context

Group name Group record (name, password, group ID,
and member list)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getgrgid, getgrnam Win32API::Net

getgrgid

getgrgid EXPR

Looks up the group file entry by group ID. Returns the following in a list context:

($name, $passwd, $gid, $members)

The $members scalar contains a space-separated list of the login names that are
members of the group. Returns the group name in a scalar context. For a more efficient
method of retrieving the entire groups file, see getgrent. Under Windows, consider
using the Win32API::Net module.

Effects U

Returns in Scalar Context Returns in List Context

Group name Group record (name, password, group ID,
and member list)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getgrnam, getgrent Win32API::Net

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 905

getgrnam

getgrnam EXPR

Looks up the group file entry by group name. Returns the following in a list context:

($name, $passwd, $gid, $members)

The $members scalar contains a space-separated list of the login names that are
members of the group. Returns the group ID in a scalar context. For a more efficient
method of retrieving the entire groups file, see getgrent. Under Windows, consider
using the Win32API::Net module.

Effects U

Returns in Scalar Context Returns in List Context

Group ID in a scalar context Group record (name, password, group ID,
and member list)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getgrent, getgrgid Win32API::Net

gethostbyaddr

gethostbyaddr ADDR, ADDRTYPE

Contacts the system’s name-resolving service, returning a list of information for the
host ADDR of type ADDRTYPE, as follows:

($name, $aliases, $addrtype, $length, @addrs)

The @addrs array contains a list of packed binary addresses. In a scalar context, returns
the host address.

906 P e r l : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Host name

Empty list on error
Host record (name, aliases, address type,
length, list of addresses)

See also Chapter(s) Function(s) Module(s)

Chapter 12 gethostbyname

gethostbyname

gethostbyname NAME

Contacts the system’s name-resolving service, returning a list of information for
NAME, as follows:

($name, $aliases, $addrtype, $length, @addrs)

The @addrs array contains a list of packed binary addresses. In a scalar context, returns
the host address.

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Host address

Empty list on error
Host record (name, aliases, address type,
length, list of addresses)

See also Chapter(s) Function(s) Module(s)

Chapter 12 gethostbyaddr

gethostent

gethostent

A p p e n d i x A : F u n c t i o n R e f e r e n c e 907

Returns the next entry from the hosts file as a list:

($name, $aliases, $addrtype, $length, @addrs)

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Host name

Empty list on error
Host record (name, aliases, address type,
length, list of addresses)

See also Chapter(s) Function(s) Module(s)

Chapter 12 sethostent, endhostent Net::hostent

getlogin

getlogin

Returns the user’s name, as discovered by the system function getlogin(). Under
Windows, use the Win32::LoginName() function instead.

Effects U

Returns in Scalar Context Returns in List Context

undef on failure
User’s login name

Empty list on error
Host record (name, aliases, address type,
length, list of addresses)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwuid Win32::LoginName()

getnetbyaddr

getnetbyaddr ADDR, ADDRTYPE

In a list context, returns the information for the network specified by ADDR and type
ADDRTYPE:

($name, $aliases, $addrtype, $net)

908 P e r l : T h e C o m p l e t e R e f e r e n c e

In a scalar context, returns only the network address.

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Network address

Empty list on error
Network record (name, aliases, address
type, network address)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getnetbyname Net::netent

getnetbyname

getnetbyname NAME

In a list context, returns the information for the network specified by NAME:

($name, $aliases, $addrtype, $net)

In a scalar context, returns only the network address.

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Network address

Empty list on error
Network record (name, aliases, address
type, network address)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getnetbyaddr Net::netent

getnetent

getnetent

Gets the next entry from the /etc/networks file, returning:

($name, $aliases, $addrtype, $net)

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 909

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Network name

Empty list on error
Network record (name, aliases, address
type, network address)

See also Chapter(s) Function(s) Module(s)

Chapter 12 setnetent, endnetent Net::netent

getpeername

getpeername SOCKET

Returns the packed socket address of the remote host attached to SOCKET.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

undef on error
Packed socket address

Empty list on error
Network record (name, aliases, address
type, network address)

See also Chapter(s) Function(s) Module(s)

Chapter 12 accept, bind, socket IO::Socket

getpgrp

getpgrp EXPR

getpgrp

Returns the process group for the process ID specified by EXPR, or the current process
group if none is specified.

Effects $!, U

Returns in Scalar Context Returns in List Context

Process group ID

See also Chapter(s) Function(s) Module(s)

Chapter 14 setpgrp Win32::Process

910 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

getppid

getppid

Returns the process ID of the parent process.

Effects U

Returns in Scalar Context Returns in List Context

Process ID of the parent process

See also Chapter(s) Function(s) Module(s)

Chapter 14

getpriority

getpriority WHICH, WHO

Returns the current priority for a process (PRIO_PROCESS), process group
(PRIO_PGRP) or user (PRIO_USER). Use the constants defined in the BSD::Resource
module. The argument WHICH specifies what entity to set the priority for, and WHO
is the process ID or user ID to set. A value of 0 for WHO defines the current process,
process group, or user. This produces a fatal error on systems that don’t support the
system getpriority() function.

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on error
Current priority

See also Chapter(s) Function(s) Module(s)

Chapter 14 setpriority BSD::Resource,
Win32::Process

getprotobyname

getprotobyname NAME

A p p e n d i x A : F u n c t i o n R e f e r e n c e 911
A

P
P

EN
D

IX
ES

912 P e r l : T h e C o m p l e t e R e f e r e n c e

Translates the protocol NAME into its corresponding number in a scalar context, and
its number and associated information in a list context:

($name, $aliases, $protocol_number)

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Protocol number

Empty list on error
Protocol record (name, aliases,
protocol number)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getprotobynumber

getprotobynumber

getprotobynumber NUMBER

Translates the protocol NUMBER into its corresponding name in a scalar context, and
its name and associated information in a list context:

($name, $aliases, $protocol_number)

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Protocol name

Empty list on error
Protocol record (name, aliases,
protocol number)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getprotobyname

getprotoent

getprotoent

Returns the next entry from the list of valid protocols:

($name, $aliases, $protocol_number)

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Protocol name

Empty list on error
Protocol record (name, aliases,
protocol number)

See also Chapter(s) Function(s) Module(s)

Chapter 12 setprotoent, endprotoent

getpwent

getpwent

Returns the next password entry from the /etc/passwd file. This is used in
combination with the setpwent and endpwent functions to iterate over the password
file. In a list context, returns

($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell) = getpwent;

In a scalar context, just returns the user name.

Effects T, U

Returns in Scalar Context Returns in List Context

User name User record (name, password, user ID,
group ID, quote, comment, real name,
home directory, shell)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwnam, getpwent Win32API::Net

A p p e n d i x A : F u n c t i o n R e f e r e n c e 913
A

P
P

EN
D

IX
ES

914 P e r l : T h e C o m p l e t e R e f e r e n c e

getpwnam

getpwnam EXPR

In a list context, returns a list of fields, as extracted from the /etc/passwd file, based on
the user name specified by EXPR. It’s generally used like this:

($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell) = getpwnam($user);

In a scalar context, returns the numeric user ID. If you are trying to access the
whole /etc/passwd file, you should use the getpwent function. If you want to access
the details by user ID, use getpwuid.

Effects T, U

Returns in Scalar Context Returns in List Context

User ID User record (name, password, user ID,
group ID, quote, comment, real name,
home directory, shell)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwent, getpwuid Win32API::Net

getpwuid

getpwuid EXPR

In a list context, returns a list of fields, as extracted from the /etc/passwd file, based on
the user name specified by EXPR. It’s generally used like this:

($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell) = getpwuid($uid);

In a scalar context, returns the user name. If you are trying to access the whole
/etc/passwd file, you should use the getpwent function. If you want to access the
details by user name, use getpwnam.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 915
A

P
P

EN
D

IX
ES

Effects T, U

Returns in Scalar Context Returns in List Context

User name User record (name, password, user ID,
group ID, quote, comment, real name,
home directory, shell)

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwent, getpwnam Win32API::Net

getservbyname

getservbyname NAME, PROTO

Translates the service NAME for the protocol PROTO, returning the service number in
a scalar context and the number and associated information in a list context:

($name, $aliases, $port_number, $protocol_name)

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Service number

Empty list
Service record (name, aliases, port
number, protocol name)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getservbyport

getservbyport

getservbyport PORT, PROTO

Translates the service number PORT for the protocol PROTO, returning the service
name in a scalar context and the name and associated information in a list context:

($name, $aliases, $port_number, $protocol_name)

916 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects U

Returns in Scalar Context Returns in List Context

undef on error
Service name

Empty list on error
Service record (name, aliases,
port number, protocol name)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getservbyname

getservent
getservent

Gets the next entry from the list of service entries, returning:

($name, $aliases, $port_number, $protocol_name)

Effects U

Returns in Scalar Context Returns in List Context

undef on error in scalar context
Service name

Empty list on error
Service record (name, aliases, port
number, service name)

See also Chapter(s) Function(s) Module(s)

Chapter 12 setservent, endservent

getsockname
getsockname SOCKET

Returns a packed address of the local end of the network socket SOCKET.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

undef on error
Packed address of local socket

Empty list on error
Service record (name, aliases, port
number, protocol name)

See also Chapter(s) Function(s) Module(s)

Chapter 12 getpeername, socket IO::Socket

getsockopt

getsockopt SOCKET, LEVEL, OPTNAME

Gets the socket options set on SOCKET at the socket implementation level LEVEL for
the option OPTNAME. Some sample values for OPTNAME at a socket level are given
in Table A-5. The values are defined in the Socket package.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

undef on error
Option value

Empty list on error
Service record (name, aliases, port
number, protocol name)

See also Chapter(s) Function(s) Module(s)

Chapter 12 setsockopt IO::Socket

A p p e n d i x A : F u n c t i o n R e f e r e n c e 917
A

P
P

EN
D

IX
ES

OPTNAME Result

SO_DEBUG Get status of recording of debugging information

SO_REUSEADDR Get status of local address reuse

SO_KEEPALIVE Get status of keep connections alive

SO_DONTROUTE Get status of routing bypass for outgoing messages

SO_LINGER Get status of linger on close if data is present

SO_BROADCAST Get status of permission to transmit broadcast messages

SO_OOBINLINE Get status of out-of-band data in band

SO_SNDBUF Get buffer size for output

SO_RCVBUF Get buffer size for input

SO_TYPE Get the type of the socket

SO_ERROR Get and clear error on the socket

Table A-5. Options for getsockopt

glob

glob EXPR

glob

Returns a list of files matching EXPR as they would be expanded by the standard
Bourne shell. If the EXPR does not specify a path, uses the current directory. If EXPR is
omitted, the value of $_ is used.

From Perl 5.6 on, expansion is done internally, rather than using an external script.
Expansion follows the csh (and any derivatives, including tcsh and bash) style of
expansion, which translates as the following:

� Files beginning with a single period are ignored unless EXPR explicitly matches.

� The * character matches zero or more characters of any type.

� The ? character matches one character of any type.

� The [..] construct matches the characters listed, including ranges, as per
regular expressions.

� The ~ characters matches the home directory; ~name matches the home
directory for the user name.

� The {..} construct matches against any of the comma-separated words enclosed
in the braces.

Use File::Glob if you want to expand more complex files, including those
with spaces.

Effects $_, $@, T, XT

Returns in Scalar Context Returns in List Context

undef on error
First file in the list of expanded names

Empty list on error
List of expanded file names

See also Chapter(s) Function(s) Module(s)

Chapter 7 chdir File::Glob

gmtime

gmtime EXPR

gmtime

918 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : F u n c t i o n R e f e r e n c e 919
A

P
P

EN
D

IX
ES

Returns a list of values corresponding to the date and time as specified by EXPR, or
date and time returned by the time function if EXPR is omitted, localized for the
standard Greenwich mean time. The values returned are as follows:

0 1 2 3 4 5 6 7 8

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

The array elements are numeric, taken from the system struct tm. The value of
$mon has a range of 0..11, $wday has a range of 0..6 (Sunday–Saturday), and $year is
returned as the number of years from 1900; so 2010 is 110, not 10.

If you want to convert a list of individual time values, use the Time::Local module.

Effects None

Returns in Scalar Context Returns in List Context

Returns a string of the form: Thu Sep 21
14:52:52 2000

Returns the individual time component
values (seconds, minutes, hours, day of
month, month, year, day of week, day of
year, daylight savings time)

See also Chapter(s) Function(s) Module(s)

Chapter 11 localtime, time Time::gmtime, Time::Local

goto

goto LABEL

goto EXPR

goto &NAME

The first form causes the current execution point to jump to the point referred to as
LABEL. A goto in this form cannot be used to jump into a loop or external
function—you can only jump to a point within the same scope. The second form
expects EXPR to evaluate to a recognizable LABEL. In general, you should be able to
use a normal conditional statement or function to control the execution of a program,
so its use is deprecated.

The third form substitutes a call to the named subroutine for the currently running
subroutine. The new subroutine inherits the argument stack and other features of the

920 P e r l : T h e C o m p l e t e R e f e r e n c e

original subroutine; it becomes impossible for the new subroutine even to know that it
was called by another name.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 5, 6

grep

grep BLOCK LIST

grep EXPR, LIST

Similar to the standard Unix grep command. However, the selection process is more
widespread and limited to regular expressions. Evaluates the BLOCK or EXPR for
each element of LIST, returning the list of elements that the block or statement
returns true.

Effects None

Returns in Scalar Context Returns in List Context

Number of times the expression
returned true

List of elements that matched
the expression

See also Chapter(s) Function(s) Module(s)

Chapter 8 map

hex

hex EXPR

hex

Interprets EXPR as a hexadecimal string and returns the value, or converts $_ if EXPR
is omitted.

TE
AM
FL
Y

Team-Fly®

A p p e n d i x A : F u n c t i o n R e f e r e n c e 921
A

P
P

EN
D

IX
ES

Effects $_

Returns in Scalar Context Returns in List Context

Numeric value

See also Chapter(s) Function(s) Module(s)

Chapters 8 oct

import

import CLASSNAME LIST

import

Not a built-in function, but supported by the Exporter (and other) modules as a
method for importing functions, variables, and objects from another package into the
current namespace.

Effects None

Returns in Scalar Context Returns in List Context

See also Chapter(s) Function(s) Module(s)

Chapter 6 use, require Exporter

index

index STR, SUBSTR, POSITION

index STR, SUBSTR

Returns the position of the first occurrence of SUBSTR in STR, starting at the
beginning (starting at zero), or from POSITION if specified.

Effects None

Returns in Scalar Context Returns in List Context

-1 on failure
Position of matching string (starting at
zero for the first character).

See also Chapter(s) Function(s) Module(s)

Chapter 8 Substr

922 P e r l : T h e C o m p l e t e R e f e r e n c e

int

int EXPR

int

Returns the integer element of EXPR, or $_ if omitted. The int function does not do
rounding. If you need to round a value up to an integer, you should use sprintf.

Effects $_

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapter 8 abs, sprintf

ioctl

ioctl FILEHANDLE, FUNCTION, SCALAR

Performs the function FUNCTION using the system function ioctl(), using SCALAR
to set or receive information when appropriate. The available values for FUNCTION
are completely system independent. You should refer to your ioctl.h C header file, if
you have one available, for suitable values.

Effects $!, XA, XR, XT, U

Returns in Scalar Context Returns in List Context

undef on failure
0 but true if the return value
from the ioctl() is 0
Value returned by system

See also Chapter(s) Function(s) Module(s)

Chapter 7 abs, sprintf

join

join EXPR, LIST

Combines the elements of LIST into a single string using the value of EXPR to separate
each element. It is effectively the opposite of split. Note that EXPR is only interpolated
between pairs of elements in LIST; it will not be placed either before the first or after
the last element in the string. To join together strings without a separator, supply an
empty string rather than undef.

Effects None

Returns in Scalar Context Returns in List Context

Joined string

See also Chapter(s) Function(s) Module(s)

Chapter 8 Split

keys

keys HASH

Returns all the keys of the HASH as a list. The keys are returned in random order but,
in fact, share the same order as that used by values and each. Using keys to reevaluate
the hash, in either scalar, list, or void context will reset the iterator for all three
functions. If used as an lvalue, then it presets the number of buckets used to store the
hash data.

Effects None

Returns in Scalar Context Returns in List Context

Number of keys in the hash List of keys

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8 each, values

kill

kill EXPR, LIST

Sends a signal of the value EXPR to the process IDs specified in LIST. If the value of
EXPR is negative, it kills all processes that are members of the process groups specified.
If EXPR is 0, then it sends the signal to all the members of the same group as the
current process—you can use this to send signals to your children without having to
explicitly track their process IDs. The EXPR can be specified with the signal number

A p p e n d i x A : F u n c t i o n R e f e r e n c e 923
A

P
P

EN
D

IX
ES

(non-portable) or a suitable string. Using an unrecognized signal name raises an
exception that is trappable with eval.

The precise list of signals supported is entirely dependent on the system
implementation, but Table A-6 shows the main signals that should be supported by all
POSIX-compatible operating systems.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 14

924 P e r l : T h e C o m p l e t e R e f e r e n c e

Name Effect

SIGABRT Aborts the process

SIGARLM Alarm signal

SIGFPE Arithmetic exception

SIGHUP Hang up.

SIGILL Illegal instruction

SIGINT Interrupt

SIGKILL Termination signal

SIGPIPE Write to a pipe with no readers.

SIGQUIT Quit signal.

SIGSEGV Segmentation fault

SIGTERM Termination signal

SIGUSER1 Application-defined signal 1

SIGUSER2 Application-defined signal 2

Table A-6. POSIX-Compatible Signals

A p p e n d i x A : F u n c t i o n R e f e r e n c e 925
A

P
P

EN
D

IX
ES

last

last LABEL

last

Not a function. The last keyword is a loop-control statement that immediately causes
the current iteration of a loop to become the last. No further statements are executed,
and the loop ends. If LABEL is specified, then it drops out of the loop identified by
LABEL instead of the currently enclosing loop.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 5 next, redo

lc

lc EXPR

lc

Returns a lowercased version of EXPR, or $_ if EXPR is omitted.

Effects $_, T

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 lcfirst

lcfirst

lcfirst EXPR

lcfirst

926 P e r l : T h e C o m p l e t e R e f e r e n c e

Returns the string EXPR or $_ with the first character lowercased.

Effects $_, T

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 lc

length

length EXPR

length

Returns the length, in characters, of the value of EXPR, or $_ if not specified. Use scalar
context on an array or hash if you want to determine the corresponding size. You’ll
need to use the bytes pragma to get the size of a string in bytes.

Effects $_

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapter 8 scalar bytes

link

link OLDFILE,NEWFILE

Creates a new file name, NEWFILE, linked to the file OLDFILE. The function creates a
hard link; if you want a symbolic link, use the symlink function.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 symlink

listen

listen SOCKET, EXPR

Configures the network socket SOCKET for listening to incoming network connections.
Sets the incoming connection queue length to EXPR. You might want to consider using
the IO::Socket module, which provides a much easier way of creating and listening to
network sockets.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 accept, connect IO::Socket

local

local LIST

Sets the variables in LIST to be local to the current execution block. If more than one
value is specified, you must use parentheses to define the list. Note that local creates a
local copy of a variable, which then goes out of scope when the enclosing block
terminates. The localized value is then used whenever it is accessed, including any
subroutines and formats used during that block.

Unless otherwise stated, the new variable has an initial value of undef (for scalars)
or an empty list (for arrays or hashes). If you are trying to create a lexically scoped
variable then use my.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 6 my

A p p e n d i x A : F u n c t i o n R e f e r e n c e 927
A

P
P

EN
D

IX
ES

localtime

localtime EXPR

In a list context, converts the time specified by EXPR, returning a nine-element array
with the time analyzed for the current local time zone. The elements of the array are

0 1 2 3 4 5 6 7 8

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

If EXPR is omitted, uses the value returned by time.
In a scalar context, returns a string representation of the time specified by EXPR,

roughly equivalent to the value returned by ctime(). Use the Time::Local module if
you want to convert a set of time values into an epoch value.

Note that you should be using gmtime if you want to compare times reliably—
using localtime will give skewed results when used across time-zone boundaries.

Effects None

Returns in Scalar Context Returns in List Context

Returns a string of the form: Thu Sep 21
14:52:52 2000

Returns the individual time component
values (seconds, minutes, hours, day of
month, month, year, day of week, day of
year, daylight savings time)

See also Chapter(s) Function(s) Module(s)

Chapter 11 gmtime, time Time::Local

log

log EXPR

log

Returns the natural logarithm of EXPR, or $_ if omitted.

Effects $_, $@

Returns in Scalar Context Returns in List Context

Floating point number

See also Chapter(s) Function(s) Module(s)

Chapter 8

928 P e r l : T h e C o m p l e t e R e f e r e n c e

lstat

lstat FILEHANDLE

lstat EXPR

lstat

Performs the same tests as the stat function on FILEHANDLE or the file referred to by
EXPR or $_. If the file is a symbolic link, it returns the information for the link, rather
than the file it points to. Otherwise, it returns the information for the file.

Effects $_, $!, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 stat

m//

m//

Match operator. Parentheses after initial m can be any character and will be used to
delimit the regular expression statement.

Effects T, XT

Returns in Scalar Context Returns in List Context

0 on failure to match
1 on success

List of values in a grouped regular
expression match

See also Chapter(s) Function(s) Module(s)

Chapter 8 s///, tr///, quotemeta, study re

map

map EXPR, LIST

map BLOCK LIST

A p p e n d i x A : F u n c t i o n R e f e r e n c e 929
A

P
P

EN
D

IX
ES

930 P e r l : T h e C o m p l e t e R e f e r e n c e

Evaluates EXPR or BLOCK for each element of LIST. For each iteration, $_ holds the
value of the current element, which can also be assigned to allow the value of the
element to be updated.

Effects None

Returns in Scalar Context Returns in List Context

List of values

See also Chapter(s) Function(s) Module(s)

Chapter 8 grep

mkdir

mkdir EXPR,MODE

Makes a directory with the name and path EXPR using the mode specified by MODE,
which should be supplied as an octal value for clarity.

Effects $!, XT

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 chdir Cwd

msgctl

msgctl ID, CMD, ARG

Calls the system function msgctrl() with the arguments ID, CMD, and ARG. You may
need to include the IPC::SysV package to obtain the correct constants.

TE
AM
FL
Y

Team-Fly®

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on failure
0 but true if the system function returns 0
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 msgget, msgsnd, msgrcv IPC::SysV

msgget

msgget KEY, FLAGS

Returns the message queue ID, or undef on error.

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on error
Message queue ID

See also Chapter(s) Function(s) Module(s)

Chapter 14 msgctl, msgsnd, msgrcv IPC::SysV

msgrcv

msgrcv ID, VAR, SIZE, TYPE, FLAGS

Receives a message from the queue ID, placing the message into the variable VAR, up
to a maximum size of SIZE.

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on error
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 msgctl, msgsnd, msgrcv IPC::SysV

A p p e n d i x A : F u n c t i o n R e f e r e n c e 931
A

P
P

EN
D

IX
ES

msgsnd

msgsnd ID, MSG, FLAGS

Sends the message MSG to the message queue ID, using the optional FLAGS.

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on error
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 msgctl, msgget, msgrcv IPC::SysV

my

my TYPE LIST : ATTRIBUTES

my LIST : ATTRIBUTES

my TYPE LIST

my LIST

Declares the variables in LIST to be lexically scoped within the enclosing block. If more
than one variable is specified, all variables must be enclosed in parentheses.

If TYPE is used, then it should specify the type of the scalar or scalars listed in LIST.
Note that currently TYPE should be the class of object that you want the scalar or scalars
to be blessed into. The ATTRIBUTES should list the initial values of the object’s fields.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 6 local, our strict, warnings

932 P e r l : T h e C o m p l e t e R e f e r e n c e

next

next LABEL

next

Not a function. Causes the current loop iteration to skip to the next value or next
evaluation of the control statement. No further statements in the current loop are
executed. If LABEL is specified, then execution skips to the next iteration of the loop
identified by LABEL.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 5 last, redo

no

no MODULE LIST

no MODULE

If MODULE supports it, then no calls the unimport function defined in MODULE to
unimport all symbols from the current package, or only the symbols referred to by
LIST. Has some special meanings when used with pragmas; see Chapter 19 for more
information.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 6, 19 use, do, eval

A p p e n d i x A : F u n c t i o n R e f e r e n c e 933
A

P
P

EN
D

IX
ES

934 P e r l : T h e C o m p l e t e R e f e r e n c e

oct

oct EXPR

oct

Returns EXPR, or $_ if omitted, as a decimal by interpreting EXPR as an octal value.

Effects $_

Returns in Scalar Context Returns in List Context

Decimal value

See also Chapter(s) Function(s) Module(s)

Chapter 8 hex

open

open FILEHANDLE, EXPR, LIST

open FILEHANDLE, EXPR

open FILEHANDLE

Opens the file specified by EXPR, associating it with FILEHANDLE. If supplied with
three or more arguments, then LIST is taken as the filename or arguments to pass to
exec if using a pipe, and EXPR becomes the mode to be used when opening the file. If
you are using the multiargument form, the normal rules for exec program execution
apply, except that a fork is implied before exec is called.

If EXPR is not specified, then the file name specified by the scalar variable of the
same name as FILEHANDLE is used instead. The format of EXPR defines the mode in
which the file is opened, as shown in Table A-7.

You should not ignore failures to the open command, so it is usually used in
combination with warn, die, or a control statement.

Note that you may need to use binmode on the filehandle on operating systems
other than Unix and Mac OS that use multicharacter line termination—most notably
Windows. Alternatively, Perl v5.6 or above allows you to specify the encoding format
to be used when reading and writing to and from a filehandle by supplying the format
as part of the EXPR argument, and supplying the name of the file to be opened in
LIST. To specify the encoding formation, you must supply the modes shown in
Table A-8. For example:

open(FILE, "<:para:crlf", 'myfile');

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 935

Expression Result

"filename" Opens the file for reading only; does not create the file if it
does not already exist

"<filename" Opens the file for reading only; does not create the file if it
does not already exist

">filename" Truncates and opens the file for writing

">>filename" Opens the file for appending (places pointer at end of file),
but existing data cannot be either read or
overwritten—appending is enforced.

"+<filename" Opens the file for reading and writing; does not create the
file if it does not already exist

"+>filename" Truncates and opens the file for reading and writing

"+>>filename" Opens the file for appending (places pointer at end of file);
existing data can be read but not overwritten—appending
is enforced.

"|command" Runs the command and pipes the output to the filehandle

"command|" Pipes the output from filehandle to the input of command

"-" Opens STDIN

">-" Opens STDOUT

"<&FILEHANDLE" Duplicates specified FILEHANDLE or file descriptor if
numeric for reading

">&FILEHANDLE" Duplicates specified FILEHANDLE or file descriptor if
numeric for writing

"<&=N" Opens the file descriptor matching N, essentially identical
to C’s fdopen()

"|-" and "-|" Opens a pipe to a forked command

Table A-7. Options for Opening Files

If you are looking for the equivalent of the system function open(), see sysopen.

Effects $!, XT, XR, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 print, sysopen, close IO::Handle, IO::File

936 P e r l : T h e C o m p l e t e R e f e r e n c e

Discipline Meaning

:raw Binary mode—no line input processing; equivalent to
calling binmode

:text Text processing—the basic mode supported by versions
prior to v5.6

:def Default—as declared by the use open pragma

:latin1 Use the ISO-8859-1 format.

:lctype Use the LC_CTYPE format.

:utf8 Use the UTF-8 (Unicode) format.

:utf16 Use the UTF-16 (Unicode) format.

:utf32 Use the UTF-32 (Unicode) format.

:uni Intuit Unicode (UTF-*) format.

:any Intuit Unicode/Latin1/LC_CTYPE

:xml Use the file-specified encoding format.

:crlf Intuit newlines.

:para Paragraph mode

:slurp Slurp mode

Table A-8. File Format Encoding Disciplines

opendir

opendir DIRHANDLE, EXPR

Opens the directory EXPR, associating it with DIRHANDLE for processing, using the
readdir function.

Effects $!, XT, XR, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 readdir, rewinddir IO::Dir

ord

ord EXPR

ord

Returns the ASCII numeric value of the character specified by EXPR, or $_ if omitted.

Effects $_

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapter 8 chr

our

our TYPE LIST : ATTRIBUTES

our LIST : ATTRIBUTES

our TYPE LIST

our LIST

A p p e n d i x A : F u n c t i o n R e f e r e n c e 937
A

P
P

EN
D

IX
ES

Defines the variables specified in LIST as being global within the enclosing block,
file, or eval statement. It is effectively the opposite of my—it declares a variable to be
global within the entire scope, rather than creating a new private variable of the same
name. All other options are identical to my; see the my entry for more information.

Effects None

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapter 6 local, my

pack

pack EXPR, LIST

Evaluates the expressions in LIST and packs them into a binary structure specified by
EXPR. The format is specified using the characters shown in Table A-9.

938 P e r l : T h e C o m p l e t e R e f e r e n c e

Character Description

@ Null fill to absolute position

a An ASCII string, will be null padded

A An ASCII string, will be space padded

b A bitstring (ascending bit order)

B A bitstring (descending bit order)

c A signed char (8-bit) value

C An unsigned char (8-bit) value

d A double-precision float in the native format

f A single-precision float in the native format

H A hex string (high nibble first)

Table A-9. pack Format Characters

Each character may be optionally followed by a number, which specifies a repeat
count for the type of value being packed—that is nibbles, chars, or even bits, according
to the format. A value of * repeats for as many values remain in LIST. Values can be
unpacked with the unpack function.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 939
A

P
P

EN
D

IX
ES

Character Description

h A hex string (low nibble first)

i A signed integer value

I An unsigned integer value

l A signed long value (32 bits)

L An unsigned long value (32 bits).

N A long (32 bits) in “network” (big-endian) order

n A short (16 bits) in “network” (big-endian) order

p A pointer to a null-terminated string

P A pointer to a fixed-length string

q A signed quad (64-bit) value

Q An unsigned quad (64-bit) value

s A signed short value (16 bits)

S An unsigned short value (16 bits)

u A uuencoded string

U A Unicode character number.

V A long (32 bits) in “VAX” (little-endian) order

v A short (16 bits) in “VAX” (little-endian) order

w A BER compressed integer

x A null byte (effectively skips forward one byte)

X Backs up a byte

Z A null-terminated (and null-padded) string of bytes

Table A-9. pack Format Characters (continued)

Using the / character allows you to specify within FORMAT the size of the
following value according to length/string. For example:

pack 'C/a','\04Martin';

returns “Mart”. Note that string must be one of A, a, or Z; if you supply * (as in a*) the
* will be ignored.

Appending the ! character to s, S, l, or L forces pack to use native short and long
values, rather than the strict 16-bit and 32-bit formats used by default.

Effects $@

Returns in Scalar Context Returns in List Context

Formatted string

See also Chapter(s) Function(s) Module(s)

Chapters 8, 13 unpack

package

package NAME

package

Changes the name of the current symbol table to NAME. The scope of the package
name is until the end of the enclosing block. If NAME is omitted, there is no current
package, and all function and variables names must be declared with their fully
qualified names.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 6 use, do, eval, no

pipe

pipe READHANDLE, WRITEHANDLE

940 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

A p p e n d i x A : F u n c t i o n R e f e r e n c e 941
A

P
P

EN
D

IX
ES

Opens a pair of connected communications pipes: READHANDLE for reading and
WRITEHANDLE for writing.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapters 7, 12, 14 open IO::Open2, IO::Open3,
IO::Pipe

pop

pop ARRAY

pop

Returns the last element of ARRAY, removing the value from the array. Note that
ARRAY must explicitly be an array, not a list. If ARRAY is omitted, it pops the last
value from @ARGV in the main program, or when called within eval STRING, or the
BEGIN, CHECK, INIT, or END blocks. Otherwise, it attempts to pop information from
the @_ array within a subroutine. It is the opposite of push, which when used in
combination, allows you to implement “stacks.”

Effects None

Returns in Scalar Context Returns in List Context

undef if list is empty
Last element from the array

See also Chapter(s) Function(s) Module(s)

Chapter 8 push, shift, unshift

pos

pos EXPR

pos

942 P e r l : T h e C o m p l e t e R e f e r e n c e

Returns the position(s) within EXPR, or $_, where the last m//g search left off.

Effects $_

Returns in Scalar Context Returns in List Context

Integer The positions of all the matches within the
regular expression

See also Chapter(s) Function(s) Module(s)

Chapter 8 m//

print

print FILEHANDLE LIST

print LIST

print

Prints the values of the expressions in LIST to the current default output filehandle, or
to the one specified by FILEHANDLE. If set, the $\ variable will be added to the end of
the LIST. If LIST is empty, the value in $_ is printed instead. Because print accepts a
list of values, every element of the list will be interpreted as an expression. You should
therefore ensure that if you are using print within a larger LIST context, you enclose
the arguments to print in parentheses.

Effects $_, $!, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapters 7, 8 printf, sprintf

printf

printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST

Prints the value of LIST interpreted via the format specified by FORMAT to the
current output filehandle, or to the one specified by FILEHANDLE. Effectively
equivalent to

print FILEHANDLE sprintf(FORMAT, LIST)

Remember to use print in place of printf if you do not require a specific output
format. The print function is more efficient. Table A-10 shows the list of accepted
formatting conversions.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 943
A

P
P

EN
D

IX
ES

Format Result

%% A percent sign

%c A character with the given ASCII code

%s A string

%d A signed integer (decimal)

%u An unsigned integer (decimal)

%o An unsigned integer (octal)

%x An unsigned integer (hexadecimal)

%X An unsigned integer (hexadecimal using uppercase characters)

%e A floating point number (scientific notation)

%E A floating point number (scientific notation using “E” in place of “e”)

%f A floating point number (fixed decimal notation)

%g A floating point number (%e or %f notation according to value size)

%G A floating point number (as %g, but using “E” in place of “e” when
appropriate)

%p A pointer (prints the memory address of the value in hexadecimal)

%n Stores the number of characters output so far into the next variable in
the parameter list

Table A-10. Conversion Formats for printf

Perl also supports flags that optionally adjust the output format. These are specified
between the % and conversion letter, as shown in Table A-11.

944 P e r l : T h e C o m p l e t e R e f e r e n c e

Format Result

%I A synonym for %d

%D A synonym for C %ld

%U A synonym for C %lu

%O A synonym for C %lo

%F A synonym for C %f

Table A-10. Conversion Formats for printf (continued)

Flag Result

space Prefix positive number with a space

+ Prefix positive number with a plus sign

- Left-justify within field

0 Use zeros, not spaces, to right-justify

Prefix non-zero octal with “0” and hexadecimal with “0x”

number Minimum field width

.number Specify precision (number of digits after decimal point) for floating
point numbers

l Interpret integer as C-type “long” or “unsigned long”

h Interpret integer as C-type “short” or “unsigned short”

V Interpret integer as Perl’s standard integer type

v Interpret the string as a series of integers and output as numbers
separated by periods or by an arbitrary string extracted from the
argument when the flag is preceded by *.

Table A-11. Formatting Flags for printf Conversion Formats

Effects $_, $!, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapters 7, 8 print, sprintf

prototype

prototype EXPR

Returns a string containing the prototype of the function or reference specified by
EXPR, or undef if the function has no prototype. You can also use this to check the
availability of built-in functions. If EXPR starts with CORE::, then the rest is taken as
the name of a built-in function, and the call raises an exception. If the function does
exist, but does not behave like a function, then it returns undef.

Effects XA

Returns in Scalar Context Returns in List Context

undef if no function prototype

See also Chapter(s) Function(s) Module(s)

Chapter 6

push

push ARRAY, LIST

Pushes the values in LIST onto the end of the list ARRAY. Used with pop to
implement stacks.

Effects None

Returns in Scalar Context Returns in List Context

Number of elements in new array

See also Chapter(s) Function(s) Module(s)

Chapter 8 pop, shift, unshift

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 945

quotemeta

quotemeta EXPR

quotemeta

Returns the value of EXPR or $_ with all nonalphanumeric characters backslashed.

Effects $_

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 study, m//, s///

rand

rand EXPR

rand

Returns a random fractional number between 0 and the positive number EXPR, or 1 if
not specified. Automatically calls srand to seed the random number generator unless it
has already been called.

Effects None

Returns in Scalar Context Returns in List Context

Floating point number

See also Chapter(s) Function(s) Module(s)

Chapter 8 srand

read

read FILEHANDLE, SCALAR, LENGTH, OFFSET

read FILEHANDLE, SCALAR, LENGTH

Tries to read LENGTH bytes from FILEHANDLE into SCALAR. If OFFSET is
specified, then reading starts from that point within the input string, up to LENGTH

946 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : F u n c t i o n R e f e r e n c e 947
A

P
P

EN
D

IX
ES

bytes. Uses the equivalent of the C fread() function. For the equivalent of the C read()
function, see sysread.

Effects $!, T, XA, XR

Returns in Scalar Context Returns in List Context

undef on error
0 at end of file
Number of bytes read

See also Chapter(s) Function(s) Module(s)

Chapter 7 sysread

readdir

readdir DIRHANDLE

In a scalar context, returns the next directory entry from the directory associated
with DIRHANDLE. In a list context, returns all of the remaining directory entries
in DIRHANDLE.

Effects $!, T, XA, U

Returns in Scalar Context Returns in List Context

undef on failure (end of entries)
File path

Empty list on failure
List of file paths

See also Chapter(s) Function(s) Module(s)

Chapter 7 opendir, rewinddir

readline

readline EXPR

Reads a line from the filehandle referred to by EXPR, returning the result. If you want
to use a FILEHANDLE directly, it must be passed as a typeglob. In a scalar context,
only one line is returned; in a list context, a list of lines up to end-of-file is returned.

948 P e r l : T h e C o m p l e t e R e f e r e n c e

Ignores the setting of the $/ or $INPUT_RECORD_SEPARATOR variable. You should
use the <> operator in preference.

Effects $!, T, XA

Returns in Scalar Context Returns in List Context

undef on error
One record (line)

Empty list on error
List of records (lines)

See also Chapter(s) Function(s) Module(s)

Chapter 7

readlink

readlink EXPR

readlink

Returns the pathname of the file pointed to by the link EXPR, or $_ if EXPR is
not specified.

Effects $_, $!, T, U

Returns in Scalar Context Returns in List Context

undef on error
String

See also Chapter(s) Function(s) Module(s)

Chapter 7 link, symlink

readpipe

readpipe EXPR

Executes EXPR as a command. The output is then returned as a multiline string in
scalar text, or with the line returned as individual elements in a list context.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 949
A

P
P

EN
D

IX
ES

Effects $!, $?, T, XT, U

Returns in Scalar Context Returns in List Context

String List

See also Chapter(s) Function(s) Module(s)

Chapter 7 system, open IO::Pipe, IO::Handle

recv

recv SOCKET, SCALAR, LEN, FLAGS

Receives a message on SOCKET attempting to read LENGTH bytes, placing the data
read into variable SCALAR. The FLAGS argument takes the same values as the
recvfrom() system function, on which the function is based. When communicating
with sockets, this provides a more reliable method of reading fixed-length data than
the sysread function or the line-based operator <FH>.

Effects $!, T, XA, XR, U

Returns in Scalar Context Returns in List Context

undef on error
Number of bytes read

See also Chapter(s) Function(s) Module(s)

Chapter 12 send, socket, accept IO::Socket

redo

redo LABEL

redo

Restarts the current loop without forcing the control statement to be evaluated. No
further statements in the block are executed (execution restarts at the start of the block).

A continue block, if present, will not be executed. If LABEL is specified, execution
restarts at the start of the loop identified by LABEL.

Effects $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 5, 6 next, last, continue

ref

ref EXPR

ref

Returns a true value if EXPR, or $_ if EXPR is not supplied, is a reference. The actual
value returned also defines the type of entity the reference refers to. The built-in
types are

REF

SCALAR

ARRAY

HASH

CODE

GLOB

LVALUE

IO::Handle

If the reference has been blessed into a package, the package name is returned
instead.

Effects $_

Returns in Scalar Context Returns in List Context

Empty string if not a reference
String if a reference

See also Chapter(s) Function(s) Module(s)

Chapter 10

950 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

rename

rename OLDNAME, NEWNAME

Renames the file with OLDNAME to NEWNAME. Uses the system function rename(),
and so it will not rename files across file systems or volumes. If you want to copy or
move a file, use the copy or move command supplied in the File::Copy module.

Effects $!, XT

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 File::Copy

require

require EXPR

require

If EXPR (or $_ if EXPR is omitted) is numeric, then it demands that the script requires
the specified version of Perl in order to continue. If EXPR or $_ are not numeric, it
assumes that the name is the name of a library file to be included. You cannot include
the same file with this function twice. The included file must return a true value as the
last statement.

This differs from use in that included files effectively become additional text for the
current script. Functions, variables, and other objects are not imported into the current
name space, so if the specified file includes a package definition, then objects will
require fully qualified names.

Effects $_, $!, $@, XT

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 6 use

A p p e n d i x A : F u n c t i o n R e f e r e n c e 951
A

P
P

EN
D

IX
ES

952 P e r l : T h e C o m p l e t e R e f e r e n c e

reset

reset EXPR

reset

Resets (clears) all package variables starting with the letter range specified by EXPR.
Generally only used within a continue block or at the end of a loop. If omitted, resets
?PATTERN? matches.

Effects None

Returns in Scalar Context Returns in List Context

1 (always)

See also Chapter(s) Function(s) Module(s)

Chapter 8

return

return EXPR

return

Returns EXPR at the end of a subroutine, block, or do function. EXPR may be a scalar,
array, or hash value; context will be selected at execution time. If no EXPR is given,
returns an empty list in list context, undef in scalar context, or nothing in a void context.

Effects $@

Returns in Scalar Context Returns in List Context

List, which may be interpreted as scalar,
list, or void context

See also Chapter(s) Function(s) Module(s)

Chapter 6

A p p e n d i x A : F u n c t i o n R e f e r e n c e 953
A

P
P

EN
D

IX
ES

reverse

reverse LIST

In a list context, returns the elements of LIST in reverse order. In a scalar context,
returns a concatenated string of the values of LIST, with all bytes in opposite order.

Effects None

Returns in Scalar Context Returns in List Context

String List

See also Chapter(s) Function(s) Module(s)

Chapter 8 sort, keys, values

rewinddir

rewinddir DIRHANDLE

Resets the current position within the directory specified by DIRHANDLE to the
beginning of the directory.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7

rindex

rindex STR, SUBSTR, POSITION

rindex STR, SUBSTR

954 P e r l : T h e C o m p l e t e R e f e r e n c e

Operates similar to index, except it returns the position of the last occurrence of
SUBSTR in STR. If POSITION is specified, returns the last occurrence at or before
that position.

Effects $_, $!, XT

Returns in Scalar Context Returns in List Context

undef on failure
Integer

See also Chapter(s) Function(s) Module(s)

Chapter 8 index, substr

rmdir

rmdir EXPR

rmdir

Deletes the directory specified by EXPR, or $_ if omitted. Only deletes the directory if
the directory is empty.

Effects None

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 mkdir, chdir Cwd

s///

s/PATTERN/REPLACE/

Not a function. This is the regular expression-substitution operator. Based on the
regular expression specified in PATTERN, data is replaced by REPLACE. Like m//,
the delimiters are defined by the first character following s.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 955
A

P
P

EN
D

IX
ES

Effects T, XR, XT

Returns in Scalar Context Returns in List Context

0 on failure
Number of substitutions made

See also Chapter(s) Function(s) Module(s)

Chapter 8 m//, tr///, quotemeta, study

scalar

scalar EXPR

Forces the evaluation of EXPR to be in scalar context, even if it would normally work in
list context.

Effects

Returns in Scalar Context Returns in List Context

Scalar

See also Chapter(s) Function(s) Module(s)

Chapters 4, 6, 7, 8

seek

seek FILEHANDLE,POSITION,WHENCE

Positions the file pointer for the specified FILEHANDLE. seek is basically the same as
the fseek() C function. The position within the file is specified by POSITION, using
the value of WHENCE as a reference point, as shown in Table A-12. The constants are
defined within the IO::Seekable and POSIX modules.

If you are accessing a file using syswrite and sysread, you should use sysseek due
to the effects of buffering.

The seek function also clears the EOF condition on a file when called, even if you
are still potentially at the end of a file.

Effects $!, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 tell, sysseek IO::File, IO::Handle

seekdir

seekdir DIRHANDLE, POS

Sets the current position within DIRHANDLE to POS. The value of POS must be a
value previously returned by telldir.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 rewinddir, telldir IO::Dir

956 P e r l : T h e C o m p l e t e R e f e r e n c e

Value Constant Description

0 SEEK_SET Sets the new position absolutely to POSITION bytes
within the file

1 SEEK_CUR Sets the new position to the current position plus
POSITION bytes within the file

2 SEEK_END Sets the new position to POSITION bytes, relative to
the end of the file

Table A-12. Offset Values and Constants for seek

A
P

P
EN

D
IX

ES

select (filehandle)

select FILEHANDLE

select

Sets the default filehandle for output to FILEHANDLE, setting the filehandle used by
functions such as print and write if no filehandle is specified. If FILEHANDLE is not
specified, then it returns the name of the current default filehandle.

Effects XA

Returns in Scalar Context Returns in List Context

Previous default filehandle if
FILEHANDLE specified
Current default filehandle if
FILEHANDLE is not specified

See also Chapter(s) Function(s) Module(s)

Chapters 7, 12 print, autoflush, write IO::Handle, IO::File,
IO::Select

select (files)

select RBITS, WBITS, EBITS, TIMEOUT

Calls the system function select() using the bits specified. The select function sets the
controls for handling non-blocking I/O requests. Returns the number of filehandles
awaiting I/O in scalar context, or the number of waiting filehandles and the time
remaining in a list context.

TIMEOUT is specified in seconds, but accepts a floating point instead of an integer
value. You can use this ability to pause execution for milliseconds instead of the
normal seconds available with sleep and alarm by specifying undef for the first three
arguments.

Effects $!, U

Returns in Scalar Context Returns in List Context

The number of filehandles awaiting I/O The number of filehandles and
time remaining

See also Chapter(s) Function(s) Module(s)

Chapter 7 open IO::Handle, IO::File, IO::Select

A p p e n d i x A : F u n c t i o n R e f e r e n c e 957

semctl

semctl ID, SEMNUM, CMD, ARG

Controls a System V semaphore. You will need to import the IPC:SysV module to get
the correct definitions for CMD. The function calls the system semctl() function.

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on failure
0 but true if the return value from
the semctl() is 0
Value returned by system

See also Chapter(s) Function(s) Module(s)

Chapter 14 semget, semop IPC::SysV,
Win32::Semaphore

semget

semget KEY, NSEMS, FLAGS

Returns the semaphore ID associated with KEY, using the system function semget().

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on error
Semaphore ID

See also Chapter(s) Function(s) Module(s)

Chapter 14 semctl, semop IPC::SysV,
Win32::Semaphore

semop

semop KEY, OPSTRING

958 P e r l : T h e C o m p l e t e R e f e r e n c e

Performs the semaphore operations defined by OPSTRING on the semaphore ID
associated with KEY. OPSTRING should be a packed array of semop structures, and
each structure can be generated with

$semop = pack("sss", $semnum, $semop, $semflag);

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 semctl, semget IPC::SysV,
Win32::Semaphore

send

send SOCKET, MSG, FLAGS, TO

send SOCKET, MSG, FLAGS

Sends a message on SOCKET (the opposite of recv). If the socket is unconnected, you
must supply a destination to communicate to with the TO parameter. In this case, the
sendto system function is used in place of the system send function.

The FLAGS parameter is formed from the bitwise or of 0 and one or more of the
MSG_OOB and MSG_DONTROUTE options. MSG_OOB allows you to send
out-of-band data on sockets that support this notion. The underlying protocol must
also support out-of-band data. Only SOCK_STREAM sockets created in the AF_INET
address family support out-of-band data. The MSG_DONTROUTE option is turned
on for the duration of the operation. Only diagnostic or routing programs use it.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

undef on error
Integer, number of bytes sent

See also Chapter(s) Function(s) Module(s)

Chapter 12 recv, socket IO::Socket

A p p e n d i x A : F u n c t i o n R e f e r e n c e 959
A

P
P

EN
D

IX
ES

setgrent

setgrent

Sets (or resets) the enumeration to the beginning of the set of group entries. This
function should be called before the first call to getgrent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 11 getgrent, endgrent Win32API::Net

sethostent

sethostent STAYOPEN

Sets (or resets) the enumeration to the beginning of the set of host entries. This function
should be called before the first call to gethostent. The STAYOPEN argument is
optional and unused on most systems.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 11 gethostent, endhostent

setnetent

setnetent STAYOPEN

Sets (or resets) the enumeration to the beginning of the set of network entries. This
function should be called before the first call to getnetent. The STAYOPEN argument
is optional and unused on most systems.

960 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

A p p e n d i x A : F u n c t i o n R e f e r e n c e 961
A

P
P

EN
D

IX
ES

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getnetent, endnetent

setpgrp

setpgrp PID, PGRP

Sets the current process group for the process PID. You can use a value of 0 for PID to
change the process group of the current process. If both arguments are omitted, defaults
to values of 0. Causes a fatal error if the system does not support the function.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

undef on failure
New parent process ID

See also Chapter(s) Function(s) Module(s)

Chapter 15 getpgrp

setpriority

setpriority WHICH, WHO, PRIORITY

Sets the priority for a process (PRIO_PROCESS), process group (PRIO_PGRP), or user
(PRIO_USER). The argument WHICH specifies what entity to set the priority for, and
WHO is the process ID or user ID to set. A value of 0 for WHO defines the current
process, process group, or user. Produces a fatal error on systems that don’t support
the system setpriority() function.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

0 on error
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 getpriority Win32::Process

setprotoent

setprotoent STAYOPEN

Sets (or resets) the enumeration to the beginning of the set of protocol entries. This
function should be called before the first call to getprotoent. The STAYOPEN
argument is optional and unused on most systems.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getprotoent, endprotoent

setpwent

setpwent

Sets (or resets) the enumeration to the beginning of the set of password entries. This
function should be called before the first call to getpwent.

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 11 getpwent, endpwent Win32API::Net

setservent

setservent STAYOPEN

Sets (or resets) the enumeration to the beginning of the set of service entries. This
function should be called before the first call to getservent. The STAYOPEN argument
is optional and unused on most systems.

962 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects U

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 12 getservent, endservent

setsockopt

setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

Sets the socket option OPTNAME with a value of OPTVAL on SOCKET at the
specified LEVEL. You will need to import the Socket module for the valid values for
OPTNAME shown in Table A-13.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 963
A

P
P

EN
D

IX
ES

OPTNAME Description

SO_DEBUG Enable/disable recording of debugging information.

SO_REUSEADDR Enable/disable local address reuse.

SO_KEEPALIVE Enable/disable keep connections alive.

SO_DONTROUTE Enable/disable routing bypass for outgoing messages.

SO_LINGER Linger on close if data is present.

SO_BROADCAST Enable/disable permission to transmit broadcast messages.

SO_OOBINLINE Enable/disable reception of out-of-band data in band.

SO_SNDBUF Set buffer size for output.

SO_RCVBUF Set buffer size for input.

SO_TYPE Get the type of the socket (get only).

SO_ERROR Get and clear error on the socket (get only).

Table A-13. Socket Options

964 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

undef on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 getsockopt, socket IO::Socket

shift

shift ARRAY

shift

Returns the first value in an array, deleting it and shifting the elements of the array list
to the left by one. If ARRAY is not specified, shifts the @_ array within a subroutine, or
@ARGV otherwise. shift is essentially identical to pop, except values are taken from
the start of the array instead of the end.

Effects None

Returns in Scalar Context Returns in List Context

undef if the array is empty
First element in the array

See also Chapter(s) Function(s) Module(s)

Chapter 8 pop, push, unshift IO::Socket

shmctl

shmctl ID, CMD, ARG

Controls the shared memory segment referred to by ID, using CMD with ARG.
You will need to import the IPC::SysV module to get the command tokens defined in
Table A-14.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 965
A

P
P

EN
D

IX
ES

Effects $!, U

Returns in Scalar Context Returns in List Context

undef on failure
0 but true if the return value from the
shmctl() is 0
Value returned by system

See also Chapter(s) Function(s) Module(s)

Chapter 14 shmget, shmread IPC::SysV

shmget

shmget KEY, SIZE, FLAGS

shmget KEY

Returns the shared memory segment ID for the segment matching KEY. A new shared
memory segment is created of at least SIZE bytes, providing that either KEY does not

Command Description

IPC_STAT Places the current value of each member of the data structure
associated with ID into the scalar ARG

IPC_SET Sets the value of the following members of the data structure
associated with ID to the corresponding values found in the
packed scalar ARG

IPC_RMID Removes the shared memory identifier specified by ID from
the system and destroys the shared memory segment and
data structure associated with it

SHM_LOCK Locks the shared memory segment specified by ID in memory

SHM_UNLOCK Unlocks the shared memory segment specified by ID

Table A-14. Commands for Controlling Shared Memory Segments

966 P e r l : T h e C o m p l e t e R e f e r e n c e

already have a segment associated with it or that KEY is equal to the constant
IPC_PRIVATE.

Effects $!, U

Returns in Scalar Context Returns in List Context

Shared memory ID

See also Chapter(s) Function(s) Module(s)

Chapter 14 shmctl, shmread, shmwrite IPC::SysV

shmread

shmread ID, VAR, POS, SIZE

Reads the shared memory segment ID into the scalar VAR at position POS for up to
SIZE bytes.

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 shmctl, shmget, shmwrite IPC::SysV

shmwrite

shmwrite ID, STRING, POS, SIZE

Writes STRING from the position POS for SIZE bytes into the shared memory
segment specified by ID. The SIZE is greater than the length of STRING. shmwrite
appends null bytes to fill out to SIZE bytes.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 967
A

P
P

EN
D

IX
ES

Effects $!, U

Returns in Scalar Context Returns in List Context

0 on false
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 14 shmctl, shmget, shmread IPC::SysV

shutdown

shutdown SOCKET, HOW

Disables a socket connection according to the value of HOW. The valid values for
HOW are identical to the system call of the same name. A value of 0 indicates that you
have stopped reading information from the socket. A value of 1 indicates that you’ve
stopped writing to the socket. A value of 2 indicates that you have stopped using the
socket altogether.

Effects $!, XA, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 accept IO::Socket

sin

sin EXPR

sin

968 P e r l : T h e C o m p l e t e R e f e r e n c e

Returns the sine of EXPR, or $_ if not specified.

Effects $_

Returns in Scalar Context Returns in List Context

Floating point

See also Chapter(s) Function(s) Module(s)

Chapter 8 atan2, cos Math::Trig

sleep

sleep EXPR

sleep

Pauses the script for EXPR seconds, or forever if EXPR is not specified. Returns the
number of seconds actually slept. Can be interrupted by a signal handler, but you
should avoid using sleep with alarm, since many systems use alarm for the sleep
implementation.

Effects None

Returns in Scalar Context Returns in List Context

Integer, number of seconds actually slept

See also Chapter(s) Function(s) Module(s)

Chapter 14 alarm, select IO::Select

socket

socket SOCKET, DOMAIN, TYPE, PROTOCOL

Opens a socket in DOMAIN, of TYPE, using PROTOCOL, and attaches it to the
filehandle SOCKET. You will need to import the Socket module to get the correct
definitions. For most systems, DOMAIN will be PF_INET for a TCP/IP-based socket.
TYPE will generally be one of SOCK_STREAM for streams-based connections
(TCP/IP) or SOCK_DGRAM for a datagram connection (UDP/IP). Values for
PROTOCOL are system defined, but valid values include TCP for TCP/IP, UDP for
UDP, and RDP for the “reliable” datagram protocol.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 969
A

P
P

EN
D

IX
ES

Consider using the IO::Socket module instead to create both client and server
sockets, since it handles all of this detail for you.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 accept, bind IO::Socket

socketpair

socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL

Creates an unnamed pair of connected sockets in the specified DOMAIN, of the
specified TYPE, using PROTOCOL. If the system socketpair() function is not
implemented, then it causes a fatal error.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 12 pipe, socket IPC::Open2, IPC::Open3,
IO::Socket

sort

sort SUBNAME LIST

sort BLOCK LIST

sort LIST

Sorts LIST according to the subroutine SUBNAME or the anonymous subroutine
specified by BLOCK. If no SUBNAME or BLOCK is specified, then it sorts according
to normal alphabetical sequence. If BLOCK or SUBNAME is specified, then the

970 P e r l : T h e C o m p l e t e R e f e r e n c e

subroutine should return an integer less than, greater than, or equal to zero, according
to how the elements of the array are to be sorted.

Effects $@

Returns in Scalar Context Returns in List Context

List

See also Chapter(s) Function(s) Module(s)

Chapter 8 reverse

splice

splice ARRAY, OFFSET, LENGTH, LIST

splice ARRAY, OFFSET, LENGTH

splice ARRAY, OFFSET

Removes the elements of ARRAY from the element OFFSET for LENGTH elements,
replacing the elements removed with LIST, if specified. If LENGTH is omitted,
removes everything from OFFSET onwards.

Effects $@

Returns in Scalar Context Returns in List Context

undef if no elements removed
Last element removed

Empty list on failure
List of elements removed

See also Chapter(s) Function(s) Module(s)

Chapter 8 substr, map, grep

split

split /PATTERN/, EXPR, LIMIT

split /PATTERN/, EXPR

split /PATTERN/

split

Splits a string into an array of strings, returning the resultant list. By default, empty
leading fields are preserved and empty trailing fields are deleted.

TE
AM
FL
Y

Team-Fly®

In a scalar context, returns the number of fields found and splits the values into the
@_ array using ?? as the pattern delimiter. If EXPR is omitted, splits the value of $_. If
PATTERN is also omitted, it splits on white space (multiple spaces, tabs). Anything
matching PATTERN is taken to be a delimiter separating fields and can be a regular
expression of one or more characters.

If LIMIT has been specified and is positive, splits into a maximum of that many
fields (or fewer). If LIMIT is unspecified or zero, splitting continues until there are no
more delimited fields. If negative, then split acts as if an arbitrarily large value has
been specified, preserving trailing null fields.

A PATTERN of a null string splits EXPR into individual characters.

Effects $_, T

Returns in Scalar Context Returns in List Context

Integer, number of elements List of split elements

See also Chapter(s) Function(s) Module(s)

Chapter 8 join

sprintf

sprintf FORMAT, LIST

The sprintf function uses FORMAT to return a formatted string based on the values in
LIST. Essentially identical to printf, but the formatted string is returned instead of
being printed. The sprintf function is basically synonymous with the C sprintf
function, but Perl does its own formatting; the C sprintf function is not used (except for
basic floating-point formatting).

The sprintf function accepts the same format conversions as printf (see Table A-10).
Perl also supports flags that optionally adjust the output format. These are specified
between the % and conversion letter and are the same as those for printf (see Table A-11).

Effects None

Returns in Scalar Context Returns in List Context

undef on error
Preformatted string according to
FORMAT and LIST

See also Chapter(s) Function(s) Module(s)

Chapters 7, 8 print, printf

A p p e n d i x A : F u n c t i o n R e f e r e n c e 971
A

P
P

EN
D

IX
ES

972 P e r l : T h e C o m p l e t e R e f e r e n c e

sqrt

sqrt EXPR

sqrt

Returns the square root of EXPR, or $_ if omitted.

Effects $_, $@

Returns in Scalar Context Returns in List Context

Floating point number

See also Chapter(s) Function(s) Module(s)

Chapter 8

srand

srand EXPR

srand

Sets the seed value for the random number generator to EXPR or to a random value
based on the time, process ID, and other values if EXPR is omitted.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 8 rand

stat

stat FILEHANDLE

stat EXPR

stat

Returns a 13-element array giving the status info for a file, specified by either
FILEHANDLE, EXPR, or $_. The list of values returned is shown in Table A-15. If used
in a scalar context, returns 0 on failure, 1 on success. Note that support for some of
these elements is system dependent—check the documentation for a complete list.

Effects $_, $!, XA

Returns in Scalar Context Returns in List Context

0 on failure in scalar context
1 on success in scalar context

Empty list on failure
List of file statistics (see table)

See also Chapter(s) Function(s) Module(s)

Chapter 7 -X, lstat

A p p e n d i x A : F u n c t i o n R e f e r e n c e 973
A

P
P

EN
D

IX
ES

Element Description

0 Device number of file system

1 Inode number

2 File mode (type and permissions)

3 Number of (hard) links to the file

4 Numeric user ID of file’s owner

5 Numeric group ID of file’s owner

6 The device identifier (special files only)

7 File size, in bytes

8 Last access time since the epoch

9 Last modify time since the epoch

10 Inode change time (not creation time!) since the epoch

11 Preferred block size for file system I/O

12 Actual number of blocks allocated

Table A-15. Values Returned by stat

974 P e r l : T h e C o m p l e t e R e f e r e n c e

study

study EXPR

study

Takes extra time to study EXPR in order to improve the performance on regular
expressions conducted on EXPR. If EXPR is omitted, uses $_. The actual speed gains
may be very small, depending on the number of times you expect to search the string.
You can only study one expression or scalar at any one time.

Effects $_

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 8 m//, s/// re

sub

sub NAME PROTO ATTRS BLOCK# Named, prototype, attributes, definition

sub NAME ATTRS BLOCK # Named, attributes, definition

sub NAME PROTO BLOCK # Named, prototype, definition

sub NAME BLOCK # Named, definition

sub NAME PROTO ATTRS # Named, prototype, attributes

sub NAME ATTRS # Named, attributes

sub NAME PROTO # Named, prototype

sub NAME # Named

sub PROTO ATTRS BLOCK # Anonymous, prototype, attributes, definition

sub ATTRS BLOCK # Anonymous, attributes, definition

sub PROTO BLOCK # Anonymous, prototype, definition

sub BLOCK # Anonymous, definition

The sub keyword defines a new subroutine. The arguments shown above follow
these rules:

� NAME is the name of the subroutine. Named subroutines can be predeclared
(without an associated code block) with, or without, prototype specifications.

� Anonymous subroutines must have a definition.

� PROTO defines the prototype for a function, which will be used when the
function is called to validate the supplied arguments.

� ATTRS define additional information for the parser about the subroutine
being declared.

Effects None

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 7 prototype

substr

substr EXPR, OFFSET, LEN, REPLACEMENT

substr EXPR, OFFSET, LEN

substr EXPR, OFFSET

Returns a substring of EXPR, starting at OFFSET within the string. If OFFSET is
negative, starts that many characters from the end of the string. If LEN is specified,
returns that number of bytes, or all bytes up until end-of-string if not specified. If LEN
is negative, leaves that many characters off the end of the string. If REPLACEMENT is
specified, replaces the substring with the REPLACEMENT string.

If you specify a substring that passes beyond the end of the string, it returns only
the valid element of the original string.

Effects $@, XA, XR

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 splice, m//

symlink

symlink OLDFILE, NEWFILE

A p p e n d i x A : F u n c t i o n R e f e r e n c e 975
A

P
P

EN
D

IX
ES

Creates a symbolic link between OLDFILE and NEWFILE. On systems that don’t
support symbolic links, causes a fatal error.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 link, lstat

syscall

syscall EXPR, LIST

Calls the system function EXPR with the arguments LIST. Produces a fatal error if the
specified function does not exist.

Effects $!, XR, XT, U

Returns in Scalar Context Returns in List Context

-1 on failure of system call
Value returned by system function

See also Chapter(s) Function(s) Module(s)

Chapter 14

sysopen

sysopen FILEHANDLE, FILENAME, MODE, PERMS

sysopen FILEHANDLE, FILENAME, MODE

Equivalent to the underlying C and operating system call open(). Opens the file
specified by FILENAME, associating it with FILEHANDLE. The MODE argument
specifies how the file should be opened. The values of MODE are system dependent,
but some values are historically set. Values of 0, 1, and 2 mean read-only, write-only,
and read/write, respectively. The supported values are available in the Fcntl module,
and are summarized in Table A-16. Note that FILENAME is strictly a file name; no
interpretation of the contents takes place (unlike open), and the mode of opening is
defined by the MODE argument.

976 P e r l : T h e C o m p l e t e R e f e r e n c e

If the file has to be created, and the O_CREAT flag has been specified in MODE,
then the file is created with the permissions of PERMS. The value of PERMS must be
specified in traditional Unix-style hexadecimal. If PERMS is not specified, then Perl
uses a default mode of 0666 (read/write on user/group/other).

Effects $!, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 sysread, syswrite, sysseek Fcntl, IO::File, IO::Handle

A p p e n d i x A : F u n c t i o n R e f e r e n c e 977
A

P
P

EN
D

IX
ES

Flag Description

O_RDONLY Read only.

O_WRONLY Write only.

O_RDWR Read and write.

O_CREAT Create the file if it doesn’t already exist.

O_EXCL Fail if the file already exists.

O_APPEND Append to an existing file.

O_TRUNC Truncate the file before opening.

O_NONBLOCK Non-blocking mode.

O_NDELAY Equivalent of O_NONBLOCK.

O_SYNC Write data physically to the disk, instead of write buffer.

O_EXLOCK Lock using flock and LOCK_EX.

O_SHLOCK Lock using flock and LOCK_SH.

O_DIRECTOPRY Fail if the file is not a directory.

O_NOFOLLOW Fail if the last path component is a symbolic link.

O_BINARY Open in binary mode (implies a call to binmode).

O_LARGEFILE Open with large (>2GB) file support.

O_NOCTTY Don’t make the terminal file being opened the processes-
controlling terminal, even if you don’t have one yet.

Table A-16. Modes for Opening Files with sysopen

978 P e r l : T h e C o m p l e t e R e f e r e n c e

sysread

sysread FILEHANDLE, SCALAR, LENGTH, OFFSET

sysread FILEHANDLE, SCALAR, LENGTH

Tries to read LENGTH bytes from FILEHANDLE, placing the result in SCALAR. If
OFFSET is specified, then data is written to SCALAR from OFFSET bytes, effectively
appending the information from a specific point. If OFFSET is negative, it starts from
the number of bytes specified counted backward from the end of the string. This is the
equivalent of the C/operating system function read(). Because it bypasses the buffering
system employed by functions like print, read, and seek, it should only be used with
the corresponding syswrite and sysseek functions.

Effects $!, $@, T, XA, XR

Returns in Scalar Context Returns in List Context

undef on error
0 at end of file
Integer, number of bytes read

See also Chapter(s) Function(s) Module(s)

Chapter 7 syswrite, sysseek IO::File, IO::Handle

sysseek

sysseek FILEHANDLE,POSITION,WHENCE

Sets the position within FILEHANDLE according to the values of POSITION
and WHENCE. This function is the equivalent of the C function lseek(), so you
should avoid using it with buffered forms of FILEHANDLE. This includes the
<FILEHANDLE> notation and print, write, seek, and tell. Using it with sysread
or syswrite is OK, since they too ignore buffering.

The position within the file is specified by POSITION, using the value of
WHENCE as a reference point, as shown in Table A-17.

A p p e n d i x A : F u n c t i o n R e f e r e n c e 979
A

P
P

EN
D

IX
ES

Effects $!, XA

Returns in Scalar Context Returns in List Context

undef on failure
A position of 0 is returned as
the string 0 but true
Integer, new position (in bytes) on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 tell, seek IO::File, IO::Handle

system

system PROGRAM, LIST

system PROGRAM

Executes the command specified by PROGRAM, passing LIST as arguments to the
command. The script waits for execution of the child command to complete before
continuing. If PROGRAM is the only argument specified, then Perl checks for any
shell metacharacters and, if found, passes PROGRAM unchanged to the user’s default
command shell. If there are no metacharacters, then the value is split into words and
passed as an entire command with arguments to the system execvp function.

Value Constant Description

0 SEEK_SET Sets the new position absolutely to POSITION bytes
within the file

1 SEEK_CUR Sets the new position to the current position plus
POSITION bytes within the file

2 SEEK_END Sets the new position to POSITION bytes, relative to
the end of the file

Table A-17. Offset Values and Constants for seek

The return value is the exit status of the program as returned by the wait function.
To obtain the actual exit value, divide by 256. If you want to capture the output from a
command, use the backticks operator.

Effects $!, $?, XT

Returns in Scalar Context Returns in List Context

Exit status of program as returned by wait

See also Chapter(s) Function(s) Module(s)

Chapter 14 exec

syswrite

syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET

syswrite FILEHANDLE, SCALAR, LENGTH

Attempts to write LENGTH bytes from SCALAR to the file associated with
FILEHANDLE. If OFFSET is specified, then information is read from OFFSET bytes in
the supplied SCALAR. This function uses the C/operating system write() function,
which bypasses the normal buffering. You should therefore avoid using functions such
as print and read in conjunction with this function.

Effects $!, $@, XA

Returns in Scalar Context Returns in List Context

undef on error
Integer, number of bytes written

See also Chapter(s) Function(s) Module(s)

Chapter 7 sysread, sysseek IO::File, IO::Handle

tell

tell FILEHANDLE

tell

Returns the current position (in bytes) within the specified FILEHANDLE. If
FILEHANDLE is omitted, then it returns the position within the last file accessed.

980 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Effects XA

Returns in Scalar Context Returns in List Context

Integer, current file position (in bytes)

See also Chapter(s) Function(s) Module(s)

Chapter 7 seek, sysseek IO::File, IO::Handle

telldir

telldir DIRHANDLE

Returns the current position within the directory listing referred to by DIRHANDLE.

Effects XA, U

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapter 7 opendir, readdir, closedir IO::Dir

tie

tie VARIABLE, CLASSNAME, LIST

Ties the VARIABLE to the package class CLASSNAME that provides implementation
for the variable type. Any additional arguments in LIST are passed to the constructor
for the entire class. Typically used to bind hash variables to DBM databases.

Effects $@

Returns in Scalar Context Returns in List Context

Reference to tied object

See also Chapter(s) Function(s) Module(s)

Chapter 10 tied, untie Tie::Array, Tie::Handle,
Tie::Hash, Tie::RefHash,
Tie::Scalar, Tie::SubstrHash

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 981

tied

tied VARIABLE

Returns a reference to the object underlying the tied entity VARIABLE.

Effects None

Returns in Scalar Context Returns in List Context

undef if VARIABLE is not tied to a
package

See also Chapter(s) Function(s) Module(s)

Chapter 10 tie, untie Tie::Array, Tie::Handle,
Tie::Hash, Tie::RefHash,
Tie::Scalar, Tie::SubstrHash

time

time

Returns the number of seconds since the epoch (00:00:00 UTC, January 1, 1970, for
most systems; 00:00:00, January 1, 1904, for Mac OS). Suitable for feeding to gmtime
and localtime.

Effects None

Returns in Scalar Context Returns in List Context

Integer, seconds since epoch

See also Chapter(s) Function(s) Module(s)

Chapter 11 gmtime, localtime

times

times

Returns a four-element list giving the user, system, child, and child system times for
the current process and its children.

982 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects None

Returns in Scalar Context Returns in List Context

User, system, child, child system
times as integer

See also Chapter(s) Function(s) Module(s)

Chapter 11

tr///

tr/SEARCHLIST/REPLACEMENTLIST/

Not a function. This is the transliteration operator; it replaces all occurrences of the
characters in SEARCHLIST with the characters in REPLACEMENTLIST.

Effects XR

Returns in Scalar Context Returns in List Context

Number of characters replaced or deleted

See also Chapter(s) Function(s) Module(s)

Chapter 8 m//, s///

truncate

truncate FILEHANDLE, LENGTH

Truncates (reduces) the size of the file specified by FILEHANDLE to the specified
LENGTH (in bytes). Produces a fatal error if the function is not implemented on
your system.

Effects $!, XA, XT, U

Returns in Scalar Context Returns in List Context

undef if the operation failed
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 7 open, sysopen IO::File, IO::Handle

A p p e n d i x A : F u n c t i o n R e f e r e n c e 983
A

P
P

EN
D

IX
ES

uc

uc EXPR

uc

Returns an uppercased version of EXPR, or $_ if not specified.

Effects $_, T

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 lc, lcfirst, ucfirst

ucfirst

ucfirst EXPR

ucfirst

Returns the value of EXPR with only the first character uppercased. If EXPR is omitted,
then uses $_.

Effects $_, T

Returns in Scalar Context Returns in List Context

String

See also Chapter(s) Function(s) Module(s)

Chapter 8 lc, lcfirst, uc

umask

umask EXPR

umask

Sets the umask (default mask applied when creating files and directories) for the
current process. Value of EXPR must be an octal number. If EXPR is omitted, simply
returns the previous value.

984 P e r l : T h e C o m p l e t e R e f e r e n c e

Effects XT, U

Returns in Scalar Context Returns in List Context

Previous umask value

See also Chapter(s) Function(s) Module(s)

Chapter 7 open, sysopen, mkdir

undef

undef EXPR

undef

Undefines the value of EXPR. Use on a scalar, list, hash, function, or typeglob. Use
on a hash with a statement such as undef $hash{$key}; actually sets the value of the
specified key to an undefined value. If you want to delete the element from the hash,
use the delete function.

Effects XR

Returns in Scalar Context Returns in List Context

undef

See also Chapter(s) Function(s) Module(s)

Chapters 4, 6 delete

unlink

unlink LIST

unlink

Deletes the files specified by LIST, or the file specified by $_ otherwise.

Effects $_, $!, XT

Returns in Scalar Context Returns in List Context

Number of files deleted

See also Chapter(s) Function(s) Module(s)

Chapter 7

A
P

P
EN

D
IX

ES
A p p e n d i x A : F u n c t i o n R e f e r e n c e 985

986 P e r l : T h e C o m p l e t e R e f e r e n c e

unpack

unpack FORMAT, EXPR

Unpacks the binary string EXPR using the format specified in FORMAT. Basically
reverses the operation of pack, returning the list of packed values according to the
supplied format.

You can also prefix any format field with a %<number> to indicate that you want a
16-bit checksum of the value of EXPR, instead of the value.

Effects $@

Returns in Scalar Context Returns in List Context

List of unpacked values

See also Chapter(s) Function(s) Module(s)

Chapters 8, 10, 13 pack

unshift

unshift ARRAY, LIST

Places the elements from LIST, in order, at the beginning of ARRAY.

Effects None

Returns in Scalar Context Returns in List Context

Number of new elements in ARRAY

See also Chapter(s) Function(s) Module(s)

Chapter 8 shift, pop, push

untie

untie VARIABLE

Breaks the binding between a variable and a package, undoing the association created
by the tie function.

Effects None

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapters 10, 13 tie Tie::Array, Tie::Handle,
Tie::Hash, Tie::RefHash,
Tie::Scalar, Tie::SubstrHash

use

use MODULE LIST

use MODULE

Imports all the functions exported by MODULE, or only those referred to by LIST, into
the name space of the current package. Effectively equivalent to

BEGIN

{

require "Module.pm";

Module->import();

}

Also used to impose compiler directives (pragmas) on the current script, although
essentially these are just modules anyway.

Note that a use statement is evaluated at compile time. A require statement is
evaluated at execution time.

Effects $!, $@

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapter 6 require, no, package

A p p e n d i x A : F u n c t i o n R e f e r e n c e 987
A

P
P

EN
D

IX
ES

988 P e r l : T h e C o m p l e t e R e f e r e n c e

utime

utime ATIME, MTIME, LIST

Sets the access and modification times specified by ATIME and MTIME for the list
of files in LIST. The values of ATIME and MTIME must be numerical. The inode
modification time is set to the current time.

Effects $!, XT, U

Returns in Scalar Context Returns in List Context

Number of files updated

See also Chapter(s) Function(s) Module(s)

Chapter 11 -X, stat

values

values HASH

Returns the list of all the values contained in HASH. In a scalar context, returns the
number of values that would be returned. Uses the same iterator, and therefore order,
used by the each and keys functions.

Effects None

Returns in Scalar Context Returns in List Context

Number of values List of values

See also Chapter(s) Function(s) Module(s)

Chapters 4, 8, 10, 13 each, keys

vec

vec EXPR, OFFSET, BITS

A p p e n d i x A : F u n c t i o n R e f e r e n c e 989
A

P
P

EN
D

IX
ES

Treats the string in EXPR as a vector of unsigned integers and returns the value of the
bit field specified by OFFSET. BITS specifies the number of bits reserved for each
entry in the bit vector. This must be a power of two from 1 to 32.

Effects XR

Returns in Scalar Context Returns in List Context

Integer

See also Chapter(s) Function(s) Module(s)

Chapters 8, 13

wait

wait

Waits for a child process to terminate, returning the process ID of the deceased process.
The exit status of the process is contained in $?.

Effects $!, $?, U

Returns in Scalar Context Returns in List Context

-1 if there are no child processes
Process ID of deceased process

See also Chapter(s) Function(s) Module(s)

Chapter 14 waitpid

waitpid

waitpid PID, FLAGS

Waits for the child process with ID PID to terminate, returning the process ID of the
deceased process. If PID does not exist, then it returns -1. The exit status of the process
is contained in $?.

If you import the POSIX module, you can specify flags by name, although all Perl
implementations support a value of 0. Table A-18 lists the flags supported under

Solaris. You will need to check your implementation for the flags your operating
system supports.

Effects $!, $?, U

Returns in Scalar Context Returns in List Context

-1 if process does not exist
Process ID of deceased process

See also Chapter(s) Function(s) Module(s)

Chapter 14 wait

wantarray

wantarray

Returns true if the context of the currently executing function is looking for a list value.
Returns false in a scalar context.

Effects None

Returns in Scalar Context Returns in List Context

undef if no context
0 if lvalue expects a scalar

1 if lvalue expects a list

See also Chapter(s) Function(s) Module(s)

Chapter 6

990 P e r l : T h e C o m p l e t e R e f e r e n c e

Flag Description

WIFEXITED Wait for processes that have exited

WIFSIGNALED Wait for processes that received a signal

WNOHANG Nonblocking wait

WSTOPSIG Wait for processes that received STOP signal

WTERMSIG Wait for processes that received TERM signal

WUNTRACED Wait for processes stopped by signals

Table A-18. Flags for waitpid

TE
AM
FL
Y

Team-Fly®

warn

warn LIST

Prints the value of LIST to STDERR. Basically the same as the die function except that
no call is made to the exit and no exception is raised within an eval statement. This can
be useful to raise an error without causing the script to terminate prematurely.

If the variable $@ contains a value (from a previous eval call) and LIST is empty,
then the value of $@ is printed with “\t…caught” appended to the end. If both $@ and
LIST are empty, then “Warning: Something’s wrong” is printed.

Effects $!

Returns in Scalar Context Returns in List Context

Nothing

See also Chapter(s) Function(s) Module(s)

Chapters 9, 21 die

write

write FILEHANDLE

write

Writes a formatted record, as specified by format to FILEHANDLE. If FILEHANDLE
is omitted, then writes the output to the currently selected default output channel.
Form processing is handled automatically, adding new pages, headers, footers, and so
on, as specified by the format for the filehandle.

Effects $!, $@, XA

Returns in Scalar Context Returns in List Context

0 on failure
1 on success

See also Chapter(s) Function(s) Module(s)

Chapter 16 format

A p p e n d i x A : F u n c t i o n R e f e r e n c e 991
A

P
P

EN
D

IX
ES

y///

y/SEARCHLIST/REPLACEMENTLIST/

Identical to the tr/// operator; translates all characters in SEARCHLIST into the
corresponding characters in REPLACEMENTLIST.

Effects XR

Returns in Scalar Context Returns in List Context

Number of characters modified

See also Chapter(s) Function(s) Module(s)

Chapter 8 tr///

992 P e r l : T h e C o m p l e t e R e f e r e n c e

Appendix B
Standard Perl Library

993

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

994 P e r l : T h e C o m p l e t e R e f e r e n c e

The standard Perl library comes with a range of modules that have been deemed
useful, if not essential, to developing Perl applications. Some of these modules,
such as AutoLoader, AutoSplit, and much of the ExtUtils hierarchy, are an

essential part of the development process. Others are utility modules, such as the
Text::Tabs module that supports the expanding and compressing of tabs to and
from spaces.

Although what’s included here is not an exhaustive list of all the modules in the
Standard Perl Library, it is an attempt to concentrate on the modules you are most
likely to need or use. With that in mind, please note the following:

� References to the CORE module refer to the core functions and operators
supported natively by the Perl interpreter.

� The actual location of the files will vary according to platform and version. You
may need to search the entire Perl 5 library directory to find a specific module.
The titles given here will work inside any standard Perl script.

� The list of modules available on your system may be different from that listed
here because of differences between the supported features of different
operating systems.

� Only genuine modules have been included here. Older Perl libraries (with a .pl
suffix) are not included.

� Pragmas—which control the execution of a Perl program—are described in
detail in Chapter 19.

AnyDBM_File

use AnyDBM_File;

This module imports a suitable DBM module to enable you to use a DBM database.
Care should be taken, since you cannot normally mix DBM formats. By default, any
program wanting to use a DBM file can use this module, which will try to inherit a
DBM-handling class first from NDBM_File (which is also compatible with
ODBM_File). Then the module tries to inherit its classes in turn from DB_File,
GDBM_File, SDBM_File (which is part of the Perl distribution), and finally,
ODBM_File.

To use, specify the DBM type as AnyDBM_File within the tie statement:

use Fcntl;

use AnyDBM_File;

tie %myhash, "AnyDBM_File", "mydbm", O_RDWR, 0644;

You can override the default list and sequence by redefining the contents of the
@ISA array within the AnyDBM_File module:

@AnyDBM_File::ISA = qw(GDBM_File ODBM_File);

You can also specify your own preference by importing your DBM module directly.
This is less portable, but if you are relying on the feature set of a DBM implementation,
especially with the special capabilities of DB_File and GDBM_File in mind, then you
may want to use the module directly.

References Chapter 13; see also DB_File, GDBM_File, NDBM_File, ODBM_File,
SDBM_File

AutoLoader
This module provides a method for automatically loading Perl subroutines from
external files that have been split by the AutoSplit module. Each subroutine is stored
in an individual file within the ./auto directory with the rest of the Perl library
modules. For example, the function Auto::foo would be in a file ./auto/Auto/foo.al.

package Auto;

use Exporter;

use AutoLoader;

@ISA = qw/Exporter AutoLoader/;

Any module using the AutoLoader should have the special marker _ _END_ _ prior
to any subroutine declarations. These will be used as the declarations for subroutines
to be autoloaded from the corresponding .al files. Any code before the marker will be
parsed and imported when the module is first used. Any subroutine declared that is
not already in memory will then be loaded from the corresponding file by looking into
the ./auto directory tree.

Since the _ _END_ _ ends the current scope, you will need to use package globals
rather than lexical variables declared with my. Either use our or use the vars pragma to
declare them if you are also using the strict pragma.

The easiest way to create a module supporting AutoLoader is to use the AutoSplit
module. You may also want to see the SelfLoader module, which provides a similar
mechanism for loading subroutines.

Also note that this is related to but does not provide the support for the
AUTOLOAD special subroutine. See Chapter 5 for more information.

References Chapters 6, 20; see also AutoSplit, SelfLoader, strict, vars

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 995
A

P
P

EN
D

IX
ES

AutoSplit
This module provides a method for splitting modules into the individual files required
by the AutoLoader module. This is generally used by the standard Perl library
modules, and by the XS and MakeMaker systems to split C extensions into individual
loadable subroutines. The main function is autosplit, and it supports the splitting
process in a single hit. The typical use is

perl -MAutoSplit -e 'autosplit(FILE, DIR, KEEP, CHECK, MODTIME)'

where FILE is the module to split, and DIR is the base directory into which the file
should be split. The KEEP argument defines whether existing .al files should be deleted
as the module is split. This is the operation when false; if true, files are kept even if the
functions do not appear in the new module.

The CHECK argument tells AutoSplit to check whether the specified module
actually includes the AutoLoader module. If false, no checks are made. The
MODTIME argument, if true, only splits the module if its modification time is later
than that of the autosplit.ix index file.

Only those functions specified after the _ _END_ _ marker are split; other functions
are forced to load when the module is imported.

You will be warned if the functions to be split exceed the permitted length for file
names on the desired file system. Because of the use of function names as file names, it
presents possible naming conflicts that should be resolved. You will also be warned if
the directory that you want to split the module into does not exist.

This module is normally only used as part of the MakeMaker process.

References Chapters 20, 25; see also AutoLoader, ExtUtils::MakeMaker

B
This module is part of the Perl compiler. The compiler uses many of the objects and
methods defined within the B module and its hierarchy in order to provide the script
with the necessary hooks into its own internals. The module does this by providing its
own suite of classes, which allow a Perl script to examine its own objects and classes
in detail.

use B;

Although this module provides the information required during the compilation
process of a Perl script into a stand-alone executable, use of this module is not required
to make a stand-alone program.

996 P e r l : T h e C o m p l e t e R e f e r e n c e

The bulk of the B module is the methods for accessing the fields of the objects that
describe the internal structures. Note that all access is read-only: you cannot modify the
internals by using this module.

The B module exports a variety of functions: some are simple utility functions;
others provide a Perl program with a way to get an initial “handle” on an internal
object. These are listed in Table B-1.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 997
A

P
P

EN
D

IX
ES

Function Description

main_cv Returns the (faked) CV corresponding to the
main part of the Perl program.

main_root Returns the root opcode of the main part of the
Perl program.

main_start Returns the starting op of the main part of the
Perl program.

Comppadlist Returns the AV object of the global comppadlist.

sv_undef Returns the SV object corresponding to the C
variable sv_undef (the undefined value).

sv_yes Returns the SV object corresponding to the C
variable sv_yes ("true").

sv_no Returns the SV object corresponding to the C
variable sv_no ("false").

walkoptree(OP, METHOD) Does a tree-walk of the syntax tree starting at the
opcode referenced by OP, calling METHOD on
each opcode in the tree it visits. Each parent node
is visited before its children.

walkoptree_debug(DEBUG) Returns the current debugging flag for
walkoptree. If the optional DEBUG argument is
non-zero, it sets the debugging flag to that value.

walksymtable(SYMREF,
METHOD, RECURSE)

Walks the symbol table starting at SYMREF and
calls METHOD on each symbol visited. When
the walk reaches package symbols Foo::, it
invokes RECURSE and only recurses into the
package if that sub returns true.

Table B-1. Functions in the B Module

A more in-depth discussion on the use of the Perl compiler, of which the B module
is a critical part, can be found in Chapter 19.

References See O; Chapter 22

B::Asmdata
This module is used internally by B::Bytecode and other modules to generate data
about Perl opcodes.

References See B::Bytecode, O; Chapter 22

998 P e r l : T h e C o m p l e t e R e f e r e n c e

Function Description

svref_2object(SV) Takes any Perl variable and turns it into an object
in the appropriate B::OP-derived or
B::SV-derived class.

ppname(OPNUM) Returns the PP function name (for example,
pp_add) of opcode number OPNUM.

hash(STRING) Returns a string in the form "0x . . . ", representing
the hexadecimal value of the internal hash
function used by Perl on string STR.

cast_I32(I) Casts I to the internal I32 type used by the
current Perl interpreter.

minus_c Does the equivalent of the –c command
line option.

cstring(STR) Returns a double-quote–surrounded escaped
version of STR, which can be used as a string in
C source code.

class(OBJECT) Returns the class of an object without the part of
the class name preceding the first ::.

threadsv_names In a Perl interpreter compiled for threads, this
returns a list of the special per-thread threadsv
variables.

byteload_fh(FILEHANDLE) Loads the contents of FILEHANDLE as bytecode.

Table B-1. Functions in the B Module (continued)

B::Assembler
The module used by the O Perl compiler interface to assemble Perl bytecode into
executable opcodes.

References See B::Bytecode, O; Chapter 22

B::Bblock
The module used by the O Perl compiler interface to produce a report of the basic
blocks that make up a Perl program.

References See O; Chapter 22

B::Bytecode
This module provides the necessary code for translating Perl scripts into Perl bytecode
as used by the O module and the Perl compiler. For example, you can convert any Perl
script into bytecode using

$ perl -MO=Bytecode foobar.pl

References See O; Chapter 22

B::C
The basic underlying module used by the Perl compiler that produces raw C code
in a nonoptimized format, suitable for compiling into a stand-alone program. For an
optimized version, you should use the B:CC module. The default operation creates
a C file that can be separately compiled:

$ perl -MO=C foobar.pl

If you want to compile a Perl script directly, then use the perlcc command:

$ perlcc foobar.pl

This will generate a stand-alone application called foobar.

References See O; Chapter 22

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 999
A

P
P

EN
D

IX
ES

B::CC
This is the optimized interface for creating C code from Perl scripts for compilation into
stand-alone applications. For example:

$ perl -MO=CC foobar.pl

Relatively simple optimizations are supported for the purposes of improving the
performance of Perl code into C code.

References See O; Chapter 22

B::Debug
This module produces a Perl syntax tree, providing debug-level information about the
opcodes being used. For example:

$ perl -M=Debug

For a simpler version, you should try the B::Terse compiler interface module.

References See O; Chapter 22

B::Deparse
An interface used by the Perl compiler and the O module that regurgitates a Perl script
based on the internal structure used by the Perl interpreter. The source output matches
the format of the script after being parsed by the interpreter and may not match the
original source script. It is normally used with the O module.

$ perl -MO=Deparse foobar.pl

References See O; Chapter 22

B::Disassembler
The backend used by the Perl compiler to translate compiled bytecode into raw
source code.

References See B::Bytecode, O; Chapter 22

1000 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

B::Lint
This module expands on the warnings provided by the –w switch with additional
warnings for some specific statements and constructs in the Perl code. It is used as a
backend to the Perl compiler.

$ perl -MO=Lint foobar.pl

References See O; Chapter 22

B::Showlex
A Perl compiler backend, used with the O module. The module produces a list of
lexical values used within functions and files.

References See O; Chapter 22

B::Stackobj
A helper module for the Perl compiler.

References See O; Chapter 22

B::Terse
Used with the Perl compiler to provide the syntax tree for a Perl script. Unlike in the
Debug backend, information about individual opcodes within the tree is kept to a
minimum.

$ perl -MO=Terse foobar.pl

References See O; Chapter 22

B::Xref
A Perl compiler backend that produces a report detailing and cross-referencing
the variables, subroutines, and formats used in a Perl script on a line-by-line and
file-by-file basis.

References See O; Chapter 22

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1001
A

P
P

EN
D

IX
ES

1002 P e r l : T h e C o m p l e t e R e f e r e n c e

Benchmark

use Benchmark;

This module provides a constant and consistent interface to aid in the production of
benchmarking figures. You can use the Benchmark module to time the execution of
any Perl statement or function, or even the entire script.

There are three main functions: timeit, timethis, and timethese:

timeit(COUNT, 'CODE');

times the execution of a single piece of CODE, for COUNT iterations. Note that CODE
is a string containing the code to benchmark. Use the object method shown next to
benchmark an arbitrary piece of code.

For example, the code

$t = timeit(1000000,'cos(3.141)');

will place the timing information for a million iterations of the calculation into $t,
which will be a reference to a Benchmark object. See below for more information on
the object interface.

timethis(COUNT, 'CODE')

uses timeit to run a piece of code, also printing a header to state that it is timing a piece
of code and the resulting timing information.

timethese(COUNT, CODEHASH)

runs timethis on multiple pieces of code. Each piece of code should be placed into the
value of a hash element, and the corresponding key will be used as a label for the
reported figures.

Note that in all the preceding cases, the code is embedded into a for loop and then
eval’d in its entirety. As such, lexical values declared outside the eval block will not be
available within it.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1003
A

P
P

EN
D

IX
ES

If you want to time arbitrary requests, you need to use the object interface to
the module:

$ta = new Benchmark;

&render_object();

$tb = new Benchmark;

print "Calculation time: ", timestr(timediff($ta,$tb)), "\n";

The timediff function returns a new object detailing the time difference between two
Benchmark objects, and you can then print a string of the time difference information
with timestr.

In all cases, the times reported use the times function, so both CPU and user times
are reported. The CPU time is the most important, since it should not be affected by
other processes. Because it uses the times function, measurements are in milliseconds.
You should aim to support enough iterations for a reasonable timing figure. Times of at
least five seconds are advised; ten seconds or more may give a more precise figure.

References Chapters 11, 21

Carp
This module provides a simplified method for reporting errors within modules. A die
call from a package will report an error with reference to the package file in which it was
called. This can cause problems if you are trying to trace errors in a calling script. The
Carp module provides three functions: carp, croak, and confess. With each function, the
location of the error is specified relative to the package that called the function.

carp "Didn't work";

Equivalent of warn, reports an error to stderr.

croak "Definitely didn't work";

Equivalent of die.

confess "Failed around about there";

This is equivalent to croak except that a stack trace is printed.

1004 P e r l : T h e C o m p l e t e R e f e r e n c e

For example, imagine that you have a package called T, used in a script called tm.pl.
The package defines a single function, only, which calls warn and carp; the result is

Warning! at T.pm line 11.

Carp warning! at tm.pl line 3

You can see from this that the first message, using warn, reports the error with
reference to the module. The second, using carp, reports an error with reference to the
original script in which it was called.

The reference is obtained using caller and goes up exactly one level; so if another
package calls a carp-using function, the error will be reported with reference to the
calling package.

Reference Appendix A

CGI
This module provides a set of functions for drawing HTML pages, and for both
creating HTML forms and post-processing them using the CGI interface.

use CGI;

The module’s primary use is for producing web forms, and parsing their contents once
the information has been filled in and returned by a client. The module defines a
simple CGI class that can be used to build the pages, although use of the class methods
is not exclusive; they can be used as normal functions as well.

For example, to create a “Hello World!” page using the object method:

use CGI;

$page = new CGI;

print $page->header,

$page->start_html('Hello World!'),

$page->h1('Hello World!'),

$page->end_html;

You can achieve the same result with the functional interface as follows:

use CGI qw/:standard/;

print header,

start_html('Hello World!'),

h1('Hello World!'),

end_html;

The module provides three main elements: the HTTP header, HTML-formatted
text, and a parsing engine for accepting input from browsers and forms using the
various request methods available. In addition, it supports frames, cascading style
sheets, cookies, and server-push technologies. Refer to Chapter 15 for more information
on the use of the CGI module when writing HTML/CGI scripts.

Import Sets
The module supports the import sets shown in Table B-2.

Reference Chapter 18

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1005
A

P
P

EN
D

IX
ES

Import Set Exported Symbols/Symbol Sets

html2 h1 h2 h3 h4 h5 h6 p br hr ol ul li dl dt dd menu code var strong
em tt u i b blockquote pre img a address cite samp dfn html
head base body Link nextid title meta kbd start_html end_html
input Select option comment

html3 div table caption th td TR Tr sup sub strike applet Param embed
basefont style span layer ilayer font frameset frame script small
big

netscape blink fontsize center

form textfield textarea filefield password_field hidden checkbox
checkbox_group submit reset defaults radio_group
popup_menu button autoEscape scrolling_list image_button
start_form end_form startform endform start_multipart_form
isindex tmpFileName uploadInfo URL_ENCODED
MULTIPART

cgi param path_info path_translated url self_url script_name cookie
dump raw_cookie request_method query_string accept
user_agent remote_host remote_addr referer server_name
server_software server_port server_protocol virtual_host
remote_ident auth_type http use_named_parameters
save_parameters restore_parameters param_fetch remote_user
user_name header redirect import_names put Delete Delete_all
url_param

Table B-2. Import Sets for the CGI Module

CGI::Apache
This module supports the use of the CGI module when used within the confines of the
Perl-Apache API, as supported by the mod_perl CPAN module.

require CGI::Apache;

my $query = new Apache::CGI;

$query->print($query->header);

The module provides a slightly modified interface in order to allow the CGI module to
work when executing scripts with the Perl-Apache API environment. This imports, and
also overrides, some of the methods defined by the CGI module.

References See CGI, CGI::Switch

CGI::Switch
This module attempts to load CGI constructors from different modules until it
successfully loads one.

use CGI::Switch;

1006 P e r l : T h e C o m p l e t e R e f e r e n c e

Import Set Exported Symbols/Symbol Sets

ssl https

cgi-lib ReadParse PrintHeader HtmlTop HtmlBot SplitParam

html html2 html3 netscape

standard html2 html3 form cgi

push multipart_init multipart_start multipart_end

all html2 html3 netscape form cgi internal

Table B-2. Import Sets for the CGI Module (continued)

The default packages it attempts to load, in order, are Apache::CGI, CGI::XA, and
CGI. You can define a different order or a different selection of modules by specifying
them explicitly:

use CGI::Switch qw/CGI CGI::Apache/;

A call to the new method in CGI::Switch will return an object of the first
found type:

$query = new CGI::Switch;

Reference See CGI

Class::Struct
This module supports the construction of struct-like data types as Perl classes.

use Class::Struct;

It supports only one function, struct, which builds a new class based on the
information you supply. The new class can be made up of multiple elements composed
of scalars, arrays, hashes, and further class definitions. This is primarily used for
designing or emulating C struct structures within Perl. The function has three forms:

struct(CLASS_NAME => [ELEMENT_LIST]);

struct(CLASS_NAME => { ELEMENT_LIST });

struct(ELEMENT_LIST);

The first two forms explicitly define the new class to be created, and the third form
assumes the current package name as the new class. The first form creates an array-based
class, which is fast; the second and third create a hash-based class, which is slower but
more flexible and practical.

The newly created class must not be a subclass of anything other than UNIVERSAL.
This is because it will inherit methods, including new, from its base class, which will
override the methods generated by struct.

The ELEMENT _LIST argument has the format of a typical hash assignation:

NAME => TYPE

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1007
A

P
P

EN
D

IX
ES

1008 P e r l : T h e C o m p l e t e R e f e r e n c e

The NAME is the name of each element in the new class, and TYPE is one of '$', '@', or
'%', to create a new scalar, array, or hash entry; or it can be the name of another class.

For example, to create a Perl version of the hostent structure:

struct('hostent' => {

'h_name' => '$',

'h_aliases' => '@',

'h_addrtype' => '$',

'h_length' => '$',

'h_addr_list' => '@',

});

The name of the new class is hostent, but you need to create a new object in order
to make use of it; struct merely constructs the class definition. Thus,

$host = new hostent;

will create a new hostent structure.

Using Scalar Elements
The scalar is initialized with undef. To access the scalar:

$obj->scalar

To set the value of the scalar:

$obj->scalar(value)

When defined, if the element type is stated as '$', then the element value is
returned. If it is defined as '*$', then a reference to the scalar element is returned.

Using Array Elements
The array is initialized as an empty list. To access the entire array:

$obj->array

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1009
A

P
P

EN
D

IX
ES

Note that because there is no leading @ sign, you will need to use block notation to
use the array in its entirety with many functions, for example,

sort @{$obj->array};

To access an element from the array,

$obj->array(index)

where index is the numerical index within the array.
To set a value in the array,

$obj->scalar(index, value)

where index is the numerical index within the array, and value is the value to be
assigned.

When defined, if the element type is stated as '@', then the element value is
returned. If it is defined as '*@', then a reference to the element is returned.

Using Hash Elements
The hash is initialized as an empty list. To access the entire hash:

$obj->array

Note that because there is no leading @ sign, you will need to use block notation to
use the array in its entirety with many functions, for example,

sort @{$obj->array};

To access an element from the hash,

$obj->array(key)

where key is the string value.
To set a value in the hash,

$obj->scalar(key, value)

1010 P e r l : T h e C o m p l e t e R e f e r e n c e

where key is the string index within the array, and value is the value to be assigned.
When defined, if the element type is stated as '%', then the element value is

returned. If it is defined as '*%', then a reference to the element is returned.

Using Class Elements
The element’s value must be a reference blessed to the named class or to one of its
subclasses. The assigned class can have methods and structures and can be used like any
other method, albeit within the confines of the class created by struct. The main use for
this element is to support nested data structures within a Class::Struct created class.

Example
The code that follows builds on the hostent structure and populates it with the correct
information for the host given.

use Class::Struct;

use Socket;

struct('hostent' => {

'h_name' => '$',

'h_aliases' => '@',

'h_addrtype' => '$',

'h_length' => '$',

'h_addr_list' => '@',

});

($name, $aliases, $addrtype, $length, @addresses) = gethostbyname($hostname);

my $host = new hostent;

$host->h_name($name);

@aliases = split / /, $aliases;

foreach($i=0;$i<@aliases;$i++)

{

$host->h_aliases($i, $aliases[$i]);

}

$host->h_addrtype($addrtype);

$host->h_length($length);

for($i=0;$i<@addresses;$i++)

{

$host->h_addr_list($i,inet_ntoa($addresses[$i]));

}

References Chapters 7, 10

TE
AM
FL
Y

Team-Fly®

Config
This module provides an interface to the configuration information determined during
the build process.

use Config;

The module exports a single hash, %Config, which can be used to access individual
configuration parameters by name, for example,

print "Built with: $Config{'cc'} $Config{'ccflags'}\n";

You can also optionally import the myconfig, config_sh, and config_vars
functions:

myconfig

This returns a text summary of the main Perl configuration values. This is the method
used by the -V command line option.

config_sh

This returns the entire set of Perl configuration information in the form of the config.sh
file used during the building process.

config_vars(LIST)

sends the configuration values for the names specified in LIST to STDOUT. The
information is printed as you would output the values in a simple loop. Thus, the code

use Config qw/config_vars/;

config_vars(qw/cc ccflags ldflags/);

outputs

cc='gcc -B/usr/ccs/bin/';

ccflags='-I/usr/local/include';

ldflags=' -L/usr/local/lib';

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1011
A

P
P

EN
D

IX
ES

The information contained in the Config module is determined during the build
process. Since this module could be modified and/or overwritten or copied, the actual
configuration information may not match the binary you are currently using.

References Chapters 20, 24, 25; see also ExtUtils::MakeMaker

CPAN
This module provides a simple, and programmable, interface for downloading and
installing modules from the CPAN archives. The module takes into account the
requirements of the module you are downloading, automatically including the
required modules during the installation process. The module makes use of the
Net::FTP or LWP modules if they are available, or it uses the lynx web browser and
even an external ftp client to download the information and modules it needs.

The CPAN module, therefore, takes out a lot of the manual work required when
downloading and installing a CPAN module. It is, in fact, the best way to download
CPAN modules, as it guarantees that you will get the latest version while also ensuring
that any required modules will be downloaded and installed.

It works in one of two ways: either within an interactive shell, which is invoked
like this:

$ perl -MCPAN -e shell;

or via a Perl script:

use CPAN;

Interactive Shell Interface
The shell interface, also known as interactive mode, puts Perl into a simple shell-style
interface using the readline line input system. The first time the shell interface is run,
you will go through a configuration process that sets up your environment for using
the CPAN module. This includes configuration of the internal system used to access
raw data from the Internet, your preferred download location, and proxy information.

The shell interface supports the commands listed in Table B-3. You can use the shell
to query the CPAN archives and also to download and install modules.

To install a module with the interactive shell, the easiest method is to use the install
command:

$ perl -MCPAN -e shell

cpan> install Nice

1012 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1013
A

P
P

EN
D

IX
ES

Command Argument Description

a EXPR Searches authors. EXPR should be a simple
string, in which case a search will be made for an
exact match with the author’s ID. Alternatively,
you can supply a regular expression that will
search for matching author IDs and name details.

b Displays a list of bundles.

d EXPR Performs a regular expression search for a
package/module.

m EXPR Displays information about the expression
matching EXPR.

i EXPR Displays information about a module, bundle, or
user specified in EXPR.

r EXPR Displays a list of reinstallation recommendations,
comparing the existing module list against
installed modules and versions. If EXPR is not
specified, lists all recommendations.

u EXPR Lists all modules not currently installed, but
available on CPAN.

make EXPR Downloads the module specified in EXPR, builds
it, and installs it. No check is performed to ensure
that you need to install the module; it just does it.
Use install if you want to update a module
according to its version number.

test EXPR Runs make test on the module specified in EXPR.

install EXPR Downloads and installs the module specified in
EXPR. Runs make install. If EXPR is a module, it
checks to see if the currently installed version of
the module specified in EXPR is lower than that
available on CPAN. If it is, it downloads, builds,
and installs it. If EXPR is a distribution file, then
the file is processed without any version checking.

clean EXPR Runs a make clean on the specified module.

Table B-3. Commands for the Interactive Shell

1014 P e r l : T h e C o m p l e t e R e f e r e n c e

To install a CPAN bundle:

cpan> install Bundle::LWP

Fetching with Net::FTP:

ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/authors/id/GAAS/

libwww-perl-5.42.tar.gz

CPAN: MD5 security checks disabled because MD5 not installed.

Please consider installing the MD5 module.

x libwww-perl-5.42/, 0 bytes, 0 tape blocks

x libwww-perl-5.42/t/, 0 bytes, 0 tape blocks

x libwww-perl-5.42/t/net/, 0 bytes, 0 tape blocks

x libwww-perl-5.42/t/net/cgi-bin/, 0 bytes, 0 tape blocks

x libwww-perl-5.42/t/net/cgi-bin/test, 526 bytes, 2 tape blocks

...

In addition to the commands in Table B-3, the interactive shell supports two
commands that should only be used by experienced users: autobundle and recompile.

Command Argument Description

force make|test|
install EXPR

Forces a make, test, or install on a command
within the current session. Normally, modules are
not rebuilt or installed within the current session.

readme Displays the README file.

reload index|cpan Loads the most recent CPAN index files, or the
latest version of the CPAN module.

h|? Displays the help menu.

o Gets and sets the various configuration options
for the CPAN module.

! EXPR Evaluates the Perl expression EXPR.

q Quits the interactive shell.

Table B-3. Commands for the Interactive Shell (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1015
A

P
P

EN
D

IX
ES

The autobundle function writes a bundle file into the $CPAN::Config->{cpan_
home}/Bundle directory. The new bundle contains all of the modules currently
installed in the current Perl environment that are also available from CPAN. You can
then use this file as the source for installing the same bundle of modules on a number
of machines.

The recompile function forces the reinstallation of all the installed modules that
make use of the XS extension system. This solves problems when an update to the
operating system breaks binary compatibility. The function will re-download the
necessary modules and rebuild them under the updated environment.

Programmable Interface
Depending on what you are trying to achieve, you might find the programmable
interface to be more useful. All of the commands available in the interactive shell are
also available as CPAN::Shell methods within any Perl script. The methods take the
same arguments as their shell interface equivalents.

The CPAN module works with a series of subclasses for handling information
about authors, bundles, modules, and distributions. The classes are CPAN::Author,
CPAN::Bundle, CPAN::Module, and CPAN::Distribution. Individual methods are
identical to those outlined in the shell in Table B-3.

The core of the system is still the CPAN::Shell module. Individual methods are
identical to their command equivalents; but instead of outputting a list to STDOUT,
the methods return a list of suitable IDs for the corresponding entity type. This allows
you to combine individual methods into entire statements—something not available
in the shell. For example,

$ perl -MCPAN -e 'CPAN::Shell->install(CPAN::Shell->r)'

will reinstall all of the outdated modules currently installed.
The CPAN::Shell module also supports a further function, expand:

expand(TYPE, LIST)

This returns an array of CPAN::Module objects expanded according to their correct
type. The LIST is the list of entries to expand. For example, you can expand and install
a number of modules at once, using

for $module (qw/Bundle::libnet Bundle::LWP/)

{

my $object = CPAN::Shell->expand('Module',$module);

$object->install;

}

References Chapter 2, Web Appendix B (www.osborne.com)

1016 P e r l : T h e C o m p l e t e R e f e r e n c e

CPAN::FirstTime
This is a utility for configuring the CPAN module:

CPAN::FirstTime::init();

The init function asks some simple questions about the current environment and
updates the CPAN::Config file that will be used by the CPAN module when
downloading and building extensions.

Reference See CPAN

CPAN::Nox
This module supports the normal CPAN functionality but avoids the use of XS
extensions during execution.

$ perl -MCPAN::Nox -e shell

This is intended for use when the binary compatibility has been broken between the
Perl binary and the extensions. The preceding command puts you into the familiar
CPAN interactive state.

Reference See CPAN

Cwd
This module provides a platform-independent interface for discovering the current
working directory. The module provides three functions:

use Cwd;

$dir = cwd();

$dir = getcwd();

$dir = fastcwd();

The cwd function provides the safest method for discovering the current working
directory. The getcwd function uses the getcwd() or getwd() C functions, if they are
available on your platform.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1017
A

P
P

EN
D

IX
ES

The fastcwd function is a much faster version and can be used in situations in which
speed may be of great importance. However, it is not a reliable method and may
mistakenly indicate that you can chdir out of a directory that you cannot change back
into. As such, it shouldn’t be relied on.

The Cwd module also optionally provides a replacement for the CORE chdir
function that updates the value of the PWD environment variable:

use Cwd qw/chdir/;

chdir('/usr/local');

print $ENV{PWD};

References Chapter 8; see also File::Spec

Data::Dumper
This module provides methods for resolving a data structure (including objects) into a
string format that can be used both to “dump” the data for printing and to make an
evaluation so that a dumped structure can be reconstituted with eval into a valid
internal structure.

use Data::Dumper;

The primary function is Dumper:

Dumper(LIST)

This function accepts a list of scalar references to data structures or objects. The return
value is a string representation of the structure, produced in normal string syntax
format. For example:

use Data::Dumper;

my $ref = { "Name" => "Martin",

"Size" => "Medium",

"Dates" => { "Monday" => "170599",

"Tuesday" => "180599"

}

};

print Dumper($ref);

1018 P e r l : T h e C o m p l e t e R e f e r e n c e

generates the following:

$VAR1 = {

'Dates' => {

'Monday' => 170599,

'Tuesday' => 180599

},

'Name' => 'Martin',

'Size' => 'Medium'

};

Note that references to anonymous variables are labeled with $VARn, where n is a
sequential number relating to the references as they were supplied.

References See Chapters 10, 13

DB_File
This module provides access to the Berkeley DB system—probably the most flexible
implementation of the DBM database system. Beyond the basic capabilities of
supporting a hash-style database, DB_File also provides the necessary functions and
methods for accessing the database structures, and for creating and managing B-Tree
structures. The Berkeley DB system also supports a system based on fixed- and
variable-length record numbers, which is supported within Perl as a hash using
numerical rather than string references.

use DB_File ;

[$X =] tie %hash, 'DB_File', [FILENAME, FLAGS, MODE, $DB_HASH] ;

[$X =] tie %hash, 'DB_File', FILENAME, FLAGS, MODE, $DB_BTREE ;

[$X =] tie @array, 'DB_File', FILENAME, FLAGS, MODE, $DB_RECNO ;

Methods for Hash databases

$status = $X->del(KEY [, FLAGS]);

$status = $X->put(KEY, VALUE [, FLAGS]);

$status = $X->get(KEY, VALUE [, FLAGS]);

$status = $X->seq(KEY, VALUE, FLAGS) ;

$status = $X->sync([FLAGS]);

$status = $X->fd;

Methods for BTree databases

$count = $X->get_dup(KEY);

@list = $X->get_dup(KEY);

%list = $X->get_dup(KEY, 1);

Methods for Record Number databases

$a = $X->length;

$a = $X->pop;

$X->push(LIST);

$a = $X->shift;

$X->unshift(LIST);

untie %hash;

untie @array;

The different database types are defined in the last argument to the tie function, using
DB_HASH for hashes, DB_BTREE for binary trees, and DB_RECNO for the record
number database.

A DB_HASH is identical in most respects to Perl’s internal hash structure, except
that the key/data pairs are stored in data files, not memory. The functionality provided
is basically identical to that provided by the other DBM-style database engines.
DB_File uses its own hashing algorithm for storing and retrieving the key/data pairs,
but you can supply your own system if you prefer.

The DB_BTREE format follows the same key/data pair structure, but the pairs are
stored in a sorted, balanced binary tree. By default, the keys are sorted in lexical order,
although you can supply your own comparison routine for use by the binary sorting
subsystem.

DB_RECNO supports the storage of fixed- and variable-length records in a flat text
using the same key/value hash interface. This may be more suitable to your
requirements than using the DBI toolkit, covered later in this appendix. In order to
make the record numbers more compatible with the array system employed by Perl,
the offset starts at zero rather than one (as in the Berkeley DB).

You can also create an in-memory database (which is held entirely within memory,
just like a standard hash) by specifying a NULL file name (use undef). You can use any
of the database types for the in-memory database.

References Chapter 13; see also AnyDBM_File, GDBM_File, NDBM_File,
ODBM_File, SDBM_File

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1019
A

P
P

EN
D

IX
ES

1020 P e r l : T h e C o m p l e t e R e f e r e n c e

Devel::SelfStubber
This module generates subroutine stubs for use with modules that employ the
SelfLoader module.

use Devel::SelfStubber;

Devel::SelfStubber->stub(MODULE, LIBDIR);

It analyzes the module specified in MODULE (which should be specified as if it were
being imported). The LIBDIR argument specifies the directory to search for the
module; if it is left as a blank string, the current directory is used.

The generated output displays the list of subroutine stubs you need to put before
the _ _DATA_ _ token in order to support autoloading via the SelfLoader module. The
stub also ensures that if a method is called, it will get loaded according to the classes
and normal inheritance rules, taking into account the effects of autoloading in the
inherited modules and classes.

The basic method only produces a list of the correct stubs. To output a complete
version of the whole module with the stubs inserted correctly, you need to set the value
of the $Devel::SelfStubber::JUST_STUBS to zero. For example:

use Devel::SelfStubber;

$Devel::SelfStubber::JUST_STUBS = 0;

Devel::SelfStubber->stub(MODULE, LIBDIR);

The module uses the SelfLoader module to generate its list of stub subroutines,
and so can be useful if you want to verify what the SelfLoader thinks the list of stubs
should be.

References See SelfLoader

DirHandle
This module supplies an object/method-based interface for directory handles.

use DirHandle;

It provides an object interface to the directory handle functions opendir, readdir,
closedir, and rewinddir:

$dir = new DirHandle '.';

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1021
A

P
P

EN
D

IX
ES

The only argument to the new method is the directory to be read, as specified in the
opendir function. The supported methods then work in a manner identical to their
functional equivalents, except that they are known as open, read, close, and rewind.

References Chapter 8, Appendix A

DynaLoader
This module supports the dynamic loading of C libraries into Perl code.

package MyPackage;

require DynaLoader;

@ISA = qw/DynaLoader/;

bootstrap MyPackage;

It provides a generic interface to the various dynamic linking mechanisms available on
the different platforms. This is primarily used with the XS extension system to load
external C libraries and functions into the consciousness of the Perl interpreter. The
DynaLoader module is designed to be easy to use from the user’s point of view, in that
using a module should be easy, even though the module itself may involve more
complex processes to load the module.

In order to make use of the system within your own module, you only need to
supply the information just described, which will work whether your module is
statically or dynamically linked. The Perl and C functions that need to be called in
order to load the dynamic modules are automatically produced for you during the
compilation of an XS interface.

The internal interface for communicating with the lower-level dynamic loading
systems supported under SunOS/Solaris, HP-UX, Linux, VMS, Windows, and others
is high level and generic enough to cover the requirements of nearly all platforms.
However, the DynaLoader does not produce its own glue code between Perl and
C—you must use the XS, SWIG, or other systems for that purpose.

Please refer to the DynaLoader man page for details on how to use the internal
interface.

References Chapter 6; see also AutoLoader, SelfLoader

English
This module produces a set of aliases that provide full text versions of the standard
variables. These match those available in awk, and may also make more sense to most
users. See Table B-4.

Reference Chapter 4

1022 P e r l : T h e C o m p l e t e R e f e r e n c e

Perl English

$_ $ARG

$& $MATCH

$` $PREMATCH

$' $POSTMATCH

$+ $LAST_PARENT_MATCH

@+ @LAST_MATCHED

@– @LAST_MATCH_START

$. $NR
$INPUT_LINE_NUMBER

$/ $RS
$INPUT_RECORD_SEPARATOR

$| $AUTOFLUSH
$OUTPUT_AUTOFLUSH

$, $OFS
$OUTPUT_FIELD_SEPARATOR

$\ $ORS
$OUTPUT_RECORD_SEPARATOR

$" $LIST_SEPARATOR

$; $SUBSEP
$SUBSCRIPT_SEPARATOR

$% $FORMAT_PAGE_NUMBER

$= $FORMAT_LINES_PER_PAGE

$– $FORMAT_LINES_LEFT

$~ $FORMAT_NAME

$^ $FORMAT_TOP_NAME

$: $FORMAT_LINE_BREAK_CHARACTERS

Table B-4. Perl and English Variable Names

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1023
A

P
P

EN
D

IX
ES

Perl English

$^L $FORMAT_FORMFEED

@_ @ARG

$^A $ACCUMULATOR

$? $CHILD_ERROR

$^C $COMPILING

$^D $DEBUGGING

$! $ERRNO
$OS_ERROR

%! %ERRNO
%OS_ERROR

$^E $EXTENDED_OS_ERROR

$@ $EVAL_ERROR

$$ $PID
$PROCESS_ID

$< $UID
$REAL_USER_ID

$> $EUID
$EFFECTIVE_USER_ID

$($GID
$REAL_GROUP_ID

$) $EGID
$EFFECTIVE_GROUP_ID

$0 $PROGRAM_NAME

$] $OLD_PERL_VERSION

$^F $SYSTEM_FD_MAX

$^O $OSNAME

$^P $PERLDB

Table B-4. Perl and English Variable Names (continued)

1024 P e r l : T h e C o m p l e t e R e f e r e n c e

Env
This module imports environment variables into the current package as real scalars,
rather than forcing you to use the %ENV hash. To import all the variables defined
within the %ENV hash, just import the whole module:

use Env;

To import specific environment variables, specify them during the import:

use Env qw/PATH/;

You can now use and update $PATH as if it were $ENV{PATH}.
The internal method for supporting this is actually to tie scalar values to the %ENV

hash. The tie remains in place until the script exits, or until you remove a tied variable
with undef:

undef $PATH;

References Chapters 7, 11, 14, 15

Perl English

$^R $LAST_REGEXP_CODE_RESULT

$^S $EXCEPTIONS_BEING_CAUGHT

$^T $BASETIME

$^V $PERL_VERSION

$^W $WARNING

$^X $EXECUTABLE_NAME

Table B-4. Perl and English Variable Names (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1025
A

P
P

EN
D

IX
ES

Errno
This module defines and exports the constants defined in errno.h for error numbers on
your system.

use Errno;

Importing this module has the added effect of exporting %!. This allows you to access $!{}
as a hash element, retaining the look and feel of the special $! variable. Each key of the
hash is one of the exported error numbers. When an error occurs, the corresponding
error(s) that occurred have a non-zero value. Thus, you can do more complex error
trapping and management by identifying and handling individual error types.

Exporter
This module implements the default import method for modules.

package MyModule;

use Exporter;

@ISA = qw/Exporter/;

It implements a default import method that is called during the use statement.
Although it is possible for any module to define its own import method, this module
supplies a sample import method that can be inherited by your module to enable you
to export symbols to the calling script.

The Exporter module and the supplied import method use the @EXPORT,
@EXPORT_OK, and %EXPORT_TAGS variables to select which symbols to import.
The symbols in @EXPORT are exported by default, and the symbols in @EXPORT_OK
only when specifically requested. The %EXPORT_TAGS hash defines a number of
import sets that can be used to import a named set of symbols at one time.

For example, if the module defines the following variables,

@EXPORT = qw/A B C D E F/;

@EXPORT_OK = qw/G H I J K L/;

%EXPORT_TAGS = (FIRST => [qw/D E F/],

SECOND => [qw/J K L/]

);

1026 P e r l : T h e C o m p l e t e R e f e r e n c e

then you can use the following constructs in a calling script:

use MyModule; # Imports all of @EXPORT

use MyModule qw/G H/ # Only symbols G and H

use MyModule qw/:DEFAULT/; # All the symbols in @EXPORT

use MyModule qw/:FIRST A B C/; # The symbols in group FIRST and A B C

use MyModule qw(/^[ACGH]/); # Only the symbols matching the regex

use MyModule qw/!:FIRST/; # Only A B C

A leading colon indicates that you want to load the symbols defined in the specified
group, as defined by %EXPORT_TAGS. Note that the symbols exported here must
appear either in @EXPORT or @EXPORT_OK.

A leading exclamation mark indicates that you want to delete the specified symbols
from the import list. If such a definition is the first in the import list, then it assumes
you want to import the :DEFAULT set.

A // regular expression imports the symbols defined in @EXPORT and
@EXPORT_OK according to the regular expression.

You can display the list of symbols to be imported as they are determined
by setting the value of $Exporter::Verbose to true. You’ll need to do this in a
BEGIN block:

BEGIN { $Exporter::Verbose = 1 }

Unknown Symbols
You can prevent certain symbols from being exported. You should place the names
of symbols that should not be listed into the @EXPORT_FAIL array. Any attempt to
import any of these symbols will call the export_fail method (in the host module) with
a list of failed symbols.

If export_fail returns an empty list, no error is recorded and the requested symbols
are exported. If the list is not empty, an error is generated for each return symbol and
the export fails. The default export_fail method supported by Exporter just returns the
list of symbols supplied to it.

Tag-Handling Functions
You can modify the contents of the @EXPORT_OK and @EXPORT arrays using the tag
sets defined by the %EXPORT_TAGS hash, and the Exporter::export_tags and
Exporter::export_ok_tags methods.

A
P

P
EN

D
IX

ES
A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1027

For example, consider our original example, in which you could have built the
contents of @EXPORT and @EXPORT_OK using

@EXPORT = qw/A B C/;

@EXPORT_OK = qw/G H I/;

%EXPORT_TAGS = (FIRST => [qw/D E F/],

SECOND => [qw/J K L/]

);

Exporter::export_tags('FIRST');

Exporter::export_ok_tags('SECOND');

This would populate the arrays with your original values, without requiring
you to specify the symbols explicitly. Any names not matching a tag defined in
%EXPORT_TAGS will raise a warning when the –w command line switch is enabled.

Version Checking
The require_version method validates that the module being loaded is of a value equal
to or greater than the supplied value. The Exporter module supplies this method for
you, or you can define your own. In the case of the Exporter version, it uses the value
of the $VERSION variable in the exporting module.

Note that the comparison made is numeric, so version 1.10 will be treated as a
lower version than 1.9. You should, therefore, use an explicit two-digit (or more)
format for the version number, for example, 1.09.

Reference Chapter 7

ExtUtils::Command
This function is used under Win32 implementations to provide suitable replacements
for core Unix commands used by the extension development process. You should not
need to use this module directly, but it defines the following functions/commands:

cat

eqtime src dst

rm_f files....

touch files ...

mv source... destination

cp source... destination

chmod mode files...

mkpath directory...

test_f file

1028 P e r l : T h e C o m p l e t e R e f e r e n c e

ExtUtils::Embed
This module provides the necessary command line options and other information for
use when you are embedding a Perl interpreter into an application. It supports the
following functions.

xsinit

generates code for the XS initializer function.

ldopts

generates command line options for linking Perl to an application.

ccopts

generates command line options for compiling embedded Perl programs.

perl_inc

generates the command line options for including Perl headers.

ccflags

outputs the contents of the $Config{ccflags} hash element.

ccdlflags

outputs the contents of the $Config{ccdlflags} hash element

xsi_header

outputs the string defining the EXTERN_C macro used by perlmain.c and includes
statements to include perl.h and EXTERN.h.

xsi_protos(LIST)

outputs the corresponding boot_MODULE prototypes for the modules specified
in LIST.

xsi_body(LIST)

returns a list of the calls to newXS that glue each module bootstrap function to the
boot_MODULE function for each module specified in LIST.

References Chapter 25; see also Config, ExtUtils::MakeMaker

ExtUtils::Install
This module defines two functions: install and uninstall. These are used during the
installation process by the MakeMaker system to install files into the destination
directory.

ExtUtils::Installed
This module defines a suite of functions that can be used to query the contents of the
.packlist files generated during module installation. If you call the new function, it
constructs the internal lists by examining the .packlist files. The modules function
returns a list of all the modules currently installed. The files and directories both
accept a single argument—the name of a module. The result is a list of all the files
installed by the package. The directory_tree function reports information for all the
related directories. In all cases, you can specify Perl to get information pertaining to the
core Perl installation.

The validate function checks that the files listed in .packlist actually exist. The
packlist function returns an object as defined by ExtUtils::Packlist for the specified
module. Finally, version returns the version number of the specified module.

ExtUtils::Liblist
This module defines the libraries to be used when building extension libraries and other
Perl-based binaries. The information provided here broaches much of the complexity
involved in getting an extension to work across many platforms; the bulk of the code
relates to the information required for individual platforms.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1029
A

P
P

EN
D

IX
ES

ExtUtils::MakeMaker
The MakeMaker package provides a Perl-based system for producing standard make
files suitable for installing Perl applications and, more specifically, Perl extensions.

Reference Chapter 25

ExtUtils::Manifest
This module provides the functions that produce, test, and update the MANIFEST file.
Five of the functions are the most useful, beginning with mkmanifest, which creates a
file based on the current directory contents. The maincheck function verifies the
current directory contents against the MANIFEST file, while filecheck looks for files
in the current directory that are not specified in the MANIFEST. Both maincheck and
filecheck are executed by the fullcheck function, and skipcheck lists the files in the
MAINFEST.SKIP file.

ExtUtils::Miniperl
This module provides the list of base libraries and extensions that should be included
when building the miniperl binary.

ExtUtils::Mkbootstrap
This module makes a bootstrap file suitable for the DynaLoader module.

ExtUtils::Mksymlists
This module produces the list of options for creating a dynamic link library.

ExtUtils::MM_OS2
MakeMaker specifics for the OS/2 operating system are produced by this module.

ExtUtils::MM_Unix
MakeMaker specifics for the Unix platform are produced by this module. It also
includes many of the core functions used by the main MakeMaker module irrespective
of the host platform.

1030 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1031
A

P
P

EN
D

IX
ES

ExtUtils::MM_VMS
This module produces MakeMaker specifics for VMS.

ExtUtils::MM_Win32
This module produces MakeMaker specifics for Windows 95/98/NT.

ExtUtils::Packlist
This module supplies the Packlist object used by the ExtUtils::Installed module.

Reference See ExtUtils::Installed

Fatal
This module provides a system for overriding functions that normally provide a true
or false return value so that they instead fail (using die) when they would normally
return false. For example,

use Fatal qw/open/;

overrides open so that a failure will call die automatically and raise an exception that
can be caught with a suitable $SIG{_ _DIE_ _} handler. This allows you to bypass the
normal checking that you would conduct on each call to open, and instead install a
global handler for all open calls.

To trap your own calls:

sub mightfail {};

import Fatal 'mightfail';

Note that you cannot override the exec and system calls.

Reference Chapter 9

Fcntl
This module supplies the constants that are available as standard within the fcntl.h
file in C. This supplies all the constants directly as functions—the same as other
modules. This information is gleaned during the installation and build process of Perl

and should be correct for your operating system, supporting a compatible set of
constants.

The module exports the following constants by default. The exact list will vary from
system to system; this list comes from MacPerl 5.2.0r4:

F_DUPFD F_GETFD F_GETLK F_SETFD F_GETFL F_SETFL F_SETLK F_SETLKW

FD_CLOEXEC F_RDLCK F_UNLCK F_WRLCK

O_CREAT O_EXCL O_NOCTTY O_TRUNC

O_APPEND O_NONBLOCK

O_NDELAY O_DEFER

O_RDONLY O_RDWR O_WRONLY

O_EXLOCK O_SHLOCK O_ASYNC O_DSYNC O_RSYNC O_SYNC

F_SETOWN F_GETOWN

O_ALIAS O_RSRC

The following symbols are available, either individually or via the flock group:

LOCK_SH LOCK_EX LOCK_NB LOCK_UN

To import this group:

use Fcntl qw/:flock/;

Reference Chapter 8

FileCache
This module enables you to keep more files open than the system permits.

use FileCache;

It remembers a list of valid pathnames that you know you will want to write to, and
opens and closes the files as necessary to stay within the maximum number of open
files supported on your machine. To add a path to the list, you call the cacheout
function:

cacheout $path;

1032 P e r l : T h e C o m p l e t e R e f e r e n c e

FileHandle
This module supports an object-based interface for using filehandles.

use FileHandle;

The new method creates a new FileHandle object, returning it to the caller. Any
supplied arguments are passed on directly to the open method. If the open fails, the
object is destroyed and undef is returned. The newly created object is a reference
to a newly created symbol as supported by the Symbol module.

$fh = new FileHandle;

Alternatively, you can use the new_from_fd method to create a new FileHandle
object. It requires two parameters that are passed to FileHandle::fdopen.

The open method attaches a file to the new filehandle:

$fh->method(FILE [, MODE [, PERMS]])

The open method supports the options as the built-in open function. The first
parameter is the file name. If supplied on its own, you can use the normal open
formats such as > or >>, and then it uses the normal open function.

If you supply a MODE in the format of the POSIX fopen() function—for example,
“w” or “w+”—then the built-in open function is also used. If given a numeric MODE,
then the built-in sysopen function is used instead. The module automatically imports
the O_* constants from Fcntl if they are available.

The fdopen method is like open except that its first argument should be a
filehandle name, FileHandle object, or a file descriptor number.

If supported on your system, the fgetpos() and fsetpos() functions are available as
the getpos and setpos methods, respectively. The getpos works like tell and returns
the current location. You can then revisit the location within the file using setpos.

The setvbuf method is available to you if your system supports the setvbuf()
function, and it sets the buffering policy for the filehandle:

$fh->setvbuf(VAR, TYPE, SIZE)

The VAR parameter should be a suitable scalar variable to hold the buffer data, and
SIZE defines the maximum size of the buffer. The TYPE is specified using a constant,
and these are exported by default by the module. The constants are described in
Table B-5.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1033
A

P
P

EN
D

IX
ES

1034 P e r l : T h e C o m p l e t e R e f e r e n c e

You should not modify the contents of the scalar variable you use for the buffer while it
is in use.

The FileHandle module also supports the following methods, which are simply
aliases for the corresponding functions. See Chapter 3, Chapter 6, and/or Appendix A
for more information on the following functions:

clearerr close eof fileno getc

gets print printf seek tell

The module also supports methods for setting the individual variables that affect
the use of the filehandle directly:

autoflush format_formfeed

format_line_break_characters format_lines_left

format_lines_per_page format_name

format_page_number format_top_name

input_line_number input_record_separator

output_field_separator output_record_separator

Finally, the module also supports two further methods for reading lines from
the file:

$fh->getline

$fh->getlines

Constant Description

_IOFBF Causes the input and output to be fully buffered.

_IOLBF Causes the output to be line buffered. The buffer will be flushed
when a newline character is written to the filehandle, when the
buffer is full, or when input is requested on the handle.

_IONBF Causes the input and output to be completely unbuffered.

Table B-5. Options for the FileHandle->setvbuf Method

A
P

P
EN

D
IX

ES

The getline method returns a single line from the filehandle, just like the <$fh>
operator when used in a scalar context. The getlines method returns a list of lines in a
manner identical to the <$fh> operator in a list context. The getlines method will croak
if called in a scalar context.

References Chapter 8; see also Symbol, POSIX

File::Basename
This module supports the basename and dirname functions for extracting file and
directory names for complete paths. It also supports more complex file path parsing
functions.

use File::Basename;

The File::Basename module supplies functions for parsing pathnames and extracting
the directory; the file name; and, optionally, the extension. The extraction can be made
to account for different operating systems and can, therefore, be used as a cross-platform
tool for parsing paths.

The main function is fileparse:

fileparse PATH, EXTENSION

The fileparse function separates PATH into its components: a directory name, a file
name, and a suffix. The directory name should contain everything up to and including
the last directory separator in PATH. The remainder is then separated into the file
name and suffix based on the EXTENSION definitions you supply.

This argument should be a reference to an array, in which each element is a regular
expression used to match against the end of the file name. If the match succeeds, the
file is split into its file name and extension. If it does not match, the whole file name is
returned and the suffix remains empty.

For example:

($name, $path, $suffix) = fileparse('/usr/local/bin/script.pl', '\.pl');

This will return “script,” “/usr/local/bin/,” and “.pl,” in that order. Note that this is
not the same as the order you might expect. The function guarantees that if you combine
the three elements returned, you will end up with the original file path.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1035

The syntax used to separate the path depends on the setting of the module. You can
change the specification syntax using the fileparse_set_fstype function:

fileparse_set_fstype EXPR

The supplied expression defines the operating system syntax to be used. If EXPR
contains one of the substrings “VMS,” “MSDOS,” or “MacOS,” then the corresponding
syntax is used in all future calls to the fileparse function. If EXPR does not contain one
of these strings, the Unix syntax is used instead. Note that the default operation
depends on the value of $Config{osname} as determined during the build process.

Two functions, basename and dirname, are supplied for Unix compatibility:

basename EXPR

The basename function returns the file name of a path. The function uses fileparse for
its result.

dirname EXPR

The dirname function returns the directory portion of a file path. The result depends
on the current syntax being used to extract the information. When using VMS or
MacOS, the result is the same as the second argument returned by fileparse. If Unix or
MSDOS syntax is used, the value matches what would be returned by the dirname
Unix command. The function uses fileparse for its result.

Reference Chapter 8

File::CheckTree
This module provides a mechanism for validating a series of files using the standard
built-in tests for files. The method is to call the validate function with a textual list of
files and tests, for example,

use File::CheckTree;

$errors += validate(q{

/test/test.c -e || die "Can't find test.c"

/test/test.o -e || warn "Object file not found"

/test/test -ex || warn

});

1036 P e r l : T h e C o m p l e t e R e f e r e n c e

The preceding tests that the test.c file exists; a failure will cause a call to die. Warnings
are produced if the object and executable do not exist, and also if the executable is not
actually executable. The default method is to produce a warning (effectively, || warn)
if a file is not specified. Note that the files must be specified exactly. See the File::Find
module for another alternative.

You can also use a method of cd, which indicates the following entries are within
the specified directory. Thus, the preceding example could be rewritten:

use File::CheckTree;

$errors += validate(q{

/test

test.c -e || die "Can't find test.c"

test.o -e || warn "Object file not found"

test -ex || warn

});

In all cases, providing a fatal error has not occurred, the return value is the number
of files that failed the test.

Reference See File::Find

File::Compare
This module compares files or filehandles.

use File::Compare;

To compare files, you use the compare function:

print "Equal\n" if (compare('f1','f2) == 0);

Either argument to the function can be a file name or filehandle. The function returns
zero if the files are equal, 1 otherwise, or –1 if an error was encountered.

File::Copy
This module copies or moves files or filehandles.

use File::Copy;

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1037
A

P
P

EN
D

IX
ES

It supports two functions: copy and move. The copy function accepts two arguments
and copies from the first to the second file. Either argument can be a file name or
filehandle. The following examples are valid:

copy('f1', 'f2');

copy(*STDIN, 'console');

copy('f1', *STDOUT);

The move function will move a file from one location to another:

move('f1', 'f2');

If possible, it will rename the file; but if this does not work, the contents will be copied
to the new file, and the old file will be deleted when the copy is complete.

Both functions are platform independent and return 1 on success, 0 on failure.

Reference See Shell

File::DosGlob
This module provides a DOS-like globbing functionality, with the addition that
wildcards are supported in directory and file names.

require 5.004;

use File::DosGlob qw/glob/;

Note that this function overrides the CORE function within the scope of the current
package. To override the function in all packages:

use File::DosGlob qw/GLOBAL_glob/;

You can use spaces to separate individual patterns within the file specification
given, for example,

$executables = glob('*.exe *.com');

Note that in all cases you may have to double the backslashes in file specifications
to override the normal parsing that Perl does on quoted strings. Alternatively, use the
q// operator.

Reference Chapter 8

1038 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1039
A

P
P

EN
D

IX
ES

File::Find
This module supports the traversal of a directory tree.

use File::Find;

It supports two functions: find and finddepth. The find function accepts at least two
arguments:

find(\&wanted, '/foo', '/bar');

The first argument is a reference to a subroutine called each time a file is found. This is
called the “wanted” function and is used to process each file as it is found. Further
arguments specify the individual directories to traverse.

Because the wanted function is called each time a file is found, the function can
perform whatever functions or verifications on each file it needs to. The $File::Find::dir
variable contains the name of the current directory. Note that the function calls chdir to
change into each found directory. The special $_ variable contains the current file
name. You can also access $File::Find::name to get the full pathname of the current file.
Setting the value of $File::Find::prune prunes the directory tree.

For example, the script that follows would print files and directories in the
/usr/local tree that are executable by the real and effective uid/gid:

use File::Find;

find(\&wanted, '/usr/local');

sub wanted

{

next unless (-x $_ and -X _);

print "$File::Find::name\n";

}

If you are creating complex wanted functions and know how to use the Unix find
command, you can use the find2perl script, which generates the necessary stand-alone
code for you. For example,

$ find2perl /usr/local -name "*.html" -mtime -7

1040 P e r l : T h e C o m p l e t e R e f e r e n c e

produces the following stand-alone script:

#!/usr/local/bin/perl

eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'

if $running_under_some_shell;

require "find.pl";

Traverse desired filesystems

&find('/usr/local');

exit;

sub wanted {

/^.*\.html$/ &&

(($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) &&

(int(-M _) < 7);

}

The finddepth function is identical to find except that it does a depth first search,
rather than working from the lowest depth to the highest.

References Chapters 8, 20

File::Path
This module creates or removes a directory tree.

use File::Path;

It supplies two functions, mkpath and rmtree, which make and remove directory trees.

mkpath(ARRAYREF, PRINT, MODE)

The ARRAYREF should be either the name of the directory to create, or a reference to a
list of directories to be created. All intermediate directories in the specification will also
be created as required. If PRINT is true (default is false), the name of each directory
created will be printed to STDOUT. The MODE is the octal mode to be used for the

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1041
A

P
P

EN
D

IX
ES

newly created directories. The function returns a list of all the directories created. For
example, to create a typical /usr/local structure:

mkpath(['/usr/local/bin',

'/usr/local/etc',

'/usr/local/lib'], 0, 0777);

The rmtree function deletes a directory subtree. All of the directories specified will
be deleted, in addition to the subdirectories and files contained within them.

rmtime(ARRAYREF, PRINT, SKIP)

The ARRAYREF should either be the name of a directory to delete or a reference to an
array of directories to be deleted. The directory specified and all its subdirectories and
files will be deleted.

The PRINT argument, if set to true, prints each file or directory, and the method
used to remove the file or directory. The default value is false. The SKIP argument, if
set to true, causes the function to skip files and directories that it is unable to remove
due to access privileges. The default value for SKIP is false.

The function returns the number of files successfully deleted.
Note that you will need to use a $SIG{_ _WARN_ _} handler to identify files or

directories that could not be deleted.

References Chapters 8, 24

File::Spec
This module is a cross-platform–compatible library for performing operations on file
names and paths.

use File::Spec;

The module is supported by a number of platform-specific modules that are imported
as required, depending on the platform on which the script is running. You shouldn’t
need to import the support modules individually; use the File::Spec module and let
it decide which module is required. See the File::Spec::Unix module for a list of the
supported methods. Other modules override the necessary methods that are specific
to that platform.

1042 P e r l : T h e C o m p l e t e R e f e r e n c e

Since the interface is object oriented, you must call the functions as class methods:

$path = File::Spec->('usr','local');

References Chapter 24; see also File::Spec::Mac, File::Spec::OS2, File::Spec::Unix,
File::Spec::VMS, File::Spec::Win32

File::Spec::Mac
This module supports the MacOS-specific methods for manipulating file specifications.

use File::Spec::Mac;

It overrides the default methods supported by File::Spec. Note that you should not
normally need to use this module directory. The methods overridden by this module
are given here.

canonpath

returns the path it’s given; no process is required under MacOS.

catdir

concatenates directory names to form a complete path ending with a directory. Under
MacOS, these rules are followed:

� Each argument has any trailing : removed.

� Each argument except the first has any leading : character removed.

� All arguments are then joined by a single : character.

To create a relative rather than absolute path, precede the first argument with a :
character, or use a blank argument.

catfile

concatenates directory names and a file into a path that defines an individual file.
Uses catdir for the directory names. Any leading or trailing colons are removed from
the file name.

curdir

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1043
A

P
P

EN
D

IX
ES

returns a string defining the current directory.

rootdir

returns a string defining the root directory. Under MacPerl, this returns the name of
this startup volume; under any other Perl, it returns an empty string.

updir

returns the string representing the parent directory.

file_name_is_absolute

returns true if the supplied path is absolute.

path

returns the null list under MacPerl, since there is no execution path under MacOS.
When used within the MPW environment, returns the contents of $ENV{Commands}
as a list.

Reference See File::Spec

File::Spec::OS2
This module supports methods for manipulating file specifications under the OS/2
platform.

use File::Spec::OS2;

It overrides the default methods supported by File::Spec. Note that you should not
normally need to use this module directory. The supported methods are detailed in the
File::Spec:Unix module.

Reference See File::Spec

File::Spec::Unix
This module supports Unix-specific methods for file specifications.

use File::Spec::Unix;

1044 P e r l : T h e C o m p l e t e R e f e r e n c e

It imports and overrides the methods supported by File::Spec. It is normally imported
by File::Spec as needed, although you can import it directly if required. The following
methods are supplied.

canonpath

cleans up a given path, removing successive slashes and /.. Note that the physical
existence of the file or directory is not verified.

catdir

concatenates one or more directories into a valid path. This strips the trailing slash off
the path for all but the root directory.

catfile

concatenates one or more directories and a file name into a valid path to a file.

curdir

returns a string representing the current directory (.).

rootdir

returns a string representing the root directory (/).

updir

returns a string representing the parent directory (. .).

no_upwards

removes references to parent directories from a given list of file paths.

file_name_if_absolute

returns true if the given path is absolute.

path

returns the $ENV{PATH} variable as a list.

join

is identical to catfile.

References See File::Spec

File::Spec::VMS
This module supports VMS-specific methods for file specifications.

use File::Spec::VMS;

It is imported and overrides the methods supplied by File::Spec under the VMS
platform. The following methods are supported.

catdir LIST

concatenates a list of specifications and returns a VMS syntax directory specification.

catfile LIST

concatenates a list of specifications and returns a VMS syntax file specification.

curdir

returns the current directory as a string.

rootdir

returns the root directory as a string.

updir

returns the parent directory as a string.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1045
A

P
P

EN
D

IX
ES

path

translates the logical VMS path defined in DCL$PATH rather than splitting the value
of $ENV{PATH}.

file_name_is_absolute

checks that a VMS directory specification is valid. Note that this does not check the
physical existence of a file or directory, only that the specification is correct.

Reference See File::Spec

File::Spec::Win32
This module provides Win32-specific methods for file specifications.

use File::Spec::Win32;

This is the module imported internally by File::Spec under Win32 platforms. The
package overrides the following methods supported by the File::Spec module.

Catfile LIST

concatenates one or more directory names and a file name to form a complete path to a
file.

canonpath EXPR

cleans up a supplied pathname for use on Win32 platforms.

Reference See File::Spec

FindBin
This module exports variables that define the directory of the original Perl script.

use FindBin;

1046 P e r l : T h e C o m p l e t e R e f e r e n c e

It locates the full path to the script’s parent directory, as well as the name of the script.
This can be useful if you want to install a script in its own directory hierarchy but do
not want to hard code the directory location into the script.

The variables available are shown in Table B-6. The variables are not exported by
default; you must explicitly request them or use the fully qualified values.

Note that if the script was invoked from STDIN or via the -e command line option,
the value of $Bin is set to the current directory.

GDBM_File
This module provides an interface to the GDBM database system. The main benefit of
GDBM over other systems (except Berkeley DB) is that it provides rudimentary
database locking and does not have a restricted bucket size, allowing you to store any
size object within a GDBM database.

use GDBM_File;

tie %db, 'GDBM_File', 'db', &GDBM_WRCREAT, 0640;

untie %db;

Instead of using the modes for opening the database that are ordinarily supplied
by the Fcntl module, the GDBM_File module provides its own constants, listed in
Table C-7.

References Chapter 13; see also AnyDBM_File, DB_File, NDBM_File, ODBM_File,
SDBM_File

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1047
A

P
P

EN
D

IX
ES

Variable Description

$Bin Path to the directory where the script was located

$Script The name of the script that was invoked

$RealBin The value of $Bin with all the links resolved

$RealScript The value of $Script with all the links resolved

Table B-6. Variables Available via FindBin

Getopt::Long
This module is suitable for simple scripts and argument passing. However, it falls over
if you try to do more complex processing or want to place the extracted information
into specific variables and structures. The Getopt::Long module implements a more
advanced system. It is POSIX compliant and, therefore, suitable for use in scripts that
require POSIX compliance.

POSIX compliance allows not only the standard single-character matching
supported by the Getopt::Std module, but also string arguments. For example:

$ script.pl --inputfile=source.txt

The command line option in this case is – – inputfile. Note that long names as
arguments are supported by both the single and double hyphen, although the double
hyphen is the POSIX default.

The + sign is also supported, but the use of this is deprecated and not part of the POSIX
specification.

The selection of additional arguments to command line options is supported by
appending a specific character sequence to the end of the option name. The list of
available modifiers is defined in Table B-8.

Any elements in the argument list not identified as options remain in the
@ARGV array.

1048 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

GDBM_READER Open for read only.

GDBM_WRITER Open for read/write.

GDBM_WRCREAT Open for read/write, creating a new database if it does
not already exist, using the mode specified.

GDBM_NEWDB Open for read/write, creating a new database even if
one already exists, using the mode specified.

Table B-7. Modes for Opening GDBM Tied Databases

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1049
A

P
P

EN
D

IX
ES

Linkage
When using a hash reference as the first argument to the GetOptions function,
additional facilities are available to you for processing more complex command lines.
By default, the operation is identical to the getopts function. You can also use a trailing
@ or % sign to signify that an array or hash reference should be returned. In the case of
an array reference, this allows you to supply multiple values for a single named option.

For a hash, it supports “–option name=value” command line constructs, where
name and value are the key and value of the returned hash.

Option
Specified Description

! The option does not accept an optional piece of information and
may be negated by prefixing no. For example, opt!, will set the
value of an option --opt to one, and --noopt to zero.

+ The option does not accept an additional piece of information. Each
appearance in the command line options will increment the
corresponding value by one, such that --opt --opt --opt will set a
value of three, providing it doesn’t already have a value.

=s The option requires an additional string argument. The value of the
string will be placed into the corresponding variable.

:s The option accepts an optional string argument. The value of the
string will be placed into the corresponding variable.

=i The option requires an integer argument. The value will be placed
into the corresponding variable.

:i The option accepts an optional integer argument. The value will be
placed into the corresponding variable.

=f The option requires a real number argument. The value will be
placed into the corresponding variable.

:f The option accepts an optional real number argument. The value
will be placed into the corresponding variable.

Table B-8. Options for the Getopt::Long Module

If you do not specify a hash reference as the first argument, the function will
instead create a new variable of the corresponding type, using the argument name
prefixed by opt_. So a function call

GetOptions("file=s","files=s@","users=s%");

may result in a similar assignment to the following:

$opt_file = "source.txt";

@opt_files = ('source.txt', 'sauce.txt');

%opt_users = ('Bob' => 'Manager',

'Fred' => 'Salesman');

You can also use the hash argument feature to update your own variables directly:

GetOptions("file=s" => \$file,

"files=s@" => \@files,

"users=s%" => \%users);

This last specification method also supports a function that will handle the
specified option. The function will receive two arguments—the true option name
(see the next section) and the value supplied.

Aliases
You can support alternative argument names by using | characters to separate
individual names. For example:

GetOptions("file|input|source=s");

The “true” name would be “file” in this instance, placing the value into $opt_file.
This true name is also passed to a function if specified (see previous section).

Callback Function
If GetOptions cannot identify an individual element of the @ARGV array as a true
argument, you can specify a function that will handle the option. You do this by using
a value of <> as the argument name, as in

GetOptions("<>" => \&nonoption);

1050 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Remember that the GetOptions function removes identifiable arguments from
@ARGV and leaves the remainder of the elements intact if you don’t use this facility.
You can then process the arguments as you wish after GetOptions has completed
successfully.

Return Values
The GetOptions function returns true (1) if the command line arguments could be
identified correctly. If an error occurs (because the user has supplied a command line
argument the function wasn’t expecting), the function returns false and uses warn to
report the bad options. If the definitions supplied to the function are invalid, the
function calls die, reporting the error.

Customizing GetOptions
You can control the operation of the GetOptions function by passing arguments to
Getopt::Long::Configure. The list of options is shown in Table B-9. The values shown
in the table set the option; to unset, prefix the option with no_.

For example, to set auto-abbreviation and allow differentiation between upper- and
lowercase arguments:

Getopt::Long::Configure('auto_abbrev','no_ignore_case');

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1051
A

P
P

EN
D

IX
ES

Option Description

Default Sets all configuration options to their default values.

auto_abbrev Supports abbreviated option names, providing the
arguments supplied can be identified uniquely. This is the
default operation, unless the POSIXLY_CORRECT
environment variable is set.

getopt_compat Supports the use of + as the prefix to arguments. This is
the default operation, unless the POSIXLY_CORRECT
environment variable is set.

Table B-9. Configuration Options for GetOpt::Long

1052 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

require_order This specifies that your options must be supplied first on
the command line. This is the default operation, unless the
POSIXLY_CORRECT environment variable is set. This is
the opposite of permute. If require_order is set,
processing terminates on the first nonorder item found in
the argument list.

permute Specifies that nonoptions are allowed to be mixed with
real options. This is the default operation, unless the
POSIXLY_CORRECT environment variable is set. This is
the opposite of require_order.

bundling Setting this allows single-character options to be bundled
into single strings. For example, if this is set, the
string “-vax” will be equivalent to “-v -a -x.” This option
also allows for integer values to be inserted into the
bundled options, such that “-d256aq” is equivalent to
“-d 256 -a -q.”

bundling_override If set, the bundling option is implied. However, if an
option has been defined with the same full name as a
bundle, it will be interpreted as the name, not the
individual options. For example, if “vax” was specified,
then “-vax” would be interpreted as “-vax,” but “-avx”
would be interpreted as “-a -v -x.”

ignore_case Default; string command line options are interpreted
ignoring case.

ignore_case_always When bundling is set, case is also ignored on
single-character options.

pass_through Unrecognized options remain in the @ARGV array,
instead of producing and being flagged as errors.

prefix Takes the next argument to the function as a string
defining the list of strings that identify an option. The
default value is (– –|-|\+), or (– –|-) if the POSIXLY_
CORRECT environment variable is set.

debug Enables debugging output.

Table B-9. Configuration Options for GetOpt::Long (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1053
A

P
P

EN
D

IX
ES

Variables
You can monitor the version number of the Getopt::Long module with the
$Getopt::Long::VERSION variable. You can also identify the major and minor
versions using the $Getopt::Long::major_version and $Getopt::Long::minor_version
variables. If you want to identify the version number during import, use the usual

use Getopt::Long 3.00;

When using the callback function (with <>) you may want to report an
error back to the main GetOptions function. You can do this by incrementing the
$Getopt::Long::error variable.

Reference Chapter 16

Getopt::Std
This module provides two functions: getopt and getopts.

use Getopt::Std;

getopt('ol');

getopts('ol:');

Both functions require a single argument that specifies the list of single-letter
arguments you would like to identify on the command line.

In the case of the getopt function, it assumes that all arguments expect an
additional piece of information. With the getopts function, each character is taken
to be a Boolean value. If you want to accept arguments with additional information,
append a colon.

Variables are created by the function with a prefix of $opt_. The value of each
variable is one in the case of a Boolean value, or the supplied additional argument.
If the command argument is not found, the variable is still created, but the value
is undef.

In addition, for either function, you can supply a second argument that should
be a reference to a hash:

getopts('i:',\%opts);

1054 P e r l : T h e C o m p l e t e R e f e r e n c e

Each supplied argument will be used as the key of the hash, and any additional
information supplied will be placed into the corresponding values. Thus, a script
using the preceding line when called,

$ getopts -i Hello

will place the string “Hello” into the $opts{'i'} hash element.
If you have the use strict 'vars' pragma in effect (see Chapter 16), you will need

to predefine the $opt_ and hash variables before they are called. Either use a my
definition before calling the function, or, better still, predeclare them with use vars.

Reference Chapter 16

I18N::Collate
The functionality of the I18N::Collate module (which allows strings to be sorted
according to their current locale, rather than by the ordinal values in the ASCII table)
has been integrated into Perl from version 5.003_06. See the perllocale man page
for details.

IO
This module automatically imports a number of base IO modules.

use IO;

It doesn’t provide any modules or functionality on its own, but does attempt to import
the following modules for you:

IO::File

IO::Handle

IO::Pipe

IO::Seekable

IO::Socket

References Chapter 8; see also IO::File, IO::Handle, IO::Pipe, IO::Seekable,
IO::Socket

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1055
A

P
P

EN
D

IX
ES

IO::File
This module supports the methods for accessing and using filehandles.

use IO::File;

The new method creates a new filehandle, and any arguments are passed to the open
method. If open fails, the object is destroyed; otherwise, it is returned to the caller.

new_tmpfile

Creates a new filehandle opened for read/write on the newly created temporary file.
Once created, the object supports the following methods:

open(FILENAME [, MODE [, PERMS]])

The open method supports the options as the built-in open function. The first
parameter is the file name. If supplied on its own, you can use the normal open
formats, such as > or >>, and then it uses the normal open function.

If you supply a MODE in the format of the POSIX fopen() function—for example,
“w” or “w+”—the built-in open function is also used. If given a numeric MODE, the
built-in sysopen function is used instead. The module automatically imports the O_*
constants from Fcntl if they are available.

The fdopen method is like open except that its first argument should be a
filehandle name, FileHandle object, or a file descriptor number.

Additional methods are inherited from IO::Handle and IO::Seekable.

References See IO, IO::Handle, IO::Seekable

IO::Handle
This module supports the object methods available for use with other IO handles.

use IO::Handle;

It provides the base class from which all other IO handle classes inherit.

1056 P e r l : T h e C o m p l e t e R e f e r e n c e

new

The new method creates a new IO::Handle object.

new_from_fd(FD, MODE)

Creates a new IO::Handle object. The FD and MODE are passed on to the fdopen
method.

Additional methods match the functionality supported by the following functions.
See Chapters 4, 8, and Appendix A for more details.

close fileno getc eof read

truncate stat print printf sysread

syswrite

The following methods are handle-specific versions of the corresponding Perl
variables. See Chapter 4 for more information.

autoflush format_formfeed

format_line_break_characters format_lines_left

format_lines_per_page format_name

format_page_number format_top_name

format_write input_line_number

input_record_separator output_field_separator

output_record_separator

Additional module-specific methods are described here.

$fh->fdopen(FD, MODE)

This opens the file like the built-in open. The FD parameter takes a filehandle name,
IO::Handle object, or a file descriptor number. The MODE is a valid Fcntl mode, and
the module attempts to import the O_* series of constants from Fcntl, but doesn’t croak
if the modules cannot be imported.

$fh->opened

returns true if the object is currently a valid file descriptor.

$fh->getline

$fh->getlines

The getline method returns a single line from the filehandle, just like the <$fh>
operator when used in a scalar context. The getlines method returns a list of lines in a
manner identical to the <$fh> operator in a list context. The getlines method will croak
if called in a scalar context.

$fh->ungetc(ORD)

pushes the character that is the ordinal value ORD onto the input stream.

$fh->write(BUF, LEN [, OFFSET])

writes BUF of size LEN to the filehandle. This is the implementation of the write() C
function. If given, then OFFSET specifies the location within the file to write the data,
without requiring you to move to that spot, and without modifying the current file
pointer. Note that this is identical to the pwrite() C function.

$fh->flush

flushes the filehandle’s buffer.

$fh->error

returns true if the filehandle has experienced any errors.

$fh->clearerr

clears the error indicator.

$fh->untaint

marks the data received on the handle as taint safe.
The setvbuf method is available if your system supports the setvbuf() function,

and it sets the buffering policy for the filehandle:

$fh->setvbuf(VAR, TYPE, SIZE)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1057
A

P
P

EN
D

IX
ES

The VAR parameter should be a suitable scalar variable to hold the buffer data,
and SIZE defines the maximum size of the buffer. The TYPE is specified using a
constant, and these are exported by default by the module. The constants are described
in Table B-10.

You should not modify the contents of the scalar variable you use for the buffer
while it is in use.

References See IO, IO::File, Symbol

IO::Pipe
This module supports methods for pipes.

use IO::Pipe;

It provides an object interface for creating pipes between processes.

new([READER, WRITER])

This creates a new object (as supplied by the Symbol package). It takes two optional
arguments, which should be IO::Handle objects, or an object that is a subclass of
IO::Handle. These arguments will be used during the pipe() system call. If no
arguments are supplied, the handles method is called.

Supported methods are described here.

reader([ARGS])

1058 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

_IOFBF Causes the input and output to be fully buffered.

_IOLBF Causes the output to be line buffered. The buffer will be flushed
when a newline character is written to the filehandle, when the
buffer is full, or when input is requested on the handle.

_IONBF Causes the input and output to be completely unbuffered.

Table B-10. Options for the FileHandle->setvbuf Method

The object is reblessed into a subclass of IO::Handle and is the handle at the reading
end of the pipe. Any supplied ARGS are used when calling exec after a fork.

writer([ARGS])

The object is reblessed into a subclass of IO::Handle and is the handle at the writing
end of the pipe. Any supplied ARGS are used when calling exec after a fork.

handles

This method returns two objects blessed into IO::Pipe::End or a subclass thereof.

References See IO, IO::Handle, Symbol

IO::Seekable
This module supplies base seek methods for IO objects.

use IO::Seekable;

package IO::Package;

@ISA = qw/IO::Seekable/;

It provides base methods for other IO::* modules to implement the positional
functionality normally handled by the seek and tell built-in functions. Note that the
module does not support any constructor methods of its own. The methods support
the seek and location within file descriptors, using the fgetpos() and fsetpos() C
functions. The methods are supported within IO::File as IO::File::getpos and
IO::File::setpos methods, respectively. See the seek and tell functions in Appendix A
for more information.

References Chapters 4, 8, Appendix A; see also IO, IO::File

IO::Select
This module supports an object-oriented interface to the select() system call.

use IO::Select;

The module allows you to monitor which IO::Handle objects are ready for reading or
writing, or have an error pending, just like the select built-in function.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1059
A

P
P

EN
D

IX
ES

You can create a new IO::Select object with the new method:

new([HANDLES])

The optional HANDLES argument is a list of IO::Handle objects to initialize into the
IO::Select object.

Once created, the new object supports the following, more pragmatic, interface to
the select function.

add(HANDLES)

adds the list of IO::Handle objects, integer file descriptor, or array reference, where the
first element is an IO::Handle object or integer. It is these objects that will be returned
when an event occurs. This works by the file descriptor number (as returned by fileno),
so duplicated handles are not added.

remove(HANDLES)

removes the given handles from the object.

exists(HANDLE)

returns true if HANDLE is a part of the set.

handles

returns an array of all the handles within the set.

can_read([TIMEOUT])

returns an array of handles that are ready for reading. The method blocks for a
maximum of TIMEOUT seconds. If TIMEOUT is not specified, the call blocks
indefinitely.

can_write([TIMEOUT])

returns an array of handles that are ready for writing. The method blocks for a
maximum of TIMEOUT seconds. If TIMEOUT is not specified, the call blocks
indefinitely.

1060 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

has_error([TIMEOUT])

returns an array of handles that have a pending error condition. The method blocks for
a maximum of TIMEOUT seconds. If TIMEOUT is not specified, the call blocks
indefinitely.

count

returns the number of handles that will be returned when a can_* method is called.

bits

returns a bitstring suitable for passing to the built-in select function.

IO::Select::select(READ, WRITE, ERROR, [, TIMEOUT])

The select method is a static method that must be called with the package name, as just
shown. The function returns an array of three elements. Each is a reference to an array
holding the reference to the handles that are ready for reading, are ready for writing,
and have error conditions waiting, respectively.

The READ, WRITE, and ERROR arguments are IO::Select objects, or undef.
The optional TIMEOUT value is the number of seconds to wait for a handle to
become ready.

References Chapter 8, 12; see IO, IO::File, IO::Handle

IO::Socket
This module supports an object interface for socket communications.

use IO::Socket;

This class supports socket-based communication. It exports the functions and constants
supported by Socket and also inherits methods from IO::Handle, in addition to
defining a number of common methods suitable for all sockets. The IO::Socket::INET
and IO::Socket::UNIX classes define additional methods for specific socket types.

The new method creates a new IO::Socket object using a symbol generated by the
Symbol package.

$socket = IO::Socket->new(Domain => 'UNIX');

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1061
A

P
P

EN
D

IX
ES

The constructor only identifies one option, Domain, which specifies the domain in
which to create the socket. Any other options are supplied to the IO::Socket::INET or
IO::Socket::UNIX constructor accordingly.

The newly created handle will be in autoflush mode. This is the default operation from
versions above 1.1603 (Perl 5.004_04). You will need to specify this explicitly if you
want to remain compatible with earlier versions.

The class supports the following methods:

accept([PKG])

This accepts a new socket connection like the built-in accept function, returning a new
IO::Socket handle of the appropriate type. If you specify PKG, the new object will be
of the specified class, rather than that of the parent handle. In a scalar context, only the
new object is returned; in a list context, both the object and the peer address are
returned. The method will return undef or an empty list on failure.

timeout([VALUE])

If supplied without any arguments, the current time-out setting is returned. If called
with an argument, it sets the time-out value. The time-out value is used by various
other methods.

sockopt(OPT [, VALUE])

gets/sets the socket option OPT. If the method is only supplied OPT, it gets the current
value of the option. To set a value, use the two-argument form.

sockdomain

returns the numerical value of the socket domain type.

socktype

returns the numerical value of the socket type.

protocol

returns the numerical value of the protocol being used on the socket. If the protocol is
unknown, zero is returned.

1062 P e r l : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1063

peername

This is identical to the built-in getpeername function.

sockname

This is identical to the built-in getsockname function.
The class also supplies frontend methods for the following built-in functions:

socket

socketpair

bind

listen

send

recv

Please refer to Chapter 9 and Appendix A for more information on these
functions/methods.

IO::Socket::INET
The IO::Socket::INET class provides a constructor to create a socket within the
AF_INET family/domain. The constructor accepts a hash that takes the options shown
in Table B-11.

If passed a single argument, the constructor assumes that it’s a PeerAddr
specification. For example, to create a connection to a web server on port 80,

$socket = IO::Socket::INET->new(PeerAddr => 'www.mcwords.com:http(80)');

Or to create a local socket for listening:

$socket = IO::Socket::INET->new(LocalAddr => 'localhost',

LocalPort => '7000',

Listen => '5',

Proto => 'tcp');

Note that by specifying LocalAddr and Listen, the constructor builds a local socket
suitable for acting as a server-side socket. You can use the accept method (inherited
from IO::Socket), which works just like the built-in function.

Beyond the methods that are inherited from IO::Socket and IO::Handle, the
IO::Socket::INET class also supports the following methods:

sockaddr

returns the 4-byte packed address of the local socket.

sockport

returns the port number used for the local socket.

sockhost

1064 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Format Description

PeerAddr hostname[:port] Remote host address (and port). The
address can be specified as a name
(which will be resolved) or as an IP
address. The port (if specified) should be
a valid service name and/or port number
as defined in PeerPort.

PeerPort service(port)|port The service port name and number, or
number only.

LocalAddr hostname[:port] Local host address to bind to.

LocalPort service(no)|no The local service port name and number,
or number only.

Proto "tcp"|"udp"|. . . The protocol name or number. If this is
not specified and you give a service name
in the PeerPort option, then the
constructor will attempt to derive Proto
from the given service name. If it cannot
be resolved, then "tcp" is used.

Type SOCK_STREAM|
SOCK_DGRAM|. . .

The socket type, specified using a
constant as exported by Socket. This will
be deduced from Proto if not otherwise
specified.

Listen The queue size for listening to requests.

Reuse If true, then it sets the SO_REUSEADDR
option before binding to the local socket.

Table B-11. Options for Creating an IO::Socket::INET Object

returns the IP address in the form xxx.xxx.xxx.xxx for the local socket.

peeraddr

returns the 4-byte packed address of the remote socket.

peerport

returns the port number used for the remote socket.

peerhost

returns the IP address in the form xxx.xxx.xxx.xxx for the remote socket.

IO::Socket::UNIX
The IO::Socket::UNIX class provides a constructor to create a socket within the
AF_UNIX family/domain. The constructor accepts a hash that takes the options shown
in Table B-12.

Like the IO::Socket::INET class, this class supports the methods inherited from
IO::Socket and IO::Handle, in addition to the following methods:

hostpath

returns the pathname to the FIFO file at the local end.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1065
A

P
P

EN
D

IX
ES

Option Description

Type The socket type, SOCK_STREAM, SOCK_DGRAM, or one of the
other constants supported in Socket.

Local Path to the local FIFO file.

Peer Path to the peer FIFO file.

Listen If set to true, it creates a socket that can be used to accept new
client connections.

Table B-12. Options for Creating a New IO::Socket::Unix Object

peerpath

returns the pathname to the FIFO file at the peer end.

References Chapter 13; see also IO::Handle, IO::Socket, Socket

IPC::Msg
This module is an object-oriented interface to the System V message system.

use IPC::Msg;

It provides an alternative interface to the msg* range of IPC message queue functions.
The new method creates a new message queue.

new KEY, FLAGS

creates a new message queue associated with KEY using FLAGS as the permissions for
accessing the queue. You will need to import suitable constants from IPC::SysV.
A new object is created only under the following conditions:

� KEY is equal to IPC_PRIVATE.

� KEY does not already have a message queue associated with it.

� FLAGS contains the IPC_CREAT constant.

Once created, the following methods are supported:

id

returns the system message queue identifier.

rcv BUF, LEN [, TYPE [, FLAGS]])

receives a message from the queue into the variable BUF, up to a maximum length LEN.

remove

removes (destroys) the message queue from the system.

1066 P e r l : T h e C o m p l e t e R e f e r e n c e

set STAT

set(NAME => VALUE [, NAME => VALUE...])

sets the values using either an IPC::Msg::stat object or the specified hash. Supported
elements are uid, gid, mode, and qbytes.

snd

sends a message to the queue of TYPE.

stat

returns an IPC::Msg::stat object that is a subclass of the Class::Struct class. The object
consists of the following fields:

uid gid cuid cgid mode qnum qbytes

lspid lrpid stime rtime ctime

References Chapter 14; see also Class::Struct, IPC::SysV

IPC::Open2
This module allows you to open a piped process for both reading and writing.

use IPC::Open2;

$pid = open2(READER, WRITER, LIST);

The open2 function supports the functionality not provided in the built-in open
function to allow you to open a command for both reading and writing. The READER
and WRITER arguments should be references to existing filehandles to be used for
reading from and writing to the piped command. The function does not create the
filehandles for you. The LIST is one or more arguments defining the command to be
run. For example:

$pid = open2(*READ, *WRITE, '|bc|');

The returned value is the process ID of the child process executed. Errors are raised by
an exception matching /^open2:/. You should probably use this within an eval block.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1067
A

P
P

EN
D

IX
ES

If READER is a string and it begins with ">&", then the child will send output
directly to that filehandle. If WRITER is a string that begins with "<&", then WRITER
will be closed in the parent, and the child process will read from the filehandle directly.
In both cases, the filehandle is duplicated with dup() instead of pipe().

The function assumes you know how to read from and write to the child process while
preventing deadlocking. Commands that use a fixed input or output length (specified in
a number of characters or lines) should prevent the problem.

References Chapters 8, 14, 15; see also IPC::Open3

IPC::Open3
This module is similar to IPC::Open2, but it opens a command for reading, writing,
and error handling.

use IPC::Open3;

$pid = open3(WRITER, READER, ERROR, LIST);

The WRITER, READER, and ERROR should be references to existing filehandles to be
used for standard input, standard output, and standard error from the command and
arguments supplied in LIST. Note that the order of the READER and WRITER
arguments is different from that in open2. If " is given as the argument for ERROR,
then ERROR and READER use the same filehandle.

All other details are identical to the open2 call, including the warning on
deadlocking.

References Chapters 8, 14 ,15; see also IPC::Open2

IPC::Semaphore
This module is an object class definition for System V semaphore–based IPC.

use IPC::Semaphore;

It provides an object interface to the System V semaphore system used for interprocess
communication. The new method creates a new IPC::Semaphore object:

$sem = new IPC::Semaphore(KEY, NSEMS, FLAGS);

1068 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1069
A

P
P

EN
D

IX
ES

Creates a new semaphore set associated with KEY, with NSEMS semaphores in the
set. The value of FLAGS is a list of permissions for the new semaphore set. You will
need to import suitable constants from the IPC::SysV module.

A new semaphore is created only under the following conditions:

� KEY is equal to IPC_PRIVATE.

� KEY does not already have a semaphore identifier associated with it.

� FLAGS contains the IPC_CREAT constant.

Once created, the new object supports the following methods:

getall

returns the values contained in the semaphore set as a list.

getnccnt SEM

returns the number of processes waiting for SEM to become greater than the
current value.

getpid SEM

returns the process ID of the last process that used SEM.

getval SEM

returns the current value of SEM.

getzcnt SEM

returns the number of processes waiting for SEM to become zero.

id

returns the system identifier for the semaphore set.

op OPLIST

performs a specific operation on the semaphore set. OPLIST is a multiple of a
three-value list that defines the operation to perform. The first argument is the
semaphore number, the second is the operator, and the last is the FLAGS value.

1070 P e r l : T h e C o m p l e t e R e f e r e n c e

remove

removes (destroys) the semaphore set.

set STAT

set(NAME => VALUE [, NAME => VALUE...])

sets the uid, gid, and mode of the semaphore set. Accepts either an IPC::Semaphore::stat
object, as returned by the stat method (see the example that follows), or a hash.

setall LIST

sets all the values in the set to those given in LIST. The LIST must be of the
correct length.

setval N, VALUE

sets the value of the semaphore at index N to VALUE.

stat

returns an IP::Semaphore::stat object that is a subclass of the Class::Struct class.
The object consists of the following fields:

uid gid cuid cgid mode ctime otime nsems

References Chapter 14; see also Class::Struct, IPC::SysV

IPC::SysV
This module supplies the System V IPC constants used by the built-in IPC calls.

use SysV::IPC;

Note that the module does not import any symbols implicitly. You need to specify the
symbols you want to use. The list of available symbols is shown here:

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1071
A

P
P

EN
D

IX
ES

GETALL GETNCNT GETPID GETVAL

GETZCNT

IPC_ALLOC IPC_CREAT IPC_EXCL IPC_GETACL

IPC_LOCKED IPC_M IPC_NOERROR IPC_NOWAIT

IPC_PRIVATE IPC_R IPC_RMID IPC_SET

IPC_SETACL IPC_SETLABEL IPC_STAT IPC_W

IPC_WANTED

MSG_FWAIT MSG_LOCKED MSG_MWAIT MSG_NOERROR

MSG_QWAIT

MSG_R MSG_RWAIT MSG_STAT MSG_W

MSG_WWAIT

SEM_A SEM_ALLOC SEM_DEST SEM_ERR

SEM_ORDER SEM_R SEM_UNDO

SETALL SETVAL

SHMLBA

SHM_A SHM_CLEAR SHM_COPY SHM_DCACHE

SHM_DEST SHM_ECACHE SHM_FMAP SHM_ICACHE

SHM_INIT SHM_LOCK SHM_LOCKED SHM_MAP

SHM_NOSWAP SHM_R SHM_RDONLY SHM_REMOVED

SHM_RND SHM_SHARE_MMU SHM_SHATTR SHM_SIZE

SHM_UNLOCK SHM_W

S_IRUSR S_IWUSR S_IRWXU

S_IRGRP S_IWGRP S_IRWXG

S_IROTH S_IWOTH S_IRWXO

You can also optionally import the ftok function:

ftok(PATH, ID)

This creates a unique key suitable for use with the msgget, semget, and shmget functions.

References See IPC::Msg, IPC::Semaphore

Math::BigFloat
This module supports the use of floating point numbers of arbitrary length.

use Math::BigFloat;

$bigfloat = Math::BigFloat->new($string);

The new method creates a new floating point object based on the supplied string.
Most operators are overloaded to support the new floating point objects, providing

you create the number with

$bigfloat = new Math::BigFloat '1.23456789012345678901234567890';

In addition, you can use the following methods.

fadd(STRING)

adds the number STRING to the object, returning a number string.

fsub(STRING)

subtracts the number STRING from the object, returning a number string.

fmul(STRING)

multiplies the object by the number STRING, returning a number string.

fdiv(STRING [,SCALE])

divides the object by the number STRING, to the specified SCALE places.

fneg()

negates the number.

fabs()

returns the absolute number.

1072 P e r l : T h e C o m p l e t e R e f e r e n c e

fcmp(STRING)

compares the object to the number STRING, returning a value less than, equal to, or
greater than zero, according to whether the number is less than, equal to, or greater
than the given number.

fround(SCALE)

rounds the number object to SCALE digits, returning the number strings.

ffround(SCALE)

rounds the number at the SCALEth place within the number.

fnorm()

normalizes the floating point, returning a number string.

fsqrt([SCALE])

returns the square root of the number object, rounded to the specified SCALE
if supplied.

Reference See also Math::BigInt

Math::BigInt
Supports math with integer values of arbitrary sizes.

use Math::BigInt;

$int = Math::BigInt->new($string);

Basic operators are overloaded, providing you create the new integer with

$int = new Math::BigInt '1234567890123456789012345678901234567890';

The following methods are supported by the new object.

bneg return BINT negation

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1073
A

P
P

EN
D

IX
ES

1074 P e r l : T h e C o m p l e t e R e f e r e n c e

negates the integer, and returns an integer string.

babs

returns the absolute value as an integer string.

bcmp(STRING)

compares the object with the supplied integer STRING, returning a value smaller,
equal to, or greater than zero, depending on the relationship between the object and
the supplied STRING.

badd(STRING)

adds STRING to the object.

bsub(STRING)

subtracts STRING from the object.

bmul(STRING)

multiplies the object by STRING.

bdiv(STRING)

divides the object by STRING, returning the quotient and remainder as strings.

bmod(STRING)

returns the modulus of the object and STRING.

bgcd(STRING)

returns the largest common divisor.

bnorm

normalizes the object.

Reference See also Math::BigFloat

Math::Complex
This module supports the use of complex numbers in mathematical computations.

use Math::Complex;

You create a new complex number with the make method,

$z = Math::Complex->make(1,2);

the cplx function,

$z = cplx(1, 2);

or directly, using complex notation:

$z = 3 + 4*i;

In addition, you can specify them in the polar form:

$z = Math::Complex->emake(5, pi/3);

$x = cplxe(5, pi/3);

The first argument is the modulus, and the second is the angle in radians.
The module also overloads the following operations to allow complex math directly

within Perl, where z is an imaginary variable.

z1 + z2 = (a + c) + i(b + d)

z1 - z2 = (a - c) + i(b - d)

z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))

z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))

z1 ** z2 = exp(z2 * log z1)

~z = a - bi

abs(z) = r1 = sqrt(a*a + b*b)

sqrt(z) = sqrt(r1) * exp(i * t/2)

exp(z) = exp(a) * exp(i * b)

log(z) = log(r1) + i*t

sin(z) = 1/2i (exp(i * z1) - exp(-i * z))

cos(z) = 1/2 (exp(i * z1) + exp(-i * z))

atan2(z1, z2) = atan(z1/z2)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1075
A

P
P

EN
D

IX
ES

You can also use the following methods:

Im(z) Re(z) abs(z) acos(z)

acosh(z) acot(z) acoth(z) acsc(z)

acsch(z) arg(z) asec(z) asech(z)

asin(z) asinh(z) atan(z) atanh(z)

cbrt(z) cosh(z) cot(z) coth(z)

csc(z) csch(z) log10(z) logn(z,n)

sec(z) sech(z) sinh(z) tan(z)

tanh(z)

Math::Trig
This module defines the full set of trigonometric functions.

use Math::Trig;

The supplied functions are as follows.

tan

returns the tangent.

csc, cosec, sec, cot, cotan

The cofunctions of sine, cosine, and tangent. The csc and cosec are aliases for each
other, as are cot and cotan.

asin, acos, atan

The arcus (inverse) of sin, cos, and tan.

atan2(y, x)

The principle value of the arctangent of y/x.

1076 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1077
A

P
P

EN
D

IX
ES

acsc, acosec, asec, acot, acotan

The arcus cofunctions.

sinh, cosh, tanh

The hyperbolic functions.

csch, cosech, sech, coth, cotanh

The cofunctions of the hyperbolics.

asinh, acosh, atanh

The arcus of the hyperbolics.

acsch, acosech, asech, acoth, acotanh

The arcus cofunctions of the hyperbolics.
The module also defines the constant pi.

Net::Ping
This module supports a simplified interface, to the process of determining a remote
host’s accessibility.

use Net::Ping;

The module uses an object-oriented interface and makes use of the alarm function and
associated signal to test for a suitable time-out value. To create a new Ping object:

Net::Ping->new([PROTO [, TIMEOUT [, BYTES]]]);

The PROTO, if specified, should be one of “tcp,” “udp,” or “icmp.” You should use “udp”
or “icmp” in preference to “tcp” due to network bandwidth. The default is “udp.”

The default TIMEOUT should be specified in seconds and be greater than zero.
The default value is five seconds. The BYTES parameter specifies the number of bytes

to be sent to the remote host. The minimum value should be 1 if the protocol is “udp,”
0 otherwise. The maximum size is 1024 bytes.

The following methods are supported by the new object.

ping(HOST [, TIMEOUT]);

Pings the remote HOST and waits for a response. The method waits the number of
seconds defined when the object was created, or TIMEOUT seconds if specified. The
method returns 1 if the lookup was successful, 0 otherwise. The undef value is
returned if the host cannot be resolved.

close();

Closes the network connection. The connection is automatically closed if the object
goes out of scope.

The module also supports a single function, pingecho, for backward compatibility:

pingecho(HOST [, TIMEOUT])

This pings HOST using the tcp protocol, returning 1 if the host can be reached, 0
otherwise. If the HOST cannot be resolved, the function returns undef.

Reference Chapter 12

NDBM_File

use NDBM_File;

use Fcntl;

tie(%db, 'NDBM_File', 'db', O_RDWR|O_CREAT, 0640);

untie %db;

This module is an interface supporting, via tie, the new (standard) DBM data
storage format.

References Chapter 13; see also AnyDBM_File, DB_File, GDBM_File, ODBM_File,
SDBM_File

1078 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1079
A

P
P

EN
D

IX
ES

O
This module supports the generic interface to the Perl compiler backends.

perl -MO=Backend[OPTIONS] foo.pl

Most backends support the following OPTIONS. These should be supplied a
comma-separated list of words without white space.

-V Puts the backend into verbose mode

-oFILE Specifies the name of the output FILE

-D Switches on backend debugging flags

References Chapter 22; see also B, B::Asmdata, B::Bblock, B::Bytecode, B::C, B::CC,
B::Debug, B::Deparse, B::Disassembler, B::Lint, B::Showlex, B::Stackobj, B::Terse,
B::Xref

ODBM_File

use ODBM_File;

use Fcntl;

tie(%db, 'ODBM_File', 'db', O_RDWR|O_CREAT, 0640);

untie %db;

This is an interface supporting, via tie, the old DBM data storage format.

References Chapter 13; see also AnyDBM_File, DB_File, GDBM_File, NDBM_File,
SDBM_File

Opcode
This module is
used by the Safe module and ops pragma to disable named opcodes when compiling
Perl scripts.

use Opcode;

An opcode is the smallest executable element of a Perl program, and it is the internal
format of a Perl script once it has been compiled. You shouldn’t normally need to use
this module; the Safe and ops interfaces are more practical. However, the information
provided here is useful background and reference for both modules.

The module works by creating an opcode mask using the supported functions and
defined opcode names and sets. Once the opcode mask has been created, you can
execute your program. The execution will croak if an attempt is made to use an opcode
defined in the current mask. Note that the created opcode mask only affects the next
compilation, that is, one executed by eval. It does not affect the current script.

Functions
Most functions accept a number of arguments, and these are defined as OPNAME,
which is the individual name of an opcode; OPTAG, for a group of opcodes; or an
OPSET, which is a binary string that holds a set of zero or more operators. Functions
are provided for building OPSET strings. Both OPNAME and OPTAG can be negated
by prefixing the name or set with an exclamation mark. OPTAG names start with
a colon.

opcodes

In a scalar context, returns the number of opcodes in the current Perl binary. In a list
context, returns a list of all the opcodes. This is not yet implemented, so use

@names = opset_to_opts(full_opset);

to get the full list.

opset(OPNAME, ...)

returns an OPSET containing the listed operators.

opset_to_ops(OPSET)

returns a list of operator names corresponding to those operators in the OPSET.

opset_to_hex(OPSET)

returns a string representation of an OPSET.

1080 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

full_opset

returns an OPSET that includes all operators.

empty_opset

returns an OPSET that contains no operators.

invert_opset(OPSET)

returns an OPSET that is the inverse set of the one supplied.

verify_opset(OPSET, ...)

returns true if OPSET is valid; returns false otherwise. If you supply a second
argument and it is true, the function calls croak if the OPSET is invalid.

define_optag(OPTAG, OPSET)

creates OPTAG as a symbolic name for OPSET.

opmask_add(OPSET)

adds OPSET to the current opcode mask. You cannot unmask opcodes once added.

opmask

returns the OPSET corresponding to the current opcode mask.

opdesc(OPNAME, ...)

returns a list of descriptions for the supplied OPNAMEs.

opdump(PAT)

prints to STDOUT a list of opcode names and corresponding descriptions. If PAT is
supplied, only lines that match the pattern will be listed.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1081
A

P
P

EN
D

IX
ES

1082 P e r l : T h e C o m p l e t e R e f e r e n c e

Opcode Sets
A number of predefined OPSET values are supplied as standard. They are logically
divided into both function and security-conscious sets.

:base_core

aassign abs add aelem

aelemfast and andassign anoncode

aslice av2arylen bit_and bit_or

bit_xor chomp chop chr

complement cond_expr const defined

delete die divide each

enter entersub eq exists

flip flop ge gt

helem hex hslice i_add

i_divide i_eq i_ge i_gt

i_le i_lt i_modulo i_multiply

i_ncmp i_ne i_negate i_postdec

i_postinc i_predec i_preinc i_subtract

index int keys lc

lcfirst le leave leaveeval

leavesub leavesublv left_shift length

lineseq list lslice lt

match method method_named modulo

multiply ncmp ne negate

nextstate not null oct

or orassign ord pop

pos postdec postinc pow

predec preinc prototype push

pushmark qr quotemeta return

reverse right_shift rindex rv2av

rv2cv rv2hv rv2sv sassign

scalar schomp schop scmp

scope seq setstate sge

sgt shift sle slt

sne splice split stringify

stub study substr subtract

trans uc ucfirst undef

unshift values vec wantarray

warn xor

:base_mem

concat repeat join range

anonlist anonhash

:base_loop

enteriter enterloop goto grepstart

grepwhile iter last leaveloop

mapstart mapwhile next Redo

unstack

:base_io

enterwrite eof formline getc

leavewrite print rcatline read

readdir readline recv rewinddir

seek seekdir send sysread

sysseek syswrite tell telldir

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1083
A

P
P

EN
D

IX
ES

1084 P e r l : T h e C o m p l e t e R e f e r e n c e

:base_orig

bless crypt dbmclose dbmopen

entertry gelem getpgrp getppid

getpriority gmtime gv gvsv

leavetry localtime padany padav

padhv padsv pipe_op prtf

pushre ref refgen regcmaybe

regcomp regcreset rv2gv select

setpgrp setpriority sockpair sprintf

srefgen sselect subst substcont

tie untie

:base_math

atan2 cos exp log

rand sin sqrt srand

:base_thread

lock threadsv

:default
This set is made up of the following other sets.

:base_core :base_mem :base_loop :base_io

:base_orig :base_thread

:filesys_read

fileno ftatime ftbinary ftblk

ftchr ftctime ftdir fteexec

fteowned fteread ftewrite ftfile

ftis ftlink ftmtime ftpipe

ftrexec ftrowned ftrread ftrwrite

ftsgid ftsize ftsock ftsuid

ftsvtx fttext fttty ftzero

lstat readlink stat

:sys_db

egrent ehostent enetent eprotoent

epwent eservent getlogin ggrent

ggrgid ggrnam ghbyaddr ghbyname

ghostent gnbyaddr gnbyname gnetent

gpbyname gpbynumber gprotoent gpwent

gpwnam gpwuid gsbyname gsbyport

gservent sgrent shostent snetent

sprotoent spwent sservent

:browser
This collection of opcodes is more practical than the :default set.

:default :filesys_read :sys_db

:filesys_open

binmode close closedir open

open_dir sysopen umask

:filesys_write

chmod chown fcntl link

mkdir rename rmdir symlink

truncate unlink utime

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1085
A

P
P

EN
D

IX
ES

1086 P e r l : T h e C o m p l e t e R e f e r e n c e

:subprocess

backtick fork glob system

wait waitpid

:ownprocess

exec exit kill time tms

:others
This set holds a list of other opcodes that are not otherwise handled and don’t deserve
their own tags.

msgctl msgget msgrcv msgsnd

semctl semget semop shmctl

shmget shmread shmwrite

:still_to_be_decided

accept alarm bind caller

chdir connect dbstate dofile

entereval flock getpeername getsockname

gsockopt ioctl listen pack

require reset shutdown sleep

socket sort ssockopt tied

unpack

:dangerous
These are possibly dangerous tags not mentioned elsewhere.

syscall dump chroot

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1087
A

P
P

EN
D

IX
ES

Pod::Functions
Used by the internal Pod libraries. You shouldn’t need to use this function on its own,
unless you are developing your own Pod interface.

References Chapter 23; see also Pod::Html, Pod::Text

Pod::Html
Supports a single function, pod2html, for translating POD formatted documents into
HTML documents.

use Pod::Html;

pod2html("pod2html",

"--podpath=lib",

"--podroot=/usr/local/lib/perl5/5.00502/",

"--htmlroot=/usr/local/http/docs",

"--recurse",

"--infile=foo.pod",

"--outfile=/perl/foo.html");

For a full list of supported options, see Table C-13.

References Chapter 23; see also Pod::Text

Pod::Text
Supports the pod2text script for translating documents from POD format to
normal text.

use Pod::Text;

pod2text(LIST);

If LIST is only one argument, it is taken as the name of a file to translate. The translated
output is automatically sent to STDOUT. If a second argument is specified, it is taken
as a reference to a filehandle to which the output should be sent.

1088 P e r l : T h e C o m p l e t e R e f e r e n c e

Option Description

--flush Flushes the contents of the item and directory caches created
during the parsing of a POD document.

--help Prints a help message.

--htmlroot The base directory from which you reference documents
relatively. This is required if you expect to install the generated
HTML files onto a web server. The default is /.

--index Generates an index of =head1 elements at the top of the HTML
file that is generated (default).

--infile The file name to convert. You don’t have to use this element;
the first nonhyphenated argument is taken as a file name. If you
don’t specify a file by either method, it will accept input from
standard input.

--libpods A colon-separated list of pages searched when referencing =item
entries. These are not the file names, just the page names, as they
would appear in L<> link elements.

--netscape Uses Netscape-specific browser directives when necessary.

--nonetscape Prevents the use of Netscape-specific browser directives (default).

--outfile The destination file name for the generated HTML. Uses standard
output if none is specified.

--podpath A colon-separated list of directories containing pod files and
libraries.

--podroot The base directory prepended to each entry in the podpath
command line argument. The default is “.”—the current directory.

--noindex Don’t generate an index at the top of the HTML file that is
generated.

--norecurse Don’t recurse into the subdirectories specified in the
podpath option.

--recurse Recurse into the subdirectories specified in the podpath option
(this is the default behavior).

--title The contents of the <TITLE> tag in the created HTML document.

--verbose Produces status and progress messages during production.

Table B-13. Options for Translating POD to HTML

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1089
A

P
P

EN
D

IX
ES

You can optionally insert two arguments before the input file. The -a option
instructs the function to use an alternative format that does not make assumptions
about the capabilities of the destination output stream. Without this option, termcap
may be used to format the document (you can force this by setting $Pod::Text::termcap
to a value of one); or if termcap is not available, backspaces will be used to simulate
boldfaced and underlined text.

The -width argument should be the width of the output device, where width is the
number of characters to use (the default value is 72 characters), or the value of your
terminal if this can be determined with termcap.

References Chapter 23; see also Pod::Html

POSIX

use POSIX;

The POSIX module provides an interface to the POSIX standard—a set of standards
designed to provide a common set of features across operating systems, primarily
Unix. The POSIX module also supports many of the constants and static definitions
required when using fcntl, ioctl, and other I/O-related functions.

The full range of the POSIX functions has been the subject of many books. The best
of these is The POSIX Programmers Guide by Donald Lewine (O’Reilly & Associates,
Sebastopol, CA, 1991).

When possible, the interface to the underlying POSIX library is made as Perl
compatible as possible. This means that some of the interface is handled by functions
and some is handled by objects and classes. As a general rule, when a structure would
normally be returned by a function, the Perl equivalent returns a list.

The list of functions supported by the module is shown in Table B-14. Note that
some functions are C specific and, therefore, are not supported within the interface.

Supported Classes
The POSIX module provides three new classes: POSIX::SigSet, POSIX::SigAction, and
POSIX::Termios.

1090 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

_exit Exits the current process.

abort Aborts the current script, sending the ABRT signal to the
Perl interpreter.

abs Identical to the Perl function; returns the absolute value.

access Returns true if the file can be accessed to the specified level.

acos Returns the arc cosine of a number.

alarm Identical to the Perl alarm function.

asctime Converts a time structure to its string equivalent.

asin Returns the arcsine of a number.

assert Currently unimplemented. Aborts the current program if the
assertion fails.

atan Returns the arctan of a number.

atan2 Identical to the Perl function.

atexit Not supported. Use an END{} block instead.

atof C specific.

atoi C specific.

atol C specific.

bsearch Not supported. The functionality can normally be supported by
using a hash.

calloc C specific.

ceil Identical to the C function; returns the smallest integer value
greater than or equal to the supplied value.

cfgetispeed Method for obtaining the input baud rate. See the section on the
POSIX::Termios import set.

cfgetospeed Method for obtaining the output baud rate. See the section on
the POSIX::Termios import set.

cfsetispeed Method for setting the input baud rate. See the section on the
POSIX::Termios import set.

Table B-14. Functions in the POSIX Module

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1091
A

P
P

EN
D

IX
ES

Constant Description

cfsetospeed Method for setting the output baud rate. See the section on the
POSIX::Termios import set.

chdir Identical to the Perl function.

chmod Identical to the Perl function.

chown Identical to the Perl function.

clearerr Not supported. Use the FileHandle::clearerr function.

clock Returns an approximation of the amount of CPU time used by
the program.

close Closes the file descriptor created by the POSIX::open function.

closedir Identical to the Perl function.

cos Returns the cosine of a value.

cosh Returns the hyperbolic cosine of a value.

creat Creates a new file, returning the file descriptor.

ctermid Returns the pathname to the device for controlling terminal for
the current program.

ctime Returns a formatted string for the supplied time. Similar to the
scalar value returned by localtime.

cuserid Returns the current user name.

difftime Returns the difference between two times.

div C specific.

dup Duplicates an open file descriptor.

dup2 Duplicates an open file descriptor.

errno Returns the value of errno.

execl C specific. Use the built-in exec function instead.

execle C specific. Use the built-in exec function instead.

execlp C specific. Use the built-in exec function instead.

execv C specific. Use the built-in exec function instead.

Table B-14. Functions in the POSIX Module (continued)

1092 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

execve C specific. Use the built-in exec function instead.

execvp C specific. Use the built-in exec function instead.

exit Identical to the Perl function.

exp Identical to the Perl function.

fabs Identical to the built-in abs function.

fclose Use the FileHandle::close method instead.

fcntl Identical to the Perl function.

fdopen Use the FileHandle::new_from_fd method instead.

feof Use the FileHandle::eof method instead.

ferror Use the FileHandle::error method instead.

fflush Use the FileHandle::flush method instead.

fgetc Use the FileHandle::getc method instead.

fgetpos Use the FileHandle::getpos method instead.

fgets Use the FileHandle::gets method instead.

fileno Use the FileHandle::fileno method instead.

floor Returns the largest integer not greater than the
number supplied.

fmod Returns the floating point remainder after dividing two
numbers using integer math.

fopen Use the FileHandle::open method instead.

fork Identical to the Perl function.

fpathconf Returns the configural limit for a file or directory using the
specified file descriptor.

fprintf C specific. Use the built-in printf function instead.

fputc C specific. Use the built-in print function instead.

fputs C specific. Use the built-in print function instead.

fread C specific. Use the built-in read function instead.

Table B-14. Functions in the POSIX Module (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1093
A

P
P

EN
D

IX
ES

Constant Description

free C specific.

freopen C specific. Use the built-in open function instead.

frexp Returns the mantissa and exponent of a floating point number.

fscanf C specific. Use <> and regular expression instead.

fseek Use the FileHandle::seek method instead.

fsetpos Use the FileHandle::setpos method instead.

fstat Gets the file status information for a given file descriptor.

ftell Use the FileHandle::tell method instead.

fwrite C specific. Use the built-in print function instead.

getc Identical to the Perl function.

getchar Returns one character read from STDIN.

getcwd Returns the path to the current working directory.

getegid Returns the effect group ID for the current process. Use $).

getenv Returns the value of the specified environment variable.
Use %ENV.

geteuid Identical to the Perl function.

getgid Returns the current process’s real group ID. Use $(.

getgrgid Identical to the Perl function.

getgrnam Identical to the Perl function.

getgroups Identical to the Perl function.

getlogin Identical to the Perl function.

getpgrp Identical to the Perl function.

getpid Gets the current process ID. Use the $$ value.

getppid Identical to the Perl function.

getpwnam Identical to the Perl function.

getpwuid Identical to the Perl function.

Table B-14. Functions in the POSIX Module (continued)

1094 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

gets Returns a line from STDIN.

getuid Gets the current user ID. Use the value of $<.

gmtime Identical to the Perl function.

isalnum Returns true if the string is composed only of letters
(irrespective of case) or numbers.

isalpha Returns true if the string is composed only of letters
(irrespective of case).

isatty Returns true if the specified filehandle is connected to a
TTY device.

iscntrl Returns true if the string is composed only of control characters.

isdigit Returns true if the string is composed only of digits.

isgraph Returns true if the string is composed only of printable
characters, except space.

islower Returns true if the string is composed only of lowercase
characters.

isprint Returns true if the string is composed only of printable
characters, including space.

ispunct Returns true if the string is composed only of punctuation
characters.

isspace Returns true if the string is composed only of white-space
characters. Within the default C and POSIX locales are
space, form feed, newline, carriage return, horizontal tab,
and vertical tab.

isupper Returns true if the string is composed only of uppercase
characters.

isxdigit Returns true if the string is composed only of hexadecimal
characters, “a–z”, “A–Z”, “0–9”.

kill Identical to the Perl function.

labs C specific. Use the built-in abs function.

ldexp Multiplies a floating point number by a power of 2
(ldexp(num,pow)).

Table B-14. Functions in the POSIX Module (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1095
A

P
P

EN
D

IX
ES

Constant Description

ldiv C specific. Use int($a/$b) instead.

localeconv Gets numeric formatting information. See the locale_h import
set entry later in this appendix.

localtime Identical to the Perl function.

log Identical to the Perl function.

log10 Computes the logarithmic value in base 10.

longjmp C specific. Use die instead.

lseek Moves the read/write pointer within an open file descriptor.

malloc C specific.

mblen Returns the length of a multibyte string.

mbstowcs Converts a multibyte string to a wide character string.

mbtowc Converts a multibyte character to a wide character.

memchr C specific. Use the built-in index function.

memcmp C specific. Use eq instead.

memcpy C specific. Use = instead.

memmove C specific. Use = instead.

memset C specific. Use x instead.

mkdir Identical to the Perl function.

mkfifo Creates a fifo (named pipe).

mktime Converts date and time information to a calendar time.

modf Returns the integral and fractional parts of a floating point
number.

nice Changes the execution priority of a process.

offsetof C specific.

open Opens a file, returning a file descriptor. Accepts three
arguments: the file name, mode, and permissions (in octal).

opendir Identical to the Perl function.

Table B-14. Functions in the POSIX Module (continued)

1096 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

pathconf Gets configuration values for a specified file or directory.

pause Suspends the execution of a process until it receives a signal
with an associated handler.

perror Prints the error message associated with the error in errno.

pipe Creates an interprocess communication channel returning file
descriptors for use with open and related functions.

pow Raises a number to the specified power (pow(num,power)).

printf Identical to the Perl function.

putc C specific. Use the built-in print instead.

putchar C specific. Use the built-in print instead.

puts C specific. Use the built-in print instead.

qsort C specific. Use the built-in sort instead.

raise Sends the specified signal to the current process.

rand Not supported. Use the built-in rand function.

readdir Identical to the Perl version.

realloc C specific.

remove Identical to the Perl unlink function.

rewind Seeks to the beginning of the specified filehandle.

rewinddir Identical to the Perl version.

scanf C specific. Use the <> operator and regular expressions.

setbuf Sets how a filehandle will be buffered.

setgid Sets the group ID for the process. Equivalent to setting the
value of $(.

setjmp C specific. Use eval instead.

setlocale Sets the current locale. See the local_h import set section, later
in this appendix.

setpgid Sets the process group ID.

Table B-14. Functions in the POSIX Module (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1097
A

P
P

EN
D

IX
ES

Constant Description

setsid Creates a new session and sets the process group ID of the
current process.

setuid Sets the user ID. Equivalent to setting the value of $<.

setvbuf Sets and defines how the buffer for a filehandle works.

sigaction Defines a signal handler. See the upcoming POSIX::SigAction
section.

siglongjmp C specific. Use the die function instead.

signal C specific. Use the %SIG hash instead.

sigpending Returns information about signals that are blocked and
pending. See the upcoming POSIX::SigSet section.

sigprocmask Changes or examines the current process’s signal mask. See the
upcoming POSIX::SigSet section.

sigsetjmp C specific. Use eval instead.

sigsuspend Installs a signal mask and suspends the process until a signal
arrives. See the upcoming POSIX::SigSet import set section.

sin Returns the sine for a given value.

sinh Returns the hyperbolic sine for a given value.

sleep Identical to the Perl function.

sprintf Identical to the Perl function.

sqrt Identical to the Perl function.

srand Identical to the Perl function.

sscanf C specific. Use regular expressions.

stat Identical to the Perl function.

strcat C specific. Use .= instead.

strchr C specific. Use the built-in index function instead.

strcmp C specific. Use eq instead.

strcoll Compares two strings using the current locale.

strcpy C specific. Use = instead.

Table B-14. Functions in the POSIX Module (continued)

1098 P e r l : T h e C o m p l e t e R e f e r e n c e

Constant Description

strcspn C specific. Use regular expressions instead.

strerror Returns the error string for a specific error number.

strftime Returns a formatted string based on the supplied date and time
information.

strlen C specific. Use the built-in length function instead.

strncat C specific. Use .= or substr instead.

strncmp C specific. Use eq or substr instead.

strncpy C specific. Use eq or substr instead.

strpbrk C specific.

strrchr C specific. Use eq or substr instead.

strspn C specific.

strstr Identical to the Perl index function.

strtod C specific.

strtok C specific.

strtol C specific.

strtoul C specific.

strxfrm Transforms the supplied string.

sysconf Retrieves values from the system configuration tables.

tan Returns the tangent of a value.

tanh Returns the hyperbolic tangent of a value.

tcdrain See the section on POSIX::Termios.

tcflow See the section on POSIX::Termios.

tcflush See the section on POSIX::Termios.

tcgetattr See the section on POSIX::Termios.

tcgetpgrp See the section on POSIX::Termios.

tcsendbreak See the section on POSIX::Termios.

tcsetattr See the section on POSIX::Termios.

Table B-14. Functions in the POSIX Module (continued)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1099
A

P
P

EN
D

IX
ES

Constant Description

tcsetpgrp See the section on POSIX::Termios.

time Identical to the Perl function.

times Similar to the Perl function, but returns five values (realtime,
user, system, childuser, and childsystem) counted in clock ticks
rather than seconds.

tmpfile Use the FileHandle::new_tmpfile method instead.

tmpnam Returns the name for a temporary file.

tolower Identical to the Perl lc function.

toupper Identical to the Perl uc function.

ttyname Returns the path to the terminal associated with the supplied
filehandle.

tzname Returns the offset and daylight saving time settings for the
current time zone.

tzset Sets the current time zone using the $ENV{TZ} variable.

umask Identical to the Perl function.

uname Returns the system name, node name, release, version, and
machine for the current operating system.

ungetc Use the FileHandle::ungetc method instead.

unlink Identical to the Perl function.

utime Identical to the Perl function.

vfprintf C specific.

vprintf C specific.

vsprintf C specific.

wait Identical to the Perl function.

waitpid Identical to the Perl function.

wcstombs Converts a wide character string to a multibyte character string.

wctomb Converts a wide character to a multibyte character.

write Writes to a file descriptor opened with POSIX::open.

Table B-14. Functions in the POSIX Module (continued)

1100 P e r l : T h e C o m p l e t e R e f e r e n c e

POSIX::SigSet
This provides an interface to the sigset function for creating signal sets. For installing
handlers for these sets, use the SigAction class. See the signal_h import set for
information about the available signal constants to use with the methods.

$sigset = POSIX::SigSet->new;

creates a new SigSet object. Additional methods are described here.

addset SIGNAL

adds a SIGNAL to an existing set.

delset SIGNAL

deletes a SIGNAL from a set.

emptyset

empties a signal set.

fillset

populates a signal set with all the available signals.

ismember SIGNAL

returns true if the signal set contains the specified signal.

POSIX::SigAction
This installs a signal handler against a specific SigSet object.

$sigaction = POSIX::SigAction->new('main::handler', $sigset, $flags);

The first parameter must be the fully qualified name of the signal handler routine. The
second argument is the previously created SigSet object. The value of flags is a list of
signal actions.

TE
AM
FL
Y

Team-Fly®

POSIX::Termios
This supports an interface to the termios interface driving system.

$termios = POSIX::Termios->new;

creates a new Termios object. The following additional methods are supported.

getattr FD

gets the attributes for the file descriptor specified. Uses zero (STDIN) by default.

getcc EXPR

gets the value from the c_cc field. The information is an array, so you must use an
index value.

getcflag

returns the value of the c_cflag.

getiflag

returns the value of the c_iflag.

getispeed

returns the input baud rate.

getlflag

returns the value of the c_lflag.

getoflag

returns the value of the c_oflag.

getospeed

returns the output baud rate.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1101
A

P
P

EN
D

IX
ES

setattr FD, EXPR

sets the attributes for the file descriptor FD.

setcc EXPR, INDEX

sets the value of the c_cc field. The information is an array, so you must specify an
index value.

getcflag EXPR

sets the value of the c_cflag.

getiflag EXPR

sets the value of the c_iflag.

getispeed EXPR

sets the input baud rate.

getlflag EXPR

sets the value of the c_lflag.

getoflag EXPR

sets the value of the c_oflag.

getospeed EXPR

sets the output baud rate.
See the termios_h import set for the lists of supported constants.

Symbol Sets
For convenience and compatibility, the functions and constants defined within the
POSIX module are also grouped into symbol sets to import the required elements. The
sets are grouped by the name of the header file that would be required if you were
programming directly in C. To use, specify the header name, substituting underscores

1102 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1103
A

P
P

EN
D

IX
ES

for periods, and prefixing the name with a colon. For example, to include the elements
of the fcntl.h file:

use POSIX qw/:fcntl_h/;

For reference, the sets and functions they import, along with the constant they
define, are listed under the headings that follow.

assert_h
This symbol set imports the following function: assert.

The following constant function is also imported: NDEBUG.

ctype_h
This symbol set imports the following functions:

isalnum Isalpha iscntrl isdigit

isgraph Islower isprint ispunct

isspace Isupper isxdigit tolower

toupper

dirent_h
There are no imported elements for this symbol set, since the functions of dirent.h are
supported as built-in functions within Perl.

errno_h
The constants defined within errno.h are those that specify the numerical error number
normally contained within $!. The list of imported constants is as follows:

E2BIG EACCES EADDRINUSE

EADDRNOTAVAIL EAFNOSUPPORT EAGAIN

EALREADY EBADF EBUSY

ECHILD ECONNABORTED ECONNREFUSED

ECONNRESET EDEADLK EDESTADDRREQ

EDOM EDQUOT EEXIST

EFAULT EFBIG EHOSTDOWN

EHOSTUNREACH EINPROGRESS EINTR

EINVAL EIO EISCONN

1104 P e r l : T h e C o m p l e t e R e f e r e n c e

EISDIR ELOOP EMFILE

EMLINK EMSGSIZE ENAMETOOLONG

ENETDOWN ENETRESET ENETUNREACH

ENFILE ENOBUFS ENODEV

ENOENT ENOEXEC ENOLCK

ENOMEM ENOPROTOOPT ENOSPC

ENOSYS ENOTBLK ENOTCONN

ENOTDIR ENOTEMPTY ENOTSOCK

ENOTTY ENXIO EOPNOTSUPP

EPERM EPFNOSUPPORT EPIPE

EPROCLIM EPROTONOSUPPORT EPROTOTYPE

ERANGE EREMOTE ERESTART

EROFS ESHUTDOWN ESOCKTNOSUPPORT

ESPIPE ESRCH ESTALE

ETIMEDOUT ETOOMANYREFS ETXTBSY

EUSERS EWOULDBLOCK EXDEV

fcntl_h
This symbol set imports the following function: creat.

This symbol set imports the following constants:

FD_CLOEXEC F_DUPFD F_GETFD F_GETFL

F_GETLK F_RDLCK F_SETFD F_SETFL

F_SETLK F_SETLKW F_UNLCK F_WRLCK

O_ACCMODE O_APPEND O_CREAT O_EXCL

O_NOCTTY O_NONBLOCK O_RDONLY O_RDWR

O_TRUNC O_WRONLY SEEK_CUR SEEK_END

SEEK_SET S_IRGRP S_IROTH S_IRUSR

S_IRWXG S_IRWXO S_IRWXU S_ISBLK

S_ISCHR S_ISDIR S_ISFIFO S_ISGID

S_ISREG S_ISUID S_IWGRP S_IWOTH

S_IWUSR

float_h
This symbol set imports the following constants:

DBL_DIG DBL_EPSILON DBL_MANT_DIG

DBL_MAX DBL_MAX_10_EXP DBL_MAX_EXP

DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP

FLT_DIG FLT_EPSILON FLT_MANT_DIG

FLT_MAX FLT_MAX_10_EXP FLT_MAX_EXP

FLT_MIN FLT_MIN_10_EXP FLT_MIN_EXP

FLT_RADIX FLT_ROUNDS LDBL_DIG

LDBL_EPSILON LDBL_MANT_DIG LDBL_MAX

LDBL_MAX_10_EXP LDBL_MAX_EXP LDBL_MIN

LDBL_MIN_10_EXP LDBL_MIN_EXP

limits_h
This symbol set imports the following constants:

ARG_MAX CHAR_BIT CHAR_MAX

CHAR_MIN CHILD_MAX INT_MAX

INT_MIN LINK_MAX LONG_MAX

LONG_MIN MAX_CANON MAX_INPUT

MB_LEN_MAX NAME_MAX NGROUPS_MAX

OPEN_MAX PATH_MAX PIPE_BUF

SCHAR_MAX SCHAR_MIN SHRT_MAX

SHRT_MIN SSIZE_MAX STREAM_MAX

TZNAME_MAX UCHAR_MAX UINT_MAX

ULONG_MAX USHRT_MAX _POSIX_ARG_MAX

_POSIX_CHILD_MAX _POSIX_LINK_MAX _POSIX_MAX_CANON

_POSIX_MAX_INPUT _POSIX_NAME_MAX _POSIX_NGROUPS_MAX

_POSIX_OPEN_MAX _POSIX_PATH_MAX _POSIX_PIPE_BUF

_POSIX_SSIZE_MAX _POSIX_STREAM_MAX _POSIX_TZNAME_MAX

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1105
A

P
P

EN
D

IX
ES

locale_h
This symbol set imports the following functions:

localeconv setlocale

The localeconv function returns a reference to a hash with the following
self-explanatory elements:

currency_symbol decimal_point frac_digits

grouping int_curr_symbol int_frac_digits

mon_decimal_point mon_grouping mon_thousands_sep

n_cs_precedes n_sep_by_space n_sign_posn

negative_sign p_cs_precedes p_sep_by_space

p_sign_posn positive_sign thousands_sep

This symbol set imports the following constants:

LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME

NULL

math_h
This symbol set imports the following functions:

acos asin atan ceil

cosh fabs floor fmod

frexp ldexp log10 modf

pow sinh tan tanh

This symbol set imports the following constant: HUGE_VAL.

setjmp_h
This symbol set imports the following functions:

longjmp setjmp siglongjmp sigsetjmp

1106 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1107
A

P
P

EN
D

IX
ES

signal_h
This symbol set imports the following functions:

raise sigaction signal sigpending

sigprocmask sigsuspend

This symbol set imports the following constants:

SA_NOCLDSTOP SA_NOCLDWAIT SA_NODEFER

SA_ONSTACK SA_RESETHAND SA_RESTART

SA_SIGINFO SIGABRT SIGALRM

SIGCHLD SIGCONT SIGFPE

SIGHUP SIGILL SIGINT

SIGKILL SIGPIPE SIGQUIT

SIGSEGV SIGSTOP SIGTERM

SIGTSTP SIGTTIN SIGTTOU

SIGUSR1 SIGUSR2 SIG_BLOCK

SIG_DFL SIG_ERR SIG_IGN

SIG_SETMASK SIG_UNBLOCK

stddef_h
This symbol set imports the following function: offsetof.

This symbol set imports the following constant: NULL.

stdio_h
This symbol set imports the following functions:

clearerr fclose fdopen feof ferror

fflush fgetc fgetpos fgets fopen

fprintf fputc fputs fread freopen

fscanf fseek fsetpos ftell fwrite

getchar gets perror putc putchar

puts remove rewind scanf setbuf

setvbuf sscanf stderr stdin stdout

tmpfile tmpnam ungetc vfprintf vprintf

vsprintf

This symbol set imports the following constants:

BUFSIZ EOF FILENAME_MAX L_ctermid

L_cuserid L_tmpname NULL SEEK_CUR

SEEK_END SEEK_SET STREAM_MAX TMP_MAX

stdlib_h
This symbol set imports the following functions:

abort atexit atof atoi atol

bsearch calloc div free getenv

labs ldiv malloc mblen mbstowcs

mbtowc qsort realloc strtod strtol

strtoul wcstombs wctomb

This symbol set imports the following constants:

EXIT_FAILURE EXIT_SUCCESS MB_CUR_MAX NULL

RAND_MAX

string_h
This symbol set imports the following functions:

memchr memcmp memcpy memmove memset

strcat strchr strcmp strcoll strcpy

strcspn strerror strlen strncat strncmp

strncpy strpbrk strrchr strspn strstr

strtok strxfrm

This symbol set imports the following constant: NULL.

1108 P e r l : T h e C o m p l e t e R e f e r e n c e

sys_stat_h
This symbol set imports the following functions:

fstat mkfifo

This symbol set imports the following constants:

S_IRGRP S_IROTH S_IRUSR S_IRWXG S_IRWXO

S_IRWXU S_ISBLK S_ISCHR S_ISDIR S_ISFIFO

S_ISGID S_ISREG S_ISUID S_IWGRP S_IWOTH

S_IWUSR S_IXGRP S_IXOTH S_IXUSR

sys_utsname_h
This symbol set imports the following function: uname.

sys_wait_h
This symbol set imports the following constants:

WEXITSTATUS WIFEXITED WIFSIGNALED WIFSTOPPED

WNOHANG WSTOPSIG WTERMSIG WUNTRACED

termios_h
This symbol set imports the following functions:

cfgetispeed cfgetospeed cfsetispeed cfsetospeed

tcdrain tcflow tcflush tcgetattr

tcsendbreak tcsetattr

This symbol set imports the following constants:

B0 B110 B1200 B134

B150 B1800 B19200 B200

B2400 B300 B38400 B4800

B50 B600 B75 B9600

BRKINT CLOCAL CREAD CS5

CS6 CS7 CS8 CSIZE

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1109
A

P
P

EN
D

IX
ES

1110 P e r l : T h e C o m p l e t e R e f e r e n c e

CSTOPB ECHO ECHOE ECHOK

ECHONL HUPCL ICANON ICRNL

IEXTEN IGNBRK IGNCR IGNPAR

INLCR INPCK ISIG ISTRIP

IXOFF IXON NCCS NOFLSH

OPOST PARENB PARMRK PARODD

TCIFLUSH TCIOFF TCIOFLUSH TCION

TCOFLUSH TCOOFF TCOON TCSADRAIN

TCSAFLUSH TCSANOW TOSTOP VEOF

VEOL VERASE VINTR VKILL

VMIN VQUIT VSTART VSTOP

VSUSP VTIME

time_h
This symbol set imports the following functions:

asctime clock ctime difftime

mktime strftime tzset tzname

This symbol set imports the following constants:

CLK_TCK CLOCKS_PER_SEC NULL

unistd_h
This symbol set imports the following functions:

_exit access ctermid cuserid

dup dup2 execl execle

execlp execv execve execvp

fpathconf getcwd getegid geteuid

getgid getgroups getpid getuid

isatty lseek pathconf pause

setgid setpgid setsid setuid

sysconf tcgetpgrp tcsetpgrp ttyname

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1111
A

P
P

EN
D

IX
ES

This symbol set imports the following constants:

F_OK NULL

R_OK SEEK_CUR

SEEK_END SEEK_SET

STDIN_FILENO STDOUT_FILENO

STRERR_FILENO W_OK

X_OK _PC_CHOWN_RESTRICTED

_PC_LINK_MAX _PC_MAX_CANON

_PC_MAX_INPUT _PC_NAME_MAX

_PC_NO_TRUNC _PC_PATH_MAX

_PC_PIPE_BUF _PC_VDISABLE

_POSIX_CHOWN_RESTRICTED _POSIX_JOB_CONTROL

_POSIX_NO_TRUNC _POSIX_SAVED_IDS

_POSIX_VDISABLE _POSIX_VERSION

_SC_ARG_MAX _SC_CHILD_MAX

_SC_CLK_TCK _SC_JOB_CONTROL

_SC_NGROUPS_MAX _SC_OPEN_MAX

_SC_SAVED_IDS _SC_STREAM_MAX

_SC_TZNAME_MAX _SC_VERSION

References Chapters 6, 10, 11, 12, 13, 14, 15, 21, 22, Appendix A

Safe
This module creates a safe compartment for executing a Perl script.

use Safe;

$compartment = new Safe;

1112 P e r l : T h e C o m p l e t e R e f e r e n c e

The created compartment has the following attributes:

� A new name space. The new package has a new root name space, and code
within the compartment cannot access the variables outside of this root name
space. The parent script can optionally insert new variables into the name
space, but the reverse is not true. Only the “underscore” variables ($_, @_, and
%_) are shared between the parent and safe compartment.

� An operator mask. This is generated using the opcode names and tags as
defined in the Opcode module. Executing code within the new compartment
that contains a masked operator will cause the compilation of the code to fail.
By default, the operator mask uses the :default opcode set.

To create a new compartment:

$compartment = new Safe;

An optional argument specifies the name of the new root name space. The module then
supports the following methods.

permit(OP, ...)

adds the specified opcodes or sets to the mask when compiling code in the
compartment.

permit_only(OP, ...)

exclusively sets the specified opcodes or sets in the mask when compiling code in the
compartment.

deny(OP, ...)

deletes the specified opcodes or sets from the current mask.

deny_only(OP, ...)

denies only the listed opcodes or sets.

trap(OP, ...)

is synonymous with deny.

untrap(OP, ...)

is synonymous with permit.

share(NAME, ...)

shares the specified variables with the compartment.

share_from(PACKAGE, ARRAY)

shares the list of symbols defined in the array of references ARRAY from the specified
PACKAGE with the compartment.

varglob(VARNAME)

returns a glob reference for the symbol table entry of VARNAME with the package of
the compartment.

reval(STRING)

evaluates STRING within the compartment.

rdo(FILENAME)

executes the script FILENAME in the compartment.

root(NAMESPACE)

returns the name of the package that is the root of the compartment’s name space.

mask(MASK)

When MASK is not specified, returns the entire operator mask for the compartment. If
MASK is specified, then it sets the compartment’s operator mask.

References Chapter 15; see also Opcode, ops

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1113
A

P
P

EN
D

IX
ES

1114 P e r l : T h e C o m p l e t e R e f e r e n c e

SDBM_File

use SDBM_File;

use Fcntl;

tie(%db, 'SDBM_File', 'db', O_RDWR|O_CREAT, 0640);

untie %db;

This is an interface supporting access to the Perl-supplied SDBM database using tie.

References Chapter 13; see also AnyDBM_File, DB_File, GDBM_File, NDBM_File,
ODBM_File

Search::Dict

use Search::Dict;

look *FILEHANDLE, $key, $dict, $fold;

The look function sets the current location within the FILEHANDLE to the first
occurrence of $key, or the closest match that is greater than or equal to it. This can be
used, as the name suggests, to locate a word within a dictionary that lists words, one
per line. If $dict is true, the search is conducted in strict dictionary (alphabetical)
order, ignoring everything that is not a word character. The dictionary file should
have been sorted with the Unix sort command and the -d option. If $fold is true, the
case is ignored.

References Chapter 13; see also Text::Abbrev, Text::Soundex

SelectSaver
This module provides an alternative to the select function for selecting the default
output filehandle.

use SelectSaver;

You use it within a block:

use SelectSaver;

#STDOUT is selected

{

my $saver = new SelectSaver(MYOUT);

#MYOUT is selected

}

#STDOUT is selected again

Once the block exits, the selected filehandle returns to the value selected before
the block.

References Chapters 4, 7

SelfLoader
This module provides a system similar to AutoLoader except that functions are
self-loaded from the script rather than from separate files.

package MyPackage;

use SelfLoader;

Like AutoLoader, the module delays the loading of functions until they are called.
Unlike AutoLoader, the functions themselves are defined after the _ _DATA_ _ token.
This token signifies to Perl that the code to be compiled has ended, and the functions
defined in _ _DATA_ _ are available via the MyPackage::DATA filehandle.

The _ _DATA_ _ definitions for a single package can span multiple files, but the last
_ _DATA_ _ token in a given package is the one accessible via the MyPackage::DATA
filehandle. Reading from the DATA filehandle ends when it sees the _ _END_ _ token.
But it will restart if the _ _END_ _ token is immediately followed by a DATA token
(not to be confused with the _ _DATA_ _ token).

The method used by the SelfLoader package is to read in the contents of the
filehandle to identify the defined functions. When the function is first called, it uses
eval to parse the requested subroutine. The SelfLoader exports an AUTOLOAD
subroutine to be used for loading the packages from the DATA filehandle.

Unlike AutoLoader, there is a small overhead for having the definitions parsed
once at compile time. Other than that, execution will seem faster because functions are
only compiled when used, thus negating the need to compile unused functions. There
is no advantage to defining often-used functions with SelfLoader.

Note that lexically defined values (via my) are visible to functions only up to the
_ _DATA_ _ token. Functions that rely on lexicals cannot be autoloaded, either by

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1115
A

P
P

EN
D

IX
ES

1116 P e r l : T h e C o m p l e t e R e f e r e n c e

AutoLoader or SelfLoader. Remember to use the vars pragma if you are also using the
strict pragma.

References Chapters 6, 20, 25; see also AutoLoader, Devel::SelfStubber

Shell
This module allows you to use shell commands directly without the need to use
backticks or the system function.

use Shell;

If you do not explicitly specify any commands, then all are assumed.
Once loaded, you can use the shell commands just like a normal Perl function:

use Shell;

print ps('-ef');

If you want to use them without parentheses, either import explicitly or declare the
shell command as a function before you use it:

use Shell;

sub ps;

print ps -ef;

The actual method of supporting this operation is to use the AUTOLOAD system to
call the supported command.

References Chapters 14, 15

Socket
This module defines the core functions and utility routines for supporting socket-based
communication.

use Socket;

The module defines a core set of functions, as shown in Table B-15.

References Chapter 12; see also IO::Socket

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1117
A

P
P

EN
D

IX
ES

Function Description

inet_aton HOSTNAME Returns a 4-byte packed IP address for
HOSTNAME, or undef if it cannot be
resolved.

Returns a string in the form x.x.x.x based
on the supplied 4-byte packed IP address.

inet_ntoa IP_ADDRESS Returns a 4-byte packed string defining
the wildcard address for accepting
connections.

INADDR_BROADCAST Returns a 4-byte packed string defining the
broadcast address.

INADDR_LOOPBACK Returns a 4-byte packed string defining the
loopback address for the current host.

INADDR_NONE Returns a 4-byte packed string defining the
invalid IP address.

sockaddr_in PORT, ADDRESS Packs PORT and ADDRESS into a
sockaddr_in structure.

sockaddr_in SOCKADDR_IN Unpacks and returns the SOCKADDR_IN
structure into port and IP address.

pack_sockaddr_in PORT,
ADDRESS

Packs PORT and ADDRESS into a
sockaddr_in structure.

unpack_sockaddr_in
SOCKADDR_IN

Unpacks and returns the SOCKADDR_IN
structure into port and IP address.

sockaddr_un PATHNAME Packs PATHNAME into a sockaddr_un
structure.

sockaddr_un SOCKADDR_UN Unpacks SOCKADDR_UN structure into
a pathname.

pack_sockaddr_un PATHNAME Packs PATHNAME into a sockaddr_un
structure.

unpack_sockaddr_un
SOCKADDR_UN

Unpacks SOCKADDR_UN structure into
a pathname.

Table B-15. Functions Defined in the Socket Module

1118 P e r l : T h e C o m p l e t e R e f e r e n c e

Symbol
This module provides a set of functions for manipulating Perl symbols and their names.

use Symbol;

$glob = gensym;

print qualify($symbol, $pkg);

print qualify_to_ref($symbol, $pkg);

The gensym function returns a reference to an anonymous glob. The resulting reference
is suitable for use as a file or directory handle. This is useful when you want to use a
filehandle but do not want to name it directly.

The qualify function returns a string containing the qualified variable name for the
supplied $symbol (which should be a string). If you supply $pkg, it will be used as the
default package for variables not defined within a separate package in place of the
normal main::. In all cases, the returned string contains the true qualification, such that
function foo in package Bar will always resolve to Bar::foo. These two lines would
print the same value:

print qualify('foo','Bar'),"\n";

print qualify('foo','foo'),"\n";

References are assumed to be glob references and, therefore, return their true, qualified
name by their very nature.

The qualify_to_ref function is identical to qualify except that it returns a glob
reference rather than a string.

The optional delete_package function deletes all of the symbol table entries and,
therefore, the related variables, functions, and other structures:

use Symbol qw/delete_package/;

delete_package('Foo');

Reference Chapter 6

A
P

P
EN

D
IX

ES
A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1119

Sys::Hostname
This module provides a semi-reliable method of determining a host’s name by trying
every conceivable method until the hostname is found.

use Sys::Hostname;

print "Hostname is ", hostname, "\n";

It tries syscall(SYS_gethostname), 'hostname', 'uname -n', and the file /com/host,
stripping any white space, line termination, or null characters as necessary. If it is still
unable to find the hostname, it calls croak.

Note that this method may fail on non-Unix operating systems.

References Chapter 9; see also Carp

Sys::Syslog
This module supports an interface to the Unix syslog logging system.

use Sys::Syslog;

There are four main functions imported by default: openlog, syslog, setlogmask, and
closelog:

openlog IDENT, LOGOPT, FACILITY

Opens the system log. The string IDENT will prepend every message. The LOGOPT is
a comma-separated list of options that equate to the standard openlog constants. See
Table B-16 for a list.

The FACILITY argument is a string that defines the part of the system for which to
record the log entries. Valid values are user for user-level entries, kern for kernel
problems, and daemon for system daemons. These equate to the LOG_USER,
LOG_KERN, and LOG_DAEMON constants used in the C interface. The exact list of
supported values is system dependent.

syslog PRIORITY, FORMAT, LIST

1120 P e r l : T h e C o m p l e t e R e f e r e n c e

This records an entry in the system log, of the level specified by PRIORITY. Note that
the priority definition is the same as for the LOGOPT parameter to the openlog function
and should be expressed as a string. See Table B-17. Individual priorities can be
combined using the | symbol. The FORMAT and LIST are passed to sprintf to format
and output the supplied arguments in a formatted format. The resulting string is then
used as the log entry.

The FORMAT string supports one additional option not supported by printf.
The %m format inserts the value of the latest error message found in $!.

setlogmask MASK

sets the mask priority for further syslog calls. Returns the old mask value.

closelog

closes the connection to the syslogd daemon.
You can optionally import the setlogsock function, which allows you to change the

type of socket used to communicate with the syslogd daemon.

setlogsock SOCKTYPE

Valid values for SOCKTYPE are “unix,” for Unix domain sockets, and “inet” for INET
domain sockets. The function returns true on success and undef on failure.

References Chapters 11, 14, 15, Appendix A

String C Constant Description

pid LOG_PID Logs the process ID with each message.

ndelay LOG_NDELAY Opens the connection to the syslogd daemon
immediately. Normally, the interface waits until
the first message is posted to open the log.

cons LOG_CONS Writes messages to the system console if the
syslogd daemon cannot be contacted.

nowait LOG_NOWAIT Don’t wait for child processes (from fork) to log
messages to the console.

Table B-16. Syslog Options in Perl

TE
AM
FL
Y

Team-Fly®

Term::Cap
This module provides a simplified interface to the termcap terminal driver system.

use Term::Cap;

The module supports an object interface to Tgetent:

Tgetent(TERM)

The Tgetent function extracts the entry of the specified terminal type TERM,
returning a reference to a Term::Cap object. For example:

$terminal = Tgetent Term::Cap { TERM => 'vt220', OSPEED => $ospeed };

The OSPEED is the output bitrate for the terminal, specified either in POSIX format
(absolute bitrates such as 9600), or as BSD-style relative values, where 13 equals 9600.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1121
A

P
P

EN
D

IX
ES

String C Constant Description

emerg LOG_EMERG A panic condition, normally broadcast to all
users.

alert LOG_ALERT An urgent problem that needs immediate
attention.

crit LOG_CRIT Critical error such as a hardware
error/failure.

err LOG_ERR Simple errors.

warning LOG_WARNING Warning messages.

notice LOG_NOTICE Notification of particular events. Not
considered critical, but may still require
immediate attention.

info LOG_INFO Informational messages.

debug LOG_DEBUG Debugging information, normally of no use
outside a debugging procedure.

Table B-17. Syslog Priorities

1122 P e r l : T h e C o m p l e t e R e f e r e n c e

$terminal->Trequire(LIST)

The Trequire method enables you to specify the list of required capabilities for the
terminal driver.

$terminal->Tgoto(EXPR, COL, ROW, HANDLE)

This decodes a cursor addressing string EXPR, passing it COL and ROW. The value of
the string is returned, or printed directly to the HANDLE if specified.

$terminal->Tputs(EXPR, COUNT, HANDLE)

caches the control string EXPR for COUNT times, returning the string. Alternatively,
you can have it sent directly to HANDLE if specified.

You can access the extracted termcap entry by accessing the TERMCAP hash
key element.

Reference Chapter 17

Term::Complete
This module provides an interface for completing words on a command line interface,
similar to that provided by the Bourne Again SHell (bash).

use Term::Complete;

It supports a single function, Complete:

Complete(PROMPT, LIST)

This provides PROMPT to the screen and supports completion on the words in LIST.
The return value is the completed word:

$input = Complete('$ ', qw/echo ls/);

You can type any character into the prompt. Pressing TAB completes the
word (if possible). The default ^D prints a list of completion words. The ^U
combination deletes the current line, and the DEL and BACKSPACE keys work as you
would expect. You can modify the keys used for the last four options using the
$Term::Complete::complete, $Term::Complete::kill, $Term::Complete::erase1,
and $Term::Complete::erase2 variables.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1123
A

P
P

EN
D

IX
ES

Specification should be done using the normal stty values, and the stty command
is required for the module to function correctly. Note that you can continue to edit the
line using the preceding keyboard sequences. The completion value is not returned
until ENTER is pressed.

References Chapter 17; see also Text::Abbrev

Term::ReadLine
This module supports an interface to the available readline packages.

use Term::ReadLine;

Readline is a function library that supports the input of text in a line-by-line editable
format. The interface is object based:

use Term::ReadLine;

$line = new Term::ReadLine 'Line Interface';

$input = $line->readline('Name? ');

print "Got $input\n";

The supported methods are described here.

readline(EXPR)

returns the string entered, using the value of EXPR as a prompt. The trailing newline
character is removed from the returned value.

ReadLine

returns the name of the actual package being used to support the readline operation.

new

creates a new Term::ReadLine object. You can optionally supply two arguments that
specify the input and output filehandles to use for the readline operation.

1124 P e r l : T h e C o m p l e t e R e f e r e n c e

addhistory(EXPR)

adds EXPR to the history of input lines.

IN

OUT

returns the filehandles for input or output.

MinLine(EXPR)

if specified, defines the minimal size of a line to be included in the history list.

findConsole

returns an array of two strings containing the names for files for input and output,
specified in the normal shell style of <file and >file.

Attribs

returns a hash reference describing the internal configuration parameters of
the package.

Features

returns a hash reference describing the features of the current readline package
being used.

References Chapter 17

Test
This module provides a simple framework for writing Perl test scripts, using a format
similar to Perl’s own testing systems.

use Test;

You use the framework by importing the module and then using a BEGIN block to
specify the parameters for the tests you are about to conduct. For example,

use Test;

BEGIN { plan tests => 2}

ok(1);

ok(0);

Each call to ok should indicate a successful test or failure. The resulting report and
output matches the format used by Perl’s own testing system available when Perl has
been built from a raw distribution. For example, the preceding script would output

1..2

ok 1

not ok 2

Failed test 2 in test.pl at line 5

Note that each call to ok iterates through the available test numbers, and failures are
recorded and reported.

You can embed expressions into the ok call:

ok(mytest());

The return value or resolved expression must be expected to return true or false
according to the success or otherwise of the test. You can also use a two-argument
version that compares the values of the two arguments:

ok(mytest(),mytest());

If you want to trap additional information with the error, you can append
additional arguments to the ok function:

ok(0,1,'Math Error');

The resulting error and mismatch information is reported when the script exits:

1..2

ok 1

not ok 2

Test 2 got: '0' (test.pl at line 5)

Expected: '1' (Didnt work)

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1125
A

P
P

EN
D

IX
ES

You can mark tests as “to do” tests by specifying which test numbers are to be fixed
directly within the test suite. These tests are expected to fail. You specify the information
to the plan function during the BEGIN block:

use Test;

BEGIN { plan tests => 2, todo = [2]}

ok(1);

ok(0);

The resulting failure message notes the existence of an expected failure,

1..2 todo 2;

ok 1

not ok 2 # (failure expected in test.pl at line 5)

and also warns you when it sees a success in a test it was expecting to fail:

1..2 todo 2;

ok 1

ok 2 # Wow! (test.pl at line 5)

You can skip tests based on the availability of platform-specific facilities, using the
skip function:

skip(TEST, LIST)

TEST is a test that evaluates to true only if the required feature is not available.
Subsequent values in LIST work identically to the ok function.

You can supply a subroutine to handle additional diagnostics after the tests have
completed. The function is passed an array reference of hash references that describe
each test failure. The keys of each hash are package, repetition, and result. To
configure the function, specify its reference in the call to plan in the BEGIN block:

BEGIN { plan tests => 2, onfail => \&errdiags }

The resulting function is executed within an END block and is, therefore, subject to the
normal limitations of such a block.

References Chapters 9, 11, 21

1126 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1127
A

P
P

EN
D

IX
ES

Test::Harness
This module processes the output of multiple Perl test scripts and reports the success
or failure of the scripts accordingly.

use Test::Harness;

runtests(LIST)

LIST should be a list of valid test scripts to be executed. It parses the output produced
by a typical Perl test script and analyzes the output. The output produced by the Test
module is suitable for correct parsing.

For example, a nine-test script with three failures would output the following:

t.p.................# Failed test 2 in t.pl at line 5

Failed test 5 in t.pl at line 8

Failed test 9 in t.pl at line 12

FAILED tests 2, 5, 9

Failed 3/9 tests, 66.67% okay

Failed Test Status Wstat Total Fail Failed List of failed

t.pl 9 3 33.33% 2, 5, 9

Failed 1/1 test scripts, 0.00% okay. 3/9 subtests failed, 66.67% okay.

References Chapter 9, 11, 21; see also Test

Text::Abbrev
Given a list of words, this module generates an abbreviation table in a hash.
The generated list accounts for possible duplications of abbreviations within the
supplied list.

use Text::Abbrev;

%abbrev = ();

abbrev(\%abbrev, LIST);

For example, the call

abbrev(\%abbrev, 'better');

will produce a hash like this:

b => better,

be => better,

bet => better,

bett => better,

bette => better,

better => better,

while the call

abbrev(\%abbrev, qw/be bet better/);

will populate the %abbrev hash with

b => be,

be => be,

bet => bet,

bett => better,

bette => better,

better => better,

Reference See also Term::Complete

Text::ParseWords
This module parses an array of lines into a list of words using a specified delimiter.
Any words or strings contained within quotes are treated as single words, effectively
ignoring the supplied delimiter.

use Text::ParseWords;

@words = quotewords($delim, $keep, LIST);

The $delim element is the delimiter to use. This can be a raw string or a regular
expression. The $keep element affects the way text within the lines is treated. If set to
true, quotes are retained in the list of words returned; otherwise, they are removed.
Also, if $keep is true, then t`he backslashes are preserved in the returned list. If false,
then a double backslash is converted to a single backslash, and a single backslash
disappears entirely.

References Chapter 8, Appendix A

1128 P e r l : T h e C o m p l e t e R e f e r e n c e

Text::Soundex
The Text::Soundex module generates a four-character soundex string using the
algorithm designed by Donald Knuth. The algorithm translates individual words into
the string, which can then be used for comparison and hashing of the supplied words
as they sound when they are spoken, rather than how they are spelled.

use Text::Soundex;

soundex LIST

The soundex function hashes the words supplied in LIST, returning a list of soundex
codes. Each code is made up of a single character, matching the first character of the
supplied word, and three digits. For example,

print join(' ',soundex('Martin', 'Brown'),"\n");

prints

M635 B650

On the other hand,

print join(' ',soundex('Martin', 'Martian'),"\n");

produces

M635 M635

Note that the soundex string produced cannot be mapped back to the original
string. The preceding example should demonstrate the fact, since M635 refers both to
“Martin” and “Martian.” Note however that the algorithm is not completely fail-safe:

print join(' ',soundex('Wood', 'Would'),"\n");

This produces the following, perhaps incorrect, sequence:

W300 W430

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1129
A

P
P

EN
D

IX
ES

1130 P e r l : T h e C o m p l e t e R e f e r e n c e

If a suitable soundex string cannot be produced, then the function returns
$soundex_nocode, which is initially set to the undefined value. You can, however,
set the value of this variable for your own purposes.

Text::Tabs
This module expands tabs into spaces and “unexpands” spaces into tabs.

use Text::Tabs;

$tabstop = 8;

expand LIST

unexpand LIST

The $tabstops scalar specifies the number of spaces to replace a single tab with expand,
or the number of spaces to convert into a single tab with unexpand. Both functions
accept a list of scalars, and each scalar should contain a string to be expanded or
unexpanded as appropriate. Each element of LIST should not contain any newlines;
they should be split first into a suitable list. The return value is a list of converted
elements.

For example, here is a script for expanding the tabs of files supplied on the
command line into four spaces:

#!/usr/local/bin/perl -pi.bak

BEGIN

{

use Text::Tabs;

$tabstop = 4;

}

$_ = expand $_;

You can now do

$ expand file.txt

To convert it back, create a new script with unexpand instead of expand:

TE
AM
FL
Y

Team-Fly®

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1131
A

P
P

EN
D

IX
ES

#!/usr/local/bin/perl -pi.bak

BEGIN

{

use Text::Tabs;

$tabstop = 4;

}

$_ = unexpand $_;

Text::Wrap
This module intelligently wraps text into paragraphs.

use Text::Wrap;

$Text::Wrap::columns = 70;

wrap PREFIRST, PREOTHER, EXPR

The width of the resulting paragraph is specified directly in the $Text::Wrap::columns
scalar. The wrap function then wraps EXPR, indenting the first line of the paragraph
with PREFIRST and subsequent lines in the paragraph with PREOTHER.

Tie::Array
This module provides some simple base class definitions for tying arrays. You
normally use this module to inherit base methods from, for example:

package MyArray;

use Tie::Array;

@ISA = qw/Tie::Array/;

It provides stub DELETE and EXTEND methods, and also PUSH, POP, SHIFT,
UNSHIFT, SPLICE, and CLEAR in terms of basic FETCH, STORE, FETCHSIZE, and
STORESIZE, in addition to the mandatory new method for creating the new object.

When developing your own tied-array classes, you will need to define the
following methods:

TIEARRAY classname, LIST

STORE this, index, value

FETCH this, index

1132 P e r l : T h e C o m p l e t e R e f e r e n c e

FETCHSIZE this

STORESIZE this, count

EXTEND this, count

CLEAR this

DESTROY this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST

SPLICE this, offset, length, LIST

Reference Chapter 10

Tie::Handle
This module provides core methods for tying handles.

package MyHandle;

use Tie::Handle;

@ISA = qw/Tie::Handle/;

It supports the basic new method in addition to TIESCALAR, FETCH, and STORE.
For developing your own tied-handle classes, you will need to define the following

methods:

TIEHANDLE classname, LIST

WRITE this, scalar, length, offset

PRINT this, LIST

PRINTF this, format, LIST

READ this, scalar, length, offset

READLINE this

GETC this

DESTROY this

Reference Chapter 10

Tie::Hash
This module provides base class definitions for tied hashes. It provides the new,
TIEHASH, EXISTS, and CLEAR methods.

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1133
A

P
P

EN
D

IX
ES

package MyHash;

use Tie::Hash;

@ISA = qw/Tie::Hash/;

When developing your own class for tying hashes, you will need to implement the
following methods:

TIEHASH classname, LIST

STORE this, key, value

FETCH this, key

FIRSTKEY this

NEXTKEY this, lastkey

EXISTS this, key

DELETE this, key

CLEAR this

Reference Chapter 10

Tie::RefHash
This module supports the facility to use references as hash keys through a tied hash.
This is normally not allowed; and if strict refs is switched on, Perl will fail on
compilation.

use Tie::RefHash;

tie %hash, 'Tie::RefHash', LIST;

Reference Chapter 10

Tie::Scalar
This module provides base class definitions for tying scalars. The basic Tie::Scalar
package provides the new, TIESCALAR, FETCH, and STORE methods.

package myScalar;

use Tie::Scalar;

@ISA = qw/Tie::Scalar/;

If you are developing your own tied scalars, you will need to define the following
methods:

TIESCALAR classname, LIST

FETCH this

STORE this, value

DESTROY this

Reference Chapter 10

Tie::SubstrHash
This module provides a class for supporting a hash with fixed key and value sizes. The
resulting hash algorithm is a factor of the key and value sizes specified, and the hash is
optimized for the specified size. This improves performance, but also limits the size of
the hash you create. Any attempt to add keys into the hash beyond the specified size
results in a fatal error.

require Tie::SubstrHash;

tie %hash, 'Tie::SubstrHash', KEYLEN, VALUELEN, TABLE_SIZE;

These lines create a hash in %hash. Each key within the hash will be KEYLEN long
(in bytes), and values will be VALUELEN long. Note that KEYLEN and VALUELEN
are not maximum sizes; they are fixed. Attempts to insert data with a key size greater
or less than KEYLEN will cause a fatal error, as will storing values that are greater or
less than VALUELEN. The maximum size for the hash is specified as the number of
key/value pairs, as specified in TABLE_SIZE.

There are two main benefits to this system: speed and memory. With a fixed-size
hash, the memory footprint is much smaller; and the resulting internal tables used to
look up individual key/value pairs are, therefore, much smaller, resulting in faster and
more efficient searches for information.

Reference Chapter 10

Time::Local
This module provides the reverse functionality of the localtime and gmtime functions—
that is, it converts a date and time specified in individual variables into the number of
seconds that have elapsed since the epoch:

1134 P e r l : T h e C o m p l e t e R e f e r e n c e

use Time::Local;

$time = timelocal(SEC, MIN, HOURS, MDAY, MON, YEAR);

$time = timegm(SEC, MIN, HOURS, MDAY, MON, YEAR);

The functions accept the arguments in the same range as the corresponding localtime
and gmtime functions, such that the code

use Time::Local;

$time = time;

print "Time!" if ($time = (timelocal((localtime)[0..5])));

should always print “Time!”
Both timelocal and timegm return –1 if the upper limit is reached for the integer

that stores the time value. On most systems this will be Jan 1 2038.

Reference Chapter 11

Time::gmtime
Overrides the built-in gmtime function with one that returns an object based on the
Time::tm module. The individual methods within the returned object are the
individual fields of the new time structure. For example:

use Time::gmtime;

$time = gmtime;

print "Date is: ",

join('/',$time->mday,($time->mon+1),($time->year+1900)), "\n";

The individual methods (fields) match the names of the struct tm structure, that is, sec,
min, hour, mday, mon, year, wday, yday, and isdst.

It’s also possible to obtain the time from the last gmtime call via predefined
variables. These variables have the same name as the structure fields and object
methods with a tm_ prefix. For example:

use Time::gmtime qw/:FIELDS/;

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1135
A

P
P

EN
D

IX
ES

gmtime;

print "Date is:

",join('/',$tm_mday,($tm_mon+1),($tm_year+1900)),"\n";

The time variables will not be updated until gmtime is called again.
You can access the original CORE::gmtime function in a scalar context using the

new gmctime function:

print gmctime(time);

To use the object-oriented interface without overriding the CORE::localtime
function, import the module with an empty import list, and then call the functions
explicitly:

use Time::gmtime qw//;

$time = Time::gmtime::gmtime;

print "Date is: ",

join('/',$time->mday,($time->mon+1),($time->year+1900)), "\n";

References Chapter 11; see also Time::tm

Time::localtime
This module overrides the built-in localtime function with one that returns an object
based on the Time::tm module. The individual methods within the returned object are
the individual fields of the new time structure. For example:

use Time::localtime;

$time = localtime;

print "Time is: ",join(':',$time->hour,$time->min,$time->sec),"\n";

The individual methods (fields) match the names of the struct tm structure, that is, sec,
min, hour, mday, mon, year, wday, yday, and isdst.

1136 P e r l : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1137

It’s also possible to obtain the time from the last localtime call via predefined
variables. These variables have the same name as the structure fields and object
methods with a tm_ prefix. For example:

use Time::localtime qw(:FIELDS);

localtime;

print "Time is: ",join(':',$tm_hour,$tm_min,$tm_sec),"\n";

The time variables will not be updated until localtime is called again.
You can access the original CORE::localtime function in a scalar context using the

new ctime function:

print ctime(time);

To use the object-oriented interface without overriding the CORE::localtime
function, import the module with an empty import list, and then call the functions
explicitly:

use Time::localtime qw//;

$time = Time::localtime::localtime;

print "Time is: ",join(':',$time->hour,$time->min,$time->sec),"\n";

References Chapter 11; see also Time::tm;

Time::tm
This module supports the internal functionality of the Time::localtime and
Time::gmtime modules.

References See Time::localtime, Time::gmtime

UNIVERSAL
The UNIVERSAL module provides the base class from which all other classes are
based. This module provides the essential grounding for all blessed references within.

Because all new objects inherit from the base class, the UNIVERSAL module also
provides some base methods that are automatically inherited by all classes and objects.
Two of the methods, can and isa, are supported both as methods and functions:

isa(TYPE)

UNIVERSAL::isa(REF, TYPE)

returns true if the object or REF is blessed into the package TYPE or has inherited from
the package TYPE.

can(METHOD)

UNIVERSAL::can(REF, METHOD)

returns a reference to the subroutine supporting METHOD if METHOD is supported
within the class of the object or REF. If the specified method does not exist, then it
returns undef.

VERSION ([REQUIRE])

returns the contents of the $VERSION variable within the object’s class. If the
REQUIRE value is specified, the script will die if REQUIRE is less than or equal to
the $VERSION variable.

Reference Chapter 10

User::grent
This module supports an object-oriented interface to the built-in getgr* functions:

use User::grent;

$grent = getgrnam('staff');

Individual fields are then available as methods to the $grent object. The supported
methods are name, passwd, gid, and members. This last item returns a reference to
a list; the first three simply return scalars.

Reference Chapter 11; see also User::pwent

1138 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t a n d a r d P e r l L i b r a r y 1139
A

P
P

EN
D

IX
ES

User::pwent
This module provides an object-based interface to the built-in getpw* functions.

use User::pwent;

$pwent = getpwnam('root');

Once retrieved, individual fields of the password entry are available as methods to the
newly created object. For example,

print "User ID: ",$pwent->uid,"\n";

prints the uid of the root user. The list of methods supported is name, passwd, uid,
gid, quota, comment, gecos, dir, and shell.

References Chapter 11; see also User::grent

utf8
The utf8 pragma tells Perl to use the UTF-8 (Unicode) character set for internal string
representation. The pragma is block scoped. For most installations, there are no
differences between Unicode and normal ASCII representation, since the first 128
characters of the ASCII code are stored within a single byte. For patterns that are
greater than this value, or for multibyte characters, the differences are significant.

use utf8;

Once switched on, you can switch off Unicode operation with no:

no utf8;

The main effects of the module are as follows:

� Strings and patterns may contain characters that have an ordinal value greater
than 255. You can explicitly specify a Unicode character by specifying the
hexadecimal prefix with braces and the Unicode character in a 2-byte hexadecimal
string, for example \x{263A}.

� Symbol table entries within Perl may be specified in Unicode format.

� Regular expressions match characters (including multibyte characters) instead
of individual bytes.

� Character classes in regexps match characters instead of bytes.

� You can match Unicode properties using \p{} (which matches a property) and
\P{} (which does not match a property).

� The \X pattern match matches any extended Unicode string.

� The tr/// operator translates characters instead of bytes.

� Case translation with the uc, lc, ucfirst, and lcfirst functions uses internal
Unicode tables for conversion.

� Functions that use or return character positions, return positions correctly in
characters, not bytes.

� The pack and unpack functions are unaffected (the “c” and “C” letters still pack
single-byte characters). The “U” specifier can instead be used to pack Unicode
characters.

� The chr and ord functions work on Unicode characters.

� Use of reverse in a scalar context works correctly on characters, not bytes.

References Chapter 8; see also File::Find, File::CheckTree

1140 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Appendix C
Resources

1141

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Perl has been around for many years, and as one of the primary languages for
Internet development, it’s sparked up numerous web sites, as well as a huge
book and article industry. It’s not very difficult to find information about Perl,

but it is difficult to find the right sort of information from all of the sources available.
Although this book is a complete reference guide to Perl, there will be times when

you want some more specific examples, ready-to-run information, or more in-depth
background information on a particular topic. So, for this last appendix, I’ve tried to
produce a condensed directory of the most popular sites, journals, and books that will
help guide you through programming with Perl.

Supplied Documentation
Your first port of call after this guide should be the documentation supplied with Perl.
There’s a more detailed guide to the contents of the Perl documentation in Chapter 24,
but I’ve included a quick guide here.

Unix Documentation
If you are using Unix, then the documentation will have been installed in the form of
manual pages, which can be viewed using the man utility. The primary page is perl,
and that gives you a further list of the other man pages within the Perl systems. For
example, the perlop page gives you information about Perl operators and perlfunc
about the functions.

In addition, most modules also have their own manual pages, which you can access
directly; for example, the Net::SMTP module can be read using

$ man Net::SMTP

If you use the emacs editor, you can use the man command (M-x man) and supply
the name of the manual page you want to view. Once you’re viewing the page, typing
M-x man again will populate the default selection with the current word—useful if you
want to cross reference and view a number of pages easily.

As a final solution, I’ve written a script (perlman.cgi, available from my web site,
www.mcwords.com) that enables you to convert POD-formatted manual pages into
HTML on the fly, so you can view an HTML-formatted version of the pages in your
favorite web browser. It retains the linking abilities, so you can click directly through to
related pages, and because it uses the POD and module files directly, you can be sure that
the information is up to date. Better still, if you install an updated version of a module,
you’ll be viewing the updated version without having to do a manual conversion.

1142 P e r l : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x C : R e s o u r c e s 1143
A

P
P

EN
D

IX
ES

Windows Documentation
Under Windows, the manuals are installed as HTML. The ActiveState installers all include
a full set of online documentation that includes all of the core documents, the supplied
modules and extensions, and the Win32 module set, all converted and linked, ready for
viewing. You’ll need something that is able to display frames to see the documentation
properly—Netscape Communicator/Navigator 4.x, or Internet Explorer 4.x, or above.

The documentation installed includes

� Complete guide to the ActivePerl applications, release notes, an installation
guide, and information on using the Perl Package Manager (PPM) to install
additional third-party modules

� ActivePerl component guide to the different ActivePerl application packages

� A Frequently Asked Questions (FAQ) section that covers both Win32-specific
queries and compatibility queries when you are moving from the Unix platform

� HTML versions of all the core Perl documentation normally supplied with the
Unix version of the Perl interpreter, including the FAQ sections

� HTML versions of all the POD documentation included within the Perl
standard library

� Documentation for all the Win32 modules supplied as standard with the
ActivePerl distribution

You can access the main documentation page through the Start menu.
As a background to the Windows libraries, you’ll need to be familiar with the

Windows environment before you are able to make the best use of the extensions. In
particular, the documentation supplied with Win32 modules takes a number of liberties
and assumes an awful lot about the reader’s knowledge of the Windows platform.

The best source for more detailed information about what some of the features,
functions, and constants really mean is the Microsoft Developer Network (MSDN)
documentation that comes with any of the Visual Studio development products. If
you don’t have access to a Visual Studio product, you can try the online Developer
Network site on the Web. See below for details on how to access the site.

Mac OS Documentation
The MacPerl installer provides an additional application, called shuck, which takes raw
POD documents and formats them on screen in a normal Macintosh window. The shuck
application includes a built-in menu that will take you to all of the Perl documentation
and the Mac OS–specific elements. It also retains and honors the linking system so you
can click through to other documentation pages.

If you’ve downloaded a module or POD document that you want to view, just drag
and drop it on the shuck application to view it. Make sure, however, that the document
has been recognized as a Perl file—it’ll need a type and creator code of “TEXT” and
“McPL”, respectively. Use FileTyper to change the code, or simply open the text file in
MacPerl itself, and resave it.

Other Platforms
Because Perl documentation is written using the POD standard, it can be easily converted
to other formats. Unless you have a particular preference, the best solution is to convert
the documentation into HTML format and use a web browser to view it. See Chapter 23
for more information.

Books
While it’s impossible to list all the books, journals, and other publications that promote
Perl as a programming language, there are some standard books that all Perl
programmers should probably keep on their bookshelf.

ActivePerl Developers Guide. Brown, M. C. 2000. New York, NY: McGraw-Hill
A guide to programming Perl, using the ActiveState Perl distribution for Windows.

As well as a guide to the ActivePerl modules and tools, it also provides a cross-reference
for programmers migrating from both Unix and Visual Basic environments to the Perl
language.

DeBugging Perl. Brown, M. C. 2000. Berkeley, CA: Osborne/McGraw-Hill
Much more than just debugging, the DeBugging Perl title also looks at how to write

better, cleaner Perl code, how to avoid adding potential problems, and how to trap and
resolve errors within the code so that your users don’t bear the brunt of the problems.
The book also covers information on how to optimize and deliberately break your code
when it’s running within the production environment, from stressing disk and CPU
time, to environment variables, web servers, and other external factors.

Perl Annotated Archives. Brown, M. C. 1999. Berkeley, CA: Osborne/
McGraw-Hill

The Annotated Archives series takes real-world scripts and then annotates them on
a line-by-line basis to demonstrate the semantics of the Perl language and the algorithms
and tricks required to complete the program. The title includes scripts for processing text
files and logs, using Perl for networking. There is even a special section on developing
and managing websites using Perl. The book should help both beginners and advanced
users, and it is an excellent companion to Perl: The Complete Reference.

Perl Programmers Reference. Brown, M. C. 1999. Berkeley, CA: Osborne/
McGraw-Hill

A condensed version of Perl: The Complete Reference, this book contains a quick reference
guide to the features you will probably use most often within Perl. This includes the
semantics, built-in functions, the standard Perl library, and the Perl debugger.

1144 P e r l : T h e C o m p l e t e R e f e r e n c e

Object Oriented Perl. Conway, D. 2000. Greenwich, CT: Manning Publications
The most comprehensive reference to using Perl in an object-oriented fashion that

you’ll ever find. Covers everything from building objects in the first place through to
inheritance-tied variables and persistence, with everything in between.

Perl Black Book. Holzner, S. 1999. Scottsdale, AZ: CoriolisOpen Press
A practical guide to Perl programming covering the basics and more advanced topics

using a number of different examples. Contains an excellent and practical web guide at
the end of the book that looks at a variety of problems and solutions.

Cross-Platform Perl. Johnson, E. F. 1996. Foster City, CA: IDG Press
This book concentrates on creating code that can be easily transported between Unix

and Windows NT hosts. Special attention is given to scripts that deal with systems
administration and websites, although the book covers a wide range of other topics.

Perl 5 Interactive Course: Certified Edition. Orwant, J. 1997. Corte Madera, CA:
Waite Group

This book is a thorough guide to Perl 5 programming, taking the reader through a
series of different tasks and topics that range from building basic scripts to the proper
use of variables, functions, and Perl-style regular expressions.

Learning Perl on Win32 Systems. Schwartz, R. L., E. Olson, and T. Christiansen.
1997. Sebastopol, CA: O’Reilly

This is a modified version of the Learning Perl title, customized to include information
about using Perl on Windows systems. Unfortunately, it is now quite out of date and fails
to mention many of the features now present in ActivePerl and other Windows-specific
builds.

Advanced Perl Programming. Srinivasan, S. 1997. Sebastopol, CA: O’Reilly
This book is an excellent guide to data modeling, networking, and the Tk widget

interface. It also covers the internal workings of Perl, which will help the advanced
programmer write more efficient and smaller code, while providing all the information
necessary for extending Perl with external C code.

Programming Perl. 3rd ed. Wall, L., T. Christiansen, and J. Orwant. 2000.
Sebastopol, CA: O’Reilly

Written by the three modern Perl architects, this is the definitive guide to Perl
programming. Heavily updated, and now in its third edition, the new version is almost
twice the size and covers everything from the basics to the advanced topics of compilers,
threads, and non-Unix platform support. Programming Perl is affectionately known as the
“Camel,” since that’s the motif used on the cover.

Perl Cookbook. Wall, L., T. Christiansen, and N. Torkington. 1998. Sebastopol,
CA: O’Reilly

This cookbook of recipes for programming in the Perl language is written by the
same team as the classic Camel book and is based on two chapters from the original first
edition. It covers all sorts of algorithms and problems in Perl using a series of annotated
examples, and it deftly shows Perl’s flexibility.

A p p e n d i x C : R e s o u r c e s 1145
A

P
P

EN
D

IX
ES

Journals/Websites
There are a variety of printed and online journals that now cover Perl, including the
updated O’Reilly Net/Perl site. Most of these provide up-to-date guides and examples
covering both the topical and traditional topics. Most of the old traditional websites
have turned into regularly updated magazine-style sites, and most of the older journals
are now available entirely online.

The Perl Journal (www.tpj.com)
A periodical devoted entirely to Perl, The Perl Journal covers a wide range of topics
from basic principles for beginners to the advanced topics of Perl internals. The Journal
also includes book and product reviews and guides to writing better Perl. Although it’s
available as a paper manual, you can also read the journal online at www.tpj.com.

Internet.com (www.internet.com)
The Internet.com website is actually a collection of other sites that concentrate on
different topics. As well as some of the more basic channels, there are specific sites for
handling web programming, e-commerce, Linux programming, and others that cover
many of the most-used aspects of the Perl language. Although not strictly a journal site,
the articles are updated daily so that there is a regular influx of new material and topics
to choose from.

Server/Workstation Expert Magazine
(sun.expert.com)

Although this magazine is aimed at Unix (specifically Solaris and AIX), this magazine
often includes examples of text processing and includes a regular column written by
Aeleen Frisch on integrating Windows and Windows NT into a Unix environment called
NTegration. This often includes script examples that help to bridge the gap between the
two platforms. A sister publication, WebServer Online Magazine, concentrates on the web
production process.

TechWeb (www.techweb.com)
Another of the portal sites offering information and guides on many different topics that
has particular channels covering network, web, and Unix/Linux programming and that
includes a number of Perl articles each month.

1146 P e r l : T h e C o m p l e t e R e f e r e n c e

Web Resources
In addition to the journal-style sites, there are also a number of sites that simply provide
updates and information on the Perl community, and that offer extensions, modules,
and FAQ style guides for some of your problems. You can see a list of some of the choice
sites in Table C-1. If you can’t find what you are looking for here, try visiting Yahoo
(www.yahoo.com) or AltaVista (www.altavista.com).

A p p e n d i x C : R e s o u r c e s 1147
A

P
P

EN
D

IX
ES

Site Description

www.perl.com Now the home of Perl, and sponsored by
O’Reilly, this should be your first port of call
for Perl information and resources. The site is
managed by the main Perl development team,
which includes Larry Wall, Tom Christiansen,
and Randal L. Schwartz, among others.
As well as providing the usual links and other
information about Perl, the site also supports
a magazine format, with guest editorial and
regular articles covering different aspects of
Perl programming.

www.cpan.org The Comprehensive Perl Archive Network
(CPAN) is an online library of scripts, modules,
and extensions to Perl. The organization can
sometimes leave something to be desired, and it
can take you some time to find what you want,
but it’s undoubtedly the best all-round resource
for Perl modules and scripts.

www.ActiveState.com ActiveState is the home of Perl under Win32, and
you can download installers for all the different
distributions available from ActiveState. You
can also download 30-day trial licenses of the
commercial Perl development tools.

www.roth.net/perl This site is maintained by Dave Roth, the
author of the Win32::AdminMisc and
Win32::ODBC modules. The site also includes
some general information and tips about
programming Perl under Win32.

Table C-1. Perl Websites

1148 P e r l : T h e C o m p l e t e R e f e r e n c e

Mailing Lists
Mailing lists fall into two distinct categories: announcements and discussions. If the list
is for announcements, you are not allowed to post to the group. These tend to be low
volume and are useful for keeping in touch with the direction of Perl. If it’s a discussion
list, you can post and reply to messages just as you would in a Usenet newsgroup (for
historical messages, try www.dejanews.com). These are higher volume lists, and the
number of messages can become unmanageable very quickly.

That said, a discussion list is likely to have the experts and users in it that are able
to answer your questions and queries with authority.

Site Description

dada.perl.it Aldo Calpini develops the Win32::GUI and is
also a general Perl consultant. This site is a
mixture of information about his own modules
and other Win32-related modules and
extensions.

www.scriptics.com The home of the Tk interface builder and Tcl
programming language. You can download
the necessary installers and libraries from this
site to enable Tk on your machine. You’ll need
to use the PPM utility to install the Tk module.

msdn.microsoft.com The main developer pages for Microsoft
products. This contains an updated version of
the MSDN documentation, which is required
reading if you want to make the best of the
ActivePerl distribution of Perl.

www.perl.com/CPAN-local/
ports/win32/Standard/x86/

This is Gurusamy Sarathy’s archive of the
standard ActivePerl Win32 extensions,
modified so that they work with the core
distribution.

www.geocities.com/Silicon
Valley/Way/6278/perl-win32-d
atabase.html

Matt Sergeant’s Database FAQ—an excellent
resource for database programming within
Perl when using the Win32::ODBC driver.

Table C-1. Perl Websites (continued)

General Mailing Lists

Perl Institute Announce
This list carries announcements from the Perl Institute on general Perl issues. To subscribe,
send an email to majordomo@perl.org with “subscribe tpi-announce” in the body of the
message.

Perl-Unicode (from the Perl Institute)
This list is concerned with issues surrounding Unicode and Perl at both porting and

using levels. To subscribe, send an email to majordomo@perl.org with “subscribe
perl-unicode” in the body of the message.

Perl5-Porters
If you are porting Perl or Perl modules or want to help in the development of the Perl

language in general, you should be a member of this discussion list. Don’t join if you are
just interested. This is a high-volume, highly technical mailing list. To subscribe, send an
email to majordomo@perl.org with “subscribe perl5-porters” in the body of the message.

Windows-Specific Mailing Lists

Windows Users
The Perl-Win32-Users mailing list is targeted for Perl installation and programming
questions. There are two versions: standard and digest. To subscribe to the standard
version, send an email to ListManager@ActiveState.com with “SUBSCRIBE
Perl-Win32-Users” in the body of the message. To subscribe to the digest version, send
an email to ListManager@ActiveState.com with “DIGEST Perl-Win32-Users” in the
body of the message.

Windows Announce
This mailing list is for announcements of new builds, bugs, security problems,
and other information. To subscribe to the standard version, send an email to
ListManager@ActiveState.com with “SUBSCRIBE Perl-Win32-Announce” in
the body of the message. To subscribe to the digest version, send an email to
ListManager@ActiveState.com with “DIGEST Perl-Win32-Announce” in the body
of the message.

Windows Web Programming
This focuses on using Perl as a CGI programming alternative on Windows NT servers.
To subscribe to the standard version, send an email to ListManager@ActiveState.com
with “SUBSCRIBE Perl-Win32-Web” in the body of the message. To subscribe to the

A
P

P
EN

D
IX

ES
A p p e n d i x C : R e s o u r c e s 1149

1150 P e r l : T h e C o m p l e t e R e f e r e n c e

digest version, send an email to ListManager@ActiveState.com with “DIGEST
Perl-Win32-Web” in the body of the message.

Windows Admin
Here you will find information and discussion on using Perl for administering and
managing Windows 95 and NT machines. To subscribe to the standard version, send
an email to ListManager@ActiveState.com with “SUBSCRIBE Perl-Win32-Admin”
in the body of the message. To subscribe to the digest version, send an email to
ListManager@ActiveState.com with “DIGEST Perl-Win32-Admin” in the body of
the message.

Newsgroups
To reach a more general Perl audience, you might want to post a question or
announcement to one of the many Perl newsgroups. These are available on many ISP’s
Usenet news servers, and many will be happy to add them to their list if you ask nicely.
The list is summarized in Table C-2. If you want to browse existing and “expired”
messages, check out the www.dejanews.com website, which archives these and many
other groups for you.

Newsgroup Description

comp.infosystems.www.authoring.cgi Deals with using Perl as a tool for
writing CGI programs. This is a general
CGI discussion group; it is not
specifically targeted at Perl users.
However, it does provide a lot of useful
information on extracting, receiving,
and returning information from web
servers and clients.

comp.lang.perl.announce Used to announce news from the Perl
world. This includes new book releases,
new version releases, and occasionally
major Perl module releases.

Table C-2. Perl-Friendly Newsgroups

TE
AM
FL
Y

Team-Fly®

A p p e n d i x C : R e s o u r c e s 1151
A

P
P

EN
D

IX
ES

You may also want to refer to “Joseph’s Top Ten Tips for Answering Questions
Posted to comp.lang.perl.misc,” available at www.5sigma.com/perl/topten.html.
This will provide you with some hints and tips on how best to make use of the
question-and-answer nature of many of these groups. The site is a little tongue-in-cheek,
but still a good resource.

Newsgroup Description

comp.lang.perl.misc A general discussion forum for Perl.
Everything from queries about how
best to tackle a problem to the inside
machinations of Perl is discussed here.
Some of the discussions can get quite
technical and be more biased to someone
interested in the internal Perl workings,
but it still represents the best port of call if
you are having trouble with a problem or
Perl script.

comp.lang.perl.modules This was set up to specifically discuss
the use and creation of Perl modules.
Unlike comp.lang.perl.misc, you
should only find problems related
to modules in this group. If you are
having trouble with something
downloaded from CPAN, this is the
best place to start asking questions.

comp.lang.perl.tk Tk is a toolkit that provides a set of
functions to support a graphical user
interface (GUI) within Perl. Tk was
originally developed in combination
with Tcl (Tool Command Language)
but has been massaged to work with
other scripting systems, including Perl.

Table C-2. Perl-Friendly Newsgroups (continued)

This page intentionally left blank.

Index

NOTE: Page numbers in italics refer to illustrations or tables.

SYMBOLS
#! line, command line options, 481
$| special variable, 101
$! special variable, 104
$# special variable, 102
$$ special variable, 104

processes and, 448, 449
$& special variable, 100
$* special variable, 100
$+ special variable, 100
$0 special variable, 99
$1..$xx special variable, 99
$: special variable, 103
$; special variable, 102
$< special variable, 104
$= special variable, 103
$> special variable, 104
$^ special variable, 103
$^A special variable, 105
$^C special variable, 106
$^D special variable, 106

$^E special variable, 106
$^F special variable, 106
$^H special variable, 107
$^I special variable, 107
$^L special variable, 103
$^M special variable, 107
$^O special variable, 107

platform migration traps, 831, 832
$^P special variable, 107
$^R special variable, 107
$^S special variable, 107
$^T special variable, 108
$^V special variable, 108
$^W special variable, 108

warnings pragma, 614
warnings pragma Perl 5.6 version, 616

$^X special variable, 108
$- special variable, 103
$~ special variable, 103
$? special variable, 105
$/ special variable, 101

1153

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

$\ special variable, 102
$@ special variable, 103
$. special variable, 101
$' special variable, 100
$_ special variable, 99
$, special variable, 102
$" special variable, 102
$) special variable, 104
$(special variable, 104
$! special variable, 104
$[special variable, 104
${^WARNING_BITS} special variable, 108
${^WIDE_SYSTEM_CALLS} special

variable, 108
$a special variable, 105
$ACCUMULATOR special variable, 105
$ARG special variable, 99-100
$ARGV special variable, 105
$AUTOFLUSH special variable, 101
$b special variable, 105
$BASETIME special variable, 108
$CHILD_ERROR special variable, 105
$COMPILING special variable, 106
$DEBUGGING special variable, 106
$EFFECTIVE_GROUP_ID special

variable, 104
$EFFECTIVE_USER_ID special variable, 104
$EGID special variable, 104
$ERRNO special variable, 104
$EUID special variable, 104
$EVAL_ERROR special variable, 103
$EXCEPTIONS_BEING_CAUGHT special

variable, 107
$EXECUTABLE_NAME special variable, 108
$EXTENDED_OS_ERROR special

variable, 106
$FORMAT_FORMFEED special variable, 103
$FORMAT_LINE_BREAK_CHARACTERS

special variable, 103
$FORMAT_LINES_LEFT special

variable, 103
$FORMAT_LINES_PER_PAGE special

variable, 103
$FORMAT_NAME special variable, 103
$FORMAT_PAGE_NUMBER special

variable, 103
$FORMAT_TOP_NAME special

variable, 103
$GID special variable, 104
$INPUT_RECORD_SEPARATOR special

variable, 101
$LAST_MATCHED special variable, 100

$LAST_PARENT_MATCH special
variable, 100

$LAST_REGEXP_CODE_RESULT special
variable, 107

$LIST_SEPARATOR special variable, 102
$MATCH special variable, 100
$NR special variable, 101
$OFS special variable, 102
$OLD_PERL_VERSION special variable, 105
$ORS special variable, 102
$OS_ERROR special variable, 104
$OSNAME special variable, 107
$OUTPUT_AUTOFLUSH special

variable, 101
$OUTPUT_FIELD_SEPARATOR special

variable, 102
$OUTPUT_RECORD_SEPARATOR special

variable, 102
$PERLDB special variable, 107
$PERL_VERSION special variable, 108
$PID special variable, 104
$POSTMATCH special variable, 100
$PREMATCH special variable, 100
$PROCESS_ID special variable, 104
$PROGRAM_NAME special variable, 99
$REAL_GROUP_ID special variable, 104
$REAL_USER_ID special variable, 104
$RS special variable, 101
$SUBSCRIPT_SEPARATOR special

variable, 102
$SUBSEP special variable, 102
$SYSTEM_FD_MAX special variable, 106
$UID special variable, 104
$VERSION special variable, 108
$WARNING special variable, 108
%ENV special variable, 106
%ERRNO special variable, 104
%EXPORT_TAGS special variable, 106
%FIELDS special variable, 106
%INC special variable, 107
%OS_ERROR special variable, 104
%SIG special variable, 107
{ command, Perl Debugger, 743
{{ command, Perl Debugger, 744
<< command, Perl Debugger, 743
< command, Perl Debugger, 743
<a> (anchor) tag, HTML (HyperText Markup

Language), 577
= command, Perl Debugger, 745
>> command, Perl Debugger, 743
> command, Perl Debugger, 743

1154 P e r l : T h e C o m p l e t e R e f e r e n c e

\ (backslash operator), escaping characters
via, 469

! command, Perl Debugger, 744
!! command, Perl Debugger, 744
_ (underscore) special variable, 99
-a option, command line options, 481
-argv argument, perlcc script, 794
-C argument, perlcc script, 792
-C option, command line options, 481, 482
-d[:module] option, command line

options, 482
-d option, Perl Debugger, 731-732
-D option, Xref backend, 787
-Dflags option, command line options,

482, 483
-Dx option, opcodes, 648-649
-e argument, perlcc script, 792
-e commandline option, command line

options, 483
-Fregex option, command line options, 484
-gen argument, perlcc script, 794
-h option, command line options, 484
-I argument, perlcc script, 792
-iext option, command line options, 484
-L argument, perlcc script, 792
-l[char] option, command line options, 484
-ldir option, command line options, 484
-mmodule option, command line options,

484-485
-Mmodule option, command line options,

484-485
-mod argument, perlcc script, 794
-n option, command line options, 485
-o argument, perlcc script, 792
-O[val] option, command line options, 488
-p option, command line options,

485-486, 489
-P option, command line options, 486
-prog argument, perlcc script, 794
-r option, Xref backend, 786
-regex argument, perlcc script, 792-793
-run argument, perlcc script, 794
-s option, command line options, 486
-S option, command line options, 486
-sav argument, perlcc script, 794
-T option, command line options, 486, 507
-u option, command line options, 486
-U option, command line options, 486
-V[:var] option, command line options,

487-488
-v option, command line options, 487
-verbose option, diagnostics pragma, 632
-w argument, warnings pragma, 613

-w option
command line options, 488
warnings pragma Perl 5.6 version, 616

-W option, command line options, 488
-X function, 879
-X option, command line options, 488
-X tests, file information, 187
-x[dir] option, command line options, 488
/ command, Perl Debugger, 736
/d modifier, tr operator, 241, 242
/e modifier, s/// (substitution operator),

239, 240
/G assertion, regular expression elements, 258
/g modifier

s/// (substitution operator) and, 239
m// (match operator) and, 235-236

/i, pattern modifiers, 232
/m, pattern modifiers, 232
/o, pattern modifiers, 232, 233
/PATTERN/ command, Perl Debugger, 737
/s, pattern modifiers, 232
/s modifier, tr operator, 241, 242
/x, pattern modifiers, 232, 233
?PATTERN? command, Perl Debugger, 737
@_ special variable, 105
@- special variable, 101
@ARG special variable, 105
@ARGV array, processing command line

arguments, 514-515
@ARGV special variable, 105
@EXPORT special variable, 106
@F special variable, 106
@INC special variable, 107
@ISA array, classes and inheritance, 329-330
@ISA special variable, 101
@LAST_MATCH_START special

variable, 101
| command, Perl Debugger, 745
| (pipe) character, selecting alternatives,

255-256
|| command, Perl Debugger, 745

A
a command, Perl Debugger, 739
A command, Perl Debugger, 739
abort function, Perl compiler and, 775
abs function, 210-211, 880-881
ABSTRACT option, MakeMaker module, 845
ABSTRACT_FROM option, MakeMaker

module, 845

I n d e x 1155

abstraction, 123-159
AUTOLOAD subroutine, 158-159
functions, 125-143
modules, 125, 148-154
name spaces and, 124
overview, 124-125
packages, 124, 143-146
scope, 154-158
special blocks, 146-148

accept function, 881
listening to socket connections, 377, 380

accessing directory entries, 196-198
See also file management
glob function, 196-197
opendir function, 197
patterns, 196
readdir function, 197, 198
rewinddir function, 198
seekdir function, 198
telldir function, 198
while loops, 197

accessing object data, methods and, 328-329
accessing packed data structures, 288-293

See also complex data structures
EXPR template, 288-291
pack function, 288-293
unpack function, 288, 291-293

$ACCUMULATOR special variable, 105
acronym database, SELECT statements

and, 438
ActivePerl, fork function and, 473-474
ActiveState Perl

installed documentation, 810, 811
Windows and, 22-24

ActiveState Perl Debugger (APD), 748-749
See also debuggers

add function, stacks and, 662, 664, 666-667
addition and subtraction, precedence of,

53-54
address constants, Socket module, 369
address resolution and conversion, Socket

module, 369
addtask.pl, text databases and fixed-length

records, 399
add_to_datetime function, Perl Profiler, 763
advanced user interfaces, 530-574

ed program, 531
overview, 530
Term::Cap module, 531
terminals, 531-532
Tk, 532-574
Win32::Console module, 531-532

alarm function, 881-882

alarms
See also time
eval function and, 353

ALIAS: keyword, XS interface, 678
aliases, Getopt::Long module and, 520, 1050
ALL prefix, SELECT statements, 435
ALRM (alarm) signal handler, 455
anchor property, widgets, 543
AND

precedence and bitwise, 59
precedence of named logical, 65
precedence and symbolic logical, 59

anonymous arrays, hard references and,
294-295

anonymous hashes, hard references and,
295-296

anonymous pipes, 459-460
See also pipes
child processes and, 460
close function, 460
gzip command, 460
open function, 459-460
PIPE signal, 460

anonymous subroutines
See also hard references
closing, 296-297
functions and, 126-127
functions comparison, 125
overview, 296

AnyDBM_File module, 994-995
DBM databases, 407

APD (ActiveState Perl Debugger), 748-749
See also debuggers

applications
calling external, 770
distributing. See distributing modules

and applications
MakeMaker module and installations,

861-863
$ARG special variable, 99-100
@ARG special variable, 105
arguments, 127-137

See also functions
counting, 130-131
default values and, 136
dynamic, 136-137
identifying values and types, 135
overview, 127-128
passing hashes to subroutines, 134-135
passing lists to subroutines, 131-134
shift function and, 129-130

$ARGV special variable, 105
-argv argument, perlcc script, 794

1156 P e r l : T h e C o m p l e t e R e f e r e n c e

@ARGV array, processing command line
arguments, 514-515

@ARGV special variable, 105
ARGV special variable, 105
ARGVOUT special variable, 105
array elements, Class::Struct module,

1008-1009
array values. See AVs
ArrayDepth option, Perl Debugger, 741
arrays, 85-89

See also hashes; lists; variables
anonymous, 294-295
creating, 85
extracting individual indices, 86-87
hashes of, 315-317
interpolation of values, 81-82
join function, 224-226, 922-923
lists and, 96
merging, 94
overview, 85
single element slices, 88
sizing, 88-89
slices, 87-88
splice function, 223-224, 970
stacks and, 221-223
TIEARRAY method, 336-337

arrays of arrays, 304-309
See also complex data structures

arrays of hashes, 313-315
See also complex data structures

arrow (dereference) operator, precedence
and, 49

ASC keyword, SELECT statements and, 440
assert_h symbol set, POSIX module, 1103
assertions, regular expression, 259-261
assigning values to lists, 95-96
assignment operators, precedence of, 62-63
async function, creating threads via

anonymous subroutines, 500
atan2 function, 212, 882
attributes, 139-141

See also functions; subroutines
built-in function, 871-878
locked, 140
lvalue, 140-141
method, 140
overview, 139-140

attributes pragma, 635-636
Author option, MakeMaker module, 845
auto-increment and auto-decrement

operators, precedence and, 49-51
autobundle function, CPAN module, 1015
$AUTOFLUSH special variable, 101

autoflush HANDLE EXPR special
variable, 101

autoflush method, filehandles, 164
AUTOLOAD subroutine, 158-159
AutoLoader module, 995

MakeMaker module and, 840
AutoSplit module, 996
AutoTrace option, Perl Debugger,

732-733, 740
autouse pragma, 626-627
AVs (array values)

See also values; variables
functions for handling, 658-659

awk environment, 708-710
See also converting languages to Perl
command line options, 710
error trapping, 750-751
Perl variables comparison, 751
Perl-similar programming languages,

9, 12-13

B
$b special variable, 105
b command, Perl Debugger, 738
B module, 996-998

converting Perl to other languages,
711-712

B::Asmdata module, 998
B::Assembler module, 999
B::Bblock module, 999
B::Bytecode module, 999
B::C module, 999
B::CC module, 1000
B::Debug module, 1000
B::Deparse module, 1000
B::Disassembler module, 1000
B::Lint module, 1001
B::Showlex module, 1001
B::Stackobj module, 1001
B::Terse module, 1001
B::Xref module, 1001
b-trees, DB_BTREE database, 411-414
backends, 777-790

See also Perl compiler
bytecode, 779-781
C, 777-779
CC, 779
Debug, 783-785
Deparse, 787-790
Lint, 787, 788

I n d e x 1157

backends, (continued)
overview, 777
Showlex, 790
Terse, 781-783
Xref, 785-787

background property
widgets, 543
widgets and bitmap images, 545

bare words, syntax and parsing rules, 66-67
Barr, Graham, libnet bundle, 387-389
base pragma, 627-628
:base_core set, Opcode module, 1082-1083
:base_io set, Opcode module, 1083
:base_loop set, Opcode module, 1083
:base_math set, Opcode module, 1084
:base_mem set, Opcode module, 1083
:base_orig set, Opcode module, 1084
:base_thread set, Opcode module, 1084
$BASETIME special variable, 108
BEGIN block, special blocks, 146-147
Benchmark module, 1002-1003

profiling by hand, 765-766
Berkeley DB databases, 409-417

See also DBM databases
DB_BTREE database, 411-414
DB_HASH database, 409-411
DB_RECNO database, 414-417
in-memory databases, 417
overview, 402, 409

bfname hash element, DB_RECNO
database, 416

bg property, widgets, 543
BINARY_LOCATION option, MakeMaker

module, 845
bind function, 882

event loops, 538-539
listening to socket connections, 376

bind method, Listbox widget, 554
binders, precedence and regular

expression, 52
binmode function, 883

filehandles, 183-184
bitmap images, widgets and, 545
bitmap property, widgets, 543
BitmapImage widget, 540
bitwise AND, OR, and exclusive OR,

precedence and, 59
bless function, 883
blib pragma, 628
BLOCK form, eval function, 492-493
blocks

code, 110-111
special, 146-148
unqualified, 120-121

books, 1144-1145
See also resources

Boolean context, 68
BOOT: keyword, XS interface, 678-679
borderwidth property, widgets, 543
boundaries, 255

See also regular expression elements
breakpoints, debuggers and, 731
:browser set, Opcode module, 1085
browsers

See also WWW development
sending data back from, 589-593

bsize hash key, DB_HASH database, 410
BufferSize method, Win32::Pipe

module, 466
Button widget, 540, 546
bval hash element, DB_RECNO database, 416
bytecode backend, 779-781

See also backends; Perl compiler
ByteLoader module, 781
options, 782

bytes pragma, 628
Unicode’s effect on Perl code, 267-268

C
-C argument, perlcc script, 792
-C option, command line options, 481, 482
C backend, 777-779

See also backends; Perl compiler
options, 778

c command, Perl Debugger, 735-736
C functions for calling Perl subroutines, 701
C option, MakeMaker module, 846
C/C++

comparing Perl objects to C/C++
objects, 331

error trapping, 752-754
Perl-similar programming

languages, 12
cachesize hash key

DB_BTREE database, 412
DB_HASH database, 410
DB_RECNO database, 415

callback functions
event loops, 538
Getopt::Long module, 520-521,

1050-1051
Hello World! script, 537

1158 P e r l : T h e C o m p l e t e R e f e r e n c e

caller function, 884
debugging technique, 721-724
reporting errors within modules, 282

calling external applications, speed
optimization and, 770

calling functions, 477-478
See also IPC (interprocess

communication)
h2ph script, 477-478
require function, 478
specifically. See calling specific

functions
syscall function, 478

calling methods, 327-328
calling other languages from Perl, 712
calling specific functions, 700-704

See also calling functions; embedding
Perl

C functions for calling Perl
subroutines, 701

execution flags for called
subroutines, 702

perl_add C function, 704
perl_call_argv function, 700-704
perl_parse function, 704
sample code, 703-704

Canvas widget, 540
C_ARGS: keyword, XS interface, 679
carp function, reporting errors within

modules, 282-283
Carp module, 1003-1004

reporting errors within modules, 282
CASE: keyword, XS interface, 679-680
case modification, 218

See also strings
lc function, 218
lcfirst function, 218
uc function, 218
ucfirst function, 218

CC backend, 779
See also backends; Perl compiler
options, 780

CCFLAGS option, MakeMaker module, 846
cget method, widgets, 542
CGI (Common Gateway Interface), 584-593

See also scripts; WWW development
debugging and testing applications,

605-608
environment variables for scripts,

580-584
extracting form data, 586-588
GET method, 584-585, 586-587
init_cgi function, 586-587

overview, 584-585
POST method, 584-585, 586-587
security and, 608-610
sending data back from browser,

589-593
CGI module, 594-601, 1004-1006

See also scripts; WWW development
cookies, 598-601
extracting form data, 588
HTML (HyperText Markup Language)

and, 577-578
import sets, 1005-1006
overview, 594-598, 1004-1005
Roman numeral converter script,

594-598
CGI::Apache module, 1006
CGI::Switch module, 1006-1007
character classes

POSIX-style, 250, 251
regular expression elements, 248-249

character patterns, regular expression
elements, 245-246

character sets, platform migration traps, 829
character-class shortcuts, standard (classic),

249-250
characters

conversion between numbers and, 214
end-of-line character removal, 219
matching specific, 247-248
matching wildcard, 248
metacharacters, 243, 244
regular expression elements, 242-258
Unicode, 265-268

charnames pragma, 629
chdir function, 884-885

directories management, 198-199
CHECK block, special blocks, 146-147
Checkbutton widget, 541

properties and methods for, 548
checking errors. See error checking
child processes, 470-477

See also processes; subprocesses
anonymous pipes and, 460
CHILDREAD filehandle and, 476
CHILDWRITE filehandle and, 476
communications, 475-477
creating, 470-472
eval function, 475
fork function, 470-474, 903
open function, 475
PARENTREAD filehandle and, 476
PARENTWRITE filehandle and, 476
READHANDLE filehandle and, 475

I n d e x 1159

child processes, (continued)
socketpair function, 476-477
wait function, 474
waitpid function, 474, 475
WRITEHANDLE filehandle and, 475

$CHILD_ERROR special variable, 105
CHILDREAD filehandle, child processes

and, 476
CHILDSOCKET filehandle, listening to

socket connections, 380
CHILDWRITE filehandle, child processes

and, 476
chmod function, 885

file management, 194
chomp function, 885-886

end-of-line character removal, 219
chop function, 886

end-of-line character removal, 219
chown function, 886-887

file management, 194-195
chr function, 214, 887

See also conversion between characters
and numbers

chroot function, 887-888
directories management, 199-200

CI option, extension developers’ targets, 857
ci target, extension developers’ targets, 856
Class::Struct module, 1007-1010

array elements, 1008-1009
class elements, 1010
hash elements, 1009-1010
oveview, 1007-1008
scalar elements, 1008
struct function, 1007-1008

class elements, Class::Struct module, 1010
class methods, 325

See also methods
classes, 329-330

See also objects
character, 248-249
defined, 322
event loop, 539
inheritance and, 329-330
POSIX-style character, 250, 251

classic (standard) character-class shortcuts,
regular expression elements, 249-250

CLEANUP: keyword, XS interface, 680
client-side initialization, IO::Socket module,

381
close function, 888-889

anonymous pipes, 460
filehandles, 172

Close method, Win32::Pipe module, 466

closing
anonymous subroutines, 296-297
database connections, 432-433

closing sockets, IO::Socket module, 384
cluck function, reporting errors within

modules, 283
CODE: keyword, XS interface, 680
code blocks, control structures and, 110-111
code values. See CVs
coding styles, 70-72

See also parsing rules
perlstyle guide, 70

colors, widget, 544
comma operator, precedence of, 64-65
command line arguments

perlcc script, 792-794
processing, 514-521

command line options, 480-489
See also execution enhancements
#! line, 481
-a option, 481
-C option, 481, 482
-d[:module] option, 482
-Dflags option, 482, 483
-e commandline option, 483
-Fregex option, 484
-h option, 484
-iext option, 484
-l[char] option, 484
-ldir option, 484
-mmodule option, 484-485
-Mmodule option, 484-485
-n option, 485
-O[val] option, 488
-p option, 485-486, 489
-P option, 486
-s option, 486
-S option, 486
-T option, 486, 507
-u option, 486
-U option, 486
-V[:var] option, 487-488
-v option, 487
-w option, 488
-W option, 488
-X option, 488
-x[dir] option, 488
awk environment, 710
eof function, 489
h2xs converter, 844
overview, 480-481
special handling, 489

1160 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

command line warnings, warnings pragma
Perl 5.6 version, 616

command paragraphs, POD (Plain Old
Documentation) format, 813-816

command property
Checkbutton widget, 548
event loops and, 537, 538
Radiobutton widget, 547

comments, syntax and parsing rules, 41-43
communication

child process, 475-477
interprocess. See IPC
networking rules, 364

CompactDump option, Perl Debugger, 741
compare function, DB_BTREE database, 414
compare hash key, DB_BTREE database, 413
compilation, 650-652

See also Perl compiler; Perl internals
constant folding, 651
context propagation, 652
interpreted code comparison, 8-9, 795
peephole optimizer, 652
yacc parser, 650-651

$COMPILING special variable, 106
compiling and testing code, XS interface,

695-697
complex data structures, 287-338

See also storing complex data in DBM
databases

accessing packed data structures,
288-293

arrays of arrays, 304-309
arrays of hashes, 313-315
beyond two dimensions, 317-320
hashes of arrays, 315-317
hashes of hashes, 309-313
multidimensional, 317-320
objects, 321-331
overview, 288, 303
pack function, 288
references, 293-303
tie function, 331-338

component identity, syntax and parsing
rules, 43-44

COMPRESS option, extension developers’
targets, 857

concatenation, 217-218
See also data manipulation; strings
print function, 217-218
strcat function, 217

cond_broadcast function, threads and
unlocking variables, 502

condition expression, SELECT statements, 437

conditional operators
error checking, 271-272
precedence of, 61-62
SELECT statements, 437

conditional statements
See also statements and control

structures
if and unless, 111-114

cond_signal function, threads and unlocking
variables, 502

cond_wait function, threads and unlocking
variables, 502

confess function, reporting errors within
modules, 283

Config module, 1011-1012
checking for supported functions,

833-834
MakeMaker module and, 858

CONFIG option, MakeMaker module, 846
configure function, multiplicity and, 705
configure method, widgets, 542
CONFIGURE option, MakeMaker

module, 846
connect function, 889
Connect method, Win32::Pipe module,

465, 466
connecting to databases, 428-430

DBI toolkit, 428
DSN string keywords, 429
Win32::ODBC toolkit, 428

connecting to remote sockets, 371-374
See also networking; socket

communication
connectsocket function, 371-372
daytime protocol, 373-374
socket function, 372-373

connection-oriented networks, 362-363
connectionless networks, 362-363
connectsocket function

connecting to remote sockets, 371-372
listening to socket connections,

374, 375-376
constant folding, compilation and, 651
constant pragma, 629-631
constants

address, 369
line termination, 370-371
platform migration traps and

compatibility of, 827
speed optimization and, 768

constructors, object, 322-325
CONTENT_LENGTH environment variable,

CGI scripts, 582

I n d e x 1161

context, 67-69
See also parsing rules; syntax and

parsing rules
Boolean, 68
functions and, 138-139
interpolative, 69
numerical and string, 68
overview, 67
scalar and list, 67-68
void, 68-69

context propagation, compilation and, 652
continue blocks, loops and, 117-118
continue function, 889
control characters, matching specific

characters, 247
control structures. See statements and control

structures
conversion between bases

hex function, 213-214, 920-921
oct function, 213-214, 934

conversion between characters and numbers
chr function, 214, 887
ord function, 214, 937

conversion formats
printf function, 943-944
printf function and <FILEHANDLE>

operator, 177, 178
converting dates and times into epochs, 348
converting formats for DBM databases,

406-407
converting languages to Perl, 706-711

awk environment, 708-710
find command, 710-711
gawk environment, 708
overview, 706
sed environment, 706-708

converting Perl to other languages, 711-712
B module, 711-712
O module, 711-712

converting POD to other formats, 818-823
See also Perl documentation; POD

(Plain Old Documentation) format
conversion formats, 819
HTML, 820, 821, 823
overview, 818-819
PDF format, 823
PostScript, 823
text, 819-820
Unix man pages, 820-823

converting structures, typemaps and, 688
cookies, 598-601

See also CGI module
header function, 600

overview, 598-600
validate_cookie function, 600-601

cooperative multitasking, threads and,
494-495

cos function, 212, 890
counting arguments, 130-131

See also arguments; functions
shift method, 131

CPAN module, 1012-1015
autobundle function, 1015
classes, 1015
commands for interactive shell,

1013-1014
ExtUtils::MakeMaker module and,

839, 863
interactive shell interface, 1012-1015
overview, 1012
programmable interface, 1015
recompile function, 1015

CPAN::FirstTime module, 1016
CPAN::Nox module, 1016
crackers, defined, 643
CREATE statements

generic SQL data types and, 444
NOT NULL keyword, 443
SQL (Structured Query Language),

434-435, 443-444
croak function, reporting errors within

modules, 283
crypt function, 890
ctype_h symbol set, POSIX module, 1103
CVs (code values), 662

See also values; variables
Cwd module, 1016-1017

directories management, 199

D
-d option, Perl Debugger, 731-732
-D option, Xref backend, 787
/d modifier, tr operator, 241, 242
d command, Perl Debugger, 739
D command, Perl Debugger, 739
:dangerous set, Opcode module, 1086
Data::Dumper module, 1017-1018

See also dump function
storing complex data in DBM

databases, 421
data manipulation, 209-268

numbers, 210-217
overview, 210

1162 P e r l : T h e C o m p l e t e R e f e r e n c e

regular expressions, 231-265
strings, 217-231
Unicode, 265-268

DATA special variable, 106
data structures, complex. See complex data

structures
data transfer, IO::Socket module, 386-387
data types

extending Perl and, 670
flexible, 8

database toolkits, 425-434
closing connections, 432-433
connecting to databases, 428-430
database mechanics and

compatibility, 427
DBI toolkit, 425-426
error handling, 433
queries, 430-432
Win32::ODBC toolkit, 426

databases, 391-445
DBM, 399-423
delimiters, 392
file locking, 424
flat file, 392
flock function, 424
object persistence and, 392
overview, 392-393
queries, 430-432
relational. See relational databases
SQL (Structured Query Language),

434-445
text, 393-399
toolkits, 425-434
types of, 392

datagram networks, 362
date formats

See also time
SQL, 444-445

DateAdd function, 349-350
daytime protocol, connecting to remote

sockets, 373-374
DB_BTREE database, 411-414

See also Berkeley DB databases; DBM
databases

compare function, 414
hash keys, 412-413

DB_File module, 1018-1019
DB_HASH database, 409-411

See also Berkeley DB databases;
DBM databases

customizable elements, 410-411
hash keys, 410-411
overview, 409

DBI toolkit, 425-426
See also database toolkits;

Win32::ODBC toolkit
closing connections, 433
connecting to databases, 428
do method and executing simple

queries, 430
errstr method, 433
executing extended queries, 431
executing simple queries, 430
fetch functions, 431
SELECT statements and executing

extended queries, 431
DBM databases, 399-423

See also databases
AnyDBM_File module, 407
Berkeley DB, 402, 409-417
DBM/ODBM term, 401
dbmclose function, 403
dbmopen function, 402-403
DBMTYPE element, 404
file access flags, 404
format conversions, 406-407
functions, 402-403
GDBM implementation, 402, 408-409
hash functions, 406
implementing, 400-402
modules in Perl, 401
NDBM version, 401
overview, 399-400
relational databases with, 421-423
SDBM version, 402
storage space inefficiency, 400
storing complex data in, 418-421
tie function, 403-406

dbmclose function, 890-891
dbmopen function, 891
DB_RECNO database, 414-417

See also Berkeley DB databases
hash elements, 415-416
object methods, 417

Debug backend, 783-785
See also backends; Perl compiler
exec option, 784-785

debug logs, 726-728
overview, 726
redirecting STDOUT/STDERR

filehandles, 726-727
writelog function, 727-728

debuggers, 730-749
ActiveState Perl Debugger, 748-749
breakpoints and, 731
Perl Debugger, 730-748

I n d e x 1163

debuggers, (continued)
stepping action, 730-731
watches and, 730

$DEBUGGING special variable, 106
debugging, 716-772

See also error checking; error trapping
caller function technique, 721-724
debuggers and, 730-749
error trapping, 749-757
eval function technique, 724-726
logs, 726-728
optimization, 757-772
overview, 716-717
print function technique, 717-720
reporting to Sys::Syslog module, 729
reporting to Windows NT/2000 Event

Log, 729-730
techniques, 717-730

debugging and testing CGI applications,
605-608

See also CGI (Common Gateway
Interface); WWW development

die function, 606-607
init_cgi function, 606
mod_perl Apache module, 608
open function, 607
param function, 606
print function, 606
STDERR filehandle and, 606-607
strict pragma, 605
warn function, 606-607

:default set, Opcode module, 1084
DEFAULT keyword, signal handlers, 455
default values

arguments and, 136
variable, 98
XS interface, 645-646

DEFINE option, MakeMaker module, 846
defined function, 892

logical values, 69
variables and, 97

delete function, 892-893
delete method, Text widget, 550
DELETE statements, SQL, 442-443
delimited text databases

join function, 395
split function, 395

delimiters, database, 392
deny method, Safe module, 508-509
Deparse backend, 787-790

See also backends; Perl compiler
options, 789

precedence system and, 46, 49
dequeue method, threads and, 503

dereference (arrow) operator, precedence
and, 49

dereferencing, 298-301
See also references

DESC keyword, SELECT statements, 440
DESTROY method

objects, 330
tie function, 333
TIEARRAY method and, 336
TIESCALAR method and, 336

destructors, objects and garbage
collection, 330

detach method, threads, 501
Devel::Peek module, Perl internals, 644
Devel::RegExp module, Perl internals, 644
Devel::SelfStubber module, 1020
Devel::Symdump module, Perl internals, 644
-Dflags option, command line options, 482, 483
diagnostics pragma, 631-633

disable function and, 632
enable function and, 632
splain program and, 632
-verbose option, 632

die function, 893
debugging and testing CGI

applications, 606-607
document body and sending data back

from browser, 593
eval function and, 493
open function and, 166
reporting errors within modules, 281
reporting errors within scripts, 279,

280, 281
DIE handler, 457-458

See also signal handlers
die_handler function and, 458
END blocks and, 458
eval function and, 494
WARN handler and, 455-456

DieLevel option, Perl Debugger, 740
DIR option, MakeMaker module, 846
directives and tokens, reporting errors within

scripts, 280-281
directories management, 198-200

chdir function, 198-199
chroot function, 199-200
Cwd module, 199
getcwd function, 199
mkdir function, 200
rmdir function, 200

directory entries, accessing, 196-198
dirent_h symbol set, POSIX module, 1103
DirHandle module, 1020-1021

1164 P e r l : T h e C o m p l e t e R e f e r e n c e

disable function, diagnostics pragma and, 632
Disconnect method, Win32::Pipe module, 466
dist target, extension developers’ targets, 856
distcheck target, extension developers’

targets, 855
distclean target, extension developers’

targets, 855
distdir target, extension developers’

targets, 856
DISTINCT prefix, SELECT statements,

435, 436
DISTNAME option, MakeMaker

module, 846
distributing modules and applications,

837-865
ExtUtils::MakeMaker module, 838-863
overview, 838
packing for CPAN module, 863
packing for PPM (Perl Package

Manager), 863-865
disttest target, extension developers’

targets, 856
DL_FUNCS option, MakeMaker module, 846
DL_VARS option, MakeMaker module, 846
-d[:module] option, command line

options, 482
DNS (Domain Name System), networking

and, 363
do function, 893-894
do method, DBI toolkit, 430
do statements, modules and, 153-154
document body, sending data back from

browser, 593
documentation. See Perl documentation
DOCUMENT_ROOT environment variable,

CGI scripts, 581
Domain Name System (DNS), networking

and, 363
DProf debugging extension, Perl Profiler, 758
dprofpp script, 758-761

See also optimization; Perl Profiler
column descriptions, 761
default output, 760-761
one-hit profiling, 764-765
options, 759-760

DRIVER string keyword, connecting to
databases, 429

DSN string keyword, connecting to
databases, 429

dummy makefiles, creating via MakeMaker
module, 853

dump function, 894

See also Data::Dumper module
Perl compiler and, 775-776

-Dx option, opcodes, 648-649
DynaLoader module, 1021

MakeMaker module and, 840-841
XS initialization, 705

dynamic arguments, 136-137

E
-e argument, perlcc script, 792
-e commandline option, command line

options, 483
/e modifier, s/// (substitution operator),

239, 240
each function, 895
ed program, advanced user interfaces, 531
effect codes used on functions, 870
$EFFECTIVE_GROUP_ID special

variable, 104
$EFFECTIVE_USER_ID special variable, 104
$EGID special variable, 104
elements, regular expression. See regular

expression elements
elsif clause, if conditional statements, 111, 112
emacs editor, Perl Debugger, 747
emacs environment, error trapping, 754
emacs keyboard shortcuts, Text widget, 549
embedded Perl, stack access for, 666-668
embedding Perl, 698-706

calling specific functions, 700-704
ExtUtils::Embed module, 700
interpreter, 699-700
multiplicity, 704-705
overview, 698-699
XS initialization, 705-706

embedding POD (Plain Old Documentation)
format, 816-818

enable function, diagnostics pragma and, 632
encoding disciplines, open function, 169-171
encryption, password, 344
END blocks, 146, 147-148

See also special blocks
DIE handler and, 458

end-of-line character removal, 219
See also data manipulation; strings
chomp function, 219
chop function, 219
while loops, 219

endgrent function, 895

I n d e x 1165

endhostent function, 365-366, 895-896
endnetent function, 896
endprotoent function, 896
endpwent function, 897
endservent function, 367, 897
English module, 1021-1024
enqueue method, threads and queues, 503
Entry widget, 541, 552

properties and methods for, 553
Env module, 1024
%ENV special variable, 106
environment variables, 353-359, 489-491

See also execution enhancements;
system information

HOME, 490
LOGDIR, 490
overview, 353-354
PATH, 353-354, 490, 582
PERL5DB, 490
PERL5LIB, 490
PERL5OPT, 490
PERL5SHELL, 490-491
perlcc script, 794-795
PERL_DEBUG_MSTATS, 491
PERL_DESTRUCT_LEVEL, 491
PERLLIB, 490
system information, 353-359
Unix, 354-356
Windows, 356-359

environment variables for CGI scripts,
580-584

See also WWW development
CONTENT_LENGTH, 582
DOCUMENT_ROOT, 581
GATEWAY_INTERFACE, 581
HTTP_ACCEPT, 581
HTTP_ACCEPT_CHARSET, 581
HTTP_ACCEPT_ENCODING, 581
HTTP_ACCEPT_LANGUAGE, 581
HTTP_CONNECTION, 581
HTTP_HOST, 581
HTTP_USER_AGENT, 581
overview, 580
PATH, 582
QUERY_STRING, 582
REMOTE_ADDR, 582
REMOTE_HOST, 582
REMOTE_PORT, 582
REQUEST_METHOD, 582
REQUEST_URI, 582
sample script, 582-583
SCRIPT_FILENAME, 582
SCRIPT_NAME, 582

SERVER_ADMIN, 582
SERVER_NAME, 582
SERVER_PORT, 582
SERVER_PROTOCOL, 582
SERVER_SOFTWARE, 582

eof function, 897-898
command line options, 489
filehandles and, 184-185

epochs, converting dates and times into, 348
equality and relational operators, precedence

and, 57-58
$ERRNO special variable, 104
%ERRNO special variable, 104
Errno module, 1025
errno_h symbol set, POSIX module,

1103-1104
error checking, 270-277

See also debugging; error trapping
avoiding redundant checks, 275
conditional operators, 271-272
functions and, 276-277
guidelines, 272-273
if function, 270-271
methods, 270-272
nesting and, 276-277
or operator, 272
overview, 270
return values and, 276-277
STDERR filehandle, 273
unless function, 271
what not to check, 274
what to check, 273-274
when to stop checking, 275-277

Error method, Win32::Pipe module, 466-467
error notification, functions, 138
error trapping, 269-283, 749-757

See also debugging; error checking
awk environment, 750-751
C/C++, 752-754
database toolkits, 433
emacs environment, 754
error checking, 270-277
error messages and supplying numbers

for, 277-278
eval function, 493
gawk environment, 750-751
overview, 270, 749-750
processes and STDERR, 449
Python environment, 755-757
reporting errors within modules,

281-283
reporting errors within scripts, 279-281
sed environment, 754

1166 P e r l : T h e C o m p l e t e R e f e r e n c e

shell scripts, 754-755
threads and joins, 500
Win32::ODBC toolkit, 433

errors, platform migration traps and, 828
errstr method, DBI toolkit and error

handling, 433
escape sequences

link and POD formats, 817
POD (Plain Old Documentation)

format, 816
$EUID special variable, 104
Ev function, obtaining event details, 540
eval blocks, packages and, 143
eval function, 491-494, 898

See also execution enhancements
alarms, 353
BLOCK form, 492-493
child processes, 475
debugging technique, 724-726
die function and, 493
DIE handler and, 494
exception handling, 493
EXPR template, 492
join method and, 500
overview, 480, 491
return function and, 493-494
warn function and, 493
writedata function and, 726

$EVAL_ERROR special variable, 103
event keyword, event loops, 538-539
Event Log, reporting to Windows NT/2000,

729-730
event loops, 537-540

See also Tk
bind function, 538-539
callback functions, 538
classes, 539
command property and, 537, 538
Ev function, 540
event keyword, 538-539
fileevent function, 537-538
Hello World! script, 534
MainLoop function, 537

exception handling. See error checking;
error trapping

$EXCEPTIONS_BEING_CAUGHT special
variable, 107

EXCLUDE_EXT option, MakeMaker
module, 846

exclusive OR, precedence of, 59, 65-66
exec function, 899

fork function and ActivePerl
limitations, 474

replacing current script, 470
safe pipes, 467-468

exec option
Debug backend, 784-785
Terse backend, 783

$EXECUTABLE_NAME special variable, 108
execution, 652-653

See also Perl internals
controlling. See pragmas
flags for called subroutines, 702
op_next field, 652-653
speed of, 795-802

execution enhancements, 480-509
command line options, 480-489
environment variables, 489-491
eval function, 480, 491-494
overview, 480
security, 505-509
threads, 494-505

execution environment, platform migration
traps, 827-828

execution process, 38-39
See also parsing rules

execvp function, system function and, 468
EXE_FILES option, MakeMaker module,

846, 861
exists function, 899-900

checking hashes, 93
exit function, 900

processes and, 449
exp function, 211, 900-901
exponentiation, precedence and, 51
@EXPORT special variable, 106
Exporter module, 148-150, 1025-1027

creating modules, 148-149
import function, 149, 150, 1025
tag handling functions, 1026-1027
unknown symbols, 1026
version checking, 1027

%EXPORT_TAGS special variable, 106
EXPR keyword

accessing packed data structures,
288-291

eval function, 492
join function, 225
open function, 165-167

expressions, regular. See regular expressions
EXTEND macro, stack size, 668
$EXTENDED_OS_ERROR special

variable, 106

I n d e x 1167

extending Perl, 669-698
data types and, 670
extension interface, 670
glue code, 670
memory management and, 670
overview, 669
SWIG interface builder, 671-672
XS interface, 670-671, 672-698

extensibility of Perl, 7-8
extension building and installation overview,

MakeMaker module, 840-842
extension developers’ targets, 855-857

See also MakeMaker module
CI option, 857
ci target, 856
COMPRESS option, 857
dist target, 856
distcheck target, 855
distclean target, 855
distdir target, 856
disttest target, 856
manifest target, 856
options, 857
POSTOP option, 857
PREOP option, 857
RCS_LABEL option, 857
SHAR option, 857
shdist, 856
skipcheck target, 855
SUFFIX option, 857
TAR option, 857
tardist target, 856
TARFLAGS option, 857
TO_UNIX option, 857
uutardist target, 856
ZIP option, 857
zipdist target, 856
ZIPFLAGS option, 857

extension module, XS interface, 689-695
extension programming, 642
extensions, stack access within, 663-666
external applications, calling, 770
extracting form data, 586-588

See also CGI (Common Gateway
Interface)

CGI module and, 588
init_cgi function, 586-587
QUERY_STRING filehandle, 587
split function, 586
sysread function, 587
URI::Escape module, 587-588

extracting substrings
See also strings
substr function, 220-221

ExtUtils::Command module, 1027
MakeMaker module and, 858

ExtUtils::Embed module, 1028-1029
embedding Perl, 700
MakeMaker module and, 858
XS initialization, 705-706

ExtUtils::Install module, 1029
MakeMaker module and, 858

ExtUtils::Installed module, 1029
MakeMaker module and, 858

ExtUtils::Liblist module, 1029
MakeMaker module and, 859

ExtUtils::MakeMaker module. See
MakeMaker module

ExtUtils::Manifest module, 1030
MakeMaker module and, 859

ExtUtils::Miniperl module, 1030
MakeMaker module and, 859

ExtUtils::Mkbootstrap module, 1030
MakeMaker module and, 859

ExtUtils::Mksymlists module, 1030
MakeMaker module and, 859

ExtUtils::MM_OS2 module, 1030
MakeMaker module and, 859

ExtUtils::MM_Unix module, 1030
MakeMaker module and, 859

ExtUtils::MM_VMS module, 1031
MakeMaker module and, 859

ExtUtils::MM_Win32 module, 1031
MakeMaker module and, 859

ExtUtils::Packlist module, 1031
MakeMaker module and, 860

ExtUtils directory, typemaps, 688

F
@F special variable, 106
f command, Perl Debugger, 736-737
Fatal module, 1031
fatal warnings, warnings pragma Perl 5.6

version, 618
fcntl function, 200-202, 901

See also file management
example functions for, 201-202
filehandle flags for, 202
filehandles and, 162
return values, 201

Fcntl module, 1031-1032
fcntl_h symbol set, POSIX module, 1104
fetch functions, DBI toolkit and executing

extended queries, 431

1168 P e r l : T h e C o m p l e t e R e f e r e n c e

FETCH method
tie function, 332-333
TIEARRAY method and, 336
TIESCALAR method and, 333, 334-335

FetchRow method and executing extended
queries, Win32::ODBC toolkit, 432

ffactor hash key, DB_HASH database, 410
fg property, widgets, 543
field formats, Formats mechanism, 522
field name, SELECT statements, 435
fields pragma, 633
%FIELDS special variable, 106
File::Basename module, 1035-1036
File::CheckTree module, 1036-1037
File::Compare module, 1037
File::Copy module, 1037-1038
File::DosGlob module, 1038
File::Find module, 1039-1040
File::Path module, 1040-1041
File::Spec module, 1041-1042
File::Spec::Mac module, 1042-1043
File::Spec::OS2 module, 1043
File::Spec::Unix module, 1043-1045
File::Spec::VMS module, 1045-1046
File::Spec::Win32 module, 1046
file format encoding disciplines, open

function, 169-171
file information, 187-192

See also file management
-X tests, 187
file test operators, 188
inodes, 189
sample code, 190-192
stat function, 189, 190, 192

file locking, 205-207
database, 424
flock function, 206-207

file management, 186-207
See also filehandles
accessing directory entries, 196-198
chmod function, 194
chown function, 194-195
directories, 198-200
fcntl function, 162, 200-202
file information, 187-192
file locking, 205-207
getgrnam function, 195
getpwnam function, 195
grep function, 194
ioctl function, 162, 203
link function, 192
metadata, 186
overview, 186-187, 192-195
readlink function, 193-194

rename function, 192
rmdir function, 193
select function, 203-205
symlink function, 192-193
time function, 195
umask function, 195
unlink function, 193

file systems, speed optimization and, 770
file tests, function reference, 879
FileCache module, 1032
FILEDSN string keyword, connecting to

databases, 429
fileevent function, event loops, 537-538
filehandle flags, fcntl function, 202
FileHandle module, 1033-1035
<FILEHANDLE> operator, 173-181

See also filehandles
getc function, 174
nonbuffered I/O, 180
overview, 173-174
print function, 175-177
printf function, 177-180
read function, 174-175
readline function, 174
sysread function, 180
syswrite function, 180-181
while loops and, 174

filehandles, 162-186
See also file management
autoflush method, 164
binmode function, 183-184
close function, 172
eof function, 184-185
fcntl function and, 162
<FILEHANDLE> operator, 173-181
fileno function, 185
ioctl function and, 162
locating position within file, 181-183
miscellaneous control functions,

183-186
open function, 165-171
overview, 162, 163-164
reading, 172
seek function, 182
select function, 185-186
STDERR, 163
STDIN, 163
STDOUT, 163-164
sysopen function, 171-172
sysseek function, 183
tell function, 181-182
truncate function, 186
typeglobs and, 164, 297
writing, 172

I n d e x 1169

fileno function, 901-902
filehandles and, 185

files
pathnames and, 829-830
speed optimization and, 770

:filesys_open set, Opcode module, 1085
:filesys_read set, Opcode module, 1084-1085
:filesys_write set, Opcode module, 1085
filetest pragma, 634
find command, 710-711

See also converting languages to Perl
find2perl script, 710-711

FindBin module, 1046-1047
FIRST_MAKEFILE option, MakeMaker

module, 847
fixed-length records, text databases and,

395-399
flags

execution for called subroutines, 702
filehandle for fcntl function, 202
formatting for printf function, 179, 944

flags hash element, DB_RECNO
database, 415

Flags hash key, DB_BTREE database, 412
flash method

Checkbutton widget, 548
Radiobutton widget, 547

flat file databases, 392
See also databases

flexible data types, 8
float_h symbol set, POSIX module, 1105
flock function, 902

database file locking, 424
file locking, 206-207

font property, widgets, 543
fonts, widgets and, 543-544
footers, Formats mechanism, 525
for loops, 115-116
foreach loops, 116-117
foreground property

widgets, 543
widgets and bitmap images, 545

fork function, 470-474, 903
See also child processes
ActivePerl and, 473-474
creating child processes, 470-472
listening to socket connections, 377
multithreading and, 496
threads and multiple processes, 497
Windows support, 472-473

forking processes, safe pipes and, 467
format characters, pack function, 289-290

format conversion
DBM databases and, 406-407
printf function and <FILEHANDLE>

operator, 177, 178
$FORMAT_FORMFEED special variable, 103
format_formfeed HANDLE EXPR special

variable, 103
$FORMAT_LINE_BREAK_CHARACTERS

special variable, 103
$FORMAT_LINES_LEFT special variable,

103
$FORMAT_LINES_PER_PAGE special

variable, 103
format_lines_per_page HANDLE EXPR

special variable, 103
$FORMAT_NAME special variable, 103
format_name HANDLE EXPR special

variable, 103
$FORMAT_PAGE_NUMBER special

variable, 103
format_page_number HANDLE EXPR

special variable, 103
Formats mechanism, 521-527

See also user interface tools
field formats, 522
footers, 525
format function, 526, 903
formline function, 526, 904
FORMLIST option, 521-522
headers, 525
multiline formats, 523-525
overview, 521-525
picture character field formats, 522
variables, 527
write function, 524, 525, 526-527

formatted key values, storing complex data
in DBM databases, 418

formatting
coding styles, 70-72
printf function flags, 179, 944
SQL dates, 444-445

$FORMAT_TOP_NAME special variable, 103
format_top_name HANDLE EXPR special

variable, 103
FORMLIST option, Formats mechanism,

521-522
forms, extracting data from, 586-588
Frame option, Perl Debugger, 741
Frame widget, 541, 559

Menubutton widget and, 554
-Fregex option, command line options, 484
fsavail function, .xs file, 675, 676

1170 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

fsstat function, .xs file, 675, 676-677
FULLPERL option, MakeMaker module, 847
function definitions format, .xs file, 674-675
function overloading, 834-835
function reference, 869-992

See also functions; subroutines
-X function, 879
abs function, 880-881
accept function, 881
alarm function, 881-882
atan2 function, 882
bind function, 882
binmode function, 883
bless function, 883
caller function, 884
chdir function, 884-885
chmod function, 885
chomp function, 885-886
chop function, 886
chown function, 886-887
chr function, 887
chroot function, 887-888
close function, 888-889
connect function, 889
continue function, 889
cos function, 890
crypt function, 890
dbmclose function, 890-891
dbmopen function, 891
defined function, 892
delete function, 892-893
die function, 893
do function, 893-894
dump function, 894
each function, 895
effect codes used on functions, 870
endgrent function, 895
endhostent function, 895-896
endnetent function, 896
endprotoent function, 896
endpwent function, 897
endservent function, 367, 897
eof function, 897-898
eval function, 898
exec function, 899
exists function, 899-900
exit function, 900
exp function, 900-901
fcntl function, 901
file tests, 879
fileno function, 901-902
flock function, 902

fork function, 903
format function, 903
formline function, 904
getc function, 904
getgrent function, 904-905
getgrgid function, 905
getgrnam function, 906
gethostbyaddr function, 906-907
gethostbyname function, 365, 907
gethostent function, 907-908
getlogin function, 908
getnetbyaddr function, 368, 908-909
getnetbyname function, 368, 909
getnetent function, 909-910
getpeername function, 910
getpgrp function, 910
getppid function, 911
getpriority function, 911
getprotobyname function, 366-367,

911-912
getprotobynumber function, 366, 912
getprotoent function, 366-367, 912-913
getpwent function, 913
getpwnam function, 914
getpwuid function, 914-915
getservbyname function, 367, 915
getservbyport function, 367, 915-916
getservent function, 367, 916
getsockname function, 916
getsockopt function, 917
glob function, 918
gmtime function, 918-919
goto function, 919-920
grep function, 920
hex function, 920-921
import function, 921
index function, 921
int function, 922
ioctl function, 922
join function, 922-923
keys function, 923
kill function, 923-924
last function, 925
lc function, 925
lcfirst function, 925-926
length function, 926
link function, 926
listen function, 927
local function, 927
localtime function, 928
log function, 928
lstat function, 929

I n d e x 1171

function reference, (continued)
m// function, 929
map function, 929-930
mkdir function, 930
msgctl function, 930-931
msgget function, 931
msgrcv function, 931
msgsnd function, 932
my function, 932
next function, 933
no function, 933
oct function, 934
open function, 934-936
opendir function, 937
ord function, 937
our function, 937-938
overview, 870
pack function, 938-940
package function, 940
pipe function, 940-941
pop function, 941
pos function, 941-942
print function, 942
printf function, 942-945
prototype function, 945
push function, 945
quotemeta function, 946
rand function, 946
read function, 946-947
readdir function, 947
readline function, 947-948
readpipe function, 948-949
recv function, 949
redo function, 949-950
ref function, 950
rename function, 951
require function, 951
reset function, 952
return function, 952
reverse function, 953
rewinddir function, 953
rindex function, 953-954
rmdir function, 954
s/// function, 954-955
scalar function, 955
seek function, 955-956
seekdir function, 956
select (filehandle) function, 957
select (files) function, 957
semctl function, 958
semget function, 958
semop function, 958-959
send function, 959
setgrent function, 960
sethostent function, 960
setnetent function, 960-961

setpgrp function, 961
setpriority function, 961
setprotoent function, 962
setpwent function, 962
setservent function, 367, 962-963
setsockopt function, 963-964
shift function, 964
shmctl function, 964-965
shmget function, 965-966
shmread function, 966
shmwrite function, 966-967
shutdown function, 967
sin function, 967-968
sleep function, 968
socket function, 968-969
socketpair function, 969
sort function, 969-970
splice function, 970
split function, 970-971
sprintf function, 971
sqrt function, 972
srand function, 972
stat function, 972-973
study function, 974
sub function, 974-975
substr function, 975
symlink function, 975-976
syscall function, 976
sysopen function, 976-977
sysread function, 978
sysseek function, 978-979
system function, 979-980
syswrite function, 980
t/// function, 983
tell function, 980-981
telldir function, 981
tie function, 981
tied function, 982
time function, 982
times function, 982-983
truncate function, 983
uc function, 984
ucfirst function, 984
umask function, 984-985
undef function, 985
unlink function, 985
unpack function, 986
unshift function, 986
untie function, 986-987
use function, 987
utime function, 988
values function, 988
vec function, 988-989
wait function, 989
waitpid function, 989-990

1172 P e r l : T h e C o m p l e t e R e f e r e n c e

wantarray function, 990
warn function, 991
write function, 991
-X function, 879
y/// function, 992

function support, platform migration traps,
826-827

functions, 125-143
See also abstraction; function reference;

subroutines
anonymous subroutines and,

125, 126-127
arguments, 127-137
attributes, 139-141
attributes for built-in, 871-878
callback. See callback functions
calling, 477-478
calling specific, 700-704
checking for supported, 833-834
context and, 138-139
DBM database, 402-403
effect codes used on, 870
error checking and, 276-277
error notification, 138
for handling AVs (array values),

658-659
for handling SVs (scalar values),

655-657
name spaces, 124
Opcode module, 1080-1081
overloading, 834-835
overview, 125-127
POSIX module, 1090-1099
prototyping, 141-143
regular expression support, 263-265
return values, 137
Socket module, 1117
subroutines comparison, 125
trigonometric, 212-213

G
/G assertion, regular expression elements, 258
/g modifier

s/// (substitution operator) and, 239
m// (match operator) and, 235-236

garbage collection, objects and
destructors, 330

GATEWAY_INTERFACE environment
variable, CGI scripts, 581

gawk environment
converting languages to Perl, 708
error trapping, 750-751
Perl-similar programming languages,

12-13
GDBM implementation, DBM databases,

402, 408-409
GDBM_File module, 1047-1048
-gen argument, perlcc script, 794
geometry managers, 563-567

See also Tk
grid, 565-566
Hello World! script, 536
pack function and, 563
packer, 564-565
placer, 563, 567, 568

GET method
CGI (Common Gateway Interface),

584-585, 586-587
Listbox widget, 554
Text widget, 550
Web operation overview, 580

getc function, 904
<FILEHANDLE> operator, 174

getcwd function, directories management, 199
getgrent function, 904-905

users and groups, 343, 344
getgrgid function, 905

users and groups, 343, 344
getgrnam function, 906

file management, 195
users and groups, 343, 344

gethostbyaddr function, 365, 906-907
gethostbyname function, 365, 907
gethostent function, 365-366, 907-908
GetInfo function, SELECT statements

and, 439
getlogin function, 908
getnetbyaddr function, 368, 908-909
getnetbyname function, 368, 909
getnetent function, 909-910
getopt function, Getopt::Std module, 515
Getopt::Long module, 515, 516-521,

1048-1053
See also processing command line

arguments; user interface tools
aliases and, 520, 1050
callback functions, 520-521, 1050-1051
configuration options, 1051-1052
GetOptions function, 517, 519-521
identifying errors, 521
linkage, 519-520, 1049-1050

I n d e x 1173

Getopt::Long module, (continued)
options, 518, 1049
overview, 1048
Posix compliance, 1048
return values, 1051
variables, 1053

Getopt::Std module, 1053-1054
getopt function, 515
getopts function, 515, 516
processing command line arguments,

515-516
GetOptions function, Getopt::Long module,

517, 519-521
getopts function, Getopt::Std module,

515, 516
getpeername function, 910

IO::Socket module, 383
getpgrp function, 910

process groups, 450
getppid function, 911

processes and, 449
getpriority function, 911

process priority, 450-451
getprotobyname function, 366-367, 911-912
getprotobynumber function, 366, 912
getprotoent function, 366-367, 912-913
getpwent function, 913

users and groups, 342, 343
getpwnam function, 914

file management, 195
users and groups, 341, 342

getpwuid function, 914-915
users and groups, 341, 342

getservbyname function, 367, 915
getservbyport function, 367, 915-916
getservent function, 367, 916
getsockname function, 916

IO::Socket module, 384
getsockopt function, 917
$GID special variable, 104
glob function, 918

accessing directory entries, 196-197
glob values. See GVs
global variables, packages and, 143
GlobPrint option, Perl Debugger, 741
glue code, extending Perl, 670
gmtime function, 345-346, 347, 918-919
goto function, 919-920
goto statements, loops and, 122
grep function, 227-228, 920

See also data manipulation; strings
file management, 194
regular expressions, 231-232

grid geometry manager, 565-566
See also geometry managers; Tk
grid function, 565, 566
properties for, 566

groups
See also users and groups
process, 449-450
regular expression element, 256-257

GUIs (Graphical User Interfaces). See user
interface tools; user interfaces

GVs (glob values), 661
See also values; variables

gzcat function
open function and, 167, 168
safe pipes, 467

gzip function
anonymous pipes, 460
PPM (Perl Package Manager), 865

H
-h option, command line options, 484
h2ph script

calling functions, 477-478
Socket module and, 368

h2xs converter
command line options, 844
MakeMaker module and, 838, 843-845
XS interface, 671, 672-673, 697-698

h command, Perl Debugger, 733-734
H -EXPR command, Perl Debugger, 744
H option, MakeMaker module, 847
hackers, defined, 643
handlers, signal, 453-455
hard references, 293, 294-297

See also references
anonymous arrays and, 294-295
anonymous hashes and, 295-296
anonymous subroutines and, 296-297
filehandles/typeglobs, 297

hash elements
Class::Struct module, 1009-1010
DB_RECNO database, 415-416

hash functions, DBM databases and, 406
Hash hash key, DB_HASH database, 410
hash keys

DB_BTREE database, 412-413
DB_HASH database, 410

hash values. See HVs
HashDepth option, Perl Debugger, 741

1174 P e r l : T h e C o m p l e t e R e f e r e n c e

hashes, 89-94
See also arrays; lists; variables
anonymous, 295-296
arrays of, 313-315
creating, 90-91
exists function, 93
extracting individual elements, 91
extracting keys and/or values, 92
extracting slices, 91-92
lists and, 96
overview, 89-90
passing to subroutines, 134-135
references and, 303
sizing, 93-94
sorting/ordering, 93
TIEHASH method, 337-338

hashes of arrays, 315-317
See also complex data structures

hashes of hashes, 309-313
See also complex data structures
sort statements, 312

header function
cookies and, 600
Roman numeral converter script, 597

headers
Formats mechanism, 525
HTTP, 589-593

height property
Listbox widget, 553
widgets, 543, 545

Hello World! script, 533-537
See also Tk
callbacks, 537
event loop, 534
geometry manager, 536
MenuBar object, 536
MenuButton object, 536
nesting widgets, 536
process of creating Tk-based GUI

applications, 534-535
windows and widgets, 535

“here” documents, multiline strings, 82-84
hex function, 213-214, 920-921

See also conversion between bases
hexadecimal characters, matching specific

characters, 247-248
history of Perl, 6
HOME environment variable, 490
hosts, 364-366

See also networking
endhostent function, 365-366, 895-896
gethostbyaddr function, 365, 906-907
gethostbyname function, 365, 907

gethostent function, 365-366, 907-908
overview, 364
sethostent function, 365-366, 960

HTML (HyperText Markup Language),
576-578

See also WWW development
<a> (anchor) tag, 577
CGI module and, 577-578
converting POD to, 820, 821, 823
parsing, 601-602
Tr function and, 578

HTML::Element module, parsing HTML,
601-602

HTMLLIBPODS option, MakeMaker
module, 847

HTML::TreeBuilder module, parsing HTML,
601-602

HTTP headers, 589-593
See also CGI (Common Gateway

Interface); sending data back from
browser

fields listing, 590
HTTP_ACCEPT environment variable, CGI

scripts, 581
HTTP_ACCEPT_CHARSET environment

variable, CGI scripts, 581
HTTP_ACCEPT_ENCODING environment

variable, CGI scripts, 581
HTTP_ACCEPT_LANGUAGE environment

variable, CGI scripts, 581
HTTP_CONNECTION environment

variable, CGI scripts, 581
HTTP_HOST environment variable, CGI

scripts, 581
HTTP_USER_AGENT environment

variable, CGI scripts, 581
HVs (hash values), 659-660

See also values; variables

I
I18N::Collate module, 1054
-I argument, perlcc script, 792
/i, pattern modifiers, 232
ideographic (symbolic) unary operators,

precedence and, 52
IDs, process, 449
-iext option, command line options, 484
if conditional statements, 111-114

elsif clause, 111, 112
if function, error checking, 270-271

I n d e x 1175

IGNORE keyword, signal handlers, 454
image property, widgets, 543
Image widget, 541
import function, 921

Exporter module, 149, 150, 1025
import sets, CGI module, 1005-1006
IMPORTS option, MakeMaker module, 847
in-memory databases, Berkeley DB, 417
INADDR_ANY constant, Socket module,

369
INADDR_BROADCAST constant, Socket

module, 369
INADDR_LOOPBACK constant, Socket

module, 369
INADDR_NONE constant, Socket

module, 369
%INC special variable, 107
@INC special variable, 107
INC option, MakeMaker module, 847
INCLUDE: keyword, XS interface, 680
INCLUDE_EXT option, MakeMaker

module, 847
INDEX argument, TIEARRAY method,

336-337
index function, 921

string location, 219-220
index method, Text widget, 550
index specifications, Text widget, 549
indicatoron property, Checkbutton

widget, 548
inet_aton function, Socket module, 369
inet_ntoa function, Socket module, 369
inheritance, 329-330

See also objects
classes and, 329-330

inhibit_exit option, Perl Debugger, 740
INIT: keyword, XS interface, 680-681
INIT block, special blocks, 146-147
init_cgi function

debugging and testing CGI
applications, 606

extracting form data, 586-587
inodes, file information, 189
INPUT: keyword, XS interface, 681
INPUT section, typemaps, 688
$INPUT_RECORD_SEPARATOR special

variable, 101
insert method

Listbox widget, 553
Text widget, 550

INSERT statements, SQL, 441
INSTALLARCHLIB option, MakeMaker

module, 847

installation and extension building overview,
MakeMaker module, 840-842

INSTALLBIN option, MakeMaker
module, 847

INSTALLDIRS option, MakeMaker
module, 847

INSTALLHTMLPRIVLIBDIR option,
MakeMaker module, 848

INSTALLHTMLSCRIPTDIR option,
MakeMaker module, 848

INSTALLHTMLSITELIBDIR option,
MakeMaker module, 848

installing applications, MakeMaker module,
861-863

installing Tk under UNIX, 533
installing Tk under Windows, 533
installing and using Perl, 18-32

Mac OS, 28-32
overview, 18
Unix, 19-22
Windows, 22-28
writing Perl scripts, 19

INSTALLMAN1DIR option, MakeMaker
module, 848

INSTALLMAN3DIR option, MakeMaker
module, 848

INSTALLPRIVLIB option, MakeMaker
module, 848

INSTALLSCRIPT option, MakeMaker
module, 848

INSTALLSITEARCH option, MakeMaker
module, 848

INSTALLSITELIB option, MakeMaker
module, 848

instance methods, 325
See also methods

INST_ARCHLIB option, MakeMaker
module, 848

INST_BIN option, MakeMaker module, 848
INST_EXE option, MakeMaker module, 848
INST_HTMLLIBDIR option, MakeMaker

module, 848
INST_HTMLSCRIPTDIR option,

MakeMaker module, 849
INST_LIB option, MakeMaker module, 849
INST_MAN1DIR option, MakeMaker

module, 849
INST_MAN3DIR option, MakeMaker

module, 849
INST_SCRIPT option, MakeMaker

module, 849
int function, 211, 922
integer pragma, 634

1176 P e r l : T h e C o m p l e t e R e f e r e n c e

INTERFACE: keyword, XS interface, 681
INTERFACE_MACRO: keyword, XS

interface, 681
interfaces. See advanced user interfaces; user

interface tools
internals. See Perl internal structures;

Perl internals
interpolation

array values, 81-82
speed optimization and, 768-769

interpolative context, 69
interpreters

embedding Perl, 699-700
extending Perl, 669-698
multiple simultaneous, 646
multiplicity, 704-705
Perl compiler and, 8-9, 795

interprocess communication. See IPC
intializing parameters, XS interface, 684-685
invoke method

Checkbutton widget, 548
Radiobutton widget, 547

invoking methods, 327-328
IO module, 1054
IO::File module, 1055
IO::Handle module, 1055-1058
IO::Pipe module, 1058-1059
IO::Seekable module, 1059
IO::Select module, 1059-1061

IO::Socket module and, 382-383
IO::Socket module, 380-387, 1061-1066

See also networking; sockets
client-side initialization, 381
closing sockets, 384
data transfer, 386-387
getpeername function, 383
getsockname function, 384
getting socket addresses, 383-384
IO::Select module and, 382-383
IO::Socket::INET class, 1063-1065
IO::Socket::UNIX class, 1065-1066
overview, 380-381
rcv function, 386-387
select function, 386
send function, 386-387
server-side initialization, 381
shutdown function, 384, 386
socket options, 384-386
transferring data, 386-387

ioctl function, 203, 922
See also file management
filehandles and, 162

IP addresses, DNS (Domain Name
System), 363

IPC (interprocess communication), 447-478
calling functions, 477-478
overview, 448
pipes, 459-468
processes, 448-451
signals, 451-459
subprocesses, 468-477
System V, 478

IPC::Msg module, 1066-1067
IPC::Open2 module, 1067-1068
IPC::Open3 module, 1068
IPC::Semaphore module, 1068-1070
IPC::SysV module, 1070-1071
@ISA special variable, 101
is_tainted function, taint checking, 507-508
items call, stacks, 664
iteration and program control, memory

reduction and, 771-772

J
Java

comparing Perl objects to Java objects,
331

Perl-similar programming languages,
11-12

join function, 224-226, 922-923
See also data manipulation; split

function; strings
delimited text databases, 395
EXPR keyword, 225
LIST arguments, 225
storing complex data in DBM

databases, 419
join method, eval function and threads, 500
joins, SELECT statements and, 440-441
journals, 1146

See also resources

K
key_create function, threads and, 499
keys function, 923
kill function, 923-924

fork function and ActivePerl
limitations, 474

sending signals, 458-459

I n d e x 1177

L
-L argument, perlcc script, 792
Label widget, 541, 545
labels, loops and, 118
languages

calling from Perl, 712
converting Perl to other, 711-712
converting to Perl, 706-711

last function, 925
last keyword, loops and, 119
$LAST_MATCHED special variable, 100
@LAST_MATCH_START special variable,

101
$LAST_PARENT_MATCH special variable,

100
$LAST_REGEXP_CODE_RESULT special

variable, 107
layout, coding styles and, 70-72
lc function, 925

case modification, 218
lcfirst function, 925-926

case modification, 218
-l[char] option, command line options, 484
LDFROM option, MakeMaker module, 849
-ldir option, command line options, 484
length function, 218, 926

See also data manipulation; strings
Unicode and, 266

LENGTH parameter, listening to socket
connections, 376

less pragma, 634-635
LIB option, MakeMaker module, 849
lib pragma, 635-636
libnet bundle, 387-389

See also LWP bundle; networking
LIBPERL_A option, MakeMaker module, 849
Library. See Standard Perl Library
LIBS option, MakeMaker module, 849
LIMIT keyword, split function, 226
limits_h symbol set, POSIX module, 1105
line termination

platform migration traps, 828-829
Socket module and constants, 370-371

LineInfo option, Perl Debugger, 740
link escape sequences, 817
link function, 926

file management, 192
linkage, Getopt::Long module, 519-520,

1049-1050
LINKTYPE option, MakeMaker module, 849
Lint backend, 787

See also backends; Perl compiler
options, 788

LIST arguments
join function, 225
reporting errors within scripts, 279
system function, 468-469

list method, creating threads, 499
list operators

precedence of rightward, 65
precedence of and terms, 47-49

list and scalar contexts, 67-68
Listbox widget, 541, 552-554

bind method, 554
get method, 554
height property, 553
insert method, 553
properties and methods of, 555
width property, 553

listening to socket connections, 374-380
See also socket communication
accept function, 377, 380
bind function, 376
CHILDSOCKET filehandle, 380
connectsocket function, 374, 375-376
fork function and, 377
LENGTH parameter, 376
listen function, 376, 927
listensocket function, 374-375, 377

lists, 94-96
See also arrays; variables
arrays working as, 96
assigning values, 95-96
hashes working as, 96
mailing, 1148-1150
merging, 94
overview, 94
passing to subroutines, 131-134
selecting elements from, 95
selecting list elements from function

calls, 95
%LIST_SEPARATOR special variable, 102
literal tokens, 98
literals, 76-84

See also variables
defined, 76
numeric, 76
string, 77-84

loading
AUTOLOAD subroutine, 158-159
AutoLoader module, 840, 995
ByteLoader module, 781
DynaLoader module, 705, 840-841,

1021
SelfLoader module, 1115-1116

local function, 927

1178 P e r l : T h e C o m p l e t e R e f e r e n c e

local keyword
scope and, 156-157
signal handlers and, 454

local variable, scope and, 155
locale pragma, 636
locale_h symbol set, POSIX module, 1106
localtime function, 345-349, 928
lock function

threads and queues, 503-504
threads and subroutines, 502-503
threads and variables, 501-502

locked attribute, 140
locking files. See file locking
log reporter, named pipes and, 462-463
LOGDIR environment variable, 490
logging

debug, 726-728
log function, 212, 928
writelog function, 456-457, 727-728

logical AND, precedence of named, 65
logical NOT, precedence of named, 65
logical OR, precedence of named, 65-66
logical values, syntax and parsing rules, 69
loops, 114-122

See also statements and control
structures

continue blocks, 117-118
control keywords, 119-120
for, 115-116
foreach, 116-117
goto statements and, 122
labels and, 118
last keyword, 119
next keyword, 119
overview, 114
redo keyword, 119
scope and, 158
unqualified blocks and, 120-121
until, 115
while, 114-115

lorder hash key
DB_BTREE database, 413
DB_HASH database, 411
DB_RECNO database, 416

lstat function, 929
lvalue attribute, 140-141
LWP bundle, 389-390

See also libnet bundle; networking

M
/m, pattern modifiers, 232
m command, Perl Debugger, 745-746

m// (match operator), 233-236, 929
See also regular expressions
/g modifier and, 235-236
overview, 233-235
regular expression modifiers for

matches, 235, 236
reset function and, 236

Mac OS/Mac OS X
documentation, 1143-1144
executing Perl scripts, 29-30
installing third-party modules, 30-32
installing and using Perl, 28-32
MacPerl script types, 29-30
Perl documentation, 811-812

mailing lists, 1148-1150
See also resources
Windows, 1149-1150

MainLoop function
event loops, 537
SpecTcl application, 574

MAKEAPERL option, MakeMaker
module, 850

MAKEFILE option, MakeMaker
module, 850

MakeMaker module, 838-863
See also distributing modules and

applications
ABSTRACT option, 845
ABSTRACT_FROM option, 845
applications installation, 861-863
Author option, 845
AutoLoader module, 840
BINARY_LOCATION option, 845
C option, 846
CCFLAGS option, 846
Config module and, 858
CONFIG option, 846
configurable options, 845-853
CONFIGURE option, 846
CPAN module and, 839, 863
creating dummy makefiles, 853
creating new Perl binary libraries,

854-855
customizing commands, 857
default targets, 853, 854
DEFINE option, 846
DIR option, 846
DISTNAME option, 846
DL_FUNCS option, 846
DL_VARS option, 846
DynaLoader module, 840-841
EXCLUDE_EXT option, 846
EXE_FILES option, 846, 861
extension building and installation

overview, 840-842

I n d e x 1179

MakeMaker module, (continued)
extension developers’ targets, 855-857
ExtUtils::Command module and, 858
ExtUtils::Embed module and, 858
ExtUtils::Install module and, 858
ExtUtils::Installed module and, 858
ExtUtils::Liblist module and, 859
ExtUtils::Manifest module and, 859
ExtUtils::Miniperl module and, 859
ExtUtils::Mkbootstrap module and, 859
ExtUtils::Mksymlists module and, 859
ExtUtils::MM_OS2 module and, 859
ExtUtils::MM_Unix module and, 859
ExtUtils::MM_VMS module and, 859
ExtUtils::MM_Win32 module and, 859
ExtUtils::Packlist module and, 860
FIRST_MAKEFILE option, 847
FULLPERL option, 847
h2xs converter, 838, 843-845
H option, 847
HTMLLIBPODS option, 847
IMPORTS option, 847
INC option, 847
INCLUDE_EXT option, 847
INSTALLARCHLIB option, 847
INSTALLBIN option, 847
INSTALLDIRS option, 847
INSTALLHTMLPRIVLIBDIR

option, 848
INSTALLHTMLSCRIPTDIR

option, 848
INSTALLHTMLSITELIBDIR

option, 848
installing applications, 861-863
INSTALLMAN1DIR option, 848
INSTALLMAN3DIR option, 848
INSTALLPRIVLIB option, 848
INSTALLSCRIPT option, 848
INSTALLSITEARCH option, 848
INSTALLSITELIB option, 848
INST_ARCHLIB option, 848
INST_BIN option, 848
INST_EXE option, 848
INST_HTMLLIBDIR option, 848
INST_HTMLSCRIPTDIR option, 849
INST_LIB option, 849
INST_MAN1DIR option, 849
INST_MAN3DIR option, 849
INST_SCRIPT option, 849
LDFROM option, 849
LIB option, 849
LIBPERL_A option, 849
LIBS option, 849
LINKTYPE option, 849

MAKEAPERL option, 850
MAKEFILE option, 850
MAN1PODS option, 850
MAN3PODS option, 850
MAP_TARGET option, 850
MYEXTLIB option, 850
NAME option, 850
NEEDS_LINKING option, 850
NOECHO option, 850
NORECURS option, 850
NO_VC option, 850
OBJECT option, 850
OPTIMIZE option, 851
overview, 838-839, 842-843, 1030
PERL option, 851
PERL_ARCHLIB option, 851
PERL_LIB option, 851
PERLMAINCC option, 851
PERL_MALLOC_OK option, 851
PERL_SRC option, 851
PERM_RW option, 851
PERM_RWX option, 851
PL_FILES option, 851
PM option, 851
PMLIBDIRS option, 852
POLLUTE option, 852
postamble subroutine, 861-862
PPM (Perl Package Manager) and,

839, 863-865
PPM_INSTALL_EXEC option, 852
PPM_INSTALL_SCRIPT option, 852
PREFIX option, 852
PREREQ_PM option, 852, 860-861
related modules, 858
SKIP option, 852
StatVFS module example, 842
tricks, 860-863
TYPEMAPS option, 852
VERSION option, 852
VERSION_FROM option, 852-853
WriteMakeFile function, 843
XS interface, 695, 697-698
XS option, 853
XSOPT option, 853
XSPROTOARG option, 853
XS_VERSION option, 853

MAN1PODS option, MakeMaker
module, 850

MAN3PODS option, MakeMaker
module, 850

man command, Unix and Perl
documentation, 808

1180 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

managing directories. See directories
management

managing files. See file management
mandatory warnings

warnings pragma, 612
warnings pragma Perl 5.6 version, 615

manifest target, extension developers’
targets, 856

map function, 228, 929-930
See also data manipulation; strings

mapascii function, quoting information via
print function, 719-720

MAP_TARGET option, MakeMaker
module, 850

markSet method, Text widget, 550
markstack, stacks and, 662, 663
markUnset method, Text widget, 550
$MATCH special variable, 100
match operator. See m//
matching beginning and end of strings, 254

See also regular expression elements
matching specific characters, 247-248

See also regular expression elements
control characters, 247
hexadecimal characters, 247-248
named Unicode characters, 248
octal characters, 247

matching wildcard characters, 248
See also regular expression elements

Math::Base and Math::Multi, packages,
144-145

Math::BigFloat module, 1072-1073
Math::BigInt module, 1073-1074
Math::Complex module, 1075-1076
Math::Trig module, 1076-1077
math_h symbol set, POSIX module, 1106
maxkeypage hash key, DB_BTREE

database, 412
MaxTraceLen option, Perl Debugger, 741
memory management, extending Perl

and, 670
memory reduction, 770-772

See also optimization
iteration and program control and,

771-772
overview, 770
variables and, 771

Menu widget, 541
MenuBar object, Hello World! script, 536
MenuButton object, Hello World! script, 536
Menubutton widget, 541, 554-558

creating menus, 554, 558
Frame widget and, 554

menu item methods, 556
menu item properties, 557

merging lists or arrays, 94
Message widget, 541
metacharacters, regular expression elements

and, 243, 244
metadata, file management and, 186
metasymbols, regular expression elements

and, 243
method attribute, 140
methods, 325-329

See also objects
accessing object data, 328-329
calling, 327-328
class, 325
defined, 322
instance, 325
invoking, 327-328
references and, 326
types of, 325

migration traps. See platform migration traps
minkeypage hash key, DB_BTREE

database, 412
misinterpreted unary operators, precedence

and, 56
mkdir function, 930

directories management, 200
mkfifo command, named pipes, 461-462
mknod command, named pipes, 461-462
MLDBM module, storing complex data in

DBM databases, 421
-mod argument, perlcc script, 794
mod_perl Apache module, debugging and

testing CGI applications, 608
MODULE definitions, .xs file, 674
MODULE keyword, XS interface, 681
modules, 35, 125, 148-154

See also abstraction; functions
creating, 148-149
distributing. See distributing modules

and applications
do statements, 153-154
Exporter, 148-150
no statements, 153
overview, 148
platform migration traps and, 830
reporting errors within, 281-283
require keyword, 150-153
use keyword, 150-153

more command, two-way pipes, 461
mortals, SVs (scalar values) and, 654
msgctl function, 930-931
msgget function, 931

I n d e x 1181

msgrcv function, 931
msgsnd function, 932
multidimensionality, complex data

structures, 317-320
multiline formats, Formats mechanism,

523-525
multiline strings, “here” documents and,

82-84
multiple processes, threads and, 497
multiple simultaneous interpreters, Perl

internals, 646
multiplication, precedence and, 52-53
multiplicity, 704-705

See also embedding Perl
configure function, 705
PL_perl_destruct_level, 704-705

multitasking, threads and, 494-495
multithreading, 495-497

See also threads
fork function and, 496
SELECT statements and, 496

my function, 932
my keyword, scope and, 155-156
MYEXTLIB option, MakeMaker module, 850

N
n command, Perl Debugger, 735
-n option, command line options, 485
name conventions, Win32::Pipe module, 464
NAME option, MakeMaker module, 850
name spaces, functions and, 124
named logical AND, precedence of, 65
named logical NOT, precedence of, 65
named logical OR, precedence of, 65-66
named pipes, 461-467

See also pipes
log reporter, 462-463
mkfifo command, 461-462
mknod command, 461-462
Windows. See Win32::Pipe module

named unary operators, precedence and,
54-56

named Unicode characters, matching specific
characters, 248

naming conventions and versions of Perl, 5-6
naming rules for variables, 74-75
NDBM version, DBM databases, 401
NDBM_File module, 1078
NEEDS_LINKING option, MakeMaker

module, 850
nelem hash key, DB_HASH database, 410

nesting
error checking and, 276-277
packages, 144-145

nesting widgets, Hello World! script, 536
Net::Ping module, 1077-1078
networking, 361-390

communications rules, 364
connection-oriented networks, 362-363
connectionless networks, 362-363
datagram networks, 362
DNS (Domain Name System), 363
getnetbyaddr function, 368, 908-909
getnetbyname function, 368, 909
hosts, 364-366
IO::Socket module, 380-387
IP addresses and DNS (Domain Name

System), 363
libnet bundle, 387-389
LWP bundle, 389-390
obtaining network information,

364-368
overview, 362-364, 368
packet-oriented networks, 362
protocols, 366-367
services, 367
socket communication, 371-380
Socket module, 368-371
sockets and, 363-364
TCP/IP and, 362-363
types of, 362

new method, Win32::Pipe module, 463, 465
newsgroups, 1150-1151

See also resources
next function, 933
next keyword, loops and, 119
nmake function, PPM (Perl Package

Manager), 864
no function, 933
no keyword, pragmas and, 625
no statements, modules and, 153
NOECHO option, MakeMaker module, 850
NO_INIT keyword, XS interface, 681-682
nonbuffered I/O, <FILEHANDLE>

operator, 180
NonStop option, Perl Debugger, 741
NORECURS option, MakeMaker

module, 850
NOT, precedence of named logical, 65
NOT NULL keyword, CREATE

statements, 443
NoTTY option, Perl Debugger, 741
NO_VC option, MakeMaker module, 850
$NR special variable, 101

1182 P e r l : T h e C o m p l e t e R e f e r e n c e

numbers, 210-217
See also data manipulation
abs function, 210-211, 880-881
conversion between bases, 213-214
conversion between characters and, 214
exp function, 211, 900-901
int function, 211, 922
log function, 212, 928
overview, 210
random, 214-216
sqrt function, 211-212, 972
trigonometric functions, 212-213
vec function and very small integers,

216-217
numeric literals, 76

See also strings
numerical and string contexts, 68

O
-o argument, perlcc script, 792
/o, pattern modifiers, 232, 233
O command, Perl Debugger, 739-740, 742-743
O module, 1079

converting Perl to other languages,
711-712

OBJECT option, MakeMaker module, 850
object persistence, databases and, 392
objects, 321-331

See also complex data structures
accessing data from, 328-329
classes and, 322, 329-330
comparing Perl to other languages,

330-331
constructors, 322-325
creating and using, 322-325
DESTROY method, 330
destructors and garbage collection, 330
inheritance and, 329-330
methods and, 322, 325-329
overview, 321-322
Perl internal, 644-646
variable, 654

oct function, 213-214, 934
See also conversion between bases

octal characters, matching specific
characters, 247

ODBC, Win32::ODBC toolkit, 426
ODBM_File module, 1079
offvalue property, Checkbutton widget, 548
$OFS special variable, 102
$OLD_PERL_VERSION special variable, 105
onvalue property, Checkbutton widget, 548

Opcode module, 1079-1086
:base_core set, 1082-1083
:base_io set, 1083
:base_loop set, 1083
:base_math set, 1084
:base_mem set, 1083
:base_orig set, 1084
:base_thread set, 1084
:browser set, 1085
:dangerous set, 1086
:default set, 1084
:filesys_open set, 1085
:filesys_read set, 1084-1085
:filesys_write set, 1085
functions, 1080-1081
Opcode sets, 1082-1086
:others set, 1086
overview, 1079-1080
:ownprocess set, 1086
safety and, 653
security, 509
:still_to_be_decided set, 1086
:subprocess set, 1086
:sys_db set, 1085

opcodes, 647-650
See also Perl internals
-Dx option, 648-649
op structure, 647
opcodes.pl script, 647
op_next field, 647
op_ppaddr field, 648
op_type field, 647
Perl scripts and, 9
Safe module and, 653

open function, 165-171, 934-936
See also filehandles; sysopen function
anonymous pipes, 459-460
child processes, 475
debugging and testing CGI

applications, 607
die function and, 166
EXPR keyword, 165-167
file format encoding disciplines,

169-171
gzcat function and, 167, 168
options, 169
pipes, 459
safe pipes, 467
security and, 506-507
STDERR filehandle and, 168
STDIN filehandle and, 167-168
STDOUT filehandle and, 167-168
syntax, 165-169
Win32::Pipe module, 464-465

I n d e x 1183

open pragma, 636
open2 function, two-way pipes and pipe

function, 461
opendir function, 937

accessing directory entries, 197
operators, 34

unary. See unary operators
op_next field, 647

execution and, 652-653
ops pragma, 636-637
optimization, 757-772

See also debugging
guidelines, 766-772
memory reduction, 770-772
overview, 757-758
Perl Profiler, 758-765
profiling by hand, 765-766
speed, 766-770

OPTIMIZE option, MakeMaker module, 851
optional warnings

warnings pragma, 613
warnings pragma Perl 5.6 version, 615

OptionMenu widget, 541
OPTIONS keyword, .xs file, 674
OR

precedence and bitwise, 59
precedence of exclusive, 65-66
precedence of named logical, 65-66
precedence of symbolic logical, 59-60

or operator, error checking, 272
ord function, 214, 937

See also conversion between characters
and numbers

ORDER BY clause, SELECT statements, 440
ordering hashes, 93
$ORS special variable, 102
$OS_ERROR special variable, 104
%OS_ERROR special variable, 104
$OSNAME special variable, 107
:others set, Opcode module, 1086
our function, 937-938
our keyword, scope and, 157-158
Ousterhout, Dr. John, creator of Tk, 532
OUTPUT: keyword, XS interface, 682
OUTPUT section, typemaps, 688
$OUTPUT_AUTOFLUSH special

variable, 101
$OUTPUT_FIELD_SEPARATOR special

variable, 102
$OUTPUT_RECORD_SEPARATOR special

variable, 102
-O[val] option, command line options, 488

overload pragma, 637
overloading functions, 834-835
:ownprocess set, Opcode module, 1086

P
-p option, command line options,

485-486, 489
p command, Perl Debugger, 734
pack function, 938-940

accessing packed data structures,
288-293

complex data structures, 288
format characters, 289-290
geometry managers and, 563
packer geometry manager and,

564, 565
storing complex data in DBM

databases, 419-420
text databases and fixed-length

records, 395
PACKAGE definitions, .xs file, 674
package function, 940
PACKAGE keyword, XS interface, 682
Package Manager, Perl. See PPM
packages, 124, 143-146

See also abstraction; functions
eval blocks and, 143
global variables and, 143
Math::Base and Math::Multi, 144-145
nesting, 144-145
package keyword, 143-144
symbol tables, 145-146

packed data structures, accessing, 288-293
packer geometry manager, 564-565

See also geometry managers; Tk
pack function and, 564, 565
padding character suffixes, 565, 566

packet-oriented networks, 362
pack_sockaddr_in function, Socket

module, 370
padding character suffixes, packer geometry

manager, 565, 566
Pager option, Perl Debugger, 740
paragraphs

command, 813-816
ordinary, 816
verbatim, 816

1184 P e r l : T h e C o m p l e t e R e f e r e n c e

param function
debugging and testing CGI

applications, 606
Roman numeral converter script,

595-596, 598
PARENTREAD filehandle, child processes

and, 476
PARENTWRITE filehandle, child processes

and, 476
parse_options function, customizing Perl

Debugger, 747
parse_roman function, Roman numeral

converter script, 595, 598
parsing HTML, 601-602

See also HTML (HyperText Markup
Language); WWW development

HTML::Element module, 601-602
HTML::TreeBuilder module, 601-602

parsing rules, 37-72
coding styles, 70-72
execution process, 38-39
overview, 38
syntax and, 39-69

parsing XML, 602-605
See also WWW development
XML::Parser module, 605

passing hashes to subroutines, arguments
and, 134-135

passing lists to subroutines, arguments and,
131-134

password encryption, users and groups, 344
PATH environment variable, 353-354, 490

CGI scripts, 582
pathnames and files, platform migration

traps and, 829-830
?PATTERN? command, Perl Debugger, 737
/PATTERN/ command, Perl Debugger, 737
PATTERN keyword

s/// (substitution operator), 237
split function, 226

pattern modifiers, 232-233
See also regular expressions
/i, 232
/m, 232
/o, 232, 233
/s, 232
/x, 232, 233

pattern quantifiers, regular expression, 247
pattern-binding operators, regular

expressions and, 231
patterns

accessing directory entries and, 196
regular expression character, 245-246

PDF format, converting POD format to, 823
peephole optimizer, compilation, 652
pending method, threads and queues,

503-504
performance and resources, platform

migration traps, 830-831
Perl, 4-35

abstraction, 123-159
ActivePerl and fork function, 473-474
advanced user interfaces, 530-574
calling other languages from, 712
command line options, 480-489
compiler, 773-802
compilers and interpreters

overview, 8-9
complex data structures, 287-338
components, 32-35
converting languages to, 706-711
converting to other languages, 711-712
data manipulation, 209-268
databases, 391-445
debugging, 716-772
distributing modules and applications,

837-865
documentation, 804-823, 1142-1144
embedding, 698-706
environment variables, 489-491
error trapping, 269-283
execution enhancements, 480-509
extending, 669-698
extensibility of, 7-8
extension programming, 576
features of, 7-8
file management, 186-207
filehandles, 162-186
flexible data types, 8
Formats mechanism, 521-527
as free language, 7
function reference, 869-992
history of, 6
installing and using, 18-32
internal structures, 653-669
internals, 643-653
interpreters and compilers overview,

8-9
IPC (interprocess communication),

447-478
Library. See Standard Perl Library
meaning of, 4
modules, 35, 125, 148-154
“mythconceptions” about, 13-15
networking, 361-390
opcodes, 9

I n d e x 1185

Perl, (continued)
operators, 34
overview, 4, 18
parsing rules, 37-72
platform migration traps, 825-835
pragmas, 612-640
processes, 448-451
reporting mechanism. See Formats

mechanism
resources, 1141-1152
similar programming languages, 9-13
speed of, 7
Standard Library. See Standard Perl

Library
statements, 34
statements and control structures,

109-122
subprocesses, 468-477
subroutines, 34
success stories, 15-16
system information, 339-359
Tk, 532-574
Unicode and, 265-268
user interface tools, 514-527
variables, 32-33, 73-111, 654-662
version determination, 832-833
versions history, 6
versions and naming conventions, 5-6
WWW development, 576-610

Perl compiler, 773-802
abort function and, 775
backends, 777-790
dump function and, 775-776
frontend (perlcc script), 791-795
interpreted versus compiled code, 795
overview, 774-775, 776-777
speed of execution, 795-802
undump function and, 775-776
unexec function and, 776

Perl Debugger, 730-748
See also debuggers
{ command, 743
{{ command, 744
<< command, 743
< command, 743
= command, 745
>> command, 743
> command, 743
! command, 744
!! command, 744
-d option, 731-732
/ command, 736
H -EXPR command, 744
| command, 745

|| command, 745
a command, 739
A command, 739
alternative interfaces, 747-748
ArrayDepth option, 741
AutoTrace option, 732-733, 740
b command, 738
c command, 735-736
commands, 733-746
CompactDump option, 741
customizing, 747
d command, 739
D command, 739
DieLevel option, 740
emacs editor, 747
f command, 736-737
Frame option, 741
GlobPrint option, 741
H -EXPR command, 744
h command, 733-734
HashDepth option, 741
inhibit_exit option, 740
internal options, 740-741
LineInfo option, 740
m command, 745-746
MaxTraceLen option, 741
n command, 735
non-interactive mode, 746-747
NonStop option, 741
NoTTY option, 741
O command, 739-740, 742-743
overview, 731
p command, 734
Pager option, 740
parse_options function and

customizing, 747
?PATTERN? command, 737
/PATTERN/ command, 737
PERLDB_OPTS environment variable

and non-interactive mode, 746-747
PrintRet option, 741
ptkdb interface, 747, 748
q command, 744
r command, 744, 745
ReadLine option, 741
RecallCommand option, 740
s command, 735
ShellBang option, 740
SignalLevel option, 740
t command, 737-738
T command, 732-733, 735
TkRunning option, 740
TTY option, 741

1186 P e r l : T h e C o m p l e t e R e f e r e n c e

user interface, 731-733
V command, 734
VeryCompact option, 741
w command, 736
W command, 739
WarnLevel option, 740
x command, 734
X command, 735

Perl documentation, 804-823, 1142-1144
See also resources
ActiveState Perl installed

documentation, 810, 811
Mac OS/Mac OS X, 811-812
overview, 804
POD (Plain Old Documentation)

format, 804-808, 812-823
Unix, 808-809, 810
Windows, 810-811

Perl internal structures, 653-669
overview, 653-654
stacks, 662-668
summary, 669
variables, 654-662

Perl internals, 643-653
architecture, 644, 645
compilation, 650-652
data type acronyms, 645
Devel::Peek module, 644
Devel::RegExp module, 644
Devel::Symdump module, 644
execution, 652-653
multiple simultaneous interpreters, 646
objects, 644-646
opcodes, 647-650
overview, 643-644
translator, 646

PERL option, MakeMaker module, 851
Perl Package Manager. See PPM
Perl Profiler, 758-765

See also debugging; optimization
add_to_datetime function, 763
DProf debugging extension, 758
dprofpp script, 758-761
main sections and, 762-763
one-hit profiling, 764-765
overview, 758
process function, 763
sample script profile, 761-764

perl_add C function, calling specific
functions, 704

PERL_ARCHLIB option, MakeMaker
module, 851

perl_call_argv function, calling specific
functions, 700-704

perlcc script, 791-795
See also Perl compiler
-argv argument, 794
-C argument, 792
-e argument, 792
-gen argument, 794
-I argument, 792
-L argument, 792
-mod argument, 794
-o argument, 792
-prog argument, 794
-regex argument, 792-793
-run argument, 794
-sav argument, 794
command line arguments, 792-794
environment variables, 794-795
overview, 791-792
PERL_MODULE_EXT environment

variable, 795
PERL_SCRIPT_EXT environment

variable, 795
verbosity levels, 793

$PERLDB special variable, 107
PERLDB_OPTS environment variable, Perl

Debugger and non-interactive mode,
746-747

PERL5DB environment variable, 490
PERL_DEBUG_MSTATS environment

variable, 491
PERL_DESTRUCT_LEVEL environment

variable, 491
perldoc command

options, 810
Unix and Perl documentation, 808-809

perl_get_sv function, SVs (scalar values), 658
PERLLIB environment variable, 490
PERL_LIB option, MakeMaker module, 851
PERL5LIB environment variable, 490
PERLMAINCC option, MakeMaker

module, 851
PERL_MALLOC_OK option, MakeMaker

module, 851
PERL_MODULE_EXT environment

variable, perlcc script, 795
PERL5OPT environment variable, 490
perl_parse function

calling specific functions, 704
XS initialization, 706

PERL_SCRIPT_EXT environment variable,
perlcc script, 795

PERL5SHELL environment variable, 490-491
PERL_SRC option, MakeMaker module, 851
perlstyle guide, coding styles, 70
$PERL_VERSION special variable, 108

I n d e x 1187

permit method, Safe module, 508-509
PERM_RW option, MakeMaker module, 851
PERM_RWX option, MakeMaker

module, 851
Photo constructor, widgets and bitmap

images, 545
PhotoImage widget, 541
picture character field formats, Formats

mechanism, 522
$PID special variable, 104
pipe function, 940-941

open2 function and, 461
PIPE signal, anonymous pipes, 460
pipes, 459-468

See also IPC (interprocess
communication)

anonymous, 459-460
named, 461-467
open function, 459
open2 function, 461
overview, 459
safe, 467-468
two-way communication, 460-461

placer geometry manager, 563, 567
See also geometry managers
properties, 568

platform migration traps, 825-835
$^O environment variable, 831, 832
character sets, 829
checking for supported functions,

833-834
constant compatibility, 827
determining Perl version, 832-833
determining platforms, 831, 832
errors and, 828
execution environment, 827-828
files and pathnames, 829-830
function overloading, 834-835
function support, 826-827
line termination, 828-829
modules and, 830
overview, 826
performance and resources, 830-831
storage and, 829
tricks, 831-835

PL_FILES option, MakeMaker module, 851
PL_perl_destruct_level, multiplicity and,

704-705
PM option, MakeMaker module, 851
PMLIBDIRS option, MakeMaker

module, 852
POD (Plain Old Documentation) format,

804-808, 812-823
See also Perl documentation
command paragraphs, 813-816

components, 813
document section names, 815
embedding, 816-818
escape sequences, 816, 817
format conversion, 818-823
ordinary paragraphs, 816
overview, 812-813
POD components, 813
verbatim paragraphs, 816
writing, 812-818

Pod::Functions module, 1087
Pod::HTML module, 1087
Pod::Text module, 1087-1089
pod2man script, converting POD to Unix

man pages, 820-823
POLLUTE option, MakeMaker module, 852
pop function, 941

processing command line
arguments, 514

stacks, 222
pos function, 941-942

regular expression support functions,
263-264

POSITION argument, string location, 220
Posix compliance, Getopt::Long module, 1048
POSIX module, 1089-1111

assert_h symbol set, 1103
ctype_h symbol set, 1103
dirent_h symbol set, 1103
errno_h symbol set, 1103-1104
fcntl_h symbol set, 1104
float_h symbol set, 1105
functions, 1090-1099
limits_h symbol set, 1105
locale_h symbol set, 1106
math_h symbol set, 1106
overview, 1089
POSIX::SigAction class, 1100
POSIX::SigSet class, 1100
POSIX::SigTermios class, 1101-1102
setjmp_h symbol set, 1106
signal_h symbol set, 1107
stddef_h symbol set, 1107
stdio_h symbol set, 1107-1108
stdlib_h symbol set, 1108
string_h symbol set, 1108
symbol sets, 1102-1111
sys_stat_h symbol set, 1109
sys_utsname_h symbol set, 1109
sys_wait_h symbol set, 1109
termios_h symbol set, 1109-1110
time_h symbol set, 1110
unistd_h symbol set, 1110

1188 P e r l : T h e C o m p l e t e R e f e r e n c e

POSIX signals, 451-452
See also IPC (interprocess

communication); signals
POSIX-style character classes, 250, 251

See also regular expression elements
POST method

CGI (Common Gateway Interface),
584-585, 586-587

Web operation overview, 580
postamble subroutine, MakeMaker module,

861-862
$POSTMATCH special variable, 100
POSTOP option, extension developers’

targets, 857
PostScript, converting POD to, 823
PPCODE: keyword, XS interface, 682, 687
PPM (Perl Package Manager), 839, 863-865

See also MakeMaker module
gzip function, 865
nmake function, 864
tar function, 865

PPM_INSTALL_EXEC option, MakeMaker
module, 852

PPM_INSTALL_SCRIPT option,
MakeMaker module, 852

pragmas, 612-640
attributes, 635-636
autouse, 626-627
base, 627-628
blib, 628
bytes, 628
charnames, 629
constant, 629-631
diagnostics, 631-633
fields, 633
filetest, 634
integer, 634
less, 634-635
lib, 635-636
locale, 636
no keyword, 625
open, 636
ops, 636-637
overload, 637
overview, 612
re, 637-638
sigtrap, 638-639
strict, 620-624
subs, 639-640
use statements, 625
vars, 640
warnings, 612-620

precedence, 44-66
See also parsing rules; syntax and

parsing rules

addition and subtraction, 53-54
arrow (dereference) operator, 49
assignment operators, 62-63
auto-increment and auto-decrement

operators, 49-51
bitwise AND, OR, and exclusive OR, 59
comma operator, 64-65
conditional operators, 61-62
Deparse backend compiler, 46, 49
dereference (arrow) operator, 49
equality and relational operators, 57-58
exclusive OR, 65-66
exponentiation, 51
list operators (rightward), 65
list operators and terms, 47-49
misinterpreted unary operators, 56
multiplication, 52-53
named logical NOT, 65
named logical OR, 65-66
named unary operators, 54-56
operators in order of, 44-45
overview, 44-46
range operators, 60-61
regular expression binders, 52
relational and equality operators, 57-58
shift operators, 54
symbolic (ideographic) unary

operators, 52
symbolic logical AND, 59
symbolic logical OR, 59-60
terms and list operators, 47-49

precompiling expressions, 261-263
See also regular expressions
qr// operator, 262-263

preemptive multitasking, threads and,
494-495

prefix hash key, DB_BTREE database, 413
PREFIX keyword, XS interface, 682-683
PREFIX option, MakeMaker module, 852
PREINIT: keyword, XS interface, 683
$PREMATCH special variable, 100
PREOP option, extension developers’

targets, 857
PREREQ_PM option, MakeMaker module,

852, 860-861
print function, 942

debugging techniques, 717-720
debugging and testing CGI

applications, 606
<FILEHANDLE> operator, 175-177
quoting information via, 719-720
Roman numeral converter script, 597
string concatenation, 217-218
tracing execution via, 720

I n d e x 1189

printf function, 942-945
conversion formats for, 943-944
<FILEHANDLE> operator, 177-180
formatting flags for, 179, 944

printing, speed optimization and, 768-769
PrintRet option, Perl Debugger, 741
priority. See process priority
process function, Perl Profiler, 763
process groups

getpgrp function, 450
setpgrp function, 450

process priority, 450-451
getpriority function, 450-451
setpriority function, 450-451

processes, 448-451
See also IPC (interprocess

communication)
variable and, 448, 449

child. See child processes
controlling Perl execution, 449
error handling and STDERR, 449
execution, 38-39
exit function, 449
getppid function, 449
groups, 449-450
IDs, 449
overview, 448
priority, 450-451
safe pipes and forking, 467
subprocesses, 468-477
threads and multiple, 497
Win32::Process module, 451

$PROCESS_ID special variable, 104
processing command line arguments, 514-521

See also user interface tools
@ARGV array, 514-515
Getopt::Long module, 515, 516-521
Getopt::Std module, 515-516
overview, 514-515
pop function, 514
push function, 515
shift function, 514-515
unshift function, 515

process_queue subroutine, creating
threads, 498

profiling, Perl Profiler, 758-765
profiling by hand

See also optimization
Benchmark module, 765-766

-prog argument, perlcc script, 794
program control and iteration, memory

reduction and, 771-772
program structure, speed optimization

and, 767

programming languages. See languages
$PROGRAM_NAME special variable, 99
protocols, 366-367

See also networking
getprotobyname function, 366-367,

911-912
getprotobynumber function, 366, 912
getprotoent function, 366-367, 912-913

prototype function, 945
PROTOTYPE: keyword, XS interface, 683
PROTOTYPES: keyword, XS interface, 683
prototypes, 141-143

See also functions
sample declarations, 142

psize hash key
DB_BTREE database, 412
DB_RECNO database, 416

ptkdb interface, Perl Debugger, 747, 748
push function, 945

processing command line
arguments, 515

stacks, 222
PUSHs function, .xs file, 677
PUTBACK macro, stacks and, 664
PWD string keyword, connecting to

databases, 429
Python environment

comparing Perl objects to Python
objects, 330-331

error trapping, 755-757
Perl-similar programming languages,

10-11

Q
q command, Perl Debugger, 744
qr// operator, precompiling expressions,

262-263
quantifiers, 257-258

See also regular expression elements
regular expression pattern, 247

queries, database, 430-432
QUERY_STRING environment variable

CGI scripts, 582
extracting form data, 587

queues, threads and, 503-504
quote method, SELECT statements, 440
quotemeta function, 946

regular expression support
functions, 264

quotes, 80-81
See also strings

1190 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

quoting information via print function,
719-720

qx// quoting operator
readpipe function, 470
system function, 469

R
-r option, Xref backend, 786
r command, Perl Debugger, 744, 745
Radiobutton widget, 541, 546-547
random numbers

See also data manipulation; numbers
rand function, 214-215, 946
sample code, 215-216
srand function, 215, 972

range operators, precedence of, 60-61
RCS_LABEL option, extension developers’

targets, 857
rcv function, IO::Socket module, 386-387
rdo method, Safe module, 509
re pragma, 637-638
READ filehandle, two-way pipes, 461
read function, 946-947

<FILEHANDLE> operator, 174-175
Read method, Win32::Pipe module, 465
readdir function, 947

accessing directory entries, 197, 198
READHANDLE filehandle, child processes

and, 475
reading filehandles, 172
readline function, 947-948

<FILEHANDLE> operator, 174
ReadLine option, Perl Debugger, 741
readlink function, file management, 193-194
readpipe function, 948-949

qx// quoting operator, 470
$REAL_GROUP_ID special variable, 104
$REAL_USER_ID special variable, 104
RecallCommand option, Perl Debugger, 740
reclen hash element, DB_RECNO

database, 416
recompile function, CPAN module, 1015
recv function, 949
redirecting STDOUT/STDERR filehandles,

debug logs and, 726-727
redo function, 949-950
redo keyword, loops and, 119
ref function, 950
references, 293-303, 654

See also complex data structures;
variables

dereferencing, 298-301
determining type of, 301-302
hard, 293, 294-297
hashes and, 303
methods and, 326
overview, 293-294
SV (scalar value), 654-658
symbolic, 293, 302-303
types of, 293

refs option, strict pragma, 623-624
-regex argument, perlcc script, 792-793
regular expression assertions, 259-261

listing, 260-261
overview, 259

regular expression elements, 242-258
/G assertion, 258
boundaries, 255
character classes, 248-249
character patterns, 245-246
grouping, 256-257
matching beginning and end of

strings, 254
matching specific characters, 247-248
matching wildcard characters, 248
metacharacters and, 243, 244
metasymbols and, 243
overview, 242-247
pattern quantifiers, 247
POSIX-style character classes, 250, 251
quantifiers, 257-258
selecting alternatives, 255-256
standard (classic) character-class

shortcuts, 249-250
Unicode classes, 251-254

regular expression support functions, 263-265
overview, 263
pos function, 263-264
quotemeta function, 264
study function, 264-265

regular expressions, 231-265
See also data manipulation
s/// (substitution operator), 236-240
assertions, 259-261
binders and precedence, 52
defined, 231
elements, 242-258
grep function, 231-232
m// (match operator), 233-236, 929
overview, 231-232
pattern modifiers, 232-233
pattern-binding operators and, 231
precompiling, 261-263
speed optimization and, 769
split function, 231

I n d e x 1191

regular expressions, (continued)
support functions, 263-265
translation, 240-242
variables, 258-259

relational databases, 392
See also databases

relational databases with DBM databases,
421-423

See also DBM databases
relational and equality operators, precedence

and, 57-58
relief property, widgets, 543
remote sockets, connecting to, 371-374
REMOTE_ADDR environment variable,

CGI scripts, 582
REMOTE_HOST environment variable, CGI

scripts, 582
REMOTE_PORT environment variable, CGI

scripts, 582
rename function, 951

file management, 192
reporting errors within modules, 281-283

See also error trapping
caller function, 282
carp function, 282-283
Carp module, 282
cluck function, 283
confess function, 283
croak function, 283
die function, 281
warn function, 281

reporting errors within scripts, 279-281
See also error trapping
die function, 279, 280, 281
directives and tokens, 280-281
LIST arguments, 279
overview, 279
STDERR filehandle, 279
tokens and directives, 280-281
warn function, 279

reporting mechanism. See Formats
mechanism

reporting to Sys::Syslog module, 729
See also debugging

reporting to Windows NT/2000 Event Log,
729-730

See also debugging
REQUEST_METHOD environment variable,

CGI scripts, 582
REQUEST_URI environment variable, CGI

scripts, 582
REQUIRE: keyword, XS interface, 684
require function, 951

calling functions, 478
require keyword, modules, 150-153

reset function, 952
m// (match operator) and, 236

ResizeBuffer method, Win32::Pipe
module, 466

resources, 1141-1152
books, 1144-1145
journals/Web sites, 1146
mailing lists, 1148-1150
newsgroups, 1150-1151
platform migration traps, 830-831
supplied documentation, 1142-1144
Web sites, 1147-1148

return function, 952
eval function and, 493-494

return values
See also values
error checking and, 276-277
fcntl function, 201
functions and, 137
Getopt::Long module, 1051
select function, 204

reval method, Safe module, 509
reverse function, 230-231, 953

See also data manipulation; sort
function; strings

rewinddir function, 953
accessing directory entries, 198

rindex function, 953-954
string location, 219-220

rmdir function, 954
directories management, 200
file management, 193

Roman numeral converter script, 594-598
See also CGI module
header function, 597
HTML field types, 598
param function, 595-596, 598
parse_roman function, 595, 598
print function, 597
start_form function, 597
start_html function, 597
submit function, 598
textfield function, 597

$RS special variable, 101
rules, parsing. See parsing rules
-run argument, perlcc script, 794

S
-s option, command line options, 486
/s pattern modifier, 232
/s modifier, tr operator and, 241, 242

1192 P e r l : T h e C o m p l e t e R e f e r e n c e

s/// (substitution operator), 236-240, 954-955
See also regular expressions
/e modifier, 239, 240
/g modifier, 239
overview, 236-238
PATTERN keyword, 237
while loops and, 239-240

s command, Perl Debugger, 735
Safe module, 505, 508-509, 1111-1113

See also security
deny method, 508-509
opcodes and, 653
permit method, 508-509
rdo method, 509
reval method, 509

safe pipes, 467-468
See also pipes
exec function, 467-468
forking processes and, 467
gzcat command, 467
open command, 467

-sav argument, perlcc script, 794
SAVEFILE string keyword, connecting to

databases, 429
scalar elements, Class::Struct module, 1008
scalar function, 955
scalar and list contexts, 67-68
scalar values. See SVs
scalar variables, 75-76

See also variables
scalars, TIESCALAR method, 333-336
Scale widget, 541, 559-563

overview, 560
properties and methods of, 563
sample script, 561-562

scope, 154-158
See also abstraction; functions; variables
local keyword, 156-157
local variable and, 155
loops and, 158
my keyword, 155-156
our keyword, 157-158
overview, 154-155

SCOPE: keyword, XS interface, 684
SCRIPT_FILENAME environment variable,

CGI scripts, 582
SCRIPT_NAME environment variable,

CGI scripts, 582
scripts

CGI (Common Gateway Interface),
584-593

error trapping shell, 754-755
getting warning parameters within,

619-620
Perl Profiler, 758-765

replacing current via exec function, 470
reporting errors within, 279-281
security and, 608-610
writing, 19

Scrollbar widget, 541
properties and methods for, 560
Text widget and, 559

SDBM version, DBM databases, 402
SDBM_File module, 1114
Search::Dict module, 1114
security, 505-509

See also execution enhancements
Opcode module, 509
open function and, 506-507
overview, 505
Safe module and, 505, 508-509
taint checking, 505-508
WWW development, 608-610

sed environment
converting languages to Perl, 706-708
error trapping, 754

see method, Text widget, 550
seek function, 955-956

locating position within file, 182
text databases and fixed-length

records, 398
seekdir function, 956

accessing directory entries, 198
select (filehandle) function, 957
select (files) function, 957
select function, 203-205

See also file management
filehandles, 185-186
IO::Socket module, 386
return values, 204
threads comparison, 498

select method
Checkbutton widget, 548
Radiobutton widget, 547

SELECT statements, 435-441
See also queries; SQL (Structured

Query Language)
acronym database, 438
ALL prefix, 435
ASC keyword, 440
condition expression, 437
condition operators, 437
DBI toolkit and executing extended

queries, 431
DESC keyword, 440
DISTINCT prefix, 435, 436
field name, 435
GetInfo function and, 439
joins and, 440-441
multithreading and, 496

I n d e x 1193

SELECT statements, (continued)
ORDER BY clause, 440
quote method, 440
syntax, 435
WHERE keyword, 437, 441

selecting alternatives, 255-256
See also regular expression elements
| (pipe) character, 255-256

SelectSaver module, 1114-1115
self method, threads, 507
SelfLoader module, 1115-1116
semaphores, threads and, 504
semctl function, 958
semget function, 958
semop function, 958-959
send function, 959

IO::Socket module, 386-387
sending data back from browser, 589-593

See also CGI (Common Gateway
Interface)

document body, 593
HTTP headers, 589-593
overview, 589

sending signals, 458-459
See also signals
kill function, 458-459

server-side initialization, IO::Socket module,
381

SERVER_ADMIN environment variable,
CGI scripts, 582

SERVER_NAME environment variable, CGI
scripts, 582

SERVER_PORT environment variable, CGI
scripts, 582

SERVER_PROTOCOL environment
variable, CGI scripts, 582

SERVER_SOFTWARE environment
variable, CGI scripts, 582

services, 367
See also networking
endservent function, 367, 897
getservbyname function, 367, 915
getservbyport function, 367, 915-916
getservent function, 367, 916
setservent function, 367, 962-963

setgrent function, 960
sethostent function, 365-366, 960
setjmp_h symbol set, POSIX module, 1106
setnetent function, 960-961
setpgrp function, 961

process groups, 450
setpriority function, 961

process priority, 450-451
setprotoent function, 962
setpwent function, 962
setservent function, 367, 962-963

setsockopt function, 963-964
SHAR option, extension developers’

targets, 857
shdist target, extension developers’

targets, 856
Shell module, 1116
shell scripts, error trapping, 754-755
ShellBang option, Perl Debugger, 740
shift function, 964

arguments and, 129-130
processing command line arguments,

514-515
stacks, 222-223

shift method, counting arguments, 131
shift operators, precedence and, 54
shmctl function, 964-965
shmget function, 965-966
shmread function, 966
shmwrite function, 966-967
shortcuts, standard (classic) character-class,

249-250
Showlex backend, 790

See also backends; Perl compiler
shutdown function, 967

IO::Socket module, 384, 386
%SIG special variable, 107
signal handlers, 453-458

hash, 453
ALRM (alarm), 455
bad examples, 453
DEFAULT keyword, 455
DIE handler, 457-458
IGNORE keyword, 454
local keyword, 454
WARN handler, 455-457

signal_h symbol set, POSIX module, 1107
SignalLevel option, Perl Debugger, 740
signals, 451-459

See also IPC (interprocess
communication)

handlers, 453-458
overview, 451-452
POSIX, 451-452
sending, 458-459
threads and, 504-505

sigtrap pragma, 638-639
sin function, 212, 967-968
sizing

arrays, 88-89
hashes, 93-94
stacks, 668
widgets, 545

SKIP option, MakeMaker module, 852
skipcheck target, extension developers’

targets, 855

1194 P e r l : T h e C o m p l e t e R e f e r e n c e

sleep function, 352, 968
slices

array, 87-88
hash, 91-92

sockaddr_in function, Socket module, 370
socket communication, 371-380

See also networking
connecting to remote sockets, 371-374
listening to socket connections, 374-380

Socket extension, XS initialization, 705
socket function, 968-969

connecting to remote sockets, 372-373
Socket module, 368-371, 1116-1117

See also networking
address constants, 369
address resolution and conversion, 369
functions, 1117
h2ph script and, 368
INADDR_ANY constant, 369
INADDR_BROADCAST constant, 369
INADDR_LOOPBACK constant, 369
INADDR_NONE constant, 369
inet_aton function, 369
inet_ntoa function, 369
line termination constants, 370-371
overview, 368-369
pack_sockaddr_in function, 370
sockaddr_in function, 370
socket structures, 370
unpack_sockaddr_in function, 370

socketpair function, 969
child processes, 476-477

sockets
closing, 384
connecting to remote, 371-374
getting addresses, 383-384
IO::Socket module, 380-387
listening to connections, 374-380
networking and, 363-364
options, 384-386

sort function, 228-230, 969-970
See also data manipulation; reverse

function; strings
sort statements, hashes of hashes, 312
sorting hashes, 93
special blocks, 146-148

See also abstraction
BEGIN block, 146-147
CHECK block, 146-147
END block, 146, 147-148
INIT block, 146-147

special variables, 98-108
See also variables
$#, 102
$$, 104, 477-478

$~, 103
$&, 100
$*, 100
$+, 100
$0, 99
$1..$xx, 99
$:, 103
$;, 102
$<, 104
$], 105
$=, 103
$>, 104
$^, 103
$^A, 105
$^C, 106
$^D, 106
$^E, 106
$^F, 106
$^H, 107
$^I, 107
$^L, 103
$^M, 107
$^O, 107, 831, 832
$^P, 107
$^R, 107
$^S, 108
$^T, 108
$^V, 108
$^W, 108, 614, 616
$^X, 108
$-, 103
$?, 105
$/, 101
$\, 102
$_, 99
$', 100
$., 101
$,, 102
$", 102
$), 104
$(, 104
$!, 104
$[, 104
${^WARNING_BITS}, 108
${^WIDE_SYSTEM_CALLS}, 108
$a, 105
$ACCUMULATOR, 105
$ARG, 99-100
$ARGV, 105
$AUTOFLUSH, 101
$b, 105
$BASETIME, 108
$CHILD_ERROR, 105
$COMPILING, 106
$DEBUGGING, 106

I n d e x 1195

special variables, (continued)
$EFFECTIVE_GROUP_ID, 104
$EFFECTIVE_USER_ID, 104
$EGID, 104
$ERRNO, 104
$EUID, 104
$EVAL_ERROR, 103
$EXCEPTIONS_BEING_

CAUGHT, 107
$EXECUTABLE_NAME, 108
$EXTENDED_OS_ERROR, 106
$FORMAT_FORMFEED, 103
$FORMAT_LINE_BREAK_

CHARACTERS, 103
$FORMAT_LINES_LEFT, 103
$FORMAT_LINES_PER_PAGE, 103
$FORMAT_NAME, 103
$FORMAT_PAGE_NUMBER, 103
$FORMAT_TOP_NAME, 103
$GID, 104
$INPUT_RECORD_SEPARATOR, 101
$LAST_MATCHED, 100
$LAST_PARENT_MATCH, 100
$LAST_REGEXP_CODE_RESULT, 107
$MATCH, 100
$NR, 101
$OFS, 102
$OLD_PERL_VERSION, 105
$ORS, 102
$OS_ERROR, 104
$OSNAME, 107
$OUTPUT_AUTOFLUSH, 101
$OUTPUT_FIELD_SEPARATOR, 102
$OUTPUT_RECORD_

SEPARATOR, 102
$PERLDB, 107
$PERL_VERSION, 108
$PID, 104
$POSTMATCH, 100
$PREMATCH, 100
$PROCESS_ID, 104
$PROGRAM_NAME, 99
$REAL_GROUP_ID, 104
$REAL_USER_ID, 104
$RS, 101
$SUBSCRIPT_SEPARATOR, 102
$SUBSEP, 102
$SYSTEM_FD_MAX, 106
$UID, 104
$VERSION, 108
$WARNING, 108
$|, 101
%!, 104
%ENV, 106
%EXPORT_TAGS, 106

%ERRNO, 104
%FIELDS, 106
%INC, 107
%OS_ERROR, 104
%SIG, 107
_ (underscore), 99
@_, 105
@-, 101
@ARG, 105
@ARGV, 105
@EXPORT, 106
@F, 106
@INC, 107
@ISA, 101
@LAST_MATCH_START, 101
ARGV, 105
ARGVOUT, 105
autoflush HANDLE EXPR, 101
DATA, 106
format_formfeed HANDLE EXPR, 103
format_lines_per_page HANDLE

EXPR, 103
format_name HANDLE EXPR, 103
format_page_number HANDLE

EXPR, 103
format_top_name HANDLE EXPR, 103
STDERR, 107
STDIN, 107
STDOUT, 107

SpecTcl application, 567-574
See also advanced user interfaces; Tcl

(Tool Command Language); Tk
MainLoop function, 574
overview, 567-568
sample code, 569-574

speed of execution, 795-802
See also Perl compiler
overview, 795-797
summary results, 800-802
tests, 797-800
times function, 800

speed optimization, 766-770
See also debugging; optimization
calling external applications, 770
constants and, 768
file systems and, 770
files and, 770
interpolation and, 768-769
overview, 766-767
printing and, 768-769
program structure and, 767
regular expressions and, 769
variables and, 768

speed of Perl, 7

1196 P e r l : T h e C o m p l e t e R e f e r e n c e

splain program, diagnostics pragma and, 632
splice function, 223-224, 970

See also arrays; data manipulation;
strings

split function, 226-227, 970-971
See also data manipulation; join

function; strings
delimited text databases, 395
extracting form data, 586
LIMIT keyword, 226
PATTERN keyword, 226
regular expressions, 231
storing complex data in DBM

databases, 419
sprintf function, 971
SQL (Structured Query Language), 434-445

See also databases
CREATE statements, 434-435, 443-444
DELETE statements, 442-443
formatting dates, 444-445
INSERT statements, 441
overview, 434-435
SELECT statements, 435-441
statements overview, 435-445
UPDATE statements, 442

Sql method and executing simple queries,
Win32::ODBC toolkit, 430

sqrt function, 211-212, 972
srand function, 215, 972

See also random numbers
stacks, 221-223, 662-668

See also data manipulation; Perl
internal structures; strings

access for embedded Perl, 666-668
access within extensions, 663-666
add function and, 662, 664, 666-667
EXTEND macro, 668
items call, 664
macros used when embedding Perl

statements, 667-668
markstack and, 662, 663
overview, 221-222, 662-663
pop function, 222
push function, 222
PUTBACK macro, 664
shift function, 222-223
size of, 668
unshift function, 223

standard character-class shortcuts, regular
expression elements, 249-250

Standard Perl Library, 993-1140
AnyDBM_File module, 994-995
AutoLoader module, 995
AutoSplit module, 996
B::Asmdata module, 998

B::Assembler module, 999
B::Bblock module, 999
B::Bytecode module, 999
B::C module, 999
B::CC module, 1000
B::Debug module, 1000
B::Deparse module, 1000
B::Disassembler module, 1000
B::Lint module, 1001
B::Showlex module, 1001
B::Stackobj module, 1001
B::Terse module, 1001
B::Xref module, 1001
B module, 996-998
Benchmark module, 1002-1003
Carp module, 1003-1004
CGI::Apache module, 1006
CGI::Switch module, 1006-1007
CGI module, 1004-1006
Class::Struct module, 1007-1010
Config module, 1011-1012
CPAN::FirstTime module, 1016
CPAN::Nox module, 1016
CPAN module, 1012-1015
Cwd module, 1016-1017
Data::Dumper module, 1017-1018
DB_File module, 1018-1019
Devel::SelfStubber module, 1020
DirHandle module, 1020-1021
DynaLoader module, 1021
English module, 1021-1024
Env module, 1024
Errno module, 1025
Exporter module, 1025-1027
ExtUtils::Command module, 1027
ExtUtils::Embed module, 1028-1029
ExtUtils::Install module, 1029
ExtUtils::Installed module, 1029
ExtUtils::Liblist module, 1029
ExtUtils::MakeMaker module. See

MakeMaker module
ExtUtils::Manifest module, 1030
ExtUtils::Miniperl module, 1030
ExtUtils::Mkbootstrap module, 1030
ExtUtils::Mksymlists module, 1030
ExtUtils::MM_OS2 module, 1030
ExtUtils::MM_Unix module, 1030
ExtUtils::MM_VMS module, 1031
ExtUtils::MM_Win32 module, 1031
ExtUtils::Packlist module, 1031
Fatal module, 1031
Fcntl module, 1031-1032
File::Basename module, 1035-1036
File::CheckTree module, 1036-1037
File::Compare module, 1037

I n d e x 1197

Standard Perl Library, (continued)
File::Copy module, 1037-1038
File::DosGlob module, 1038
File::Find module, 1039-1040
File::Path module, 1040-1041
File::Spec module, 1041-1042
File::Spec::Mac module, 1042-1043
File::Spec::OS2 module, 1043
File::Spec::Unix module, 1043-1045
File::Spec::VMS module, 1045-1046
File::Spec::Win32 module, 1046
FileCache module, 1032
FileHandle module, 1033-1035
FindBin module, 1046-1047
GDBM_File module, 1047-1048
Getopt::Long module, 1048-1053
Getopt::Std module, 1053-1054
I18N::Collate module, 1054
IO module, 1054
IO::File module, 1055
IO::Handle module, 1055-1058
IO::Pipe module, 1058-1059
IO::Seekable module, 1059
IO::Select module, 1059-1061
IO::Socket module, 380-387, 1061-1066
IPC::Msg module, 1066-1067
IPC::Open2 module, 1067-1068
IPC::Open3 module, 1068
IPC::Semaphore module, 1068-1070
IPC::SysV module, 1070-1071
MakeMaker module, 1030
Math::BigFloat module, 1072-1073
Math::BigInt module, 1073-1074
Math::Complex module, 1075-1076
Math::Trig module, 1076-1077
NDBM_File module, 1078
Net::Ping module, 1077-1078
O module, 1079
ODBM_File module, 1079
Opcode module, 1079-1086
overview, 994
Pod::Functions module, 1087
Pod::HTML module, 1087
Pod::Text module, 1087-1089
POSIX module, 1089-1111
Safe module, 1111-1113
SDBM_File module, 1114
Search::Dict module, 1114
SelectSaver module, 1114-1115
SelfLoader module, 1115-1116
Shell module, 1116
Socket module, 1116-1117
Symbol module, 1118
Sys::Hostname module, 1119
Sys::Syslog module, 1119-1121
Term::Cap module, 1121-1122

Term::Complete module, 1122-1123
Term::ReadLine module, 1123-1124
Test module, 1124-1126
Test::Harness module, 1127
Text::Abbrev module, 1127-1128
Text::ParseWords module, 1128
Text::Soundex module, 1129-1130
Text::Tabs module, 1130-1131
Text::Wrap module, 1131
Tie::Array module, 1131-1132
Tie::Handle module, 1132
Tie::Hash module, 1132-1133
Tie::RefHash module, 1133
Tie::Scalar module, 1133-1134
Tie::SubstrHash module, 1134
Time::gmtime module, 1135-1136
Time::Local module, 1134-1135
Time::localtime module, 1136-1137
Time::tm module, 1137
UNIVERSAL module, 1137-1138
User::grent module, 1138
User::pwent module, 1139
utf8 pragma, 1139-1140

start_form function, Roman numeral
converter script, 597

start_html function, Roman numeral
converter script, 597

stat function, 972-973
file information, 189, 190, 192

state property, Text widget, 550
statements and control structures, 34, 109-122

code blocks, 110-111
conditional statements, 111-114
loops, 114-122
overview, 110

statvfs function, .xs file, 676
StatVFS module

MakeMaker module and example
of, 842

.xs file, 675-677
stddef_h symbol set, POSIX module, 1107
STDERR filehandle, 163

debugging and testing CGI
applications, 606-607

document body and sending data back
from browser, 593

error checking, 273
open function and, 168
processes and error handling, 449
redirecting to debug logs, 726-727
reporting errors within scripts, 279

STDERR special variable, 107
STDIN filehandle, 163

open function and, 167-168
STDIN special variable, 107

1198 P e r l : T h e C o m p l e t e R e f e r e n c e

stdio_h symbol set, POSIX module,
1107-1108

stdlib_h symbol set, POSIX module, 1108
STDOUT filehandle, 163-164

document body and sending data back
from browser, 593

open function and, 167-168
redirecting to debug logs, 726-727

STDOUT special variable, 107
stepping action, debugger, 730-731
:still_to_be_decided set, Opcode

module, 1086
storage space

DBM databases and inefficiency of, 400
platform migration traps and, 829

STORE method
tie function, 333
TIESCALAR method and, 335-336

storing complex data in DBM databases,
418-421

Data::Dumper module, 421
formatted key values, 418
join function, 419
MLDBM module, 421
pack function, 419-420
split function, 419

strcat function, concatenation, 217
strict pragma, 620-624

See also pragmas
debugging and testing CGI

applications, 605
overview, 612, 620-621
refs option, 623-624
subs option, 624
vars option, 621-623

string location, 219-220
index function, 219-220
POSITION argument, 220
rindex function, 219-220

string_h symbol set, POSIX module, 1108
strings, 77-80, 217-231

See also data manipulation; literals
case modification, 218
concatenation, 217-218
context and, 68
end-of-line character removal, 219
extracting substrings, 220-221
grep function, 227-228, 920
“here” documents and multiline, 82-84
interpolation of array values, 81-82
join function, 224-226, 922-923
length function, 218, 926
location functions, 219-220
map function, 228, 929-930
matching beginning and end of, 254

overview, 217
quotes, 80-81
reverse function, 230-231, 953
sort function, 228-230, 969-970
splicing arrays, 223-224
split function, 226-227, 970-971
stacks and, 221-223
translation escapes, 79
v-strings, 84

struct function, Class::Struct module,
1007-1008

study function, 974
regular expression support functions,

264-265
styles, coding, 70-72
sub function, 974-975
submit function, Roman numeral converter

script, 598
:subprocess set, Opcode module, 1086
subprocesses, 468-477

See also IPC (interprocess
communication); processes

child processes, 470-477
exec function, 470
overview, 468
replacing current script, 470
system function, 468-470

subroutines, 34
anonymous. See anonymous

subroutines; functions
attributes, 139-141
AUTOLOAD, 158-159
C functions for calling Perl, 701
execution flags for called, 702
functions comparison, 125
passing hashes to via arguments,

134-135
passing lists to via arguments, 131-134
threads and, 502-503

subs option, strict pragma, 624
subs pragma, 639-640
$SUBSCRIPT_SEPARATOR special

variable, 102
$SUBSEP special variable, 102
substitution operator. See s///
substr function, 975

extracting substrings, 220-221
substrings, extracting, 220-221
subtraction and addition, precedence of,

53-54
success stories, 15-16
SUFFIX option, extension developers’

targets, 857

I n d e x 1199

SVs (scalar values), 654-658
See also values; variables
accessing by name, 658
functions for accessing and using,

655-657
mortals, 654
overview, 654
perl_get_sv function, 658
references, 654-658
SvRV function, 654

SWIG interface builder, extending Perl,
671-672

Symbol module, 1118
symbol sets

metasymbols, 243
POSIX module, 1102-1111

symbol tables, package, 145-146
symbolic (ideographic) unary operators,

precedence and, 52
symbolic logical AND, precedence and, 59
symbolic logical OR, precedence and, 59-60
symbolic references, 293, 302-303

See also references
symlink function, 975-976

file management, 192-193
syntax and parsing rules, 39-69

See also parsing rules
bare words, 66-67
basic syntax, 40-41
comments, 41-43
component identity, 43-44
context and, 67-69
logical values, 69
overview, 39
precedence, 44-66

Sys::Hostname module, 1119
Sys::Syslog module, 1119-1121

See also debugging
options, 1120
priorities, 1121
reporting to, 729

syscall function, 976
calling functions, 478

:sys_db set, Opcode module, 1085
sysopen function, 171-172, 976-977

See also filehandles; open function
sysread function, 978

extracting form data, 587
<FILEHANDLE> operator, 180

sysseek function, 978-979
locating position within file, 183

sys_stat_h symbol set, POSIX module, 1109
system function, 468-470, 979-980

See also subprocesses
escaping characters via backslash

operator, 469

execvp function and, 468
LIST arguments, 468-469
qx// quoting operator, 469

system information, 339-359
environment variables, 353-359,

489-491
overview, 340
time, 345-353
users and groups, 340-344

System V IPC, 478
See also IPC (interprocess

communication)
$SYSTEM_FD_MAX special variable, 106
sys_utsname_h symbol set, POSIX

module, 1109
sys_wait_h symbol set, POSIX module, 1109
syswrite function, 980

<FILEHANDLE> operator, 180-181

T
-T option, command line options, 486, 507
t/// function, 983
t command, Perl Debugger, 737-738
T command, Perl Debugger, 732-733, 735
tables, package symbol, 145-146
tabs property, Text widget, 550
tag handling functions, Exporter module,

1026-1027
tag methods and properties, Text widget, 551
taint checking, 505-508

See also execution enhancements;
security

is_tainted function, 507-508
tan function, trigonometric functions, 212
tar function, PPM (Perl Package Manager), 865
TAR option, extension developers’ targets, 857
tardist target, extension developers’

targets, 856
TARFLAGS option, extension developers’

targets, 857
Tcl (Tool Command Language)

See also SpecTcl application; Tk
Perl-similar programming languages, 10
Tk and, 532

TCP/IP, networking and, 362-363
tell function, 980-981

locating position within file, 181-182
text databases and fixed-length

records, 398
telldir function, 981

accessing directory entries, 198
Term::Cap module, 1121-1122

advanced user interfaces, 531

1200 P e r l : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Term::Complete module, 1122-1123
Term::ReadLine module, 1123-1124
terminals, advanced user interfaces, 531-532
termios_h symbol set, POSIX module,

1109-1110
terms and list operators, precedence and,

47-49
Terse backend, 781-783

See also backends; Perl compiler
exec option, 783

Test module, 1124-1126
Test::Harness module, 1127
testing CGI applications. See debugging and

testing CGI applications
testing and compiling code, XS interface,

695-697
tests

file, 879
speed of execution, 797-800

text, converting POD to, 819-820
Text::Abbrev module, 1127-1128
Text::ParseWords module, 1128
Text::Soundex module, 1129-1130
Text::Tabs module, 1130-1131
Text::Wrap module, 1131
text databases, 393-399

See also databases
addtask.pl, 399
delimited, 395
fixed-length records, 395-399
overview, 393-395
pack function, 395
seek function, 398
tell function, 398
unpack function, 395, 396

text property, widgets, 543
Text widget, 541, 549-552

emacs keyboard shortcuts, 549
index specifications, 549
overview, 549
properties and methods for, 550
Scrollbar widget and, 559
tag methods and properties, 551
tie function and, 552

textfield function, Roman numeral converter
script, 597

textvariable property, widgets, 543
Thread::Semaphore module, threads and

semaphores, 504
threads, 494-505

See also execution enhancements
async function and, 500
cond_broadcast function, 502
cond_signal function, 502
cond_wait function, 502

controlling, 500-501
controlling subroutines, 502-503
controlling variables, 501-502
cooperative multitasking and, 494-495
creating, 498-500
creating via anonymous subroutines,

499-500
dequeue method, 503
detach method, 501
enqueue method, 503
join method, 500
key_create function, 499
list method, 499
multiple processes and, 497
multitasking and, 494-495
multithreading and, 495-497
overview, 494, 498
pending method, 503-504
preemptive multitasking and, 494-495
process_queue subroutine, 498
queues and, 503-504
select function comparison, 498
self method, 507
semaphores and, 504
signals and, 504-505
Thread module, 498
tid method, 499
trapping join exceptions, 500
yield function, 501

tid method, creating threads, 499
tie function, 331-338, 981

See also complex data structures
creating new tie classes, 332-338
DBM databases, 403-406
DESTROY method, 333
FETCH method, 332-333
overview, 331-332
STORE method, 333
syntax, 332
Text widget and, 552
TIEARRAY method, 336-337
TIEHASH method, 337-338
TIESCALAR method, 333-336

TIEARRAY method, 336-337
See also tie function
DESTROY method and, 336
FETCH method and, 336
INDEX argument, 336-337

Tie::Array module, 1131-1132
tied function, 982
Tie::Handle module, 1132
TIEHASH method, 337-338

See also tie function
Tie::Hash module, 1132-1133
Tie::RefHash module, 1133

I n d e x 1201

TIESCALAR method, 333-336
See also tie function
DESTROY method and, 336
FETCH method and, 333, 334-335
STORE method and, 335-336

Tie::Scalar module, 1133-1134
Tie::SubstrHash module, 1134
time, 345-353

See also date formats; system
information

alarms, 353
arithmetic, 348-351
comparing time values, 347
converting dates and times into

epochs, 348
DateAdd function, 349-350
gmtime function, 345-346, 347, 918-919
localtime function, 345-349, 928
overview, 345
sleep function, 352, 968

time function, 347, 982
file management, 195

Time::gmtime module, 1135-1136
time_h symbol set, POSIX module, 1110
Time::Local module, 1134-1135
Time::localtime module, 1136-1137
times function, 351-352, 982-983

testing speed of execution, 800
Time::tm module, Standard Perl Library, 1137
Tk, 532-574

See also advanced user interfaces; Tcl
(Tool Command Language)

colors, 544
event loops, 537-540
geometry managers, 563-567
Hello World! script, 533-537
installing under UNIX, 533
installing under Windows, 533
Ousterhout, Dr. John, 532
overview, 532-533
SpecTcl application, 567-574
Tcl (Tool Command Language) and, 532
widgets, 540-563

TkRunning option, Perl Debugger, 740
toggle property, Checkbutton widget, 548
tokens, literal, 98
tokens and directives, reporting errors within

scripts, 280-281
Toplevel widget, 541
TO_UNIX option, extension developers’

targets, 857
Tr function, HTML (HyperText Markup

Language) and, 578
tr operator, 240-242

See also translation

/d modifier, 241, 242
/s modifier, 241, 242

tracing execution via print function, 720
translation, 240-242

See also regular expressions
operators, 240
tr operator, 240-242

translation escapes, string literals and, 79
translator, Perl internals, 646
trapping errors. See error trapping
Tributton widget, 541
trigonometric functions, 212-213

atan2 function, 212, 882
cos function, 212, 890
sin function, 212, 967-968
tan function, 212

truncate function, 983
filehandles, 186

TTY option, Perl Debugger, 741
tuning. See debugging
typedef keyword, variables and, 654
typeglobs, 96-97, 654

See also variables
filehandles and, 164, 297

typemaps, 687-689
See also XS interface
converting structures, 688
ExtUtils directory, 688
INPUT section, 688
OUTPUT section, 688
parts of, 688

TYPEMAPS option, MakeMaker module, 852
types, identifying in arguments, 135

U
-U option, command line options, 486
uc function, 984

case modification, 218
ucfirst function, 984

case modification, 218
$UID special variable, 104
UID string keyword, connecting to

databases, 429
umask function, 984-985

file management, 195
unary operators

misinterpreted, 56
precedence and named, 54-56
precedence and symbolic

(ideographic), 52
undef function, 985

returning explicitly, 686-687

1202 P e r l : T h e C o m p l e t e R e f e r e n c e

returning implicitly, 686
variables and, 97

undump function, Perl compiler and, 775-776
unexec function, Perl compiler and, 776
Unicode, 265-268

See also data manipulation
bytes pragma, 267-268
characters in Perl, 266-267
effect on Perl code, 267-268
length function and, 266
overview, 265
Perl’s interpretation of, 266
utf8 pragma, 267

Unicode classes, 251-254
See also regular expression elements
composite properties, 253
properties, 251-253

Uniform Resource Locators (URLs), 578-579
See also WWW development

unistd_h symbol set, POSIX module, 1110
UNIVERSAL module, 1137-1138
Unix

documentation, 1142
environment variables, 354-356
executing Perl scripts, 21
installing third-party modules, 21-22
installing Tk under, 533
installing and using Perl, 19-22
Perl documentation, 808-809, 810

Unix man pages, converting POD to other
formats, 820-823

Unix shells, Perl-similar programming
languages, 9

unless function
conditional statements, 111-114
error checking, 271

unlink function, 985
file management, 193

unpack function, 986
accessing packed data structures, 288,

291-293
text databases and fixed-length

records, 395, 396
unpack_sockaddr_in function, Socket

module, 370
unqualified blocks, loops and, 120-121
unshift function, 986

processing command line
arguments, 515

stacks, 223
untie function, 986-987
until loops, 115
UPDATE statements, SQL, 442
URI::Escape module, extracting form data,

587-588

URLs (Uniform Resource Locators), 578-579
See also WWW development

use function, 987
use keyword, modules and, 150-153
use statements, pragmas and, 625
use subs pragma, overloading functions,

834-835
User::grent module, 1138
User::pwent module, 1139
user interface tools, 514-527

See also advanced user interfaces
Formats mechanism, 521-527
processing command line arguments,

514-521
user interfaces

advanced, 530-574
Perl Debugger, 731-733

users and groups, 340-344
See also system information
getgrent function, 343, 344
getgrgid function, 343, 344
getgrnam function, 343, 344
getpwent function, 342, 343
getpwnam function, 341, 342
getpwuid function, 341, 342
overview, 340-341
password encryption, 344
Perl variables containing membership

data, 340
utf8 pragma, 1139-1140

Unicode’s effect on Perl code, 267
utime function, 988
uutardist target, extension developers’

targets, 856

V
-v option, command line options, 487
V command, Perl Debugger, 734
v-strings, 84

See also strings
validate_cookie function, 600-601

See also CGI module; cookies
value property, Radiobutton widget, 547
values

array. See AVs
assigning to lists, 95-96
code. See CVs
comparing time, 347
default. See default values
glob. See GVs
hash. See HVs
identifying in arguments, 135

I n d e x 1203

values, (continued)
interpolation of array, 81-82
logical, 69
return, 137
scalar. See SVs

values function, 988
variable property

Checkbutton widget, 548
Radiobutton widget, 547

variables, 32-33, 73-111, 654-662
See also Perl internal structures
arrays, 85-89
AVs (array values), 658-659
CVs (code values), 662
default values, 98
defined function, 97
environment. See environment

variables
Formats mechanism, 527
Getopt::Long module, 1053
GVs (glob values), 661
hashes, 89-94
HVs (hash values), 659-660
lists, 94-96
literal tokens, 98
literals, 76-84
lock function, 501-502
memory reduction and, 771
naming rules, 74-75
objects, 654
overview, 74, 654
packages and global, 143
references, 654
regular expression, 258-259
scalar, 75-76
scope, 154-158
special, 98-108
speed optimization and, 768
SVs (scalar values), 654-658
threads and, 501-502
typedef keyword, 654
typeglobs, 96-97, 654
undef function, 97

vars option, strict pragma, 621-623
vars pragma, 640
vec function, 988-989

very small integers and, 216-217
verbatim paragraphs, POD (Plain Old

Documentation) format, 816
-verbose option, diagnostics pragma, 632
verbosity levels, perlcc script, 793
$VERSION special variable, 108
version checking, Exporter module, 1027
VERSION option, MakeMaker module, 852
VERSIONCHECK keyword, XS interface, 684

VERSION_FROM option, MakeMaker
module, 852-853

versions determination for Perl, 832-833
versions and naming conventions for Perl,

5-6
VeryCompact option, Perl Debugger, 741
void context, 68-69
-V[:var] option, command line options,

487-488

W
-w argument, warnings pragma, 613
-w option

command line options, 488
warnings pragma Perl 5.6 version, 616

w command, Perl Debugger, 736
W command, Perl Debugger, 739
wait function, 989

child processes, 474
waitpid function, 989-990

child processes, 474, 475
wantarray function, 990
warn function, 991

debugging and testing CGI
applications, 606-607

document body and sending data back
from browser, 593

eval function and, 493
reporting errors within modules, 281
reporting errors within scripts, 279

WARN handler, 455-457
See also signal handlers
DIE handler and, 455-456
writelog function and, 456-457

$WARNING special variable, 108
warnings pragma, 612-620

See also pragmas
-w argument, 613
W variable, 614
mandatory warnings, 612
older versions of, 614-615
optional warnings, 613
options, 614
overview, 612-614
Perl 5.6 version, 615-620

warnings pragma Perl 5.6 version, 615-620
-w option, 616
W variable, 616
command line warnings, 616
fatal warnings, 618
getting parameters within scripts,

619-620

1204 P e r l : T h e C o m p l e t e R e f e r e n c e

mandatory warnings, 615
optional warnings, 615
options, 617-618
overview, 615-616
warnings::enabled function, 619
warnings::register module, 619
warnings::warn function, 619-620

WarnLevel option, Perl Debugger, 740
watches, debuggers and, 730
Web operation overview, 579-580

See also WWW development
GET method, 580
POST method, 580

Web sites, 1146, 1147-1148
See also resources

WHERE keyword, SELECT statements and,
437, 441

while loops, 114-115
s/// (substitution operator) and, 239-240
accessing directory entries, 197
end-of-line character removal, 219
<FILEHANDLE> operator and, 174

widgets, 540-563
See also advanced user interfaces; Tk
anchor property, 543
background property, 543, 545
bg property, 543
bitmap images, 545
bitmap property, 543
BitmapImage, 540
borderwidth property, 543
building complex, 542
Button, 540, 546
Canvas, 540
cget method, 542
Checkbutton, 541, 548
colors, 544
configure method, 542
Entry, 541, 552, 553
fg property, 543
font property, 543
fonts and, 543-544
foreground property, 543, 545
Frame, 541, 559
generic properties, 542-545
height property, 543, 545
Image, 541
image property, 543
Label, 541, 545
Listbox, 541, 552-554
Menu, 541
Menubutton, 541, 554-558
Message, 541
OptionMenu, 541
overview, 540-542

PhotoImage, 541
Radiobutton, 541, 546-547
relief property, 543
Scale, 541, 559-563
Scrollbar, 541, 559, 560
size specification, 545
Text, 541, 549-552
text property, 543
textvariable property, 543
Toplevel, 541
Tributton, 541
width property, 543, 545
windows and Hello World! script, 535

width property
Listbox widget, 553
widgets, 543, 545

wildcard characters, matching, 248
Win32::Console module, advanced user

interfaces, 531-532
Win32::ODBC toolkit, 426

See also database toolkits; DBI toolkit
closing connections, 433
connecting to databases, 428
error handling, 433
executing extended queries, 432
executing simple queries, 430, 432
FetchRow method and executing

extended queries, 432
Sql method and executing simple

queries, 430
Win32::Pipe module, 463-467

See also named pipes; pipes
BufferSize method, 466
Close method, 466
Connect method, 465, 466
creating named pipes, 463-464
Disconnect method, 466
Error method, 466-467
limitations to creating and using

named pipes, 464
name conventions, 464
new method, 463, 465
open function, 464-465
overview, 463
Read method, 465
ResizeBuffer method, 466
Write method, 465-466

Win32::Process module, process priority, 451
Windows

ActiveState Perl, 22-24
documentation, 1143
environment variables, 356-359
executing Perl scripts, 26-27
fork function and, 472-473
installing third-party modules, 27-28

I n d e x 1205

Windows, (continued)
installing Tk under, 533
installing and using Perl, 22-28
mailing lists, 1149-1150
named pipes. See Win32::Pipe module
Perl documentation, 810-811

Windows NT/2000 Event Log, reporting to,
729-730

word boundaries, 255
See also regular expression elements

World Wide Web development. See WWW
development

write function, 991
Formats mechanism, 524, 525, 526-527

Write method, Win32::Pipe module, 465-466
writedata function, eval function and, 726
WRITEHANDLE filehandle, child processes

and, 475
writelog function

debug logs, 727-728
WARN handler and, 456-457

WriteMakeFile function, MakeMaker
module, 843

WRITING filehandle, two-way pipes, 461
writing filehandles, 172
writing documentation. See POD (Plain Old

Documentation) format
WWW development, 576-610

CGI (Common Gateway Interface),
584-593

CGI module, 594-601
debugging and testing CGI

applications, 605-608
environment variables for CGI scripts,

580-584
HTML (HyperText Markup Language),

576-578
parsing HTML, 601-602
parsing XML, 602-605
security, 608-610
“smarter” Web programming, 593
URLs (Uniform Resource Locators),

578-579
Web operation overview, 579-580

X
-X function, 879
-X option, command line options, 488
-X tests, file information, 187
/x, pattern modifiers, 232, 233
x command, Perl Debugger, 734
X command, Perl Debugger, 735
-x[dir] option, command line options, 488

XML, parsing, 602-605
XPUSHs function, .xs file, 677
Xref backend, 785-787

See also backends; Perl compiler
-D option, 787
-r option, 786

.xs file, 673-677
See also XS interface
complex example, 675-677
fsavail function, 675, 676
fsstat function, 675, 676-677
function definitions format, 674-675
MODULE definitions, 674
OPTIONS keyword, 674
overview, 673
PACKAGE definitions, 674
PUSHs function, 677
statvfs function, 676
StatVFS module, 675-677
XPUSHs function, 677

XS initialization, 705-706
See also embedding Perl
DynaLoader extension, 705
ExtUtils::Embed module, 705-706
perl_parse function, 706
Socket extension, 705
xs_init function, 706

XS interface, 672-698
See also extending Perl; SWIG interface

builder
accepting variable-length argument

lists, 687
ALIAS: keyword, 678
BOOT: keyword, 678-679
C_ARGS: keyword, 679
CASE: keyword, 679-680
CLEANUP: keyword, 680
CODE: keyword, 680
compiling and testing code, 695-697
default values, 645-646
extension module, 689-695
h2xs converter, 671, 672-673, 697-698
INCLUDE: keyword, 680
INIT: keyword, 680-681
INPUT: keyword, 681
INTERFACE: keyword, 681
INTERFACE_MACRO: keyword, 681
intializing parameters, 684-685
keywords, 678-684
MakeMaker module, 695, 697-698
MODULE keyword, 681
NO_INIT keyword, 681-682
OUTPUT: keyword, 682
overview, 670-671, 672
PACKAGE keyword, 682

1206 P e r l : T h e C o m p l e t e R e f e r e n c e

PPCODE: block, 687
PPCODE: keyword, 682
PREFIX keyword, 682-683
PREINIT: keyword, 683
PROTOTYPE: keyword, 683
PROTOTYPES: keyword, 683
REQUIRE: keyword, 684
returning empty lists, 687
returning undef explicitly, 686-687
returning undef implicitly, 686
SCOPE: keyword, 684
test script, 696-697
testing and compiling code, 695-697
tricks, 684-687
typemaps, 687-689
VERSIONCHECK keyword, 684
xsubpp script, 671
.xs file, 673-677

XS option, MakeMaker module, 853
xs_init function, XS initialization, 706
XSOPT option, MakeMaker module, 853
XSPROTOARG option, MakeMaker

module, 853
XS_VERSION option, MakeMaker

module, 853

Y
y/// function, 992
yacc parser, compilation and, 650-651
yield function, threads and, 501

Z
ZIP option, extension developers’ targets, 857
zipdist target, extension developers’

targets, 856
ZIPFLAGS option, extension developers’

targets, 857

I n d e x 1207

perls of wisdom
NO HYPE…JUST PROGRAMMING!

The first and only magazine devoted to Perl.

Only $18/year!
Includes online access at www.tpj.com

To subscribe call, 1-800-926-8299 toll free
or our direct line 1-303-801-1400
or go to http://www.tpj.com

EARTHWEB

EarthWeb® and the EarthWeb logo® are registered trademarks of EarthWeb Inc.

New Modules
Networking

Regular Expressions
OO programming

Perl Guts
CGI Scripting
Case Studies

Automating NT
Algorithms

Reviews
Graphical Programming

Contests
Code, Code, Code

and more Code
Quizzes

and much more!

the IT career solutions company

	sample.pdf
	sterling.com
	Welcome to Sterling Software

