The

Complete

Reference

Perl: The Complete Reference
Second Edition

This page intentionally left blank.

Perl:
The Gomplete Reference

Second Edition

Martin C. Brown

Osborne/McGraw-Hill

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

McGraw-Hill/Oshorne 27

L Dhiresion of The MoCrrowe- JIl Congomies

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219425-1

The material in this eBook also appears in the print version of this title: 0-07-212950-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare @mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194251

To Darcy and Leon, two little kittens
who do try to help daddy with the typing,
but usually just end up typing
“jjskdjjvoookko000000000000000000000”

About the Author

Martin C. Brown is the author of six Perl
books, including the first edition of Perl: The
Complete Reference, Perl Programmer’s Reference,
ActivePerl Developer’s Guide, and Debugging
Perl. In addition to Perl, he has worked in
Python, Java, Visual Basic, and other languages.
A programmer for 15 years, he is the former
IT director of a large advertising agency
dealing with blue chip clients such as Hewlett
Packard, Oracle, and Cable & Wireless.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Contents at a Glance

Fundamentals
1 Perl Backgrounder 3
2 PerlOverviewc.iiiiiiiiii i 17
3 PerlParsingRules 37
4 Variablesand Data 73
5 Statements and Control Structures 109
6 Subroutines, Packages, and Modules 123
7 WorkingwithFiles 161
8 Data Manipulation 209
9 Errors and Trapping Them 269
Programming with Perl
10 Complex Data Structures 287
11 System Information 339
12 Networking 361

vii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

viii

Perl: The Complete Reference

13 Database Systems oL 391
14 Interprocess Communication 447
15 Other Execution Enhancements 479
Developing Applications
16 User Interface Tools 513
17 Advanced User Interfaces 529
18 Developing for the World Wide Web (WWW) 575
19 Controlling Execution with Pragmas 611
20 Extending and Embedding Perl 641
Fine-Tuning Applications
21 Debuggingand Tuning 715
22 PerlCompiler i 773
23 Perl Documentation, 803
24 Cross-Platform Migration Traps 825
25 Distributing Modules and Applications 837
Appendixes
A Function Reference 869
B Standard Perl Library 993
C Resourcescoiiiiiiiiiiiiiiiii.. 1141

Contents

Acknowledgments xxxiii
Introduction XXXV

Fundamentals

1 PerlBackgrounder
Versions and Naming Conventions
Perl, perlor PeRI?

Life Before Perl 5.6

Perl History i
Main Perl Features
PerlIsFree i

Perl Is Simple to Learn, Concise, and Easy to Read
PerlIsFast ... i
PerlIsExtensible

Per]l Has Flexible Data Types

Perl Is Object Oriented

PerlIs Collaborative,
Compiler or Interpreter

000 O IIIINoatur g W

ix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

X

Perl: The Complete Reference

Similar Programming Languages
UnixShells i

awk/gawk ...l
Popular “Mythconceptions”,
It'sOnly forthe Web
It’s Not Maintenance Friendly
It's Only for Hackers
It's a Scripting Language

There’s No

Support

All Perl Programs AreFree

There’s No

Development Environment

PerlIsa GNU Project
Perl Is DifficulttoLearn,
Perl Success Storiest

2 Perl Overview
Installing and Usin,

gPerl il

Writing a Perl Script oo oL

Perl Under
Perl Under
Perl Under
Perl Components
Variables
Operators
Statements

UNiX i
WIndows ...
MacOS ... e

Subroutines (Functions)

Modules
Where Next?

3 PerlParsingRules
The Execution Process
Syntax and Parsing Rules

BasicSyntax oo

Comments

Component Identity 0L
Operators and Precedence
BareWords

Contexts

Logical Values

Perl Coding Styles

10
10
11
12
12
13
13
13
13
14
14
14
14
15
15
15

17
18
19
19
22
28
32
32
34
34
34
35
35

37
38
39
40
41
43
44
66
67
69
70

Contents

4 VariablesandData 73
Basic Naming Rules i, 74
Scalar Variables 75
Literals 76
Numeric Literals 76

String Literals L. 77

QUOtES ..o e 80
Interpolation of Array Values 81

Here Documents i, 82

ATTAYS ittt 85
Hashes ... 89
LSS o 94
Typeglobs 96
The defined Function and the Undefined Value 97
Default Values 98
Other TOKeNns e 98
Special Variables 98
5 Statements and Control Structures 109
Code BIoCKS ..o 110
Conditional Statements 111
Loops .o 114
whileLoops 114

until Loops ool 115
forLoops i 115
foreachLoops il 116

The continue Block 117

Labels 118
LoopControl L 119
Unqualified Blocks 120

GOMO . 122

6 Subroutines, Packages, and Modules 123
Functions i e 125
Arguments ... 127
ReturnValues 137

Error Notification 138
Context ... e 138
Attributes 139
Prototypes 141
Packages i 143

Package Symbol Tables 145

Xi

Xii Perl: The Complete Reference

Special Blocks i 146
Modules 148
CreatingModules 148

The Exporter Module 149
Comparing use and require 150

TIO ottt 153

do ..o 153

Scope .. 154
Effectsofmyo il 155
Effectsoflocal L. 156
Effectsofour oo ool 157

Scope Within Loops 158
Autoloading 158
7 WorkingwithFiles 161
Filehandles i 163
Opening and Closing Files 164
Reading and Writing Filehandles 172
Locating Your Position Withina File 181
Miscellaneous Control Functions 183

File Management i 186
File Information oo L 187

Basic File Management 192
Accessing Directory Entries 196
Managing Directories 198

File Control withfentl 200

I/O Control withioctl 203

select 203
FileLocking oL 205

8 DataManipulation oL 209
Working with Numbers 210
abs—the Absolute Value 210
int—Converting Floating Points to Integers 211
exp—RaisingetothePower 211
sqrt—the SquareRoot 0oL 211
log—the Logarithm 212
Trigonometric Functions 212
Conversion Between Bases 213
Conversion Between Characters and Numbers 214
Random Numbers 214

Working with Very Small Integers 216

Contents Xiii

Working with Strings 217
String Concatenation 217
StringLength L 218
Case Modifications 218
End-of-Line Character Removal 219
String Location L 219
Extracting Substrings o 0oL 220
Stacks 221
Splicing Arrays o ool 223
JOIN Lo 224
split ... 226
BED ottt 227
INAD oottt 228
SOIt ... 228
TEVEISE ...ttt ittt 230

Regular Expressionsc.c.coiiiiiiiiiiiiiiiiiaan. 231
Pattern Modifiersl 232
The Match Operator 233
The Substitution Operator 236
Translation L 240
Regular Expression Elements 242
Regular Expression Variables 258
Regular Expression Extensions/Assertions 259
Precompiling Expressions 261
Regular Expression Support Functions 263

Unicode 265
Perl’s Interpretation of Unicode 266
Unicode CharactersinPerl 266
Unicode’s Effectson Perl Code 267

Errors and Trapping Them 269

Adding Error Checking to Your Scripts 270
Error Checking Methods 270
Error Checking Guidelines 272

WhattoCheck 273

What NottoCheckl 274

When to Stop Checking 275
Don’t Check Things Twice 275
Functions, Return Values, and Nesting 276

Error Messages and Numbers, 277

Reporting Errors Within Scripts 279
The Warn Function 279
The Die Function 280

Directivesand Tokens, 280

Xiv

Perl: The Complete Reference

10

11

Reporting Errors Within Modules 281
The Carp Function 282
The Cluck Function 283
The Croak Function i, 283
The Confess Function 283

Programming with Perl

Complex Data Structures 287
Accessing Packed Data Structures 288
References i 293
Creating Hard References 294
Dereferencing o ool 298
Determining a Reference Type 301
Symbolic References00 302
Complex Structures ... 303
Arraysof Arrays o ool 304
Hashesof Hashes 309
Arraysof Hashes 313
Hashes of Arrays 315
Beyond Two Dimensions 317
Objects ... 321
ObjectBasics ool 321
Creating and Using Objects 322
Methods 325
Classes and Inheritance 329
Destructors and Garbage Collection 330
Comparing Perl Objects to Other Languages 330
Usingtie 331
Creating New tie Classes 332
System Informationl 339
Usersand Groups ..., 340
Getting Unix Password Entries 341
Getting Unix Group Entries 343
Password Encryption 344
Time ... 345
gmtime and localtime 345
time Function ool 347
Comparing Time Values 347

Converting Dates and Times into Epochs 348

12

13

Contents

Time Arithmetic 348
times Function 351
sleep Function o oL 352
Alarms ... 353
Environment Variables 353
Networking L. 361
Obtaining Network Information 364
Hosts ... 364
Protocols ... 366
SOIVICES . it 367
Networks . ..o 368
The Socket Module 368
Address Resolution and Conversion 369
AddressConstantsc.oiiiiiniinnn.. 369
Socket Structures 370
Line TerminationConstants 370
Socket Communicationc.iuiiii 371
Connecting to a Remote Socket 371
Listening for Socket Connections 374
Using IOz=Socket 380
ClientSide ... e 381
Server Side 381
Using IO::Socket and IO::Select 382
Getting Socket Addresses 383
Closing Sockets oL 384
SocketOptions L 384
Data Transfer 386
Graham Barr’slibnetBundle 387
Gisle Aas’LWPBundle 0 .. 389
Database Systems 391
Text Databasesc. i 393
Delimited Databases, 395
Fixed-Length Records 395
DBM Databasesc.oiiiiin 399
DBM Implementations, 400
DBM Functions 402
Using Tied DBM Databases 403
Converting Between DBM Formats 406
Using AnyDBM_File 407

GDBM Features, 408

XV

Xvi

Perl: The Complete Reference

14

15

Berkeley DB Features 409
Storing Complex Data in a DBM Database 418
Relational Databases withDBM 421
Database File Locking o .. 424
Using the DBI and Win32::ODBC Toolkits 425
DBI .. 425
Win32:0ODBC 426
Database Mechanics and Compatibility 427
Connecting toa Database 428
Executing Simple Queries 430
Executing Extended Queries 431
Closing the Connection 432
Identifying Errors oo L 433
DoingMore i 433
SQL Refreshero.iii e 434
SQL Statements i 435
Interprocess Communication 447
Processes 448
Controlling Perl Execution 449
Process Informationl 449
Process Groups 449
Process Priority il 450
Signals 451
SignalHandlers 453
The _ WARN__and _ DIE__ Signals 455
Sending Signals oo ool 458
PIpes . 459
Anonymous Pipes oL 459
Two-Way Communication 460
Named Pipes L 461
Named Pipes Under Windows 463
SafePipes ool 467
Executing Additional Processes 468
Running Other Programs 468
Replacing the Current Script 470
Creating Child Processes 470
Other FunctionCalls 477
System VIPC 478
Other Execution Enhancements 479
Perl onthe Command Line 480

Special Handling 489

16

17

Contents

Perl Environment Variables 489
Perlin Perl (eval)o, 491
Usingeval EXPR 492
Usingeval BLOCK 492
Trapping Exceptions 493
Returning Information 493
evaland the _ DIE__ signalhandler 494
Threads 494
How Multitasking Works 494

From Multitasking to Multithreading 495
Comparing Threads to Multiple Processes 497
Comparing Threads toselect() 498
Threadsand Perl 498
Creatinga New Thread 498
Creating a Thread Using an Anonymous Subroutine 499
ControllingaThread 500
Controlling Variables 501
Controlling Subroutines 502
QUEUES ..ot e 503
Semaphores i 504

Signals 504
Security 505
Using TaintMode 505

The Safe and Opcode Modules 508

[Part Ill_|
Developing Applications

User Interface Tools 513
Processing Command Line Arguments 514
Getopt:Std 515
Getopt:Longl 516

Perl’s Reporting Mechanism 521
Headersand Footers 525

Format Functions 526

Format Variables 527
Advanced User Interfaces 529
Working witha Terminal 531
Using Tk ... 532
Installing Tk Under Unix 533
Installing Tk Under Windows 533
Hellofrom Tk i 533

Xxvii

Xviii Perl: The Complete Reference

EventLoops oo 537
Widgets 540
Controlling Window Geometry 563

Easing the Process 567

18 Developing for the World Wide Web (WWW) 575
HTML 576
Uniform Resource Locatorscoooiiii.. 578
Web Operation Overview, 579
The Environment i 580
The Common Gateway Interface 584
Extracting Form Data 586
Sending Information Back to the Browser 589
DocumentBody ool 593
Smarter Web Programming 593
The CGIModule 594
Cookies 598
Parsing HTML 601
Parsing XML 602
Debugging and Testing CGI Applications 605
Security 608
19 Controlling Execution with Pragmas 611
Warnings 612

The $AW Variable 614

The Old warnings Pragma 614

Lexical WarningsinPerl 5.6 615

The strict Pragma i 620
ThevarsOption 621
TherefsOption 623
ThesubsOption 624

Other Perl Pragmas i, 625
attributes o 625
autouse 626

base ... 627

blib ... 628

bytes 628
charnames L 629
constant L 629
diagnostics 631

fields ... 633

Contents Xix

filetest 634
Integer 634
less 634
b . 635
locale il 636
OPCIL .« ettt ittt e 636
DS ottt 636
overload ool 637
D e 637
SIgtrap ... 638
subs ... 639
VAIS ottt i 640
Extending and Embedding Perl 641
PerlInternals 643
Architectureo oo ool 644
Internal Objects 644
Translator ool 646
Opcodes 647
Compilation ool 650
Execution i 652
Perl’s Internal Structures ol 653
Variables ool 654
TheStack il 662
StackSize oo ool 668
Internals Summary o oL 669
Extending Perl 669
The Extension Interface 670
XSOVerviewoiiiiiiiiiiii 670
SWIGOverview, 671
Using XS .. 672
Embedding Perl 698
Embedding the Perl Interpreter 699
Using a Specific Perl Function 700
Multiplicityo oo 704
XS Initialization oo ool 705
Cooperating with Other Languages 706
Converting Other LanguagestoPerl 706
Converting Perl to Other Languages 711

Calling Other Languages from Perl 712

XX Perl: The Complete Reference

21

22

23

Fine-Tuning Applications

Debugging and Tuning
Debugging Techniques,

Usingprint i
Usingcaller L
Usingeval il
WritingaLog i i
Reporting tosyslog L.
Reporting to the Windows NT /2000 Event Log

UsingaDebugger i

Watches
Stepping ...
Breakpoints o o ool
The Perl Debugger
The ActivePerl Debugger

Traps for Programmers of Other Languages

Differences from awk/gawk L.
CTraps ...
sedTraps o il
emacs Trapsl
Shell Script Traps ...,
PythonTraps i,

Optimization

The Peri Profiler
Profilingby Hand
Optimization Guide

Perl Compiler L
Usingdump
Using the Compiler

TheBackends
The perlcc Frontend
Differences Between Interpreted and Compiled Code

Comparing Script and Executable Speeds

Tests ...
Summary Resultsl

Perl Documentation
Using the Supplied Documentation

UnNiX .
WINAOWS ..o
Mac OS/Mac OS X oot

717
717
721
724
726
729
729
730
730
730
731
731
748
750
750
752
754
754
754
755
757
758
765
766

775
776
777
791
795
795
797
800

24

25

Contents

Writing POD Documentation 812
POD Componentso, 813
Command Paragraph 813
Ordinary Text Paragraph 816
Verbatim Paragraph 816

Escape Sequencesl 816
Embedding Documentation 816
Converting POD to Other Formats 818
Text ..o 819

HTML .. 820
UnixmanPages 820
PostScript/PDF oL 823
Converting POD to HTMLOn TheFly 823
Cross-Platform Migration Traps 825
Function Support 826
Constant Compatibility 827
Execution Environmentl 827
Brrors ... o 828
Line Termination i, 828
Character Setsc..uuiiiiiiiiiiiiiiiiiiiiii 829
Data Differences 829
Files and Pathnames 829
Modules 830
Performance and Resourcesoooiiian. 830
Platform Migration Tricks 831
Determining Your Platform 831
Determining the Perl Version 832
Checking for Supported Functions 833
Function Overloading 834
Distributing Modules and Applications 837
Perl Makefiles and ExtUtils::MakeMaker 838
Perl Makefilesand CPAN 839

Perl Makefilesand PPM 839
Extension Building and Installation Overview 840
MakeMaker Overview 842
Startwithh2xs oo ool 843
MakeMaker Configurable Options 845
Creating a Dummy Makefile 853

Default Makefile Targets 853
Creating a New Perl Binary 854

Targets for Package Builders 855

Related Modules 858

XXi

Xxii Perl: The Complete Reference

MakeMaker Trickso 860
Checking for Prerequisites 860
Packing for CPAN 863
Packing for PPM/VPM i 863
Appendixes

A Function Reference 869
X e 879
ADS 880
ACCEPT 881
alarm . 881
AtAN . 882
bind ... 882
binmode 883
DleSS .o 883
caller 884
Chdir ..o 884
chmod ... 885
chomp 885
Chop 886
ChOWIL .. 886
CRT 887
ChIOOt . 887
ClOSE o 888
closedir ... 888
CONMMECE . .o e e e e 889
FaT0) 11 6 (< 889
01 890
Y Pt o 890
dbmclose 890
dbmopen ... 891
defined 892
delete ... 892
die .o 893
o 893
dump ... 894
CACH . 895
endgrent ... 895
endhostent 895
endnetent 896

endprotoent 896

Contents

endpwent
CRAPWENE oo 897
CRSEIVENL oo 897
GOl 897
CVAL o 898
X 899
QSIS o 899
e 900
OXP 900
O 901
BIER0 o 901
flock o 902
JOI oo 903
OMMAL oo 903
BN 904
ey | 904
ey 904
OO D DSOS 905
 ontadis 906
B hodtbymame 906
ot 907
i 907
byadds 908
gemetbyname_””””””:: 908
bt 909
e 909
Belpe e o 910
BB 910
getpriority”””””””:: 911
O oy 911
O otomambey 911
O oty T 912
e 912
o 913
e 914
e mbyname 914
getseeryport”‘”””””:: 915
ey It 915
 eome 916
getSOCkopt”‘”””””:: 916
B oL 917
ol 918
e 918
...................................... 919

XXiii

XXiv

Perl: The Comple

index

msgctl

te Reference

MSZZet ...
007 4 ol
MSGSNA ..

open
ord .

pack

push

920
920
921
921
922
922
922
923
923
925
925
925
926
926
927
927
928
928
929
929
929
930
930
931
931
932
932
933
933
934
934
937
937
937
938
940
940
941
941
942
942
945
945

Contents

quotemeta

rand ...
read ...
readdir .
readline

readlink

readpipe
recv

rename .
require .
reset ...
return ..
reverse .
rewinddir
rindex ..
rmdir ..
s/// ...
scalar ..
seek
seekdir .

select (filehandle) i
select (fileS)t

semctl ..

setgrent
sethostent
setnetent

setpgrp .

setpriority ...
setprotoent

setpwent
setservent

setsoCKOpt

shift
shmctl ..
shmget .
shmread

shmwrite
shutdown

946
946
946
947
947
948
948
949
949
950
951
951
952
952
953
953
953
954
954
955
955
956
957
957
958
958
958
959
960
960
960
961
961
962
962
962
963
964
964
965
966
966
967

XXV

XXVi

Perl: The Complet

sort ..

e Reference

symlink ...

syscall

SYSOPEIL .t vttt ettt

sysread
sysseek
system

SYSWIIte ...

tell ...
telldir
tie ...

uc ...
ucfirst

umask
undef

unlink
unpack
unshift
untie .

utime

vec ..
wait ..

967
968
968
969
969
970
970
971
972
972
972
974
974
975
975
976
976
978
978
979
980
980
981
981
982
982
982
983
983
984
984
984
985
985
986
986
986
987
988
988
988
989
989

Contents

WANTAITAY ..ottt it 990
WATTL Lottt ettt e e e 991
WIIte . 991
Y/ 992
Standard Perl Library 993
AnyDBM_ File 994
AutoLoader 995
AutoSplit 996
B 996
BuAsmdata ... 998
Bi:Assembler ... 999
BuBblock ... 999
BuBytecode ... 999
B 999
BuCC 1000
BuDebug ... 1000
BuDeparse 1000
Bu:Disassembler 1000
BuLint ... 1001
BuShowlex 1001
BuStackobj ... 1001
BuTerse ... o 1001
BuXref .. 1001
Benchmark 1002
Carp 1003
CGI 1004
ImportSets 1005
CGI:Apache 1006
CGIL:Switch ... 1006
Class::Struct ... 1007
Using Scalar Elements 1008

Using Array Elements 1008

Using Hash Elements 1009

Using Class Elements 1010
Example o i 1010

Config ... 1011
CPAN 1012
Interactive Shell Interface 1012
Programmable Interface, 1015
CPAN:FirstTime o i 1016
CPANENOX ..o 1016
CwWd 1016

XXVii

XXViii

Perl: The Complete Reference

Data:z:Dumper 1017
DB_File 1018
Devel::SelfStubber 1020
DirHandle 1020
DynaLloaderc.c..iiiiiiiiiiiiii i 1021
English 1021
Bnv 1024
Brrno ... 1025
Exporter 1025

UnknownSymbols 1026

Tag-Handling Functions 1026

Version Checking 1027
ExtUtils::Command i 1027
ExtUtils:Embed 1028
ExtUtils:Install 1029
ExtUtils:Installed 1029
ExtUtils::Liblist 1029
ExtUtils::MakeMaker 1030
ExtUtils:Manifest i 1030
ExtUtils:Mliniper] 1030
ExtUtils::Mkbootstrap 1030
ExtUtils::Mksymlists i 1030
ExtUtilssMM_OS2 1030
ExtUtIs:: MM _UNiX ..ot e e i 1030
ExtUtilssMM_VMS 1031
ExtUtils::MM_WIN32 ... 1031
ExtUtils:Packlist i 1031
Fatal 1031
Fentl ... 1031
FileCache 1032
FileHandle e 1033
FilexBasenamec. i 1035
File::CheckTreeuuiiiiiiiiiiiiiiiiiiiin 1036
FilezCompareouiiiiiiiiiiiiiiiiiiiiiiia 1037
FilexCopy ... 1037
FilezDosGlob 1038
FilexFind 1039
FilexPath 1040
FilexSpec 1041
FilexSpec:Mac 1042
FilexSpec:OS2 1043
FilexSpec:Unix i 1043

FilexSpec:VMS 1045

Contents

Filex:Spec:Win32 1046
FindBin 1046
GDBM_File 1047
Getopt:Long 1048
Linkage il 1049

Aliases ool 1050
Callback Function 1050
ReturnValues 1051
Customizing GetOptions 1051
Variables il 1053
Getopt:Std ... 1053
I18N::Collate 1054
IO 1054
IO:=File ... 1055
IO:Handle 1055
IO:Pipe o 1058
IO:Seekable 1059
IO=Select ..o 1059
IO=Socket .o 1061
IO:Socket:INET ... o ool 1063
IO:Socket:UNIX ... oo oo 1065
IPCiMSg 1066
IPC:Open2 ... 1067
IPC:Opend ..o 1068
IPC::Semaphoreiiiiiiii 1068
IPCSysV 1070
Math::BigFloat 1072
Math:BigInt 1073
Math::Complex 1075
Math:Trig ... 1076
Net:Ping 1077
NDBM_File 1078
O 1079
ODBM_File 1079
Opcode ... 1079
Functions 1080
OpcodeSets i 1082
Pod::Functions i 1087
Pod:Html ... 1087
Pod:uText ... 1087
POSIX .. 1089
Supported Classes 1089

SymbolSets 1102

XXIX

XXX Perl: The Complete Reference

- § < 1111
SDBM_File 1114
SearchuDict 1114
SelectSaver 1114
SelfLoader i 1115
Shell . 1116
SOCKE .o 1116
Symbol ... 1118
Sys:Hostname L 1119
SysuSYSIOg .. 1119
TermuCap ... 1121
Term:Complete i 1122
Term:ReadLine 1123
TSt oo e 1124
Test:Harness ... 1127
Text:Abbrev 1127
Text:ParseWords i 1128
TextzSoundex 1129
Text:Tabs ... 1130
TexttWrap ... 1131
TienArray ..o 1131
Tie:Handle 1132
TiexzHash 1132
TiexzRefHash i 1133
TiexScalar 1133
Tie:SubstrHash 1134
Time:Local 1134
Time:gmtime 1135
Time:localtime 1136
Timestm . 1137
UNIVERSAL .. e 1137
Userzgrent 1138
Userzpwent i 1139
Ut 1139
C Resources 1141
Supplied Documentation, 1142
Unix Documentation 1142
Windows Documentation 1143

Mac OS Documentationcoiuiie... 1143

Other Platforms 1144

Contents

Journals/Websites i 1146

The Perl Journal (www.tpj.com) 1146

Internet.com (Www.internet.com) 1146
Server/Workstation Expert Magazine

(SuUn.expert.Com)uuuuuiiunnnnnnnnnn. 1146

TechWeb (Wwww.techweb.com) 1146

Web ResoUrcesuiuiiiin i, 1147

Mailing Lists 1148

General Mailing Lists 1149

Windows-Specific Mailing Lists 1149

Newsgroupsc.cooiiiiiiiii i 1150

XXXI

This page intentionally left blank.

Acknowledgments

edition of Perl: The Complete Reference, she stood by me when I wanted to start

writing full time. Without her continued support, I wouldn’t have written the first
edition or the various other books that I've written since then, or been able to do this
second edition. Meanwhile, she still gives advice, listens to my rants when things aren’t
going well, and continues to be impressed when each book arrives.

Next, I'd like to thank all the people at Osborne who made this book possible. That
includes Wendy Rinaldi for offering me the opportunity, Rebekah Young for keeping
me in check, LeeAnn Pickrell and Betsy Manini for getting it through production, the
desktop compositors for laying out each chapter, and Andy Carroll and Bob Campbell
for doing the copy editing.

For technical input, thanks again to Mark Strivens, Ann-Marie Mallon, Huga van
der Sanden, Jon Nangle, and a myriad of others, including those people on Cix who
gave me ideas and input about topics and tricks that should be included in the book.

It’s not possible to write a Perl book without thanking Perl’s original author and the
current maintainers—that includes Larry Wall, Tom Christiansen, Randal L. Schwartz,
Sriram Srinivasan, Gurusamy Sarathay, and many many others. It continues to amaze
me how much you can cram into one language, and these people are the ones who do it.

If there’s anybody I've forgotten to acknowledge, I apologize unreservedly in
advance. I have done my best to check and verify all sources and contact all parties
involved, but it’s perfectly possible I made a mistake.

First of all, I'd like to thank my wife. Two years ago, based on the offer for the first

XXXiii

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

possibly want to know about Perl. I've done my best to try and cover all the

different aspects, from the core of the language to the different functions, and
on into the different tasks and areas of the Perl language. I even cover how to debug
your software, write documentation, and then build and distribute your applications
or modules to the world at large. Along the way, we also look at some nonstandard
features and extensions, including better ways of networking, web programming, and
designing interfaces.

Throughout the entire book, you'll find real-world examples and guides on how to
approach real problems using Perl—not just how to use the features of Perl. If all you
want is a quick reference guide to the different areas of Perl, then use the appendixes
at the end of the book and on the Web at www.osborne.com, which cover basic
components, functions, the Perl standard library, CPAN (Comprehensive Perl Archive
Network) extension library, a complete guide to errors and warnings, and a list of
resources for more information.

The idea of this book is to provide a reference guide to everything you could

XXXV
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

XXXVi

Perl: The Complete Reference

What’s Changed Since the First Edition?

Beyond the obvious updates and fixes for the newer versions of Perl, we’ve also
changed the overall layout of this edition. We got a lot of feedback on the first edition
and its pitfalls and problems. The most requested feature was a better introductory
guide to the language. As such, we’ve completely restructured the first section

of the book to provide a well-rounded introduction to the language, for people new
to programming and for those migrating from another language.

The second and third sections have been updated, with many of the chapters
modified to provide a more solution-oriented approach, and that means the order and
content of many of the chapters has been changed. We’ve expanded on the content in
many areas, including more information on networking, database access (which now
covers the DBI extension and Win32::O0DBC module) and web programming.

The last section has also been modified into a guide for the final processes behind
turning your Perl program into a distributable application. This includes debugging
and retuning your script and using the Perl compiler to improve performance and
find coding errors. The chapter on Perl documentation has also been updated to
provide information on using the supplied documentation and information on how
to write your own. Finally, we cover the topics of cross-platform development and
the packaging and distribution of your application or module.

Overall, I've tried to make the book less Unix-centric and cover more of the issues
surrounding cross-platform development throughout the book, instead of concentrating
the information into a few chapters at the end.

| Who Is the Book For?

I haven't targeted the book at any specific group of Perl users. To put it simply, if you
program in Perl, you will find this book useful. As a reference, most people should find
it useful to keep on the desk or the shelf just as a quick means of looking up a particular
function or feature. For learners and expert users alike, the information in this book
will be invaluable.

You should also find the book useful if you want to know how to do a particular
task in Perl, since you'll also find working real-world examples of the different features
of Perl within the book. If you are looking for more examples, you might want to look
at Perl Annotated Archives, which contains over 100 scripts to solve a myriad of different
problems. For more information on migrating Unix scripts to the Windows platform,
especially when using the ActivePerl distribution, try ActivePerl Developer’s Guide.

If debugging and tuning are more your thing, then look at Debugging Perl. You can
get more information on all of these titles and many others, in Appendix C.

Introduction XXXVii

| How to Use This Book

Pick it up, look up the feature you want to get more information on from the contents
or the index, and read! The scripts and script fragments included in the book should all
work without modification on your machine. Be aware though that not all platforms
support all Perl features—Chapter 24 provides a guide to most of the issues
surrounding cross-platform development.

If you want purely reference information—that is, you want to look up the
arguments and return values to a function—then use the appendixes at the back of the
book and on the Web at www.osborne.com. For discussion, examples, and detailed
information on a particular feature, use one of the earlier chapters. You should find
references between the chapters and appendixes in both directions to help you get
more information.

Chapter Breakdown

Each chapter in the book attempts to cover a different aspect of the solutions that Perl
is able to provide.

Chapter 1 looks at the background of Perl and the fundamental abilities that you
will need to use and understand in order to make the best use of Perl.

Chapter 2 examines the basic processes behind programming in Perl, from
installing Perl onto your machine (Unix, Windows, and Mac OS are covered), to
writing and executing your first script. We also look at some of the key terms that
you come across while reading the book and using Perl.

Chapter 3 covers all of the basic semantics and parsing rules behind the Perl
language, including an outline of how the execution process works, and all of the
different components that make up a Perl script.

Chapter 4 looks at the Perl variable types; Perl supports three basic types, the
scalar, the array and the hash (or associative array).

Chapter 5 details the statement and control structures that will control the flow
and execution of your program.

Chapter 6 starts off by covering the theories behind dissecting a program into
different components, from simple subroutines, right up to the more complex issues
of creating your own modules.

Chapter 7 covers the use of files, from the basics of printing information to the
screen to reading information from multiple files.

Chapter 8 details the processing behind data processing—by far the most useful
and popular use of Perl. We start by looking at basic ways of manipulating strings and
arrays before covering the Perl regular expression mechanism.

Chapter 9 looks at the basic mechanisms available for identifying and trapping errors
and bugs, and how to go about handling the situation without upsetting the user.

XXXViii

Perl: The Complete Reference

Chapter 10 looks at the more complex data structures available in Perl—arrays and
hashes. We go beyond the normal uses of these structures and look at other ways they
can be employed to aid in the programming process. We also take the opportunity to
examine references, which provide a different way of accessing and using information
stored in variables, and this leads us on to nested data structures and object-oriented
programming. This final section also leads to tied data structures—a system whereby
information from an external source can be attached to an internal data structure.

Chapter 11 covers the different ways of finding out system information, such as
information about users and groups, time and how to manipulate time values, and
finally the environment and how it can affect the execution of your script.

Chapter 12 describes the processing required within Perl to support communication
over standard network sockets, such as those used for communication over the Internet.

Chapter 13 looks at the storage of information in external databases, both
homegrown and using systems such as DBM, Oracle, and ODBC sources.

Chapter 14 discusses the processes involved in interprocess communication, using
both standard filehandles and System V IPC functions. The chapter also describes the
methods available for creating, controlling, and communicating with external processes.

Chapter 15 details the more advanced methods of executing Perl scripts, from
supplying arguments to the command line, to executing scripts within scripts (using
eval), to multi-threaded execution.

Chapter 16 covers the basic processes behind getting and communicating
information back to your users through a structured interface on the command line
and back through the Perl reporting mechanism.

Chapter 17 takes a detailed look at user interfaces, especially at Perl/ Tk—the Perl
interface to the Tk user interface development system.

Chapter 18 describes the environment available to you when you are writing
web scripts. This covers the physical environment of a script and also the ways of
communicating between the web server, the user’s browser, and a Perl script, otherwise
known as CGIL. We then go on to look at smarter ways of handling the web-development
process and the specifics of web programming with Perl, including a useful checklist of
the security issues surrounding the web-programming process.

Chapter 19 looks at ways in which you can control the execution of your Perl script.
Perl uses a series of pragmas to improve the monitoring of potential problems in your
script, provide additional warnings and error messages, and change the way in which
different aspects of your scrip are interpreted.

Chapter 20 details the methods behind extending Perl through external C functions
and libraries or through embedding Perl into your existing applications.

Chapter 21 covers the essential process of debugging Perl scripts, both at a simple
level and at deeper levels within the Perl interpreter. We also look at how to debug
regular expressions and how to use the Perl profiler to determine which parts of your
Perl script need optimization.

Chapter 22 looks in detail at the Perl compiler. This supports several different
systems that take a Perl script and produce a number of different reports and output
formats. At a simple level, this includes a parsing tree that describes the real execution

Introduction

profile of your script, and at the other end of the scale, the compiler that supports the
creation of stand-alone Perl binaries.

Chapter 23 details the use and development of Perl documentation, both when
reading supplied documentation and writing your own.

Chapter 24 concentrates on ways in which you can write Perl programs that are
cross-platform compatible, even if you don’t know what the destination platform is.
We look at the basics of using Perl in different environments, the major differences and
things to watch out for, and also ways in which you can make a script more aware of
its surroundings.

Chapter 25 discusses the processes involved in releasing a Perl module to the Perl
community. In particular, it describes the MakeMaker utility for creating Perl Makefiles
that can compile and automatically install Perl extensions.

The appendixes at the back of the book provide a quick reference resource for Perl
functions (Appendix A) and the standard Perl library (Appendix B). Appendix C gives
a list of all of the different areas—books, websites, mailing lists, and newsgroups—that
can provide more information on how to use and program with Perl.

The appendixes on the Web (www.osborne.com) provide a reference to the core
Perl constructs (Web Appendix A), the extensions for Perl available from CPAN
(Web Appendix B), and a complete list and description of all the warnings and error
messages generated by the Perl interpreter (Web Appendix C).

Conventions Used in This Book

All Per] keywords are highlighted in bold, but functions are listed without parentheses.
This is because the C functions on which the Perl versions may be based are shown
like this().

Examples and code are displayed using a fixed-width font.

Function descriptions are formatted using the same fixed-width font.

| Notes are formatted like this and include additional information about a particular
topic. You'll also find similarly formatted “Cautions” and “Warnings,” which highlight

possible dangerous tools or tricks to watch out for when programming.

___| contacting the Author

I always welcome comments and suggestions on my work. I particularly appreciate
guides and recommendations on better ways of achieving different goals, especially
with a language as varied and capable as Perl. The best way to contact me is via
email. You can use either books@mcwords.com. Alternatively, visit my website,
http://www.mcwords.com, which contains resources and updated information about
the scripts and contents of this book. You can find the homepage for this book at
http://www.mcwords.com/projects/books/pcr2e/.

This page intentionally left blank.

The

Rejoronce
Part |

Fundamentals

This page intentionally left blank.

The

Rejoronce
Chapter 1

Perl Backgrounder

Perl: The Complete Reference

aspect of Perl is that it’s a high-level programming language written originally

by Larry Wall and now supported and developed by a cast of thousands. The
Perl language semantics are largely based on the C programming language, while also
inheriting many of the best features of sed, awk, the Unix shell, and at least a dozen
other tools and languages.

Although it is a bad idea to pigeonhole any language and assign it to a specific list
of tasks, Perl is particularly strong at process, file, and text manipulation. This makes
it especially useful for system utilities, software tools, systems management tasks,
database access, graphical programming, networking, and web programming. These
strengths make it particularly attractive to CGI script authors, systems administrators,
mathematicians, journalists, and just about anybody who needs to write applications
and utilities very quickly.

Perl has its roots firmly planted in the Unix environment, but it has since become
a cross-platform development tool. Perl runs on IBM mainframes; AS/400s; Windows
NT, 95, and 98; OS/2; Novell Netware; Cray supercomputers; Digital’s VMS; Tandem
Guardian; HP MPE/ix; Mac OS; and all flavors of Unix, including Linux. In addition,
Perl has been ported to dozens of smaller operating systems, including BeOS, Acorn’s
RISCOS, and even machines such as the Amiga.

Larry Wall is a strong proponent of free software, and Perl is no exception. Perl,
including the source code, the standard Perl library, the optional modules, and all of
the documentation, is provided free and is supported entirely by its user community.

Before we get into the details of how to program in Perl, it's worth taking the
time to familiarize yourself with where Perl has come from, what it can be used
for, and how it stacks up against other languages. We’ll also look at some popular
“mythconceptions” about what Perl is and at some success stories of how Perl has
helped a variety of organizations solve an equally varied range of problems.

Perl is many different things to many different people. The most fundamental

What Does PERL Stand For?

There is a lot of controversy and rumor about exactly what PERL stands for and if,
in fact, it stands for anything. According to Larry Wall, the original acronym stood
for Practical Extraction and Reporting Language, and this relates to the original
development purpose, which was to process a large amount of textual report
information.

Over the years, other solutions have been proposed for the PERL acronym. The
most popular recent version is Pathologically Eclectic Rubbish Lister. Luckily, a
rough translation of that expansion equates to the original version!

Chapter 1: Perl Backgrounder 5

___| versions and Naming Conventions

The current version of Perl (at the time of writing—Nov 2000) was Perl 5.6, with a
develop version, v5.7, already in production. Some sites are migrating to v5.6, others
seem to be dragging their heels, although there are no major compatibility problems.

Up until March 2000, the situation concerning the available versions of Perl was
quite complex, but we'll start with the “current” version first. From the release of Perl
5.6 there are two very simple strands. Even version numbers, such as 5.6 and 5.8 are
considered to be “stable” releases of the language. Odd version numbers, such as 5.7
and 5.9, are development releases.

Perl 5.6 was a long time coming—over two years since the last major release—
but it also set a landmark for Perl’s development. It was the first version that really
reunited the core and Win32 versions of Perl, as well as providing some compatibility
enhancements. For example, the Windows ports now support fork, something not
natively provided by the Windows operating system. Also updated were the Perl compiler
and the threading system (which actually supports the Windows fork function),
and the addition of a new keyword, our, which handles global variables in the same
way as my.

Discussions have already started for Perl 6. Unlike Perl 5, which was a complete
rewrite of Perl 4 and was developed and coded almost entirely by Larry, Perl 6 will have
its feature set determined by the people that use it, through a series of RFCs (Requests
for Comments). The language’s core code will be developed by a team of programmers
with input and assistance from Larry, and with features agreed upon by committees,
rather than solely by Larry. This will make Perl 6 a language designed by the people
that use it, rather than by the person who invented it.

Perl, perl or PeRI?

There is also a certain amount of confusion regarding the capitalization of Perl.
Should it be written Perl or perl? Larry Wall now uses “Perl” to signify the language
proper and “perl” to signify the implementation of the language. Therefore, perl can
parse Perl. In essence, however, it really doesn’t make a huge amount of difference.
That said, you will find that the executable version of perl is installed with its name
in lowercase!

Life Before Perl 5.6

Before Perl 5.6, version numbers were far more confusing. Before version 5 came
version 4, the highest incarnation of which was 4.036, released in 1993. Version 5 is
still in development, with version 5.005_03 being the last stable release before the

6 Perl: The Complete Reference

current 5.6. However, many sites were using Perl 5.005_56—this was a developmental
release, but stable enough that some sites used it in preference to 5.005_02. Although
there were changes between these versions, they were bug fixes rather than the
significant improvements in Perl 5.6.

As to naming, you will see references to perl4 and perl5, and more recently, perl5.6.
Since most people will be using at least perl5, it’s probably safe to refer to Perl simply
as Perl!

___| Perl History

Perl is a relatively old language, with the first version having been released in 1988.
The basic history is shown in Table 1-1.

If you want a more detailed history of Perl, check out the perlhist documentation
installed with Perl, or visit CPAST, the Comprehensive Perl Arcana Society Tapestry at

history.perl.org.

Version Date Version Details

Perl 0 Introduced Perl to Larry Wall’s office associates

Perl 1 Jan 1988 Introduced Perl to the world

Perl 2 Jun 1988 Introduced Harry Spencet’s regular expression
package

Perl 3 Oct 1989 Introduced the ability to handle binary data

Perl 4 Mar 1991 Introduced the first “Camel” book (Programming
Perl, by Larry Wall, Tom Christiansen, and
Randal L Schwartz; O'Reilly & Associates). The
book drove the name change, just so it could refer
to Perl 4, instead of Perl 3.

Perl 4.036 Feb 1993 The last stable release of Perl 4

Perl 5 Oct 1994 The first stable release of Perl 5, which introduced
a number of new features and a complete rewrite.

Per] 5.005_02 Aug 1998 The next major stable release

Perl 5.005_03 Mar 1999 The last stable release before 5.6

Perl 5.6 Mar 2000 Introduced unified fork support, better threading,
an updated Perl compiler, and the our keyword

Table 1-1. Perl Version History

Chapter 1: Perl Backgrounder

| main Perl Features

Perl contains many features that most Perl programmers do not even know about, let
alone use. Some of the most basic features are described here.

Perl Is Free

It may not seem like a major feature, but, in fact, being free is very important. Some
languages, such as C (which is free with compilers such as GNU'’s gcc), have been
commercialized by Metrowerks, Microsoft, and other companies. Other languages,
such as Visual Basic, are entirely commercial. Perl’s source code is open and free—
anybody can download the C source that constitutes a Perl interpreter. Furthermore,
you can easily extend the core functionality of Perl both within the realms of the
interpreted language and by modifying the Perl source code.

Perl Is Simple to Learn, Concise, and Easy to Read

Because of its history and roots, most people with any programming experience will
be able to program with Perl. It has a syntax similar to C and shell script, among others,
but with a less restrictive format. Most programs are quicker to write in Perl because
of its use of built-in functions and a huge standard and contributed library. Most programs
are also quicker to execute than other languages because of Perl’s internal architecture
(see the section, “Perl is Fast” that follows). Perl can be easy to read, because the code
can be written in a clear and concise format that almost reads like an English sentence.
Unfortunately, Perl also has a bad habit of looking a bit like line noise to uninitiated.
Whether or not your Perl looks good and clean really depends on how you format
it—good Perl is easy read. It is also worth reading the Perl style guidelines (in the Perl
style manual page that comes with Perl) to see how Larry Wall, Perl’s creator, likes
things done.

Perl Is Fast

As we will see shortly, Perl is not an interpreter in the strictest sense—when you execute
a Perl program it is actually compiled into a highly optimized language before it is
executed. Compared to most scripting languages, this makes execution almost as fast
as compiled C code. But, because the code is still interpreted, there is no compilation
process, and applications can be written and edited much faster than with other
languages, without any of the performance problems normally associated with an
interpreted language.

Perl Is Extensible

You can write Perl-based packages and modules that extend the functionality of the
language. You can also call external C code directly from Perl to extend the functionality

8 Perl: The Complete Reference

further. The reverse is also true: the Perl interpreter can be incorporated directly into
many languages, including C. This allows your C programs to use the functionality of
the Perl interpreter without calling an external program.

Perl Has Flexible Data Types

You can create simple variables that contain text or numbers, and Perl will treat the
variable data accordingly at the time it is used. This means that unlike C, you don’t
have to worry about converting text and numbers, and you can embed and merge strings
without requiring external functions to concatenate or combine the results. You can
also handle arrays of values as simple lists, as typical indexed arrays, and even as stacks
of information. You can also create associative arrays (otherwise known as hashes)
which allow you to refer to the items in the array by a unique string, rather than a
simple number. Finally, Perl also supports references, and through references objects.
References allow you to create complex data structures made up of a combination

of hashes, lists and scalars.

Perl Is Object Oriented

Perl supports all of the object-oriented features—inheritance, polymorphism, and
encapsulation. There are no restrictions on when or where you make use of object-
oriented features. There is no boundary as there is with C and C++.

Perl Is Collaborative

There is a huge network of Perl programmers worldwide. Most programmers supply,
and use, the modules and scripts available via CPAN, the Comprehensive Perl Archive
Network (see Web Appendix B at www.osborne.com). This is a repository of the
best modules and scripts available. Using an existing prewritten module can save you
hundreds, perhaps even thousands, of hours of development time.

___| compiler or Interpreter

Different languages work in different ways; they are either compiled or interpreted.

A program in a compiled language is translated from the original source into a platform-
specific machine code. This machine code is referred to as an executable. There is no
direct relation between the machine code and the original source: it is not possible to
reverse the compilation process and produce the source code. This means that the
compiled executable is safe from intellectual property piracy.

With an interpreted language, on the other hand, the interpreter reads the original
source code and interprets each of the statements in order to perform the different
operations. The source code is therefore executed at run time. This has some advantages:
Because there is no compilation process, the development of interpreted code should

Chapter 1: Perl Backgrounder

be significantly quicker. Interpreted code also tends to be smaller and easier to
distribute. The disadvantages are that the original source must be supplied in order
to execute the program, and an interpreted program is generally slower than a
compiled executable because of the way the code is executed.

Perl fits neither of these descriptions in the real sense. The internals of Perl are
such that at the time of executing a Perl script, the individual elements of the script are
compiled into a tree of opcodes. Opcodes are similar in concept to machine code—the
binary format required by the processor in your machine. However, whereas machine
code is executed directly by hardware, opcodes are executed by a Perl virtual machine.
The opcodes are highly optimized objects designed to perform a specific function.
When the script is executed you are essentially executing compiled C code, translated
from the Perl source. This enables Perl to provide all the advantages of a scripting
language while offering the fast execution of a compiled program. This mode of
operation—translation and then execution by a virtual machine is actually how most
modern scripting languages work, including Java (using Just In Time technology)
and Python.

Keeping all of that in mind, however, there have been some advances in the most
recent versions of a Perl compiler that takes native Perl scripts and converts them into
directly executable machine code. We'll cover the compiler and Perl internals later in
this book.

___| similar Programming Languages

We already know that Perl has its history in a number of different languages. It shares
several features and abilities with many of the standard tools supplied with any Unix
workstation. It also shares some features and abilities with many related languages,
even if it doesn’t necessarily share the same heritage.

With regard to specific features, abilities, and performance, Perl compares favorably
against some languages and less favorably against others. A lot of the advantages and
disadvantages are a matter of personal preference. For example, for text handling, there
is very little to choose between awk and Perl. However, personally I prefer Perl for
those tasks that involve file handling directly within the code, and awk when using it
as a filter as part of a shell script.

Unix Shells

Any of the Unix shells—sh, csh, ksh, or even bash—share the same basic set of
facilities. They are particularly good at running external programs and at most forms
of file management where the shell’s ability to work directly with many of the
standard Unix utilities enables rapid development of systems management tools.
However, where most shells fail is in their variable- and data-handling routines. In
nearly all cases you need to use the facilities provided by shell tools such as cut, paste,
and sort to achieve the same level of functionality as that provided natively by Perl.

10

Tcel

Perl: The Complete Reference

Tcl (Tool Command Language) was developed as an embeddable scripting language.
A lot of the original design centered around a macro-like language for helping with
shell-based applications. Tcl was never really developed as a general-purpose scripting
language, although many people use it as such. In fact, Tcl was designed with the
philosophy that you should actually use two or more languages when developing large
software systems.

Tcl’s variables are very different from those in Perl. Because it was designed with
the typical shell-based string handling in mind, strings are null terminated (as they are
in C). This means that Tcl cannot be used for handling binary data. Compared to Perl,
Tcl is also generally slower on iterative operations over strings. You cannot pass arrays
by value or by reference; they can only be passed by name. This makes programming
more complex, although not impossible.

Lists in Tcl are actually stored as a single string, and arrays are stored within what
Perl would treat as a hash. Accessing a true Tcl array is therefore slightly slower, as it has
to look up associative entries in order to decipher the true values. The data-handling
problems also extend to numbers, which Tcl stores as strings and converts to numbers
only when a calculation is required. This slows mathematical operations significantly.

Unlike Perl, which parses the script first before optimizing and then executing,
Tclis a true interpreter, and each line is interpreted and optimized individually at
execution time. This reduces the optimization options available to Tcl. Perl, on the other
hand, can optimize source lines, code blocks, and even entire functions if the compilation
process allows. The same Tcl interpretation technique also means that the only way
to debug Tcl code and search for syntactic errors is to actually execute the code. Because
Perl goes through the precompilation stage, it can check for syntactic and other
possible or probable errors without actually executing the code.

Finally, the code base of the standard Tcl package does not include many of the
functions and abilities of the Perl language. This is especially important if you are
trying to write a cross-platform POSIX-compliant application. Perl supports the entire
POSIX function set, but Tcl supports a much smaller subset of the POSIX function
set, even using external packages.

It should be clear from this description that Perl is a better alternative to Tcl in
situations where you want easy access to the rest of the OS. Most significantly, Tcl will
never be a general-purpose scripting language. Tcl will, on the other hand, be a good
solution if you want to embed a scripting language inside another language.

Python

Python was developed as an object-oriented language and is well thought out. It is an
interpreted, byte-compiled, extensible, and largely procedural programming language.

Chapter 1: Perl Backgrounder

Like Perl, it's good at text processing and even general-purpose programming. Python
also has a good history in the realm of GUI-based application development. Compared
to Perl, Python has fewer users, but it is gaining acceptance as a practical rapid
application development tool.

Unlike Perl, Python does not resemble C, and it doesn’t resemble Unix-style tools
like awk either. Python was designed from scratch to be object oriented and has clear
module semantics. This can make it confusing to use, as the name spaces get complex
to resolve. On the other hand, this makes it much more structured, which can ease
development for those with structured minds.

I'm not aware of anything that is better in Python than in Perl. They both share
object features, and the two are almost identical in execution speed. However, the
reverse is not true: Perl has better regular expression features, and the level of integration
between Perl and the Unix environment is hard to beat (although it can probably be
solved within Python using a suitably written external module).

In general, there is not a lot to tip the scales in favor of one of the two languages.
Perl will appeal to those people who already know C or Unix shell utilities. Perl is
also older and more widespread, and there is a much larger library of contributed
modules and scripts. Python, on the other hand, may appeal to those people who
have experience with more object-oriented languages, such as Java or Modula-2.

Both languages provide easy control and access when it comes to the external
environment in which they work. Perl arguably fills the role better, though, because
many of the standard system functions you are used to are supported natively by
the language, without requiring external modules. The technical support for the two
languages is also very similar, with both using websites and newsgroups to help
users program in the new language.

Finally, it’s worth mentioning that of all the scripting languages available, Per] and
Python are two of the most stable platforms for development. There are, however,
some minor differences. First, Perl provides quite advanced functions and mechanisms
for tracking errors and faults in the scripts. Making extensive use of these facilities can
still cause problems, however. For example, calling the system truncate() function
within Per] will cause the whole interpreter to crash. Python, on the other hand, uses
a system of error trapping that will immediately identify a problem like this before
it occurs, allowing you to account for it in your applications. This is largely due to the
application-development nature of the language.

Java

At first viewing, Java seems to be a friendlier, interpreted version of C++. Depending
on your point of view, this can either be an advantage or a disadvantage. Java probably
inherits less than a third of the complexity of C++, but it retains much of the complexity
of its brethren.

12 Perl: The Complete Reference

Java was designed primarily as an implementation-independent language, originally
with web-based intentions, but now as a more general-purpose solution to a variety of
problems. Like Perl, Java is byte compiled, but unlike Perl, programs are supplied in
byte-compiled format and then executed via a Java virtual machine at execution time.

Because of its roots and its complexity, Java cannot really be considered as a direct
competitor to Perl. It is difficult to use Java as a rapid application development tool
and virtually impossible to use it for most of the simple text-processing and system-
administration tasks that Perl is best known for.

C/C++

Perl itself is written in C. (You can download and view the Perl source code if you so
wish, but it’s not for the faint-hearted!) Many of the structures and semantics of Perl
and C are very similar. For example, both use semicolons as end-of-line terminators.
They also share the same code block and indentation features. However, Perl tends to
be stricter when it comes to code block definitions—it always requires curly brackets,
for example—but most C programmers will be comfortable with the Perl environment.

Perl can be object oriented like C++. Both share the same abilities of inheritance,
polymorphism, and encapsulation. However, object orientation in Perl is easier to
use, compared to the complexities of constructors and inheritance found in C++. In
addition to all this, there is no distinction between the standard and object-oriented
implementations of Perl as there is with C and C++. This means you can mix and
match different variables, objects, and other data types within a single Perl application—
something that would be difficult to achieve easily with C and C++.

Because Perl is basically an interpreted language (as mentioned earlier), development
is generally quicker than is writing in native C. Perl also has many more built-in
facilities and abilities that would otherwise need to be handwritten in C/C++. For example,
regular expressions and many of the data-handling features would require a significant
amount of programming to reproduce in C with the same ease of use available in Perl.

Because of Perl’s roots in C, it is also possible to extend Perl with C source code and
vice versa: you can embed Perl programs in C source code.

awk/gawk

Although a lot of syntax is different, awk, and gawk (the GNU projects version) are
functionally subsets of Perl. It’s also clear from the history of Perl that many of the
features have been inherited directly from those of awk. Indeed, awk was designed
as a reporting language with the emphasis on making the process of reporting via
the shell significantly easier. Without awk, you would have to employ a number of
external utilities, such as cut, expr, and sort, and the solution would be neither quick
nor elegant.

There are some things that Perl has built-in support for that awk does not. For
example, awk has no network socket class, and it is largely ignorant of external files,

Chapter 1: Perl Backgrounder

when compared to the file manipulation and management functions found in Perl.
However, some advantages awk has over Perl are summarized here:

B awk is simpler, and the syntax is more structured and regular.

B Although it is gaining acceptance, Perl has yet to be included as standard with
many operating systems. Awk has been supplied with Unix almost since it was
first released.

B awk can be smaller and therefore much quicker to execute for small programs.

B awk supports more advanced regular expressions. You can use a regular
expression for replacement, and you can search text in substitutions.

___| Popular “Mythconceptions”

Despite its history and wide use in many different areas, there are still a number of
myths about what Perl is, where it should be used, and even why it was invented. Here’s
a quick list of the popular mythconceptions of the Perl language.

It’s Only for the Web

Probably the most famous of the myths is that Perl is a language used, designed, and
created exclusively for developing web-based applications. In fact, this could not be
more wrong. Version 1.0 of Perl, the first released to the world, shipped in 1988—
several years before the web and HTML as we know it today were in general use. In
fact, Perl was inherited as a good design tool for web server applications based on
its ease of use and flexibility. The text-handling features are especially useful when
working within the web environment. There are libraries of database interfaces,
client-server modules, networking features, and even GUI toolkits to enable you to
write entire applications directly within Perl.

It’s Not Maintenance Friendly

Any good (or bad) programmer will tell you that anybody can write unmaintainable
code in any language. Many companies and individuals write maintainable programs
using Perl. A lot of people would argue that Perl’s structured style, easily readable
source code, and modular format make it more maintainable than languages such as
C, C++, and Java.

It’s Only for Hackers
Perl is used by a variety of companies, organizations, and individuals. Everybody from
programming beginners through “hackers” up to multinational corporations use Perl
to solve their problems. It can hardly be classed as a hackers-only language. Moreover,

14

Perl: The Complete Reference

it is maintained by the same range of people, which means you get the best of both
worlds—real-world features, with top-class behind-the-scenes algorithms.

It’s a Scripting Language

In Perl, there is no difference between a script and program. Many large programs
and projects have been written entirely in Perl. A good example is Majordomo, the
main mailing-list manager used on the Internet. It’s written entirely in Perl. See the
upcoming section “Perl Success Stories” for more examples of where Perl has made
a difference, despite its scripting label.

There’s No Support

All

The Perl community is one of the largest on the Internet, and you should be able to find
someone, somewhere, who can answer your questions or help you with your problems.
The Perl Clinic (see Appendix C) offers free advice and support to Perl programmers.

Perl Programs Are Free

Although you generally write and use Perl programs in their native source form, this
does not mean that everything you write is free. Per]l programs are your own intellectual
property and can be bought, sold, and licensed just like any other program. If you are
worried about somebody stealing your code, source filters and bytecode compilers will
render your code useful only for execution and unreadable by the casual software pirate.

There’s No Development Environment

Development environments are only really required when you need to compile source
code into object files. Because Perl scripts are written in normal text, you can use any
editor to write and use Perl programs. Under Unix, the favorites are emacs and vi, and
both have Perl modes to make syntax checking and formatting easier. Under Windows
NT, you can also use emacs, or you can use Solutionsoft’s Perl Builder, which is an
interactive environment for Perl programs. Alternatively, you can use the ActiveState
debugger, which will provide you with a direct environment for executing and editing
Perl statements. There are also many improvements being made in the ActiveState
distribution that will allow Perl to be used as part of Microsoft’s Visual Studio product
under a project called VisualPerl. On the Mac, the BBEdit and Pepper editors have a
Perl mode that colors the syntax of the Perl source to make it easier to read.

Additionally, because Perl programs are text based, you can use any source-code
revision-control system. The most popular solution is CVS, or Concurrent Versioning
System, which is now supported under Unix, MacOS and Windows.

Chapter 1: Perl Backgrounder

Perl Is a GNU Project

While the GNU project includes Perl in its distributions, there is no such thing as
“GNU Perl.” Perl is not produced or maintained by GNU and the Free Software
Foundation. Perl is also made available on a much more open license than the GNU
Public License.

| GNU stands for the recursive “"GNU's Not Unix,” and is part of the Free Software

Foundation, an organization devoted to providing a suite of useful user software for free.

Perl Is Difficult to Learn

Because Perl is similar to a number of different languages, it is not only easy to learn
but also easy to continue learning. Its structure and format is very similar to C, awk,
shell script, and, to a greater or lesser extent, even BASIC. If you have ever done any
form of programming, you're half way toward learning programming in Perl.

In many cases, you will only use a very small subset of Perl to complete most tasks.
The guiding motto for Perl development is “there’s more than one way to do it.” This
makes Perl’s learning curve very shallow and very long. Perl is a large language with a
great many features, and there is a lot you can learn if you want to.

| Perl Success Stories

Perl has been used by thousands of different corporations to tackle and solve different
problems. For most people, it has reduced the development time for their desired
application by days, weeks, or even months. Below is a sample of the bigger companies
that have used Perl. I've tried to include testimonials and deeper examples of how

Perl was the better solution, where the information has been available.

B Amazon.com, one of the Internet’s best known and most successful e-commerce
sites, used Perl to develop an entire editorial production and control system.
This integrates the authoring, maintenance (including version control and
searching), and output of the editorial content of the entire Amazon.com website.

B Netscape engineers wrote a content management and delivery system, with
logging, analysis, and feedback on use, in three months using Perl.

B In order to get around many cross-platform development problems, SPEC
(the Standard Performance Evaluation Corporation) used Perl as a wrapper
around the C code that is used to test performance. With Perl’s ability to import
and dynamically use external C code in combination with its object-oriented
abilities, SPEC generated a test system that was easily portable from Unix to
the Windows NT platform.

16

Perl: The Complete Reference

B Using an old 60MHz Pentium and Perl, a New England hospital implemented
a distributed printing system that connected 20,000 PC workstations to 3,000
printers spread over an entire city.

On a personal level, I have Perl scripts that create users, add new virtual WWW
servers to Apache, monitor all the machines and storage on my network, keep track of
all my archives and e-mail, and even scripts that download weather information from
my weather center and get the TV listings every day!

The

Rejoronce
Chapter 2

Perl Overview

18

Perl: The Complete Reference

most of the restrictions and rules that you may be used to in other languages are

not so heavily enforced. For example, you don’t need to worry too much about
telling Per]l what you are expecting to do with your program (or script or application),
or what variable’s subroutines or other elements you are either going to use or introduce.
This approach leads to what is called “There Is More Than One Way to Do It”
(TIMTOWTD], or tim toady for short) syndrome—which refers to the fact that there
are different ways of achieving the same result, all of which are legally valid.

In fact, a Perl program is as easy as

Perl is a relatively unstructured language. Although it does, of course, have rules,

print "Hello World\n";

Note that there’s nothing before that statement to tell Perl what it needs in order to
print out that message. Compare it to a similar C program:

#include <stdio.h>

int main()

{
}

printf ("Hello World\n") ;

In Perl there is no “main” (well, not in the same sense as there is in C)—execution
of a Perl script starts with the first statement in the list and continues until the end of
the file. We don’t need to tell Perl to explicitly exit the program, or give a return value
to the caller; Perl will handle all of that for us.

The rest of this chapter is given over to describing how to create Perl scripts and
use Perl to execute scripts, and to describing the basic components that make up a Perl
program. The rest of this section of the book is devoted to giving more detail on each of
these elements (and more) so that you will have a complete understanding of how to
write basic Perl programs. The rest of the book looks at more advanced topics, such as
object orientation, networking, and interface and web development.

Installing and Using Perl

Perl is available for a huge array of platforms, but the chances are that you are using Perl
on one of the main three—Unix, Windows, and Mac OS. The use of Perl under all these
platforms varies slightly, so we’ll look at the Perl implementation on each one in turn.

As a basic rule, however, Perl works the same way on every platform—you create
a text file (using your favorite editor: vi, emacs, kedit, Notepad, WordPad, SimpleText,
BBEdit, Pepper), and then use Perl to execute the statements within that file. You don’t
have to worry about compiling the file into another format first—Perl executes the
statements directly from the raw text.

Chapter 2: Perl Overview

Writing a Perl Script

Ignoring the platform-specific issues for a moment, producing a Perl script is not as
difficult as it sounds. Perl scripts are just text files, so in order to actually “write” the
script, all you need to do is create a text file using your favorite text editor. Once you've
written the script, you tell Perl to execute the text file you created.

Under Unix, you would use

S perl myscript.pl
and the same works under Windows:
C:\> perl myscript.pl

Under Mac OS, you need to drag and drop the file onto the MacPerl application.

In each case, Perl reads the contents of your text file, interpreting the file as Perl
statements and expressions.

The file-naming system is part convention and part rule. Generally, Perl scripts
have a .pl extension, even under Mac OS and Unix. This helps to identify what the file
is by name, although it’s actually a requirement. Other extensions you may come
across include .pm for a Perl module, .ph for a Perl header file, and .pod for a Perl
documentation file (POD stands for Plain Old Documentation).

Perl Under Unix

Because much of Perl’s early development originated on a Unix platform, it is not
surprising that this is still one of the most strongly supported Perl environments.

Perl under Unix is available in a number of formats and distributions. The main,

or “core,” distribution comes from the main Perl developers and is available in
precompiled binary and source format. There is also a distribution of Perl that comes
from ActiveState—the original developers of the Windows port of Perl—that comes

as a binary bundled with some additional extensions and the Perl Package Manager
(PPM), an alternative to the CPAN module distributed with the core release. Currently
the ActiveState release is available only for Linux (x86), Solaris, and, of course, the
original Windows.

Installation
Perl is available for Unix in both precompiled binary and source format. Precompiled
binaries can be downloaded, extracted, and then installed without any need to compile
the source code. They are available both as compressed tar archives, RPM (RedHat
Package Manager) packages, and Solaris packages. The best place to get Perl is from the
main Perl website, www. perl.com. You should find links to most binaries on that site.
If you want to compile from the sources (useful if you want to enable certain extensions
and options), then you need to download the source and then configure and compile it.

19

20 Perl: The Complete Reference

You'll need a C compiler installed on your system—both commercial environments such as
Sun Microsystem’s Forte for C/C++ and free systems such as GNU CC should work fine.
Once you've downloaded the source from www.perl.com, do the following;:

1. Extract the source code from the archive using tar and gunzip, for example:

$ $ gunzip -c perl.tar.gz | tar xvE -

2. Change to the newly created directory. It’s worth checking the README and
INSTALL files, which contain general Perl information and specific details on
the installation process, respectively.

3. Run the configuration script:

$./configure.gnu

This is, in fact, a GNU-style execution of the real Configure script. The standard
Perl Configure script is interactive, requiring input from you on a number of
questions. The GNU-compatible execution answers the questions automatically
for you, making a number of assumptions about your system, though: it still
shows the process going on behind the scenes.

The former GNU style-configuration script will probably install Perl into
/usr/local, with the interpreter and support scripts ending up in /usr/local/
bin and the Perl library being placed into /usr/local/lib/perl5. This obviously
requires suitable access privileges to install the files to this location. You can
change the install directory by using the --prefix command line option:

$./configure.gnu --prefix=/home/mc/local

4. Run make to build the application:

$ make

The application and support files have now been compiled. It’s a good idea

at this point to run make test, which will run a standard selection of tests to
ensure that Perl has compiled properly. If there are any problems, you want

to check the build process to see if anything failed. On the mainstream systems,
such as Linux and Solaris, it’s unlikely that you will notice any test failures.

5. Once the build has completed, install the application, scripts, and modules
using make:

S make install

Remember that the installation prefix will by default be /usr/local/, although
the exact setting will depend on your OS. Providing you didn’t specify
different directories, the usual directory specification will install Perl into the
/usr/local/bin and /usr/local/lib/perl5 directories. You will need to add
/usr /local/bin or the installation directory you chose (specified by the
$installation_prefix/bin variable in the makefile) to your $PATH environment
variable, if it is not already in it.

Chapter 2: Perl Overview

Executing Scripts

There are two ways of executing a Perl script under Unix. You can run the Perl application,
supplying the script’s name on the command line, as in the first example, or you can
place the second example on the first line of the file (called the shebang line),

$ perl myscript.pl #!/usr/local/bin/perl

where the path given is the path to the Perl application. You must then change the file
mode of the script to be executable (usually 0755). You can change the mode using the
chmod command:

$ chmod 755 myscript.pl

Note that it is common to have different versions of Perl on your system. In this
case, the latest version will always have been installed as /user/local/bin/perl, which
is linked to the version-specific file, for example, /user/local/bin/perl5.6.0.

The Perl libraries and support files are installed in $prefix/lib/perl5. Since version
5.004, each version of Perl has installed its own subdirectory such that the actual location
becomes /user/local/lib/perl5/5.6.0/, or whatever the version number is. User-installed
(site-specific) scripts should be placed into /user/local/lib/perl5/site-perl/5.6.0.

Whenever a script is run, unless it has been redirected, standard input, output, and
errors are sent via the terminal or window, the same as in the shell environment, except
in the case of CGI scripts, where standard input is taken from the web server, standard
output is sent back to the browser, and standard error is sent to the web server’s log file.

Installing Third-Party Modules

For most modules (particularly those from CPAN), the installation process is fairly
straightforward:
1. Download the module, and extract it using tar and gunzip, for example:

$ gunzip -c¢ module.tar.gz | tar xf -

This should create a new directory with the module contents.

2. Change to the module directory.

3. Type
S perl5 Makefile.PL

This will check that the module contents are complete and that the necessary
prerequisite modules are already installed. It will also create a makefile that
will compile (if necessary) and install the module.

As in the original installation process, a make test will verify that the
compilation and configuration of the package works before you come to install
it. You should report any problems to the package’s author.

21

22

Perl: The Complete Reference

4. To install the module, type

$ make install

This will copy the modules and any required support files into the appropriate
directories.
A better, and less interactive, solution is to use the CPAN module to do
the downloading, building, and installation for you. See Web Appendix B at
www.osborne.com for information on how to use the CPAN module.

Perl Under Windows

Perl has been supported under Windows for some time. Originally, development
concentrated on providing a Windows-compatible version from the core libraries,
and then the development split as it became apparent that providing a lot of the
built-in support for certain functions (notably fork) was unattainable. This lead to

a “core” port and a separate development handled by a company called ActiveWare.
ActiveWare worked on providing not only Perl, but also a suite of extensions that
allowed you to perform most operations normally handled by the built-in functions
that were only supported under Unix.

ActiveWare later became ActiveState, and their changes were rolled back into the
core release. Now there is only one version of the Perl interpreter that is valid on both
platforms, but there are now two distributions. The “core” distribution is identical to
that under Unix, so it comes with the standard Perl library but not the extension set
originally developed under the original ActiveWare development.

ActiveState still provides a prepackaged version of Perl for Windows that includes
the core Perl interpreter and an extended set of modules that include the Perl Package
Manager, a number of Win32-specific modules (see Table 2-1), and some general
extensions like Graham Barr’s libnet bundle and Gisle Aas’s LWP (libwww-perl)
bundle. The main ActiveState Perl distribution is called ActivePerl (and is now also
available under Solaris and Linux x86), but they also supply a number of extras, such
as the Perl Development Kit, which provides a visual package installer and debugger,
and PerlEx, which speeds up execution of Perl scripts when used under Microsoft’s
Internet Information Server.

Module Description
Archive:Tar A toolkit for opening and using Unix tar files.
Compress::Zlib An interface for decompressing information entirely

within Perl.

Table 2-1. Default Modules Installed by ActivePerl

Chapter 2: Perl Overview

Module
LWP

Win32::ChangeNotify
Win32:Clipboard
Win32::Console

Win32::Event
Win32::EventLog

Win32::File
Win32::FileSecurity

Win32::Internet

Win32:IPC
Win32::Mutex
Win32::NetAdmin
Win32::NetResource
Win32::0DBC

Win32::0OLE
Win32::PerfLib

Description

Gisle Aas’s Lib WWW Perl (LWP) toolkit. This includes
modules for processing HTML, URLs, and MIME-
encoded information, and the necessary code for
downloading files by HTTP and FIP.

Interface to the NT Change/Notify system for monitoring
the status of files and directories transparently.

Access to the global system clipboard. You can add and
remove objects from the clipboard directory.

Terminal control of an MSDOS or Windows NT
command console.

Interface to the Win32 event system for IPC.

Interface to reading from and writing to the Windows
NT event log system.

Allows you to access and set the attributes of a file.

Interface to the extended file security options under
Windows NT.

Interface to Win32’s built-in Internet access system for
downloading files. For a cross-platform solution see
Net::FTP, Net:HTTP or the LWP modules elsewhere
in this appendix.

Base methods for the different IPC techniques
supported under Win32.

Interface to the Mutex (Mutual/Exclusive) locking and
access mechanism.

Network administration functions for individual
machines and entire domains.

Provides a suite of Perl functions for accessing and
controlling the individual Net resources.

ODBC interface for accessing databases. See also the
DBI and DBD toolkits.

Interface to OLE automation.

Supports an interface to the Windows NT
performance system.

Table 2-1. Default Modules Installed by ActivePerl (continued)

23

24

Perl: The Complete Reference

Module Description

Win32::Pipe Named pipes and assorted functions.

Win32::Process Allows you to create manageable Win32 processes
within Perl.

Win32::Registry Provides an interface to the Windows registry. See the

Win32API:Registry module and the Win32::TieRegistry
module for a tied interface.

Win32::Semaphore Interface to the Win32 semaphores.

Win32::Service Allows the control and access of Windows NT services.
Win32::Shortcut Access (and modification) of Win32 shortcuts.
Win32:Sound Allows you to play WAV and other file formats within

a Perl script.

Win32:TieRegistry A tied interface to the Win32 registry system.

Win32:WinError Access to the Win32 error system.

Win32API:Net Provides a complete interface to the underlying
C++ functions for managing accounts with the
NT LanManager.

Win32API::Registry Provides a low-level interface to the core API used for
manipulating the registry.

Table 2-1. Default Modules Installed by ActivePerl (continued)

Installation

There are two ways of installing Perl—the best and recommended way is to download
the ActivePerl installer from www.activestate.com, run the installer, and then reboot your
machine. This will do everything required to get Perl working on your system, including
installing the Perl binary, its libraries and modules, and modifying your PATH so that
you can find Perl in a DOS window or at the command prompt. If you are running Perl
under Windows NT or Windows 2000, or are using Microsoft’s Personal Web Server for
Windows 95/98/Me, then the installer will also set up the web server to support Perl as
a scripting host for web development. Finally, under Windows NT and Windows 2000,
the ActivePerl installer will also modify the configuration of your machine to allow Perl
scripts ending in .pl to be executed directly—that is, without the need to pass the script
names to Perl beforehand.

Chapter 2: Perl Overview 25

The alternative method is to compile Perl from the core distribution. Although
some people prefer this version, it’s important to note that core distribution does not
come with any of the Win32-specific modules. You will need to download and install
those modules separately.

If you want to install a version of the Perl binary based on the latest source code,
you will need to find a C compiler capable of compiling the application. It’s then a case
of following the instructions relevant to your C and development environment. The
supported C compilers are described here. Other versions and C compilers may work,
but it’s not guaranteed.

B Borland C++, version 5.02 or later: With the Borland C++ compiler, you
will need to use a different make command, since the one supplied does
not work very well and certainly doesn’t support MakeMaker extensions.
The documentation recommends the dmake application, available from
http://www-personal.umich.edu/~gsar/dmake-4.1-win32.zip.

B Microsoft Visual C++, version 4.2 or later: You can use the nmake that comes
with Visual C++ to build the distribution correctly.

B Mingw32 with EGCS, versions 1.0.2 and 1.1, or Mingw32 with GCC, version
2.8.1: Both EGCS and GCC supply their own make command. You can
download a copy of the EGCS version (preferred) from ftp://ftp.xraylith.
wisc.edu/pub/khan/gnu-win32/mingw32/. The GCC version is available
from http://agnes.dida.physik.uni-essen.de/~janjaap/mingw32/.

Also, be aware that Windows 95/98 as a compilation platform is not supported.
This is because the command shell available under Windows 95/98 is not capable of
working properly with the scripts and make commands required during the building
process. The best platforms for building from the core source code are Windows NT or
Windows 2000 using the standard cmd shell.

In all cases, ignore the Configure utility that you would normally use when compiling
under Unix and Unix-like operating systems. Instead, change to the win32 directory
and run the make command for your installation. For example:

c:\perl\win32> dmake

For Microsoft’s Visual C++, you will need to execute the VCVARS32.BAT batch file,
which sets up the environment for using Visual C++ on the command line; for example:

c:\perlsrc\win32>c:\progra~l\micros~1\vc98\bin\vcvars32.bat

You may need to increase the environment memory on your command.com for
this batch file to work properly—you can do this by modifying the properties for the

26

Perl: The Complete Reference

MS-DOS Prompt shortcut. Select the shortcut within the Start menu, and then choose
the Program tab. You should modify the “Cmd Line” field to read

C: \WINDOWS\COMMAND.COM /E:4096

This boosts the environment memory for the command prompt up to 4K—more than
enough for all the variables you should need.

Remember that compiling and installing Perl from the source distribution does not
give you the integration facilities or modules that are included as standard within the
ActiveState version.

You will need to manually update your PATH variable so that you have access to
the Perl interpreter on the command line. You can do this within Windows 95/98 by
modifying the AUTOEXEC.BAT file. You will need to add a line like

SET PATH=C:\PERL\BIN\; $PATH%

This will update your search path without replacing the preexisting contents. The
C:APERL\BINN\ is the default install location; you should modify this to wherever
you have installed the binary.

On Windows NT /2000, you will need to update the PATH variable by using the
System control panel.

Executing Scripts
Once installed correctly, there are two basic ways of executing a Perl script. You can
either type

C:\> perl hello.pl

in a command window, or you can double-click on a script in Windows Explorer. The
former method allows you to specify command line arguments; the latter method will
require that you ask the user for any required information.

Under Windows NT, if you want a more Unix-like method of executing scripts,
you can modify the PATHEXT environment variable (in the System control panel)
to include .pl as a recognized extension. This allows you to call a script just like any
other command on the command line, but with limitations. The following will work:

C:\> hello readme.txt

However, redirection and pipes to the Perl script will not work. This means that the
following examples, although perfectly valid under Unix, will not work under Windows:

Chapter 2: Perl Overview

C:\> hello <readme.txt
C:\> hello readme.txt|more

The other alternative, which works on all Windows platforms, is to use the pl2bat
utility. This wraps the call to your Perl script within a Windows batch file. For
example, we could use it to convert our hello.pl utility:

C:\> pl2bat hello.pl
C:\> hello

The big advantage here is that because we are using batch file, it works on any Windows
platform, and we can even add command line options to the Perl interpreter within the
batch file to alter the behavior. Furthermore, pipes and redirection work correctly with
batch files, which therefore also means the options work with our Perl script.

If you want to specify any additional command line options, you can use the normal
“shebang” line (#!) to specify these options. Although Windows will ignore this line,
the Perl interpreter still has to read the file, and so it will extract any information from
the line that it needs. So, for example, to turn warnings on within a script, you might
use a line such as

#lperl -w
Note that you must still comment out the line using a leading hash character.

Installing Third-Party Modules
Although it’s possible to use the CPAN module to do the installation for you, it requires
access to the make command and often a C compiler in order for it to work properly.
Instead, ActivePerl comes with the Perl Package Manager (PPM). This works along the
same basic premise as the CPAN module, except that PPM modules are precompiled
and ready to be installed—all the PPM tool actually does is copy the files downloaded
in a given package into their required location.

Using PPM is very easy. You start PPM from the command line:

C:\> ppm
PPM interactive shell (1.1.1) - type 'help' for available commands.
PPM>

Once there, you use search to find a suitable package, and install to install it.
For example, to install the Tk interface module,

C:\> ppm
PPM interactive shell (1.1.1) - type 'help' for available commands.
PPM> install Tk

27

28

Perl: The Complete Reference

And you then let PPM install the files for you. The number of PPM files is smaller than
CPAN, largely because the modules on CPAN are uncompiled, and those for use under
PPM need to be precompiled. To add to the headaches for developers many of the
CPAN packages rely on libraries and functions only available under Unix.

PPM packages are stored in a number of repositories. The main repository is at
ActiveState, but others are available. A list of repositories is given in Table 2-2.

Perl Under Mac 0S

Compared to Unix and Windows, Mac OS has one significant missing feature: it has
no command line interface. Mac OS is a 100 percent windowed GUI environment.
This presents some potential problems when we consider the methods already
suggested for running Perl programs.

The solution is a separate “development environment.” The MacPerl application
supports both the execution of Perl scripts and the creation of the scripts in the first
place. In addition to direct access to the execution process (scripts can be started and
stopped from menus and key combinations), MacPerl also permits you interactive use
of the Perl debugger in a familiar environment, and complete control of the environment
in which the scripts are executed.

Quite aside from the simple interface problem, there are also underlying differences
between text file formats, the value of the epoch used for dates and times, and even the
supported commands and functions. There are ways of getting around these problems,
both using your own Perl scripts and modifications and using a number of modules
that are supplied as standard with the MacPerl application.

The current version of MacPerl is based on v5.004 of Perl, which makes it a couple
of years old. Although the developer, Matthias Neeracher, has promised to work on a
new version, there is currently no set date for a Perl 5.6 release. In fact, it’s possible that
MacPerl may not be updated until Perl 6 is released toward the end of 2001.

Repository URL

ActiveState http://www.activestate.com/packages

Jan Krynicky http://jenda.krynicky.cz/perl

Roth Consulting http://www.roth.net/perl/packages/

Achim Bohnet http://www.xray.mpe.mpg.de/~ach/prk/ppm
RTO http://rto.dk/packages/

Table 2-2. PPM Repositories

Chapter 2: Perl Overview

For those of you interested in developing with Perl under Mac OS X, you'll be pleased
to hear that Mac OS X’s Unix layer is used to provide the same basic functionality as
any Unix distribution. In fact, Mac OS X actually comes with Perl installed as standard.

Installation

Perl is available in a number of different guises, depending on what you want to do
with it and how extensible and expandable you want the support modules to be. The
basic distribution, “appl”, includes the MacPerl binary, all the Perl and MacPerl libraries
and modules, and the documentation. The “tool” distribution works with MPW (the
Macintosh Programmer’s Workshop), allowing you to develop and release Perl programs
that are part of a larger overall application while presenting you with the same interface
and development environment you use for C/C++ and Pascal Mac applications. Because
MacPerl provides an almost transparent interface to the underlying Mac toolbox, you
can use Perl and C/C++/Pascal programs and code interchangeably. The source, in the
“src” distribution, including all of the toolbox interfaces, is also available.

Installing the application is a case of downloading and decompressing the installer,
and then double-clicking on the installer application. This will install all the modules,
application, and documentation you need to start programming in Perl. Starting MacPerl
is a simple case of double-clicking on the application.

Executing Scripts

Perl scripts are identified using the Mac OS Creator and Type codes. The MacPerl
environment automatically sets this information when you save the script. In fact,
MacPerl specifies three basic formats for running scripts and one additional format
for use with Mac-based web servers. The different formats are outlined in Table 2-3.

File Type Description

Droplet A droplet is a mini-application that consists of the original
Perl script and a small amount of glue code that uses Apple
events to start MacPerl, if it is not already running, and then
executes the script. Using droplets is the recommended
method for distributing MacPerl scripts.

To save a script as a droplet, go to Save As under the File
menu, and choose Droplet in the file type pop-up at the
bottom of the file dialog box.

Files dragged and dropped onto a droplet’s icon in the
Finder have their names passed to the script as arguments
(within @ARGYV).

If you plan on distributing your scripts to other people,
droplets require that the destination users have MacPerl
already installed. This might make initial distributions large
(about 800K), although further updates should be smaller.

Table 2-3. MacPerl Script Types

29

30

Perl: The Complete Reference

File Type Description

Stand-alone applications A stand-alone application creates a file composed of the Perl
application and the script and related modules. This creates a
single, “double-clickable” application that runs and executes
your script.

This can be a great solution if you want to provide a single-file
solution for a client, or if you want to save clients the task of
installing MacPerl on their machines.

However, this is still an interpreted version. The script is

not compiled into an executable, just bundled with the Perl
interpreter into a single file.

Plain text file A plain text file can be opened within the MacPerl environment
and executed as a Perl script. Make sure that if the script has
come from another platform, the script is in Mac OS text format.
These files will not automatically execute when you double-
click them. They open either the built-in editor within MacPerl
or the editor you usually use for editing text files (for example,
SimpleText, BBEdit, or emacs).

CGI Script This creates a script suitable for execution under many
Mac-specific web servers, including the one supported
by Apple’s AppleShare IP 6.0.

Table 2-3. MacPerl Script Types (continued)

When a script is executing, STDIN, STDOUT, and STDERR are supported directly
within the MacPerl environment. If you want to introduce information on a “command
line” (other than files, if you are using a droplet), you will need to use the Mac-specific
toolbox modules and functions to request the information from the user.

Installing Third-Party Modules
Installation of third-party modules under MacPerl is complicated by the lack of either
standard development tools or a command-line environment that would enable you to
execute the normal Perl makefiles for make tools.

Scripts that rely on external modules, such as those from CPAN (especially those
that require C source code to be compiled), may cause difficulties, not all of which can
be easily overcome. The process for installing a third-party module is as follows:

1. Download and then extract the module. Most modules are supplied as a gzipped
tar file. You can either use the individual tools, MacGzip and suntar, to extract
the file, or use Aladdin System’s Stuffit Expander with the Expander Extensions.

Chapter 2: Perl Overview

Whichever application set you use, remember to switch line-feed conversion
on. This will convert the Unix-style Perl scripts into Macintosh text files, which
will be correctly parsed by the MacPerl processor.

. Read the documentation to determine whether the module or any modules on
which it relies use XS or C source code. If they do, it’s probably best to forget
about using the module. If you have access to the MPW toolkit, you may be
able to compile the extension, but success is not guaranteed. You can also ask
another MacPerl user, via the MacPerl mailing list, to compile it for you.

. Ignore the Makefile.PL file. Although it might run, it will probably report an
error like this:

On MacOS, we need to build under the Perl source directory or
have the MacPerl SDK installed in the MacPerl folder.

Ignore it, because you need to install the Per]l modules manually. Even if the
Makefile.PL runs successfully, it will generate a makefile that you can’t use on
the Mac without the addition of some special tools!

. Create a new folder (if you don’t already have one) to hold your site-specific
and contributed modules. This is usually located in $ENV{MACPERL}sitelib:,
although you can create it anywhere, as long as you add the directory to the
@INC variable via the MacPerl application preferences or use the use lib
pragma within a script.

Remember to create a proper directory structure if you are installing a
hierarchical module. For example, when installing Net::FTP, you need to
install the FTP.pm module into a subdirectory called Net, right below the
site_perl or alternative installation location.

. Copy across the individual Perl modules to the new directory. If the modules
follow a structure, copy across all the directories and subdirectories.

. Once the modules are copied across, try using the following script, which will
automatically split the installed module, suitable for autoloading:

use AutoSplit;
my $instdir = "SENV{MACPERL}site perl";
autosplit ("$dir:Module.pm", "sdir:auto", 0, 1, 1);

Change the $instdir and module names accordingly. See Appendix B for
more details on the AutoSplit module.

. Once the module is installed, try running one of the test programs, or write a
small script to use one of the modules you have installed. Check the MacPerl
error window. If you get an error like this,

Illegal character \012 (carriage return) .
File 'Midkemia:MacPerl f:site perl:Net:DNS:Header.pm'; Line 1
(Maybe you didn't strip carriage returns after a network transfer?)

31

32 Perl: The Complete Reference

then the file still has Unix-style line feeds in it. You can use BBEdit or a similar
application to convert these to Macintosh text. Alternatively, you could write a
Perl script to do it!

___| Perl Components

Describing language—whether coded, written, or spoken, is fundamentally difficult
because in order to understand the language components (nouns, verbs, adjectives)
you also need to need to understand the semantics that convert those components in
isolation into an understandable language that allows you to communicate. Unfortunately,
it’s impossible to describe those semantics without giving examples of their use!

As a rule, Perl lets you do what you want, when you want to, and, more or less,
how you want to. Perl is far more concerned about letting you develop a solution
that works than it is about slotting your chosen solution into a set of standards and
a rigid structure.

The core of any program are the variables used to hold changeable information. You
change the contents of those variables using operators, regular expressions, and functions.
Statements help to control the flow of your program and enable you to declare certain
facts about the programs you are running. If you can’t find what you want using the
base Perl function set, you can make use of a number of modules, which export a list
of variables and functions that provide additional information and operations. If you
want to work in a structured format, modules also support objects, methods, and object
classes. You can, of course, also make your own modules that use your own functions.

We'll have a quick look at some of the elements and components within Perl that
will help when we start to look at these individual items in more detail in future chapters.

Variables

Variables hold variable pieces of information—they are just storage containers for
numbers, strings, and compound structures (lists of numbers and strings) that we
might want to change at some future point.

Perl supports one basic variable type, the scalar. A scalar holds numbers and strings,
so we could rewrite the simple “Hello World” example at the beginning of this chapter as

Smessage = "Hello World\n";
print S$message;

In this example, we've assigned a literal to a variable called $message. When you
assign a value to a variable, you are just populating that variable with some information.
A literal is a piece of static information—in this case it’s a string, but it could have been
a number. By the way, when you assign information, you are assigning the value to the

Chapter 2: Perl Overview

right of the assignation operator (the = sign) to the [value on the left. The lvalue is the
name given to a variable or structure that can hold information. Normally this is a
variable, but functions and objects are also types of lvalues.

You'll notice in the preceding example that the variable, $message, has a “funny”
character at the beginning. In this case, it’s a dollar sign, and it identifies the variable as
being a scalar. You always use a dollar sign when accessing a scalar value. The way to
remember a scalar is that the $ sign looks like an “s”, for scalar!

There are also some compound variable types—namely the array and the hash.
The array is a list of scalar variables—thus we can store a list of days using

@days = ('Mon', 'Tue', 'Wed', 'Thu','Fri','Sat','Sun');

The leading character for an array is an @ sign (think “a” for array), and you always
access an array of one or more values using an @ sign. You access the values in an array
by the numerical index; the first value is at index 0, so to get the first day of the week
from the preceding list, we’d use $days[0]. Note the leading $ sign—this is required
because we are accessing the scalar value at index 0 from the array.

Perl also supports a hash—this is a list that uses not numerical indices, but instead a
string “key” to access each “value”—the so-called key/value pair. Hash variables start
with a % sign—think of the two “0” characters in the % as the key and value. Thus we
could create a hash that contains month names (as the keys) and the days in that month
(as the values):

gmonths = ('January' => 31,
'November' => 30,
'December' => 31);

Now all we need to do when we want to know how many days are in November is
access the value in the %months hash with a key of “November”:

print "Days in November:", $months{'November'}, "\n";

Perl also supports some other types of variables, such as filehandles (which allow
us to read from and write to files) and typeglobs (which allow us to access a variable
via the internal symbol tables). We also use references, which just point to other
variables without actually containing a value themselves.

The special characters used to access variables are a vital part of the Perl
language—they enable us to identify the variables easily and let the programmer
and Perl know what sort of variable we are expecting to use. We’ll see more information
on variables in Chapter 4.

33

34

Perl: The Complete Reference

Operators

Operators perform some sort of operation on a value or variable. For example, the +
operator adds two numbers together:

Ssum = 4 + 5;

Other operators allow you to perform other basic math calculations, introduce lists
of values (for use with functions and variables), and assign values to variables and
subroutines.

There are also operators that enable us to use regular expressions that can “match”
information contained within a string against an expression, or perform a substitution
so that we can replace and translate information without having to explicitly define
its contents.

We'll be looking at Perl operators, and the core mechanics of how Perl takes a raw
script and interprets the contents, in Chapter 3.

Statements

Statements enable us to control the execution of our script—for example, we might use

the if statement to test the value of a variable or operation so that the script can make

an informed decision about what to do next. Other statements include the loops, which

allow us to repeat a process on the same piece of data or on a sequence of data. Statements

also include declarations, such as those that allow us to define variables and subroutines.
We'll be covering statements and control structures in Chapter 5.

Subroutines (Functions)

When you want to perform an operation on a variable a number of times, or the same
operation on a number of variables, it makes sense to place that sequence of operations
into a subroutine or function. Now when you want to perform that operation, you send
the variable to the subroutine, and then use the value returned from that subroutine.

Perl includes a number of subroutines that perform different operations—including
the print subroutine, which sends information to the screen (or to a file). Other sub-
routines built into Perl include those for opening and communicating with files, talking
over a network, or accessing information about the system. Other built-ins provide
simple ways for performing different operations on variables and values.

You can also produce your own subroutines—something we’ll be looking at in
Chapter 6.

Chapter 2: Perl Overview 35

Modules

Once you have a collection of subroutines that you find useful, then you'll probably
want to use them in other scripts and applications that you build with Perl. You could
copy them to the new scripts, but a much better solution is to make your own modules.
These are the libraries that extend the functionality of Perl.

Perl comes with its own, quite extensive, set of modules that allow you to communicate
over a network (see Chapter 12), develop user interfaces (see Chapter 17), access external
databases (see Chapter 13), and provide an interface for communicating with a web
server and a client browser when developing web solutions (see Chapter 18).

If you can’t find what you want within the standard Perl distribution, then there
is a central repository of modules built by other programmers called CPAN. This
contains literally thousands of modules to handle everything from accessing data
sources through to handling XML (Extensible Markup Language).

We'll be looking at how to build our own modules in Chapter 6.

| Where Next?

The answer to that question is really up to you—Perl will let you do almost anything. If
you need to understand the basics of how Perl works and how scripts are interpreted,
their elements identified, and rules followed, then continue reading Chapters 3 through
to 6. If you want a little more detail on the sort of things Perl can do and how you might
approach them, read Chapters 7 through 9.

If you already know the basics and want to use Perl to solve a particular problem,
use the Chapters in Part 2, which cover everything from Perl’s object-orientation
system to extending Perl with external libraries.

This page intentionally left blank.

The

Rejoronce
Chapter 3

Perl Parsing Rules

38 Perl: The Complete Reference

the different components that make up the Perl language, and then actually
executing the script that you've supplied.
As we've already seen in the last chapter, Perl is pretty casual about certain aspects
of the script’s layout. For example, in Perl the simplest, and classic, Hello World program
is as straightforward and complete as

Perl, like all languages, has its own set of rules for parsing the Perl script, identifying

print "Hello World\n";

We don’t have to worry about any preamble or tell Perl to include required files
before we can do anything useful. We also don’t have to tell the interpreter how to
end the program—~Perl is quite happy for the source to simply end.

In this chapter, we're going to take a detailed look at some of the core elements
of the Perl language. We'll start with the method used by Perl to actually interpret
a source script and the process behind identifying and interpreting some of the core
elements of the language. We'll also take our first look at the core operators used by
Perl for manipulating and working with variables and other information.

| The Execution Process

The first step to understanding how Perl parses a script is to take a top-level look at how
Perl takes the source text and executes it. Perl works in a similar fashion to many other
script-based languages—it takes raw input, parses each statement and converts it into a
series of opcodes, builds a suitable opcode tree, and then executes the opcodes within a
Perl “virtual machine.” This technique is used by Perl, Python, and Java, and it’s one of
the most significant reasons why Perl is as quick as it is—the code is optimized into very
small executable chunks, just like a normal program compiled for a specific processor.
To summarize, the basic sequence works as follows:

1. Read the source code and parse the contents to verify the source against
the “core” rules. This is also the stage at which external modules are
imported—Perl imports modules in their source format, and they are
interpreted and parsed in the next stage along with your original script.

2. Compile the source into a series of opcodes. This involves the use of a parser,
which translates the Perl source into the opcode structures. It’s actually here
that the majority of source errors are identified and raised.

3. Execute the opcode tree.

We will look in more detail at the specific process and the internals of the system in
Chapters 20 and 22.

Chapter 3: Perl Parsing Rules

Outwardly, Perl actually classifies only two stages—the parsing stage and the
execution or run-time stage. Errors reported at the parsing stage relate to problems
with the layout or rules of the Perl language—for example, forgetting a quote or
parenthesis, or trying to import a module that cannot be found. Run-time errors
relate to the execution of a statement—for example, trying to divide a value by zero,
or supplying an unexpected value to a function or subroutine.

Syntax and Parsing Rules

The Perl parser has to consider a number of different items when it takes in a source script
and attempts to execute the statements. The primary purpose is, of course, to identify the
different elements within each line as operators, terms, and constants, and then evaluate
each sequence to produce a particular result—this might include calling a function (which
itself will need the same statement examination) or performing a calculation.

Even before Perl gets to these elements, however, the parser must examine the
individual source lines for information—comments need to be identified and removed.
The basic layout of the line has to be validated—does it have a trailing semicolon, does
it run on to the next line, and so on.

In fact, the Perl parser thinks about all of the following when it looks at a source line:

B Basic syntax The core layout, line termination, and so on
B Comments Ifacomment isincluded, ignore it

B Component identity Individual terms (variables, functions and numerical
and textual constants) are identified

B Bare words Character strings that are not identified as valid terms

B Precedence Once the individual items are identified, the parser processes
the statements according to the precedence rules, which apply to all operators
and terms

B Context What is the context of the statement, are we expecting a list or scalar,
a number or a string, and so on. This actually happens during the evaluation
of individual elements of a line, which is why we can nest functions such as
sort, reverse, and keys into a single statement line

B Logic Syntax For logic operations, the parser must treat different values,
whether constant- or variable-based, as true or false values

All of these present some fairly basic and fundamental rules about how Perl looks at
an entire script. From the basic Hello World script to entire database applications, each
line is executed in the same manner using the same basic rules.

39

40 Perl: The Complete Reference

Basic Syntax

The basic rules govern such things as line termination and the treatment of white
space. These basic rules are

B Lines must start with a token that does not expect a left operand—for example,

= 99;

is invalid, because the = operator expects to see a valid Ivalue on the left side of
the expression. As a general rule, functions and variables are the primary token
in a line, with some exceptions.

B Lines must be terminated with a semicolon, except when it’s the last line of a
block, where the semicolon can be omitted. For example:

print "Hello\n"

is perfectly legal as a single-line script. Since it’s the last line of a block, it
doesn’t require any semicolon, but

print "Hello "
print "World\n"

will cause a fault.
B If you split a line within a quoted string, then the line termination becomes part
of the string.

B White space is only required between tokens that would otherwise be confusing,
so spaces, tabs, newlines, and comments (which Perl treats as white space) are
ignored. The line

sub menu{print"menu"}

works as it would if it were more neatly spaced.

B Lines may be split at any point, providing the split is logically between two
tokens. The following is perfectly legal:

Chapter 3: Perl Parsing Rules

print
"hello"

"world";

All of the preceding are examples of the core rules for executing a script. Any errors
picked up at this point are reported during the compilation stage—before any code is
actually executed (there are some exceptions; see Chapter 5 for details on BEGIN and
other special blocks).

It’s also important to remember that while the examples above are perfectly legal
Perl, they don’t make your program easier to read, which will make it harder to maintain
in the long run.

Comments

Comments are treated by Perl as white space—the moment Perl sees a hash on a line
outside of a quoted block, the remainder of the line is ignored. This is the case even
within multiline statements and regular expressions (when the /x modifier is used):

matched = /(\S+) #Host
\s+ # (space separator)
(\S+) #Identifier
\s+ # (space separator)
(\S+) #Username
\s+ # (space separator)
NI(.*)\] #Time
\s+ # (space separator)
n(LE) #Request
\s+ # (space separator)
(\S+) #Result
\s+ # (space separator)
(\S+) #Bytes sent

/%

Comments end when Perl sees a normal line termination. The following is
completely invalid:

print ("Hello world"); # Greet the user
and let them know we're here

41

42

Perl: The Complete Reference

There is also no way of indicating to Perl that you have a multiline comment
to include, short of placing the hash symbol before each comment segment.

If the comment includes a “line directive”; in this instance the information is stored
within the opcode tree and used to populate the _ LINE__and _ FILE__ special
tokens. These are available directly and are also used as the basis for error messages
raised by die and warn when no trailing newline is supplied.

In order to introduce the directive, you must use the word line, followed by a line
number and an optional string. The match is actually made by a regular expression:

/7 #\s*line\s+ (\d+) \s* (2:\s" ([""]+)?\s*3$/

The first group, $1 (the first matching parenthesized block, see Regular Expressions in
Chapter 8 for more details), populates __ LINE__, and $2 populates _ FILE__. For example:

line 200 "Parsing engine"
die "Fatal";

produces
Fatal at Parsing engine line 200

Note that the line directive actually modifies the _ LINE__ token, which is normally
automatically parsed and populated by the Perl interpreter based on the current line
within the script. So this script:

#line 200 "Parsing engine"
print "Busy\n";

print "Doing\n";

print "Nothing\n";

die 'Fatal';

actually reports this:

Busy

Doing

Nothing

Fatal at Parsing engine line 203.

It reported an error on line 203, not the real source line 4—the earlier line directive has
permanently modified the line-numbering counters. You can update the line directive
with any number, such that

Chapter 3: Perl Parsing Rules

#line 200 "Parsing engine"
print "Busy doing nothing\n";

warn "Warning";

#line 100 "Post-process engine"

print "Working the whole day through\n";
die "Fatal";

generates this:

Busy doing nothing

Warning at Parsing engine line 201.
Working the whole day through

Fatal at Post-process engine line 101.

Comments and line directives can be a useful way of debugging and documenting
your scripts and programs. We'll return to the topic in Chapter 21.

Component Identity

When Perl fails to identify an item as one of the predefined operators, it treats the
character sequence as a “term.” Terms are core parts of the Perl language and include
variables, functions, and quotes. The term-recognition system uses these rules:

Variables can start with a letter, number, or underscore, providing they follow
a suitable variable character, such as $, @, or %.

Variables that start with a letter or underscore can contain any further
combination of letters, numbers, and underscore characters.

Variables that start with a number can only consist of further numbers—be
wary of using variable names starting with digits. The variables such as $0
through to $9 are used for group matches in regular expressions.

Subroutines can only start with an underscore or letter, but can then
contain any combination of letters, numbers, and underscore characters.

Case is significant—$ VAR, $Var, and $var are all different variables.

Each of the three main variable types have their own name space—$var, @var,
and %var are all separate variables.

Filehandles should use all uppercase characters—this is only a convention, not
a rule, but it is useful for identification purposes.

Once the term has been extracted using these rules, it’s compared against Perl’s
internal symbol table and the symbol table of the current package. Quotes and constants
are also identified and either resolved or tagged at this stage as being bare values.

43

44 Perl: The Complete Reference

If after all this, the item has still not been identified, then the item is treated as a bare
word—see the “Bare Words” section further on in this chapter for more information
on how these items are parsed. Quotes are also a special case; because their values may
be interpolated, they are actually resolved at this stage—see the “Quoting” section in
Chapter 4 for information on constants and quoting and the interpolation of variables
into quoted strings.

Operators and Precedence

Like most languages, Perl’s parsing rules are based on precedence—the order in which
individual elements of a line are evaluated and then processed. As a general rule, Perl
parses statements from left to right, except in situations where the rightmost value may
affect the evaluation of a term on the left. A good example is the += operator, which
adds and assigns a value to a variable—if the right side of this operator wasn’t evaluated
first, Perl would be unable to determine what value should be added to the variable on
the left side.

. The information in this section is quite complex, and I don’t expect all readers to
Caution gy , o
understand all of the principles and techniques shown on their first read through.
It’s impossible to describe the mechanics of a language without giving some examples.
My advice is to read this section through, follow up with the remainder of the chapters

in this section, and then come back and re-read this section again. Hopefully, it should
all make more sense the second time around!

The list of operators in Table 3-1 gives the individual operator precedence, and the
overall precedence for all operators.

Name Precedence Examples
Terms and list operators Left

The arrow (dereference) Left ->
operator

Auto-increment and Nonassoc ++ ——

auto-decrement

Exponential Right e

Table 3-1. Operators in Order of Precedence

Chapter 3: Perl Parsing Rules 45

Name Precedence Examples

Symbolic unary operators Right ! ~\ and unary +
and -

Regular expression bindings Left =~ I~

Multiplication Left *[% x

Addition and subtraction Left + -

Shift operators Left << >>

Named unary operators Nonassoc -X file test, some
functions

Relational operators Nonassoc < > <=>= 1t gt le ge

Equality operators Nonassoc == |= <=> eq ne cmp

Bitwise AND Left &

Bitwise OR and Exclusive OR Left | A

Symbolic logical AND Left &&

Symbolic logical OR Left Il

Range operators Nonassoc . ..

Conditional operator Right 2

Assignment operators Right = += —= *= etc.

List operators Left , =>

List operators Nonassoc

Logical NOT Right not

Logical AND Left and

Logical OR and Exclusive OR Left or xor

Table 3-1. Operators in Order of Precedence (continued)

The operators in Table 3-1 are also listed in overall precedence, from top to
bottom—the first item in the table, terms and list operators, have the highest precedence
and will always be evaluated by Perl first when used within a compound statement.

46

Perl: The Complete Reference

You can see, for example, that * has a higher precedence than +. This means that the
statement
$a = 5*6+4;
is evaluated as
Sa = (5%6)+4;
and not
Sa = 5% (6+4) ;

which produces a result of 34, and not 50.

Understanding the Precedence System

If you want to check the precedence rules, you can use the Perl compiler Deparse

backend. This takes a Perl script and regurgitates it after the precedence rules have

been applied and optimization has taken place. The output is then reformatted, ac-

cording to the precedence rules, using parentheses to highlight the precedence rules.
For example:

$ perl -MO=Deparse,-p -e 'Sa + Sb *3Sc / sd % Se!
-e syntax OK
($a + ((($b * $c) / $d) % $e));

You can see here that the statement has been grouped according to the precedence
rules. Any statement or script can be run through the backend. However, because
the output includes any optimization (see the “The Execution Process” section at
the beginning of this chapter), passing in statements that include constant values
will not yield what you want:

S perl -MO=Deparse,-p -e 'Sa = 5*%6+4;"'
(Sa = 34);
-e syntax OK

The compiler and its backends, which can provide useful nuggets of information
about your script, such as this one, will be discussed in more detail in Chapter 22.

Chapter 3: Perl Parsing Rules

Terms and List Operators
Terms have the highest precedence in Perl, and they include the following:

B Variables

Quotes

Any parenthesized expression
Function calls with parentheses

The do {} and eval {} constructs

Subroutine and method calls

B Anonymous constructors for arrays, [], and hashes, {}

The basic effect can be seen with a simple calculation:
print 6*(5+4);

prints out 54, the 5+4 is evaluated first, because it’s in parentheses, even though the
precedence rules state that the * operator has a higher precedence.

However, if you embed a term within a list, then the terms are evaluated left
to right before being returned as a list to the caller; for example, in the fragment,

sub add { print 'Result:' }
print (2,3,add) ;

the call to the add function is evaluated before the print statement. As a general rule,
the terms are evaluated from left to right, such that

sub first { print 'First' }
sub second { print 'Second' }
print (2,3, first, second) ;

generates
FirstSecond2311
This also affects embedded terms that accept further list operators:

print 2,3,sort 2+2, 1+1;

47

Perl: The Complete Reference

Here, the arguments on the right of the sort term are immediately gobbled up and then
evaluated left to right, before the elements before sort are evaluated. This results in the
entire statement printing “2324”.

In general, this left-to-right term evaluation produces the behavior you expect when
you embed calls to other functions within a statement,

print "Warning:", sort ('A','B','C'), "\nContinuing";

But it also has the effect of ignoring further arguments, or earlier arguments if the script
or function returns or forces the script to terminate. For example,

print "Warning:", die("Error"), "Exiting";
outputs this:

Error.
File 'Untitled'; Line 1

This script:

sub add

{
}

print "Sum: ",return($_[0]1+S_[1]);

print add(1,2);

outputs “3”, the return value of the function, missing the prefix string, which would
only have been printed if the evaluated list had been supplied to the print function.
Finally, the statement

print (4+5) + 1, "\n";

Chapter 3: Perl Parsing Rules

is unlikely to do what you expect. The call to print will be made and evaluated, but
using only the evaluated 4+5 expression—the parentheses define the list of values that
is returned to the print statement. Then Perl will attempt to add the return value from
the print subroutine call, which is actually void, to 1, while the newline character is just
discarded as a useless constant. If you switch on warnings, you'll get more information:

Useless use of integer addition (+) in void context at t.pl line 1.
Useless use of a constant in void context at t.pl line 1.
9

But the Deparse backend is more explicit:

((print (9) + 1), '2?2?2');
t.pl syntax OK

The first part shows the result of print and 1 being added together, but the newline
argument is never properly evaluated or included in the statement. Note that Perl still
treats the syntax as being okay—there is nothing invalid about the statement as far as
the parser is concerned, it just doesn’t make any sense.

The Arrow (Dereference) Operator
The arrow or infix dereference operator is used to access the properties and methods of
an object or the data contained within hash or array references. Because we are accessing
the contents of variables, the precedence has to be high enough for the values to be
determined before they are included as part of other statements.

References, which support nested structures and Perl’s object-oriented mechanism
are the subject of another chapter. Please refer to Chapter 10 for further examples and
explanation of the dereference operator.

Auto-Increment and Auto-Decrement

The auto-increment and auto-decrement operators allow you to immediately increment
or decrement a value without having to perform the calculation within a separate
expression. This operates in the same fashion as the C equivalent and can be placed

49

50

Perl: The Complete Reference

before or after a variable for the increment or decrement to take place before or after
the variable has been evaluated. For example:

incremented before, outputs 2
incremented after, outputs 2, $a now equals 3
decremented before, now outputs 2

H H HF HF

decremented after, outputs 2, $a now equals 1

The increment operator also has special meaning when applied in a string context.
If applied to a string that equates to a number, then it returns the number incremented
as normal. For example:

print ++(s$foo

'99'); # Outputs 100
'100'"); # Outputs 101

print ++(s$foo

However, when used on an alphanumeric string, the increment applies to
the string, applying the increment within the character’s range. For example:

print ++($foo = 'bl'); # Outputs c2
print ++($foo = 'Qz'); # Outputs Ra
print ++($foo = 'zz'); # Outputs aaa

Note the result of the last line—the “characters” are incremented, introducing a

"

new character “a”, just as if we were incrementing numbers. The rule applies to all

“natural” rollovers: “z” increments to “aa”, and “Z” increments to “AA” and so on.
But, the application is against the entire string as if it was a number. Thus a rollover
“”_r " rm

of the last character from “z” to “a” also increments the preceding character. This can
be seen better with:

print ++($foo = 'Qx'); # Outputs Qy
print ++($foo = 'Qy'); # Outputs Qz
print ++($foo = 'Qz'); # Outputs Ra

The last letter worked in exactly the same fashion as the tens column in a decimal
number, thus it would have changed “Zz” to “AAa”.

You can only use increment in this fashion; the decrement operator does not work
in the same way.

Chapter 3: Perl Parsing Rules

Note, as well, that the operators can only be applied to variables—the statement
print ++'aa';

will fail.

The increment and decrement operators have no significant precedence. They are
listed in the table as non-associative—this is because there are no left or right arguments;
the operators work directly on the variable or string supplied. If they are placed before
a variable, the variable’s value is incremented or decremented before the variable’s
value is used. If placed after, then the variable is incremented or decremented after
the variable has been evaluated. This means that the statement:

$a = 3;
print Sa++ * Sa

Actually prints the result of the calculation 3*4—the increment is executed immediately
after the value of the variable has been extracted.

Exponentiation
The exponential operator raises the value on the left of the operator to the power of
the right. For example:

print 9**3;

Outputs 729, or 9*9*9. The operator evaluates the expression on the right before the one
on the left, such that:

Sa = 2;
print S$Sa**++Sa;

prints 27, that is, 3’ and not as you might expect 2°.
Caution | Care should be taken to ensure you aren’t executing nested exponential statements that
are parsed in this order. It's possible to create a large value, or even evaluate items in the
wrong order if you are not careful—if you're unsure, either use Deparse to check the

entire syntax and sense of the statement, or try to devolve the statement into a number
of individual lines.

52 Perl: The Complete Reference

Symbolic Unary Operators
The symbolic (or ideographic) unary operators modify an expression in some way:

Unary ! performs logical negation (not); for example !0 is equal to 1, and !1 is
equal to 0.

Unary — negates the expression if it is numeric, as in -10. If the expression is a
string, then it returns the string with the operator prefix. For example —option
is equivalent to "-option" just as if the string had been quoted.

Unary ~ performs bitwise negation (1s complement) on a numerical value.
If the argument is a string, then individual bits of the string are flipped.

Unary + does nothing on numerical or string values. However, if placed before
an expression that would otherwise be interpreted as a list, it forces the expression
to be returned as a single argument.

Unary \ creates a reference to the expression or term following it. See Chapter 10
for more information on references.

Regular Expression Bindings

The =~ and !~ operators are regular expression binders—they bind the expression on
the left to the pattern match, substitution, or transliteration (translation) on the right.
As such, they are a special case, and we’ll be looking in more detail at their operation
in Chapter 8.

Multiplication
The *,/, and % operators are fairly straightforward, doing the normal numerical
multiplication, division, and modulus (remainder) on two numbers. For example:

print 2*10; # Outputs 20
print 20/2; # Outputs 10
print 20%7; # Outputs 6 - the remainder

The x repetition operator is useful when you want to repeat a string:

print 'Ma' x 8; # outputs MaMaMaMaMaMaMaMa

If you supply a numerical value on the left side, then the number is converted to a string:

print 123 x 2; # outputs 123123

You should be careful, however, when using it with lists and arrays. If the item on the
left side of the operator is a list, then the entire list is repeated:

Chapter 3: Perl Parsing Rules

print (join(',',(1,2,3) x 2)); # outputs 1,2,3,1,2,3

With arrays, you must enclose them in parentheses so that they are treated as lists, not
scalars. The fragment,

@abc = ('a','b','c');
@abc = @abc x 5;
print join(',',6 @abc) ;

generates “33333”"—the @abc array has been populated with a list consisting of one
element, the scalar value of @abc (its length) repeated five times.
To resolve this, place parentheses around the source array:

@abc = ('a','b','c');
@abc (@abc) x 5;
print join(',',@abc);

Finally, if you supply an array on the right and a list on the left, the result is a
repetition based on the scalar value of the array, effectively setting each item of a
non-empty array to the list you supply. If the array on the right is empty, then an
empty list is returned. For example, this:

@abc = ();

@abc (5) x @abc;

print "First: ",join(',',6 @abc),"\n";
@abc = ('a','b','c");

@abc = (5) x @abc;

print "Second: ",join(',',@abc),"\n";

generates this:

First:
Second: 5,5,5

Addition and Subtraction
Addition and subtraction operators work on numerical values as you would expect:

print 10+2; # Outputs 12
print 10-2; # Outputs 8

53

Perl: The Complete Reference

You cannot use the same operators for concatenating strings; instead use
the . operator:

print $hello . sworld;

The . operator does not include a space in the concatenation, so this would output
“HelloWorld”. You'll either have to explicitly add the space or use double-quoted
strings and interpolation:

print "S$hello Sworld";

Shift Operators

The shift operators shift the bits of an expression right or left, according to the number
of bits supplied. For example:

2 << 8;

is 512. Be aware that if a floating point value is supplied to a shift operator, it is converted
to an integer without rounding, that is, it is always rounded down, such that:

2.9 << 7.9;

produces 256, 2 shifted to the left 7 times.

Named Unary Operators

Certain Perl functions are really named unary operators, that is, functions that take

a single argument and return a value. The exact list of unary operators is difficult to
determine manually, but as a guide, the Perl source defines the following functions

and operations as unary operators:

Chapter 3: Perl Parsing Rules

alarm gethostbyname log sin
caller getnetbyname Istat sleep
chdir getpgrp my sqrt
chr getprotobyname oct srand
chroot gmtime ord stat
cos goto quotemeta uc
defined hex rand ucfirst
delete int readlink umask
do Ic ref undef
eval "string" Icfirst require -X tests
exists length return

exit localtime rmdir

exp lock scalar

If any of these are followed by an opening parenthesis, then they automatically
have highest precedence; however, if you use them without parentheses, then their
precedence is as listed within Table 3-1—lower than most calculations, but higher
than most of the relational and logical operations.

For example, the rand function has a lower precedence than the multiplication
operator, so

rand 10 * 20; # rand (10%*20)
rand (10) * 20; # (rand 10) *20;

You can always check these functions with Deparse if necessary.

Tip

55

Perl: The Complete Reference

Also, remember that a comma automatically terminates a named unary operator,
such that

print rand 10, 2;

prints a random number up to 10, immediately followed by the number 2.

However, care needs to be taken with these operators in situations where Perl
defaults to using the $_ operator. For unary operators that do default to $_, failing
to explicitly specify the variable may cause Perl to actually interpret any following
operator as the start of a term. For example,

print if length < 1;

will trick Perl into interpreting the < operator as the start of a filehandle input operator.
Other examples include *, which can be identified as a typeglob, and /, which can be
misinterpreted as a regular expression pattern. See Table 3-2 for a complete list.

If a term was expected and it happens to be of the form -X, then Perl treats the
operator as a file test operator—see Chapter 7 for a complete description of the -X

operators.

Character Operator Misinterpreted as

+ Addition Unary plus

- Subtraction Unary minus

* Multiplication Typeglob (*var)

/ Division Regex (/pattern/)

< Less than Filehandle (<HANDLE>)

<< Left shift Here document (<<EQOF)

Concatenation Value (.1)

? ? Test Regex (?pattern?)

% Modulus Hash (%hash)

& Logical AND Subroutine call (&sub)
Table 3-2. Misinterpreted Unary Operators

Chapter 3: Perl Parsing Rules

Relational and Equality Operators
The relational and equality operators enable you to test the equality of numbers and

strings, respectively. The full list of relational and equality operators is given in Table 3-3.

Operator Action

< Returns true if the left statement is numerically less than the right
statement

> Returns true if the left statement is numerically greater than the right
statement

<= Returns true if the left statement is numerically less than or equal to the
right statement

>= Returns true if the left statement is numerically greater than or equal to the
right statement

== Returns true if the left statement is numerically equal to the right
statement

1= Returns true if the left statement is numerically not equal to the right
statement

<=> Returns -1, 0, or 1 depending on whether the left statement is numerically
less than, equal to, or greater than the right statement, respectively

It Returns true if the left statement is stringwise less than the right statement

gt Returns true if the left statement is stringwise greater than the right
statement

le Returns true if the left statement is stringwise less than or equal to the
right statement

ge Returns true if the left statement is stringwise greater than or equal to the
right statement

eq Returns true if the left statement is stringwise equal to the right statement

ne Returns true if the left statement is stringwise not equal to the right
statement

cmp Returns -1, 0, or 1 depending on whether the left statement is stringwise
less than, equal to, or greater than the right statement, respectively

Table 3-3. Equality and Relational Operators

57

Perl: The Complete Reference

To logically compare numerical values, you use the symbolic equality and
relational operators, for example:

if (sa > 0)
For string comparisons, you must use the text operators:

if ($a gt 'a')

A common mistake is to use the wrong operator on the wrong type of value but fail
to notice it, because for 99 percent of situations it would resolve true anyway. The
statement

will work fine if both values are numerical. If they are textual, then Perl compares the
logical value of the two strings, which is always true. This may seem confusing, but
even the undefined value resolves to true when comparing it numerically. For example,
the following tests all return true:

undef == 'a'
undef == undef
ra' == 'a'!

'a' == 'b!

The reverse is not true when using string comparisons on numerical values. The statement
0 eqg 9

will return false, and
0 eqg O

will return true—this is because Perl automatically converts the numerical values to
strings, because that’s what the operator is expecting, and then compares those values.
There is a very simple rule to follow here: if you are comparing numbers, use symbolic
operators, and if you are comparing strings, use text operators.
See the “Logical Values” section at the end of this chapter for details on the logical
value of different constant expressions.

Chapter 3: Perl Parsing Rules

Bitwise AND, OR, and Exclusive OR

The bitwise AND, &, returns the value of two numbers ANDed together on a bit-by-bit

basis. If you supply two strings, then each character of the string is ANDed together

individually, and the new string is returned. If you supply only one integer and one

string, then the string is converted to an integer and ANDed together as for integers.
For example:

print '123' & '456'; # Outputs 001
print 123 & 456; # Outputs 72
print 123 & '456°'; # Outputs 72

Bitwise OR, |, and Exclusive OR, A, work in the same fashion.

Symbolic Logical AND

The Perl logical AND, &&, works on a short-circuit basis. Consider the statement
a && b;

If a returns a false value, then b is never evaluated.
The return result will be the right operand in both scalar and list context, such that

@list = ('a','b");
@array = ('1','2"');

print (@list && @array) ;
Sa = 'a' && 'b';
print Sa;

produces “12b”.

See the following “Symbolic Logical OR” section for details on using the operator
for comparisons and tests.

Symbolic Logical OR

The Perl logical OR, | I, works on a short-circuit basis. Consider the statement

a || b;

59

60

Perl: The Complete Reference

If a returns a true value, then b is never evaluated. However, be wary of using it with
functions that only return a true value. For example:

select DATA || die;
will never call die, even if DATA has not been defined.

Also, be careful when using it with functions and terms that accept list arguments.
The statement:

print DATA "The answer is ", 0 || warn "Can't write: $!";

actually performs a logical OR between the argument 0 and the call to warn, and warn
will be called before the 0 is evaluated and returned to print:

Can't write: at t.pl line 1.
The answer is 1

The solution is to use the or operator, which has a much lower precedence:

print DATA "The answer is ", 0 or warn "Can't write: $!I";
or to enclose your statements in parentheses to give them higher precedence:

print DATA ("The answer is ", 0) || warn "Can't write: $!";

Range Operators
The range operators, .. and ..., allow you to create ranges on the fly, and can also act as
simple “flip-flop” operators. The value of each .. operator is unique, with each operator
maintaining its own state. The value returned by the operator is false as long as the left
operand is false. When the operand changes to true, the operator returns true until the
right operand is also true, and then at the next execution the operator becomes false again.
If the operands are scalars or constant expressions, then the operand is compared
against the $. operator—the current input line number.
In a list context, the operator returns a list of values between the supplied ranges:

@hundred = (0 .. 100);

It also operates in a similar fashion to the increment operator when supplied string values:

Chapter 3: Perl Parsing Rules

@characters = ('a' .. 'z');

Conditional Operator

The conditional operator is like an embedded if...else statement (see Chapter 5).
The format is

EXPR ? IFTRUE : IFFALSE

If EXPR is true, then the IFTRUE expression is evaluated and returned, otherwise
IFFALSE is evaluated and returned.

Scalar and list context is propagated according to the expression selected. At a basic
level, it means that the following expressions do what we want,

Svalue = Sexpr ? Strue : sSfalse;
@list = S$expr ? @lista : @listb;
while

Scount = $Sexpr ? @lista : @listb;

populates $count with the number of elements in each array. On the flip side, you can
also do

Sresult = $wantcount ? @list : join(',6 ', @list);

returning the array size or merged array accordingly. The conditional operator is
evaluated as a single element when used within a list, so don’t confuse the interpreter
by inserting additional list operators without qualifying them. This means that if you
want to return more than one item based on a conditional operation, you'll need to
parenthesize the expression you want to return. The script

Sname = <STDIN>;

chomp S$name;

print "Hello ",length($name) ? $name,', how are you today?'
'nobody "', "\n";

should be written as

Sname = <STDIN>;
chomp S$name;

61

62

Perl: The Complete Reference

print "Hello ",length($name) ? (Sname,', how are you today?')
'nobody"', "\n";

You can also use the conditional operator for assignment, providing the two options
are valid Ivalues (see the following “Assignment Operators” section). You'll need to
qualify the entire expression, however:

(Sgroup ? $a : $b) = 'users';

To use the conditional operator for choosing an assignment value, use the conditional
operator as the assignment value, rather than embedding the assignment expression:

Sa = Sgroup ? 'is a group' : 'not a group';

Assignment Operators
The assignment operators assign a value to a valid Ivalue expression—usually a variable,

but it can be any valid lvalue. An Ivalue, or left-hand value, is an expression to which
you can assign a new value. Assignment happens with the = and associated operators.
Valid lvalues include
B Any recognizable variable, including object properties
vec function (for setting integer values)
substr function (for replacement strings)
keys function (for setting bucket sizes)
pos function (for setting the offset within a search)
Any lvalue-defined function (Perl 5.6 only)

? : conditional operator

Any assignment expression

As well as the basic = operator, there are also combined expression assignments
that translate into embedded expressions. For example,

Sa += 10;
is equivalent to

Sa = Sa + 10;

Chapter 3: Perl Parsing Rules

The full list of assignment operators includes the following:

*= &= <<=
/: | = >>=
%= A=

X=

Note that assigning a value to an assignment expression should be read from left to

right, such that

(sa += 10) *= 5;

reads as
Sa += 10;
Sa *= 5;
and

(Smatch = $source) =

resolves to

Smatch = S$source;

Smatch =~ tr/a-z/A-Z/;

Finally, assignment works differently according to context when assigning lists. In
a list context, a list assignment causes the Ivalue to be resolved into a list of Ivalues to
be assigned to. That means this:

($a, sb) = (1,2);

is in effect

Sa 1;
Sb 2;

~ tr/a-z/A-Z/;

See Chapter 4, where we deal with Perl’s variables, for more information on

assignment.

63

64 Perl: The Complete Reference

Comma Operator

The comma is the list operator, and arguments are evaluated in order from left to right.
In a scalar context, when used in an implied list, the left argument is evaluated, then
thrown away, and the right-hand argument is returned. For example:

Sa = (1,4);

This will assign a value of 4 to $a. In a list context, it evaluates all arguments from left
to right and then returns them as a list:

@a = (1,2);

Be careful when using the list operators in a scalar context without parentheses.
Here the first element of the list will bind tighter than the right-hand arguments, since
the list operator has a lower precedence than most other statement forms. For example,

Similarly, with a named unary operator,
chdir 'tmp', 'etc';

This will change the current directory to tmp, not etc.
The same is true of arrays, so the line

The => operator is just an alias to the , operator, best used when separating the key
and value of a hash element:

$hash = ('key' => 'value');

Chapter 3: Perl Parsing Rules

Since Perl 5.001, the => automatically implies that the left argument should be
interpreted as a string, making

$hash = (key => 'value');

perfectly legal, even with warnings and the strict pragma in force.

List Operators (rightward)

The rightward list operators govern the interpretation of the list operator’s arguments.
The right side of a list operator has a very low precedence, with only the and, or, xor,
and not having a lower precedence. This interpretation causes the problems when using
implied lists and the symbolic logical operators:

tie %oldhash, NDBM_File, Sold, O_RDONLY, 0444
|| die "$0: Error opening source $old: $!\n";

This is actually interpreted as the last list argument being logically compared with the
die statement. Use the named logical operators, which have lower precedence, to solve
the problem.

Named Logical NOT

The logical not provides a logical negation for the item on the right of the operator.
Any term on the left will immediately raise an error, so the statement

Sa = S$b not S$c;

is completely nonsensical. Use | | if you want to choose between two values.

Named Logical AND
This and works identically to the symbolic logical AND (&&), including the short
circuit execution. The only difference is that it has a lower precedence.

Named Logical OR and Exclusive OR

The named logical or works like the symbolic logical OR (| I), including the short

circuit execution. Its main benefit is that it operates at very low precedence—in the

lowest precedence of all statements—and is therefore useful in control statements
Care should be taken when using or in assignment statements. Because it has the

lowest precedence, the assignment operator will bind tighter than the or operator, so

Sa = Sb or sc;

65

66 Perl: The Complete Reference

is interpreted as
($a = $b) or $c;
It’s better to write it as

$a = sb || sc;

The same is true of any other statement where you want to make comparisons—the
or operator is really only useful when you want to check the return value of a function

without affecting the value returned.
The xor operator returns the exclusive OR of two expressions.

Bare Words

Bare words within a script are essentially a bad idea. First Perl tries to identify whether
the bare word is a proper value—if it can be resolved to a function within the symbol
table, then the function is called; otherwise it’s treated as a string. The script below
demonstrates this quite neatly:

sub hello

{
}

return 'Hello user!';
Smessage = hello;
print "$message\n";

Smessage = goodbye;
print "$message\n";

This outputs

Hello user!
goodbye

If you have warnings switched on, then Perl will warn you if it sees an all-lowercase
bare word that it can’t otherwise identify as a term:

Chapter 3: Perl Parsing Rules 67

Unquoted string "goodbye" may clash with future reserved word at t.pl line 10.

A mixed-case bare word is interpreted as a string in most instances, and it should raise
a suitable error when warnings are switched on. However, there is one exception—
where a bare word is used in a situation that requires a filehandle, the bare word is
used as the filehandle name. For example, the code:

print Tester;

prints the value of $_ to the filehandle Tester, assuming it’s open and writable. If you try

print Tester, "Hello World\n";

you’ll get an error when warnings are switched on because Perl assumes that Tester is
the name of a filehandle.

If you have the subs portion of the strict pragma invoked, then execution will
terminate because of the bare word:

Bareword "goodbye" not allowed while "strict subs" in use at t.pl line 10.

If you have both warnings and the strict pragma in effect, then the pragma takes
precedence.
We'll be looking at pragmas and warnings in more detail in Chapter 8.

Contexts

Perl supports a number of different contexts, which are identified for each operator or
term during the parsing process. The exact effects vary according to the operator or term
concerned. Contexts affect the operation of different statements and functions, and they
are worth covering, at least briefly—we’ll look at the details of contexts in Chapter 6.

Scalar and List Context

There are two basic contexts that all programmers are aware of: scalar and list. These
two contexts affect the operation of the function or operator concerned by implying the
accepted value, or value returned. For example:

Ssize = @list;

68

Perl: The Complete Reference

Here, the $size variable is a scalar, and it therefore implies scalar context on the array,
which causes it to return the array size, rather than the array values. Conversely, the
statement

sort @list;

is evaluated in list context, since the sort function expects a list of values.

Within a function, you can identify the requested context using the wantarray
function, which returns true if the caller is expecting a list (or array, or hash) to be
returned instead of a scalar value.

Numerical and String Context
Some of the internal Perl functions also distinguish scalar context between numerical
and string contexts. A classic example is the $! special variable, which holds the error
status for the previous operation. In a numerical context, this variable returns the numerical
error number of the last error that occurred, and in a string context, the associated message.
The interpreter uses this context as the basis for the conversion of values into the internal
integer, floating point, or string values that the scalar value is divided into.
Unfortunately, there’s no way of determining from within a script what the expected
numerical or string context is—you must leave it up to Perl to make the decision for you,
converting the value accordingly.

Boolean Context

Boolean context is where an expression is used solely to identify a true or false value.
See the “Logical Values” section, later in the chapter, to see how Perl treats individual
values and constants in a logical context.

Void Context

Void context is a special case and is an extension of the scalar context. It identifies areas
of the code where a constant has been introduced but never used. At its simplest point,
the statement

99;

would be identified as a void context, since introducing a constant at this point does

nothing. You'll only be notified of this instance if you have warnings switched on.
Other more common areas where void context applies include the instance where

the precedence rules would cause a portion of the statement to be ignored. For example,

Chapter 3: Perl Parsing Rules

causes the “2” to be identified in a void context. Look at the earlier precedence rules for
details on why this and similar statements cause void-context warnings.

Interpolative Context

The Perl documentation identifies the interpolation of variables into interpolating
quoted values as a separate context. This is good way of describing why some quoted
blocks interpolate—that is, they are identified as interpolated context—but it doesn’t

really do the process justice. We’ll look more closely at the interpolation process in
Chapter 3.

Logical Values

Perl’s Boolean logic relies on its ability to identify different variable and constant types
as having a true or false value. As a general rule, anything that is undefined, empty, or
0 is taken as a false value, whilst any other value is taken as true. You can see a more
explicit list in Table 3-4.

To check for the undefined value, you can use the defined function. This returns a
positive integer (true) if the variable contains a valid value, or O (false) if the variable
equals the undef value.

Value Logical Value
Negative number True
0 False
Positive number True
Empty string False
Non-empty string True
Undefined value False
Empty list False
List with at least one element True
Table 3-4. Values and Their Logical Equivalents

70

Perl: The Complete Reference

Perl Coding Styles

How you actually lay out and format your Perl scripts is entirely up to you—it’s perfectly
legal for you to place everything on a single line—but remember that at some future
point in time, you’ll probably want to look at the code again, and then things may not
be so clear.

Using comments is obviously good practice, and writing some form of documentation
will also help, but when it comes to the actual flow and style of the script, it’s worth
remembering that you may not be the only person looking at the code.

Larry Wall, the inventor of Perl, has some ideas for how to format code, although
he doesn’t necessarily enforce them. The only one he feels strongly about is that a
closing brace (on a block) should be lined up with the statement that started it.

Personally, I have my own list of guidelines that I've been using for a number of
years. My guidelines call for code that is specially designed to be readable on paper
and is the style used throughout this book. If you want to use the guidelines that Larry
prefers, see the perlstyle guide in the Perl documentation.

I use the following rules:

B Use four column indents for all types of blocks.

B On loops and other blocks, the statement goes on its own line, the opening brace
on its own line, and the enclosing code is indented. The final brace is also on its
own line. Thus, a foreach statement becomes

foreach (@list)

{
}

code goes here

and an if...elsif...else statement becomes

if (Sexpr)
{
}

elsif (S$Sexpr)

Chapter 3: Perl Parsing Rules

Short blocks can be on one line:

while (Sexpr) { Sexpr++ }

The final semicolon (which is optional) is included in all blocks, unless the
block is on a single line.

There should not be a space between the statement and semicolon.

There should not be a space between the function name and its parenthesized
arguments.

All non-standard functions calls should have parentheses.

Spaces after commas in lists are optional for numerical arguments, but required
on all others.

Long lines are broken after an operator, but before logical operators such as and
or | l.

Line up corresponding items:

my Sone = 1;
my Stwo = 2;
my Sthree = 3;

Always use a space to separate groups of code that do different things, for
example avoid

sub funca

{
}
sub funcb
{
}

Avoid using the same delimiter or quotes in q//, qq// and qx// operators or regular
expressions if you need to use them within the expression. For example, using the
forward slash / in a regular expression that works on directories is messy.

Use here documents, rather than multiline double-quoted strings or repeated
print statements.

Use arrays to hold lists of data, and then use join to output it instead of trying
to build the string on the fly.

71

72

Perl: The Complete Reference

B Give your variables sensible names; for example, $keyword makes more sense
than $foo.

B Avoid using the $_ in situations where $variable would look clearer.

For a list of further hints, check out the remaining chapters of this book. Above all,
remember to be consistent; don’t change your style half way through the script, and
remember that other people, including yourself in ten years’ time, may need to revisit
the code!

The

Rejoronce
Chapter 4

Variables and Data

74 Perl: The Complete Reference

named locations. Perl supports one basic variable type—the scalar. Scalars are
used to contain a single value, although the value itself can be either a numerical
or string constant or a reference to another variable.

Two other variable types are basically variations on the scalar theme. The array,
for example, is essentially a sequence (list) of scalar values accessible through a
numerical index. The hash is a list of key/value pairs that allow you to access a value
by name rather than the numerical index offered by arrays. Both the key and the value
use scalars to hold their contents.

In this chapter, we're going to look at these base variable types, literals—the values
you assign to these variables—and the variable types and values. We'll also take the
opportunity to look at the different quoting mechanisms, which control how strings
are determined and interpreted by Perl. The last part of the chapter looks at the
standard Perl variables and some of their effects.

Variables, a core part of any language, allow you to store dynamic values into

| Basic Naming Rules

Before we look at the specifics of the different variables and how to use them, it’s worth
looking at the basic rules that apply to the naming of variables within Perl:

B Variable names can start with a letter, a number, or an underscore, although
they normally begin with a letter and can then be composed of any combination
of letters, numbers, and the underscore character.

B Variables can start with a number, but they must be entirely composed of that
number; for example, $123 is valid, but $1var is not.

B Variable names that start with anything other than a letter, digit, or underscore
are generally reserved for special use by Perl (see “Special Variables” later in
this chapter).

B Variable names are case sensitive; $foo, $FOO, and $fOo are all separate
variables as far as Perl is concerned.

B As an unwritten (and therefore unenforced) rule, names all in uppercase
are constants.

B All scalar values start with $, including those accessed from an array of hash,
for example $array[0] or $hash{key}.

B All array values start with @, including arrays or hashes accessed in slices,
for example @arrayl[3..5,7,9] or @hash{‘bob’, “alice’}.

B All hashes start with %.

B Namespaces are separate for each variable type—the variables $var, @var, and
%var are all different variables in their own right.

Chapter 4: Variables and Data 75

B In situations where a variable name might get confused with other data (such
as when embedded within a string), you can use braces to quote the name. For
example, ${name}, or %{hash}.

Just remembering those simple rules should help to eliminate a number of
common problems.

Variables are also subject to the lexical scope within which they have been
declared—we’ll cover that in more detail in Chapter 6.

Scalar Variables

As I've already mentioned, the scalar variable is the most basic variable type within
Perl. A scalar always contains a single value, either a number, a string, or a reference
to another variable. If the variable has no value, then it is said to be “undefined” or
to contain the “undefined” value. See the section “The defined Function and the
Undefined Value” later in this chapter for more information on the effects of this
value on variables.

Although scalar values appear to contain a value of a specific type, the truth is
they don’t—Perl doesn’t distinguish (as far as we’re concerned) between numerical
values and strings, nor does it care whether a numerical value is an integer or a floating
point value.

In fact, internally, Perl stores numbers as signed integers, or as double precision
floating point values if the value contains a decimal component. Also be aware that
Perl doesn’t have infinite precision for its floating point values; the calculations 10 / 3
and 1 / 3 * 10 will not always equal the same value.

Strings are held internally as a sequence of characters. There is no limit on the
length of a string, and there are no terminators or other characters used to “delimit”
the content of the string (unlike C, which uses the null value).

However you are using a scalar, it is converted to the most appropriate format
when you use it. So when printing a numeric scalar, we don’t have to use a special
format; it’s automatically converted to a string for us. Perl also automatically converts
between integer and floating point values as required and will even convert strings
into numbers if it deems them necessary. The caveat to this last feature is that a failure
to convert a string results in a numerical value of zero.

To create a scalar variable, just select a name and assign it a value:

Sint = 123;
Sfloat = 123.45;
$string = 'Hello world!';

The last example assigns a string value to the scalar—note the quotes, which are a
required component. We'll return to the topic of quotes later in this chapter (see “Quotes”).

76

|

Perl: The Complete Reference

We can also assign a scalar an empty (undefined) value:
Snothing = undef;

The undef is actually the name of a built-in function that returns the undefined value.
Don’t worry about it too much for the moment, but be aware that assigning a variable
the undefined value empties its contents.

Literals

Literals are the raw values that you insert into your source code; they can be made up
of the normal numerical values and strings. Perl also supports a number of advanced
literals that enable you to store specific types of data such as version strings.

Numeric Literals

Perl supports a number of a fairly basic methods for specifying a numeric literal in
decimal:

Snum = 123; # integer
Snum = 123.45; # floating point
Snum = 1.23e45; # scientific notation

You can also specify literals in hexadecimal, octal, and binary by specifying a
preceding character to highlight the number types:

Snum = Oxff; # Hexadecimal
Snum = 0377; # Octal
$num = 0b0010_0000; # Binary

Note that the numbers are not stored internally using these bases—Perl converts
the literal representation into a decimal internally. Also note that the system that
handles the automatic conversion of strings to numbers does not support the base
prefixes; use the oct function to convert strings (see Chapter 8).

When specifying large numbers, it’s tempting to use commas to separate the
thousands. Because Perl uses the comma as an operator, it’s not practical. Instead,
you can use the underscore character to separate the thousands:

Snum = 1 234 456 _789; # underlines separate 000s for clarity

Chapter 4: Variables and Data

String Literals

Strings are generally surrounded by either single or double quotes. The effects of the
quotes are different, however, and they follow the same rules as the Unix shell. When
using single quotes, the value of the string is exactly as it appears—no form of
interpretation or evaluation is performed on the contents of the string (except for
\"and \\).

When double quotes are used, the effects are quite different. For a start,
double-quoted strings are subject to backslash and variable interpolation, just as
they are under Unix. For example, we can use double-quoted strings and the \n
backslash sequence to add newline characters to a string. Other backslash (or escape)
sequences supported by Perl are listed in Table 4-1.

Code Meaning

\n Newline

\r Carriage return

\t Horizontal tab

\ f Form feed

\b Backspace

\a Alert (bell)

\e ESC (escape) character

A XXX Character specified in octal, where XXX is the character’s
ASCII code.

\xXX Character specified in hexadecimal, where XX is the
character’s ASCII code.

\x{XXXX} Character specified in hexadecimal, where XXXX is the
character’s Unicode number.

\cX Control character, where X is the character—\cC is
Control-C.

\N{NAME} Named Unicode character.

Table 4-1. Backslash (Escaped) Character Sequences

77

78 Perl: The Complete Reference

Note | The backslash sequence is often called an escape sequence because you “escape” the
normal interpretation.

For example:

$string = 'hello world'; # hello world

$string = 'hello world\n'; # hello world\n

$string = "hello world\n"; # hello world with trailing newline
$string = "\tHello World\a\a\n"; # hello world with preceding tab and

double bell, with trailing newline

Incidentally, the quotes work across line boundaries, so we could rewrite the second
example as

$string = 'hello world

[
7

The newline from the source is included in the final string. Because of this, you need to
be careful when using quotes and ensure that you terminate them properly. One of the
most common errors is to embed a quote in your string. For example:

Smessage = 'Can't write to device';

This will fail because the second quote on the line will terminate the first. You can get
around this in both single and double quotes by escaping the quote:

Smessage = 'Can\'t write to device';
Stext = "She said \"I can't do that!\"";

Note that in the last example the single quote is not escaped; this is because a single

quote has no meaning within double quotes other than as a quote character; thus we
could rewrite the first example:

Smessage = "Can't write to device";

The same is true in reverse; we could have written the second example:

Stext = 'She said "I can\'t do that!"';

You can also modify the case of a string specified within double quotes using a number
of translation escapes, as listed in Table 4-2.

Chapter 4: Variables and Data

Code Meaning
\u Force next character to uppercase.
\1 Force next character to lowercase.
\U Force all following characters to uppercase.
\L Force all following characters to lowercase.
\Q Backslash (escape) all following non-alphanumeric
characters.
\E End a \U, \L, or \Q escape.
Table 4-2. Translation Escapes

The examples that follow demonstrate the use of translation escapes in your strings:

$string = "\uhello world"; # Hello world

$string = "\Uhello world\n"; # HELLO WORLD

$string = "\Uhello\E \LWorld\E\n"; # HELLO world with trailing newline
$string = "\Q'Hello World'\E"; # \'Hello\ World\'

Double-quoted strings are also subject to variable interpolation—this means that you
can embed a variable directly into a double-quoted string and have the value of that
variable inserted into the string. For example:

Sname = 'Martin';
Sgreeting = "Hello $name!\n"; # Generates Hello Martin!

Note that this technique only works on double-quoted strings:

Sgreeting = 'Hello $name!\n'; # Generates Hello $name!\n

Note that you can only interpolate scalars and arrays—trying to interpolate an entire
hash will only result in the string “%hash’ being included in the literal value. See

the later section “Interpolation of Array Values” for information on how arrays are
interpolated into strings.

79

80

Perl: The Complete Reference

Also, because we sometimes want to include a variable name directly within the
contents of a string that might otherwise upset Perl’s evaluation of that variable name,
we can use one of the rules we saw earlier:

$message = "This is ${name}s computer";

Any identifier within the braces is interpreted as a string, and because it has a leading $
sign, the ${name} becomes the full name for the variable we are accessing.

Quotes

The quotes we have already seen in Perl are actually operators—they operate on the
embedded string. In the case of single quotes, this leads to the introduction of a string,
and in the case of double quotes, it leads to the introduction of a string that has been
evaluated according to the escapes and interpolation rules we have already seen.

Perl actually supports a number of quoting operators, most of which do more than
simply introduce strings. Not all of the quoting operators interpolate, and each has a
customary form. They do, however, share the same basic construction, allowing you to
select the quote character that you want to use. The full list is given in Table 4-3.

Customary Generic Meaning Interpolates

" q/l Literal string No

" qq// Literal string Yes

h qx// Execute external Yes
command

0 qw// Generate word list No

1 m// Regular expression Yes
pattern match

s/l s/l Regular expression Yes
substitution

yiil tr/l/ Character translation No

" qr// Quote regular Yes
expression

Table 4-3. Quoting Mechanisms

Chapter 4: Variables and Data 81

We have already seen examples of the first two mechanisms in Table 4-3 in their
customary forms. One of the problems with the customary forms is that if you want to
embed quotes of the same type (i.e. single in single), you must escape the quote. Using
the quote operator, you can circumvent this:

Smessage = g/Can't send to device/;
Stext = gg/She said "I can't do this!"/;

The character immediately following each operator is the delimiter—the delimiter
specifies the limits of the construct you are creating. You can use any alphanumeric or
non-whitespace character (that is, other than space, tab, newline) for a delimiter, but
the delimiters must match or complement each other. That means that we could use an
exclamation mark

Smessage = gl!Can't send to device!;

or we can use a complementary pair of characters such as parentheses, braces, square
brackets, or even angle brackets:

Stext ga{She said "I can't do this!"};
Stext = gg<She said "I can't do this!">;

Which one you choose will depend entirely on what you are embedding within the
construct, and you'll probably find that in most instances you end up using the same
delimiting character.

Also note that the interpolation rules apply according to Table 4-3:

Smessage = g!Hello $name\n!; # Still outputs Hello S$name\n
Smessage qg/Hello S$name\n/; # Outputs Hello Martin with a newline

Interpolation of Array Values

When you embed an array into a string, the elements of the array are included in order
separated by the contents of the $” special variable, which by default is a space:

@list = ('hello', 'world');
print "@list\n"; # Outputs 'hello world!'

82

Perl: The Complete Reference

Per] will determine whether the name you have supplied is correct, and it’ll raise an

error if you've tried to interpolate an array that doesn’t exist. This can lead to problems:
print "mc@mcslp.com";

In this instance, Perl is expecting to find an array called @mcslp, and it will obviously
fail because we haven’t defined such an array. Generally, Perl will warn you of this
error during compilation and tell you to escape the @ sign:

print "mc\@mcslp.come;

Here Documents

If you want to introduce multiline strings into your programs, you can use standard
quotes:

$string = 'This is
a multiline
string';

But this is messy and is subject to the same basic laws regarding interpolation and
quote usage. We could get around it using the q// or qq// operator with different
delimiters, but that won’t change the underlying issue of delimiter choice and
on-screen clarity.

To get around this, Perl supports “here” documents—these are multiline strings,
which interpolate, that continue indefinitely until the multicharacter delimiter that you
specity is reached. For example:

print <<EOF;
This is

a multiline
string

EOF

The resulting contents are interpolated as normal, and they contain any special
characters such as tabs and newlines in the final string.

The delimiter should be placed immediately after the <<, a space is treated as a
null identifier, and the delimiter should be specified on its own line with no leading
or trailing spaces. You can also quote the delimiter during specification:

Chapter 4: Variables and Data 83

print <<'EOF';
This is

a multiline
string

EOF

or

print <<"EOF";
This is

a multiline
string

EOF

The null identifier (an empty string or space) matches the next empty line:

print <<'';
This is
a multiline
string

print "This is a new statement\n";

The here document just becomes a special type of literal, so we can combine it with
other components

print <<'' x 5;

This message will repeat 5 times
and use them as arguments for function calls:

print (<<"EOFA", 99, <<"EOFB");
This is the first

argument. . .

EOFA

This is the second

EOFB

Perl: The Complete Reference

We can also use a here document to execute commands if we use backticks instead of
normal single or double quotes:

print << BUILTIN"

11
echo "Finished!"
BUILTIN

The important thing to remember is that everything contained between the initial
specification and the delimiter that you have specified is taken verbatim. This means
that any leading spaces in the text will need to be removed (if you want them to be!):

($string = <<'EOF') =~ s/*\s+//gb;
These lines will have their leading
spaces removed for clarity.

EOF

V-Strings
You probably think of v-strings as a method for the introduction of version numbers,
although in reality they are slightly more complex. Any literal that begins with a v
and is followed by one or more dot-separated elements is treated as a string literal
composed of the characters with the specified values.

For example:

Sname = v77.97.114.116.105.110;

Actually equates to “‘Martin’. If there are more than two dots (i.e. more than three
integers), then you can omit the leading v’

Sname = 77.97.114.116.105.110;

V-strings can be a useful way of introducing version numbers and IP addresses into
Perl. It means you are no longer restricted to using simple decimals (1.0003) for version
numbers, and it also eliminates the need to build IP addresses manually with pack
when you want to introduce a fixed IP address into some code.

Of course, it also means that these strings are illegible to the human eye. You'll
need to use the v format with the printf/sprintf function to format these values nicely.

Chapter 4: Variables and Data 85

___| Arrays

An array is just a set of scalars. It's made up of a list of individual scalars that are
stored within a single variable. You can refer to each scalar within that list using a
numerical index. You can use arrays to store any kind of list data, from the days of
the week to a list of all the lines in a file. Creating individual scalars for each of these
is cumbersome, and in the case of the file contents, impossible to prepare for. What
happens if the input file has 100 lines instead of 10? The answer is to use an array,
which can be dynamically sized to hold any number of different values.

Creation
Array variables have are prefixed with the @ sign and are populated using either
parentheses or the qw operator. For example:

@array = (1, 2, 'Hello');

@array gw/This is an array/;

The second line uses the qw// operator, which returns a list of strings, separating the
delimited string by white space. In this example, this leads to a four-element array; the
first element is 'this' and last (fourth) is 'array’. This means that you can use newlines
within the specification:

@days = gw/Monday
Tuesday

Sunday/ ;

We can also populate an array by assigning each value individually:

Sarray[0] 'Monday' ;
Sarray[6] = 'Sunday';

However, you should avoid using square brackets to create a normal array.
The line

@array = [1, 2, 'Hello'];

initializes @array with only one element, a reference to the array contained in the
square brackets. We'll be looking at references in Chapter 10.

86 Perl: The Complete Reference

Extracting Individual Indices

When extracting individual elements from an array, you must prefix the variable with
a dollar sign (to signify that you are extracting a scalar value) and then append the
element index within square brackets after the name. For example:

@shortdays = gw/Mon Tue Wed Thu Fri Sat Sun/;
print $shortdays[1];

Array indices start at zero, so in the preceding example we’ve actually printed “Tue.”
You can also give a negative index—in which case you select the element from the end,
rather than the beginning, of the array. This means that

print S$shortdays
print S$shortdays
print S$shortdays
print S$shortdays

; # Outputs Mon
; # Outputs Sun
-1]1; # Also outputs Sun
-7]; # Outputs Mon

0]
6]

— e/ e

Remember:

B Array indices start at zero, not one, when working forward; for example:

@days = gw/Monday
Tuesday
Sunday/ ;
print "First day of week is $days([0]\n";

B Array indices start at -1 for the last element when working backward.
| The use of $[, which changes the lowest index of an array, is heavily deprecated, so the
preceding rules should always apply.

Be careful when extracting elements from an array using a calculated index. If you
are supplying an integer, then there shouldn’t be any problems with resolving that to
an array index (provided the index exists). If it’s a floating point value, be aware that
Perl always truncates (rounds down) values as if the index were interpreted within
the int function. If you want to round up, use sprintf—this is easily demonstrated;
the script

Chapter 4: Variables and Data 87

@array = gw/a b c/;

print ("Array 8/5 (int) is: ", Sarrayl[8/5], "\n");
print ("Array 8/5 (float) is: ",
Sarray [sprintf ("$1.0f", (8/5))1,"\n");
generates
Array index 8/5 (int) is: b

Array index 8/5 (float) is: c

The bare 8 / 5, which equates to 1.6, is interpreted as 1 in the former statement, but
2 in the latter.

Slices
You can also extract a “slice” from an array—that is, you can select more than one item
from an array in order to produce another array.

@weekdays = @shortdays[0,1,2,3,4];

The specification for a slice must a list of valid indices, either positive or negative, each
separated by a comma. For speed, you can also use the .. range operator:

@weekdays = @shortdays[0..4];
Ranges also work in lists:
@weekdays = @shortdays[0..2,6,7];

Note that we’re accessing the array using an @ prefix—this is because the return value
that we want is another array, not a scalar. If you try accessing multiple values using
$array you'll get nothing, but an error is only reported if you switch warnings on:

$ perl -ew "print $ARGV([2,3];" Fred Bob Alice
Multidimensional syntax $ARGV([2,3] not supported at -e line 1.
Useless use of a constant in void context at -e line 1.

Use of uninitialized value in print at -e line 1.

88

Perl: The Complete Reference

Single Element Slices
Be careful when using single element slices. The statement

print @arrayl[1l];
is no different than
print Sarray[1];

except that the former returns a single element list, while the latter returns a single
scalar. This can be demonstrated more easily using the fragment

@array[l] = <DATA>;

which actually reads in all the remaining information from the DATA filehandle,
but assigns only the first record read from the filehandle to the second argument
of the array.

Size
The size of an array can be determined using scalar context on the array—the returned
value will be the number of elements in the array:

@array = (1,2,3);
print "Size: ",scalar @array,"\n";

The value returned will always be the physical size of the array, not the number of
valid elements. You can demonstrate this, and the difference between scalar @array
and $#array, using this fragment:

@array = (1,2,3);
Sarray[50] = 4;

print "Size: ",scalar @array,"\n";
print "Max Index: ", S#array,"\n";

This should return

Size: 51
Max Index: 50

Chapter 4: Variables and Data

There are only four elements in the array that contain information, but the array is
51 elements long, with a highest index of 50.

Hashes

Hashes are an advanced form of array. One of the limitations of an array is that the
information contained within it can be difficult to get to. For example, imagine that you
have a list of people and their ages. We could store that information in two arrays, one
containing the names and the other their ages:

@names gw/Martin Sharon Rikke/;
@ages = (28,35,29);

Now when we want to get Martin’s age, we just access index 0 of the @ages array.
Furthermore, we can print out all the people’s ages by printing out the contents of each
array in sequence:

for($i=0;Si<@names; $i)

{
}

print "Snames([$i] is Sages[$i] years old\n";

But how would you print out Rikke’s age if you were only given her name, rather than
her location within the @names array? The only way would be to step through @names
until we found Rikke, and then look up the corresponding age in the @ages array. This is
fine for the three-element array listed here, but what happens when that array becomes
30, 300, or even 3000 elements long? If the person we wanted was at the end of the list,
we’d have to step through 3000 items before we got to the information we wanted.

The hash solves this, and numerous other problems, very neatly by allowing us to
access that @ages array not by an index, but by a scalar key. Because it’s a scalar, that
value could be anything (including a reference to another hash, array, or even an object),
but for this particular problem it would make sense to make it the person’s name:

%$ages = ('Martin' => 28,
'Sharon' => 35,
'Rikke" => 29,);

Now when we want to print out Rikke’s age, we just access the value within the hash
using Rikke’s name as the key:

print "Rikke is $ages{Rikke} years old\n";

89

90 Perl: The Complete Reference

The process works on 3000 element hashes just as easily as it does on 3:

print "Eileen is Sages{Eileen} years old\n";

We don’t have to step through the list to find what we’re looking for—we can just
go straight to the information. Perl’s hashes are also more efficient than those supported
by most other languages. Although it is possible to end up with a super-large hash
that takes a long time to locate its values, you are probably talking tens or hundreds of
thousands of entries. If you are working with that level of information though, consider
using a DBM file—see Chapter 13 for more information.

Creation
Hashes are created in one of two ways. In the first, you assign a value to a named key
on a one-by-one basis:

$ages{Martin} = 28;

In the second, you use a list, which is converted by taking individual pairs from the
list: the first element of the pair is used as the key, and the second, as the value. For
example,

$hash = ('Fred' , 'Flintstone', 'Barney', 'Rubble');

For clarity, you can use => as an alias for , to indicate the key/value pairs:

$hash = ('Fred' => 'Flintstone',
'Barney' => 'Rubble');

When specifying the key for a hash element, you can avoid using quotes within the
braces according to the normal brace expansion rules:

$ages{Martin} = 28;
However, if the contents are a more complex term, they will need to be quoted:
$ages{'Martin-surname'} = 'Brown';

You can also use the - operator in front of a word, although this makes the key
include the leading - sign as part of the key:

$hash = (-Fred => 'Flintstone', -Barney => 'Rubble');
print Shash{-Fred};

Chapter 4: Variables and Data

For single-letter strings, however, this will raise a warning; use single quotes to
explicitly define these arguments.

Extracting Individual Elements

You can extract individual elements from a hash by specifying the key for the value
that you want within braces:

print Shash{Fred};

Care needs to be taken when embedding strings and/or variables that are made
up of multiple components. The following statements are identical, albeit with a slight
performance trade-off for the former method:

print Shash{$fred . $barney};
print Shash{"$fred$barney"};

When using more complex hash keys, use sprintf:
print Shash{sprintf ("$s-%s:%s",$a,sb,%c)};

You can also use numerical values to build up your hash keys—the values just
become strings. If you are going to use this method, then you should use sprintf to
enforce a fixed format for the numbers to prevent minor differences from causing you
problems. For example, when formatting time values, it’s better to use

$hash{sprintf ("%$02d%02d", $hours, $min) } ;
than
$hash{$hours . $min};
With the former, all times will be displayed in the form ‘0505” instead of ‘55".
Extracting Slices
You can extract slices out of a hash just as you can extract slices from an array.

You do, however, need to use the @ prefix because the return value will be a list
of corresponding values:

$hash = (-Fred => 'Flintstone', -Barney => 'Rubble');
print join("\n",@hash{-Fred, -Barney}) ;

91

92 Perl: The Complete Reference

Using $hash{-Fred, -Barney} would return nothing.

Extracting Keys, Values, or Both
You can get a list of all of the keys from a hash by using keys:

%ages = ('Martin' => 28, 'Sharon' => 35, 'Rikke' => 29);
print "The following are in the DB: ",join(', ', keys %ages),"\n";

You can also get a list of the values using values:

%ages = ('Martin' => 28, 'Sharon' => 35, 'Rikke' => 29);
print "The following are in the DB: ",join(', ',values %ages),"\n";\

These can be useful in loops when you want to print all of the contents of a hash:

foreach Skey (%ages)

{
}

print "Skey is $ages{$key} years old\n";

The problem with both these functions is that on large hashes (such as those
attached to external databases), we can end up with very large memory-hungry
temporary lists. You can get round this by using the each function, which returns
key/value pairs. Unlike keys and values, the each function returns only one pair
for each invocation, so we can use it within a loop without worrying about the size
of the list returned in the process:

while ((Skey, $value) = each %ages)

{
}

print "skey is $ages{$key} years old\n";

The order used by keys, values, and each is unique to each hash, and its order can’t
be guaranteed. Also note that with each, if you use it once outside of a loop, the
next invocation will return the next item in the list. You can reset this “counter” by
evaluating the entire hash, which is actually as simple as

sort keys %hash;

Chapter 4: Variables and Data 93

Checking for Existence

If you try to access a key/value pair from a hash that doesn’t exist, you'll normally get
the undefined value, and if you have warnings switched on, then you'll get a warning
generated at run time. You can get around this by using the exists function, which
returns true if the named key exists, irrespective of what its value might be:

if (exists($ages{Sname}))

{
print "$name if $ages{$name} years old\n";
}
else
{
print "I don't know the age of Sname\n";
1
Sorting/Ordering

There is no way to simply guarantee that the order in which a list of keys, values, or
key/value pairs will always be the same. In fact, it’s best not even to rely on the order
between two sequential evaluations:

print (join(', ',keys %hash),"\n");
print (join(', ',keys %hash),"\n");

If you want to guarantee the order, use sort, as, for example:
print (join(', ',sort keys %hash),"\n");

If you're accessing a hash a number of times and want to use the same order,
consider creating a single array to hold the sorted sequence, and then use the array
(which will remain in sorted order) to iterate over the hash. For example:

my @sortorder = sort keys %hash;
foreach my $key (@sortorder)

Size
You get the size—that is, the number of elements—from a hash by using scalar context
on either keys or values:

print "Hash size: ",scalar keys %hash,"\n";

94

Perl: The Complete Reference

Don’t use each, as in a scalar context it returns the first key from the hash, not a
count of the key/value pairs, as you might expect.

If you evaluate a hash in scalar context, then it returns a string that describes the
current storage statistics for the hash. This is reported as “used/total” buckets. The
buckets are the storage containers for your hash information, and the detail is only
really useful if you want to know how Perl’s hashing algorithm is performing on your
data set. If you think this might concern you, then check my Debugging Perl title, which
details how hashes are stored in Perl and how you can improve the algorithm for
specific data sets (see Appendix C for more information).

Lists

Lists are really a special type of array—essentially, a list is a temporary construct that
holds a series of values. The list can be “hand” generated using parentheses and the
comma operator,

@array = (1,2,3);
or it can be the value returned by a function or variable when evaluated in list context:
print join(',' @array) ;

Here, the @array is being evaluated in list context because the join function is
expecting a list (see Chapter 6 for more information on contexts).

Merging Lists (or Arrays)

Because a list is just a comma-separated sequence of values, you can combine lists together:
enumbers = (1,3, (4,5,6));

The embedded list just becomes part of the main list—this also means that we can
combine arrays together:

e@enumbers = (@odd,@even) ;
Functions that return lists can also be embedded to produce a single, final list:

@numbers = (primes (), squares());

Chapter 4: Variables and Data 95

Selecting Elements from Lists

The list notation is identical to that for arrays—you can extract an element from an
array by appending square brackets to the list and giving one or more indices:

Sone = (5,4,3,2,1) [4];

Similarly, we can extract slices, although without the requirement for a leading
@ character:

@newlist = (5,4,3,2,1)[1..3];

Selecting List Elements from Function Calls

We can even use list notation on the return value from a function call. For example, the
localtime function returns a list of time values (hours, minutes, days, and so on), and
we can extract just the elements we want:

(Shours, $Sminutes) = (localtime()) [2..3];

Note that the parentheses go around the expression that returns the list, to imply
list context on the overall expression. The following are all examples of how not to
extract individual elements from a function that returns a list:

Shours = localtime() [2];
Shours, Sminutes = localtime() [2..3];
(Shours, $Sminutes) = localtime() [2..3];

List Assignment

We’ve now seen an example of list assignment, but it’s a useful feature that can be
applied to any statement or sequence of statements. You can use list assignment to
assign a series of values to a series of valid lvalues; for example, we can shorten

Sone =
Stwo =
Sthree = 3;

1;
2;

to

(Sone, stwo, Sthree) = (1,2,3);

96 Perl: The Complete Reference
Note that you need list context on both sides of the assignment operator. If you
don’t want one of the values, you can also assign to the undefined value:
(Sone, undef, S$three) = (1,2,3);

Finally, you can assign a value to an empty list, which will force list context on to
the function, although any value it returns will be lost:

() = function() ;

Arrays in List Context
When accessing an entire array or slice, arrays work as lists—that is

@array = (1,2);
($a, $b) = @array;

is equivalent to

($a, $b) = (1, 2);

Hashes in List Context

In the same way that hashes are essentially populated using a list, if you evaluate a
hash in list context, then what you get is a list of key/value pairs. For example,

my %$hash = (Fred => 'Flintstone', Barney => 'Rubble');
@list = %hash;
print join(', ',@list);

produces

Barney, Rubble, Fred, Flintstone

___| Typeglobs

The typeglob is a special type of variable that literally means “everything called....” In
fact, a typeglob is a pointer to a symbol table entry. Typeglobs start with an asterisk;
the typeglob *foo contains the values of $foo, @foo, %foo and &foo. Typeglobs are
useful when you want to refer to a variable but don’t necessarily know what it is.

Chapter 4: Variables and Data 97

Although this isn’t particularly useful for the three main data types, it can be useful
for exchanging filehandles:

Smyfh = *STDOUT;

This is useful when you want to use filehandles within a function call—although it’s
more natural to use references. See Chapter 6 for some more examples of this use.

| The defined Function and the Undefined Value

The undefined value, undef, is an alternative to the null value used in C. In essence,
undef means that the variable has had no value assigned. This is useful if you want to
create an undefined variable—one that has no value. Compare the undefined value with
an integer with a value of 0 or an empty string, both of which indicate valid values.

The undefined value will always evaluate to false if used in an expression, for
example the test in this fragment:

Svalue = undef;
if ($value)

{

will always fail. It will also raise an error because you've tried to access the contents of
an undefined value. In these situations, you can use the defined function to check the
value of a scalar. The defined function returns true if the scalar contains a valid value,
or false if the scalar contains undef:

if (defined($value))

{

Just to confuse you, defined will return false if a variable has never been named or
created, and also false if the variable does exist but has the undef value.

Note that the same rules apply to the scalar components of arrays or hashes: they
can contain the undefined value, even though the index or key is valid. This can cause
problems if you only use defined on a hash element. For example:

$hash{one} = undef;
print "Defined!\n" if (defined($hash{one}));
print "Exists!\n" if (defined($hash{one}));

This will only print “Exists!,” since the element’s value remains undefined.

98 Perl: The Complete Reference

| Default Values

It’s not necessary within Perl to initialize variables with some default values. Perl
automatically creates all scalars as empty (with the undefined value). Lists and hashes
are automatically created empty. That said, there is nothing wrong with setting the
initial value of a variable—it won’t make any difference to Perl—it’s good programming
practice if only for its sheer clarity effect, especially if you are using my to declare the
variables beforehand. See Chapter 6 for information on using my.

| other Tokens

Perl supports a few other tokens that are identified by Perl as containing a value or
indicating a state, even though they are aren’t truly variables. These are listed in Table 4-4.

___| special Variables

Perl keeps an internal list of special variables that supply information and data about
the current scripts environment. The subsections that follow include standard variables
built into the interpreter, variables that have special meanings to core modules (such as
pragmas and Exporter), and also the special filehandles used for communicating with
the outside world.

Token Value

__LINE_ _ The current line number within the current file.

__FILE__ The name of the current file.

__PACKAGE__ The name of the current package. If there is no current
package, then it returns the undefined value.

__END_ _ Indicates the end of the script (or interpretable Perl) within a
file before the physical end of file.

__DATA__ As for __ END__, except that it also indicates the start of the

DATA filehandle that can be opened with the open, therefore
allowing you to embed script and data into the same script.

Table 4-4. Literal Tokens in Perl

Chapter 4: Variables and Data

Note that Perl uses a combination of special characters and names to refer to the
individual variables. To use the long (named) variables, you must include the English
module by placing

use English;

at the top of your program. By including this module, you arrange that the longer
names will be aliased to the shortened versions. Although there is no standard for
using either format, because the shortened versions are the default, you will see them
used more widely. See Web Appendix A for a listing of the variables and their English
module equivalents. The named examples are given here for reference.

Some of the variables also have equivalent methods that are supported by the 10::*
range of modules. The format of these method calls is method HANDLE EXPR (you
can also use HANDLE->method(EXPR)), where HANDLE is the filehandle you want
the change to apply to, and EXPR is the value to be supplied to the method.

_ (underscore) The underscore represents the special filehandle used to cache
information from the last successful stat, Istat, or file test operator.

$0
SPROGRAM_NAME The name of the file containing the script currently being
executed.

$1..8xXX The numbered variables $1, $2, and so on are the variables used to hold the
contents of group matches both inside and outside of regular expressions.

$

$RRG The $_ and $ARG variables represent the default input and pattern searching
spaces. For many functions and operations, if no specific variable is specified, the
default input space will be used. For example,

$ = "Hello World\n";
print;

would print the “Hello World” message. The same variable is also used in regular
expression substitution and pattern matches. We’ll look at this more closely in Chapter 7.

99

100 Perl: The Complete Reference

Perl will automatically use the default space in the following situations even if you
do not specify it:
B Unary functions, such as ord and int.
All file tests except -t, which defaults to STDIN.

Most of the functions that support lists as arguments (see Appendix A).

The pattern matching operations, m//, s///, and tr///, when used without an
=~ operator.

The default iterator variable in a for or foreach loop, if no other variable
is supplied.

The implicit operator in map and grep functions.

B The default place to store an input record when reading from a filehandle.

$&

SMATCH The string matched by the last successful pattern match.

s

SPREMATCH The string preceding the information matched by the last pattern match.
$7

SPOSTMATCH The string following the information matched by the last pattern match.

S+
SLAST_PARENT_MATCH The last bracket match by the last regular expression
search pattern.

$* Setto1 to do multiline pattern matching within a string. The default value is 0. The
use of this variable has been superseded by the /s and /m modifiers to regular expressions.

| Use of this variable should be avoided.

@+

@LAST_MATCHED Contains a list of all the offsets of the last successful submatches
from the last regular expression. Note that this contains the offset to the first character
following the match, not the location of the match itself. This is the equivalent of the
value returned by the pos function. The first index, $+[0] is offset to the end of the
entire match. Therefore, $+[1] is the location where $1 ends, $+[2], where $2 ends.

Chapter 4: Variables and Data 101

@-

@LAST_MATCH_START Contains a list of all the offsets to the beginning of the last
successful submatches from the last regular expression. The first index, $-[0], is offset to
the start of the entire match. Therefore, $-[1] is equal to $1, $-[2] is equal to $2, and so on.

S.
$NR

SINPUT_LINE_NUMBER The current input line number of the last file from which
you read. This can be either the keyboard or an external file or other filehandle (such as
a network socket). Note that it’s based not on what the real lines are, but more what the
number of the last record was according to the setting of the $/ variable.

$/

SRS

SINPUT_RECORD_SEPARATOR The current input record separator. This is
newline by default, but it can be set to any string to enable you to read in delimited
text files that use one or more special characters to separate the records. You can also
undefine the variable, which will allow you to read in an entire file, although this is
best done using local within a block:

{

local $/;
sfile = <FILE>;

}

@ISA The array that contains a list of other packages to look through when a method
call on an object cannot be found within the current package. The @ISA array is used
as the list of base classes for the current package.

Sl

SAUTOFLUSH

SOUTPUT_AUTOFLUSH

autoflush HANDLE EXPR By default all output is buffered (providing the OS
supports it). This means all information to be written is stored temporarily in memory
and periodically flushed, and the value of $ | is set to zero. If it is set to non-zero, the
filehandle (current, or specified) will be automatically flushed after each write operation.
It has no effect on input buffering.

102

Perl: The Complete Reference

$,

$OFs

SOUTPUT_FIELD_SEPARATOR The default output separator for the print series of
functions. By default, print outputs the comma-separated fields you specify without
any delimiter. You can set this variable to commas, tabs, or any other value to insert a
different delimiter.

$\

SORS

SOUTPUT _RECORD _SEPARATOR The default output record separator. Ordinarily,
print outputs individual records without a standard separator, and no trailing newline
or other record separator is output. If you set this value, then the string will be appended
to the end of every print statement.

%OVERLOAD Set by the overload pragma to implement operator overloading.

$”
SLIST_SEPARATOR This defines the separator inserted between elements of an
array when interpolated within a double-quoted string. The default is a single space.

S;

SSUBSEP

SSUBSCRIPT_SEPARATOR The separator used when emulating multidimensional
arrays. If you refer to a hash element as

$foo{sa, $b, $c}

it really means

$foo{join($;,3%a,$b, $c)}
The default value is “\034.”

$# The default number format to use when printing numbers. The value format
matches the format of numbers printed via printf and is initially set to %.ng, where n is
the number of digits to display for a floating point number as defined by your operating
system (this is the value of DBL_DIG from float.h under Unix).

| The use of this variable should be avoided.

Chapter 4: Variables and Data 103

$%

SFORMAT_PAGE_NUMBER

format_page_number HANDLE EXPR The page number of the current output
channel.

$=

SFORMAT_LINES_PER_PAGE

format_lines_per_page HANDLE EXPR The number of printable lines of the current
page; the default is 60.

$-

SFORMAT_LINES_LEFT

format_lines_left HANDLE EXPR The number of lines available to print to on the
current page.

S~

SFORMAT_NAME

format_name HANDLE EXPR The name of the current report format in use by the
current output channel. This is set by default to the name of the filehandle.

$I\

SFORMAT_TOP_NAME

format_top_name HANDLE EXPR The name of the current top-of-page output
format for the current output channel. The default name is the filehandle with _'TOP
appended.

$:
SFORMAT_LINE_BREAK_CHARACTERS

format_line_break_characters HANDLE EXPR The set of characters after which a
string may be broken to fill continuation fields. The default is “\n-,” to allow strings to
be broken on newlines or hyphens.

SAL

SFORMAT_FORMFEED

format_formfeed HANDLE EXPR The character to be used to send a form feed to
the output channel. This is set to “\f” by default.

se

SEVAL_ERROR The error message returned by the Perl interpreter when Perl has
been executed via the eval function. If empty (false), then the last eval call executed
successfully.

104

Perl: The Complete Reference

$$
SPID
SPROCESS_ID The process number of the Perl interpreter executing the current script.

$<

$uID

SREAL_USER_ID The real ID of the user currently executing the interpreter that is
executing the script.

S>
SEUID
SEFFECTIVE_USER_ID The effective user ID of the current process.

$(

$GID

SREAL_GROUP_ID The real group ID of the current process. If the OS supports
multiple simultaneous group membership, this returns a space-separated list of group IDs.

$)

SEGID

SEFFECTIVE_GROUP_ID The effective group ID of the process. If the OS supports
multiple simultaneous group membership, this returns a space-separated list of group IDs.

$!

SERRNO

$0S_ERROR Returns the error number or error string of the last system call
operation. This is equivalent to the errno value and can be used to print the error
number or error string when a particular system or function call has failed.

%!

%ERRNO

%0S_ERROR Defined only when the Errno module has been imported. Allows
you to compare the current error with an error string as determined by the C #define
definitions in the system header files.

$[The index of the first element in an array or of the first character in a substring.
The default is zero, but this can be set to any value. In general, this is useful only when
emulating awk, since functions and other constructs can emulate the same functionality.

| The use of this variable should be avoided.

Chapter 4: Variables and Data 105

$]

SOLD_PERL_VERSION The old version + patchlevel /1000 of the Perl interpreter.
This can be used to determine the version number of Perl being used, and therefore
what functions and capabilities the current interpreter supports. The $AV variable
holds a UTE-8 representation of the current Perl version.

$a The variable used by the sort function to hold the first of each pair of values being
compared. The variable is actually a reference to the real variable so that you can modify
it, but you shouldn’t—see Chapter 8 for information on usage.

@

@ARG Within a subroutine (or function), the @_ array contains the list of parameters
supplied to the function.

ARGV The special filehandle that iterates over command line filenames in @ARGV.
Most frequently called using the null filehandle in the angle operator <>.

SARGV The name of the current file when reading from the default filehandle <>.

@ARGV The @ARGYV array contains the list of the command line arguments
supplied to the script. Note that the first value, at index zero, is the first argument,
not the name of the script.

ARGVOUT The special filehandle used to send output to a new file when processing
the ARGV filehandle under the -i switch.

$b The variable supplied as the second value to compare when using sort, along
with the $a variable.

$AA

SACCUMULATOR When outputting formatted information via the reporting
system, the formline functions put the formatted results into $/A, and the write
function then outputs and empties the accumulator variable. This the current value
of the write accumulator for format lines.

$?

SCHILD_ERROR The status returned by the last external command (via backticks
or system) or the last pipe close. This is the value returned by wait, so the true return
value is $? >> 8, and $? & 127 is the number of the signal received by the process, if
appropriate.

106

Perl: The Complete Reference

$nC

SCOMPILING The value of the internal flag associated with the -c switch. This

has a true value when code is being compiled using perlcc or when being parsed with
the -MO option.

DATA The filehandle that refers to any text following either the _ _END_ _ or
_ _DATA_ _ token within the current file. The _ _DATA_ _ token automatically opens
the DATA filehandle for you.

$7D
SDEBUGGING The current value of the internal debugging flags, as set from the -D
switch on the command line.

%ENV The list of variables as supplied by the current environment. The key is the
name of the environment variable, and the corresponding value is the variable’s value.
Setting a value in the hash changes the environment variable for child processes.

@EXPORT The list of functions and variables to be exported as normal from a
module when using the standard Exporter module.

%EXPORT_TAGS A list of object groups (in the keys) and objects (in the values) to
be exported when requesting groups of objects when importing a module.

$AE

SEXTENDED 0S_ERROR Contains extended error information for operating
systems other than Unix. Under Unix the value equals the value of $!. We'll look more
closely at the use of this variable when we study the use of Perl as a cross-platform
development solution.

@F The array into which the input lines fields are placed after splitting when the -a
command line argument has been given.

%FIELDS The hash used by the fields pragma to determine the current legal fields in
an object hash.

$MF

SSYSTEM_FD_MAX The maximum system file descriptor number, after STDIN (0),
STDOUT (1) and STDERR (2)—therefore it’s usually two. System file descriptors are
duplicated across exec’d processes, although higher descriptors are not. The value of
this variable affects which filehandles are passed to new programs called through exec
(including when called as part of a fork).

Chapter 4: Variables and Data 107

$AH The status of syntax checks enabled by compiler hints, such as use strict.

@INC The list of directories that Perl should examine when importing modules via
the do, require, or use construct.

%INC Contains a list of the files that have been included via do, require, or use. The
key is the file you specified, and the value is the actual location of the imported file.

$Al The value of the inplace-edit extension (enabled via the -i switch on the command
line). True if inplace edits are currently enabled, false otherwise.

$AM The size of the emergency pool reserved for use by Perl and the die function
when Perl runs out of memory. This is the only standard method available for trapping
Perl memory overuse during execution.

$h0
SOSNAME The operating system name, as determined via the configuration system
during compilation.

$nP
SPERLDB The internal variable used for enabling the Perl debugger.

$"R

SLAST_REGEXP_CODE_RESULT The value of the last evaluation in a (?{ code })
block within a regular expression. Note that if there are multiple (?{code}) blocks
within a regular expression, then this contains the result of the last piece of code that
led to a successful match within the expression.

%SIG The keys of the %SIG hash correspond to the signals available on the current
machine. The value corresponds to how the signal will be handled. You use this
mechanism to support signal handlers within Perl. We'll look at this in more detail
when we examine interprocess communication in Chapter 10.

$7S

SEXCEPTIONS_BEING_CAUGHT The current interpreter state. The value is
undefined if the parsing of the current module is not finished. It is true if inside an
eval block, otherwise, false.

STDERR The special filehandle for standard error.
STDIN The special filehandle for standard input.

STDOUT The special filehandle for standard output.

108

Perl: The Complete Reference

$AT
SBASETIME The time at which the script started running, defined as the number of
seconds since the epoch.

SAV
SPERL_VERSION The current revision, version, and subversion of the currently
executing Perl interpreter. Specified as a v-string literal.

SVERSION The variable accessed to determine whether a given package matches the
acceptable version when the module is imported. For example

use Module 2.5;

would check $Module::VERSION to see whether it was equal to or greater than 2.5.

S$AW
SWARNING The current value of the warning switch (specified via the -w, -W, and
-X command line options).

$7X

SEXECUTABLE_NAME The name of the Perl binary being executed, as determined
via the value of C’s argv|[0]. This is not the same as the name of the script being
executed, which can be found in $0.

S${AWARNING_BITS} The current set of warning checks enabled through the
warnings pragma.

S${AWIDE_SYSTEM_CALLS} The global flag that enables all system calls made

by Perl to use the wide-character APIs native to the system. This allows Perl to
communicate with systems that are using multibyte characters sets, and therefore wide
characters within their function names.

The

Rejoronce
Chanter 5

Statements and
Control Structures

109

110

Perl: The Complete Reference

statements, expressions, and declarations. We’ve already seen some

examples of expressions that use operators and variables. We'll be looking
at declarations—the specification of variables and other dynamic components, such
as subroutines—in the next chapter.

Statements are the building blocks of a program. They control the execution of
your script and, unlike an expression, which is evaluated for its result, a statement is
evaluated for its effect. For example, the if statement is evaluated and executes a block
based on the result of the expression.

Examples of other statements include the loop statements, such as for, while, and
do. We'll look at all of these and the other basic components of a Perl script, but we’ll
start with a core component of any statement—the code block.

S s in any other language, Perl scripts are made of a combination of

Code Blocks

A sequence of statements is called a code block, or simply just a block. The block could
be an entire file (your script is actually a block of code), but more usually it refers to a
sequence of statements enclosed by a pair of braces (curly brackets)—{}. Blocks also
have a given scope, which controls the names and availability of variables within a
given block—we’ll cover scope separately in Chapter 6.

For example, consider the following simple script, which first assigns an expression
to a variable and then prints the value:

Sa = 5%*2;
print "Result: Sa\n";

As the only two lines within the script, they make up a single block. However, if we
place those two statements into a braced block as part of an if statement, like this:

if (Sexpre)
{
$a = 5*2;
print "Result: Sa\n";

then we have two blocks in the script—once block consists of the entire file, and the
second block is made up simply of those two lines that perform and then print the
result of a calculation.

Blocks are a vital part of Perl—they allow you to segregate sequences of code for use
with loops and control structures, and they act as delimiters for subroutines and eval
statements. They can even act as delimiters for accessing complex structures. Because
of this, we’ll actually be returning to blocks again and again throughout the book.

Chapter 5: Statements and Control Structures

We'll be referring to a brace-enclosed block as BLOCK, and while we’re at it, an
expression will be identified as EXPR, and lists of values as LIST.

Conditional Statements

The conditional statements are if and unless, and they allow you to control the
execution of your script. The if statement operates in an identical fashion, syntactically
and logically, to the English equivalent. It is designed to ask a question (based on

an expression) and execute the statement or code block if the result of the evaluated
expression returns true. There are five different formats for the if statement:

if (EXPR)

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ...

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

STATEMENT if (EXPR)

In each case, the BLOCK immediately after an if or elsif or in the last form the
STATEMENT immediately before the if is only executed if EXPR returns a true
value (see the “Logical Values” section in Chapter 3).

The first format is classed as a simple statement, since it can be used at the end
of another statement without requiring a block, as in

print "Happy Birthday!\n" if ($date == $today) ;

In this instance, the message will only be printed if the expression evaluates to a true
value. Simple statements are a great way of executing a single line of code without
resorting to the verbosity of a full BLOCK-based statement. The disadvantage is that
they can only be used to execute a single line.

The second format is the more familiar conditional statement that you may have
come across in other languages:

if ($date == stoday)

{
}

print "Happy Birthday!\n";

This produces the same result as the previous example (providing the expression
returns true), but because we are using a BLOCK, we could execute multiple
statements. Note, by the way, that unlike C/C++, the braces are required, even
for single-line blocks.

112 Perl: The Complete Reference

The third format allows for exceptions. If the expression evaluates to true, then the
first block is executed; otherwise (else), the second block is executed:

if ($date == stoday)
{
print "Happy Birthday!\n";
1
else
{
print "Happy Unbirthday!\n";
1

The fourth form allows for additional tests if the first expression does not return
true. The elsif can be repeated an infinite number of times to test as many different
alternatives as are required:

if ($date == S$today)
{

print "Happy Birthday!\n";
}
elsif ($date == $christmas)
{

print "Happy Christmas!\n";
}

The fifth form allows for both additional tests and a final exception if all the other
tests fail:

if ($date == $today)

{
print "Happy Birthday!\n";
}
elsif (Sdate == Schristmas)
{
print "Happy Christmas!\n";
}
else
{

print "Happy Unbirthday!\n";

}

Chapter 5: Statements and Control Structures

The sixth form is a short form used to evaluate a single line statements, providing
the evaluation of the expression applied to if is true. For example:

print "Happy Birthday!\n" if (sdate == $today);

would only print “Happy Birthday” if the value of $date equaled the value of $today.
The unless statement automatically implies the logical opposite of if, so unless the
EXPR is true, execute the block. This means that the statement

print "Happy Unbirthday!\n" unless ($date == S$today) ;

is equivalent to
print "Happy Unbirthday!\n" if ($date != S$today) ;

However, if you want to make multiple tests, there is no elsunless, only elsif. It
is more sensible to use unless only in situations where there is a single statement or
code block; using unless and else or elsif only confuses the process. For example, the
following is a less elegant solution to the preceding if...else example,

unless ($date != stoday)
{
print "Happy Unbirthday!\n";
1
else
{
print "Happy Birthday!\n";
}

although it achieves the same result—TIMTOWTDI (There Is More Than One Way
To Do It) syndrome!

The final conditional statement is actually an operator—the conditional operator.

It is synonymous with the if...else conditional statement but is shorter and more
compact. The format for the operator is

(expression) ? (statement if true) : (statement if false)

113

114

Perl: The Complete Reference

For example, we can emulate the previous example as follows:

($date == S$today) ? print "Happy Birthday!\n" : print "Happy
Unbirthday!\n";

Furthermore, because it is an operator, it can be incorporated directly into
expressions where you would otherwise require statements. This means you can
compound the previous example to the following:

print "Happy ", (Sdate == $Stoday) ? "Birthday!\n"
"Unbirthday!\n";

Loops

Perl supports four main loop types, and all of them should be familiar to most
programmers. Perl supports while, until, for, and foreach. In each case, the execution of
the loop continues until the evaluation of the supplied expression changes. In the case of
a while (and for) loop, for example, execution continues while the expression evaluates
to true. The until loop executes while the loop expression is false and only stops when
the expression evaluates to a true value. The list forms of the for and foreach loop are
special cases—they continue until the end of the supplied list is reached.

while Loops

The while loop has three forms:

while EXPRLABEL
while (EXPR) BLOCKLABEL
while (EXPR) BLOCK continue BLOCK

The first format follows the same simple statement rule as the simple if statement
and enables you to apply the loop control to a single line of code. The expression is
evaluated first, and then the statement to which it applies is evaluated. For example,
the following line increases the value of $linecount as long as we continue to read lines
from a given file:

Slinecount++ while (<FILE>) ;

To create a loop that executes statements first, and then tests an expression, you
need to combine while with a preceding do {} statement. For example,

Chapter 5: Statements and Control Structures

do
{

Scalc += (Sfact*Sivalue) ;
} while $calc <100;

In this case, the code block is executed first, and the conditional expression is only
evaluated at the end of each loop iteration.

The second two forms of the while loop repeatedly execute the code block as long
as the result from the conditional expression is true. For example, you could rewrite the
preceding example as:

while ($calc < 100)

{
}

Scalc += (Sfact*Sivalue) ;

The continue block is explained later in the chapter, in the “The continue
Block” section.

until Loops

The inverse of the while loop is the until loop, which evaluates the conditional
expression and reiterates over the loop only when the expression returns false.
Once the expression returns true, the loop ends. In the case of a do...until loop,

the conditional expression is only evaluated at the end of the code block. In an until
(EXPR) BLOCK loop, the expression is evaluated before the block executes. Using
an until loop, you could rewrite the previous example as

do

{

Scalc += (Sfact*$Sivalue) ;
} until $calc >= 100;

for Loops

A for loop is basically a while loop with an additional expression used to reevaluate
the original conditional expression. The basic format is

LABEL for (EXPR; EXPR; EXPR) BLOCK

The first EXPR is the initialization—the value of the variables before the loop starts
iterating. The second is the expression to be executed for each iteration of the loop as a
test. The third expression is executed for each iteration and should be a modifier for the
loop variables.

115

116 Perl: The Complete Reference

Thus, you can write a loop to iterate 100 times like this:

for ($1i=0;%$1i<100;$i++)

{

You can place multiple variables into the expressions using the standard list
operator (the comma):

for ($1=0, $3=0;$1<100;S$i++,Sj++)

This is more practical than C, where you would require two nested loops to achieve
the same result. The expressions are optional, so you can create an infinite loop like this:

for(;;)

{

foreach Loops
The last loop type is the foreach loop, which has a format like this:

LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

This is identical to the for loop available within the shell. For those not familiar
with the operator of the shell’s for loop, let’s look at a more practical example. Imagine
that you want to iterate through a list of values stored in an array, printing each value

(we’ll use the month list from our earlier variables example). Using a for loop, you can
iterate through the list using

for ($index=0;S$index<=@months; $index++)

{
}

print "S$months [$index]\n";

Chapter 5: Statements and Control Structures

This is messy, because you're manually selecting the individual elements from the
array and using an additional variable, $index, to extract the information. Using a
foreach loop, you can simplify the process:

foreach (@months)

{
}

print "$ \n";

Perl has automatically separated the elements, placing each element of the array
into the default input space. Each iteration of the loop will take the next element of the
array. The list can be any expression, and you can supply an optional variable for the
loop to place each value of the list into. To print out each word on an individual line
from a file, you could use the example here:

while (<FILE>)

{
chomp;
foreach Sword (split)
{
print "Sword\n";
}
1

The foreach loop can even be used to iterate through a hash, providing you return
the list of values or keys from the hash as the list:

foreach s$key (keys $monthstonum)

{
print "Month $monthstonum{$key} is $key\n";

}

| As far as Perl is concerned, the for and foreach keywords are synonymous. You can use

either keyword for either type of loop—Perl actually identifies the type of loop you want
to use according to the format of the expressions following the keyword.

The continue Block

We have up to now ignored the continue blocks on each of the examples. The continue
block is executed immediately after the main block and is primarily used as a method

118

Perl: The Complete Reference

for executing a given statement (or statements) for each iteration, irrespective of how
the current iteration terminated.
Although in practice it sounds pointless, consider this for block:

for (my $i = 0; $i<100; S$i++)

(...

We could rewrite this as

{
my $i = 0;
while ($i<100)
{ ...}
continue
{

Si++;

}

}

You can see from this that a for loop is really just a while loop with a continue to
increase the iteration variable $i. As a general rule, the continue block is not used
much, but it can provide a handy method for complex multistatement iterations
that can’t be specified within the confines of a for loop.

Labels

Labels can be applied to any block, but they make the most sense on loops. By giving
your loop a name, you allow the loop control keywords (explained in the following
“Loop Control” section) to specify which loop their operation should be applied to.
The format for a labeled loop is

LABEL: loop (EXPR) BLOCK ...
For example, to label a for loop:

ITERATE: for (my $i=1; $i<100; $i++)

{
}

print "Count: $i\n";

Labels can also be a useful way of syntactically commenting the purpose of a piece
of code—although you might find using actual comments an easier method.

Chapter 5: Statements and Control Structures

Loop Control

There are three loop control keywords: next, last, and redo. The next keyword skips
the remainder of the code block, forcing the loop to proceed to the next value in the
loop. For example,

while (<DATA>)

{
}

next if /*#/;

would skip lines from the file if they started with a hash symbol. This is the standard
comment style under Unix. If there is a continue block, it is executed before execution
proceeds to the next iteration of the loop.

The last keyword ends the loop entirely, skipping the remaining statements in the
code block, as well as dropping out of the loop. This is best used to escape a loop when
an alternative condition has been reached within a loop that cannot otherwise be
trapped. The last keyword is therefore identical to the break keyword in C and
Shellscript. For example,

while (<DATA>)

{
}

last if ($found) ;

would exit the loop if the value of $found was true, whether the end of the file had
actually been reached or not. The continue block is not executed.

The redo keyword reexecutes the code block without reevaluating the conditional
statement for the loop. This skips the remainder of the code block and also the
continue block before the main code block is reexecuted. This is especially useful if you
want to reiterate over a code block based on a condition that is unrelated to the loop
condition. For example, the following code would read the next line from a file if the
current line terminates with a backslash:

while (<DATA>)

{
if (s#\\$#)

$_ .= <DATA>;
redo;

119

120

Perl: The Complete Reference

In all cases, the loop control keyword affects the current (innermost) loop. If you
label the nested loops, then you can supply each keyword with the optional label name
so that the effects are felt on the specified block instead of the innermost block. This
allows you to nest loops without limiting their control:

OUTER:
while (<DATA>)
{
chomp;
@linearray=split;
foreach $word (@linearray)

{
}

next OUTER if (Sword =~ /next/i)
1

This would skip the current input line from the file if there was a word “next” in the
input line, while still allowing the remainder of the words from the file to be processed.

Unqualified Blocks

You can introduce a block into a script without actually qualifying the block as being
part of a subroutine or statement. In this instance, the unqualified (or bare) block is
interpreted in an identical fashion to a loop, except that the statements are executed
only once. Because an unqualified block acts as a loop, we can use the loop control
statements (next, last, and redo) within the block, something that can’t be done with
if or unless, or the quasi-block statements of eval, sub (for subroutines), and do.

This operation can be useful for complex selections when you don’t want to use
multiple if...else statements or complex logical comparisons. For example, we could
drop out of an if statement by enclosing the if BLOCK within an unqualified BLOCK
so that the statements are identified as loop:

if (/valid/)
{
{

last if /false/;
print "Really valid!\n";

}

The last keyword would drop us out of the entire if statement.

Chapter 5: Statements and Control Structures

A more obvious example is the emulation of the Shellscript case statement, or the
C/C++ switch statement. The easiest solution is to use if statements embedded within
a named block. For example:

SWITCH: ({
if (Sdate == Stoday) { print "Happy Birthday!\n"; last SWITCH; }
if ($date != Stoday) { print "Happy Unbirthday!\n"; last SWITCH; }
if ($date == S$xmas) { print "Happy Christmas!\n"; last SWITCH; }
}

This works because we can use the loop control operators last, next, and redo, which
apply to the enclosing SWITCH block. This also means you could write the same

script as
SWITCH: ({
print "Happy Birthday!\n", last SWITCH if ($date == S$today) ;
print "Happy Unbirthday!\n", last SWITCH if ($date != sStoday);
print "Happy Christmas!\n", last SWITCH if ($date == $xmas) ;
}
or for a more formatted solution that will appeal to C and Shellscript programmers:
SWITCH:
(sdate == Stoday) && do {
print "Happy Birthday!\n";
last SWITCH;
}i
($date != $today) && do
print "Happy Unbirthday!\n";
last SWITCH;
}i
($date == S$xmas) && do
print "Happy Christmas!\n";
last SWITCH;
}i
}

Note that in this last example, you could exclude the label. The do {} blocks are not
loops, and so the last command would ignore them and instead drop out of the parent
SWITCH block. Also note that because do is not strictly a statement, the block must be
terminated by a semicolon.

121

122

Perl: The Complete Reference

goto

BASIC programmers will be immediately happy when they realize that Perl has a goto
statement. For purists, goto is a bad idea, and in many cases it is actually a dangerous
option when subroutines and functions are available. There are three basic forms: goto
LABEL, goto EXPR, and goto &NAME.

In each case, execution is moved from the current location to the destination. In the
case of goto LABEL, execution stops at the current point and resumes at the point of
the label specified. It cannot be used to jump to a point inside a block that needs
initialization, such as a subroutine or loop. However, it can be used to jump to any
other point within the current or parent block, including jumping out of subroutines.
As has already been stated, the use of goto should be avoided, as there are generally
much better ways to achieve what you want. It is always possible to use a control flow
statement (next, redo, etc.), function, or subroutine to achieve the same result without
any of the dangers.

The second form is essentially just an extended form of goto LABEL. Perl expects
the expression to evaluate dynamically at execution time to a label by name. This
allows for computed gotos similar to those available in FORTRAN, but like goto
LABEL, its use is deprecated.

The goto &NAME statement is more complex. It allows you to replace the
currently executing subroutine with a call to the specified subroutine instead.

This allows you to automatically call a different subroutine based on the current
environment and is used by the autoload mechanism (see the Autoload module in
Appendix B) to dynamically select alternative routines. The statement works such
that even the caller will be unable to tell whether the requested subroutine or the
one specified by goto was executed first.

The

Rejoronce
Chapter 6

Subroutines, Packages,
and Modules

123

124

Perl: The Complete Reference

at how to communicate with the users, how to manipulate basic data types, and
how to use the simple control statements that Perl provides to control and manage
the flow of execution in a program.

One of the fundamentals of any programming language is that there are often repeated
elements in your programs. You could cut and paste from one section to another, but
this is messy. What happens when you need to update that sequence you just wrote?
You would need to examine each duplicated entry and then make the modifications in
each. In a small program this might not make much of a difference, but in a larger program
with hundreds of lines, it could easily double or triple the amount of time you require.

Duplication also runs the risk of introducing additional syntactic, logical, and
typographical errors. If you forget to make a modification to one section, or make the
wrong modification, it could take hours to find and resolve the error. A better solution
is to place the repeated piece of code into a new function, and then each time it needs to
be executed, you can just make a call to the function. If the function needs modifying, you
modify it once, and all instances of the function call use the same piece of code.

This method of taking repeated pieces of code and placing them into a function is
called abstraction. In general, a certain level of abstraction is always useful—it speeds
up the programming process, reduces the risk of introducing errors, and makes a complex
program easier to manage. For the space conscious, the process also reduces the number
of lines in your code. There is a small overhead in terms of calling the function and
moving to a new section of the script, but this is insignificant and far outweighed by
the benefit.

Once you have a suite of functions, you will want to be able to share information
among the functions without affecting any variables the user may have created. By
creating a new package, you can give the functions their own name space—a protected
area that has its own list of global variables. Unless explicitly declared, the variables
defined within the package name space will not affect any variables defined by the
main script.

You can also take this abstraction a stage further. Imagine you have created a suite
of functions that extend the standard mathematical abilities of Perl for use in a single
script. What happens when you want to use those same functions in another script?
You could cut and paste, but we already know that’s a bad solution. Imagine what
would happen if you updated the original script’s function suite—you would need
to do the same for each script that used the same set of functions.

Everything covered so far makes up the basics of programming Perl. We’ve looked

Chapter 6: Subroutines, Packages, and Modules

The solution is yet another stage in abstraction: you move the function suite from
the original file and place it into a new file with the same name as that of the package
the functions belong to. In Perl, this process is called creating a new module. Each script
that wants to use the functions defined in the module can import them and use them
just like the functions that Perl has built in. You import the functions from a module
with the use command. The examples of use you have seen up to now are all importing
modules and promoting code reuse.

In this chapter, we’ll be looking at how to create new functions for use within your
Perl scripts and how to group functions and variables to create new packages. Then
we'll examine how to convert a package into a module before moving on to the differences
between the available methods for importing and using packages and modules within
your scripts.

Functions

A function is a named code block that is generally intended to process specified input
values into an output value, although this is not always the case. For example, the print
function takes variables and static text and prints the values on the screen.

You can define functions anywhere within a program, including importing them
from external files or having them generated on the fly using an eval statement. Fur-
thermore, you can generate anonymous subroutines, which are functions that are attached,
by reference, to a variable. This enables you to treat a subroutine as any other entity
within Perl, even though you may consider it to be a fundamental part of the blocks
that make up the Perl language.

Function or Subroutine?
The two terms function and subroutine are used interchangeably in Perl. If you want
to be strict on the semantics, small pieces of named blocks of code that accept argu-
ments and return values are called subroutines. The built-in subroutines in Perl are
usually referred to as Perl’s functions, because they provide additional functionality.
A subroutine created as part of a class definition is called a method—see Chapter 10
for more information.

In truth, there’s not a lot between subroutines and functions, although
personally I prefer the latter.

125

126

Perl: The Complete Reference

Subroutines, like variables, can be declared (without defining what they do) or
declared and defined. To simply declare a subroutine, you use one of the following forms:

sub NAME

sub NAME PROTO

sub NAME ATTRS

sub NAME PROTO ATTRS

where NAME is the name of the subroutine you are creating, PROTO is the prototype
for the arguments the subroutine should expect when called, and ATTRS is a list

of attributes that the subroutine exhibits. The PROTO and ATTRS arguments are
optional—we’ll be discussing these elements separately in the “Prototypes” and
“Attributes” sections later in this chapter.

An undefined subroutine does nothing, but it does let the rest of the script know
that such a subroutine exists. When used in combination with prototypes, it allows
calls to subroutines to be checked. However, declaring subroutines without actually
defining them is not required—we do not need to tell Perl the names of the subroutines
we expect to create.

If you want to declare and define a function, then you need to include the BLOCK
that defines its operation:

sub NAME BLOCK

sub NAME PROTO BLOCK

sub NAME ATTRS BLOCK

sub NAME PROTO ATTRS BLOCK

You can also create anonymous subroutines—subroutines without a name—by
omitting the NAME component:

sub BLOCK

sub PROTO BLOCK

sub ATTRS BLOCK

sub PROTO ATTRS BLOCK

However, you can’t create an anonymous subroutine without a definition (Perl has
no way of later attaching the definition without knowing the subroutine’s name). You
will also need to assign the subroutine to a scalar variable so that you can call it later;
for example:

Chapter 6: Subroutines, Packages, and Modules

smyfunc = sub BLOCK;

We'll be looking at anonymous subroutines (and other reference types) in Chapter 10.
In all cases, the most important parts of a subroutine are its name and the block that
defines what it does. To give a quick example of a simple subroutine:

sub message

{
}

print "Hello!\n";

To call this function you would use one of the following forms:

NAME

NAME LIST
NAME (LIST)
&NAME

All the forms accept a LIST of arguments; unless you've declared through the
prototyping mechanism that a subroutine should accept one argument, all subroutines
accept a list of arguments, even if ultimately they use one (or even none) of them. In the
first and second forms, the subroutine must have been declared and/or defined before
the call was made; otherwise Perl will be unable to determine whether the bare word
was a bare word or a subroutine call. The third option removes the need to predeclare
the subroutine, because the parentheses automatically indicate the name’s status.

The last form is the true name of the function—this is the name that should be used
when referring to the function as a whole, such as when creating a reference to the sub-
routine (see Chapter 10). Think of the & as the notation character for a subroutine in the
same way as $ indicates a scalar and @ indicates an array.

Arguments

Perl has a very simple attitude toward function arguments. In C, Pascal, and other
languages the specification of a function is fixed, both in the form of the data types
that can be supplied and the total number of arguments. Although C supports the
“varargs” option, this is the exception, rather than the rule. Within Perl you can pass
any type of argument and any number of arguments to a function (unless you've
prototyped the function—see the “Prototypes” section later in this chapter). For most
situations, this is an incredibly practical solution to the problem of argument passing.

128 Perl: The Complete Reference

What actually happens is that the arguments you supply to a subroutine are placed
into the @_ array. This means that the first argument you pass to the subroutine is available
within the function as $_[0], the second argument is $_[1], and so on. For example, this
simple function adds two numbers and prints the result:

sub add

{
$result = $_ [0] + $_[11;
print "The result was: Sresult\n";

To call the subroutine and get a result,

add(1,2);

The preceding subroutine is fairly simple, but what if you wanted to have named
arguments? The simple answer is to assign the values of @_ to a list of variables:

sub add

{
(snumbera, $numberb) = @ ;
Sresult = Snumbera + Snumberb;

print "The result was: S$Sresult\n";

Note the syntax here—were assigning a list of values (from @_) to a list of variables
($numbera and $numberb) so we must supply a list of variables, enclosed in parentheses
so that each value in @_ is assigned to a corresponding variable.

Finally, because we probably don’t want to create those variables in the global
name space, we ought to use my to declare them all locally:

sub add
{
my ($numbera, S$numberb) = @ ;
my Sresult = S$numbera + Snumberb;

print "The result was: Sresult\n";

See the “Scope” section later in this chapter for information on the effects of my and
the other scoping mechanisms.

Chapter 6: Subroutines, Packages, and Modules

Using shift
The shift function is one of the “stack” operands supported by Perl. The shift function
returns (and removes) the first element of an array. For example:

@list = gw/first second third/;
Sa = shift @list;

The $a variable will now contain “first”, while the @list array will contain the two
elements “second” and “third”. The shift function actually defaults to using the @_
array when used in a subroutine, so we could get our arguments using

sub add

{

my Snumbera shift;

my Snumberb = shift;

my Sresult = S$Snumbera + Snumberb;
print "The result was: Sresult\n";

The effect is exactly the same; we’ve just obtained the arguments in a different way.

The only downside to this shift solution is that @_ is now empty. The advantage is
that we can use the shift function to work through a list of supplied arguments without
worrying about how many arguments there are:

sub add

{

my Sresult;
while(@)

{
}

print "Result: S$Sresult\n";

Sresult += shift;

Now we can call the function with any number of arguments,

add (1) ;
add(1,2);
add(1,2,3,4,5,6,7,8,9,10,11);

129

130

Perl: The Complete Reference

Or a list:
add (@values) ;

See the “Passing Lists to Subroutines” section later in this chapter for information
on passing multiple lists to a function.

Counting Arguments

If you want to count the number of arguments that you have received, just access the
@_ in a scalar context:

my $count = @_;

If the subroutine expects a specific number of arguments, then your function
should check for the correct number. The most obvious way of doing this is to check
the scalar value of the @_ array:

carp "Not enough/too many arguments in mysub" unless(@ == 2);

Note here the use of carp to report a problem, rather than using warn or die—this
is to ensure that the error is reported back to the caller. (See Appendix B for information
on the Carp module, which supports the carp function.)

We can use a count to allow a variable number of arguments to be supplied to
a function:

sub greeting

{
if (@ == 2)
{
(Sfname, S$sname) = @ ;
}
elsif (@ == 3)
{
($fname, $sname, $title) = @_;

Chapter 6: Subroutines, Packages, and Modules 131

Alternatively, we could have used shift to progressively take arguments from the
stack. However, if you're going to use the shift method, then it’s a good idea to set de-
fault values for any arguments that you consider to be optional, for example:

sub greeting

{
my (S$fname, S$sname, S$title) = ('Nobody','','');
my $fname = shift;
$sname = shift if (@);
S$title = shift if (@)
1

Note that when using shift we don’t have to explicitly check the number of arguments
supplied or use a compound if statement to extract them.

| If you're going to support a function that accepts multiple arquments, remember to use
my to declare the variables before the tests and assignation. If you define the variables
within the BLOCK of an if statement, they will have gone out of scope before the rest of
the subroutine is executed.

Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a subroutine. However,
because of the way in which Perl accepts and parses lists and arrays, it can be difficult
to extract the individual elements from @_. To understand the reasons better, let’s start
by looking at the ways in which we can call a subroutine that accepts three arguments.
All three of the following are valid:

mysub (1,2,3);

@args = (2,3);
mysub (1, @args) ;

@args = (1,2,3);
mysub (@args) ;

132 Perl: The Complete Reference

All of these calls will work and will supply exactly the same information to the sub-
routine. Because each of the preceding examples results in an @_ variable that contains
three elements, we have no way of knowing which of the preceding arguments was
supplied as an array and which was supplied as a scalar.

If we extend the subroutine to accept four arguments, the effects become even
more apparent:

@args = (1,2);
@moreargs = (3,4);
mysub (@args, @moreargs) ;

Now @_ contains four elements: 1,2,3,4. Perl has compounded the two arrays into a
single array.
This has some advantages over a normal, explicitly named argument list as sup-

ported in C or Python. For a start, it means that we can easily blend lists together and
end up with a single new list, as in this call to a sorting function:

@sorted = simplesort(@lista, @listb, @listc);

We can call the same function using scalars, and still end up with a sorted list:
@sorted = simplesort (svaluea, S$valueb, S$valuec);
The function itself is very simple—in fact we cheat and use the built-in sort function:

sub simplesort

{
}

sort @ ;

Because the argument list has been combined, we can just walk through the entire list
of arguments and return them.

The downside is that if you want to actually supply a number of lists without them
getting combined into a single list, the semantics get slightly more complicated. The
format that you might expect to work:

Chapter 6: Subroutines, Packages, and Modules

(@listc, @listd) = simplesort(@lista, @listb);

simply won’t work. Perl combines @lista and @listb into @_. All the subroutine does is
sort @_ and then return it. Perl assigns the entire returned list to @listc—it has no way
of knowing which elements from @lista and @listb should be placed into @listc or @listd.

If you want to work with and identify the individual lists passed to Perl, then you
need to use references:

(@listc, @listd) = simplesort (\@lista, \@listb);

The leading \ character tells Perl to supply a reference, or pointer, to the array. A
reference is actually just a scalar, so we can identify each list by assigning the reference
to each array within our subroutine. We’ll cover references and how to access and use
their values in Chapter 10.

The fundamental rule to remember in this example is that when passing arrays or
lists to subroutines you can pass only one array or list, and it must be the last argument
supplied. If you want to extract an array from a list of arguments, then specify the
array list:

sub process

{

my ($first, $second, @rest) = @ ;

If you try to extract the array as the first element, then it will immediately gobble up all
of @_, even if there are arguments after the array leaving any scalar entries empty. The
following won’t do what you want at all:

sub process

{

my (@rest, $first, $second) = @_;

133

134 Perl: The Complete Reference

The $first and $second arguments will never be filled, no matter how hard you try!
The exception to this rule is when you use prototypes; see the “Prototypes” section
later in this chapter.

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, the hash is
automatically translated into a list of key/value pairs. For example:

%$hash = ('name' => 'Tom', 'age' => 19);
print %hash;

This will output “nameTomagel9”. However, the same process works in reverse, so we
can extract a list and convert it to a hash:

sub display hash

{
my (%hash) = @ ;
foreach (%hash)
{
print "$ => S$hash{$ }\n";
}
1

In this case, we output the key/value pairs of the hash properly, displaying each
pair on its own line. As with arrays, care needs to be taken if you expect to pick out a
single hash from a list of arguments. The following will work because we extract the
hash last:

sub display has regexp

{

my ($regex, %hash) = @ ;

while this one won’t because we try to extract the hash first (there will be an extra
element, and Perl won’t know how to assign this to the hash):

sub display has_ regexp

{

my (%hash, S$regex) = @ ;

Chapter 6: Subroutines, Packages, and Modules

If you want to work with multiple hashes, then use references. For example, the
following subroutine returns the key intersection of two hashes:

sub intersection

{
my ($hasha, S$hashb) = @ ;
my %newhash;
foreach my S$key (keys %{$hasha})
{
$newhash{$key} = $Shasha{skey} if (exists $Shashb{S$key});
}
return %newhash;
}

To use the subroutine:

%hasha = ('a' => 'b',
'b' => lbl’
o' => lbl);
%hashb = ('b' => 'b',
o' => lbl’
ldl => lbl)l.

$newhash = intersection(\%hasha, \%hashb) ;

Identifying Values and Types

If you need to verify the value or type of an individual argument, then you can use
regular expressions or other methods to validate the information before you use it.
For example, to verify that two arguments are numerical:

sub square

{

die "Not a number" unless($_[0] =~ /*[0-91+%/);
return($_[0] * $ [0]);

135

136

Perl: The Complete Reference

Default Values

For functions that accept varying numbers and/or types of arguments, you should be
setting the variable used within the subroutine to a default value. This will help to en-
sure that when an argument is not supplied, the variable still contains either valid data
or a value that can be ignored or tested when it needs to be used. The default value of
any declared but unassigned variable is the undefined value, or an empty list or hash.
For example, the power function that follows raises the first argument to the power of
the second argument, or to 2 if there is no second argument:

sub power

{
my S$base = shift;
my $power = shift || 2;
return S$base**S$power;

}

Here I've used shift to take off the arguments and then used the | | operator to set
the power to a default value if shift fails. If called with a single argument, the function
will return the square of the supplied value, and if supplied with two arguments, it’ll
return the first raised to the power of the second.

Dynamic Arguments
There are times when there is no set argument order for a function, but you still want
to accept changes to the function’s variables. The way to do this is to accept a hash, where
each key of the hash is the variable that you want to accept, and the value is the data
for that variable. This method has the advantage of allowing you to pass a variety of
scalars, arrays, and hashes without directly worrying about the order of the references
you supply.

For example, we could rewrite the power function from the previous section like this,

sub power

{

my (%args) = @ ;
my $base = $args{base} || 2;
my $power = Sargs{power} || 2;

return Sbase**S$power;

}

which means that we can now call the function in a number of different ways:

Chapter 6: Subroutines, Packages, and Modules 137

print power (base => 16, power => 3);
base => 16);

power => 8);
)

returns 16384
returns 256
returns 256
returns 4

print power
print power

H*+ H H FHF

I

print power

The order of the arguments is no longer an issue, which makes supporting default
values and/or multiple options within a single subroutine significantly easier.

Note | If you want to use this option, consider using -argument as the argument string. That

way you won'’t need to quote the hash key each time—the preceding hyphen translates
the bareword to a string.

Return Values

The return value of any block, including those used in subroutines, is taken as the
value of the last evaluated expression. For example:

sub myfunc

{
}

$ _[01+s_[1]1;
The return value here is the result of the calculation.

You can also explicitly return a value using the return keyword:

sub myfunc

return 0;

When called, return immediately terminates the current subroutine and returns the
value to the caller—if you don’t specify a value then the return value is undef.

138

Perl: The Complete Reference

Error Notification

The easiest way to report an error within a subroutine is to return the undefined value
undef—this is universally accepted within Perl as notification of some form of failure
and is also identified by any testing mechanism as a false (and therefore failure) value.
If you want to report the error directly within the function, then use die (see
Chapters 7 and 9) or use the carp function from the Carp module (see Appendix B).

Context

The context of a subroutine or statement is defined as the type of return value that is
expected. This allows you to use a single function that returns different values based
on what the user is expecting to receive. For example, the following two calls to the
getpwent function return a list or a scalar, according to what was used in the assignation:

Sname = getpwent () ;

(Sname, S$passwd, $Suid, gid, Squota,
Scomment, %gcos, $dir, $shell) = getpwent () ;

In the first case, the user expects a scalar value to be returned by the function, because
that is what the return value is being assigned to. In the second case, the user expects
an array as the return value, again because a list of scalars has been specified for the
information to be inserted into.

This can be confusing, since most other languages support only one type of return
value. In fact, it’s very practical, because it reduces the amount of code required to
achieve different results. Here’s another example, again from the built-in Perl functions,
that shows the flexibility:

my Stimestr = localtime (time) ;

In this example, the value of $timestr is now a string made up of the current date and
time, for example, Thu Nov 30 15:21:33 2000. Conversely,

($sec, $Smin, shour, $Smday, Smon, Syear, Swday, Syday, $isdst) = localtime(time) ;

now the individual variables contain the corresponding values returned by localtime.
We can now use these values to build our own string, instead of relying on the default
value returned in a scalar context.

In order to discover the context in which a function has been called, you use the
wantarray function. This returns true if the function has been called in a list context,
and false otherwise. Consider the following script, which prints a scalar or list-based
message, according to how the hw function was called:

Chapter 6: Subroutines, Packages, and Modules 139

sub hw

{

if (wantarray)

{
}
else

{
}

return('Hello', 'World', "\n") ;

return "Hello World\n";

Sscalarmsg = hw() ;
Slistmsg = join('--',hw());

print "Scalar is S$scalarmsg";
print "List is $listmsg";

The list context is implied here because the join function expects a list as the second
argument. If you run this program, you get this,

Scalar is Hello World
List is Hello--World--

which we know to be correct and is the result we expected.

If you supply a hash, then the hash is translated into a list of key/value pairs. Note
that there is no equivalent wanthash function. If you want to exchange and work with
hashes in your subroutines on a hash level, use references (see the “Passing Hashes to
Subroutines” section earlier in this chapter).

You can force a function to return a scalar value with the scalar keyword. This forces
the context of the function to be recognized as a scalar, not a list, value. To use it, just
place the scalar function before the statement or expression that you want to be forced
into scalar context:

my $Stime = scalar localtime;

Attributes

Subroutine attributes are another new feature of Perl. Although an attributes feature
has been available for some time, the definition has now been merged into the main
subroutine-declaration process. To define an attribute, you specify a white space or
colon separated list of keywords.

140

Perl: The Complete Reference

The attributes system is currently underused, although it’s expected that attributes
will form an important part of new versions of Perl, including Perl 6.0 when it becomes
available.

Currently Perl supports only three attributes: locked, method, and lvalue.

The locked Attribute

The locked attribute allows you to define a subroutine so that a lock is obtained
before the subroutine is executed when called in a script that supports multiple
threads. For example:

sub func : lock { ... }

You can also use it in combination with the method attribute to ensure that only
one thread is allowed to use the function on a given object at one time:

sub func : lock method { ... }

The exact semantics are identical to those for the lock function—see Chapter 15 for
more information on threads.

The method Attribute

The method attribute currently only marks the subroutine so that you don’t get a
warning when a given method can’t be resolved properly (normally highlighted as
“Ambiguous call resolved as CORE::%s”. See Web Appendix C for a full description
of the likely cause of this error.

The Ivalue Attribute

You can get a subroutine to act as a valid lvalue providing that you have declared the
subroutine with the lvalue attribute. Using lvalue, a subroutine can be used as a modifiable
scalar value. For example, you can do this:

mysub () = 5;

This is particularly useful in situations where you want to use a method on an object to
accept a setting, instead of setting the value on the object directly. To create the subroutine,
you must provide a scalar variable in the subroutine, which will be used both as the
value that is assigned to the subroutine when it is used as an lvalue, and the return value
when the subroutine is called as part of an expression. For example:

Chapter 6: Subroutines, Packages, and Modules 141

sub mysub : lvalue

{
}

Sval;

Look up the attributes pragma in Chapter 19 for more information on attributes,
including creating your own customized values.

Prototypes

The dictionary defines prototype as “an original type, form, or instance that serves as a
model on which later stages are based or judged.” Within Perl, the act of prototyping
a function tells Perl (or a programmer, if he’s looking) what arguments the function
expects or requires. As with other elements of the Perl process, the arguments passed
can also imply the format of the information returned by the function. For example,
the built-in syswrite function could be declared like this:

sub syswrite($$s$;83)

The prototype is used by Perl to make decisions about the number and type of
arguments that are supplied to the function. The prototypes only affect function calls
in the “new” form, that is, without a leading ampersand. If it looks like a built-in
function, Perl will treat it as such. If you call a function using the “old” ampersand
style, prototypes are ignored. In all cases, Perl only checks at compile time, so the
function and calls must be visible at the time the functions are compiled.

You specify the function arguments by using the special characters that precede
normal variables as indicators of the variable type expected. In the preceding example,
the dollar signs signify that scalar values are expected. The @ and % characters, as ex-
pected, specify arrays and hashes. However, except in the upcoming case (where a sub-
routine is treated as a named unary operator), unbackslashed entries gobble up all the
remaining arguments, regardless of the rest of the prototype. In addition, the $ implies a
scalar context, and @ and % imply list context accordingly.

An ampersand requires an anonymous subroutine that can be specified without the
sub keyword or the trailing comma, if it is specified as the first argument. A * character
specifies a typeglob, typically used to supply filehandles.

Any backslash-quoted character signifies that the argument absolutely must start
with that character—for example, \@ would require that the function call specify a
list as the first argument. A semicolon separates the required arguments from optional
arguments in the prototype. The semicolon is used to distinguish between the arguments

142

Perl: The Complete Reference

that are required and those that are optional. Table 6-1 shows some examples taken from
the perlsub man page.

In the last three examples in Table 6-1, Perl treats the declarations slightly differently.
The mygrep function is passed as a true list operator, interpreting the following arguments
as elements of a list and not as further arguments to the original mygrep function. The
myrand function behaves like a true unary operator, and the mytime function is treated
as a function with no arguments at all. This means you can get away with statements like

mytime +2

and you’ll end up with the return value of mytime added to the static value, instead of
Perl calling mytime with an argument of +2.

Declaration

sub mylink ($$)

sub myvec ($$$)

sub myindex ($5;$)
sub mysyswrite ($$5;$)
sub myreverse (@)
sub myjoin ($@)

sub mypop (\@)

sub mysplice (\@$5@)
sub mykeys (\ %)

sub myopen (*;$)

sub mypipe (**)

sub mygrep (&@)
sub myrand ($)

sub mytime ()

Example Call

mylink $old, $new

myvec $var, $offset, 1

myindex &getstring, "substr"
mysyswrite $buf, 0, length($buf) - $off,
myreverse $a, $b, $c

myjoin ", $a, $b, $c

mypop @array

mysplice @array, @array, 0, @pushme
mykeys %{$hashref}

myopen HANDLE, $name

mypipe READHANDLE,
WRITEHANDLE

mygrep { /foo/ } $a, $b, $c
myrand 42

mytime

Table 6-1.

Sample Prototype Declarations

Chapter 6: Subroutines, Packages, and Modules

You should be careful when specifying prototypes, since many of the options imply
the context in which the function should return and, therefore, affect some of the
function-specific utilities such as wantarray. In general, therefore, you should use
prototypes only on new functions, rather than retrofitting them to functions you have
already written. This will prevent the effects of imposing a scalar context on a function
that is expecting to return in a list context. For example, consider a function with a
single argument:

sub printmsg($)

{
}

print "Message: ", shift, "\n";

Calling this function with an argument that returns a single element list wouldn’t
produce the same results. The call

printmsg (@message) ;

would actually print a value of 1, since the scalar prototype has imposed that the list
argument supplied be converted to a scalar.

In the case of a list, the scalar value of a list variable is the number of elements in
the list. Worse, using a function such as split, which uses the context in which it is called
to determine where it puts its results, would cause a more serious problem. If used as
the argument to the prototype function, split would execute in the scalar context, messing
up your @_ argument list.

Packages

The main principle behind packages in Perl is to protect the name space of one section
of code from another, therefore helping to prevent functions and variables from over-
writing each other’s values. Despite what you may have seen up to now, there is no
such thing as a global variable—all user variables are created within the realms of a
package. If no package name is specified, then the default package name is main.

You can change the current package to another by using the package keyword. The
current package determines what symbol table is consulted when a user makes a function
call or accesses a variable. The current package name is determined at compile and run
time because certain operations, such as dereferencing, require Perl to know what the
“current” package is. Any eval blocks are also executed at run time, and the current
package will directly affect the symbol table to which the eval block has access.

143

144

Perl: The Complete Reference

All identifiers (except those declared with my or with an absolute package name)
are created within the symbol table of the current package. The package definition re-
mains either until another package definition occurs or until the block in which the
package was defined terminates. You can intersperse different package names in the
same file and even specify the same package multiple times within multiple files. The
package declaration only changes the default symbol table. For example, in the following
code, both the add and subtract functions are part of the Basemath package, even though
the square function has been inserted within a Multimath package:

package Basemath;

sub add { $_[0]+$_[1] }
package Multimath;

sub square { $_[0] *= $ [0] }
package Basemath;

sub subtract { $_[0]-3 [1] }

This example is probably not a good example of when a package is normally defined.
Normally, the first statement within a new file would be used to define the package
name for a module that would be imported via the use or require statement. Of course,
there is nothing to stop you from using a package statement anywhere you would use
any other statement.

You can reference a symbol entry from any package by specifying the full package
and symbol name. The separator between the package and symbol entry is the double
colon. You could refer to the preceding add function as Basemath::add. If you are refer-
ring to a variable, you place the character for the variable type before the package name;
for example, $Basemath::PI. The main package can either be specified directly, as in
$main::var, or you can ignore the name and simply use $::var.

| Perl 4 and below used the ’ symbol. This is currently still supported, but for the longer
term, you should move to the :: notation. It's easier to read, for a start, and editors that

try to match quotes and parentheses don't fall over when you use double colons.

You can also nest package names in order to create a package hierarchy. Using
the math module again, you might want to split it into three separate packages. The
main Math package contains the constant definitions, and it has two nested packages
Math::Base and Math::Multi. The hierarchy does not introduce any additional symbol
tables, so the variable $Math::Multi::var is simply not accessible as $Multi::var. You

Chapter 6: Subroutines, Packages, and Modules 145

either need to change the current package with a package statement or refer to the
variable with its full name.

The symbol table is the list of active symbols (functions, variables, objects) within
a package. Each package has its own symbol table, and with some exceptions, all the
identifiers starting with letters or underscores are stored within the corresponding symbol
table for each package. This means that all other identifiers, including all of the special
punctuation-only variables, such as $_, are stored within the main package. Other
identifiers that are forced to be within the main package include STDIN, STDOUT,
STDERR, ARGV, ARGVOUT, ENV, INC, and SIG.

Finally, if you name any package with a name matching one of the pattern operators
(m/, s, ylll, or tr/ll), you cannot use the qualified form of an identifier as a filehandle,
as it will be interpreted as a pattern match, substitution, or translation.

Signals also need special care: when specifying a signal handler, you should ideally
qualify the signal handler completely. See Chapter 14 for more information on specifying
signal handlers.

Package Symbol Tables

The symbol table for a package can be accessed as a hash. For example, the main
package’s symbol table can be accessed as %main:: or, more simply, as %::. Likewise,
symbol tables for other packages are %MyMathLib::. The format is hierarchical, so
that symbol tables can be traversed using standard Perl code. The main symbol table
includes a reference to all the other top-level symbol tables, so the preceding nested
example could be accessed as %main::Math::Base.

The keys of each symbol hash are the identifiers of the symbols for the specified
package; the values are the corresponding typeglob values. This explains the use of
a typeglob, which is really just accessing the value in the hash for the corresponding
key from the symbol table. The following code prints out the symbol table for the
main package:

foreach $symname (sort keys %main::)

{
local *symbol = $main::{$symname};
print "\Ssymname is defined\n" if defined $symbol;
print "\@S$symname is defined\n" if defined @symbol;
print "\%Ssymname is defined\n" if defined %symbol;
1

You can also use the symbol table to define static scalars by assigning a value to
a typeglob:

*C = 299792458;

146 Perl: The Complete Reference

You now cannot modify $C, the speed of light, since the variable $C does not really
exist—Perl is just allowing us to access a typeglob as a scalar value. Note that uppercase
is used for the constant, even though normally the speed of light is specified as “c.”
This is a convention in Perl. Constants and filehandles are typically in uppercase,
variables and functions are lowercase, and package names are specified in title case.
Although this is convention, Perl doesn’t really care!

___| special Blocks

Perl has reserved a number of specially named blocks that provide some additional
control over the execution of your script—although these are more complex topics,
we’ll cover them here, as their execution will help you to understand how modules
and importing and exporting objects works.

The four blocks are BEGIN, CHECK, INIT, and END, and they are executed in
that order. When you execute a Perl script, any BEGIN blocks are executed during
the parsing process—that is, as soon as the statements within a BEGIN block have
been parsed and verified. The CHECK block is executed as soon as the parsing and
compilation stages have been completed, but before the actual execution of the script.
The INIT block runs before the main flow of the program starts. The END blocks ex-
ecute when the program terminates.

If you specify more than one of these blocks in your script, they are executed in the
order in which they are parsed in the case of BEGIN and CHECK, and in reverse order
in the case of INIT and END, and still in the overall order given above. You can see
this better using a simple script:

print "Now in the main script\n";

die "Script abnormally terminated!\n";

CHECK { print "lst declared CHECK block\n" }
CHECK { print "2nd declared CHECK block\n" }
END { print "lst declared END block\n" }
BEGIN { print "lst declared BEGIN block\n" }
INIT { print "1st declared INIT block\n" }
BEGIN { print "2nd declared BEGIN block\n" }
END { print "2nd declared END block\n" }
INIT { print "2nd declared INIT block\n" }

When executed, the script generates the following:

1st declared BEGIN block
2nd declared BEGIN block
2nd declared CHECK block

Chapter 6: Subroutines, Packages, and Modules

1st declared CHECK block

1st declared INIT block

2nd declared INIT block

Now in the main script
Script abnormally terminated!
2nd declared END block

1st declared END block

Note that the execution also applies to individual packages and modules. Here, the
BEGIN and END blocks can act as initializers and finalizers for the package. They are
defined like this:

BEGIN { print "Start!\n" };
END { print "End!\n" Vi

A BEGIN block is executed as soon as possible after it has been defined. This over-
rides the parsing of the rest of the package. You can have multiple BEGIN blocks that
are executed in the order they were defined. You can use a BEGIN block to import
functions and values from other modules so that the objects required by the rest of
the package are defined at the point the block is parsed. This can be especially useful
if you are using the function prototyping and declarations seen earlier in this chapter.
If a function has been defined such that it is interpreted as an operator, or with a specific
prototyping format, then it will need to exist before Perl interprets the rest of the package.

An END routine is the opposite: it is executed as late as possible. In practice, this
means that an END block is executed at the point the parser and interpreter are about
to exit to the calling process. This is the case, even if the reason for the failure is a die
function or the result of an exception raised due to the nonexistence of a required system
call. You can use this facility to help print error messages or close filehandles cleanly in
the event of an error. Of course, in a well-written Perl script, you should be able to find
cleaner ways of handling exceptions and errors.

END blocks are executed in reverse order—that is, the last END block specified
will be the first to be executed. The following program doesn’t do quite what we want,
although it’s pretty close:

BEGIN { print "Eanie\n" }
die "Meanie\n";

END { print "Miney\n" }
END { print "Mo\n" }

You should not assume that the main program code has been executed in an END
block. Care is needed to ensure you don't try to use a variable or function in an END

147

148

Perl: The Complete Reference

block that has not otherwise been defined, although you should be doing this kind of
checking in the main body of the script anyway.

Modules

Modules are the loadable libraries of the Perl world. A Perl module is generally just
another Perl source file that defines a number of functions and/or variables, although
it can also be an interface to an external C library. Modules are the main way for sup-
porting additional functionality in your Perl scripts and for properly dividing up your
module into a reusable format. For example, we can import the CGI module, which
supports a range of web-related functions and tools using

use CGI;

What actually happens is that during the compilation stage, when Perl sees require
or use, it looks for a file called CGLpm, first in the current directory, and then in the
library directories for the current Perl interpreter (as defined in @INC). As soon as it
finds the module, it imports the module source and then parses that as part of the main
script. We don’t need to worry about naming conflicts, because the package system
explained earlier in the chapter will be able to determine the difference between dif-
ferent objects.

Creating Modules

At the simplest level, a module is just another name for a package that has been moved
to a separate file with the same name as the package, and that has the extension .pm
attached. Perl doesn’t actually know how to magically import the functions defined
within the module file; for that we need to use the Exporter module, which supplies
the necessary intelligence for us.

To explain the process, let’s look at a very simple module called MyMathLib,
which is contained in the file MyMathLib.pm:

package MyMathLib; # Define the package (and module) name
require Exporter; # Import the functions required to export
functions from our own module
@ISA = gw/Exporter/; # Set the inheritance tree so that Perl can
find the function required
@EXPORT = gw/add/; # Specify the functions we want to export

sub add # The function we want to export

Chapter 6: Subroutines, Packages, and Modules 149

1; # Modules must return a true value

The important parts here are the package line, the Exporter module, the @EXPORT
array, and the final 1; line.

The package definition tells Perl what package the functions we are defining
should be belong to. This is required—DPerl expects to find the package MyMathLib
in the file MyMathLib.pm—and it also helps to protect the name spaces between the
entities you've defined in your module and those used in your scripts.

The Exporter module provides the import function, which exposes the list of functions
that you specify in @ EXPORT so that they exist within the name space of the caller.
For example, in the script

use MyMathLib;
print add(1,2);

you can use the add function without qualifying it with its full name because the import
function has made the add function available within the main name space—see the
section on “Packages” earlier in this chapter for more information on packages and
name spaces.

The 1; in the module file is simply used as a return value. The use keyword checks
when parsing the module to ensure that the return value is true as an indication of
whether the module loaded correctly. In most instances, you'll always use a simple
value like this to show success, but more advanced uses can use this value to indicate
an error somewhere else. For example, a module that relies on a set of configuration
files might return false if the files couldn’t be found—the use statement would identify
the error and the execution of your script would terminate because of this.

The Exporter Module

The Exporter module supplies the import function required by the use statement to
import functions. The absolute minimum required at the top of your module is this:

package ModuleName;
require Exporter;
@ISA = gw (Exporter) ;

150

Perl: The Complete Reference

The package name should reflect the module’s file name—remember that the
module MyGroup::MyModule equates to a file name of MyGroup/MyModule.pm.
The remaining statements import the Exporter module, and the @ISA array defines the
inheritance—it’s inheritance that allows the import module in Exporter to be inherited
by the module you are creating.

The Exporter module then uses the values in @ EXPORT, @ EXPORT_OK,
@EXPORT_FAIL, and %EXPORT_TAGS to determine which objects should or
should not be exported from the module.

The @EXPORT array should be used to list the objects that should be exported by
default from the module. The @EXPORT_OK array should list the objects that can be
exported if they have been specifically requested. For example, this:

use MyModule gw/process regurgitate/;

would cause MyModule to only export the process and regurgitate subroutines. You
can think of this in a similar way to the public and private methods in object-oriented
programming— although Perl’s OOP system works slightly differently.

The %EXPORT_TAGS is a hash that contains a series of import sets; for example,
the definition

$EXPORT TAGS = ('standard' => [process, regurgitate],
'processing' => [process, parse]) ;

can be used from a caller with
use MyModule gw/:standard :processing/;

Finally, if you don’t want any specific objects to be exported, then the naming
convention is to use a preceding underscore, but this is not actually enforced—it’s
still possible to import an object with that prefix. You can disable this ability by defining
those objects within the @ EXPORT_FAIL array—the Exporter will die if any objects
that appear in this array are explicitly requested.

Comparing use and require

When you import a module, you can use one of two keywords: use or require. We’ll
look in more detail at their differences in a moment, but in essence, a require statement
imports the functions and objects only within their defined packages. The use keyword,
on the other hand, imports the functions and objects so they are available to the current
package as if they had been defined globally.

Chapter 6: Subroutines, Packages, and Modules

require
The format of the require statement is

require Module;
The specified module is searched for in the directories defined in @INC, looking for

a file with the specified name and an extension of .pm. You can also specify the full file
name (and path, if necessary) by inserting the file name in single quotes:

require 'Fcntl.pl';

Furthermore, the require function can be used to specify that a particular minimum
version of Perl is required. For example, to specify a minimum version of 5.003:

require 5.003;

This can be especially useful if a module or script you have written requires the
features or functions of a specific version of Perl. If the specification does not match
the version of Perl being used to execute the script, it will fail at compilation time.

use
The use keyword accepts one of two forms:

use Module;

and

use Module LIST;

The first format imports all of the symbols that have been specified in the @EXPORT
array. You can therefore think of the @ EXPORT array as listing the symbols that
should be exported by default. The @EXPORT_OK array lists the additional symbols
that can only be exported when the user requests them via the second form. For example,
the line

use MyMathLib gw/add square/;

would cause only the add and square functions to be exported from the MyMathLib
module.

151

152

Perl: The Complete Reference

The Difference Between use and require

What actually happens when you use the use statement is that Perl calls the import
method defined in the specified module. If one has not been defined, the Exporter
module supplies this method for you. This means that the process you would need to

follow in order to support this ability without the use statement would look something
like this:

BEGIN

{
require "Module.pm";
Module->import () ;

}

You could, for example, request no functions from the module using
use MyMathLib () ;

which is, in fact, identical to
BEGIN { require MyMathLib; }

You can see from the preceding example the important difference: the require
statement reads in the specified module, but it does not call the import method. This
has the effect that symbols defined within another package do not update the current
package’s symbol table. For example,

require Cwd;
$pwd = Cwd::getcwd() ;

as opposed to

use Cwd;
Spwd = getcwd () ;

One other significant difference between require and use is that use statements are
interpreted and executed at the time the file is parsed, but require statements import
modules at run time, which means you can supply a variable name to a require statement
based on other elements of your program. This can be useful for dynamically selecting
a different module to import, outside of the usual dynamic loading capabilities of the
Perl module system.

no

do

Chapter 6: Subroutines, Packages, and Modules

The dynamic loading and autoloading features are generally used when you are
extending Perl using external code written in C or Pascal or even Java. It's normally
up to the module you import to autoload the external modules it requires. We’ll look
again at the autoloading process when we look at extending and embedding Perl in
Chapter 20.

You'll also notice from many of the latter examples that we are not specifying the
full file name. By specifying a file name, we imply the full name and location of the file.
If you do not specify the name in quotes, and you leave off the extension, both require
and use imply the .pm extension. The path used to determine the location of the files
imported this way is the @INC array. This can be updated to allow other paths to be
taken into account. The paths specified are the top directories. You can further subdivide
modules into other subdirectories for clarity, in which case you must specify the relative
pathname for the module you want to import, using the double-colon notation in place
of your operating system’s pathname separator. For example,

use File::Basename;

actually imports the File/Basename.pm module on a Unix machine.

The use function also supports a number of pragmas—small modules (typically
with lowercase names) that control the execution and parsing of a Perl script. For
example, pragmas exist to switch on warnings or change the contents of the @INC
array. Generally, pragmas affect the entire execution of a script, but see Chapter 19
for full details.

The no statement is the complete opposite of the use statement. It “unimports” meanings
that have been imported via the use statement. It does this by calling a corresponding
unimport method, if one has been defined, for a specified module. If no unimport
method has been defined, Perl quits with a fatal error. Generally, no is only really
required to switch off compiler pragmas, and we’ll look at the use of the function

in Chapter 18.

The do statement is rather like a cross between eval and the require and use functions,
although it is neither as practical nor user friendly as any of those functions. The format
for the command is

do EXPR

153

154

Perl: The Complete Reference

where EXPR is the name of a file to be executed. The return value is taken as the evaluated
value of the last statement in the file. If the file is not in the current directory, then the
paths specified in the @INC array are searched instead.

The main difference between do and require is that the file specified by do will be
executed each time it is called. The require function (and use), on the other hand, keeps
track of the files it has imported and will only import a file once.

| scope

When you create a variable, it’s created within the scope of the current package. In the
case of the main package, it means that you are creating a “global” variable. Although
packages allow you to split up the global variables that you create into different sections,
many programs would be difficult to work with if we had to keep giving unique names
to all the variables we used.

For that reason, Perl also allows us to create variables that are lexically scoped—
that is, they are declared as existing only until the end of the innermost enclosing scope,
which is either a block, a file, or an eval statement. In fact, Perl supports three scoping
declarations that enable us to create private variables (using my), selectively global
variables (using our), and temporary copies of selected global variables (using local).

At the simplest level, you just prefix the variable with the declaration keyword:

my Svar;
our S$Svar;
local $var;

If you want to specify more than one variable, then supply the names in parentheses,
my (Svar, @var, $%var);

and if you want to assign a value as well,
my (var, Sstring) = (1, 'hello');

If you forget to use parentheses, you get some strange effects:
my var, Sstring = 1, 'hello’;

The preceding line actually works like this:

Chapter 6: Subroutines, Packages, and Modules 155

my Svar;
Sstring = 1;
'hello!';

If you have warnings switched on, then you’ll get an error, because the 'hello’
is actually interpreted in a void context (since it doesn’t actually do anything).

In general, you'll see and use my more than other declarations, because it generally
does what you expect when you declare variables in this way. The our declaration is a
relatively new invention (it was only introduced in Perl 5.6), and it allows you to declare
a variable as being global and potentially usable by any other subroutine defined in your
script. Both my and our are examples of lexically scoped variables—the difference is in
the level at which the lexical scope is applied.

The local variable is really a dynamically scoped variable—it effectively creates a
copy of a global variable within the current scope. It operates just like a lexically scoped
variable; its effects disappear when the variable goes out of the current scope, with the
variable returning to its original value instead of simply disappearing.

We'll look at the specific effects of each declaration in the following sections.

Effects of my

The my keyword declares a variable to be scoped within the current block. For the
duration of the block, the new variable will take precedence over any previously
scoped variable. When the block ends, the variable goes out of scope. You can easily
demonstrate this with this script:

my $string = "We are the world";
print "$string\n";

myfunction () ;

print "$string\n";

sub myfunction

{
my S$Sstring = "We are the function";
print "Sstring\n";
mysub () ;

}

sub mysub

{
}

print "Sstring\n";

156

Perl: The Complete Reference

This generates

We are the world
We are the function
We are the world
We are the world

The my declaration does exactly what you expect—it defines a variable as existing
only within the current block (and is therefore not available to any functions called from
within that block). The moment the block terminates, the variable effectively disappears
from view—you can’t access a variable declared with my from outside of the block
within which it’s defined. This means that from outside of a function, you can’t access
a variable declared with my within that function.

It also means that variables declared with my within a module are not accessible
outside of that module (since the module is a single block), even when called upon
explicitly by using $MyModule::string. You also can’t export a variable declared with
my outside of a module; for that you’ll need to use the vars pragma or, with Perl 5.6 or
later, use the our keyword to declare a global variable and then place the full name in
@EXPORT or @EXPORT_OK.

Effects of local

When using local on a global variable, the variable is given a temporary value each
time the local statement is executed. The temporary value lasts only for the duration
of the block. However, the use of local does not affect its accessibility—it’s still a global
variable; it just has a temporary value while it’s being used within that block. For example,

{

local $var = 'nmewvalue';
myfunc () ;

}

can be thought of as

{

Soldvalue = S$Svar;
Svar = 'mewvalue';
myfunc () ;

Chapter 6: Subroutines, Packages, and Modules 157

}

continue

{
}

Svar = Soldvalue;

except that the continue block is executed however the block exits, including through
a return.

Note that the value of a variable modified using local is consistent for all functions
called from the block in which the variable has been localized. In the preceding examples,
the myfunc function will access the temporary value of $var when called from within
that block, but the normal value when outside of it.

Don’t use local on an exported module variable—the value of the variable will
never change.

Effects of our

The our keyword (introduced in Perl 5.6) declares a variable to be global, effectively
making it the complete opposite of my. For example,

our S$string = "We are the world";
print "$string\n";
myfunction () ;

print "$string\n";

sub myfunction

{

our S$string = "We are the function";
print "$string\n";

produces

We are the world
We are the function
We are the function

158 Perl: The Complete Reference

Using our within a function, or indeed any form of nesting within any block, on
the same variable has no effect; you are always referring to the same global variable.
The use of our on a variable declared with my will have no effect.

Scope Within Loops

There is a slightly special case when declaring a variable in a loop statement. In
the fragment,

foreach my s$key (sort keys %hash)

{

the $key variable is lexically defined for the duration of the entire statement, which
means that it’s accessible within the block that makes up the loop (including any
continue block in a while or other statement), but it immediately disappears when
the loop terminates.

However, be careful where you define the variable. In the fragment,

do {
my sSvar = 1;
} while ($var);

the $var used in the test has no value—only the $var in the block has a value.

___ | Autoloading

There are times when what you really want to do is use a subroutine that hasn’t been
defined. If a subroutine with the magic name AUTOLOAD has been defined within a
package, then any unknown subroutine calls are sent to this subroutine. The AUTOLOAD
subroutine is called with all the same arguments as the unknown routine, and the fully
qualified subroutine name is placed into the SAUTOLOAD variable.

This is traditionally used in combination with the AutoSplit module to automatically
load functions from external script files where each file contains a single subroutine.

Chapter 6: Subroutines, Packages, and Modules

What actually happens is that the AUTOLOAD subroutine uses do, require, or eval to
import and parse the external function into the current name space. The AUTOLOAD
subroutine then calls the special format of the goto function to make Perl (and the auto-
loaded subroutine) think that it was the function that loaded after all.

This is effectively identical to the process used to load external C functions into the
current name space, but this is called dynamic loading and is handled by the DynaLoader
module. However, the DynaLoader imports whole function suites, not single functions,
and is generally used to import entire modules (and even base classes) at one time.

The AUTOLOAD module can also be used directly within a Perl script to add
blanket functionality to a script without requiring you to create many subroutines.
Here’s an example that employs the AUTOLOAD routine as a way of introducing
constants looked up from a hash:

BEGIN

{
}

$constants{"PI"} = 3.141592654;

use subs keys %constants;
print "The value of PI is ",PI;

sub AUTOLOAD

{
my $constant = $AUTOLOAD;
Sconstant =~ s/.*:://;
return $constants{"S$constant"};

We actually use a few tricks here. First of all, we create the %constants hash table
in a BEGIN block to ensure it’s defined as early as possible. The main reason for this is
that we need to use the keys of this hash as the argument to the use subs pragma in
order to predeclare the subroutines (or in this case, constants) that we want to use. By
predeclaring them, we set up Perl to allow us to use the “functions” without requiring
parentheses. See Chapter 16 for more details on this pragma.

Finally, we use the AUTOLOAD subroutine to look up the value in the %constants
hash and return the value.

159

This page intentionally left blank.

The

Rejoronce
Chapter 7

Working with Files

162

Perl: The Complete Reference

some point having to access information from or about files. Accessing the information

in a file is relatively easy, but unless you know the exact name of the file, you are
basically stuck. Perl supports a number of ways of extracting the list of files, either by
using the familiar wildcard operations that you use within a shell, or by reading individual
file names directly from the directory.

You can also glean more information about the file that you are using. You may need
to find out the file size or perhaps the file permissions to test whether you can access a
tile. We will also take a look in this chapter at ways of controlling files, including deleting
files, and creating and accessing symbolic and hard links.

It is inevitable that at some point you will need to communicate with the outside
world. We will consider three basic outside influences in this chapter: screen, keyboard,
and files. In fact, Perl works much like many other languages. The default input and
output devices are the screen and the keyboard, but these devices can also be referenced
via files.

Unlike C, Perl uses, within reason, the same set of functions for communicating
with the terminal, keyboard, pipes (external commands or command input), network
sockets, and files. This creates less confusion while you are working and helps optimize
the language. This means that many of the functions we will look at can be used not
only for accessing files but also for accessing any kind of external data stream outside
of the main Perl script.

The basics of handling files are simple: you associate a filehandle with an external
entity (usually a file) and then use a variety of operators and functions within Perl to
read and update the data stored within the data stream associated with the filehandle.
This is similar to other languages that use the same structure. In C, for example, a FILE
structure contains all the information on a data stream and acts as the reference point
for using the data stored within that stream.

Using files and filehandles effectively, particularly when using network sockets
or providing an interactive user interface, also requires more complex controls on the
capabilities and data handling of individual filehandles. This can be achieved using
fentl and ioctl—two functions that provide an interface to the underlying operating
system equivalents. Furthermore, in a complex installation you need to be able to
handle data I/O between multiple files simultaneously. This can be achieved using
a simple round-robin approach, but a more reliable and efficient method is to use the
select function, which is examined in some detail in this chapter.

It is almost impossible to make good use of a programming language without at

. All of the functions in this chapter are derived or descended from their operating system
Caution , . by
equivalents. It is vital that you check the return values of all the functions in this chapter,

especially those that modify the execution environment for the script, such as chdir and
unlink. In most cases, if there is an error, the error string is stored in the $! variable,
which should be used with the die or warn function to report the error to the user.

See Chapter 9 for more information on using these functions.

Chapter 7: Working with Files 163

| Filehandles

A filehandle is a named internal Perl structure that associates a physical file with a
name. A filehandle can be reused. It is not permanently attached to a single file, nor
is it permanently related to a particular file name. The name of the filehandle and the
name of the file are not related.

As far as Perl is concerned, all operating systems support three basic filehandles—
STDIN, STDOUT, and STDERR. The exact interpretation of the filehandle and the
device or file it is associated with depend on the OS and the Perl implementation. Table 7-1
shows the relationship between Perl filehandles and the underlying C file descriptors.

| Perl also supports a number of standard filehandles that provide access to files while in
special command line modes (see Chapter 15), and when accessing information appended
to a Perl script. See the end of Chapter 4 for a list of standard variables and filehandles.

All filehandles are capable of read /write access, so you can read from and update
any file or device associated with a filehandle. However, when you associate a filehandle,
you can specify the mode in which the filehandle is opened. This option prevents you
from accidentally updating or overwriting information in a file that you only wanted to
read. You can see from Table 7-1 the access modes for the standard filehandles.

All filehandles are by default buffered on both input and output. In most cases, this
helps to improve performance by reading more than is needed from the physical device,
or by block writing to a physical device. Information is buffered on a block-by-block
basis (the underlying OS defines the block size). The only exception to this rule is
STDOUT, which is buffered on a line basis: appending the newline character to a
printed string will automatically flush the buffer. You can switch the buffering for the
currently selected filehandle by setting the value of the $| variable to any value other

Perl C File

Filehandle Descriptor Associated Device Access Mode
STDIN 0 Keyboard /terminal Write-only
STDOUT 1 Monitor/terminal Read-only
STDERR 2 Monitor/terminal Write-only

Table 7-1. Standard Perl Filehandles

164

Perl: The Complete Reference

than zero. It’s also possible to set the buffering on other files if you use the I0::Handle
module with the autoflush method. For example, the following code turns buffering
off for the DOOR filehandle:

use IO::Handle;
open (DOOR, "<file.in") or die "Couldn't open file";
autoflush DOOR 1;

To switch it back on again:

autoflush DOOR O0;

N In the preceding example, the arguments to open are placed in parentheses to ensure
ote : :
that the or operator checks the entire statement, not the value of the file name. See

“Error Handling” in Chapter 9 for more information on error handling skills.

A filehandle can be referred to by either a static token or an expression. If an ex-
pression is specified, then the value of the expression is used as the filehandle name.
Note that a filehandle token does not have a special preceding character, as with a
variable, and the name is written in uppercase. This is to help separate a filehandle
from a normal variable. If the filehandle is referred to by an expression, then the result
of the expression is used as the filehandle name.

The only limitation with a filehandle is that it cannot be supplied directly to a user-
defined function. In this instance you must use a typeglob. This is a special type of identifier
that enables you to refer to different types of variables by prefixing the name with an
asterisk. This allows a typeglob to refer to all, or any, of $name, @name, %name, or
name with *name. How the typeglob is used, and therefore which interpretation is
employed, is at the discretion of the expression or statement using the typeglob. See
Chapter 6 for more information on the symbol table and the use of typeglobs in functions.

Opening and Closing Files

A fundamental part of the Perl language is its ability to read and process file data
very quickly. In Chapter 1 we saw how the historical development of Perl was geared
toward text processing long before it gained the general-purpose status it holds now.
All file data is exchanged through the use of a filehandle, which associates an
external data source (a file, network socket, external program, pipe) with an internal
data structure (the filehandle). The method with which you associate the filehandle

Chapter 7: Working with Files

varies depending on the type of external data source, although many of the functions
used to access the data available with the filehandle are the same. For files, you use the
open function to open ordinary files and the sysopen function to handle more complex
opening procedures. The close function is used to close any open filehandle, regardless
of how it was opened.

open

The open function is almost certainly one of the most complicated to understand when
you first approach the Perl language. Once grasped, however, it becomes easy and
almost second nature in use, often making the methods employed in other languages
seem clumsy and constricting.

open FILEHANDLE, EXPR
open FILEHANDLE

The first form is the one used most often. The FILEHANDLE is a token name that
allows you to refer to a file with a specific name. A FILEHANDLE in any function
can alternatively be an expression, which is evaluated; the value being used as the
filehandle name. If the expression supplied does not evaluate to a suitable value, Perl
does not make one up for you. You must ensure, therefore, that the expression you
supply in place of FILEHANDLE evaluates to something identifiable.

The EXPR is more complex. Perl takes the value supplied, interpolates the string
where necessary, and then strips any leading or trailing white space. The string is then
examined for special characters at the start and end of the string that define the mode
and type of file to be opened.

The basic operators are the greater-than/less-than signs. The syntax is taken from
the shell, which uses a less-than sign to pass file contents to the standard input of a
command. Within Perl, this translates to this:

open (DATA, "<file.txt");

The EXPR for the function shows that the file is being opened read-only. If you want to
write to a file, you use the greater-than sign:

open (DATA, ">file.txt");

This example actually truncates (empties) the file before opening it for writing, which
may not be the desired effect. If you want to open a file for reading and writing, you
can put a plus sign before the > or < characters.

165

166

Perl: The Complete Reference

For example, to open a file for updating without truncating it:
open (DATA, "+<file.txt");
To truncate the file first:
open DATA, "+>file.txt" or die "Couldn't open file file.txt, $!";

Note that in the preceding example I've combined the open function with the die
function to report an error if the open failed. Nearly all functions within Perl return
true (a value greater than zero) if the function was a success, so you can easily place

it within a test or with the warn or die functions to report an errors—see Chapter 9 for
more information on error trapping in Perl. So, in this example, if the open function
returns true, then the die function will not be executed. However, if it returns false
(zero), indicating a failure, then the die function will be executed. This is quicker and
significantly more efficient than using if statements to test the success of functions.

This also demonstrates a basic principle of any programming: you must be able
to track and trace errors. Perl has a simple but effective method of error checking that
we’ll see in various examples throughout the rest of the book. In this case, not being
able to open a file is a serious problem, so there is little point in continuing.

One final item to mention for this example is that I've left out the parentheses
(which is valid in Perl; they are optional for all function arguments, but essential for
other lists) and used or as the operator, which checks the function’s success. Using or
is safe in a list context because it has a lower precedence than the list supplied to the
open function. If you wanted to use the | | operator, you would have to enclose the
open statement in parentheses; otherwise, the operator would act on the EXPR and
die function:

open (DATA, "+>file.txt") || die "Couldn't open file file.txt, $!";

In both of the previous cases, the file has been opened for updating, but the file
pointer that describes the current position within the file is at the start of the file. If
you want to append, you can also use shell-style operators:

open (DATA, ">>file.txt");

Chapter 7: Working with Files

A double >> opens the file for appending, placing the file pointer at the end, so that
you can immediately start appending information. However, you can’t read from it
unless you also place a plus sign in front of it:

open (DATA, "+>>file.txt");

The list of tricks for opening files does not end there. Let’s imagine a situation in
which you need to read the contents of a compressed file within a script. The normal
method would be to use a function to call an external program that uncompresses the
file so that you can read it, before recompressing the file once you finish. But this is
very time consuming, and on systems that have limited resources (CPU and disk space),
it is extremely wasteful.

With Perl, you can open a filehandle that is associated with the output of an external
command. The gzcat function decompresses Gzipped files on the fly, sending the output
to the commands stdout without actually decompressing the file to its full size. You
can use Perl to read in this information directly by using a pipe at the end of the EXPR:

open (GZDATA, "gzcat file.gz|");

You can now use one of the many functions that read from a filehandle to process
the data being decompressed on the fly. You haven’t created a temporary file, nor will
you have to recompress the data once you've finished reading it. The opposite is also
true. So you could, for example, send an email message by using the mail program and
opening a filehandle to which you can write the email message:

open (EMAIL, ”|mail mc@mcwords .com") ;

The only limitation to this is that you cannot open an external program for both reading
and writing; the pipes work only one way—read when at the end, write when at the start.
You can also open STDIN and STDOUT directly by specifying “~” and “>-,”
respectively.
The next forms allow you to duplicate a filehandle. This is again similar to the shell
tradition of being able to redirect information not to just one file, but to multiple files.
The duplication can be specified by the existing filehandle name:

open (SECOUT, ">&STDOUT") ;

167

168

Perl: The Complete Reference

This is especially useful if you want to save the information that would normally
be printed to STDOUT and STDERR. You duplicate the two standard filehandles to
new filehandles. You can then respecify the destination for STDOUT and STDERR,
perhaps to an external log file. This will force all output and errors to the new location,
without losing the ability to report information to the real standard output and error
using the duplicated filehandles. For example:

SECOUT, ">&STDOUT") ;
SECERR, ">&STDERR") ;
STDOUT, ">stdlog.txt") ;
STDERR, ">stderr.txt") ;

open
open
open
open

—~ o~~~

In the preceding example, all standard prints will go to the stdlog.txt file, while errors
will go to stderr.txt. If you needed to, however, you could still report to the real standard
output and error by using the SECOUT and SECERR filehandles.

The penultimate form of the open function emulates the functionality of the fdopen
system function. It associates a filehandle with a specific file descriptor number. For
example, the following line opens STDIN by file descriptor:

open (SECIN, "<&=1") ;

The final two formats are really extensions of the earlier pipe expressions. Instead
of starting a new program from the current script, an explicit fork is done, creating
a new child process. The return value of open is the process ID of the child. The file-
handle is normal as far as the parent is concerned. However, the input and output to
the parent filehandle is piped to the STDOUT or STDIN, respectively, of the child.

There is little advantage in this method of using a piped command, except that it
can be useful in secure situations where you want to control the method used to execute
the external command. For example, the earlier gzcat example could be rewritten as

open(GZDATA,"—|") or exec 'gzcat', 'file.gz';
and the email example could be written as
open (EMAIL, "|—") or exec 'mail' 'mc@mcwords.com';

Note that in both cases communication is still one way: you can still only read from a
“-1”-based open.
The full list of available expressions for opening files is shown in Table 7-2.

Chapter 7: Working with Files

Expression Result

“filename” Opens the file for reading only.

“<filename” Opens the file for reading only.

“>filename” Truncates and opens the file for writing.

“+<filename” Opens the file for reading and writing.

“+>filename” Truncates and opens the file for reading and writing.

“| command” Runs the command and pipes the output to the filehandle.

|II

“command Pipes the output from the filehandle to the input

of command.
“-r Opens STDIN.
> Opens STDOUT.

“<&FILEHANDLE” Duplicates specified FILEHANDLE or file descriptor if
numeric, for reading.

“>&FILEHANDLE” Duplicates specified FILEHANDLE or file descriptor if
numeric, for writing.

“<&=N" Opens the file descriptor matching N, essentially identical
to C’s fdopen().
“1-”and “-1” Opens a pipe to a forked command.

Table 7-2. Options for Opening Files

Note that you need to use the binmode function under some systems (notably
Windows) to stop Perl from automatically implying input line processing on the file.
See “binmode” later in this chapter, and Chapter 24 for more information.

File Disciplines

Perl v5.6 or above allows you to specify the encoding format to be used when reading and
writing to and from a filehandle by supplying the format as part of the EXPR argument,
and supplying the name of the file to be opened in LIST, making a three-argument form
of the open function. To specify the encoding formation, you must supply one of the
modes shown in Table 7-3.

169

170

| Note |

Perl: The Complete Reference

Discipline Meaning

raw Binary mode—no line input processing—Equivalent to
calling binmode.

;text Text processing—the basic mode supported by versions
prior to v5.6.

:def Default—as declared by the use open pragma.

:latinl Use the ISO-8859-1 format.

Ictype Use the LC_CTYPE format.

utf8 Use the UTF-8 (unicode) format.

:utfl6 Use the UTF-16 (unicode) format.

utf32 Use the UTF-32 (unicode) format.

uni Intuit Unicode (UTF-*) format.

:any Intuit Unicode/Latin1/LC_CTYPE

:xml Use the file-specified encoding format.

serlf Intuit newlines.

‘para Paragraph mode.

:slurp Slurp mode.

Table 7-3. File Format Encoding Disciplines

The exact list of modes supported is dependent on the support in the current release
of Perl. Check the Perl documentation for more information on the current list.

For example, we could open a file that will be used in paragraph mode and

open (FILE,

interpret carriage returns and line feeds as a single newline by using

"<:para:crlf", 'myfile');

Chapter 7: Working with Files

The default mode (:def) is to use :text, but you can change the default by using the
open pragma:

use open IN => ":any", OUT => "utf8";

sysopen

The sysopen function is similar to the main open function, except that it uses the
system open() function, using the parameters supplied to it as the parameters for
the system function:

sysopen FILEHANDLE, FILENAME, MODE, PERMS
sysopen FILEHANDLE, FILENAME, MODE

There are some differences between the sysopen and open functions. The FILENAME
argument is not interpreted by sysopen. The special codes used with open are interpreted
as elements of the file name. In essence, the FILENAME argument is taken literally.
This allows you to take information from a user that specifies the full pathname to
a file and use it directly without requiring variable interpolation.

Because of this difference, the format in which a file is opened is taken from
MODE. The value of MODE is a bitset using the constants defined in the system’s
fentlh header file. Perl can either use the numbers directly or use word equivalents if
the standard Fentl module has been imported. Because it’s a bitset, you'll need to OR
the values together to produce the final mode. There are some standard values if you
want to remain completely portable. A MODE of zero opens the file read-only; one,
write-only; and two, read /write. These correspond to the constants O_RDONLY,
O_WRONLY, and O_RDWR, which are defined in the Fentl module.

Two other standard constants are O_CREAT, which creates a file if it does not
already exist, and O_TRUNC, which truncates a file before it is read or written.

For example, to open a file for updating, emulating the “+<filename” format
from open,

sysopen (DATA, "file.txt", O RDWR);
or to truncate the file before updating,

sysopen (DATA, "file.txt", O RDWR|O TRUNC) ;

171

172

Perl: The Complete Reference

The PERMS argument specifies the file permissions for the file specified if it has
to be created (provided O_CREAT has been specified in MODE). This should be specified
in standard octal notation, and Perl uses a default of 0x666 if PERMS are not defined.
The values are modified according to your current umask if applicable.

close

To close a filehandle, and therefore disassociate the filehandle from the corresponding
tile, you use the close function. This flushes the filehandle’s buffers and closes the
system’s file descriptor.

close FILEHANDLE
close

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It
returns true only if it could successfully flush the buffers and close the file. If you have
been writing to a file, then close can be used as an effective method of checking that
information has been successfully written. For example:

open (DATA, "+<data.txt") || die "Can't open data.txt";
#do some work
close (DATA) || die "Couldn't close file properly";

However, if you are not worried about the file condition (for example, you are
reading from a file), you do not need to close a filehandle before reassigning the
filehandle to a new file. The open function implicitly closes the previous file before
opening the new one, but be warned that there is no way of guaranteeing the file status
in this way.

When you open a pipe, either via the pipe function or via open, the function will
return false if one of the related system calls fails. Alternatively, if the program called
via the pipe returns an exit status other than zero, the return value from the called
program is placed in $?. In either case, closing a pipe waits for the child process to exit
before returning.

Reading and Writing Filehandles

Once you have an open filehandle, you need to be able to read and write information.
There are a number of different ways of reading and writing data, although it’s likely
you'll stick to one or two methods that you find you prefer.

Chapter 7: Working with Files 173

The <FILEHANDLE> operator

The main method of reading the information from an open filehandle is the
<FILEHANDLE> operator. In a scalar context it returns a single line from the
filehandle. For example:

print "What is your name?\n";
Sname = <STDIN>;
print "Hello $name\n";

I've used STDIN to demonstrate how to read information from the keyboard or
terminal. Since it is already open, I don’t have to worry about opening it beforehand.

When you use the <FILEHANDLE> operator in a list context, it returns a list of
lines from the specified filehandle. For example, to import all the lines from a file into
an array:

open (DATA, "<import.txt") or die "Can't open data";
@lines = <DATA>;
close (DATA) ;

| Although this operation looks dangerous, Perl lets you go ahead and read the entire

contents of a file into a single variable. Perl dynamically allocates all of the memory
it needs. The only limitation is the amount of physical and virtual memory your
machine has.

Although it appears that <FILEHANDLE> only reads in lines from the file, you can
specify a different record separator using the $/ or SINPUT_RECORD_SEPARATOR
variable. This enables you to read in character-separated data files. On the Mac, for
example, a program called TouchBase Pro supports the export of name and address
information using a record separator with an ASCII value of 252; hence you could use
Perl to import this information using a script like this:

open (DATA, "+<tbpro.dat") or die "Can't open tbpro.dat, $!\n";

§/ = "\374",;
while (<DATA>)
{

Process and update a record

}

174

Perl: The Complete Reference

I've introduced two new things here. One is the use of the special $! variable to
report the error returned by the open function if it fails. The other is that I've enclosed
the <FILEHANDLE> operator within a while loop. Because the <FILEHANDLE>
operator returns a single record in a scalar context, you can use it within a while loop
to work through a file until the end. Each iteration of the loop will return a new record,
and the data is placed into the $_ default input space.

readline
The readline function is actually the internal function used by Perl to handle the
<FILEHANDLE> operator function.

readline EXPR

The only difference is that readline accepts an expression directly, instead of the usual
filehandle. This means you need to pass a typeglob to the readline function, instead of
the normal filehandle. However, the same rules apply. The function reads in records
from the filehandle using the value of $/ as a record separator. So to duplicate the
while statement shown earlier, you would use

while (readline *DATA)

getc

The getc function returns a single character from the specified FILEHANDLE, or
STDIN if none is specified:

getc FILEHANDLE
getc

If there was an error, or the filehandle is at end of file, then undef is returned
instead. Unfortunately, because of the buffering on filehandles, you can’t use it
effectively to get nonbuffered single characters. There is a trick for this, and we’ll
examine some techniques for this in Chapter 13.

read

Whereas the <FILEHANDLE> operator or readline function reads data from a
filehandle using the input record separator, the read function reads a block of
information from the buffered filehandle:

read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH

Chapter 7: Working with Files 175

The length of the data read is defined by LENGTH, and the data is placed at the start
of SCALAR if no OFFSET is specified. Otherwise data is placed after OFFSET bytes
in SCALAR, allowing you to append information from the filehandle to the existing
scalar string. The function returns the number of bytes read on success, zero at end of
file, or undef if there was an error.

This function can be used to read fixed-length records from files, just like the system
fread() function on which it is based. However, it must be used in combination with print
and seek to ensure that the buffering system works correctly without overwriting existing
data. For a more reliable method of reading and writing fixed-length data, and for the
equivalent of the system read() function, see the section “sysread” later in the chapter.

print

For all the different methods used for reading information from filehandles, the main
function for writing information back is the print function. Unlike in C, in Perl print is
not just used for outputting information to the screen; it can be used to print information
to any open filehandle. This is largely due to the way Perl structures its internal data.
Because scalars are stored precisely, without using the traditional null termination seen
in other languages, it’s safe to use the print function to output both variable and fixed-
length information.

print FILEHANDLE LIST
print LIST
print

| The most common error a new Perl programmer makes is to place a comma between
FILEHANDLE and LIST. This often causes undesired results, because to the print
function, the comma makes FILEHANDLE the first element of the LIST to be evaluated
and printed.

The print function prints the evaluated value of LIST to FILEHANDLE, or to the
current output filehandle (STDOUT by default). For example:

print "Hello World!\n";
or

print "Hello", S$name, "\nHow are you today?\n";

176

Perl: The Complete Reference

which prints

Hello Martin
How are you today?

Note that a LIST rather than string interpolation is used in the last example.
You can achieve the same result using a here document with the print function:

print <<EOT;

Hello S$name

How are you today?
EOT

Because the argument to the print function is a LIST, the individual elements of the
list are evaluated before the results are passed to print, which then outputs the values.
You need to be careful when incorporating a print statement within a larger statement,
especially one that itself uses a LIST context. For example, the line

print "Hello ", print "How are you today?";
actually prints
How are you today?Hello 1

The second element to the print function is evaluated first, resulting in the message,
and then the resulting list values are output by print, which explains the 1—the return
value from the nested print function.

To get around this problem, you can use parentheses to enclose the list of values
for print,

print ("Hello ") ,print "How are you today?";

which correctly outputs the message “Hello How are you today?” However, care
should be taken with the parentheses, since you can also get unexpected results:

print (1+2)*3, "\n";

Only the first calculation is printed, since the parser assumes that the parentheses
specify the LIST to the print function. The remaining values are ignored, since they no

Chapter 7: Working with Files

longer form part of a valid expression. Perl doesn’t produce an error because you are
still defining valid Perl code—even though the values of the list are never used.
The correct way to write the preceding equation is

print (((1+2)*3),"\n") ;

If no LIST is specified, the value of $_ is printed instead. It returns true (1) on success
and zero on failure.

printf

Although print is incredibly useful, it suffers from a lack of format. The Perl parser
decides how a particular value is printed. This means that floating point numbers are
printed as such, when you may wish to restrict the number of places past the decimal
point that the number is printed. Alternatively, you may wish to left- rather than right-
justify strings when you print them.

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

Within C, the only function available is printf, which uses a formatting string as
the first element and formats the remaining values in the list according to the format
specified in the format string. Each format is called a format conversion and is made up
of an initial percent sign, followed by some optional flags, and finally a single character
that defines how the value in the list is printed. Each format conversion string relates to
the corresponding value in the remainder of the argument list.

For example, the statement

printf "%d\n", 3.1415126;

only prints the number 3. The “%d” conversion format determines that an integer
should be printed. Alternatively, you can define a “currency” format like this,

printf "The cost is $%6.2f\n",499;
which would print
The cost is $499.00

The printf function accepts the format conversions in Table 7-4.

177

178 Perl: The Complete Reference

Format Result

%% A percent sign.

Yoc A character with the given ASCII code.

%os A string.

%d A signed integer (decimal).

%ou An unsigned integer (decimal).

%0 An unsigned integer (octal).

YoX An unsigned integer (hexadecimal).

%X An unsigned integer (hexadecimal using uppercase characters).

Y%oe A floating point number (scientific notation).

%E A floating point number (scientific notation using “E” in place of “e”).

%of A floating point number (fixed decimal notation).

%g A floating point number (%e of %f notation according to value size).

%G A floating point number (as %g, but using “E” in place of “e” when
appropriate).

Y%p A pointer (prints the memory address of the value in hexadecimal).

%ob An unsigned integer in binary.

%n Stores the number of characters output so far into the next variable in
the parameter list.

Yol A synonym for %d.

%D A synonym for C %Id.

%U A synonym for C %Ilu.

%0 A synonym for C %Ilo.

%F A synonym for C %f.

Table 7-4. Conversion Formats for printf

Perl also supports flags that optionally adjust the output format. These are specified
between the % and conversion letter, as shown in Table 7-5.

Chapter 7: Working with Files

Flag Result

space Prefix positive number with a space.

+ Prefix positive number with a plus sign.

- Left-justify within field.

0 Use zeros, not spaces, to right-justify.

Prefix non-zero octal with “0” and hexadecimal with “0x.”

number Minimum field width.

number Specify precision (number of digits after decimal point) for floating
point numbers.

1 Interpret integer as C type “long” or “unsigned long.”

h Interpret integer as C type “short” or “unsigned short.”

v Interpret integer as Perl’s standard integer type.

v Interpret the string as a vector of integers (v-string)—output as a
series of numbers separated by dots, or by an arbitrary string
supplied by the argument list when the flag is preceded by *.

Table 7-5. fFormatting Flags for printf Conversion Formats

The v format is useful for displaying ordinal values of characters within strings.

For example:

printf "Perl's version is vsvd\n", $7V;

Note that the v format is only a modifier for the true format in which the information
will be output. We can also therefore use it to output the information in decimal, or
hex, or even as a series of strings:

printf "IP address: %vd\n", saddr;
printf "IPvée address: %vX\n", saddr;

179

180

Perl: The Complete Reference

The special * format character tells Perl to accept the corresponding argument
as the separating character in lieu of the period, so we could print out an Ethernet
address using

printf "Ethernet address: %$*vX\n", %addr;

Nonbuffered 1/0

Using the standard read and print functions can cause problems if you want to access
fixed blocks of data that are not separated by a recognizable record or if you want to
avoid the problems associated with buffered input. In particular, this can cause delayed
reads and writes, and, overall, make the system seem inefficient compared to a direct
access system.

To get around this, you can use the sysread and syswrite functions, which emulate
the underlying fread and fwrite functions. They read and write a block of data of a
specified size, ignoring the usual field and record boundaries of the <FILEHANDLE>
operator and the read and print functions.

sysread
The sysread function reads a fixed number of bytes from a specified filehandle into a
scalar variable:

sysread FILEHANDLE, SCALAR, LENGTH, OFFSET
sysread FILEHANDLE, SCALAR, LENGTH

If OFFSET is specified, then data is written to SCALAR from OFFSET bytes, effectively
appending the information from a specific point. If OFFSET is negative, data is written
from the number of bytes specified counted backward from the end of the string.

The function is based on the system read() function, and therefore it avoids the
normal buffering supported by standard streams-based stdio functions.

syswrite
The syswrite function is the exact opposite of sysread. It writes a fixed-sized block of
information from a scalar to a filehandle:

syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET
syswrite FILEHANDLE, SCALAR, LENGTH

If OFFSET has been specified, then LENGTH bytes are read from the SCALAR and
written to FILEHANDLE. If the length of the scalar is less than LENGTH, the data is
padded with nulls.

Chapter 7: Working with Files

In both cases, you should avoid using the sysread and syswrite functions with the
functions that do use buffered I/O, including print, seek, tell, write, and especially read.

If you use these two functions in combination with the sysseek function (discussed
later in the chapter), you can update a database with a fixed record size:

open (DATABASE, "+<datafile") or die "Can't open datafile";
Srecloc = 0;
while (sysread (DATABASE, $Srecord, 80))
{
Find the record we're looking for
if ($found)

{
}

Srecloc += 80; #Otherwise, record the next record start

last; # quit out of the read loop

}

Update the information
sysseek (DATABASE, $recloc, SEEK SET); #Go back to the start of the record
syswrite (DATABASE, Srecord, 80) ; #Write record back, replacing previous

You could use the tell function, since that takes into account the usual buffering; so
you have to calculate the file position manually by totaling up the bytes read from the
database. If you had used read, seek, and print, then the standard buffering used may
have affected the results, probably overwriting information. Using sysread guarantees
that the information read and written from the filehandle is what you received and
supplied.

Locating Your Position Within a File

When reading and writing files using the standard line-based or record-based methods,
you are normally processing individual records in sequence—outputting or formatting
the results as you read in the entire file in sequence. However, if you are accessing
fixed-length information—for example, a database—you are likely to require access

to the information in a more random fashion. In order to work correctly, you need to
be able to discover your current location and set a new location within the file.

tell

The first requirement is to find your position within a file, which you do using the
tell function:

tell FILEHANDLE
tell

181

182

Perl: The Complete Reference

This returns the position of the file pointer, in bytes, within FILEHANDLE if specified,
or the current default selected filehandle if none is specified. The function returns
undef if there is a problem getting the file position information, since a value of zero
could just indicate that you're at the start of the file.

seek

The seek function positions the file pointer to the specified number of bytes within
a file:

seek FILEHANDLE, POSITION, WHENCE

The function uses the fseek system function, and you have the same ability to position
relative to three different points: the start, the end, and the current position. You do this by
specifying a value for WHENCE. The possible values are 0, 1, and 2 for positions relative
to the start of the file, the current position within the file, and end of the file. If you import
the I0::Seekable module, you can use the constants SEEK_SET, SEEK_CUR, and
SEEK_END, respectively.

Zero sets the positioning relative to the start of the file. For example, the line

seek DATA, 256, O0;

sets the file pointer to the 256th byte in the file. Using a value of one sets the position
relative to the current position; so the line

seek DATA, 128, 1;
moves the file point onto byte 384, while the line
seek DATA, -128, SEEK CUR;

moves back to byte 256.

A WHENCE value of two moves the file relative to the end of the file, and the value
of POSITION is generally specified as a negative number. You can move to a point 80
bytes from the end of the file using a line like this:

seek DATA, -80, SEEK END;

It's worth noting that the seek function resets the end-of-file condition. You can
use the SEEK_CUR constant with a WHENCE value of zero to achieve this, since the
overall effect is to move nowhere. If you were to use the SEEK_SET or SEEK_END
function, you’d have to use the tell function to discover the current location.

Chapter 7: Working with Files

sysseek

As you already know, the bulk of the functions that use filehandles rely on the
buffering provided by the system’s stdio functions. The sysseek function is essentially
identical to the seek function, except that it ignores the buffering on filehandles:

sysseek FILEHANDLE, WHENCE, POSITION

In the earlier database example, you might want to move to the last record in a
database, which you could do with

sysseek DATABASE, -80, 2;

Miscellaneous Control Functions

A few functions do not conveniently fall into one of the sections we have already
discussed. They are functions that primarily control the operation or control of a
filehandle, or they may return some additional information for a specific filehandle.

binmode

On older operating systems, there is a distinction between textual and binary files. The
difference occurs because Perl converts automatically between external file formats that
contain two characters for line separation. MS-DOS, for example, uses CR LF to terminate
lines, which Perl translates internally to LF, converting them back when information

is written.

binmode FILEHANDLE

This obviously causes a problem when opening files for binary access, since you
will lose information in the internal representation and can corrupt the files due to the
conversion process. To get around this problem, you can use the binmode function,
which forces Perl to ignore line termination, thus preventing it from doing any form
of conversion. To use it, open a filehandle, and then call the binmode function with the
new filehandle. For example:

open (DATA, "+<input.bin") or die "Couldn't open the file input.bin\n";
binmode (DATA) or die "Couldn't set binary mode on input.bin\n";

The binmode function returns the usual true/false on success/failure. Once set,
there is no way to unset binary mode short of closing the filehandle and reopening it,
although you’re unlikely to want to change the format of an open file anyway.

184

Perl: The Complete Reference

The function has no effect on systems that make no distinction between formats,
such as Unix, Mac OS, and Windows.

eof

Although all functions and operators that read information automatically detect the
end-of-file condition and return a suitable error code to the user, it is sometimes necessary
to check the status outside of such a test. The eof function supports this action:

eof FILEHANDLE
eof ()
eof

If eof is specified with a FILEHANDLE, then it checks whether the next read from
the specified filehandle will return an end-of-file condition. The function returns true if
the end-of-file condition exists, or undef otherwise.

When called with parentheses, it returns true when the end of file has been reached
for the last file within a while(<>) loop (see Chapter 9). For example, the following
code prints an error message when it realizes it’s running out of source text:

while (<>)

{
if (eocf ())
{
}

print "Running out of data!!\n";

When used without a filehandle or parentheses, the function detects the end-of-file
condition for the end of file within the current file of a while(<>) loop. So the next
example prints a separator after each file that is printed:

while (<>)

{

print;
if (eof)

{
}

print "\n",'=' x 50,"\n\n";

Chapter 7: Working with Files

The actual method used by Perl for discovering the end-of-file condition is to get a
byte of information from the required filehandle and then push the character back onto
the input stream of the filehandle with the C ungetc() function. This makes it useless in
an interactive context, so it may catch keystrokes that you are trying to read.

fileno

The fileno function returns the underlying operating system file descriptor for the
specified filehandle:

fileno FILEHANDLE

Essentially this function is only used when you require the file descriptor number
instead of the filehandle. The select function is a classic example that requires the
number in order to create the necessary bitsets used to monitor the filehandles. The
function can also be used when duplicating filehandles (although you can do that
easier by name) and detecting whether two filehandles are duplicated:

print "Dupes\n" if (fileno(DATA) == fileno(SRC)) ;

select

There are two forms of select. One sets the default filehandle, and the other is used for
the more complex act of handling multiple I/O effectively. We will deal only with the
first in this section.

select FILEHANDLE
select

The select function returns the default filehandle name and sets the default filehandle
to FILEHANDLE. This is the default filehandle used by functions such as print and
read when the user does not specify a FILEHANDLE. If no FILEHANDLE is specified,
the name of the current filehandle is returned.

For example, to switch buffering off for another filehandle, you could use this code:

Sstdfh = select DATA;
S| = 1;
select $stdfh;

This works because select returns the current filehandle before setting it to the new
supplied value.

185

186

Perl: The Complete Reference

This trick is also sometimes useful when you are formatting and producing reports
using the Perl reporting mechanism. In both cases, however, there are now convenient
ways of modifying report formats and setting the buffering of filehandles.

If you import the FileHandle module, then to switch off buffering, you can use

use FileHandle;
autoflush (DATA) ;

Alternatively, using the method syntax, you can set the format options for two
separate reports:

use FileHandle;
DETAILS->format_top_name ("Detailed Phone Statistics");
SUMMARY->format_top_name ("Summary Phone Statistics");

This virtually eliminates the need for select altogether, but it remains for historical
compatibility.

truncate
You can truncate (empty) a specific filehandle to trim it down to a specific size:

truncate FILEHANDLE, LENGTH

For example, to reset the size of an error log, perhaps after the full contents have
been printed, you can use this line:

truncate LOGFILE, 1024;

The function causes a fatal error if your system does not support the underlying
truncate function, or returns true if the operation is successful.

File Management

For most people, the bulk of the data they want to process comes from the contents of
a file. However, a significant amount of information is stored along with file data. The
most obvious is the file’s name, but this is often coupled with additional information
about the file. This information is often called metadata, since it refers to metaphorical
information about a file, rather than the file data itself. The exact specification of this
information is reliant on the operating system, but it usually includes permissions

(or attributes), ownership, and more trivial information such as modification times
and the file size.

Chapter 7: Working with Files

Perl provides an entire suite of functions for determining the metadata of a file.
We'll start by looking at the basic test operators, -X, which return a Boolean response
to simple queries about a specific file, such as whether the file can be read or written to.
There is also a simple operator for finding the size, in bytes, of a specified file. We then
move on to the stat and Istat functions, which return extended information from the
directory entry for the specified file or link.

There is also a series of functions that enable you to create and manage files, including
deleting files, creating hard and symbolic links, and obtaining the location of the file or
directory that a particular link points to. We will also be examining methods for finding
out the list of available files in a particular directory and how to access the entire
directory contents.

Finally, we’ll look at the more advanced operations available for control filehandles
and I/O with a range of files using fentl, ioctl, and the select function.

File Information

You can test certain features very quickly within Perl using a series of test operators
known collectively as -X tests. The file test operators take either a file name or a
filehandle, returning true, false, or a value, depending on the operator being used.
The format of the operator is as follows:

-X EXPR
-X FILEHANDLE
-X

If you do not specify a file to get the information from, the operator uses the value
of $_ as a file name for all tests except -t, which instead uses STDIN. The full list of
available tests is shown in Table 7-6.

For example, to perform a quick test of the various permissions on a file, you might
use a script like this:

my (@description, $size);

if (-e S$file)

{
push @description, 'binary' if (-B _);
push @description, 'a socket' if (-S);
push @description, 'a text file' 1if (-T _);
push @description, 'a block special file' if (-b);
push @description, 'a character special file' if (-c _);
push @description, 'a directory' if (-d _);
push @description, 'executable' if (-x _);
push @description, (($size = -s)) ? "$size bytes" : 'empty';
print "$file is ", join(', ',@description),"\n";

188

Perl: The Complete Reference

Operator Description
-A Age of file (at script startup) in days since modification.
-B Is it a binary file?
-C Age of file (at script startup) in days since modification.
-M Age of file (at script startup) in days since modification.
-0 Is the file owned by the real user ID?
-R Is the file readable by the real user ID or real group?
-S Is the file a socket?
-T Is it a text file?
-W Is the file writable by the real user ID or real group?
-X Is the file executable by the real user ID or real group?
-b Is it a block special file?
-c Is it a character special file?
-d Is the file a directory?
-e Does the file exist?
-f Is it a plain file?
-g Does the file have the setgid bit set?
-k Does the file have the sticky bit set?
-1 Is the file a symbolic link?
-0 Is the file owned by the effective user ID?
P Is the file a named pipe?
-1 Is the file readable by the effective user or group ID?
-S Returns the size of the file, with zero referring to an empty file.
-t Is the filehandle opened by a TTY (terminal)?
-u Does the file have the setuid bit set?
-w Is the file writable by the effective user or group ID?
-X Is the file executable by the effective user or group ID?
-z Is the file size zero?
Table 7-6. File Test Operators

Chapter 7: Working with Files 189

Note that after the first test, I've used a special character, the underscore, which is a
special filehandle. This is a buffer that holds the information from the last file name or
filehandle test, or the last stat command. Using this special filehandle is more efficient
than continually specifying the file, since this special filehandle stores all of the status
information for the last file accessed. If you specify each file or filehandle individually,
the physical device holding the file will be polled each time for the information.

| Be careful of foreign language files with high-bit or special characters, such as characters
with accents. They can sometimes be misinterpreted as a binary file when using -B or -T.

Beyond this standard set of tests, there is also a separate stat command that obtains
further information about the file specified, including the physical device, underlying
file system parameters such as the inode number, the owner and group permissions,
and the access and modification times for the file. The information is returned by the
function as a list:

(sdev, S$Sinode, Smode, $nlink, Suid, sgid, Srdev
Srdev, S$size, Satime, Smtime, Sctime, Sblksize, Sblocks) = stat S$file;

The full list of information supplied is shown in Table 7-7.

The stat function uses the operating system stat() function to obtain information
directly from the inode (see sidebar), returning the list. The information is very raw; for
example, it returns user IDs rather than names, but using other functions seen elsewhere
in this chapter, it’s possible to extract the information to make it more usable.

The most complex procedure is the extraction of the permissions information,
which is supplied back to use as a number, but needs to be treated as an octal value
that many Unix programmers will be familiar with. The following example shows one

Inodes
An inode is the name for a directory entry within a file system. The term “inode”
comes from Unix, although all operating systems have a similar term for the inode.
Both Macs and NT use the term directory entry. Regardless of the operating system
or file system type, the primary purpose for an inode or directory entry is to store
the information about the physical location of the data that constitutes a file on the
physical (or logical) device.

Because this is effectively a mapping structure between the data and the name
the user gives the file, an inode is also used to store other information such as
the ownership and security information and other data obtainable with the stat
function. Inodes also play a part in the management of files.

190 Perl: The Complete Reference

Element Short Name Description

0 dev Device number of file system.

1 inode Inode number.

2 mode File mode (type and permissions).

3 nlink Number of (hard) links to the file.

4 uid Numeric user ID of file’s owner.

5 gid Numeric group ID of file’s owner.

6 rdev The device identifier (special files only).

7 size File size, in bytes.

8 atime Last access time since the epoch.

9 mtime Last modify time since the epoch.

10 ctime Inode change time (not creation time!) since

the epoch.

11 blksize Preferred block size for file system I/O.

12 blocks Actual number of blocks allocated.
Table 7-7. Data Returned by the stat Function

method for extracting the information into a usable form using the logical and operator
to compare known values against the value returned.

for $file (@ARGV)

{

my ($mode, $nlinks, $uid, $gid, $size,Smtime) = (stat(sfile)) [2..5,7,9];
printf ("%s %2d %-10s %-10s %8d %s %s\n",extperms ($mode),
Snlinks,

scalar getpwuid(suid),
scalar getgrgid(suid),
Ssize,

scalar localtime (Smtime),
sfile);

Chapter 7: Working with Files 191

sub extperms ()

{
($mode) = @_;
my Sperms = '-' x 9;

substr ($perms,0,1) = 'r' if (Smode & 00400) ;
substr($perms,1,1) = 'w' 1if (Smode & 00200) ;
substr($perms,2,1) = 'x' if (Smode & 00100) ;
substr ($perms,3,1) = 'r' if (Smode & 00040) ;
substr($perms,4,1) = 'w' if (Smode & 00020) ;
substr ($perms,5,1) = 'x' if ($Smode & 00010) ;
substr ($perms,6,1) = 'r' if (Smode & 00004) ;
substr ($perms,7,1) = 'w' if (Smode & 00002) ;
substr ($perms,8,1) = 'x' if ($Smode & 00001) ;
substr ($perms,2,1) = 's' if (Smode & 04000) ;
substr ($Sperms,5,1) 's' if (Smode & 02000) ;
substr (Sperms,8,1) = 't' if (Smode & 01000) ;

Sperms;

The script largely emulates the Unix 1s command or, indeed, the Windows dir
command. When run, it produces output similar to this:

rwXr-xr-x 7 root root 512 Fri Jun 12 10:00:50 1998 /usr/local/atalk
rwxr-xXr-x 2 root root 1536 Tue Nov 3 22:17:09 1998 /usr/local/backups
rwxXr-xXr-x 4 root root 3584 Wed Feb 17 12:12:32 1999 /usr/local/bin
rwXr-xXr-x 3 root root 512 Fri Jun 12 10:03:19 1998 /usr/local/com
rwXrwxrwx 15 root root 1024 Sat Feb 20 06:57:26 1999 /usr/local/contrib
rwxr-xr-x 2 root root 512 Sat Feb 20 07:04:19 1999 /usr/local/cpan
rWXrwXrwx 5 root root 512 Wed Feb 17 13:08:56 1999 /usr/local/etc
rwxrwxrwx 10 root root 512 Tue Jan 19 20:56:41 1999 /usr/local/http
rwxXr-xXr-x 6 root root 512 Thu Aug 27 21:31:21 1998 /usr/local/include
rwXr-xXr-x 2 root root 4096 Mon Feb 8 10:14:58 1999 /usr/local/info
rwxr-xr-x 11 root root 1024 Wed Jan 20 16:39:53 1999 /usr/local/lib
rwXr-xr-x 4 root root 512 Fri Jun 12 10:30:39 1998 /usr/local/libexec
TWX------ 2 root root 8192 Thu Jun 26 13:31:45 1997 /usr/local/lost+found

rwxr-xr-x 16 root root 512 Wed Jan 20 16:39:35 1999 /usr/local/man
rwxr-xr-x 11 root root 512 Thu Jan 21 09:56:08 1999 /usr/local/nsr
rwXr-xXr-x 10 root root 512 Wed Feb 17 12:27:15 1999 /usr/local/gmail
rwXr-Xr-x 6 root root 512 Tue Jun 16 22:27:18 1998 /usr/local/samba
rwXr-xr-x 8 root root 512 Tue Jun 16 23:52:46 1998 /usr/local/share

192 Perl: The Complete Reference

When accessing a symbolic link on a Unix system, the information returned by stat
is that of the file the link points to, rather than the link itself. To return the information
for the link (rather than the file it points to), you need to use the Istat function:

lstat EXPR

This returns exactly the same information as stat. (Refer to Table 7-7 for the list of
information returned.) If your system does not support symbolic links, a normal stat
operation is done instead.

Basic File Management

Under Unix, files are created on a file system by creating a link to an inode (see the
earlier sidebar), which creates the necessary directory entry that links to the file data.
Many of the functions for managing files therefore have a direct effect on the inode
information without requiring you to access the file. The rename function is the first
of these. It changes the registered name for a file:

rename OLDNAME, NEWNAME

The OLDNAME is the specification of the old file, and NEWNAME is the new name
for the file. The function fails if it is unable to find the file or unable to change
the file name (perhaps because it is open).

The next few functions all directly affect the existence, creation, or information
about a link. The first is the link function. This creates a “hard” link to an existing file.
A hard link is a new inode that points to an existing data stream; that is, it’s a duplicate
directory entry for an existing file. The duplicate has a different name and different
permissions and access times. Only the inode field (from the stat function) is identical
to the original:

link OLDNAME, NEWNAME

Creation of a new hard link updates the link count (the number of links to a file);
the significance of this will be seen shortly. If the function fails, it returns a value of
zero and sets the error string in $!. Note that you cannot create hard links across file
systems, because the new directory entry must refer to the inode of a file on the same
file system. Use symbolic links instead.

Since the notion of a duplicate directory entry for an existing file is a Unix feature,
other operating systems are unlikely to support this option. They may, however,
support symbolic links via the symlink function. Certainly Mac OS and Windows
support symbolic links in the form of aliases and shortcuts, respectively. A symbolic
link is similar in principle to a hard link; however, rather than duplicating the

Chapter 7: Working with Files

information about an existing inode, a symbolic link contains a reference (the path) to
the file you want to link to:

symlink OLDNAME, NEWNAME

Because a symbolic link is a reference to a file, rather than a physical pointer to a
real file, you can create a symbolic link on any file system and have it point to any
other file system.

Symbolic links do not update the link count either. This is significant because the
link count of an inode is used by the file system to determine whether a file is to be
deleted completely. The unlink function deletes a link from a file system. If you a delete
a link, you are only deleting the directory entry that relates the file name you see in the
file list to the physical file. By deleting a link, you effectively remove access to the file.

For most files you create, there will be only one link to the file (the name you originally
gave it). Once the link count in the inode reaches zero, the file system deletes the file in
question. In effect, therefore, the unlink function does not actually delete a file; it only
decrements the link count for the inode number to which the directory entry relates.

unlink LIST

The function accepts a list of files to be deleted, or it uses the value of $_ if you
do not specify a list. Because the file globbing operator and functions return lists,
that means all three of these examples will work:

unlink $file;
unlink @files;
unlink <*.o>;

To delete directories, use the rmdir function. Although Perl supports the deletion of
a directory via unlink (providing you are root and have specified the -U option on the
command line), it’s not advised. Removing the directory entry/inode for a directory
without also deleting the files that refer to that directory can cause serious file system
problems—probably not the effect you want.

Once you have created (or indeed identified) a symbolic link, any references to the
link actually return the file contents that the link points to. This is sensible, since the link
itself contains no valid information. However, you can find out the pathname of the file
that the symbolic link points to using the readlink function:

readlink EXPR

193

194

Perl: The Complete Reference

The function returns the location of the file pointed to by the symbolic link EXPR,
or $_ if none is specified. If the value cannot be determined, or if EXPR is not a symbolic
link, the function returns undef.

Also be aware that symbolic links can be relative to the location of the link, rather
than a full pathname. The value returned to you will only be of any use if you are
currently in the same directory as the link you are reading.

You may remember the access permissions information returned by stat earlier in
this chapter. The access permissions (mode) of a file can also be set using the chmod
function:

chmod MODE, LIST

The MODE should be the numerical value associated with a specific file mode.
Normally, this information is represented as an octal value (as seen earlier). For
example, to change the permissions of a file to be readable by everybody:

chmod 0444, $file;

The most common mistake when using this command is to specify a decimal rather
than octal number. Remember that Perl identifies octal numbers by a leading zero, or
you can use the oct function to convert a decimal value to its octal equivalent.

The LIST is the list of file names whose mode you want to change, and the function
returns the number of files that successfully had their modes changed. To find out which
files have not been successfully modified, you will either need to use a loop or use the
grep function to identify the files in a list. For example:

@failure = grep { not chmod 0444, $_ } efiles;
warn "Unable to change the mode of @failure" if @failure;

To change the user and group ownership of a file, you need to use the chown
function:

chown USERID, GROUPID, LIST

The USERID and GROUPID are the numerical IDs of the user and group, and LIST is
the list of files whose ownership you want to change. For example:

chown 1000,1000,@files;

Like the chmod function, it returns the number of files actually changed. You want to
use a similar trick to the earlier chmod example if you are modifying a number of files.

Chapter 7: Working with Files

Note that the user and group information must be specified numerically. You may
want to use the getpwnam and getgrnam functions to obtain the IDs of user and group
names, as in

chown scalar getpwnam($user), scalar getgrnam($group), @files;

You'll see further examples of obtaining user and group information later in
this chapter.

To modify the last access and modification time for a file, you need to use the
utime function:

utime ATIME, MTIME, LIST

The ATIME and MTIME arguments specify the access and modification times you
wish to set. The values should be specified as the number of seconds that have elapsed
since the epoch. See the section “Time” in Chapter 11 for details on converting between
the epoch value and date format.

For the next example, the time specified is taken from the time function, which
returns the number of seconds since the epoch at the time executed; so this script
effectively emulates the Unix touch command:

Snow = time;
utime $now, Snow, @files;

Note in this example that the time is assigned to a variable before being set. This prevents
two different times being set between invocations and also reduces the number of
system calls. If you fail to specify a value, the corresponding time for the file is not
modified. Like the previous two commands, the function returns the number of files
that were successfully modified.

When creating a file using open, sysopen, or other functions, the mode of the file is
determined by a combination of the mode specified and the current umask. The umask
is an octal permissions mask that specifies the permissions bits that cannot be set when
a file is created. For example, with a umask of 0077, the read, write, and execute bits for
group and other users cannot be set, even if the function creating the file specifies them.

umask EXPR
umask

The function returns the current mode, and if you do not specify EXPR, there is no
modification of any kind to the umask.

195

196

Perl: The Complete Reference

Accessing Directory Entries

If you do not already know the name of the file you are trying to access, or if you want
to specify a list of files but don’t know where to get the list, you can use one of three
methods. The first is similar to the filehandle operator:

<*>

The pattern between the brackets is matched against the list of files in the current
directory, or that specified within the pattern.

The pattern supports the standard file pattern matching of many shells on the Unix
platform. Users of Mac and NT platforms may be unfamiliar with these, although they
follow guidelines similar to the basic pattern matching supported by Perl regular ex-
pressions. The supported formats are very basic, and they only support the use of * as
a wildcard for any number of characters and ? as a wildcard for a single character. For

u o,

example, to get a list of all of the files ending in “.c”:
@files = <*.c>;

Other patterns that you may be familiar with within the shell, such as braces
(for multiple options) and square brackets (for a single character from a set), are
not supported. However, this is not a problem, since you can use the grep function
(discussed in the next chapter) to select a more specific list of files.

You can also use the standard variable interpolation to use a scalar variable as the
pattern, but don’t do

@files = <S$Spatterns;

since Perl will assume you're referring to an indirect filehandle (one specified by a
variable, rather than a static tag). Instead, either use braces to force interpretation as
a file name glob,

efiles = <${pattern}s;

or use the glob function, which is actually what calling the <PATTERN> operator does
anyway. The glob function is also clearer: it is obvious to any reader that you are trying
to do a file name glob, not access a filehandle.

The format for the glob function is identical to the operator. The earlier C source
file example can be restated as

@files = glob("*.c");

Chapter 7: Working with Files

Whether you use the operator or the function, the return value in a scalar context is
the next entry matching the specified pattern. If you don’t assign the value returned to
a variable in a while loop, the value is assigned to $_, so you can do

while (<*.c>)

{
}

Both the operator and function methods for file name globbing invoke a subshell in
order to expand the pattern supplied to a suitable file list. For quick searches, this is not
a major issue, but because you are using an external application to produce the list, you
may run into a combination of both performance and memory allocation problems.
This is definitely the case if your shell does not support large argument lists (and most
shells don’t).

To get around this problem, you can use the opendir function set. This facility
is an interface to the underlying routines that the operating system supports, and it
functions rather like a directory-specific filehandle. In fact, you access it in a similar
way, using a directory handle:

opendir DIRHANDLE, EXPR
readdir DIRHANDLE
rewinddir DIRHANDLE
telldir DIRHANDLE
seekdir DIRHANDLE, POS
closedir DIRHANDLE

To use opendir, first you need to open the directory handle and associate it with
the directory you want to examine. The EXPR should be a directory name, not a file
specification, since the function set does not handle file name globbing. Once opened,
subsequent reads to readdir on the specified filehandle return the next file name in
the directory in a scalar context. In a list context, the entire directory contents are
returned. Once you have finished reading the directory names, you need to close the
directory handle.

To list the contents of the directory:

opendir (DIR, '.') or die "Couldn't open directory, s$!";
while ($file = readdir DIR)

{
}

close DIR;

print "sSfile\n";

197

198 Perl: The Complete Reference

This circumvents all of the memory problems associated with the globbing operator
and function, since each entry of the directory is retrieved individually.

Because the process of reading in from a directory is associated with a specific
directory handle, you can have multiple handles open simultaneously. You can also
record your position within a directory handle using the telldir function. The return
value is an integer representing the current location within the directory list held
within the instance of the directory handle. Unfortunately, even over short periods
of time, this value is not guaranteed to actually return you to the location it originally
indicated. This is because the number of directory entries may increase or decrease in
size between the time you obtain the position information and when you attempt to
move to that position using the seekdir function.

The best solution in these instances is to record not the theoretical position within
an arbitrary directory list, but instead the actual pathname and file name you want to
store. If all you want to do is start reading the directory entry list again, you can use
the rewinddir function. This resets the pointer within the directory handle to the start
of the list without the file pattern being reevaluated. Due to the nature of the directory
handle system, a more reliable method for processing the same list of files a number of
times is to use an array—providing, as ever, that the list size is not so great that it starts
eating up too much memory in the process.

To emulate the globbing features of the glob function, you will need to check each
individual file name or pass the list returned by readdir through the grep function. You
can also use the opportunity to sort the list returned, since the readdir function does not
return a sorted list. For example, to print the list of C source code files, you might use

opendir (DIR, '.') or die "Couldn't open directory, $!";
foreach (sort grep(/”*.*\.c$/,readdir (DIR)))
{

print "s \n";

}

closedir DIR;

We'll be looking at the sort and grep functions in more depth in the next chapter.

Managing Directories

All programs are aware of their current directory. This is either the directory they
reside in or the current directory of the application (such as a shell) that called the
program. The system chdir() function is supported within Perl in order to change
the current directory for the current process.

chdir EXPR
chdir

Chapter 7: Working with Files

If you do not specify a directory to change to, Perl changes to the home directory
for the current user. Under Unix, this information is derived from the user’s entry in
the /etc/passwd file, and under NT, it’s the home directory defined in the environment
variable % HOME%. On the Mac, if you do not specify a directory, it simply changes
to the current directory (which means that it does nothing!). The function returns false
if the function failed, or true if it succeeded:

chdir or die "Couldn't change back to the home directory, $!";

Perl does not support a function internally for discovering the current working
directory. What it does provide, however, is a Cwd module as part of the standard
distribution:

use Cwd;
print getcwd(),"\n";

The method used to discover the current working directory is basically the one that
works on your system. In practice, most OSs support a getcwd function; others support
a pwd command that returns the current directory. The Cwd module simply chooses
the one that works each time getcwd is called.

For security reasons, it can sometimes be necessary to create your own directory
structure that contains a reduced set of devices and utilities, or you may want to
restrict a user-defined function or process to a similar environment. Under Unix,
you also have the ability to change the root directory—the directory from which
all “/” references are taken. This is not implemented under either the Mac OS or
Windows versions.

By changing the “root” of the current process to another directory, such as
/etc/miniroot, you can guarantee that a call to a program of the form /sbin/shutdown
actually executes /etc/miniroot/sbin/shutdown. The user may be unaware of the
restricted directory structure and will be unable to access any directories above the
one configured as the new root. For example, here’s a line taken from a Perl-based web
server. Without the restriction of the chroot function, it would be possible for a cracker
to access the web page /etc/passwd—not the level of access we want to provide.

unless (chroot ("/users/martinb"))

{

warn "You are not root!\n" if ($>);
die "Cannot change to root directory, $!";

You can only use the chroot function if you are root, and once set, there is no way
to unset the root directory change (since all new references are relative to the previous

199

200

Perl: The Complete Reference

chroot function call). The effect is inherited both by the current function and by any
children, including those generated by fork, implicitly or otherwise.
You can make a new directory using the mkdir function:

mkdir EXPR, MODE

The EXPR argument is the name of the directory you would like to create, with the
permissions specified by the octal MODE. If your operating system does not support
a mkdir function within the C library, the command line mkdir program will be called,
with EXPR as the argument; so be wary of creating a large number of directories with
this function if this is the case. Calling the external program puts extra overhead on the
system, as it executes an additional program.

To remove a directory, use the rmdir function:

rmdir EXPR

The directory must be empty for the function to work. If an error occurs, the return
value will be zero, and the $! variable will be populated with the error message. If the
directory is not empty, the message is usually something like “File Exists”; so you may
want to test specifically for this during execution, as in this example:

unless (rmdir (s$dir))

{ if ($! =~ /File Exists/i)
{ warn "Error removing directory: The directory is not empty";
ilse
{ warn "Error removing directory: $!";
}
}

If you fail to specify an expression, the directory to remove will be taken from the
$_ variable, which may not be the desired result.

File Control with fcntl

The fentl function is the Perl interface to the system fentl() function, which enables
certain file control operations on your files that are not supported by other functions.

Chapter 7: Working with Files

Typically, these are specific to an operating system, although many features are
available across a number of different platforms.

fentl FILEHANDLE, FUNCTION, SCALAR

The function performs the function specified by FUNCTION, using SCALAR on
FILEHANDLE. SCALAR either contains a value to be used by the function or is the
variable used to store any information returned by the corresponding fentl function.
To use fentl effectively, you will probably want to import the Fentl module with a

use Fcntl;

For all subfunctions of the fentl function, the return value is slightly different in
Perl from that returned by the operating system. A value of -1 from the operating
system is returned as undef by Perl, while a value of 0 from the system is returned
by Perl as 0 but true. This equates to true in a test condition, but 0 when evaluated as
a number. For all other values the return values are the same for the operating system
and Perl.

Since the fentl functions are operating system specific, no details will be given on the
fentl function at this stage, but see Table 7-8 for some sample functions and Table 7-9
for a description of many of the constants you will need. You'll need to refer to your
operating system documentation for details on the fentl() functions supported on
your system, or examine the Fentl module, which will contain a summarized list of
the functions as a list of constants for use when using the command. We will be using
some of the functions later in this chapter and elsewhere in the book.

If your system does not support fentl(), a fatal error will occur.

Function Description

&F_DUPFD Duplicates the supplied file descriptor, returning the lowest
numbered file descriptor not currently in use. This is roughly
equivalent to the “>&FH” format with the Perl open function.

&F_GETFD Returns the FD_CLOEXEC flag (see the next table) for the
specified filehandle.

&F_SETFD Sets the state of the FD_CLOEXEC flag on the filehandle.

Table 7-8. Example Functions for fentl

201

202

Perl: The Complete Reference

Function

&F_GETFL

&F_SETFL

&F_GETLK

&F_SETLK
&F_SETLKW

Description

Gets the current flags for the specified filehandle. These
flags are identical to those you can specify during a sysopen
function (see Table 7-9 for more information).

Sets the flags for the specified filehandle (see Table 7-9 for
suitable values).

Gets the lock status for a specified filehandle; used to test
whether a particular lock can be set on a file (see “File Locking”
later in the chapter).

Sets or clears a file segment lock (see “File Locking”).

Identical to F_SETLK, except that the process will block until
a read or write lock can be set on the specified filehandle (see
“File Locking”).

Table 7-8. Example Functions for fentl (continued)

Constant

FD_CLOEXEC

O_APPEND
O_BINARY
O_TEXT
O_NDELAY
O_NONBLOCK
O_RDONLY
O_RDWR
O_WRONLY

Description

The close-on-exec flag. If set on a filehandle (it’s set by
default), it will be closed if its file descriptor number is
greater than 2 (that is, not STDIN, STDOUT, or STDERR)
when a new process is forked.

File opened in append mode.
File opened in binary mode.

File opened in text mode.
Non-blocking I/0.
Non-blocking I/0.

File opened in read-only mode.
File opened in read /write mode.

File opened in write-only mode.

Table 7-9. Filehandle Flags for Use with fentl

Chapter 7: Working with Files 203

1/0 Control with ioctl

The ioctl function is similar in principle to the fentl function. It too is a Perl version of
the operating system equivalent ioctl() function.

ioctl FILEHANDLE, FUNCTION, SCALAR

The ioctl function is typically used to set options on devices and data streams,
usually relating directly to the operation of the terminal. You will need to include
the system ioctl.h header file, available in a Perl version, by doing

require 'ioctl.ph';

This will provide you with the necessary constants to use the ioctl function. A value of
-1 from the operating system is returned as undef by Perl, while a value of 0 from the
system is returned by Perl as 0 but true. This equates to true in a test condition, but
zero when evaluated as a number. For all other values the return values are the same
for the operating system and Perl.

As a general rule, calls to ioctl should not be considered portable. When using
terminals for a Perl interface, you may want to consider using a more portable module
such as Tk to do the portability work for you. We'll be examining the use of the terminal
and the Tk module in Chapter 13.

select

The second form of the select function (you may remember the first one was defined
earlier in this chapter and used to set the “default” filehandle for print) is an interface
to the system select() function. This function is for determining whether the filehandles
you have specified are ready to accept input, supply output, or report an exceptional
condition.

select RBITS, WBITS, EBITS, TIMEOUT

The RBITS, WBITS, and EBITS are bitmasks specifying the file descriptors that
you want to monitor for reading, writing, and exceptional status, respectively. You
can specify any of these as undef if you are not interested in the value. The bitsets are
created by placing a value of 1 in each bit, with each bit number being equal to the file
descriptor number (obtainable with fileno) that you want to monitor. You can create
this structure using vec, for example:

vec ($rbits, fileno (DATA) ,1) = 1;

204

Perl: The Complete Reference

The TIMEOUT specifies the interval to wait for the selection to complete. The
select function will block until the time-out expires. If TIMEOUT is 0, the effect is
the same as polling in a round-robin fashion—simply returning the current status
without waiting.

The return value from the function is the number of filehandles that are waiting to
be accessed, or on some platforms, it will return the number of filehandles and the time
remaining on the time-out value:

(Snfound, S$timeleft) = select(Srout=$rin, Swout=Swin, Seout=$ein, S$timeout) ;

The function also replaces the supplied scalar bitmasks with bitmasks defining the
list of filehandles that require attention. The preceding example shows the best method
for using the values of the bitmasks $rin, $win, and $ein while returning the information
into $rout, $wout, and $eout.

The problem with using most filehandles is that in order to monitor and read or
write information from or to them, you need to “poll” each filehandle to see if it’s
ready. This is time consuming, especially with multiple files when a good proportion
of them may not be ready. This is further complicated if your filehandles or network
sockets are blocking (the default status). A blocking filehandle will cause a <FH>
operator or a sysread function to halt execution of the program until some data is
ready to be read. The opposite is also true: if a filehandle or network socket is not
ready to accept data, a print or syswrite function will also wait until it is ready. In
some situations this is ideal; in others, particularly if you are handling multiple
filehandles or a user interface, this is far from ideal.

The solution is to use select, which reports the status of the filehandle without
attempting to access it, thereby ignoring the blocking state. A better alternative is
to set a non-blocking operation on the filehandle using fentl. Non-blocking I/0O with
select works as follows: First you need to open one or more filehandles—either genuine
tiles, pipes, or network sockets—and then set them to be non-blocking using fentl:

use Fcntl;

open (DATA, "1s|") or die "Couldn't open pipe, $!";
if ((fcntl (DATA, &F GETFL,0) & O NONBLOCK) != O NONBLOCK)
{

}

die "Can't set non-blocking status"
unless fcntl (DATA, &F SETFL, (fcntl (DATA, &F GETFL,0) & ~O NONBLOCK)) ;

else

{
}

die "Couldn't get non-blocking status";

Chapter 7: Working with Files 205

Then, once the files are open and ready for access, you need to create the necessary
bitsets for use with the select function. Since we’re only reading from a pipe, we really
only need to create the RBITS bitset, but this example shows creation of all three
for clarity:

Srbits = Swbits = $ebits = '';

vec (Srbits, fileno (DATA), 1) = 1;
vec (Swbits, fileno (DATA), 1) = 1;

$ebits = $rbits | Swbits;

You're now ready to start checking the status of the filehandles you want to
monitor. Typically of course you'd do this in a loop as part of the main execution
process, but for this example, we’ll simply check the status once:

snfound = select(Srreq = S$rbits, Swreq = Swbits, Sereqg = S$ebits, 0);
print "snfound filehandle(s) waiting for input\n";
print "Expecting input from 'ls' command\n" if (Srreq && fileno (DATR));

If you put the preceding example together, and assuming there are no problems
opening the Is command or setting non-blocking on the filehandle, you should get
a result like this:

1 filehandle(s) waiting for input
Expecting input from 'ls' command

The select function has a much easier to use module, IO::Select, which makes it
much easier to manage multiple select file sets. See Chapter 12, where we’ll be looking
at the use of this function for handling multiple network sockets.

File Locking

Using files in a single script environment does not often cause any sort of file access
problems. But if you want to access a file that may be in use by another process (or
another invocation of the same script), you need to support file locking. By “locking”

a file, you can prevent it from being updated by another process at the same time you
are using it. Furthermore, it can be used to stop other processes’ even reading from the
file, allowing you to update a file before it needs to be read by another process.

206 Perl: The Complete Reference

| When locking DBM databases, there is no built-in method for locking in the generic
ODBM/NDBM/SDBM implementations. In these situations you must use flock or
something similar. If you can use GDBM or Berkeley DB, these provide built-in file

locking capabilities as part of the implementation. See Chapter 13 for more information.

The main method for locking within Perl is the flock function.
flock FILEHANDLE, OPERATION

This supports file locking on the specified FILEHANDLE using the system flock(),
fentl() locking, or lockf(), in that order of preference. The exact implementation used
is dependent on what your system supports. OPERATION is one of the static scalar
values defined in Table 7-10, which can be obtained from the Fentl module, although
you must specify the symbols you want to import:

use Fcntl qw/LOCK_SH LOCK_EX LOCK_UN LOCK_NB/;
Here is an example of locking a mailbox before writing:

use Fcntl;

flock DATA, LOCK EX;
print DATA S$message;
flock DATA, LOCK UN;

Note that flock will block process execution until such time as the requested lock
can be achieved. The way to get around this is to use SLOCK_NB, which attempts to
lock the filehandle without blocking. However, caution should be used here: you must

Operation Result

LOCK_SH Set shared lock.
LOCK_EX Set exclusive lock.
LOCK_UN Unlock specified file.
LOCK_NB Set lock without blocking.

Table 7-10. Locking Operations

Chapter 7: Working with Files

make sure you test the result of the lock before you start using the file. When using
$LOCK_NB, the result from flock will be true, irrespective of whether the lock
succeeded.

In nearly all cases file locking is generally advisory, that is, the fact the lock has
been set does not guarantee that another application will not be able to access or
overwrite the file. This is because all applications that use the file need to use the same
tile locking mechanism. This is especially true if the underlying implementation is
through the flock() function because of the way in which flock() sets its locks. You
should also be aware that it is unlikely that flock will work over a networked file
system. If you want to force the use of fentl, you will need to use it directly; so the
equivalent of the earlier example becomes

use Fcntl gw/F_SETLK LOCK EX LOCK UN/;
fentl (DATA, &F SETLK, LOCK_EX) ;

print DATA S$Smessage;

fcntl (DATA, &F SETLK, LOCK_UN) ;

Another alternative is to use a separate file with a .Ick or similar extension and
check for that during execution. This only works if all processes are aware of the
method of locking you are using. Both flock and fentl have the advantage that they
are operating system functions, so the information and locks are shared across the
whole operating system.

In theory this means that a C program that uses file locking will also be aware of the
locks imposed by a Perl script. It also means that all the operating system commands
will also be aware of the locks imposed on different files. Of course, the exact system
you use will often rely on the supported options for the platform you are using; fentl
is the most supported cross-platform solution.

207

This page intentionally left blank.

The

Rejoronce
Chapter 3

Data Manipulation

209

210

Perl: The Complete Reference

another. Perl was originally designed as a system for processing logs and

summarizing and reporting on the information. Because of this focus, a
large proportion of the functions built into Perl are dedicated to the extraction and
recombination of information. For example, Perl includes functions for splitting a line
by a sequence of delimiters, and it can recombine the line later using a different set.

If you can’t do what you want with the built-in functions, then Perl also provides
a mechanism for regular expressions. We can use a regular expression to extract
information, or as an advanced search and replace tool, and as a transliteration tool
for converting or stripping individual characters from a string.

In this chapter, we're going to concentrate on the data-manipulation features built
into Perl, from the basics of numerical calculations through to basic string handling.
We'll also look at the regular expression mechanism and how it works and integrates
into the Perl language.

We'll also take the opportunity to look at the Unicode character system. Unicode
is a standard for displaying strings that supports not only the ASCII standard, which
represents characters by a single byte, but also provides support for multibyte characters,
including those with accents, and also those in non-Latin character sets such as Greek
and kanji (as used in the far east).

Most software is written to work with and modify data in one format or

Working with Numbers

The core numerical ability of Perl is supported through the standard operators that you
should be familiar with. For example, all of the following expressions return the sort of
values you would expect:

Sresult = 3+4;
Sftoc = (212-32)*(5/9);
Ssquare = 16*2;

Beyond these basic operators, Perl also supports a number of functions that fill in
the gaps.

Without exception, all of these functions automatically use the value of $_ if you fail
to specify a variable on which to operate.

abs—the Absolute Value

When you are concerned only with magnitude—for example, when comparing the size
of two objects—the designation of negative or positive is not required. You can use the
abs function to return the absolute value of a number:

print abs(-1.295476);

Chapter 8: Data Manipulation

This should print a value of 1.295476. Supplying a positive value to abs will return the
same positive value or, more correctly, it will return the nondesignated value: all
positive values imply a + sign in front of them.

int—Converting Floating Points to Integers

To convert a floating point number into an integer, you use the int function:
print int abs(-1.295476) ;

This should print a value of 1. The only problem with the int function is that it strictly
removes the fractional component of a number; no rounding of any sort is done. If you
want to return a number that has been rounded to a number of decimal places, use the
printf or sprintf function:

printf ("$.2f",abs(-1.295476)) ;

This will round the number to two decimal places—a value of 1.30 in this example.
Note that the 0 is appended in the output to show the two decimal places.

exp—Raising e to the Power

To perform a normal exponentiation operation on a number, you use the ** operator:
Ssquare = 4**2;

This returns 16, or 4 raised to the power of 2. If you want to raise the natural base
number ¢ to the power, you need to use the exp function:

exp EXPR
exp

If you do not supply an EXPR argument, exp uses the value of the $_variable as the
exponent. For example, to find the square of e:

Ssquare = exp(2);

sqrt—the Square Root

To get the square root of a number, use the built-in sqrt function:

Svar = sqrt(16384);

211

212 Perl: The Complete Reference

To calculate the nth root of a number, use the ** operator with a fractional number.
For example, the following line

S$var = 16384%*(1/2);
is identical to
$var = sqrt (16384);
To find the cube root of 16,777,216, you might use
$var = 16777216**(1/3);

which should return a value of 256.

log—the Logarithm

To find the logarithm (base ¢) of a number, you need to use the log function:

$log = log 1.43;

Trigonometric Functions

There are three built-in trigonometric functions for calculating the arctangent squared
(atan2), cosine (cos), and sine (sin) of a value:

atan2 X,Y
cos EXPR
sin EXPR

If you need access to the arcsine, arccosine, and tangent, then use the POSIX
module, which supplies the corresponding acos, asin, and tan functions.

Unless you are doing trigonometric calculations, there is little use for these
functions in everyday life. However, you can use the sin function to calculate your
biorhythms using the simple script shown next, assuming you know the number
of days you have been alive:

my (Sphys step, $emot step, S$inte step) = (23, 28, 33);
use Math: :Complex;

print "Enter the number of days you been alive:\n";

Chapter 8: Data Manipulation 213

my $alive = <STDIN>;

$phys = int (sin(((pi*(Salive%$phys step))/ ($phys step/2)))*100);
Semot = int(sin(((pi*(salive%S$Semot step))/ (Semot step/2)))*100) ;
$inte = int(sin(((pi*(salive%$inte step))/(Sinte step/2)))*100);

print "Your Physical is $phys$%, Emotional S$Semot%, Intellectual
Sinte%\n";

Conversion Between Bases

Perl provides automatic conversion to decimal for numerical literals specified in
binary, octal, and hexadecimal. However, the translation is not automatic on values
contained within strings, either those defined using string literals or from strings
imported from the outside world (files, user input, etc.).

To convert a string-based literal, use the oct or hex functions. The hex function
converts only hexadecimal numbers supplied with or without the 0x prefix. For
example, the decimal value of the hexadecimal string “ff47ace3” (42,828,873,954) can
be displayed with either of the following statements:

print hex("ff47ace3");
print hex("Oxff47ace3d");

The hex function doesn’t work with other number formats, so for strings that start
with 0, Ob, or 0x, you are better off using the oct function. By default, the oct function
interprets a string without a prefix as an octal string and raises an error if it doesn’t see
it. So this

print oct ("755");
is valid, but this
print oct ("aef");

will fail.
If you supply a string using one of the literal formats that provides the necessary
prefix, oct will convert it, so all of the following are valid:

print oct ("0755") ;
print oct ("Ox7f");
print oct ("0b00100001") ;

214 Perl: The Complete Reference

Both oct and hex default to using the $_ variable if you fail to supply an argument.
To print out a decimal value in hexadecimal, binary, or octal, use printf, or use
sprintf to print a formatted base number to a string;:

printf ("%1lb %lo %1x", oct("0b00010001"), oct("0755"), oct ("Ox7£f"));

See printf in Chapter 7 for more information.

Conversion Between Characters and Numbers

If you want to insert a specific character into a string by its numerical value, you can
use the \0 or \x character escapes:

print "\007";
print "\x07";

These examples print the octal and hexadecimal values; in this case the “bell”
character. Often, though, it is useful to be able to specify a character by its decimal
number and to convert the character back to its decimal equivalent in the ASCII table.

The chr function returns the character matching the value of EXPR, or $_if EXPR is
not specified. The value is matched against the current ASCII table for the operating
system, so it could reveal different values on different platforms for characters with an
ASCII value of 128 or higher. This may or may not be useful.

The ord function returns the numeric value of the first character of EXPR, or $_ if
EXPR is not specified. The value is returned according to the ASCII table and is always
unsigned.

Thus, using the two functions together,

print chr(ord('b'));

we should get the character “b”.

Random Numbers

Perl provides a built-in random number generator. All random numbers need a “seed”
value, which is used in an algorithm, usually based on the precision, or lack thereof, for
a specific calculation. The format for the rand function is

rand EXPR
rand

The function returns a floating-point random number between 0 and EXPR or
between 0 and 1 (including 0, but not including 1) if EXPR is not specified. If you want

Chapter 8: Data Manipulation 215

an integer random number, just use the int function to return a reasonable value, as in
this example:

print int(rand(16)),"\n";

You can use the srand function to seed the random number generator with a
specific value:

srand EXPR

The rand function automatically calls the srand function the first time rand is
called, if you don’t specifically seed the random number generator. The default seed
value is the value returned by the time function, which returns the number of seconds
from the epoch (usually January 1, 1970 UTC—although it’s dependent on your platform).
The problem is that this is not a good seed number because its value is predictable.
Instead, you might want to try a calculation based on a combination of the current
time, the current process ID, and perhaps the user ID, to seed the generator with an
unpredictable value.

I've used the following calculation as a good seed, although it’s far from perfect:

srand((time () * (time() % $]1)) * exp(length($0))**33);

By mixing the unpredictable values of the current time and process ID with predictable
values, such as the length of the current script and the Perl version number, you should
get a reasonable seed value.

The following program calculates the number of random numbers generated before
a duplicate value is returned:

my %$randres;
my $Scounter = 1;

A

srand ((time () (time () % $1)) * exp(length($0))**3$3);

while (my $val = rand())

{

last if (defined($randres{$val}));

print "Current count is $counter\n" if (($counter %10000) == 0);
$randres{$val} = 1;
Scounter++;

}

print "Out of S$counter tries I encountered a duplicate random number\n";

216 Perl: The Complete Reference

Whatever seed value you choose, the internal random number generator is
unlikely to give you more than 500 numbers before a duplicate appears. This makes
it unsuitable for secure purposes, since you need a random number that cannot otherwise
be predicted. The Math::TrulyRandom module provides a more robust system for
generating random numbers. If you insert the truly_random_value function in place
of the rand function in the preceding program, you can see how long it takes before
a random number reappears. I've attained 20,574 unique random numbers with this
function using that test script, and this should be more than enough for most uses.

Working with Very Small Integers

Perl uses 32-bit integers for storing integers and for all of its integer-based math.
Occasionally, however, it is necessary to store and handle integers that are smaller than
the standard 32-bit integers. This is especially true in databases, where you may wish
to store a block of Boolean values: even using a single character for each Boolean value
will take up eight bits. A better solution is to use the vec function, which supports the
storage of multiple integers as strings:

vec EXPR, OFFSET, BITS

The EXPR is the scalar that will be used to store the information; the OFFSET and
BITS arguments define the element of the integer string and the size of each element,
respectively. The return value is the integer store at OFFSET of size BITS from the
string EXPR. The function can also be assigned to, which modifies the value of the
element you have specified. For example, using the preceding database example, you
might use the following code to populate an “option” string:

vec (Soptstring, 0, 1) Sprint 21 : 0;
vec ($Soptstring, 1, 1) = sdisplay ? 1 : 0;
vec (Soptstring, 2, 1) Sdelete ? 1 : O;
print length(Soptstring),"\n";

The print statement at the end of the code displays the length, in bytes, of the string.
It should report a size of one byte. We have managed to store three Boolean values
within less than one real byte of information.

The bits argument allows you to specify select larger bit strings: Perl supports
values of 1, 2, 4, 8, 16, and 32 bits per element. You can therefore store four 2-bit
integers (up to an integer value of 3, including 0) in a single byte.

Obviously the vec function is not limited to storing and accessing your own
bitstrings; it can be used to extract and update any string, providing you want to modify
1,2,4,8,16, or 32 bits at a time. Perl also guarantees that the first bit, accessed with

vec ($var, 0, 1);

Chapter 8: Data Manipulation 217

will always be the first bit in the first character of a string, irrespective of whether your
machine is little endian or big endian. Furthermore, this also implies that the first byte
of a string can be accessed with

vec ($var, 0, 8);

The vec function is most often used with functions that require bitsets, such as the
select function. You'll see examples of this in later chapters.

Note | Little endian machines store the least significant byte of a word in the lower byte address,
' while big endian machines store the most significant byte at this position. This affects the

byte ordering of strings, but doesn’t affect the order of bits within those bytes.

___ | working with Strings

Creating a new string scalar is as easy as assigning a quoted value to a variable:
$string = "Come grow old along with me\n";

However, unlike C and some other languages, we can’t access individual characters by
supplying their index location within the string, so we need a function for that. This
same limitation also means that we need some solutions for splitting, extracting, and
finding characters within a given string.

String Concatenation

We have already seen in Chapter 3 the operators that can be used with strings. The most
basic operator that you will need to use is the concatenation operator. This is a direct
replacement for the C strcat() function. The problem with the strcat() function is that it is
inefficient, and it requires constant concatenation of a single string to a single variable.
Within Perl, you can concatenate any string, whether it has been derived from a static
quoted string in the script itself, or in scripts exported by functions. This code fragment:

Sthetime = 'The time is ' . localtime() . "\n";

assigns the string, without interpolation; the time string, as returned by localtime; and
the interpolated newline character to the $thetime variable. The concatenation operator
is the single period between each element.

It is important to appreciate the difference between using concatenation and lists.
This print statement:

print 'The time is ' . localtime() . "\n";

218 Perl: The Complete Reference

roduces the same result as
P
print 'The time is ', localtime(), "\n";

However, in the first example, the string is concatenated before being printed; in the
second, the print function is printing a list of arguments. You cannot use the second
format to assign a compound string to a scalar—the following line will not work:

$string = 'The time is ', localtime(), "\n";

Concatenation is also useful when you want to express a sequence of values as only
a single argument to a function. For example:

Sstring = join($suffix . ':' . S$Sprefix, @strings);

String Length
The length function returns the length, in characters (rather than bytes), of the supplied
string (see the “Unicode” section at the end of this chapter for details on the relationship
between bytes and characters). The function accepts only a single argument (or it
returns the length of the $_ variable if none is specified):

print "Your name is ",length($name), "characters long\n";

Case Modifications

There are some simple modifications built into Perl as functions that may be more
convenient and quicker than using the regular expressions we will cover later in this
chapter. The four basic functions are Ic, uc, Icfirst, and ucfirst. They convert a string
to all lowercase, all uppercase, or only the first character of the string to lowercase or
uppercase, respectively. For example:

$string = "The Cat Sat on the Mat";

print lc($string) # Outputs 'the cat sat on the mat'
print lcfirst($string) # Outputs 'the Cat Sat on the Mat'
print uc($string) # Outputs 'THE CAT SAT ON THE MAT'
print ucfirst($string) # Outputs 'The Cat Sat on the Mat'

These functions can be useful for “normalizing” a string into an all uppercase or
lowercase format—useful when combining and de-duping lists when using hashes.

Chapter 8: Data Manipulation 219

End-of-Line Character Removal

When you read in data from a filehandle using a while or other loop and the <FH>
operator, the trailing newline on the file remains in the string that you import. You
will often find yourself processing the data contained within each line, and you will
not want the newline character. The chop function can be used to strip the last character
off any expression:

while (<FH>)

{

chop;

The only danger with the chop function is that it strips the last character from
the line, irrespective of what the last character was. The chomp function works in
combination with the $/ variable when reading from filehandles. The $/ variable is the
record separator that is attached to the records you read from a filehandle, and it is by
default set to the newline character. The chomp function works by removing the last
character from a string only if it matches the value of $/. To do a safe strip from a
record of the record separator character, just use chomp in place of chop:

while (<FH>)

{

chomp;

This is a much safer option, as it guarantees that the data of a record will remain
intact, irrespective of the last character type.

String Location

Within many programming languages, a string is stored as an array of characters. To
access an individual character within a string, you need to determine the location of the
character within the string and access that element of the array. Perl does not support
this option, because often you are not working with the individual characters within
the string, but the string as a whole.

Two functions, index and rindex, can be used to find the position of a particular
character or string of characters within another string:

index STR, SUBSTR [, POSITION]
rindex STR, SUBSTR [, POSITION]

220 Perl: The Complete Reference

The index function returns the first position of SUBSTR within the string STR, or it
returns -1 if the string cannot be found. If the POSITION argument is specified, then
the search skips that many characters from the start of the string and starts the search
at the next character.

The rindex function returns the opposite of the index function—the last occurrence
of SUBSTR in STR, or -1 if the substring could not be found. In fact, rindex searches
for SUBSTR from the end of STR, instead of the beginning. If POSITION is specified,
then it starts from that many characters from the end of the string.

For example:

$string = "The Cat Sat on the Mat";

print index($string, 'cat'); # Returns -1, because 'cat' is lowercase
print index($string, 'Cat'); # Returns 4

print index($string, 'Cat',4); # Still returns 4

print rindex(S$string, 'at'); # Returns 20

print rindex ($string, 'Cat'); # Returns 4

| In both cases, the POSITION is actually calculated as the value of the $[variable plus
(for index) or minus (for rindex) the supplied arqument. The use of the $[variable is
now heavily deprecated, since there is little need when you can specify the value directly
to the function anyway. As a rule, you should not be using this variable.

Extracting Substrings

The substr function can be used to extract a substring from another string based on the
position of the first character and the number of characters you want to extract:

substr EXPR, OFFSET, LENGTH
substr EXPR, OFFSET

The EXPR is the string that is being extracted from. Data is extracted from a starting
point of OFFSET characters from the start of EXPR or, if the value is negative, that
many characters from the end of the string. The optional LENGTH parameter defines
the number of characters to be read from the string. If it is not specified, then all
characters to the end of the string are extracted. Alternatively, if the number specified
in LENGTH is negative, then that many characters are left off the end of the string.

For example:

Sstring = 'The cat sat on the mat';
print substr ($string,4),"\n"; # Outputs 'cat sat on the mat'
print substr($string,4,3),"\n"; # Outputs 'cat'

Chapter 8: Data Manipulation 221

print substr($string,-7),"\n"; # Outputs 'the mat'
print substr($string,4,-4),"\n"; # Outputs 'cat sat on the'

The last example is equivalent to
print substr($string,4,14),"\n";

but it may be more effective to use the first form if you have used the rindex function
to return the last occurrence of a space within the string.

You can also use substr to replace segments of a string with another string. The
substr function is assignable, so you can replace the characters in the expression you
specify with another value. For example, this statement,

substr ($string,4,3) = 'dog';
print "$string\n";

should print “the dog sat on the mat” because we replaced the word “cat,” starting at
the fourth character and lasting for three characters.

The substr function works intelligently, shrinking or growing the string according
to the size of the string you assign, so you can replace “dog” with “computer
programmer” like this:

substr ($Sstring,4,3) = 'computer programmer';
print "$string\n";

Specifying values of 0 allows you to prepend strings to other strings by specifying
an OFFSET of 0, although it’s arguably easier to use concatenation to achieve the
same result. Appending with substr is not so easy; you cannot specify beyond the last
character, although you could use the output from length to calculate where that might
be. In these cases a simple

Sstring .= 'programming';

is definitely easier.

Stacks

One of the most basic uses for an array is as a stack. If you consider that an array is a
list of individual scalars, it should be possible to treat it as if it were a stack of papers.
Index 0 of the array is the bottom of the stack, and the last element is the top. You can
put new pieces of paper on the top of the stack (push), or put them at the bottom
(unshift). You can also take papers off the top (pop) or bottom (shift) of the stack.

222 Perl: The Complete Reference

There are, in fact, four different types of stacks that you can implement. By using
different combinations of the Perl functions, you can achieve all the different
combinations of LIFO, FIFO, FILO, and LILO stacks, as shown in Table 8-1.

pop and push

The form for pop is as follows:

pop ARRAY
pop

It returns the last element of ARRAY, removing the value from the list. If you don’t
specify an array, it pops the last value from the @ARGYV special array when you are
within the main program. If called within a function, it takes values from the end of the
@_ array instead.

The opposite function is push:

push ARRAY, LIST

This pushes the values in LIST on to the end of the list ARRAY. Values are pushed
onto the end in the order supplied.

shift and unshift

The shift function returns the first value in an array, deleting it and shifting the
elements of the array list to the left by one.

shift ARRAY

shift
Acronym Description Function Combination
LIFO Last in, first out push/shift
FIFO First in, first out unshift/shift
FILO First in, last out unshift/pop
LILO Last in, last out push/pop
Table 8-1. Stack Types and Functions

Chapter 8: Data Manipulation 223

Like its cousin pop, if ARRAY is not specified, it shifts the first value from the @_ array
within a subroutine, or the first command line argument stored in @ARGV otherwise.
The opposite is unshift, which places new elements at the start of the array:

unshift ARRAY, LIST

This places the elements from LIST, in order, at the beginning of ARRAY. Note that
the elements are inserted strictly in order, such that the code

unshift @array, 'Bob', 'Phil';

will insert “Bob” at index 0 and “Phil” at index 1.

Note that shift and unshift will affect the sequence of the array more significantly
(because the elements are taken from the first rather than last index). Therefore, care
should be taken when using this pair of functions.

However, the shift function is also the most practical when it comes to individually
selecting the elements from a list or array, particularly the @ARGV and @_ arrays. This
is because it removes elements in sequence: the first call to shift takes element 0, the
next takes what was element 1, and so forth.

The unshift function also has the advantage that it inserts new elements into the array
at the start, which can allow you to prepopulate arrays and lists before the information
provided. This can be used to insert default options into the @ARGYV array, for example.

Splicing Arrays
The normal methods for extracting elements from an array leave the contents intact.
Also, the pop and other statements only take elements off the beginning and end of the
array or list, but sometimes you want to copy and remove elements from the middle.
This process is called splicing and is handled by the splice function.

splice ARRAY, OFFSET, LENGTH, LIST
splice ARRAY, OFFSET, LENGTH
splice ARRAY, OFFSET

The return value in every case is the list of elements extracted from the array in
the order that they appeared in the original. The first argument, ARRAY, is the array
that you want to remove elements from, and the second argument is the index
number that you want to start extracting elements from. The LENGTH, if specified,
removes that number of elements from the array. If you don’t specify LENGTH, it
removes all elements to the end of the array. If LENGTH is negative, it leaves that
number of elements on the end of the array.

Finally, you can replace the elements removed with a different list of elements,
using the values of LIST. Note that this will replace any number of elements with the
new LIST, irrespective of the number of elements removed or replaced. The array will

224

Perl: The Complete Reference
shrink or grow as necessary. For example, in the following code, the middle of the list
of users is replaced with a new set, putting the removed users into a new list:

@users = gw/Bob Martin Phil Dave Alan Tracy/;
@newusers = gw/Helen Dan/;
@oldusers = splice @users, 1, 4, @newusers;

This sets @users to
New Bob Helen Dan Tracy
and @oldusers to

Martin Phil Dave Alan

join

The normal interpolation rules determine how an array is displayed when it’s
embedded within a scalar or interpreted in a scalar context. By default, the individual
elements in the array are separated by the contents of the $, variable which is empty by
default, so this:

@array = gw/hello world/;
print @array;

outputs
helloworld
To change the separator, change the value of $,:
@array = gw/hello world/;
$, = 'ty
print @array,"\n";
Be careful though, because the preceding outputs

hello: :world::

The $, variable replaces each comma (including those implied by arrays and hashes in
list context). However, remember that when interpolating an array into a scalar string,
an array is always separated by a space, completely ignoring the value of $,.

Chapter 8: Data Manipulation 225

To introduce a different separator between individual elements of a list, you need
to use the join function:

join EXPR, LIST
This combines the elements of LIST, returning a scalar where each element is separated
by the value of EXPR to separate each element. Note that EXPR is a scalar, not a
regular expression:

print join(', ',@users);

EXPR separates each pair of elements in LIST, so this:

@array = gw/first second third fourth/;
print join(', ',@array),"\n";

outputs
first, second, third, fourth

There is no EXPR before the first element or after the last element.
The return value from join is a scalar, so it can also be used to create new strings
based on the combined components of a list:

$string = join(', ', @users);

The join function can also be an efficient way of joining a lot of elements together
into a single string, instead of using multiple concatenation. For example, in the
following code, I've placed multiple SQL query statement fragments into an array
using push, and then used join to combine all those arguments into a single string:

if ($isbn->{rank} < Srow[10])

{

push equery, "reviewmin = " . $dbh->quote ($isbn->{review});
push equery, "reviewmindate = " . $dbh->quote (Sreport->{date});
}
if ($isbn->{rank} > Srow[12])
{
push equery, "reviewmax = " . $dbh->quote ($isbn->{review});
push equery, "reviewmaxdate = " . $dbh->quote (Sreport->{date});
}

$dbh->do ("update isbnlimit set "

226

Perl: The Complete Reference

join(', ',@query)

" where isbn = "

$dbh->quote ($isbn->{isbn})

" and host = "

$dbh->quote ($host->{host})) ;

Note | If you want to join elements using a reqular expression, try awk.

split

The logical opposite of the join function is the split function, which enables you to
separate a string using a regular expression. The result is an array of all the separated
elements. The split function separates a scalar or other string expression into a list,
using a regular expression.

split /PATTERN/, EXPR, LIMIT
split /PATTERN/, EXPR

split /PATTERN/

split

By default, empty leading fields are preserved, and empty trailing fields are deleted.

If you do not specify a pattern, then it splits $_ using white space as the separator
pattern. This also has the effect of skipping the leading white space in $_. For reference,
white space includes spaces, tabs (vertical and horizontal), line feeds, carriage returns,
and form feeds.

The PATTERN can be any standard regular expression. You can use quotes to
specify the separator, but you should instead use the match operator and regular
expression syntax.

If you specify a LIMIT, then it only splits for LIMIT elements. If there is any
remaining text in EXPR, it is returned as the last element with all characters in the text.
Otherwise, the entire string is split, and the full list of separated values is returned. If
you specify a negative value, Perl acts as if a huge value has been supplied and splits
the entire string, including trailing null fields.

For example, you can split a line from the /etc/passwd file (under Unix) by the
colons used to identify the individual fields:

while (<PASSWD>)

{

chomp;
efields = split /:/;

Chapter 8: Data Manipulation 227

You can also use all of the normal list and array constructs to extract and combine
values,

print join(" ",split /:/),"\n";
and even extract only select fields:
print "User: ", (split /:/)[0],"\n";
If you specify a null string, it splits EXPR into individual characters, such that
print join('-',split(/ */, 'Hello World')),"\n";
produces
H-e-1-1-o-W-o-r-1-d

Note that the space is ignored.

In a scalar context, the function returns the number of fields found and splits the
values into the @_ array using ?? as the pattern delimiter, irrespective of supplied
arguments; so care should be taken when using this function as part of others.

grep
The grep function works the same as the grep command does under Unix, except that
it operates on a list rather than a file. However, unlike the grep command, the function
is not restricted to regular expression searches, even though that is what it is usually
used for.

grep BLOCK LIST
grep EXPR, LIST

The function evaluates the BLOCK or EXPR for each element of the LIST. For
each statement in the expression or block that returns true, it adds the corresponding
element to the list of values returned. Each element of the array is passed to the
expression or block as a localized $_. A search for the word “text” on a file can
therefore be performed with

@lines = <FILE>;
print join("\n", grep { /text/ } @lines);

228 Perl: The Complete Reference

A more complex example, which returns a list of the elements from an array that
exist as keys within a hash, is shown here:

print join(' ', grep { defined($hash{$ }) } e@array);
This is quicker than using either push and join or catenation within a loop to
determine the correct list.

In a scalar context, the function just returns the number of times the statement
matched.

map

The map function performs an expression or block expression on each element within a
list. This enables you to bulk modify a list without the need to explicitly use a loop.

map EXPR, LIST
map BLOCK LIST

The individual elements of the list are supplied to a locally scoped $_, and the
modified array is returned as a list to the caller. For example, to convert all the
elements of an array to lowercase:

@lcarray = map { lc } @array;
This is itself just a simple version of

foreach (@array)

{
}

push @lcarray,lc($_);

Note that because $_ is used to hold each element of the array, it can also modify
an array in place, so you don’t have to manually assign the modified array to a new
one. However, this isn’t supported, so the actual results are not guaranteed. This is
especially true if you are modifying a list directly rather than a named array, such as:

@enew = map {lc} keys %hash;

sort

With any list, it can be useful to sort the contents. Doing this manually is a complex
process, so Perl provides a built-in function that takes a list and returns a lexically

Chapter 8: Data Manipulation 229

sorted version. For practicality, it also accepts a function or block that can be used to
create your own sorting algorithm.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST

Both the subroutine (SUBROUTINE) and block (BLOCK, which is an anonymous
subroutine) should return a value—less than, greater than, or equal to zero—depending
on whether the two elements of the list are less than, greater than, or equal to each
other. The two elements of the list are available in the $a and $b variables.

For example, to do a standard lexical sort:

sort @array;

Or to specify an explicit lexical subroutine:
sort { $a cmp $b } earray;

To perform a reverse lexical sort:
sort { $b cmp $a } @array;

All the preceding examples take into account the differences between upper- and
lowercase characters. You can use the lc or uc functions within the subroutine to ignore
the case of the individual values. The individual elements are not actually modified; it
only affects the values compared during the sort process:

sort { lc($a) cmp lc($b) } @array;
If you know you are sorting numbers, you need to use the <=> operator:
sort { $a <=> $b } enumbers;

Alternatively, to use a separate routine:

sub lexical

{
}

sort lexical @array;

$a cmp $b;

230 Perl: The Complete Reference

You can also use this method to sort complex values that require simple translation
before they can be sorted. For example:

foreach (sort sortdate keys %errors)

{
print "s \n";

1

sub sortdate

{
my ($C1$d) = ($a,$b),‘
$c =~ s{(\d+)/(\d+)/ (\d+) }{sprintf ("%$04d%02d%02d",$3,51,32) }e;
$d =~ s{(\d+)/(\d+)/ (\d+) }{sprintf ("%$04d%02d%02d",$3,51,32) }e;
Sc <=> $d;

1

In the preceding example, we are sorting dates stored in the keys of the hash %errors.
The dates are in the form “month/day/year”, which is not logically sortable without
doing some sort of modification of the key value in each case. We could do this by
creating a new hash that contains the date in a more ordered format, but this is
wasteful of space. Instead, we take a copy of the hash elements supplied to us by sort,
and then use a regular expression to turn “3/26/2000” into “20000326”—in this format,
the dates can be logically sorted on a numeric basis. Then we return a comparison
between the two converted dates to act as the comparison required for the hash.

reverse

On a sorted list, you can use sort to return a list in reverse order by changing the
comparison statement used in the sort. However, it can be quicker, and more practical
for unsorted lists, to use the reverse function.

reverse LIST

In a list context, the function returns the elements of LIST in reverse order. This is
often used with the sort function to produce a reverse-sorted list:

foreach (reverse sort keys %hash)

{

Chapter 8: Data Manipulation 231

In a scalar context, it returns a concatenated string of the values of LIST, with all
bytes in opposite order. This also works if a single-element list (or a scalar!) is passed,
such that

print scalar reverse("Hello World"),"\n";
produces

dlroW olleH

Regular Expressions

Using the functions we’ve seen so far—for finding your location within a string and
updating that string—is fine if you know precisely what you are looking for. Often,
however, what you are looking for is either a range of characters or a specific pattern,
perhaps matching a range of individual words, letters, or numbers separated by other
elements. These patterns are impossible to emulate using the substr and index
functions, because they rely on using a fixed string as the search criteria.

Identifying patterns instead of strings within Perl is as easy as writing the correct
regular expression. A regular expression is a string of characters that define the pattern
or patterns you are viewing. Of course, writing the correct regular expression is the
difficult part. There are ways and tricks of making the format of a regular expression
easier to read, but there is no easy way of making a regular expression easier to
understand!

The syntax of regular expressions in Perl is very similar to what you will find
within other regular expression—supporting programs, such as sed, grep, and awk,
although there are some differences between Perl’s interpretations of certain elements.

The basic method for applying a regular expression is to use the pattern binding
operators =~ and !~. The first operator is a test and assignment operator. In a test
context (called a match in Perl) the operator returns true if the value on the left side
of the operator matches the regular expression on the right. In an assignment context
(substitution), it modifies the statement on the left based on the regular expression
on the right. The second operator, !~, is for matches only and is the exact opposite:
it returns true only if the value on the left does not match the regular expression on
the right.

Although often used on their own in combination with the pattern binding
operators, regular expressions also appear in two other locations within Perl. When
used with the split function, they allow you to define a regular expression to be used
for separating the individual elements of a line—this can be useful if you want to
divide up a line by its numerical content, or even by word boundaries. The second
place is within the grep statement, where you use a regular expression as the source

232

Perl: The Complete Reference

for the match against the supplied list. Using grep with a regular expression is similar
in principle to using a standard match within the confines of a loop.

The statements on the right side of the two test and assighment operators must
be regular expression operators. There are three regular expression operators within
Perl—m// (match), s/// (substitute), and tr/// (transliterate). There is also a fourth operator,
which is strictly a quoting mechanism. The qr// operator allows you to define a regular
expression that can later be used as the source expression for a match or substitution
operation. The forward slashes in each case act as delimiters for the regular expression
(regex) that you are specifying.

Pattern Modifiers

All regular expression operators support a number of pattern modifiers. These change
the way in which the expression is interpreted. Before we look at the specifics of the
individual regular expression operators, we’ll look at the common pattern modifiers
that are shared by all the operators.

Pattern modifiers are a list of options placed after the final delimiter in a regular
expression and that modify the method and interpretation applied to the searching
mechanism. Perl supports five basic modifiers that apply to the m//, s///, and qr//
operators, as listed here in Table 8-2. You place the modifier after the last delimiter in
the expression. For example m/foo/i.

The /i modifier tells the regular expression engine to ignore the case of supplied
characters so that /cat/ would also match CAT, cAt, and Cat.

The /s modifier tells the regular expression engine to allow the . metacharacter to
match a newline character when used to match against a multiline string.

The /m modifier tells the regular expression engine to let the A and $ metacharacters
to match the beginning and end of a line within a multiline string. This means that /AThe/
will match “Dog\nThe cat”. The normal behavior would cause this match to fail, because
ordinarily the ~ operator matches only against the beginning of the string supplied.

Modifier Description
i Makes the match case insensitive
m Specifies that if the string has newline or carriage return

characters, the A and $ operators will now match against a
newline boundary, instead of a string boundary

o Evaluates the expression only once
s Allows use of . to match a newline character
X Allows you to use white space in the expression for clarity

Table 8-2. Perl Regular Expression Modifiers for Matching and Substitution

Chapter 8: Data Manipulation 233

The /o operator changes the way in which the regular expression engine compiles
the expression. Normally, unless the delimiters are single quotes (which don’t
interpolate), any variables that are embedded into a regular expression are interpolated
at run time, and cause the expression to be recompiled each time. Using the /o operator
causes the expression to be compiled only once; however, you must ensure that any
variable you are including does not change during the execution of a script—otherwise
you may end up with extraneous matches.

The /x modifier enables you to introduce white space and comments into an expression
for clarity. For example, the following match expression looks suspiciously like line noise:

Smatched =
/ (\S+) \s+ (\S+) \s+ (\S+) \s+\ [(. *)\I\s+" (.*) "\s+ (\S+) \s+ (\S+) /;

Adding the /x modifier and giving some description to the individual components
allows us to be more descriptive about what we are doing;:

matched = /(\S+) #Host
\s+ # (space separator)
(\S+) #Identifier
\s+ # (space separator)
(\S+) #Username
\s+ # (space separator)
NL(C.*)\] #Time
\s+ # (space separator)
mLE) #Request
\s+ # (space separator)
(\s+) #Result
\s+ # (space separator)
(\S+) #Bytes sent

/%;

Although it takes up more editor and page space, it is much clearer what you are
trying to achieve.

There are other operator-specific modifiers, which we’ll look at separately as we
examine each operator in more detail.

The Match Operator

The match operator, m//, is used to match a string or statement to a regular expression.
For example, to match the character sequence “foo” against the scalar $bar, you might
use a statement like this:

if ($bar =~ m/foo/)

234

Perl: The Complete Reference

", 1

Note the terminology here—we are matching the letters “f”, “0”, and “0” in
that sequence, somewhere within the string—we’ll need to use a separate qualifier to
match against the word “foo”. See the “Regular Expression Elements” section later in
this chapter.

Providing the delimiters in your statement with the m// operators are forward
slashes, you can omit the leading m:

if ($bar =~ /foo/)

The m// actually works in the same fashion as the q// operator series—you can use any
combination of naturally matching characters to act as delimiters for the expression.
For example, m{}, m(), and m<> are all valid. As per the q// operator, all delimiters
allow for interpolation of variables, except single quotes. If you use single quotes,
then the entire expression is taken as a literal with no interpolation.

You can omit the m from m// if the delimiters are forward slashes, but for all other
delimiters you must use the m prefix. The ability to change the delimiters is useful
when you want to match a string that contains the delimiters. For example, let’s
imagine you want to check on whether the $dir variable contains a particular directory.
The delimiter for directories is the forward slash, and the forward slash in each case
would need to be escaped—otherwise the match would be terminated by the first
forward slash. For example:

if ($dir =~ /\/usr\/local\/1lib/)
By using a different delimiter, you can use a much clearer regular expression:
if (8dir =~ m(/usr/local/lib))

Note that the entire match expression—that is the expression on the left of =~ or !~
and the match operator, returns true (in a scalar context) if the expression matches.
Therefore the statement:

$true = ($foo =~ m/foo/);

Will set $true to 1 if $foo matches the regex, or 0 if the match fails.

In a list context, the match returns the contents of any grouped expressions (see the
“Grouping” section later in this chapter for more information). For example, when
extracting the hours, minutes, and seconds from a time string, we can use

my (Shours, Sminutes, $seconds) = (Stime =~ m/(\d+): (\d+) : (\d+)/);

Chapter 8: Data Manipulation 235

This example uses grouping and a character class to specify the individual elements.
The groupings are the elements in standard parentheses, and each one will match (we
hope) in sequence, returning a list that has been assigned to the hours, minutes, and
seconds variables.

Match Operator Modifiers

The match operator supports its own set of modifiers—the standard five operators
shown in Table 8-2 are supported, in addition to the /g and /cg modifiers. The full list
is shown in Table 8-3 for reference.

The /g modifier allows for global matching. Normally the match returns the first
valid match for a regular expression, but with the /g modifier in effect, all possible
matches for the expression are returned. In a list context, this results in a list of the
matches being returned, such that:

@foos = $string =~ /foo/gi;

will populate @foos with all the occurrences of “foo”, irrespective of case, within the
string $string.

Modifier Description
i Makes the match case insensitive
m Specifies that if the string has newline or carriage

return characters, the and $ operators will now
match against a newline boundary, instead of a
string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

X Allows you to use white space in the expression
for clarity

g Globally finds all matches

cg Allows the search to continue even after a global

match fails

Table 8-3. Regular Expression Modifiers for Matches

236 Perl: The Complete Reference

In a scalar context, the /g modifier performs a progressive match. For each execution
of the match, Perl starts searching from the point in the search string just past the last
match. You can use this to progress through an array searching for the same string
without having to remove or manually set the starting position of the search. The
position of the last match can be used within a regular expression using the \G
assertion. When /g fails to match, the position is reset to the start of the string.

If you use the /c modifier as well, then the position is not reset when the /g
match fails.

Matching Only Once
There is also a simpler version of the match operator—the ?PATTERN? operator. This
is basically identical to the m// operator except that it only matches once within the
string you are searching between each call to reset. The operator works as a useful
optimization of the matching process when you want to search a set of data streams
but only want to match an expression once within each stream.

For example, you can use this to get the first and last elements within a list:

@list = gw/food foosball subbuteo monopoly footnote tenderfoot catatonic footbrdige/;

foreach (@list)

{
Sfirst = $1 if ?(foo.*)?;
$last = $1 if /(foo.*)/;

print "First: $first, Last: slast\n";
A call to reset resets what PATTERN? considers as the first match, but it applies

only to matches within the current package. Thus you can have multiple PATTERN?
operations, providing they are all within their own package.

The Substitution Operator

The substitution operator, s///, is really just an extension of the match operator that
allows you to replace the text matched with some new text. The basic form of the
operator is

s/PATTERN/REPLACEMENT/ ;
For example, we can replace all occurrences of “dog” with “cat” usin
g g

$string =~ s/dog/cat/;

Chapter 8: Data Manipulation

The PATTERN is the regular expression for the text that we are looking for. The
REPLACEMENT is a specification for the text or regular expression that we want to
use to replace the found text with. For example, you may remember from the substr
definition earlier in the chapter that you could replace a specific number of characters
within a string by using assignment:

$string = 'The cat sat on the mat';

Sstart = index($string, 'cat',0);

Send = index($string,' ', $start)-$start;
substr ($string, $start, $end) = 'dog';

You can achieve the same result with a regular expression:

S$string = 'The cat sat on the mat';
s/cat/dog/;

$string

Note that we have managed to avoid the process of finding the start and end of the
string we want to replace. This is a fundamental part of understanding the regular
expression syntax. A regular expression will match the text anywhere within the string.
You do not have to specify the starting point or location within the string, although it is
possible to do so if that’s what you want. Taking this to its logical conclusion, we can
use the same regular expression to replace the word “cat” with “dog” in any string,
irrespective of the location of the original word:

Sstring = 'Oscar is my cat';
$string s/cat/dog/;

The $string variable now contains the phrase “Oscar is my dog,” which is factually
incorrect, but it does demonstrate the ease with which you can replace strings with
other strings.

Here’s a more complex example that we will return to later. In this instance, we
need to change a date in the form 03/26/1999 to 19990326. Using grouping, we can
change it very easily with a regular expression:

Sdate = '03/26/1999"';
Sdate =~ s#(\d+)/ (\d+) / (\d+) #$3$1$2#;

This example also demonstrates the fact that you can use delimiters other than the
forward slash for substitutions too. Just like the match operator, the character used is
the one immediately following the “s”. Alternatively, if you specify a naturally paired

237

238

Perl: The Complete Reference

delimiter, such as a brace; then the replacement expression can have its own pair of
delimiters:

$date = s{(\d+)/(\d+)/(\d+)}
{$3%1%2}x;

Note that the return value from any substitution operation is the number of
substitutions that took place. In a typical substitution, this will return 1 on success,
and if no replacements are made, then it will return 0—a false response.

The problem with modifying strings in this way is that we clobber the original
value of the string in each case—which is often not the effect we want. The usual
alternative is to copy the information into a variable first, and then perform the
substitution on the new variable:

Snewstring = $string;
$newstring =~ s/cat/dog/;

You can do this in one line by performing the substitution on the lvalue that is created
when you perform an assignment. For example, we can rewrite the preceding as

($Snewstring = S$string) =~ s/cat/dog/;

This works because the Ivalue created by the Perl interpreter as part of the expression
on the left of =~ is actually the new value of the $newstring variable. Note that without
the parentheses, you would only end up with a count of the replacements in
$newstring and a modified $string—not what we wanted!

The same process also works within a loop, for the same reasons:

foreach (S$newstring = $string)

{
}

s/cat/dog/;

A loop also affords us the ability to perform multiple substitutions on a string:

foreach (S$newstring = $string)

{
s/cat/dog/ ;
s/sheep/camel/;

Chapter 8: Data Manipulation

Substitution Operator Modifiers

In addition to the five standard modifiers, the substitution operator also supports a
further two modifiers that modify the way in which substitutions take place. A full list
of the supported modifiers is given in Table 8-4.

The /g operator forces the search and replace operation to take place multiple times,
which means that PATTERN is replaced with REPLACEMENT for as many times as
PATTERN appears. This is done as a one-pass process, however. The substitution
operation is not put into a loop. For example, in the following substitution we replace
“0” with “00”:

S$string = 'Both foods';
$string =~ s/o/oo/g;

The result is “Booth foooods”, not “Boooooooooooth foooooooooods” ad infinitum.
However, there are times when such a multiple-pass process is useful. In those cases,
just place the substitution in a while loop. For example, to replace all the double spaces
with a single space you might use:

1 while($string =~ s/ / /9);

Modifier Description
i Makes the match case insensitive
m Specifies that if the string has newline or carriage

return characters, the ~ and $ operators will now
match against a newline boundary, instead of a
string boundary

0 Evaluates the expression only once
s Allows use of . to match a newline character
X Allows you to use white space in the expression

for clarity

8 Replaces all occurrences of the found expression
with the replacement text

e Evaluates the replacement as if it were a Perl statement,
and uses its return value as the replacement text

Table 8-4. Substitution Operator Modifiers

239

240

Perl: The Complete Reference

The while loop will drop out as soon as the substitution fails to find a double space.

The /e modifier causes Perl to evaluate the REPLACEMENT text as if it were a Perl
expression, and then to use the value as the replacement string. We’ve already seen an
example of this when converting a date from traditional American slashed format into
the Japanese/Universal format:

$c =~ s{(\d+)/(\d+)/(\d+) }{sprintf ("%04d%02d%02d", $3,31,32) }e;

We have to use sprintf in this case; otherwise, a single-digit day or month would
truncate the numeric digits from the eight required—for example, 26/3/2000 would
become 2000326 instead of 20000326.

Translation

Translation is similar, but not identical, to the principles of substitution, but unlike
substitution, translation (or transliteration) does not use regular expressions for its
search on replacement values. The translation operators are

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

The translation replaces all occurrences of the characters in SEARCHLIST with the
corresponding characters in REPLACEMENTLIST. For example, using the “The cat sat
on the mat.” string we have been using in this chapter:

$string =~ tr/a/o/;
print "$string\n";

this script prints out “The cot sot on the mot.”
Standard Perl ranges can also be used, allowing you to specify ranges of characters
either by letter or numerical value. To change the case of the string, you might use

$string =~ tr/a-z/A-Z/;

in place of the uc function. The tr operator only works on a scalar or single element of
an array or hash; you cannot use it directly against an array or hash (see the discussion
of grep or map in Chapter 7). You can also use tr// with any reference or function that
can be assigned to. For example, to convert the word “cat” from the string to
uppercase, you could do this:

Chapter 8: Data Manipulation 241

substr ($string,4,3) =~ tr/a-z/A-Z/;

Unlike regular expressions, the SEARCHLIST and REPLACEMENTLIST
arguments to the operator do not need to use the same delimiters. As long as the
SEARCHLIST is naturally paired with delimiters, such as parentheses or braces, the
REPLACEMENTTLIST can use its own pair. This makes the conversion of forward
slashes clearer than the traditional regular expression search:

$macdir = tr(/)/:/;

The same feature can be used to make certain character sequences seem clearer,
such as the following one, which converts an 8-bit string into a 7-bit string, albeit with
some loss of information:

tr [\200-\377]
[\000-\177]

Three modifiers are supported by the tr operator, as seen in Table 8-5.

The /c modifier changes the replacement text to be the characters not specified in
SEARCHLIST. You might use this to replace characters other than those specified in
the SEARCHLIST with a null alternative; for example,

S$string = 'the cat sat on the mat.';
$string =~ tr/a-zA-Z/-/c;
print "$string\n";

replaces any non-character with a hyphen, resulting in “the-cat-sat-on-the-mat-.”

Modifier Meaning

c Complement SEARCHLIST.

d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

Table 8-5. Modifiers to the tr Operator

242

Perl: The Complete Reference

The /d modifier deletes the characters matching SEARCHLIST that do not have a
corresponding entry in REPLACEMENTLIST. For example,

$string = 'the cat sat on the mat.';
$string =~ tr/a-z/b/d;
print "$string\n";

deletes any characters from “b-z”, whilst translating “a” to “b”. This results in
bb b.

The last modifier, /s, removes the duplicate sequences of characters that were
replaced, so

Sstring = 'food';
tr/a-z/a-z/s;

returns “fod”. This is useful when you want to de-dupe the string for certain
characters. For example, we could rewrite our space-character compressing
substitution with a transliteration:

$string =~ tr/ / /s;
If you do not specify the REPLACEMENTLIST, Perl uses the values in
SEARCHLIST. This is most useful for doing character-class-based counts,

something that cannot be done with the length function. For example, to count
the nonalphanumeric characters in a string;:

$cnt = $string =~ tr/a-zA-Z0-9//cs;

In all cases, the tr operator returns the number of characters changed (including
those deleted).

Regular Expression Elements

The regular expression engine is responsible for parsing the regular expression and
matching the elements of the regular expression with the string supplied. Depending
on the context of the regular expression, different results will occur: a substitution
replaces character sequences, for example.

Chapter 8: Data Manipulation 243

The regular expression syntax is best thought of as a little language in its own right.
It’s very powerful, and an incredible amount of ability is compacted into a very small
space. Like all languages, though, a regular expression is composed of a number of
discrete elements, and if you understand those individual elements, you can
understand the entire regular expression.

For most characters and character sequences, the interpretation is literal, so a
substitution to replace the first occurrence of “cat” with “dog” can be as simple as

s/cat/dog/;

Beyond the literal interpretation, Perl also supports two further classes of characters
or character sequences within the regular expression syntax: metacharacters and
metasymbols. The metacharacters define the 12 main characters that are used to define
the major components of a regular expression syntax. These are

Most of these form multicharacter sequences—for example \s matches any white-space
character, and these multicharacter sequences are classed as metasymbols.

Some of the metacharacters just shown have their own unique effects and don’t
apply to, or modify, the other elements around them. For example, the . matches any
character within an expression. Others modify the preceding element—for example the
+ metacharacter matches one or more of the previous elements, such that .+ matches
one or more characters, whatever that character may be.

Others modify the character they precede—the major metacharacter in this instance
is the backslash, \, which allows you to “escape” certain characters and sequences. The
\. sequence, for example, implies a literal period. Alternatively, \ can also start the
definition of a metasymbol, such as \b, which specifies a word boundary.

Finally, the remaining metacharacters allow you to define lists or special
components within their boundaries—for example, [a-z] creates a character class that
contains all of the lowercase letters from “a” to “z.”

Because all of these elements have an overall effect on all the regular expressions
you will use, we'll list them here first, before looking at the specifics of matching
individual characteristics within an expression, such as words and character classes.

In both Tables 8-6 and 8-7, the entries have an “Atomic” column—if the value in that
column is “yes”, then the metasymbol is quantifiable. A quantifiable element can be
combined with a quantifier to allow you to match one or more elements.

Table 8-6 lists the general metacharacters supported by regular expressions.

Perl: The Complete Reference

Character Atomic Description

\ Depends Treats the following character as a
real character, ignoring any
associations with a Perl regex
metacharacter—see Table 8-7.

A No Matches from the beginning of the
string (or of the line if the /m
modifier is in place).

$ No Matches from the end of the string
(or of the line if the /m modifier is
in place).
Yes Matches any character except the

newline character.

| No Allows you to specify alternative
matches within the same regex—
known as the OR operator.

0 Yes Groups expressions together,
treating the enclosed text as a
single unit.

[1 Yes Looks for a set and/or range of
characters, defined as a single
character class, but [] only
represents a single character.

Table 8-6. Regular Expression Metacharacters

The next table, Table 8-7, lists the metasymbols supported by the regular expression
mechanism for matching special characters or entities within a given string. Note that
not all entries are atomic—as a general rule, the metasymbols that apply to locations or
boundaries are not atomic.

Chapter 8: Data Manipulation 245

Sequence Atomic Purpose

\0 Yes Matches the null character.

\033 Yes Matches the specified octal character,
up to \377 (255 decimal).

\n Yes Matches the nth previously captured
string (deprecated, use $n instead).

\A No Matches only the beginning of a string.

\a Yes Specifies alarm (bell).

\b Yes Matches the backspace character
(within a character class).

\b No Matches a word boundary (outside a
character class).

\B No Matches a non-word boundary.

\cX Yes Matches the control character X.

\c Yes Matches one byte (8-bit character), even
when the utf8 pragma is in force.

\d Yes Matches a digit.

\D Yes Matches a nondigit character.

\e Yes Matches the escape (ASCII) character.

\E NA Ends case (\U, \L) or metaquote (\Q)
translation.

\f Yes Matches the form feed character.

\G No Matches where previous m//g operation
left off (only works with /g modifier).

\1 NA Translates only the next character to
lowercase.

\L NA Specifies lowercase until \E.

\n Yes Matches a newline (CR on Macs).

Table 8-7. Regular Expression Character Patterns

246 Perl: The Complete Reference

Sequence Atomic Purpose

\N{NAME} Yes Matches the named UTF character.

\p{PROP} Yes Matches any UTF character with the
named property.

\P{PROP} Yes Matches any UTF character without the
named property.

\Q NA Quotes (disables) regex metacharacters
until e.

\r Yes Matches the carriage return character
(NL on Macs).

\s Yes Matches any white-space character
(spaces, tabs, etc.).

\S Yes Matches any non-white-space character.

\t Yes Matches the (horizontal) tab character.

\u NA Translates only the next character to
uppercase.

\U NA Specifies uppercase until \E.

\w Yes Matches any alphanumeric character
(including _).

\W Yes Matches any nonalphanumeric
character.

\x1B Yes Matches any two-digit hexadecimal
character.

\x{xxxx} Yes Matches any multidigit hexadecimal
character.

\X Yes Matches any Unicode “combining
character sequence” string.

\z No Matches the end of a string.

\Z No Matches the end of a string or before a

newline character (except when in
multiline-match mode).

Table 8-7. Regular Expression Character Patterns (continued)

Chapter 8: Data Manipulation 247

Table 8-8 lists the quantifiers supported by Perl. These affect the character or
entity immediately before them—for example, [a-z]* matches zero or more occurrences
of all the lowercase characters. Note that the metasymbols show both maximal and
minimal examples—see the “Quantifiers” section later in this chapter for an example
of how this works.

Matching Specific Characters
Anything that is not special within a given regular-expression pattern (essentially
everything not listed in Table 8-2) is treated as a raw character. For example /a/ matches
the character “a” anywhere within a string. Perl also identifies the standard character
aliases that are interpreted within double-quoted strings, such as \n and \t.

In addition, Perl provides direct support for the following:

B Control Characters You can also name a control character using \c, so that
CTRL-Z becomes \cZ. The less obvious completions are \c[for escape and \c?
for delete. These are useful when outputting text information in a formatted
form to the screen (providing your terminal supports it), or for controlling the
output to a printer.

B Octal Characters If you supply a three-digit number, such as \123, then it’s
treated as an octal number and used to display the corresponding character
from the ASCII table, or, for numbers above 127, the corresponding character
within the current character table and font. The leading 0 is optional for all
numbers greater than 010.

B Hexadecimal Characters The \xHEX and \x{HEX} forms introduce a
character according to the current ASCII or other table, based on the value of

Maximal Minimal Purpose

* *? Matches zero or more
items.

+ +? Matches one or more
items.

? ?? Matches zero or one items.

{n} {n}? Matches exactly n times.

{n,} {n,}? Matches at least n times.

{n,m} {n,m}? Matches at least n times
but no more than m times.

Table 8-8. Regular Expression Pattern Quantifiers

248

Perl: The Complete Reference

the supplied hexadecimal string. You can use the unbraced form for one- or
two-digit hexadecimals; using braces, you can use as many hex digits as
you require.

B Named Unicode Characters Using \N{NAME} allows you to introduce
Unicode characters by their names, but only if the charnames pragma is
in effect. See Chapter 19 for more information on accessing characters by
their names.

Matching Wildcard Characters

The regular expression engine allows you to select any character by using a wildcard.
The . (period) is used to match any character, so that

if ($string =~ /c.t/)

would match any sequence of “c” followed by any character and then “t.” This would,
for example, match “cat” or “cot”, or indeed, words such as “acetic” and
“acidification.”

By default, a period matches everything except a newline unless the /s modifier is
in effect, in which case it matches everything including a newline.

The wildcard metasymbol is usually combined with one of the quantifiers (see the
“Quantifiers” section later in the chapter) to match a multitude of occurrences within a
given string. For example, you could split the hours and minutes from “19:23” using

(Shours, $mins) = ('19:23"' =~ m/ (.*?):(.*?)/);

This probably isn’t the best way of doing it, as we haven’t qualified the type of
character we are expecting—we’d be much better off matching the \d character class.
The \X matches a Unicode character, including those composed of a number of
Unicode character sequences (i.e. those used to build up accented characters). For
example /\X/i would match “c”, “¢”, “C” and “C”.
The \C can be used to match exactly one byte from a string—generally this means
that \C will match a single 8-bit character, and in fact uses the C char type as a guide.

Character Classes

Character classes allow you to specify a list of values for a single character. This can
be useful if you want to find a name that may or may not have been specified with a
leading capital letter:

if ($name =~ /[Mm]artin/)

Within the [] metacharacters, you can also specify a range by using a hyphen to
separate the start and end points, such as “a-z” for all lowercase characters, “0-9” for
numbers, and so on. If you want to specify a hyphen, use a backslash within the class

Chapter 8: Data Manipulation 249

to prevent Perl from trying to produce a range. If you want to match a right square
bracket (which would otherwise be interpreted as a character class), use a backslash or
place it first in the list, for example [[].

You can also include any of the standard metasymbols for characters, including \n,
\b, and \cX, and any of the character classes given later in this chapter (class, Unicode,
and POSIX). However, metasymbols used to specify boundaries or positions, such as
\z, are ignored, and note that \b is treated as backspace, not as a word boundary. The
wildcard metasymbols, ., \X, and \C, are also invalid. You also can’t use | within a
class to mean alternation—the symbol is just ignored.

Finally, you can’t use a quantifier within a class because it doesn’t make sense. If
you want to add a quantifier to a class, place it after the closing square bracket so that it
applies to the entire class.

All character classes can also use negation by including a ~ prefix before the class
specification. For example, to match against the characters that are not lowercase, you
could use

$string =~ m/[*a-zl/;

Standard (Classic) Character-Class Shortcuts

Perl supports a number of standard (now called Classic) character-class shortcuts. They
are all metasymbols using an upper- or lowercase character. The lowercase version
matches a character class, and the uppercase versions negate the class. For example,
\w matches any word character, while \W matches any non-word character.

The specifications are actually based on Unicode classes, so the exact matches will
depend on the current list of Unicode character sets currently installed. If you want to
explicitly use the traditional ASCII meanings, then use the bytes pragma. Table 8-9

Metasymbol Meaning Unicode Byte
\d Digit \p{IsDigit} [0-9]
\D Non-digit \P{IsDigit} [~0-9]
\s White space \p{IsSpace} [\t\n\r\f]
\S Non-white space \P{IsSpace} [~ \t\n\r\f]
\w Word character \p{IsWord} [a-zA-Z0-9_]
\W Non-word \P{IsWord} [a-zA-Z0-9_]
character
Table 8-9. “Classic” Character Classes

250

Perl: The Complete Reference

shows the metasymbol, the meaning, and the Unicode- and byte-based interpretations
of each metasymbol.

Note that the \d sequence is strict, such that if you want to match periods or
commas that are often used to separate elements of numbers, then you must specify
them additionally within a set:

if ('23,445.33'" =~ m/([\d, .1+)/)

Also note that, as in the preceding example, a character class can be used both
outside and inside of a character-class definition.

POSIX-Style Character Classes

The POSIX-style character classes allow you to specify a class according to the Is...
functions defined by the POSIX standard. For example, you can specify an
alphanumeric character class using [:alnum:]. However, a POSIX character class
must be specified as part of another character class, for example [[:alnum:]] or
[[:alpha:][:digit:]].

The full list of supported classes is shown in Table 8-10.

| POSIX character classes are only supported in Perl 5.6 and above.

If the utf8 pragma is in effect, then the POSIX character classes shown in Table 8-10 are
identical to the Is properties for Unicode characters given in Table 8-12 later in the chapter.
You can negate a POSIX character class by specifying the ~ character before the

class name, as in [:Adigit:].

Class Meaning

alnum Any alphanumeric (equivalent to [[:alpha:][:digit:]])
alpha Any letter (upper or lowercase)

ascii Any 7-bit ASCII character (that is, those with a value

between 0 and 127)

cntrl Any control character—basically those ASCII characters
with a decimal value of less than 32, including newlines,
carriage returns, and tabs

digit Any character representing a digit (0-9)

graph Any alphanumeric or punctuation character

Table 8-10. POSIX Character Classes

Chapter 8: Data Manipulation 251

Class Meaning

lower Any lowercase letter

print Any printable character (equivalent to
[[:alnum:][:punct:][:space:]])

punct Any punctuation character

space Any white-space character (space, tab, newline, carriage
return, and form feed)

upper Any uppercase letter

word Any identifier character—basically alnum and the
underscore

xdigit Any hexadecimal digit (upper- or lowercase, 0-9 plus a—f)

Table 8-10. POSIX Character Classes (continued)

Unicode Classes
You can use \p{PROP} and its negation, \P{PROP}, to select characters according to
their Unicode properties. The braces are optional for classes that use a single character.
Perl uses a combination of the formal definitions specified in the Unicode standard,
and a number of composites defined purely within Perl that act as equivalents to the
classic or POSIX character classes we’'ve already seen.

For the moment, all of the Unicode character classes require the utf8 pragma to
be in effect for the matches to work properly. Table 8-11 lists the standard Unicode
properties that are supported by Perl, along with those composites that are defined
by Perl only to act as umbrellas for the main categories.

Property Meaning
IsC Control codes (Perl defined)
IsCc Other, control
IsCf Other, format
IsCn Other, not assigned
IsCo Other, private use
IsCs Other, surrogate
Table 811. Standard Unicode Character-Class Properties

252

Perl: The Complete Reference

Property

IsL
IsL1
IsLm
IsLo
IsLt
IsLu
IsM
IsMc
IsMe
IsMn,
IsN
IsNd,
IsN1,
IsNo
IsP
IsPc
IsPd
IsPe
IsPf
IsPi
IsPo
IsPs
IsS
IsSc
IsSk
IsSm
IsSo

Meaning

Letters (Perl defined)
Letter, lowercase

Letter, modifier

Letter, other

Letter, title case

Letter, uppercase
Marks (Perl defined)
Mark, combining

Mark, enclosing

Mark, non-spacing
Numbers (Perl defined)
Number, decimal digit
Number, letter
Number, other
Punctuation (Perl defined)
Punctuation, connector
Punctuation, dash
Punctuation, close
Punctuation, final quote
Punctuation, initial quote
Punctuation, other
Punctuation, open
Symbols (Perl defined)
Symbol, currency
Symbol, modifier
Symbol, math

Symbol, other

Table 8-11. Standard Unicode Character-Class Properties (continued)

Chapter 8: Data Manipulation 253

Property Meaning

IsZ Separators (Perl defined)
IsZ1 Separator, line

IsZp Separator, paragraph
IsZs Separator, space

Table 8-11. Standard Unicode Character-Class Properties (continued)

Perl uses these classes to define its own unique sets, which are POSIX or classic
compatible; these are themselves listed in Table 8-12. For more information on Unicode
and how the properties are interpreted and supported in Perl, see the Unicode folder
in the main Perl 5.6 library—since the Unicode standard is subject to change and
expansion, we’ll only deal with the basic classes and Perl composites in this section.

Property Consists of
IsASCII [\x00-\x7f]
IsAlnum \p{IsLI\ p{IsLu}\ p{IsLt)\ p{IsLo}\ p{IsNd}]
IsAlpha \p{IsLI\ p{IsLuj\ p{IsLt}\ p{IsLo}]
IsCntrl \p{IsC}
IsDigit \p{Nd}
IsGraph ["\pC\piIsSpace}]
IsLower \p{IsLl}
IsPrint \P{IsC}
IsPunct \p{IsP}
IsSpace N\\n\f\r\p{IsZ}]
IsUpper [\p{IsLu}\p{IsLt}]
IsWord [\p{IsLI\ p{IsLu}\ p{IsLt}\ p{IsLo}\ p{IsNd}]
IsXDigit [0-9a-fA-F]
Table 8-12. Perl’s Composite Unicode Properties

254

Perl: The Complete Reference

For more information on the other properties supported by Perl (which are subject
to constant change as new languages, character sets, and Perl composites are
produced), check the Unicode documentation that comes with Perl.

Matching the Beginning and End of a String

The A metacharacter matches the beginning of the string. The following line would
only return true if the character sequence “cat” were present at the beginning of
$string:

if ($string =~ /“cat/)
This would match “catatonic”, “cat”, and “cationic surfactant”, but not “polecat”. The
A also matches the beginning of a line, so when it is used within a multiline string
(using the /m modifier), it will match not only the start of the string, but also the start
of each line (matching against a preceding newline character). If you have supplied a
multiline string, but want to match only the beginning of that string then use \A.
For example,

$string = "Cats go Catatonic\nWhen given Catnip";
($start) = (Sstring =~ /\A(.*?) /);
@lines = $string =~ /" (.*?) /gm;

print "First word: S$start\n","Line starts: @lines\n";
outputs

First word: Cats
Line starts: Cats When

The $ metasymbol matches the end of the string,
if ($string =~ /cat$/)

so this example only matches when the “cat” character sequence is at the end of the
string being matched. However, just like A, when used in a multiline string with the
/m modifier, $ also matches the end of a line (at the point just before the newline
character).

The \z metasymbol matches at the end of the string, no matter what the contents
of the string are. The \Z matches just before the newline at the end of the string if there
was a newline, or at the end of string if there wasn’t a newline. The \Z can be useful
when reading information from a file that contains newlines, when you want to execute
a regular expression on the source string without first using chomp.

Chapter 8: Data Manipulation

Boundaries

The \b matches at any word boundary, as defined by the difference between the \w
class and the \W class. Because \w includes the characters for a word, and \W the
opposite, this normally means the termination of a word. The boundary also works in
reverse; that is, a change from \W to \w, which indicates the beginning of a word. The
\B assertion matches any position that is not a word boundary. For example:

/\bcat\b/ # Matches 'the cat sat' but not 'cat on the mat'
/\Bcat\B/ # Matches 'verification' but not 'the cat on the mat'
/\bcat\B/ # Matches 'catatonic' but not 'polecat'

/\Bcat\b/ # Matches 'polecat' but not 'catatonic'

Note, however, that because \W includes all the punctuation characters, you may
end up splitting in the middle of a word, such as “can’t” and “mc@mcslp.com”, which
may or may not be what you want.

Selecting Alternatives

The | character is just like the standard or bitwise OR within Perl. It specifies alternate
matches within a regular expression or group. For example, to match “cat” or “dog” in
an expression, you might use this:

if ($string =~ /cat]|dog/)
You can group individual elements of an expression together in order to support
complex matches. Searching for two people’s names could be achieved with two

separate tests, like this:

if (($string =~ /Martin Brown/) ||
($string =~ /Sharon Brown/))

You could write this more efficiently in a single regular expression, like this:
if ($string =~ /(Martin|Sharon) Brown/)

The use of grouping here is vital. By using a group, the code looks for “Martin Brown”
or “Sharon Brown”, because the OR operation simply works on either side of the |
metacharacter. Had you written

if ($string =~ /Martin|Sharon Brown/)

255

256

Perl: The Complete Reference

the regular expression would match either “Martin” or “Sharon Brown”, which may or
may not be what you want. In general, the use of grouping with the | metacharacter
follows the same rules as the logical operators elsewhere in Perl.

Grouping

As seen earlier, you can logically group any part of an expression together. Syntactically
the groupings have no specific meaning within an expression unless combined with a
| operator, as in the example earlier. In fact, from a regular-expression point of view,
there is no difference between

$string =~ /(\S+)\s+(\S+)/;

and
Sstring =~ /\S+\s+\S+/;

except, perhaps, that the former is slightly clearer.

However, the benefit of grouping is that it allows us to extract a sequence from a
regular expression. Groupings are returned as a list in the order in which they appear
in the original. For example, in the following fragment,

my (Shours, Sminutes, S$seconds) = (Stime =~ m/(\d+): (\d+): (\d+)/);

we’ve pulled out the hours, minutes, and seconds from a string.

As well as this direct method, matched groups are also available within the special
$x variables, where x is the number of the group within the regular expression. We
could therefore rewrite the preceding example as follows:

$time =~ m/(\d+): (\d+) : (\d+) /;
my ($hours, S$minutes, $seconds) = ($1, $2, $3);

When groups are used in substitution expressions, the $x syntax can be used in the
replacement text. Thus, we could reformat a date string using this:

$date = '03/26/1999';
$date =~ s#(\d+)/ (\d+)/(\d+) #535152#;

Each element of the date is placed into the temporary variables, so the month
(group one) is in $1, the day is group two, and the year is in group three. To convert to
the number format, you just need to specify each element in the desired order—in this
example, year, month, day. The resulting string is “19990326”. The matched groups are
perpetual—that is, you can also access each matched group outside of the substitution
expression. Obviously, the next regular expression executed resets all of the values.

Chapter 8: Data Manipulation 257

| Perl also supports \x as a group definition, but it is only valid within the confines of a
substitution. It is also limited to just nine groups (\1 to \9), whereas $x is essentially
unlimited.

If you nest groups, then you must remember that the numbering system keys on
the first opening parenthesis, as demonstrated by the following code:

Sdate = '03/26/1999"';
Sdate =~ s#((\d+)/(\d+)/(\d+))#Date $1 = $4523$3#;
print "Sdate\n";

which prints this:

Date 03/26/1999 = 19990326

The first parenthesis matches the whole date string; the nested parentheses then match
the individual year, month, and day of the date.

Quantifiers

In many of the preceding examples, you'll see a quantifier—a special character or
sequence that defines the number of times the previous sequence or character appears.
Using a quantifier, you can specify that a sequence must appear a minimum or
maximum number of times, or that a character can repeat indefinitely until the next
regex element. Table 8-8 earlier in the chapter shows the supported quantifiers.

The * and + operators match 0 or more, or 1 or more items, respectively. By using a
pattern of /.*/, you can match everything including an empty string (although this
seems rather pointless), or with /.+/, you must match at least one character. The brace
specifications allow you to specify a range of repetitions. Some examples and
equivalencies are shown here:

m/.{0}/; #Matches no characters
m/.{1,}/; #Matches any character at least once, equivalent to /.+/
m/\d{2,4}/; #Matches any digit at least two and a maximum of four times

In Table 8-8, entries in the left-hand (Maximal) column will match preceding
expression or class the maximum number of times. This means that the quantifier will
soak up all the characters it can before it attempts the next match in the regex. The
Minimal column shows the sequence that will match the minimum number of times
before the next element of the regular expression is matched. The following code
demonstrates the effect:

Sstring = "There was a food shortage in foodham";
print "Maximal:", ($Sstring =~ /(.*)foo/),"\n";
print "Minimal:", ($Sstring =~ /(.*?)foo/),"\n";

258

Perl: The Complete Reference

If you run this, the result is as follows:

Maximal:There was a food shortage in
Minimal:There was a

Using the \G Assertion
The \G assertion allows you to continue searching from the point where the last match
occurred. This is the same as using pos (see the “pos” section, later in the chapter),
except that you can continue using regular expressions instead of splitting up your
string using substr.

For example, in the following code we’ve used \G so that we can search to the
correct position and then extract some information, without having to create a more
complex, single regular expression:

$string = "The time is: 12:31:02 on 4/12/00";
$string =~ /:\s+/9;
($time) = (Sstring =~ /\G(\d+:\d+:\d+)/);

$string =~ /.+\s+/g;
(sdate) ($string =~ m{\G(\d+/\d+/\d+) });

print "Time: S$time, Date: $date\n";

The \G assertion is actually just the metasymbol equivalent of the pos function, so
between regular expression calls you can continue to use pos, and even modify the
value of pos (and therefore \G) by using pos as an Ivalue subroutine:

pos ($string) = 0;

Regular Expression Variables

Regular expression variables include $, which contains whatever the last grouping
match matched; $&, which contains the entire matched string; $°, which contains
everything before the matched string; and $’, which contains everything after the
matched string.

Use of the $" and $’ variables induces a significant overhead within your program, since
Note) ;
the first time you use them Perl then starts to populate the variables for each regular

expression executed. Avoid using them if you can. Grouping will often give you the
same result without the same overhead. The $& also adds overhead, but since version
5.005, the performance hit is not as high as that induced by $".

Chapter 8: Data Manipulation

The following code demonstrates the result:

$string = "The food is in the salad bar";
$string =~ m/foo/;

print "Before: $°\n";

print "Matched: s$&\n";

print "After: $'\n";

This code prints the following when executed:

Before: The
Matched: foo
After: d is in the salad bar

Regular Expression Extensions/Assertions

The regular expression engine also allows you to specify a number of additional
extensions, called assertions, within the main expression. These extensions enable
more specific matches to take place without the match affecting the variables and/or
groupings that are in place. These work in combination with the grouping facilities
within the regular expression and the global variables that are affected by regular

expression matches. The assertions are summarized in Table 8-13.

For example, here’s a regular expression match using the (?{code}) assertion:

use re 'eval';
$ = '"';
m<

(?{ $cnt = 0 })

\<A.*"

(. (?{ local $cnt = $cnt + 1;}))*
">

(?{ Sres = s$cnt })

>X;

print S$res," words\n";

It counts the number of letters between the double quotes in the HTML reference
specified in $_. This is a fairly simplistic example, since the likelihood is that you'll
want to perform some sort of test (perhaps via a function call) within the (?{code})

assertion, but you can see the general idea.

259

260

Perl: The Complete Reference

Assertion

(?#text)
(?:pattern)

(?imsx:pattern)

(?=pattern)

(?!pattern)

(?<=pattern)

(?<!pattern)

Meaning

Comment text within the brackets is
ignored.

Identical to grouping, but does not
populate $1, $2, and so on, on a match.

Identical to grouping, but does not
populate $1, $2, and so on, on a match;
embeds pattern-match modifiers for the
duration of the specified pattern.

Matches if the regular expression
engine would match pattern next,
without affecting the result of the
match. For example, the expression
\w+(?=\t)/ would match a tab
following a word, without the tab
being added to the value of $&.

Matches if the regular expression
engine would not match pattern
next. For example, the expression
\foo($!bar)/ would match only if
there was an occurrence of “foo”
not followed by “bar”.

Matches the next statement only if
pattern would have matched with

the following expression, but with-

out placing the result of pattern into
the $& variable. For example, to test
for a word following a tab, but without
placing the tab into $&, you would use
1Q<=\t)\w+/.

Matches the next statement only if
pattern would not have matched with
the following expression, but without
placing the result of pattern into the $&
variable. For example, to match any
occurrence of “foo” that isn’t following
“bar”, you might use /(?<!bar)foo/.

Table 8-13. Regular Expression Assertions

Chapter 8: Data Manipulation 261

Assertion Meaning

(?{ code }) Experimental—the intended use for
this is for code to be executed, and
if it returns true, then the result is
considered as a match along the same
lines as the (?:pattern) assertion. The
code does not interpolate variables.
This assertion only works if you have
the use re ‘eval’ pragma in effect.

(?>pattern) Matches the substring that a stand-
alone pattern would match if the
pattern was anchored at the current
position. For example, the regex
/M (?>a*)ab/ will never match, because
the assertion (?>a*) will match all
characters “a” at the beginning of the
string, effectively removing the “a”
required to match “ab.”

(?(condition)yes-pattern | no-pattern) Conditional expression—the
(?(condition)yes-pattern) (condition) element should either be an
integer in parentheses or an assertion.

(?imsx) Embedded pattern-match modifiers.

(?-imsx) Useful when you want to embed an
expression modifier within a variable,
which may then be used in a general
regex that does not specify its own
modifiers. Anything following a
hyphen, -, switches off the modifier
for the duration, or until another
embedded modifier is in place.

Table 8-13. Regular Expression Assertions (continued)

Precompiling Expressions
One of the pitfalls of the regular expression mechanism is that when interpolating
variables into expressions, Perl must recompile the regular expression each time. Most
expressions are compiled during the compilation phase of the main script, of course,

262

Perl: The Complete Reference

but in those situations where you are using scalars, you can run into a severe performance
problem as each regular expression is compiled and checked.

For simple one-shot expressions that include a variable, you can get around this by
using the /o modifier, which forces the expression to be compiled only once, even if
you do change the variable contents.

However, doing so limits the usefulness of Perl in situations where you want to run
a number of regular expressions over a list—something that is easy to do in sed. For
example, the code:

while (<FILE>)

{

foreach $regex (@expressions)

{
}

print if /Sregex/;

would be incredibly time consuming, because for each line in FILE, we have to
recompile each of the regular expressions in @expressions, even though the contents
of @expressions don’t change between each line.

You can get around this, perhaps, by creating a new script based on @expressions
that could then be executed through an eval. Because the regex entries would be
“fixed” within the limits of the subscript, they would only have to be compiled once
during the eval initialization. This is exceedingly messy, however. A much better
solution is to use the qr// (quote regex) operator.

The qr// operator takes a regular expression and compiles it as normal, returning a
regular expression object such that

Sregex = gr/[a-z]+/1s;
s/S$regex/nothing/;

is the same as
s/ [a-z]+/nothing/is;
Because the returned object is a compiled regular expression, we can solve the earlier

problem by precompiling all the expressions before we enter the loop.
That means we could change the preceding example to

@regexes = map { gr/$_/ } @expressions;
while (<FILE>)

{

Chapter 8: Data Manipulation 263

foreach $regex (@regexes)

{
}

print if /Sregex/;

Now, because the patterns are precompiled, the regular expressions are executed
immediately within the main loop without requiring a new compilation.
The return value of the qr// operator can also be embedded into other expressions:

print if /start${regex}end/;

| Be careful when using qrll, as you run the risk of compiling an expression during run
time that might cause an exception. You should be embedding the compilation into an
eval statement:
$regex = eval { qgr/Spattern/ } || warn "Cant regex from $pattern";

Regular Expression Support Functions

There are three functions that support the regular expression engine. The first, pos, is
an extension of the \G assertion, which we have already seen. The second, quotemeta,
is useful when you want to include a string within an expression that may contain
character sequences that match the regular expression engine’s metacharacters or
metasymbols. The last, study, can improve the speed at which the regular expression
engine operates when you are matching against large strings.

pos

When you’'ve performed a match, you can find the location within the string at the
point where the regular expression stopped checking for new matches within an m//g
regex. The basic form is

pos [SCALAR]

The pos function, in scalar context, returns the location immediately after the last
successful match for SCALAR, or $_ if no scalar is specified. For example,

Sstring = "The food is in the salad bar";
$string =~ m/foo/g;
print pos($Sstring),"\n";

should print a value of 7, the number of characters read before the match operator
stopped looking for new entries (because there weren’t any). In list context, pos returns
all of the matches from the previous expression.

264

Perl: The Complete Reference

As we've already seen, pos can also be used as lvalue to set the position within an
expression:

pos ($string) = 12;

This is useful if you are using the \G assertion within your regular expressions and
want to explicitly set (or reset) the starting point.

quotemeta

In Table 8-7 you should have noticed the \Q sequence, which prevented the regular
expression engine from interpreting metacharacters or sequences as special values
within a regular expression. This effect is actually achieved by the general Perl function
quotemeta:

quotemeta EXPR
quotemeta

The function replaces any nonalphanumeric (not matching [a-zA-Z0-9]) character
with a backslash version. For example, this string

print quotemeta " [Foobar!]";

will return
\ [Foobar\ !\]

If you do not specify an expression, then the value of $_ will be quoted instead.

study

If you expect to perform a number of pattern matches on a large scalar, you may find
that the regular expression process is very slow. To increase the performance of the
regular expression system, you can use the study function:

study EXPR
study

The special $_ is used if you do not specify a scalar to examine. The study function
works by building a linked list of all the characters within the scalar. This enables the
regular expression engine to identify where all of the “x” characters are, for example.
When a search is requested, the character that occurs least in the search string is used
to choose the starting point for the pattern search.

Chapter 8: Data Manipulation

You will need to check the speed of the search process with and without the study
function; for many cases, you may find there is little or no difference. Unfortunately,
only one scalar can be studied at any one time. The moment you specify a new scalar
for the function to examine, it replaces the information stored on the previous scalar.

Unicode

Some of you may have come across Unicode elsewhere, and if you haven't, then it’s
highly likely that you will soon. It has long been a part of the Windows operating
system (having been officially introduced with Windows 98, although support existed
in Windows 95 and NT), and the Mac OS has had Unicode support for many years.
Although support under Unix is currently a system-wide issue, most software that
thinks it ought to be using Unicode comes with its own support.

Unicode solves an age-old problem relating to the representation of characters on
screen. The base format that most people are aware of is ASCII, which officially lists
the main Latin letters, numbers, and grammatical marks in their upper- and lowercase
versions. Some ASCII extensions are also universally accepted and allow for accented
characters that support most of the southern European languages. The actual
characters are referred to by a number, using a range of 0-255, which enables us to
store the numerical equivalent of the letter into a single 8-bit byte.

However, what happens when you migrate a system that uses the ASCII, and
therefore Latin, character set into an environment that doesn’t actually use Latin
characters? In Greece, for example, they use letters from the Greek alphabet, which
are not actually part of the ASCII standard. Traditionally, programmers and designers
have got around this issue by developing a font that maps normal Latin characters into
their foreign equivalents. In essence, we're still using a single byte to represent each
character, but because the software knows that we should be using a Greek rather
than a Latin font, it displays the Greek character.

When you move to more complex graphical languages, such as Chinese and
Japanese, this method no longer works. The traditional Chinese writing system has
over 30,000 characters in it—not directly representable by a single byte that limits
us to 256 characters. For these languages, we need to use multibyte characters, a
specification that allows us to refer to a character in an alphabet that fits in the range
0 to (2%2-1) (or 0 to (2%-1) for 64-bit computers).

It’s here that Unicode fits in. The Unicode standard is designed to be the accepted
set of rules to allow people to exchange textual information around the world. Because
the Unicode standard includes information on the character set and the multibyte
format of the data being exchanged, you should be guaranteed that the information
you are reading is in the correct format and language.

Unicode is not (yet) a compulsory element of any software, and certainly isn’t a
required part of Perl, but in these modern times when scripts and information are
exchanged between hundreds of different languages, and therefore character sets,
around the world during the course of its life, ignoring Unicode is not the smartest
move you will ever make!

265

266

Perl: The Complete Reference

Perl’s Interpretation of Unicode

The problem of Unicode from a programmer’s perspective is that because it smudges
the line between single-byte-based character sets and multibyte-based character sets,
some of the operations that we are used to don’t always work as we would expect.

To give a very classic example, consider the length function. Working within the
standard Latin character set, the length function returns the length of a string from two
perspectives. First, it gives us the length of the string in terms of characters—that is, the
number of letters and numbers that we see on the screen. It also returns the length of
the string in terms of bytes—because one character is represented by one byte, the
relationship is one to one.

If we use the same length function on a Unicode string, the two numbers won't
always marry. If the string contains letters using two-byte characters, then we end up
with a character length of 10 but a byte length of 20. Things get even more complicated
if we work with Unicode strings that contain multibyte characters with different byte
lengths!

However, before you panic and expect all of your software to suddenly fail, Perl
isn’t quite so strict about how it applies the rules of Unicode. In fact, the documentation
lists the following goals that were applied when Perl’s Unicode system was developed:

B Goal#1 Old byte-oriented programs should not spontaneously break on the
old byte-oriented data they used to work on.

B Goal #2 Old byte-oriented programs should magically start working on the
new character-oriented data when appropriate.

B Goal #3 Programs should run just as fast in the character-oriented mode as in
the old byte-oriented mode.

B Goal #4 Perl should remain one language, rather than forking into a
byte-oriented Perl and a character-oriented Perl.

Perl’s support, like Unicode itself, is still largely a work in progress, so not
everything is working perfectly within these guidelines, but the goals will remain the
same. Although it’s too early to speculate at this stage what the Unicode support in
Perl 6 will be like, it’s likely that many of the developments being made now to bond
Perl’s core systems into the Unicode fold will still apply.

Unicode Characters in Perl

Unicode characters are, internally at least, still referred to by a number. The difference
is in the size of the number used to represent each character. Perl uses the UTFE-8
(Unicode Transformation Format-8) system to support variable-length encoding for
Unicode characters. The UTFE-8 system allows us to specify a multibyte character by
using a string of single bytes without losing any information. This means that for the
first 128 characters (0-127), which can obviously be represented by a single byte, the
relationship between UTE-8 and ASCII is identical.

Chapter 8: Data Manipulation 267

Perl automatically switches to using UTF-8 when it thinks that it’s required. If you
are only using single-byte characters in your scripts, then you have nothing to worry
about—Perl will carry on working as normal, and you shouldn’t have to make any
changes to your scripts. What happens internally is that Perl converts the fixed 8-bit
characters you supply into the UTF-8 format as necessary.

On the other hand, if you do use a string that contains characters using numbers
larger than 255, the string is converted into UTF-8. Perl uses an extended version of
UTEF-8 called utf8, and there is a pragma of that name that can be used to help specify
the UTF-8 characters. Although the utf8 pragma allows you to use any defined
Unicode character, it’s limited to supporting the characters officially endorsed by
the Unicode consortium.

Your main concern when dealing with Unicode characters should be the interface
between the Perl code and the outside world. You need to be aware that, by default,
all of Perl’s interfaces assume they are working with byte (8-bit) rather than character
(Unicode) data.

When communicating with the outside world, you must tell Perl that you are
expecting (or exporting) character-oriented, rather than byte-oriented, information. Perl
should do this automatically, although occasionally it'll need some help—for example,
you'll need to tell the open function to expect Unicode source (see Chapter 7).

Unicode’s Effects on Perl Code

The general rule to follow with Unicode in Perl is that a typical operator will now
operate on characters (including multibyte Unicode ones) unless you've explicitly told
it otherwise by using the byte pragma. If you are only using 8-bit characters, then there
is no difference as far as you or your program is concerned, and you won’t have to
make any changes to your code.

The utf8 pragma exists as a compatible way of introducing UTF-8 characters in
literals, and allowing Perl to support UTF-8 characters in identifiers. Eventually, the
utf8 pragma will have no effect at all, as all of this functionality will be supported
natively by the interpreter.

The bytes pragma is there to force sections of code to employ a byte-sized
interpretation of contents, instead of characters. This means that outside of bytes, the
length function now returns the length in characters, but inside, it returns the length in
bytes. The bytes pragma can also be used as a wrapper around certain functions (only
length at present). For example:

use bytes (); # Loads wrappers without enforcing byte
interpretation

Scharlen = length($Sstring) ;
Sbytelen bytes::length($string) ;

268 Perl: The Complete Reference

Outside of a bytes pragma, the interpreter follows these rules:

Strings and regular expression patterns may contain characters with values
larger than eight bits (utf8 pragma required).

Identifiers may contain alphanumeric characters, including ideographs (utf8
pragma required).

Regular expressions match characters, not bytes.

Character classes in regular expressions match characters, not bytes.

Named Unicode properties and block ranges can be used as character classes.
The regular expression metasymbol \X matches any Unicode sequence.

The tr/l/ operator transliterates characters, not bytes.

Case translation operators (\U, \L and uc, ucfirst, etc.) use the Unicode
translation tables.

Functions and operators that deal with position and length within a string use
character, rather than byte positions. Exclusions are pack, unpack, and vec,
which traditionally work on byte- or bit-based data anyway.

The ¢ and C pack/unpack formats do not change—they still extract byte-based
information. If you want to use characters use the U format.

The chr and ord functions work on multibyte characters.

The reverse function in a scalar context reverses by character, rather
than by byte.

The whole Unicode implementation within Perl is still a work in progress, and
there’s lots to do before all of the features and/or functionality within both Unicode
and Perl works correctly. The best way to keep up to date is to read the Unicode
documentation that comes with the latest Perl distribution (available in the
unicode/Unicode3.html document within the main Perl library directory).

The

Rejoronce
Chapter 9

Errors and
Trapping Them

269

270

Perl: The Complete Reference

espite your best efforts, all programs have the potential to cause problems.
We'll be looking at the debugging process and tools available in Perl in
Chapter 21, but finding and debugging your programs is only part of the issue.

Some statements and function calls in Perl will fail—not necessarily through a fault
of yours, Perl’s, or the operating system’s. For example, when you open a file, what
happens if the file doesn’t exist? Or if it’s a new file, what do you do if the operating
system doesn’t let you create a new file?

Your first question, though, will be: why actually check for errors in the first place?
The reason is quite simple—we need to stop our script from doing something we (or
the user) don’t expect it to do, or from potentially damaging something we didn’t
expect. Updating a database from a series of text files when one of those text files may
be unreadable could have serious consequences.

It’s probably dangerous to continue the script under these circumstances, so we
now have two problems to resolve—first, how do you identify an error, and second,
what do you do with the error once you've identified it?

In this chapter we’ll aim to answer those questions. To that end, we’ll be looking at
the basics and mechanics of error checking and verification in Perl and at the different
tricks and tools that can be used to help in that process.

___| Adding Error Checking to Your Scripts

We've already seen some examples of error-checking mechanisms in Perl, and you
should already be adding error-checking processes to your scripts as you write them.
It doesn’t take long to get into the habit of always adding even basic error-checking
sequences as you type, but you need to know which functions deserve checking and
how to check and verify their operation.

Error Checking Methods

Most of the basic functions and keywords within Perl and many of the standard CPAN
extension modules follow the same basic format—a value is returned of true if the
function completed successfully or of false if there was an error. You can identify and
trap an error in a number of different ways.

Using if
The if statement is the obvious choice when you need to check the return value from a
statement; for example:

if (open (DATA,S$file))

{
}

Chapter 9: Errors and Trapping Them 271

else

{
}

die "Woah: Couldn't open the file s$!";

This procedure is most useful when you want to be able to account for two possible
outcomes—if the statement works, then continue and execute these statements; if it
doesn’t succeed, then do these statements instead.

Alternatively, we can reduce the statement to one line in situations where it makes
sense to do so; for example:

die "Woah: Something went wrong\n" if (error());

See the upcoming section on “Error Checking Guidelines” for more information on
when, and indeed whether, to use this format.

Using unless

The unless function is the logical opposite to if: statements can completely bypass the
success status and only be executed if the expression returns false. For example:

unless (chdir (" /etc"))

{
}

die "Can't change directory!: $!";

The unless statement is best used when you want to raise an error or alternative only if
the expression fails. The statement also makes sense when used in a single-line statement:

die "Can't change directory!: $!" unless(chdir("/etc"));

Here we die only if the chdir operation fails, and it reads nicely.

Using the Conditional Operator

For very short tests, you can use the conditional operator:
print (exists ($hash{value}) ? 'There' : 'Missing',"\n");

It’s not quite so clear here what we're trying to achieve, but the effect is the same as
using an if or unless statement. The conditional operator is best used when you want
to quickly return one of two values within an expression or statement.

272

Perl: The Complete Reference

It’s not really an error trapping statement, since there’s not enough scope to do
anything, but it can be used to help communicate status information back to the user.
Consider the following example:

chdir ("/tmp") ? print "Using /tmp\n" : warn "Can't use /tmp: $!";
Here it’s a useful way of highlighting a potential problem without actually doing

anything about it. The same basic principles can be used from within functions when
returning values:

return (@results) ? @results : undef;

Using Short-Circuit Logic
For many situations, especially when you want to immediately exit the script without
actually handling the error, the short-circuit capabilities of the or operator work best:

mkdir ("./tmp",0755) or die "Can't make directory!: $!";

See “Symbolic Logical Or” in Chapter 3 for more details on why this works and the
related dangers.

The | | symbolic logical or can also be used as a way to provide alternatives when
the first-choice option doesn’t work. For example, the line

$host = param('host') || $user->{prihost} || 'azus';

will use the browser-supplied value, then the user-configured value, and finally a
default value if the other options fail.

Error Checking Guidelines

There are some general guidelines for testing for errors in this way. The first guideline
is to make it obvious what you are testing and what you are trying to do. For example,
the statement

if (lopen (DATA,S$file))
will work fine, except that it would make more sense to use the unless statement, as in

unless (open (DATA, sfile))

Chapter 9: Errors and Trapping Them 273

The difference is that the if statement reads “If I didn’t open,” and the unless
statement reads “Unless I can open.” It’s a minor difference but will make the code
easier to read and, therefore, easier to debug. Here’s another example that’s difficult
to read:

die "Couldn't change directory: $!" unless(chdir ("/etc"));
This should be changed to
chdir ("/etc") or die "Couldn't change directory: $!";

The second guideline is that you should make it obvious what the actual problem
was; simply reporting that there was an error isn’t enough, either for you to debug the
program, or for your user to rectify it. Where relevant, also include information on the
system error message, as provided by $!. Also remember the $/E variable, which
contains the extended OS error on non-Unix platforms. For example, the line

open (DATA,sfile) or die "Can't open";
is useless compared to
open (DATA,sfile) or die "Can't open $file: $!, stopped";

Coupled with this, you should always report an error to STDERR by using either
warn or die. The exception to this rule is when you working with a GUI or web-based
application, for which there is no logical STDERR file handle. See the end of this
chapter for information on reporting errors when no terminal interface is available.

| what to Check

The paranoid would say “everything,” and the more relaxed and laid back would say
“nothing.” There are statements and operations that you should always check, whether
you are interested in the return value or not, if only to prevent your script from doing
something it shouldn’t:

B The open, close, and related statements that provide a conduit to the outside
world (including socket and tie) and external database connectivity

B Reading from or writing to a file or socket handle other than STDIN, STDOUT,
or STDERR

B Reading from or writing to STDIN, STDOUT, or STDERR if they have been
reassigned or redirected within the script

274

Perl:

The Complete Reference

Anything that makes changes to the operating system or file system, including
calls like unlink

Anything that changes the environment in which you are operating
(for example, chdir and chroot) or modifies the %ENV hash

Any system call not already covered—system calls always return their status,
so use it!

Anything that relies on input or information supplied the user—don’t
automatically assume that users know what they are doing!

Any calls to an external program, either through open, the qx operator,
or system

The object type when a reference that points to an internal object is dynamically
generated—particularly vital for code references

Beyond the preceding list, it comes down to a case of how the operation will affect
the execution of your script. If the operation will affect the following statements, then it
needs to be traced and probably trapped to prevent it from it having a knock on effect.
As a good example, using zero as a division value will raise an error, so it’s a good idea
to check the value beforehand.

What Not to Check

This list is obviously the inverse of our previous list. Beyond avoiding things that we
don’t need to worry about, there are some less obvious elements of our scripts that we
can safely ignore. Most of the time, the things to avoid checking are those that will not
have an immediate effect on what we are trying to achieve.

We can summarize the limit of your checking procedures as follows:

Don’t Check Things That Don’t Matter There are some things in your script
that just don’t merit checking, either because the return values don’t mean
anything or because they have little or no relevance for the execution of

your script.

User Input When checking a user-supplied value, whether it’s from a simple
line input, a command line argument, or a web form, you should check that the
information is valid according to what you expect. For example, when accepting
a name from standard input, we only need to verify that we received some
input; we don’t need to worry about whether it’s actually a name.

Substitution/Transliteration When modifying a variable through the substitution or
transliteration operators, don’t bother checking that the operation completed successfully,
unless you specifically want to match or identify regular expression elements.

Chapter 9: Errors and Trapping Them 275

___| When to Stop Checking

There are times when you can go too far. In the script we modified, for example, we
check the result when close is called, but nowhere did we actually check that the
number of bytes that we read from the file matched the number of bytes in the file
when we started. Checking that information is pointless—either we’ll read everything
from the file, or an error will be raised at some point (in this instance, probably when
we try to close the file). On the other hand, there are situations in which checking to
that level of granularity would be vital—transferring data over a network connection,
for example.

Don’t Check Things Twice

There’s no point in checking the same thing twice in two different ways. Usually there
is a simpler, one-shot solution that will identify the error for us. Here’s a common
mistake made by some programmers:

die "S$file doesn't exist!" unless (-e $file);
open (FILE, $file) or die "Can't open s$file: s$!i";

Aside from the fact that the second line would never be reached, the chances of the
status of the file changing between the two lines is pretty remote. Furthermore, the first
test may well pass if the file exists, even though it might not necessarily be readable. By
checking the return value of open, we actually verify that the file can be opened and
read by Perl, not just the file’s status.

Here’s another example where the checking is basically verifying the same
information, albeit at different levels each time:

if (Sname)

{
if (length(Sname) > 0)
{
if ($name =~ /[a-zA-Z0-9]1+/)
{
print "Hello S$name\n";
}
}
!

The regular expression will tell us whether the information that was supplied was
valid or not. Should the expression match fail, then we’ll already know that either it
didn’t match or that the supplied value wasn’t long enough.

276 Perl: The Complete Reference

Functions, Return Values, and Nesting

If you've followed the guidelines in Chapter 5, you already know that you can improve
your scripts and reduce the number and effects of bugs in them by dividing and
debugging the individual components. You know as well that the functions should
ideally handle errors by returning the error to the caller and not by using their own
error-handling statements to report problems (there are some exceptions; see
“Reporting Errors Within Modules” later in this chapter). Therefore, in checking for
errors when calling one of your own functions, you should avoid situations like this:

sub formatmessage

{
my ($msg) = @_;
if (smsg)
{
return "Hello S$msg\n";
}
else
{
warn "No message!";
return undef;
}
1
Smessage = formatmessage (undef) ;
if (Smessage)
{
print $message;
1
else
{
warn "Invalid message!";
1

If we run this script, we get this:

No message! at t.pl line 10.
Invalid message! at t.pl line 22.

Chapter 9: Errors and Trapping Them 277

We've checked the same thing twice, once within the function and again with the
returned value in the main script. This procedure could be avoided completely by just
allowing the caller to handle the error condition and report the problem.

There are exceptions to this rule. There are occasions when it makes more sense
to trap and if necessary report a problem within the function itself, yet still report an
error condition back to the caller that could, if necessary, be trapped. In the code that
follows, for example, we have a function that reads information from a file and returns
it to the caller.

sub template

{
my $data = '';
if (open (DATA, "template"))
{
$data .= $_ while (<DATA>);
close (DATA) ;
return S$data;
}
else
{
return '';
}
1

print template();

If the template file can’t be opened, an empty string is returned—the error is still
reported and indeed logged against the function in which the error occurs, but we
ignore the error in the caller. We could have trapped the information and provided
an alternative, but in this case it’s safe to ignore the error.

Error Messages and Numbers

When reporting an error, it’s useful to supply the error that was returned by the
operating system so that the problem can be identified. For example, when opening a
file, the error could be caused by nonexistence of the file or by the user’s privileges not
allowing access to the file. Perl uses the special $! variable to hold the error number or
error string for the last system error that occurred.

278

Perl: The Complete Reference

For example, we could update our open error message to
open FILE, 'myfile.txt' or warn "Didn't open the file: $!\n";

Whether the variable returns a numerical value or a string depends on the context in
which it is used. If Perl is expecting a numerical value, then the variable returns the
numerical error code. For example, the modified statement

open FILE, 'myfile.txt' or warn "Didn't open the file: ", 0+S!, "\n";

will return an error code of 2 if the file doesn’t exist.

When called in a string context, the variable returns the corresponding error code
string. The information for the error codes comes from the operating system’s own
headers, and the message contents and corresponding numbers will vary across
different systems.

If required, you can set the value of $! in order to determine the error messages for
a platform. The same trick can also be used if you want to set the error message and
exit value for die; for example,

unless (open (DATA, sfile))
{
$! = 1;
die "Couldn't open the file!";

will give an exit value of 1 from the script when it terminates.

For platform-specific error messages or extended error messages from outside
Perl’s normal execution space, you can use the $ME variable. This variable holds
errors raised external to Perl or the functions that Perl uses to communicate with the
operating system. Under Windows, for example, the $/E variable will usually hold the
information that would otherwise be returned by the statement

Win32: :FormatMessage (Win32: :GetLastError ()) ;

However, don’t rely on the value of $7E always being populated—it’s quite
possible that the value will always be undefined, regardless of the result of the
previous system call.

Chapter 9: Errors and Trapping Them 279

___| Reporting Errors Within Scripts

The most obvious solution when you want to report an error is to use the print
function and either send the output directly to STDOUT or redirect it to STDERR.
One advantage of print over the normal warn and die functions is that the output can
also be redirected to another, previously opened file that you are using to log errors.

The more usual method, however, is to report the error directly to STDERR using
the warn and die functions. The basic format for both functions is

warn LIST
die LIST

In essence, the two functions are identical, and they both follow the same basic rules:

B The supplied LIST is concatenated and then printed to STDERR.

B If the final value to LIST does not end with a \n character, then the current
script name, line number, and input source line number (from an opened file)
are appended.

B If LIST is empty and $@ already contains a value (from an earlier eval call),
then the string “\t...propagated” (for die) or “\t...caught” (for warn) is
appended to $@ and then printed with the current script name and
line number.

We'll be returning to this last item later, as it applies specifically to the use of warn and
die with an eval statement.

The major difference between the two functions is that warn only raises an error,
whereas die raises an error and calls exit.

The Warn Function

The warn function just raises a warning—a message is printed to STDERR, but no
further action is taken. Aside from the rules already given, the warn function adds the
following rule:

B If LIST is empty and $@ does not contain a value, then the string “Warning:
something’s wrong” and the source file and line number are printed.

Otherwise, the function is fairly straightforward:

chdir('/etc') or warn "Can't change directory";

280

Perl: The Complete Reference

The Die Function

The die function works just like warn, except that it also calls exit. Within a normal
script, this function has the effect of immediately terminating execution. The return
code given by the script when die is called depends on the context. If the $! error
variable contains a value, it is used as the error code. If $! is zero, then the value of $!
shifted to the right eight times ($! >> 8) is used. This correctly prints the error number
retrieved from an external program execution via backticks. If the value is still zero,
a value of 255 is passed to the exit function.

Beyond the rules given, the die function also adds the following rule:

B If LIST is empty and $@ is undefined, then the string “Died” is printed.

The function can be used in an identical fashion to warn:
chdir('/etc') or die "Can't change directory";

It’s generally a good idea to add “stopped” or something similar to a die message
just to make sure that it’s obvious the script has abnormally terminated.

Directives and Tokens

The special tokens _ FILE__and _ LINE__ contain the currently executing line number
and the file in which the line appears. These tokens are automatically populated by
Perl and are the same tokens actually used by the die and warn functions when you
supply a string not terminated by a newline character. For example,

chdir('/etc')
or die "Can't change dir in ", FILE ," line ", _ LINE , "\n";

If you failed to change the directory, this would print
Can't change dir in adduser.pl line 35

You can change the values that these tokens are populated with by using a special type
of comment that includes a “line directive”; for example,

line 200 "Parsing engine"
die "Fatal error";

produces the following:

Fatal error at Parsing engine line 200

Chapter 9: Errors and Trapping Them 281

It is important to note that the line number given here just resets the number for the
following line of code—three lines down and an error would be reported as occurring
on line 202. The line and file information is unique to the current input/source file, so
when using die or a similar function, the information will be reported accordingly.

Also, because the line directive updates the __FILE__and __ LINE__ tokens, which
are themselves used by die and similar functions, the modifications will work across all
of the functions and tools used to report errors.

See “Comments” in Chapter 3 for more information on line directives and how they
are identified.

___| Reporting Errors Within Modules

Although I've already stated that you should be using return values from functions to
relate errors back to the caller, there are times when you need to raise an error within
the confines of the module in which it appears. By highlighting a module-specific error,
you can more easily track down the problem and also raise errors within a module that
are too significant to be safely trapped through the use of an if statement.

There are two different situations we need to be able to handle:

B Reporting an error in a module that quotes the module’s filename and line
number—this is useful when debugging a module, or when you specifically
want to raise a module-related, rather than script-related, error.

B Reporting an error within a module that quotes the caller’s information so that
you can debug the line within the script that caused the error. Errors raised in
this fashion are useful to the end-user, because they highlight the error in
relation to the calling script’s origination line.

The warn and die functions work slightly differently than you would expect when
called from within a module—the _ LINE__and _ FILE__ tokens are populated with
the information about the module file, not the calling script. This causes a problem
when you want to identify the line within the original script that triggered the problem.
For example, the simple module

package T;

require Exporter;

@ISA = gw/Exporter/;
@EXPORT = gw/function/;
use Carp;

sub function

{

282 Perl: The Complete Reference

warn "Error in module!";

1;

when called from a script

use T;

function() ;
produces the following error message:
Error in module! at T.pm line 11.

This is more or less what you might expect, but not necessarily what you want.
From a module programmer’s perspective, the information is useful because it helps
to point to a bug within the module itself. For an end-user, the information provided
is fairly useless, and for all but the hardened programmer, it completely pointless.

Assuming that we know the module has only been imported from a calling script,
we could use the caller function to identify the parent and then report the error. This is
messy, and it also requires that you know the level to which the module has been called.

The solution is the Carp module, which provides a simplified method for reporting
errors within modules that return information about the calling script—not the module.
The Carp module provides four functions: carp, cluck, croak, and confess. With each
function, the location of the error is specified relative to the script or package that called
the function. For errors more than one level deep, it doesn’t return the information on
the calling script unless you use the cluck or confess function to report a stack trace.

The Carp Function

carp "Error in module!";

The carp function is the basic equivalent of warn and prints the message to
STDERR without actually exiting the script. The module actually uses warn, so the
same basic rules are followed. Thus the preceding example would report the following:

Error in module! at test.pl line 3

Chapter 9: Errors and Trapping Them

Note that the function will always return the call that originated the error. If the script
test.pl calls the module S which in turns calls the module T, and this is where carp is
called, then carp will return the call in S that triggered the error.

The Cluck Function

The cluck function is a sort of supercharged carp, it follows the same basic principle
but also prints a stack trace of all the modules that led to the function being called,
including information on the original script. The cluck function is not exported by
default by the module, so you'll need to import it explicitly. Following on from our
test.pl->S->T example, we’d get this:

Error in module! at T.pm line 11

T::function() called at S.pm line 13
S::raise() called at test.pl line 3

The Croak Function

The croak function is the equivalent of die, except that it reports the caller one level up:
croak "Definitely didn't work";

Like die, this function also exits the script after reporting the error to STDERR:
Error in module! at S.pm line 13

As with carp, the same basic rules apply regarding the including of line and file
information according to the warn and die functions.

The Confess Function

The confess function is like cluck; it calls die and then prints a stack trace all the way
up to the origination script.

confess "Failed around about there";
For example:

Error in module! at T.pm line 11
T::function() called at S.pm line 13
S::raise() called at t2.pl line 3

283

This page intentionally left blank.

The

Rejoronce
Part Il

Programming with Perl

This page intentionally left blank.

The

Rejoronce
Chapter 10

Complex Data
Structures

287

288

Perl: The Complete Reference

all sorts of information—the hash is by far the most popular and practical, as
it often solves many of the problems associated with processing large quantities
of information.

However, there are times when what you need is to hold even more complex data
types—you need to be able to create your own data types. Perl actually provides this
facility through a system of references. A reference points to another data type—scalar,
array, hash, etc—and because a reference is in fact just a scalar variable, you can embed
references in arrays and hashes. Within Perl, you have lots of options for creating data
structures; and this chapter looks at both the simple base structures of arrays and hashes,
and the more complex nested structures, references, and objects.

In this chapter, we'll start by looking at the pack function, which can be used to store
information into a “packed” structure. We'll be looking at it again in Chapter 13 when
we see how it can be used for fixed-length databases. In fact, pack is a much more versatile
tool that allows us to pack and unpack the structures used in C for defining complex
records without resorting to the objectivity offered by C++.

We'll then move on to references—these form the core of any complex data structure
and, in turn, also provide the basis for Perl’s object system. Objects are an intelligent type
of data structure that, through programming, know their own structure and how to
manipulate it. Unlike other languages, Perl does not enforce its objectivity, but it is
beginning to be a driving force behind the development of the language.

The last part of the chapter looks at the tie system—this is an object-based interface
that allows you to tie internal data structures, such as arrays and hashes (and by design
objects), to external data. For example, suppose you want to tie an internal array to a
list of files in a directory, or a hash to the table of an external database. The tie system
handles the requests and conversion of information from operations, such as assigning
values and retrieving values, into the correct commands to operate on the external
data source.

Perl’s base data types are relatively flexible, and they can be used to store and hold

Accessing Packed Data Structures

When storing information, and especially when exchanging information, it is essential
to use a standardized format. The only recognized standardized format is binary, but

converting textual and numerical data into a binary format is a difficult process to get
right. Perl supports two functions that will do the conversion for you: pack converts a
list into a binary structure, and unpack converts it back into a list.

pack EXPR, LIST

The EXPR is the template for the binary structure you want to create. The template
is composed of characters and numbers that determine the type and count of a specific
data type. For example, 'al2 I' would pack a string into a null-padded 12-byte sequence,

Chapter 10: Complex Data Structures 289

immediately followed by a packed long integer. The resulting binary string could then
be unpacked at a later date. The packing format matches that used by C structures (and
unions) and other packed formats, such as IP addresses. The individual data types are
specified using the characters shown in Table 10-1.

Character Description

@ Null fill to absolute position.

An ASCII string, will be null padded.
An ASCII string, will be space padded.
A bitstring (ascending bit order).

SRS S

A bitstring (descending bit order).

A signed char (8-bit) value.

An unsigned char (8-bit) value.

A double-precision float in the native format.
A single-precision float in the native format.

A hex string (high nibble first).

= Tt a n o

A hex string (low nibble first).

—-

A signed integer value.

—

An unsigned integer value.

[u—

A signed long value (32 bits).
An unsigned long value (32 bits).

Z -

A long (32 bits) in “network” (big-endian) order.

o]

A short (16 bits) in “network” (big-endian) order.
A pointer to a null-terminated string.

A pointer to a fixed-length string.

A signed quad (64-bit) value.

O a T

An unsigned quad (64-bit) value.

7]

A signed short value (16 bits).
S An unsigned short value (16 bits).

Table 10-1. pack Format Characters

290

Perl: The Complete Reference

Character Description

u A uuencoded string.

U A Unicode character number (encodes internally to UTES).
\Y A long (32 bits) in “VAX” (little-endian) order.

v A short (16 bits) in “VAX” (little-endian) order.

w A BER compressed integer.

X A null byte (effectively skips forward one byte).

X Back up a byte.

z A null-terminated (and null-padded) string of bytes.

Table 10-1. pack Format Characters (continued)

To use pack, you supply a format that lists the data types that you want to pack
into a single binary structure. Each element of the supplied list is packed according
to the format specification. Specifications are of the form X#', where X is one of the
characters from Table 10-1, and # is a number specifying the length of the format.

Note that each format specification applies to each element within the supplied list,
so the format 'a20' packs a single element to a null-padded size of 20 characters. The
format 'a20a20' packs two elements, each null padded and each 20 characters in size.

However, the repeat for individual character types applies only to the “a,” “A,”
“b,” “B,” “h,” “H,” and “P” types. For “a” and “A,” it packs a string to the specified
length. For “b” and “B,” it packs a string that many bits long; for “h” and “H,” that
many nibbles (a nibble is 4 bits) long. For all other types, the function gobbles up that
number of elements, such that the template 'i20' will pack up to 20 elements from the
supplied list as signed integers. If you specify * as the repeat count, then it gobbles up
all the remaining elements in the list.

Using the / character within EXPR allows you to specify the size of the following
value according to length/string. For example,

pack 'C/a','\04Martin’';

returns 'Mart'. The leading character (defined by the octal '"\04) is extracted by 'C/",
which is then used as the repeating value for 'a'. The combination effectively changes
the preceding expression to

pack 'a4', 'Martin';

Chapter 10: Complex Data Structures

Note that the variable-length assertion only works with the A, a, or Z formats; if you
supply * (as in a*), the * will be ignored.

The integer types s, S, 1, and L may be immediately followed by a ! suffix to signify
native shorts or longs. The actual sizes (in bytes) of native short, int, long, and long
long C data types on the current platform are always available through the Config
module. For example, to get the length (in bits) of the int data type:

use Config;
print $Config{intsize},"\n";

The floating point packed values are not platform independent, so don’t rely on
these values for exchanging information between different platforms. You might try
using a packed string instead and let Perl handle the conversion of the string into a
platform-dependent double value. This eliminates the double interpretation problem
when transferring information between different platforms as you are relying on strings
and Perl's built-in algorithm for converting scalar values between strings and numbers.
Also be aware that Perl uses doubles internally for floating point numbers, so packing
a double into a float and then unpacking again may not yield the same value.

Values can be unpacked with the unpack function:

unpack FORMAT, EXPR

This returns a list of values extracted using the specified FORMAT from the packed
binary string EXPR.

The pack and unpack functions are primarily used for converting between different
number formats, for creating fixed-length records for use internally and in external
databases, and also for accessing stored C structures within Perl.

The first use, converting between different number formats, makes use of the
number formats supported by the pack function. For example, to convert a 32-bit
binary string into a number:

print unpack('I',pack("B32",'0' x 24 . '00001111')),"\n";

This should print 15—the value of 1111 in binary.

The second use, creating fixed-length records, makes use of the fact that you can
specify field widths and store these fixed-width fields in a file. There are other issues
surrounding this, so the information on this and other database methods in Perl are
discussed in Chapter 13.

The third use, accessing stored C structures within Perl, is more complex, but it
uses many of the core principles you already know. All you need to do is know how

291

292 Perl: The Complete Reference

to read a C structure, and then use the pack and unpack functions to convert Perl lists
to and from the specified format. For example, the utmp structure, which is used to
store information about logins, has the following structure definition:

struct utmp {

char ut_user([8]; /* User login name */
char ut_id[4]; /* /etc/inittab id */
char ut_line[12]; /* device name */
short ut_pid; /* process ID */
short ut_type; /* type of entry */
struct exit status ut exit; /* The exit status of a process */
/* marked as DEAD PROCESS. */
time t ut_time; /* time entry was made */
}i
This can be modeled within a pack template as "a8a4al2ssssl". The following script
outputs the information stored in the /var/adm/wtmp file, which uses the native
format of the previous structure:
my S$packstring = "aB8a4al2ssssl";

my Sreclength = length (pack ($Spackstring)) ;

my @ut types = qw(EMPTY RUN LVL BOOT TIME OLD TIME
NEW _TIME INIT PROCESS LOGIN_ PROCESS
USER_PROCESS DEAD_ PROCESS ACCOUNTING) ;

open (D, "</var/adm/wtmp") or die "Couldn't open wtmp, $!";

while (sysread (D, my $rec, $reclength))

{
my (Suser,Suserid, $line, $pid, Stype, Seterm, Seexit, Stime)
= unpack ($packstring, Srec) ;
print ("suser, $userid, $line, $pid, Sut_types[Stypel, ",
"Seterm, S$Seexit, ", scalar localtime ($time),"\n");
}

close (D) or die "Couldn't close wtmp, $!";

The unpack function takes the binary string created by the C structure and returns
it as a list, which you can then use to print out the information.

You can also use the unpack function to provide a checksum for a given byte
stream. The format is to prefix the packed type with %number, where number is

Chapter 10: Complex Data Structures

the number of bits to use for the checksum. For example, to calculate the checksum for
a character string;:

Schecksum = unpack ("%$32C*", $string);

The same trick can be used to count the number of set bits in a bit vector (such as
that created by vec):

Sbits = unpack("%$32b*", Sbitset);

There are other uses for the pack and unpack functions, and we’ll see some
examples of these in the next few chapters.

References

A reference is, exactly as the name suggests, a reference or pointer to another object.
That’s essentially as complicated as it gets. References actually provide all sorts of
abilities and facilities that would not otherwise be available. For C programmers using
Perl for the first time, a reference is exactly like a pointer, except within Perl it’s easier
to use and, more to the point, more practical.

Before we examine the details of references, it’s worth covering some of the termi-
nology. There are two types of references: symbolic and hard. A symbolic reference
enables you to refer to a variable by name, using the value of another variable. For
example, if the variable $foo contains the string "bar", the symbolic reference to $foo
refers to the variable $bar. We’ll look at more examples later.

A hard reference refers to the actual data contained in a data structure. However,
the form of the data structure to which it points is largely irrelevant. Although a hard
reference can refer to a single scalar, it can also refer to an array of scalars, a hash, a
subroutine, or a typeglob.

There are several ways to create references to different structures, and we’ll examine
these later. The act of extracting information from these structures is called dereferencing.
When you dereference a scalar reference, you are in fact referring to the original data
structure. The act of dereferencing information must be explicit. There is no implicit
dereferencing supported within Perl on any structure.

A reference is contained within a scalar; and because all other data structures
within Perl are essentially based on a scalar or extensions of a scalar, you can create
complex data structures. By using references, you can create complex, nested structures,
including arrays of arrays, arrays of hashes, hashes of arrays, and hashes of hashes.
The structures you create do not have to be two dimensional; you can have as many
dimensions as you like. There is no restriction for you to create an array of hashes.

293

294 Perl: The Complete Reference

Remember that the array contains references, so individual elements of the array
could refer to an array or hash, or indeed, an array of arrays, a hash of hashes, and
so on. This enables you to create incredibly complex data structures with relative ease.

Creating Hard References

The unary backslash operator is used to create a reference to a named variable or
subroutine, for example:

Sfoo = 'Bill’';
Sfooref = \$foo;

The $fooref variable now contains a hard reference to the $foo variable. You can do the
same with other variables:

$array = \@ARGV;

Shash = \%ENV;
$glob = *STDOUT;

To create a reference to a subroutine:

sub foo { print "foo" };
$foosub = \&foo;

Of course, because you are assigning the references to a scalar, there is no reason why
you can’t place the information into any other scalar-based structure, and that includes
arrays and hashes. For example:

sfoo = 'Bill’';

Sbar = 'Ben';

$xyz = 'Mary';

@arrayofref = (\foo, \Sbar, \$xyz);

The @arrayofref array now contains an array of scalars, and each scalar is a reference to
the three scalar variables.

Anonymous Arrays

When you create a reference to an array directly—that is, without creating an intervening
named array—you are creating an anonymous array. The scalar contains a reference that
does not have its own name. These are useful for creating complex structures, since you
can create an array, a hash, or a combination within the confines of a named variable within

Chapter 10: Complex Data Structures

a simple statement. This reduces the time it takes to code and also the time it takes for the
program to run (although the differences are pretty small for small, simple structures).
Creating an anonymous array is easy:

Sarray = ['Bill', 'Ben, 'Mary' 1;

This line assigns an array, indicated by the enclosing square brackets instead of the
normal parentheses, to the scalar $array. The values on the right side of the assignment
make up the array, and the left side contains the reference to this array. The significance
of this description is that you could put other data structures on the left side of the
assignment. We’ll examine examples of these later in this chapter when we look at
more complex data structures.

Remember that the significant element here is the use of square brackets around the
list of scalars to indicate an array, not a list. Thus, you can create more complex structures
by nesting arrays:

@arrayarray = (1, 2, [1, 2, 3]);

The @arrayarray now contains three elements; the third element is a reference to an
anonymous array of three elements. Furthermore, you can use the same basic notation
to create an array of arrays in a single reference:

Sarrayarray = [1, 2, [1, 2, 311;

This creates a reference to an anonymous array, whose third argument is a reference
to another 3-element anonymous array. The resulting reference is placed into $arrayarray.
Note as well that, as with all other arrays, you could equally have used expressions or
variables as elements in the arrays.

Anonymous Hashes

Anonymous hashes are similarly easy to create, except you use braces instead of square
brackets:

$hash = { 'Man' => 'Bill',
'Woman' => 'Mary,
'Dog'’ => 'Ben'

Vi

The same arguments for the anonymous array composer also apply here. You can use
any normal element—a string literal (as in the preceding code), an expression, or a
variable—to create the structure in question. Also note that the same principles for

295

296

Perl: The Complete Reference

arrays of arrays can be applied to hashes, too, but we’ll cover the specifics of nested
hash and array structures later in this chapter.

Note that this composition procedure only works when Perl is expecting a term—
that is, usually when making an assignment or expecting a hash or reference as an
element. Braces are not only used for creating anonymous hashes, but they are also
responsible for selecting hash subscript elements and for defining blocks within Perl.
This means you must occasionally explicitly specify the creation of an anonymous hash
reference by preceding the hash creator with a + or return:

$envref = +{ %ENV };
sub dupeenv{ return { %ENV } };

Anonymous Subroutines

An anonymous subroutine is used in many key situations within Perl. We'll see perhaps
the most common examples in Chapter 14 when we examine the methods available
or handling signals. Again, the method for creating a reference to an anonymous sub-
routine is very straightforward:

$hw = sub { print "Hello World!\n" };

The new $hw variable now contains a reference to the anonymous subroutine, which
prints the “Hello World!” message on the screen.

The important thing to remember when creating an anonymous subroutine is that
you must have a trailing semicolon to end the declaration expression, unlike a typical
subroutine definition.

In essence, what this does is create a reference to a piece of code, which you can
execute directly using the reference. If you access the reference, then the subroutine
code you supplied will be executed, almost as if it was parsed by a dof{} or eval{} block.

To dereference the anonymous subroutine (that is, to actually execute it), we need
to use the & character to denote the reference type:

&Shw;

This actually prints the “Hello World!” message. This is an example of dereferencing,
and we're getting slightly ahead of ourselves; so we'll take a step back and instead look
at another feature of anonymous subroutines, before we look properly at the process of
using hard references.

Closures A closure is a Lisp term, where an anonymous subroutine can be created,
and the resulting subroutine will execute within the same context as when it was
created. This only works with lexically scoped variables (those created with my),

Chapter 10: Complex Data Structures

and the results can provide you with some interesting facilities that provide alternative
ways for introducing and using information within an anonymous subroutine.

Consider the following code, in which an anonymous subroutine is created as the
return value from a function:

sub formatlist

{
my @list = @ ;
return sub
{
my S$title = shift;
print "$title: ", join(' ',elist),"\n";
}
1

Sarguments = formatlist (@ARGV) ;

&Sarguments ('Command line') ;
If you run this within a script, you might get this:
Command line: -w -o file.txt

You'll note that the contents of the @ARGYV array, which was determined and

populated when the anonymous sub was created, are also available when you dereference
the function later.

Filehandles/Typeglobs

Creating a reference to a filehandle is a case of passing a reference to the corresponding
typeglob. This is, in fact, the best way to pass filehandles to or from subroutines, since
it has the optical effect of removing the ambiguity of the typeglob:

writelog (*LOG) ;

sub writelog

{
my $LOG = shift;
print S$LOG scalar (localtime(time)),":",@ ;

The alternative is to use a filehandle object and pass the object around instead.
We'll see more on objects later in the chapter.

297

298

Perl: The Complete Reference

Dereferencing

The most direct way of dereferencing a reference is to prepend the corresponding data
type character ($ for scalars, @ for arrays, % for hashes, and & for subroutines) that
you are expecting in front of the scalar variable containing the reference. For example,
to dereference a scalar reference $foo, you would access the data as $$foo. Other
examples are

Sarray = \@ARGV; # Create reference to array
Shash = \%ENV; # Create reference to hash

$glob = *STDOUT; # Create reference to typeglob
Sfoosub = \&foo; # Create reference to subroutine

push (@Sarray, "From humans") ;

SSarray[0] = 'Hello'
$$hash{'Hello'} = 'World';
&Sfoosub;

print $glob "Hello World!\n";

It’s important to get the semantics correct here. In the preceding $$array[0] and
$$hash{'Hello'} lines, the corresponding structures are not actually being dereferenced;
in fact, you are dereferencing the scalar to which the corresponding elements refer. We’ll
return to this in a moment. Also note that you do not have to explicitly dereference a
filehandle, since a reference to a typeglob points to an entry in the symbol table—see
Chapter 7 for more information on Perl symbol tables.

References and dereferences execute in order. A reference ($foo) to a string of the
form \\\"hello" can be dereferenced using $$$$foo—we need three $ characters to
dereference against each \ character, plus one for the actual reference scalar. However,
it’s unlikely you'll be using individual scalar references in this form. When it comes to
more complex structures, there are different methods available, and these also get around
some of the difficulties surrounding the dereferencing of entire structures rather than
the individual scalars of which they are composed.

The second alternative for dereferencing a reference is to use BLOCK notation. This
works in a similar way to quotes, except that you use braces to “quote” the embedded
reference. Since the last statement in a block gives the block its return value, by putting
a reference as the only statement in a block, you end up returning the data type to which
the reference points. All you need to do is instruct Perl on how to interpret the returned
data. You can, therefore, rewrite the preceding examples as follows:

Chapter 10: Complex Data Structures

${$foo} = "Hello World";

push (@{$array}, "From humans") ;
${$array}[0] = 'Hello';
${$hash}{'Hello'} = 'World';
&{$foosub};

Using the block notation is trivial in these cases, but it makes more sense when you
want to identify a particular structure as a complete data type, not an element of a data
type. For example, the line

foreach $key (keys %Shash)
looks a bit cryptic compared to
foreach $key (keys %{Shash})

which is a little clearer.

This notation really comes into its own, however, when you are using nested
structures. Let’s assume, for the moment, that you have a hash of hashes, created
in a similar fashion to

$hash = { 'hash' => { 'first' => 1, 'second' => 2 } };

If you try to access the keys of the hash reference pointed to by the 'hash' element
in the parent hash reference, you might try

foreach $key (keys %Shash{'hash'})

However, Perl will report an error—because it interprets the hash element first and,
therefore, returns a scalar, not a hash reference. Instead, you need to write it as

foreach $key (keys %{$hash->{'hash'}})

Finally, the other alternative is to use the arrow operator, ->. This works only on
arrays or hashes, since the arrow operator (more correctly known as the infix operator)
provides an easier method for extracting the individual elements from both structures.

299

300

Perl: The Complete Reference

The benefit of the infix operator is that it does not require you to explicitly dereference
the original scalar. Therefore, you can rewrite the statements

S$$array[0] = 'Hello';
$Shash{'Hello'} = 'World';

and

${sarray}[0] = 'Hello';
${Shash}{'Hello'} = 'World';

as

Sarray->[0] = 'Hello';
$hash->{'Hello'} = 'World';

This is clearer than the other methods, but as usual, care should be taken to ensure you
are actually extracting or using the correct element from the array or hash.
The statements

Sarray[0];
and
Sarray->[0];

are not equal. The first is accessing the first element of the @array variable, while the
second is accessing the first element of the array pointed to by $array. The $array could
point to any array, named or anonymous. This makes the infix notation practical and
clear when using references directly within a subroutine that potentially needs to access
the information for a supplied reference.

To use one of the previous methods, you might use a subroutine like the one that
follows to print the first element of an array passed by reference:

sub first

{

Chapter 10: Complex Data Structures

Sarray = shift;
print ${sarray}[0],"\n";

This is a little fussy and certainly less than clear, while this

sub first

{
}

print ${s_[0l}[0],"\n";

looks suspiciously like line noise, although it achieves the desired result. Using the
infix operator, the subroutine looks far clearer:

sub first

{
}

print $_[0]->[0],"\n";

Although still a little complex, it’s clearer that you are trying to access the first element
of the first argument passed to the function.

Determining a Reference Type

You can determine the type of variable that a particular reference points to by using the
ref function.

ref EXPR
ref

The function returns a true value (actually a string) if EXPR, or $_, is a reference.
The actual string returned defines the type of entity the reference refers to. The built-in
types are

REF
SCALAR

301

302 Perl: The Complete Reference

ARRAY
HASH
CODE
GLOB
LVALUE

For example, the code

$scalar = "Hello World\n";
Sref = \$scalar;
print ref Sref,"\n";

prints
SCALAR

The actual string value of a reference is a combination of the reference type (as
returned by ref) and its location in memory. For example, if you print the previous
reference, instead of dereferencing it,

print "Sref\n";
it will print out something like “SCALAR(0xaa472b4),” which doesn’t make a lot of sense.

Symbolic References

If you refer back to the start of this section, you will remember that a symbolic reference
was defined as the use of a scalar value as a string, which in turn gives a variable its
name. For example:

Svar = "foo";
$svar = "bar";

Because $var is not a reference, the act of dereferencing a nonexistent reference is to
create a new variable with the name of the variable’s contents. So in the previous example,
you have set the value of $foo to "bar". In essence, you've done this:

$"Svar" = "bar";

Chapter 10: Complex Data Structures

This statement doesn’t work, of course, and the eventual result should be clear. This
makes the system very powerful: you can name a variable or subroutine based on a
variable piece of information.

However, the problem with symbolic references is that it only takes a simple mistake
for you to inadvertently create a symbolic rather than a hard reference. It is, therefore,
important (if not imperative) that you check what you are doing or, better still, ask Perl
to do it for you. The use strict pragma enforces these checks for you. If you only want
to check references, then use

use strict 'refs';

in your script. See Chapter 19 for more information on pragmas.

Hashes and References
You must be careful when using references with hash keys. You cannot use a
hard reference as a hash key, because the hard reference will be converted to a
string for the benefit of the hash’s key. It’s unlikely that you will want a hash key
of “SCALAR(0Oxaa472b4)”, and even if you do, you cannot dereference the string
into the original variable anyway.
The only time this feature is useful is when you want to create a unique key within
a hash. The reference is guaranteed to be unique, since you can’t have two data types at
the same location. What you can’t do is dereference the key back to its original variable.

Complex Structures

Beyond the normal constraints of arrays and hashes, you can also create complex
structures made up of combinations of the two. These are nested, or complex, structures,
and they can be used to model complex data in an easy-to-use format.

What actually happens with a nested structure is that Perl stores the nested data
type as a reference to an anonymous variable. For example, in a two-dimensional
array, the main array is a list of references, and the subarrays are anonymous arrays to
which these references point. This means that an “array of arrays” actually means an
array of references to arrays. The same is true of all nested structures; and, although
it seems complex, it does provide a suitably powerful method for creating complex,
nested structures.

You can create any number of dimensions in an array or hash, simply by extending
the existing notation. Perl will handle the rest of the work for you. There are, of course,
some complexities and tricks associated with accessing and using these complex structures,
and we'll look at the four basic types: arrays of arrays, hashes of hashes, arrays of hashes,
and hashes of arrays.

303

304

Perl: The Complete Reference

Arrays of Arrays

An array of arrays is a two-dimensional structure and the most basic of those available.
We'll be using the array of arrays as a core reference point for many of the nested
structures, including how to access them, use them directly, and use arrays and array
references to access the entire array and array elements. If you want to use nested
structures, you should read this section first. We'll cover the differences and abilities
of the other nested structures later.

An array of arrays can be used to hold any list of nested information. For example,
users on a system have a list of individual users. The first dimension is the main array,
and the second dimension is the array of group members. Another alternative is to
think about the classic Battleship game. Individual squares on the battleship grid
can be referred to by an X,Y reference. You could use an array of arrays to hold this
information.

Populating a list of lists is a case of including anonymous arrays or existing arrays
within an existing array structure. For our example, we’ll use a tic-tac-toe (or Noughts
and Crosses, depending on your nationality) board:

@tictactoe = (['X','0','0'],
[Iol,'olllxl]l
[Iol,'Xlllxl]

)i

This creates a nested set of arrays within a parent array, @tictactoe. To print out the
bottom-right corner:

print S$tictactoel[2] [2];

Alternatively, you can place the array directly into a reference:

Stictactoe = [['X','0','0'],
[IOI,'O',’Xl],
[IOI,'X',’Xl]

1;

Note the use of the square brackets around the nested arrays, which indicates to Perl
that you are creating an anonymous array and you need to return a reference to it.
You assign the reference to the $tictactoe scalar, and to access the bottom-right corner,

print $Stictactoe[2] [2];

Chapter 10: Complex Data Structures

Note the semantics here. The leading dollar sign shows that you are dereferencing;
and, therefore, Perl knows that the array specification must be to locations within an
array reference.

In fact, Perl automatically assumes you are dereferencing if you use pairs of brackets
together. Perl knows that this indicates a structure to a list of references, whether that’s
a hash or an array, so the infix operator (or block names) are implied. This doesn’t
prevent you from using them if you want to. The following lines are also equal:

print Stictactoe->[2] [2];
print Stictactoe->[2]->[2];

The infix operator here tells Perl that you are dereferencing, so the leading dollar
sign is not required. But note that the following are wrong:

print Stictactoe[2] [2];
print Stictactoe[2]->[2];

In the first, you haven’t specified the return format—you still need to tell Perl that it’s a
scalar that you're dereferencing. In the second, the dereferencing is implied, but you're
trying to dereference the array embedded in a standard array, not an anonymous one.
Like many other similar features, the elimination of the dereference operator is a
direct attempt to improve the overall readability of the code. The first form, shown here,

print Stictactoe->[2][2];
print Stictactoe->[2]->[2];

looks cleaner and should appeal to C programmers, since this is the same format used
in C for multidimensional arrays. The other formats would perhaps make more sense
to a hardened Perl programmer, and they help if you are particularly bothered about
the notation of one reference point to another.

We'll need a more complex source for our next examples. I've used the /etc/passwd
file here, since it’s the most readily available for most people. However, the principles
will apply to any data you want to map into an array of arrays. The individual “rows”
of our array (the first dimension) will be each record; the individual fields will form the
columns (the second dimension).

The following script populates our database. I've assumed that the file is already open.

while (<PASSWD>)

{

chomp;

305

306 Perl: The Complete Reference

push e@epasswd, [split /:/ 1;

This creates an array @passwd, and each field contains a reference to an array, the
contents of which is the list of values returned by split. Note the notation again here—
the square brackets indicate that you are returning a reference to an array.

To put the information directly into an array reference:

open (PASSWD, "/etc/passwd") ;
while (<PASSWD>)

{
}

push @{$passwd}, [split /:/ 1;

You could also set it more explicitly:

while (<PASSWD>)

{
chomp;
foreach sfield (split /:/)
{
push @{$passwd[$index]}, $field;
}
Sindex++;
}

This demonstrates another important point that carries through all nested references.
The call to push requires an array as its first element, and it must begin with @; so you
must quote the reference to the nested array using block notation. Furthermore, note
the location of the index for the array reference: it’s contained within the block quotes.
This is because Perl would see the subscript reference and assume it was returning a
scalar, not an array, irrespective of the leading character you have supplied.

What the example does show is the addition of fields, individually, to the row of an

array. It uses push again, but there’s no reason why you can't also track your location
in the nested array:

Chapter 10: Complex Data Structures

while (<PASSWD>)

{
chomp;
@fields = ();
@fields = split /:/;
foreach $field (0..e@fields)
{
Spasswd [$index] [$field] = $fields[S$field];
}
Sindex++;
1

You make sure you empty the array before you fill it with the information from
split. This prevents you from putting undefined data into the structure, since the
assignment will only update fields, not actually empty them. Then it’s a case of
assignments to the array of arrays.

Another point to note here is that if you create an entry in an index that doesn’t
currently exist within the structure (as with any other array), Perl will create the
intervening elements, filling them with undef as it goes. For example:

Spasswd [120] [0] = 'martinb';

Assuming $passwd has not already been defined or populated, it now contains
a reference to an array 121 elements in size, the first 120 of which contain undef.

Now, if you turn to accessing the information, there are also complications.
You can’t do this

print @passwd;
for the original form, or
print S$passwd;

because you'll get a list of hash references, and a reference to a hash back as a string
value. This is one of the most common mistakes when using nested structures or just

307

308 Perl: The Complete Reference

references in general. Perl doesn’t dereference for you, so you need to use a loop to
progress through the parent array.
Try using the simpler array, rather than a reference to an array, first:

foreach $Sarray (@passwd)

{
}

print join(':',@S$Sarray) ;

or

foreach $array (@{Spasswd})

{
}

print join(':',@$Sarray) ;

Both of these work because the individual elements of the parent array are references,
which you can dereference using the correct prefix. If you want to step through the
child array as well, then you might use something like this:

foreach $x (0..@{Spasswd})

{

foreach $y (0..e{$passwd[$x]})

{
}

print "$x, Sy = $passwdl[$x] [$y]l\n";

The same rules for previous constructs apply here, too. You must use the block
notation to ensure you get the correct array returned in the foreach statement. The
reference to the subarray requires you to insert the subscript operation in the block,
not outside of it.

Finally, you need to think about accessing the individual slices of a nested array.
If you were to use

@new = @passwd[0..4];

the @new array would contain the first five references contained in @passwd. If you
want to slice the fields for an individual record, you can either use loops or use a block

Chapter 10: Complex Data Structures 309

to indicate the array reference you are extracting from, and then use the normal slice
notation to extract the elements from the embedded array reference:

print @{Spasswd[0]}[4..7];

To obtain a slice in the opposite direction—that is, the entire column from
your structure—you have to use loops. The following three versions don’t work:

print @{{Spasswd}[0..7]1}[0];
print @{$passwd[0..7]}[0];
print @{Spasswd}[0..7][0];

Instead, you need to use a loop:

@users = ();
foreach $x (0..@{Spasswd})
{

push @users, Spasswd[S$x] [0] ;

}

Or, to create a completely nested array of arrays consisting of a two-dimensional slice,
you need either to use two nested loops, or use the slice notation used previously:

@userhome = () ;
foreach $x (5..20)
{
push @userhome, [@{$passwd[$x]}[0,6] 1;
}

The remainder of the nested structures use the same techniques you’ve seen here,
albeit with some minor modifications.

Hashes of Hashes

Earlier in this chapter, you saw how information in a hash could be handled and
accessed almost immediately. With some clever use of the key strings, you can also
emulate a simple database system internally within a hash, but handling the keys is
complex. By using a hash of hashes, you make the structures easier to use and more
practical when storing and accessing the information.

310

Perl: The Complete Reference

The format for creating a hash of hashes is much the same as that for arrays of
arrays. In the following example, I've created a hash of hashes that describes a company
organization. The primary keys are the departments, and the nested keys are the employee
names. The values then contain the corresponding employee’s job title.

%company = ('Sales' => {
'Brown' => 'Manager',
'Smith' => 'Salesman',
'Albert' => 'Salesman',
b
'Marketing' => {
'Penfold' => 'Designer’',
'Evans' => 'Tea-person',
'Jurgens' => 'Manager',
b
'Production' => {
'Cotton' => 'Paste-up',

'Ridgeway' =>
'Web!' =>

b

'Manager',
'Developer'’,

)i

You can also use the nested format, which is also the way you would access the
individual data types:

$company{ 'Sales'}{'Brown'} = 'Manager';

$company{'Sales'}{'Smith'} = 'Salesman';
$company{'Sales'}{'Albert'} = 'Salesman';
$company{ 'Marketing' }{'Penfold"'} = 'Designer’;

{
{
{
{
$company{ 'Marketing'}
{
{
{
{

{'Evans'} = 'Tea-person';
$company{ 'Marketing'}{'Jurgens'} = 'Manager';
$company{ 'Production'}{'Cotton"'} = 'Paste-up';
$company{ 'Production'}{'Ridgeway'} = 'Manager’;
$company{ 'Production'}{ 'Web'} = 'Developer'’;

Next is a more practical example, which reads the contents of the file and then
outputs the contents in a formatted form using a hash of hashes to store the information.
Because you read the entire file into a hash of hashes, you can then sort and manipulate
the information before you report. This would be difficult using any of the previous
methods you have seen. This example uses the /etc/passwd file, not only because it
is easily available, but also because it can be useful to sort the file into a more friendly
format. Let’s look at the output first:

Chapter 10: Complex Data Structures 311

root:x:0:1:Martin Brown:/:/sbin/sh:

smtp:x:0:0:mail daemon user:/::

daemon:x:1:1:0000-Admin (0000) :/::
bin:x:2:2:0000-Admin (0000) : /usr/bin::

Sys:x:3:3:0000-Admin (0000) : /::

adm:x:4:4:0000-Admin (0000) : /var/adm: :
uucp:x:5:5:0000-uucp (0000) : /usr/lib/uucp: :
nuucp:x:9:9:0000-uucp (0000) : /var/spool/uucppublic: /usr/lib/uucp/uucico:
listen:x:37:4:Network Admin:/usr/net/nls::
1lp:x:71:8:0000-1p(0000) : /usr/spool/lp::

mc:x:1000:1000:Martin C Brown:/users/mc:/usr/local/bin/bash:
martinb:x:1000:1000:Martin C Brown:/users/martinb:/usr/local/bin/bash:
aliag:*:7790:2108::/usr/local/gmail/alias:/bin/true:
gmaild:*:7791:2108::/usr/local/gmail:/bin/true:
gqmaill:*:7792:2108::/usr/local/gmail:/bin/true:

gmailp:*:7793:2108::/usr/local/gmail:/bin/true:
gmailg:*:7794:2107::/usr/local/gmail:/bin/true:
gqmailr:*:7795:2107::/usr/local/gmail: /bin/true:
gqmails:*:7796:2107::/usr/local/gmail: /bin/true:

nobody:x:60001:60001:uid no body:/::
noaccess:x:60002:60002:uid no access:/::

And here’s the script:

open (DATA, "</etc/passwd") || die "Couldn't open file properly";
my (%passwd, Sref);

while (<DATA>)

{
chomp;
@fields = split /:/;
Slogin = shift e@fields;
$passwd{$login}{'passwd'} = shift efields;
$passwd{$login}{'uid'} = shift efields;
$passwd{$login}{'gid'} = shift efields;
$passwd{$login}{ 'name'} = shift efields;
$passwd{$login}{ ' home'} = shift efields;
$passwd{$login}{'shell'} = shift e@efields;

}

close (DATA) || die "Couldn't close file properly";

foreach (sort { S$passwd{$a}{'uid'} <=> $passwd{$b}{'uid'} } keys %passwd)

312 Perl: The Complete Reference

{
print "$:";
foreach $field (gw/login passwd uid gid name home shell/)
{
print "$passwd{s$_ }{$field}:";
}
print "\n";
}

There are some important parts of this script that we need to cover. A standard
sort block statement is used, but you want to sort on the nested hash—not the
numerical sequence used to store each record. The sort statement works because the
comparison will return the sorted primary key (as selected via the $a and $b sort
variables), even though what you are actually sorting on is the value of the nested hash.

If you wanted to sort the primary hash keys, you could use a much simpler statement:

foreach $key (sort keys %passwd)

And if you wanted to sort on the nested hash keys in the nested loop:

foreach $subkey (sort keys %{$passwd{$login}})
You must use the block method for selecting a variable name. The statement

foreach $subkey (sort keys %passwd{$_})

will report an error during compilation because Perl identifies the variable %passwd
as a hash, but the fragment passwd{$_} as a hash element. Therefore, the entire
%passwd{$_} is bogus, since you must reference a hash element with a leading $
to indicate a scalar value.

Here’s a different example of the same printing loop that sacrifices sorting for a
more memory-efficient method:

while ($Skey = each %$passwd)

{
print "Skey:";
foreach $field (keys %{Spasswd{s$kevy}})

{
}

print "\n";

print "$passwd{Skey}{$field}:";

Chapter 10: Complex Data Structures 313

Because this example does not use temporary lists, you could safely use it on large
structures without fear of running out of memory.

Arrays of Hashes

The previous example used an array of arrays to store information contained in the
password file. A hash of hashes was used to access individual information for a specific
user without having to search through the hash. As an alternative, an array of hashes
could have been used. Each element of the array would be a record and could, therefore,
be accessed in the traditional record-number format. The value of the array element is a
reference to a hash, and the hash structure consists of the normal key/value pairs, with
the key being the field name and the corresponding value the field contents.

Let’s take a look at the corresponding array of hashes script for the /etc/passwd file:

open (DATA, "</etc/passwd") || die "Couldn't open file properly";
my (%passwd, Sref);

while (<DATA>)

{
chomp;
@fields = split /:/;
Saref = {};
S$aref->{'login'} = shift efields;
$aref->{'passwd'} = shift e@fields;
S$aref->{'uid'} = shift efields;
Saref->{'gid'} = shift efields;
S$aref->{'name'} = shift efields;
$aref->{'home'} = shift efields;
Saref->{'shell'} = shift efields;
push @passwd, Saref;

}

close (DATA) || die "Couldn't close file properly";

foreach $ref (sort { $sa{'uid'} <=> $$b{'uid'} } epasswd)

{
foreach $field (gw/login passwd uid gid name home shell/)
{
print $Sref{$field},":";
}
print "\n";
}

The array of hashes structure is built very simply. You create a new reference to
an anonymous hash in $aref, and then populate it with the correct key/value pairs.

314 Perl: The Complete Reference

The new anonymous reference is then pushed onto the global @passwd array, just
the same as any array element. The result is a fully populated array of anonymous
hash references.
For sorting, you have a slightly different problem. You want to sort the records
by the uid field of the record. Therefore, you need to use a sorting expression that will
access the underlying hash element contents, returning a sorted list of array references
from the @passwd array. You do this by dereferencing the uid key from the hash,
using the hash references stored in the $a and $b variables used by the sort function.
For a simpler, nonsorted result, you could just use this:

foreach $record (@passwd)

{
foreach $field (gw/login passwd uid gid name home shell/)
{
print Srecord->{$field},":";
}
print "\n";
}

Again, it’s important to remember that the $record variable contains a reference to an
anonymous hash. If all you did was print that value, Perl would report something like

HASH (0xcfaf8)

If you wanted to access all the keys of the referenced hashes, you would have to use
a slightly different method. Here’s the remodeled original:

foreach $ref (sort { $sa{'uid'} <=> $$b{'uid'} } epasswd)

{
foreach s$field (keys %Sref)
{
print $Sref{sfield},":";
}
print "\n";
}

Unfortunately, for this particular data source, this doesn’t take into account the
required field order.
Finally, here’s a record-number alternative that uses less memory:

Chapter 10: Complex Data Structures

foreach $id (0..S$#passwd)

{
foreach $field (keys %{S$passwd[$id]})
{
print S$passwd[$id] {$field},":";
}
print "\n";
}

Note that this example uses a more direct method of accessing an individual within a
record, although the eventual result is the same.

Using this method of record organization allows you to have different fields for
individual records. You could even use separate keys in the hash, or you could use
pack and a suitable “packstring” stored in hash keys to store complex structures. See
Chapter 13 for more details on planning and using databases with Perl’s internal and
external structures.

Hashes of Arrays

A hash of arrays is best used when you want to store and use an array, and you want
to access it by name. We’ll use the /etc/group file, a cousin to the /etc/passwd file, for
this demonstration. The file is essentially made up of a list of group names, and against
each group name is a list of group members. Here’s a sample /etc/group file:

root::0:root, dummy, martinb
other::1:dummy, martinb
bin::2:root,bin, daemon
sys::3:root,bin, sys,adm
adm: :4:root, adm, daemon
uucp: :5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,1lp,adm
nuucp: : 9: root, nuucp
staff::10:

daemon: :12:root, daemon
sysadmin: :14:
nobody::60001:
noaccess::60002:
shared::1000:MC, SLP
gmail:*:2107:
nofiles:*:2108:

315

316 Perl: The Complete Reference

By modeling the file within a hash of arrays, you can access a list of group members

by referring to the group by name. The following script builds the %group hash. We’ll
deal with the printing separately.

open (DATA, "</etc/group") || die "Couldn't open file properly";
my (%passwd, S$ref);

while (<DATA>)

{
chomp;
($groupname, Smembers) = (split /:/) [0,3];
$group{$groupname} = [split /,/,Smembers] ;

1

close (DATA) || die "Couldn't close file properly";

You build the group list by creating an anonymous array, which is generated by the
list returned by separating the member list with split. You can very quickly print the
results because there are no complicated structures to handle, aside from the parent hash:

foreach (sort keys %group)

{
}

print "$: ", join(' ' ,@{$group{$_}}),"\n";

Note, as in previous examples, the most critical part is that the hash value contains

a reference to an anonymous array; so to access it as a complete array, you need to use
a block reference.

The following example sorts the list of groups by the number of elements in the
subarray:

foreach (sort { e{$group{$a}} <=> @{Sgroup{sb}} } keys %group)

{
}

print ll$_: ", jOil’l(' 1 ,@{$group{$_}}),n\nn;

And for a simpler, structured output, you can access the array by its individual index
elements:

foreach (sort keys %group)

{

Chapter 10: Complex Data Structures 317

print "$_ \n";
for $i (0..$#{Sgroup{s_}})
{

}

print " 3$i = Sgroup{s_}I[$il\n";

Finally, the following example is a less memory-intensive version, although you
lose the ability to sort the list of names.

while (($Skey, Sarray) = each(%group))

{
}

print "Skey: ", join(' ', @S$Sarray),"\n";

This time you can dereference the hash value directly, rather than using block quotes.

Beyond Two Dimensions

The preceding examples still assume a relatively strict structure around your data.
Depending on your point of view when it comes to data modeling, this may be a good
or a bad thing. There is no reason why you can’t extend the preceding examples beyond
two dimensions. Consider the following nested hash of arrays of hashes, which emulates
a database that supports multiple tables.

$db = (
contacts => [
{ 'name' => 'Martin’',
'email' => 'mc@mcwords.com' },
{ 'name' => 'Bob',

'email' => 'bob@bob.com' },

] ’

appointments => [

{ 'Date' => '22/3/98',
'"Time' => '10:30',
'"Title' => 'Dentist' },

{ 'Date' => '5/5/98"',
'Time' => '00:00',

'Title' => 'Birthday' },

318

Perl: The Complete Reference

To make the process of building complex structures easier, you can also copy
references so that a particular element points to some other part of the structure. For
example, you might want to create a new appointment and add a new field—an array
of contacts who will attend the meeting:

$appt = ('Date' => '4/5/1999"',
'"Time' => '10:30"',
'Title' => 'Production Meeting',

'Members' => [$db{'contacts'}[0], $db{'contacts'}[1]]
)

push @{$db{'appointments'}}, \%appt;

The new 'Members' element of the hash contains an array, which has two references
to the two contacts created in the preceding. You can access their email addresses
directly with

print ${sdb{appointments} [2] {Members} [0]}{email}, "\n";
But note that because it’s a reference, an assignation like this
${$db{appointments} [2] {Members} [0] } {email} = 'fooe@goo.bar';
updates the value of the contact’s record directly, so that both
print ${$db{appointments} [2] {Members} [0] }{email}, "\n";
and
print $db{contacts} [0]{email}, "\n";

print out the new foo@goo.bar email address.

There isn’t any reason to store only literal values, either. Arrays and hashes store
lists of scalars, and a scalar can be a reference to a wide range of different entities,
including subroutines (anonymous and named), filehandles, other hashes and arrays,
and any combination thereof.

Chapter 10: Complex Data Structures

Here’s another example—this time the creation of a hash with references to
subroutines:

my %$commandlist = (

'DISK' => \&disk space_ report,
'SWAP' => \&swap_ space_report,
'STORE' => \&store status_report,
'GET' => \&get status_report,
'QUIT' => \&quit connection,

)
You could now call the function directly, without
&{$commandlist->{STORE}};

and with these arguments:
&{$commandlist->{STORE}} (evalues) ;

This type of table is called a dispatch table and is often used in situations in which a
program receives a string or command from a user or remote process. Perl allows

you to call the function desired directly, without having to use a long and complicated
if..elsif..else statement.

You may have problems with dispatch tables if you are using the strict pragma; this
is because you are relying on “soft” references—you can get around this limitation by
using the provided information to look up the subroutine within the symbol table, and
then creating a hard reference to that. For example:

my $func = sprintf("%s_%s", Saction, $subaction) ;

*code = \&{$func};
if (defined(&code))

{
}

else

{

&code (Suser, Sgroup, Ssession) ;

319

320

Perl: The Complete Reference

display account ($user, $group, $session) ;

This example was actually taken from a web script, where $action and $subaction are
actually components extracted from the CGI request. The benefits of using a dispatch
table are as follows:

B Allows for multiple function calls based on user input without the need for a
multioption if statement.

B Allows you to “develop” functions and facilities into the rest of a script, even
though the function may not have been created yet. You only need to supply
a function definition for the script to work.

B You can extend and expand the script without having to mange that complex
if statement.

There is really only one downside to using a dispatch table that I've come across:

B The functions you call must be supplied the same list of arguments—you
cannot change the argument list based on the function or operation name
without introducing another if statement.

In a properly designed script, this is unlikely to cause a problem, because you will
probably be supplying the same information—just for different processing, in each case.

Finally, here’s a filehandle hash. The keys are the names of the files you have open,
and the value is a reference to a filehandle, passed, as usual, by a typeglob:

$files = { 'source.txt' => *SOURCE,
'report.out' => *REPORT,
'scratch.tmp' => *SCRATCH

}i

You can now print to a filehandle by using the file name, instead of the
filehandle directly:

print { $files->{'report.out'}} "This is a report\n";

Note that you need braces around the typeglob to dereference it properly—otherwise, Perl
treats what you return as the text that you want to print out, which is obviously incorrect.

Chapter 10: Complex Data Structures 321

___| objects

In the early 1990s, object-oriented programming was seen as heralding a new age in
programming methods. Rather than dealing with data and functions as two separate
entities, an object combines the two elements into a single entity. An object knows what
kind of thing it is and, furthermore, knows what it can do based on what kind of thing
it is. In programming terms, an object is a data structure that has a number of functions
associated with it that act upon the object’s data.

A classic example of object-oriented programming is the definition of animals. You
might create a cat object. The object knows it is a cat and, therefore, knows its abilities.
When you tell a cat object to move, the object will decide that because it has four legs,
it should walk. However, a fish object would know that because it has fins, it should
swim when you ask it to move.

In theory, using objects to create programs reduces the amount of code you need
to program, promotes code reuse, and allows you to program in terms of “I want to...”
rather than “To do..., I need to” This is certainly the tack applied by C++ and
Java—two languages that heavily promote, and even require, the use of objects
for programming.

The practice, however, is very different. Many programs do not need object-oriented
technology to work effectively. There are instances when it is useful—GUI programming,
for example, benefits from object methods. There are also instances when object-oriented
programming takes significantly longer than the nonobject method.

Within Perl, the philosophy is simple: use objects when it makes sense to use
objects, and avoid them when it doesn’t. Within the realm of packages and modules,
object-oriented programming in Perl requires that you know how to create packages
and modules. Object classes are another form of abstraction that uses the abilities of
packages. This means that object classes can cross the boundaries associated with
individual files and modules.

Object Basics

Before covering the semantics of objects within Per]l, it should be noted that you need to
know how to create packages, and how to create and use references. Refer to Chapter 7
and the section on “References,” earlier in this chapter for more information. Once again,
it’s worth covering terminology that will be used in this section before proceeding to the
details of creating and using objects. There are three main terms, explained from the
point of view of how Perl handles objects. The terms are object, class, and method.

B Within Perl, an object is merely a reference to a data type that knows what class
it belongs to. The object is stored as a reference in a scalar variable. Because a

322 Perl: The Complete Reference

scalar only contains a reference to the object, the same scalar can hold different
objects in different classes. When a particular operation is performed on an
object, the corresponding method is called, as defined within the class.

B A class within Perl is a package that contains the corresponding methods
required to create and manipulate objects.

B A method within Perl is a subroutine, defined with the package. The first
argument to the method is an object reference or a package name, depending
on whether the method affects the current object or the class.

Creating and Using Objects

When creating an object, you need to supply a constructor. This is a subroutine within
a package that returns an object reference. The object reference is created by blessing a
reference to the package’s class. For example:

package Vegetable;

sub new

{
my Sobject = {};
return bless S$object;

}

The preceding code creates a new package, Vegetable, with a single method, new,
which is the default name for an object constructor. The new method returns a reference
to a hash, defined in $object, which has been blessed using the bless function into an
object reference.

You can now create a new Vegetable object by using this code:

Scarrot = new Vegetable;

Note here that a hash is used as the base data type for the object. This is not required.
You could use any of the available data types as the base for an object. Hashes are the
normal receptacle only because you are usually constructing records in which you
want to be able to identify individual fields by name.

Chapter 10: Complex Data Structures

The use of bless defines the difference between a normal reference and an object
reference. An object is a reference that has been blessed into a particular class, whereas
a reference is just a reference to another entity.

If you want to initialize the object with some information before it is returned, you
can put that into the subroutine itself (the following example takes the data from the
supplied arguments),

sub new

my $object = {e };
return bless S$Sobject;

}
which can now populate when you create a new object:
Scarrot = new Vegetable('Color' => 'Orange', 'Shape' => 'Carrot-like');
You don’t have to use the information supplied to the new method as a hash. The
subroutine can take any arguments and process them as you require. Here’s the same
constructor, but this time it assumes you are supplying the information in the arguments
to the constructor function:
sub new
{
my $object = {};
$object->{'Color' => $_[0],
'Shape' => $_[1]
}i
bless S$object;
return Sobject;
}

Normally, of course, you'd check the contents of the arguments before you started
blindly filling in the details; but the process is essentially the same.

323

324 Perl: The Complete Reference

To call your own initialization routine on a newly blessed object:

sub new

{
my $object = {};
bless $object;
Sobject-> define();
return $object;

The use of a leading underscore on the method _define is a convention used to
indicate a private rather than public method. The leading underscore convention is not
enforced, however; if someone wants to use the method, they can call it directly if they
want to. Here’s a quick example of the function:

sub define

{
my $self = shift;
$self->{'State'} = 'Raw';
$self->{'Composition'} = 'Whole';
}

Don’t worry too much about the semantics for a second; we’ll cover that shortly.

For inheritance purposes, you will need to use a two-argument call to bless. The
second argument should be the class into which you are blessing the object, and you
can derive this from the first argument to the constructor method. For example, to
explicitly define the preceding object into the Vegetable class:

sub new
{
my S$class = shift;
my Sobject = {};
return bless Sobject, $class;

The reason you need this is that methods execute within the confines of their base class,
not their derived class. Thus, if you were to create a new class Fruit, which inherited
methods from Vegetable, a call to the new constructor would bless an object into

Chapter 10: Complex Data Structures 325

the Vegetable rather than the Fruit class. Using the preceding format with the two-
argument version of bless ensures that the new object is part of the Fruit method.

Methods

We'll start with a reminder: an object is a blessed reference, but a reference is just a
pointer to a data structure. When writing methods, it’s important to understand this
distinction. Within the confines of the class package and corresponding methods, you
use the object as if it were a reference (which it is), but outside the class package, you
use it as an object.

There is no special way within Perl to define a method, since a method is just
a function defined within the class package. The only difference between a normal
subroutine and a method is that the method should accept at least one argument,
the contents of which will be the object you want to manipulate. There are no complications
to creating the method. All you need to do is define the function, and Perl will handle
the rest. See the later section “Classes and Inheritance” for some exceptions, but, otherwise,
this definition stands.

There are two types of methods—class and instance. A class method is one that
affects the entire class. You've already seen some examples of this: the constructor
subroutine is an example of a class method. The first argument a class method receives
is the name of the class. This is ignored by most functions, since they already know to
which class (package) they belong. However, as you've already seen in the previous
section, it is sometimes necessary to identify the class.

An instance method is a function that operates on a specific object. It should accept
at least one argument, which is the object on which you want to operate. For example,
the boil method for our Vegetable object modifies the 'State’ element of the object’s
hash to boiled":

sub boil

{
my $self = shift;
$self->{'State'} = 'Boiled’';

You take the first argument off with shift and then modify the object’s contents.
Note that the name of the variable that you store the reference in is $self. This is an
accepted standard, although there is no reason why you can'’t call it something else.
The use is convention, rather than law. Remember that an object is just a reference
to a particular data type, so you can modify the hash “object” just as you would any
other reference.

326 Perl: The Complete Reference

To use this method, you use the infix operator to select the method to use on a
particular object, for example:

Scarrot = new Vegetable('Color' => 'Orange', 'Shape' = 'Carrot-like');
Scarrot->boil;

The “State” field of the hash has now been updated!
You can also accept arguments to the method,

sub boil

{
my S$self = shift;
$self->{'State'} = 'Boiled’';
if (@ == 1)

{
}

$self->{'Composition'} = shift;

thus allowing you to define how the vegetable will be prepared before it’s boiled:
Scarrot->boil ('Chopped"') ;

You can also create a method that behaves differently based on what information is
supplied in that first argument. The way to do this is to use ref to identify whether the
method was supplied a reference to an object or not.

sub new

{
my $self = shift;
my $type = ref($self) || $self;
return bless {}, $type;

If the return value of the ref is a valid reference, then it’s safe to assume you should be
blessing an object. If ref returns false, then the argument is not an object but a class name.

Chapter 10: Complex Data Structures

Method Calls

There are two ways of invoking a method. The first format looks like this:
METHOD CLASS_OR_INSTANCE LIST

This is the format you’'ve used for creating objects, for example:
new Vegetable('Color' => 'Orange',6 'Shape' = 'Carrot-like');

In this case, new is the method, Vegetable is the class (and indicates to Perl the
package to search for the new method), and the list is the optional list of arguments
that will be passed to the method after the initial class name. The same format can be
used for methods on existing objects:

boil Scarrot 'Chopped';

This actually makes more sense (providing your methods and classes are suitably
defined). The preceding line uses the first format (METHOD CLASS LIST). The
second method-calling syntax is

CLASS_OR_INSTANCE->METHOD (LIST)
For our carrot, this means using this line to get it chopped and boiled:
Scarrot->boil ('Chopped') ;

Note that this second method requires parentheses around the arguments to the
method because this syntax cannot be used as a list operator. This means you must be
careful with the first format. It assumes that the first parenthesis defines the start of the
arguments, and the matching closing parenthesis ends the argument list.

Note also that, in both cases, you can explicitly define the method or class you want
to use with the normal qualification:

Scarrot->Vegetable: :boil (' Chopped') ;

327

328 Perl: The Complete Reference

Finally, you can use a scalar variable to hold the name of a method to call, providing
you use the infix operator form of the method call:

Smethod = 'boil';
Scarrot->$method ('Chopped') ;

It won’t work with other constructs, so don’t attempt to use a function call or
other expression here. It won’t be parsed properly, and Perl will report an error.

Accessing Object Data

At the risk of repeating myself yet again, an object is just a reference that knows what
class it belongs to. This means you can access an element of the object by using
reference notation. For example, to print the status of one of our Vegetable objects,
you could use a line like this:

print S$carrot->{'State'},"\n";

The same is true of any other data structure you decide to use. There is no need
to create a subroutine to do it for you. However, if you want to use this method of
accessing fields via methods, then you can use autoloading. See Chapter 6 for more
details on autoloading; and for an object-specific example, see the following code:

sub AUTOLOAD
{
my $self = shift;
my Stype ref ($self) || croak "$self is not an object";
my $field = $SAUTOLOAD;
$field =~ s/.*://;
unless (exists $self->{$field})

{

croak "$field does not exist in object/class S$Stype";

return S$self->(Sname) = shift;

}

else

{
}

return S$self->(Sname) ;

Chapter 10: Complex Data Structures 329

So you can print a value,
print $carrot->state() ;
or set a value:

Scarrot->state('Peeled') ;

Classes and Inheritance

A class is just a package. You can inherit methods from a parent class in a new class
through the use of the @ISA array. Note that you cannot automatically inherit data.
Perl leaves that decision to you. Since an object is a reference, you should be able to
copy the information over easily, or just copy references in the new object to allow
access to the inherited object’s data. Since the normal base data type for an object is
a hash, copying “fields” is a case of accessing the corresponding hash elements. See
the previous sections for more information.

You may remember in the “Modules” section of Chapter 6 that @ISA was said
to define the list of base classes on which the package relies. This is in fact the array
used for inheriting methods. When you call a method on an object, Perl first looks for
it within the package class. It then follows the inheritance tree based on the root classes
(packages) defined in @ISA. For each class (package) defined in the array, Perl follows
the inherited classes defined in that package’s @ISA array, and so on, until the complete
tree has been followed. It then moves on to the next one. This allows you to inherit,
almost by assumption, the methods defined in the packages specified in the @ISA
array and, in turn, any methods defined within the base classes of those packages.

This is how you can identify the list of packages specified in @ISA as base classes,
and how the interpretation of the @ISA array becomes “is-a,” since a new object is a
member of the specified base classes.

The full path followed for method inheritance is actually slightly more complex,
and the full list is shown here:

1. Perl searches the class of the specified object for the specified object.

2. Perl searches the classes defined in the object class’s @ISA array.

3. If no method is found in steps 1 or 2, then Perl uses an AUTOLOAD
subroutine, if one is found in the @ISA tree.

4. If a matching method still cannot be found, then Perl searches for the method
within the UNIVERSAL class (package) that comes as part of the standard
Perl library.

5. If the method still hasn’t been found, then Perl gives up and raises a run-
time exception.

330

Perl: The Complete Reference

You can force Perl to examine the base class’s @ISA list first by specifying the
SUPER pseudoclass within the base class package, as in

Scarrot->SUPER: :fry () ;

which would automatically force Perl to look in the @ISA classes, rather than the local
class, for the fry method. This can only be used within the base class package. You cannot
use it on an object outside of the base class; so it’s only of use to object programmers,
rather than object users.

Destructors and Garbage Collection

If you have programmed using objects before, then you will be aware of the need to
create a “destructor” to free the memory allocated to the object when you have finished
using it. Perl does this automatically for you as soon as the object goes out of scope.

You may want to provide your own destruction mechanism, however. This is
sometimes necessary if you are using objects to define network connectivity or to
update tied persistent data (see the “Using tie” section, later in the chapter), or if you
are using other objects that access external information. You will need to close the
connections to these external sources politely; and for that, you need to define a special
method called DESTROY. This method will be called on the object just before Perl
frees the memory allocated to it. In all other respects, the DESTROY method is just
like any other, and you can do anything you like with the object in order to close
it properly.

A DESTROY method is absolutely essential in situations in which you have objects
that refer to nested structures (objects within objects), or when you have inherited
information from another class. In these instances, you will need to destroy the nested
references, yourself, as part of the special DESTROY method.

Comparing Perl Objects to Other Languages

Perl objects have some very specific features and advantages that make them easy

to use within a Perl script. The lack of a distinct compartment for object-oriented
programs may seem like a problem for programmers used to the confinement of
Python or C++. In fact, it makes programming with objects and normal structures
much more fluid and intelligent—you can use objects when the need requires it
without having to make the decision before starting to program. Let’s have a look at
some other differences between the object implementation in Perl and other languages.

Python

Python is an object-oriented language. All data structures are created within an object
environment and the individual structures, such as lists and dictionaries (which are
like Perl’s hashes), can all be accessed using a consistent object interface. The external

Chapter 10: Complex Data Structures

libraries also have an object interface. Although this all appears to be restrictive, in fact
Python makes it very easy and straightforward, and you never feel as confined as you
do with, say, C++ or Java. As such, Python is an excellent language for learning object-
oriented techniques; and although it is more structured than Perl, the fluidity of the
environment will appeal to Perl programmers.

The main difference between Python and Perl is that Perl does not impose the
structure. Perl also supports objects based on scalars, arrays, and hashes; Python only
supports objects using dictionaries (hashes).

C++ and Java

C++ and Java are very similar when it comes to their internal representation and
treatment of objects, and so we can comfortably lump the two together when we
make a comparison back to Perl.

Perhaps the most significant difference is that Perl is much more relaxed about
its object implementation. C++ (and Java) require you to explicitly declare a new class
(using the class keyword), and you must explicitly specify a function as separate from
a method using the static keyword. You must declare your classes separately from
their implementations; the class goes in a header file and the implementation in a
separate file, except in the case of inline definitions.

C++ also requires you to specify the privacy of a method, object, or class explicitly.
There is no such feature within Perl; if you need to protect the privacy of a method or
function, don’t advertise it. If you want to protect a variable, then use a lexically scoped
one instead. We can also get away with using a constructor with any name—we don’t
have to create a constructor with the same name as the class we are creating. Although
we typically use new in Per], this is a convention, rather than a restriction.

Finally, because C++ (and indeed Java) are compiled languages, the class
information (that is the definition, supported methods, inheritance, etc.) must be
known at compile time. Perl allows the definition of everything at run time. We can
even modify the inheritance hierarchy by making modifications to the @ISA array,
while simultaneously making changes to the methods and even format dynamically.

Using tie

Within Perl (versions 5 and up) you can “tie” a variable type to a particular class.
The class implements the core methods that create, access, update, and destroy the
elements of the underlying data type they are tied to. You can tie a scalar, array, or
hash to any external data source. The most obvious use is for DBM files, which are
hash-based database files—we’ll see more of them in Chapter 13. You can tie a hash
to an external DBM file (which uses a hashing system to store data in a physical file)
and then use the normal hash constructs to access the keys and values within the
external file.

331

332

Perl: The Complete Reference

The tie system uses objects and classes to associate a variable with the underlying
object methods that support the interface between the Perl data type and the external
data source. The base function is tie:

tie VARIABLE, CLASSNAME, LIST

The VARIABLE is just a normal variable that you will use to access the information
in the tied resource. CLASSNAME defines the name of the package that supports the
required class methods to tie the variable. Note that CLASSNAME is a string, not a
bareword or other value. It can come from a variable, but that variable must contain
the string to a valid class package.

The package that contains the class definition must have been imported via use or
require. The tie function doesn’t do this for you. The LIST is passed on directly to the
class constructor at the point when the variable is tied.

Also note that the underlying class never gets passed the variable. The tie function
creates the association, not the method class. The actual constructor name is the only
way a package can determine what type of variable is being tied. If you tie a scalar,
then it calls TIESCALAR as the constructor. With an array, it's TIEARRAY, and
TIEHASH is used if it’s a hash variable. In addition, in each case, the constructors
are identical in all other respects to a typical object constructor. They just return a
reference to the correct object; the constructor has no way of determining whether
it was called from tie.

If you want to determine the name of the class to which a variable is tied, you use
the tied function:

tied VARIABLE

This returns a reference to the object underlying the tied VARIABLE.
Once you have finished with the variable, you need to disassociate the variable
from the underlying class methods, and for this you use untie:

untie VARIABLE

This breaks the binding between a variable and a package, undoing the association
created by the tie function. It calls the DESTROY method, if it has been defined.

Creating New tie Classes

In this section we'll look at the creation of new base classes for tying different variable
types. In each case, the base class must define a number of methods in order for the tie
operation to work. Three methods are constant across all three variable types: FETCH,

Chapter 10: Complex Data Structures

for reading the value of a tied variable; STORE, for assigning a value to a tied variable;
and DESTROY, which deletes the tied variable when you call untie.

The FETCH and STORE methods are used to provide an interface to the variable
that has been tied, not the underlying object. Accessing the object directly doesn’t
invoke these methods. The object reference is available either by using tied or by
capturing the value returned by tie, which will be a reference to the underlying object
being used.

Tying Scalars
We'll use the methods for tying scalars as our base reference, examining the entire
process from start to finish. For this we’ll use the example of file ownership, supported
by the FileOwner package. When you tie a scalar using the methods in the FileOwner
class, the variable tied contains the name of the file. Accessing the tied variable returns
the owner (name, or user ID if the name cannot be resolved). Assigning a value to the
tied variable sets the file’s ownership, accepting a user ID or name accordingly.

For example, consider this script:

use FileOwner;
tie $profile, 'FileOwner', '.bash profile';

print "Current owner is: Sprofile\n";
Sprofile = 'mecslp!';
print "New owner is: S$profile\n";

When the tie function is called, what actually happens is that the TIESCALAR method
from FileOwner is called, passing '.bash_profile' as the argument to the method. This
returns an object, which is associated by tie to the $profile variable.

When $profile is used in the print statements, the FETCH method is called. When
you assign a value to $profile, the STORE method is called, with 'mcslp' as the argument
to the method. If you can follow this, then you can create tied scalars, arrays, and hashes,
since they all follow the same basic model. Now let’s examine the details of our new
FileOwner class, starting with the TIESCALAR method:

TIESCALAR CLASSNAME, LIST

The TIESCALAR is a class method and, as such, is passed the name of the class,
which you’ll use when blessing the new object you create, and the list of additional
arguments passed to the tie function. For our example, there is only one argument—
the name of the file to use for determining and setting file ownership. The method
should return an object, blessed accordingly. The content of the scalar object is the

333

334 Perl: The Complete Reference

name of the file you supplied when the object was created. Thus, you get a method
like this:

sub TIESCALAR

{
my $class = shift;
my $file = shift;

unless (-e sfile)

{
carp("File $file does not exist");
return undef;

}

return bless \$file, Sclass;

Note that you must make sure the file exists before you continue. You can’t create
an object that refers to a file that doesn’t exist. The method returns an undefined object
if the file does not exist, and this will be picked up by tie. You also report an error via
the carp function, defined in the Carp module, which supports a more package-friendly
way of raising errors.

In essence, the object you have created is anonymous, since you return the reference
to the $file variable directly. tie does what it needs to with the returned object.

FETCH THIS

The FETCH method is called every time the tied variable is accessed. It takes only
one argument, THIS, which is a reference to the corresponding object that is tied to the
variable. Because we’re working with scalars, the dereferencing is easy. The complex
part is the determination of the owner of the file and the resulting resolving process to
convert the user ID returned into a user name.

sub FETCH
{
my $self = shift;
local $! = 0;
my Suserid = (stat($$self)) [4];
if ($!) { croak("Can't get file owner: $!") }

local $! = 0;

The return value from this method is the user name or user ID. Because of this, you
have no way of raising an error exception to the calling script, so you have to use croak
to indicate a serious problem when determining the owner of the file.

Chapter 10: Complex Data Structures

my Sowner = getpwuid (Suserid) ;

Sowner = Suserid unless (defined(Sowner)) ;

return Sowner;

STORE THIS, VALUE

The STORE method is called whenever an assignation is made to the tied variable.
Beyond the object reference that is passed, tie also passes the value you want stored in

the scalar variable you are tied to.

sub STORE

{

my $self = shift;
my $owner = shift;

confess ("Wrong type") unless ref $self;
croak ("Too many arguments") if @ ;

my Suserid;

if (Sowner =~ /$la-zA-Z]1+/)
{
Suserid = getpwnam ($Sowner)
}
else
{
Suserid = Sowner;
}
local s$! = 0;

chown (Suserid, $$self) ;

if ($!) { croak("Can't set file ownership:

return $owner;

st

}

335

336

Perl: The Complete Reference

The only thing of note here is that you return the new assigned value, since that’s
the return value of any other assignment.

DESTROY THIS

The DESTROY method is called when the associated object is disassociated,
either because it’s gone out of scope, or when untie is called. Generally, this method
shouldn’t be used, since Perl will do its own deallocation and garbage collection.
However, as mentioned earlier, this method can be used when you want to close
opened files, disconnect from servers cleanly, and so on. In the realms of a scalar,
this is seldom required.

Tying Arrays
Classes for tying arrays must define at least three methods: TIEARRAY, FETCH, and
STORE. You may also want and/or need to define the DESTROY method. At the present
time, the methods for tied arrays do not cover some of the functions and operators
available to untied arrays. In particular, there are no equivalent methods for the $#array
operator, nor for the push, pop, shift, unshift, or splice functions.

Since you already know the basics surrounding the creation of tied objects, we’ll
dispense with the examples and cover the details of the methods required to tie arrays.

TIEARRAY CLASSNAME, LIST

This method is called when the tie function is used to associate an array. It is the
constructor for the array object and, as such, accepts the class name and should return
an object reference. The method can also accept additional arguments, used as required.
See the TIESCALAR method in the “Tying Scalars” section earlier.

FETCH THIS, INDEX

This method will be called each time an array element is accessed. The INDEX
argument is the element number within the array that should be returned.

STORE THIS, INDEX, VALUE

Chapter 10: Complex Data Structures

This method is called each time an array element is assigned a value. The INDEX
argument specifies the element within the array that should be assigned, and VALUE
is the corresponding value to be assigned.

DESTROY THIS

This method is called when the tied object needs to be deallocated.

Tying Hashes

Hashes are the obvious (and most complete) of the supported tie implementations.
This is because the tie system was developed to provide more convenient access to
DBM files, which themselves operate just like hashes.

TIEHASH CLASSNAME, LIST

This is the class constructor. It needs to return a blessed reference pointing to the
corresponding object.

FETCH THIS, KEY

This returns the value stored in the corresponding KEY and is called each time a single
element of a hash is accessed.

STORE THIS, KEY, VALUE
This method is called when an individual element is assigned a new value.
DELETE THIS, KEY

This method removes the key and corresponding value from the hash. This is usually
the result of a call to the delete function.

CLEAR THIS

337

338 Perl: The Complete Reference

This empties the entire contents of the hash.
EXISTS THIS, KEY

This is the method called when exists is used to determine the existence of a particular
key in a hash.

FIRSTKEY THIS

This is the method triggered when you first start iterating through a hash with each,
keys, or values. Note that you must reset the internal state of the hash to ensure that
the iterator used to step over individual elements of the hash is reset.

NEXTKEY THIS, LASTKEY

This method is triggered by a keys or each function. This method should return two
values—the next key and corresponding value from the hash object. The LASTKEY
argument is supplied by tie and indicates the last key that was accessed.

DESTROY THIS

This is the method triggered when a tied hash'’s object is about to be deallocated.

The

Rejoronce
Chapter 11

System Information

339

340

Perl: The Complete Reference

system. This can be done at a number of different levels, but there are two core

elements that Perl provides built-in support for. The first is the user and group
system employed by Unix. The user and group functions are built into Perl, and this is
just one of the places where Perl shows its Unix heritage.

The other, more practical, set of functions relates to getting the current time from
the system and converting that time into a format that can be used effectively. Once
you've got the information, you'll probably want to play with it too, so I've also
included information on how to manipulate time values.

Finally, we’ll also take this opportunity to look at the generic environment variables
available to Perl, how they affect Perl’s operation, as well as information on how to
determine the information by other means.

There are times when what you need to do is communicate with the host operating

Users and Groups

For most situations, the built-in variables initialized at execution time provide the basic
user and group information for the current script. To recap, the relevant variables are
summarized in Table 11-1. Note that all of this information and the functions in this
chapter are only really relevant on a Unix machine. Neither Mac OS nor Windows has
the same facilities. However, under Windows you can use the Win32::AdminMisc or

Variable Description

$< The real user ID (uid) of the current process. This is the user ID of the
user who executed the process, even if running setuid.

$> The effective user ID (uid) of the current process. This is the user ID
of the current process and defines what directories and features are
available.

$(The real group ID (gid) of the current process contains a space-separated

list of the groups you are currently in if your machine supports
multiple group membership. Note that the information is listed in
group IDs, not names.

$) The effective group ID (gid) of the current process contains a
space-separated list of the groups you are currently in if your machine
supports multiple group membership. Note that the information is
listed in group IDs, not names.

Table 11-1. Perl Variables Containing Group and User Membership

Chapter 11: System Information 341

Win32::NetAdmin modules to determine the same information. See Appendix B for
more information on the Win32::NetAdmin module, and Web Appendix B at
www.osborne.com for a list of other Win32 modules.

The most basic function for determining your current user name is the getlogin
function, which returns the current user name (not uid) of the current process.

getlogin

Getting Unix Password Entries

The next two functions, getpwuid and getpwnam, return, in a list context, the user
information as a list of scalar values. The getpwuid function gets the information based
on the user’s supplied ID number, and getpwnam uses the supplied name. These
provide an interface to the equivalent system functions, which just return the
information stored in the /etc/passwd file (on a Unix system).

getpwuid EXPR
getpwnam EXPR

This returns the following;:

(Sname, $Spasswd, suid, $gid, $quota, $comment, $gcos, $dir, $shell)
= getpwnam('MC') ;

In a scalar context, each function returns the most useful value. That is, getpwuid
returns the user name, while getpwnam returns the user ID. The details of the contents
of each element are summarized in Table 11-2. Note that names are advisory; you can
assign the details to any scalar.

By using these functions, you can easily print the user name by getting the user’s ID
from the built-in $< variable:

print "Apparently, you are: ", (getpwuid($<)) [0],"\n";
As another example, you can obtain the user name for the current user by using

$name = getlogin || (getpwuid($<)) [0] || 'Anonymous';

342

Perl: The Complete Reference

Element Name Description
0 $name The user’s login name.
1 $passwd The user’s password in its encrypted form. See

“Password Encryption” later in this chapter for more
details on using this element.

2 $uid The numerical user ID.

3 $gid The numerical primary group ID.

4 $quota The user’s disk storage limit, in kilobytes.

5 $comment The contents of the comment field (usually the full name).

6 $gcos The user’s name, phone number, and other information.
This is only supported on some Unix variants. Don’t rely
on this to return a useful name; use the $comment field
instead.

7 $dir The user’s home directory.

$shell The user’s default login shell interpreter.

Table 11-2. Information Returned by getpwent, getpwnam, and getpwuid

To read the entire contents of the /etc/passwd file, you could read and process
the individual lines yourself. An easier method, however, is to use the getpwent
function set:

getpwent
setpwent
endpwent

The first call to getpwent returns the user information (as returned by getpwnam) for
the first entry in the /etc/passwd file. Subsequent calls return the next entry, so you
can read and print the entire details using a simple loop:

while ((Sname, $dir) = (getpwent) [0, 7])

{
}

print "Home for Sname is $dir\n";

Chapter 11: System Information 343

In a scalar context, the getpwent function only returns the user name. A call to
setpwent resets the pointer for the getpwent function to the start of the /etc/passwd
entries. A call to endpwent indicates to the system that you have finished reading
the entries, although it performs no other function. Neither setpwent nor endpwent
return anything.

Getting Unix Group Entries

Along with the password entries, you can also obtain information about the groups
available on the system:

getgrgid EXPR
getgrnam EXPR

In a scalar context, you can therefore obtain the current group name by using
$group = getgrgid($();

or if you are really paranoid, you might try this:
print "Bad group information" unless(getgrnam(getgrgid($()) == $();

The getgrgid and getgrnam functions operate the same as the password equivalents,
and both return the same list information from the /etc/group or equivalent file:

(Sname, Spasswd, $gid, Smembers) = getgruid($S() ;

The $members variable will then contain a space-separated list of users who are

members of the group $name. The elements and their contents are summarized in
Table 11-3.

There is also a getgrent function set for reading the entire group information
in a loop:

while ((Sname, Smembers) = (getgrent) [0,3])

{
}

print "$name has these members: S$members\n";

Like the equivalent password functions, setgrent resets the pointer to the beginning
of the group file, and endgrent indicates that you have finished reading the group file.

344

Perl: The Complete Reference

Element Name Description
0 $name The group name.
1 $passwd The password for gaining membership to the group.

This is often ignored. The password is encrypted using
the same technique as the login password information.
See “Password Encryption” for more details.

2 $gid The numerical group ID.

3 $members A space-separated list of the user names (not IDs) that
are members of this group.

Table 11-3. Elements Returned by the getgrent, getgrnam, and getgrgid Functions

Password Encryption

All passwords on Unix are encrypted using a standard system function called crypt().
This uses an algorithm that is one-way—the idea being that the time taken to decode
the encrypted text would take more processing power than is available in even the
fastest computer currently available. This complicates matters if you want to compare
a password against the recorded password. The operation for password checking is
to encrypt the user-supplied password and then compare the encrypted versions
with each other. This negates the need to even attempt decrypting the password.

The Perl encryption function is also crypt, and it follows the same rules. There are
two arguments—the string you want to encrypt and a “salt” value. The salt value is
an arbitrary string used to select one of 256 different combinations available for the
encryption algorithm on the specified string. Although the rules say the size of the salt
string should be a maximum of two characters, there is no need to reduce the string
used, and the effects of the salt value are negligible. In most situations you can use
any two-character (or more) string.

For example, to compare a supplied password with the system version:

Srealpass = (getpwuid($<)) [1];
die "Invalid Password" unless (crypt (Spass, $realpass) eq Srealpass);

The fact that the password cannot be cracked means the encryption system is useless
for encrypting documents. For that process, it is easier to use one of the many
encryption systems available via CPAN.

Chapter 11: System Information 345

| Time

Date and time calculations are based around the standard epoch time value. This is
the number of seconds that have elapsed since a specific date and time: 00:00:00 UTC,
January 1, 1970 for most systems; 00:00:00, January 1, 1904 for Mac OS. The maximum
time that can be expressed in this way is based on the maximum value for an unsigned
integer, 2*'~1, which equates to Tue Jan 19 03:14:07 2038.

| Although it’s a moot point now (I'm writing this in November 2000), Perl was

completely Y2K compliant. However, due to the way in which Perl returns the year
information, there were a number of problems with scripts returning “19100” on 1%
Jan because people added the string “19” to the start of the date, not the integer 1900.

gmtime and localtime

To obtain the individual values that make up the date and time for a specific epoch
value, you use the gmtime and localtime functions. The difference between the two is
that gmtime returns the time calculated against the GMT or UTC time zones, irrespective
of your current locale and time zone. The localtime function returns the time using the
modifier of the current time zone.

localtime EXPR
localtime

In a list context, both functions convert a time specified as the number of seconds
since the epoch. The time value is specified by EXPR or is taken from the return value
of the time function if EXPR is not specified. Both functions return the same
nine-element array:

0 1 2 3 4 5 6 7 8
($sec, $min, shour, $Smday, $Smon, Syear, Swday, Syday, $isdst) = localtime(time) ;

The information is derived from the system struct tm time structure, which has a few
traps. The ranges for the individual elements in the structure are shown in Table 11-4.

Since the value returned is a list, you can use subscript notation to extract
individual elements from the function without having to create useless temporary
variables. For example, to print the current day, you might use

print (gw(Sun Mon Tue Wed Thu Fri Sat Sun)) [(localtime)] [6];

346 Perl: The Complete Reference

Element Range Notes

$sec 0-59 Seconds

$min 0-59 Minutes

$hour 0-23 Hours

$mday 1-31 Day of the Month

$mon 0-11 This has the benefit that an array can be defined directly,

without inserting a junk value at the start. It’s also
incompatible with the format in which dates may be
supplied back from the user.

$year 0- All years on all platforms are defined as the number of
years since 1900, not simply as a two-digit year. To get
the full four-digit year, add 1900 to the value returned.

$wday 0-6 This is the current day of the week, starting with Sunday.
$yday 0-366
$isdst 0-1 Returns true if the current locale is operating in daylight

saving time.

Table 11-4. Ranges for the gmtime and localtime Functions

In a scalar context, this returns a string representation of the time specified by EXPR,
roughly equivalent to the value returned by the standard C ctime() function:

$ perl -e 'print scalar localtime, "\n";'
Sat Feb 20 10:00:40 1999

The Perl module Time::Local, which is part of the standard distribution, can create
an epoch value based on individual values (effectively the opposite of localtime):

Stime = timelocal ($sec, $min, Shours, $Smday, $mon, Syear) ;

In most situations, you should use localtime over gmtime, since localtime probably
returns what you want. The only time to use the gmtime function is in a situation
where a naturalized time is required for comparison purposes across time zones.

Chapter 11: System Information 347

time Function

The time function returns the number of seconds since the epoch. You use this value to
feed the input of gmtime and localtime, although both actually use the value of this
function by default.

time

In addition, since it returns a simple integer value, you can use the value returned
as a crude counter for timing executions:

Sstarttime=time;
for (1..100000)

{
}

Sendtime=time;
print "Did 100,000 calculations in ",$endtime-Sstarttime, "seconds\n";

log(abs(sin($_))) *exp(sin(s_));

The granularity here is not good enough for performing real benchmarks. For that,
either use the times function, discussed later, or the Benchmark module, which in fact
uses the times function.

Comparing Time Values

When comparing two different time values, it is easier to compare epoch calculated times
(that is, the time values in seconds) and then extract the information accordingly. For
example, to calculate the number of days, hours, minutes, and seconds between dates:

(Ssecdiff, $mindiff, Shourdiff, Sydaydiff)
= (gmtime (Snewtime-$oldtime)) [0..2,7]

The $secdiff and other variables now contain the corresponding time-value differences
between $newtime and $oldtime.

You should use gmtime not localtime when comparing time values. This is because
Note .) . . ;
localtime takes into account the local time zone, and, depending on the operating
system you are using, any daylight saving time (DST) too. The gmtime function will
always return the Greenwich Mean Time (GMT), which is not affected by time zones

or DST effects.

348 Perl: The Complete Reference

Converting Dates and Times into Epochs

There is no built-in function for converting the value returned by localtime or gmtime
back into an epoch equivalent, but you can use the Time::Local module, which supplies
the timegm and timelocal functions to do the job for you. For example, the script:

use Time: :Local;

Stime = time() ;

($sec, Smin, shour, Smday, sSmon, Syear) = (localtime(Stime)) [0..5];
Snewtime = timelocal ($sec, Smin, shour, Smday, Smon, Syear) ;

print "Supplied S$time, returned S$newtime\n";

should return identical values.

Time Arithmetic
There are a number of ways in which you can modify a given time when it’s expressed
as an epoch value. For example, imagine that you want to determine what the date will
be in seven days time. You could use:

(Smday, $Smon, Syear) = (localtime(S$time)) [3..5];
smday += 7;
Smon++;

Syear+=1900;
print "Date will be $mday/S$Smon/sSyear\n";

However, this isn’t really very useful, since it doesn’t take into account that adding
seven to the current day of the month could put us into the next month, or possibly
even into the next year. Instead, you should add seven days to the value that you
supply to the localtime function. For example:

(smday, Smon, Syear) = (localtime (Stime+ (7*24*60*60))) [3..5];
Smon++;

Syear+=1900;

print "Date will be $mday/S$mon/sSyear\n";

Here, we've added seven days (7 times 24 hours, times 60 minutes, times 60
seconds); because we're asking localtime to do the calculation on the raw value we’ll
get the correct date. You can do similar calculations for other values too, for example:

Stime -= 7*24*60*60; # Last week
Stime += 3*60%*60; # Three hours from now

Chapter 11: System Information 349

Stime -= 24*60*60; # This time yesterday
Stime += 45%*60; # Three quarters of an hour from now

The limitation of this system is that it only really works on days, hours, minutes,
and seconds. The moment you want to add months or years, the process gets more
complicated, as you would need to determine how many days in the month or year
in order to get the correct epoch value.

To resolve both problems, you might consider using a function like the one below,
which will add or subtract any time value to any other time value. It's based on the
Visual Basic DateAdd function:

use Time: :Local;

sub DateAdd

{

my ($interval, S$Snumber, S$time, S$sec,
$min, Shour, S$mday, Smon, Syear);

if (e_ == 2)
{
Stime = time() ;
($interval, S$number) = @ ;
}
else
{
($interval, S$number, $time) = @ ;

}

($sec, $min, Shour, smday, $mon, Syear)
= (localtime(Stime)) [0..5];

else
(Sinterval, Snumber, Stime, Ssec,

min, Shour, $mday, $mon, $year) = @ ;

$year += Snumber if ($interval eq 'yyyy');
if (($interval eq 'q') || ($interval eqg 'm'))

{

350 Perl: The Complete Reference

Smon += S$number if ($interval eq 'm');
Smon += (S$number*3) if (Sinterval eq 'q');
if ($mon > 11)

{

Syear += int (Smon/12);

)

Smon = Smon % 12;

Snewtime = timelocal ($sec, Smin, shour, $Smday, $Smon, $Syear) ;

$newtime += (Snumber*24+*60%60) if (($interval eq 'y') ||
($interval eq 'd') ||
(Sinterval eq 'w'));

Snewtime += (Snumber*7*24*60*60) 1if (Sinterval eq 'ww');

Snewtime += (Snumber*60*60) if (Sinterval eq 'h');

Snewtime += ($Snumber*60) 1if (Sinterval eq 'n');

Snewtime += Snumber i1f (Sinterval eq 's');

return Snewtime;

To use this function, supply the interval type (as shown in Table 11-5) and the
number to be added. If you don’t supply a time value, then the current time will be
used. Alternatively, you can supply either an epoch value or the seconds, minutes,
hours, day of the month, month, and year, in the same format as that returned
by localtime.

For example, the following adds three weeks to the current date (1°* April), and then
outputs a date/time string of the new value:

print scalar localtime (DateAdd('ww',3)),"\n";
generates

Sat Apr 22 13:50:51 2000

Chapter 11: System Information 351

Interval Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
wWwW Week
Hour
n Minute
Second
Table 11-5. Interval Conversions

times Function

The times function
times

returns a four-element list giving the CPU time used by the current process for
user-derived and system-derived tasks, and the time used by any children for user-
and system-derived tasks:

(Suser, S$system, S$Schild, $childsystem) = times;

The information is obtained from the system times() function, which reports the
time in seconds to a granularity of a hundredth of a second. This affords better timing

352

Perl: The Complete Reference

options than the time command, although the values are still well below the normal
microsecond timing often required for benchmarking. That said, for quick comparisons
of different methods, assuming you have a suitable number of iterations, both the
time and times functions should give you an idea of how efficient, or otherwise,
the techniques are.

Here’s the benchmark example (seen in the “time Function” section earlier in this
chapter), using times:

Sstarttime=(times) [0] ;
for (1..100000)

{
}

Sendtime= (times) [0] ;
print "Did 100,000 calculations in ", $endtime-S$starttime, "seconds\n";

log(abs(sin($_))) *exp(sin($_));

sleep Function

You can pause the execution of a script by using the sleep function.

sleep EXPR
sleep

The function sleeps for EXPR seconds, or for the value in $_ if EXPR is not specified.
The function can be interrupted by an alarm signal (see “Alarms,” next). The
granularity of the functions is always by the second, and the accuracy of the function
is entirely dependent on your system'’s sleep function. Many may calculate the end
time as the specified number of seconds from when it was called. Alternatively, it may
just add EXPR seconds to the current time and drop out of the loop when that value
is reached. If the calculation is made at the end of the second, the actual time could
be anything up to a second out, either way.
If you want a finer resolution for the sleep function, you can use the select function
with undefined bitsets, which will cause select to pause for the specified number of
seconds. The granularity of the select call is hundredths of a second, so the call

select (undef, undef, undef, 2.35);

will wait for 2.35 seconds. Because of the way the count is accumulated, the actual
time waited will be more precise than that achievable by sleep, but it’s still prone to
similar problems.

Chapter 11: System Information 353

Alarms

By using signals, you can set an alarm. This is another form of timer that waits for a
specified number of seconds while allowing the rest of the Perl script to continue. Once
the time has elapsed, the SIGALRM signal is sent to the Perl script, and if a handler
has been configured, the specified function will execute. This is often used in situations
where you want to provide a time-out for a particular task. For example, here’s a user
query with a default value—if the user does not respond after 10 seconds, the script
continues with the default value:

print "What is your name [Anonymous]?\n";
eval
local $SIG{ALRM} = sub { die "Timeout" };
alarm 10;
chomp (Sanswer = <STDIN>) ;

alarm O;
}i
if ($@ and $@ =~ /Timeout/)
{

Sanswer = "Anonymous";
1

print "Hello Sanswer!\n";

The eval block is required so that the die statement that forms the signal handler
drops out of the eval— setting the value of $@—rather than terminating the whole
script. You can then test that and decide how to proceed. Of course, if the user provides
some input; then the alarm is reset to zero, disabling the alarm timer and allowing you
to drop out of the eval block normally.

We'll be looking in more detail at signals and signal handlers in Chapter 14, and
at the use of the eval function in Chapter 15.

| Environment Variables

As we saw in Chapter 4, Perl provides an interface to the environment variables of the
current Perl interpreter using the %ENYV built-in variable. For example, to access the
PATH value, you would use the following:

print $ENV{PATH};

Perl: The Complete Reference

The environment can affect the operation of different systems in subtle ways. The
PATH environment variable, for example, contains the list of directories to be searched
when executing an external program through exec, system, or backticks.

As a general rule, it’s not a good idea to always rely on the values defined in the
environment variables, because they are largely arbitrary. In Tables 11-6 and 11-7, I've
listed the environment variables that you are likely to come across under Unix-based
and Windows-based operating systems, respectively.

Where relevant, the tables show a probable default value that you can use. The
tables also list alternative locations where you can find the same information without
relying on an environment variable. Mac OS (but not Mac OS X, which is Unix based)
and other non-interactive platforms don’t rely so heavily on environment variables for
the execution of scripts anyway.

Variable Description Alternatives

COLUMNS The number of columns for the current display. None
Can be useful for determining the current
terminal size when developing a terminal /text
interface. However, it’s probably better to rely
on a user setting or just use the Term::*
modules and let them handle the effects. If you
do need a base value, then use vt100, which
most terminal emulators support.

EDITOR The user’s editor preference. If it can’t be None
found, then default to vi or emacs or, on
Windows, to C:/Windows/Notepad.exe.

EUID The effective user ID of the current process. $>
Use $>, which will be populated correctly by
Perl, even when using suidperl.

HOME The user’s home directory. Try getting the getpwuid
information from getpwuid instead.

HOST The current hostname. The hostname.pl script hostname.pl
included with the standard Perl library
provides a platform-neutral way of
determining the hostname.

HOSTNAME The current hostname. hostname.pl

Table 11-6. Environment Variables on Unix Machines

Chapter 11: System Information 355

Variable Description Alternatives

LINES The number of lines supported by the current None
terminal window or display. See COLUMNS
earlier in the table.

LOGNAME The user’s login. Use the getlogin function or, getlogin,
better still, the getpwuid function with the $< getpwuid($<)
variable.

MAIL The path to the user’s mail file. If it can’t be None
found, try guessing the value; it’s probably
/var/mail/LOGNAME or
/var/spool/mail/LOGNAME.

PATH The colon-separated list of directories to search None
when looking for applications to execute. Aside
from the security risk of using an external list,
you should probably be using the full path to
the applications that you want to execute, or
populating PATH within your script.

PPID The parent process ID. There’s no easy way to None
find this, but it’s unlikely that you’ll want it
anyway.

PWD The current working directory. You should use Cwd
the Cwd module instead.

SHELL The path to the user’s preferred shell. This None

value can be abused so that you end up
running a suid program instead of a real shell.
If it can’t be determined, /bin/sh is a good
default.

TERM The name/type of the current terminal and None
therefore terminal emulation. See COLUMNS
earlier in this table.

UID The user’s real ID. $<
USER The user’s login name. See LOGNAME earlier getlogin,
in this table. getpwuid($<)

Table 11-6. Environment Variables on Unix Machines (continued)

356 Perl: The Complete Reference

Variable Description Alternatives

VISUAL The user’s visual editor preference. See EDITOR
EDITOR earlier in the table.

XSHELL The shell to be used within the X Windows SHELL

System. See SHELL earlier in the table.

Table 11-6. Environment Variables on Unix Machines (continued)

Variable Platform Description Alternatives
ALLUSERS- 2000 The location of the generic None
PROFILE profile currently in use.

There’s no way of
determining this information.

CMDLINE 95/98 The command line, including @ARGV
the name of the application
executed. The Perl @QARGV
variable should have been
populated with this
information.

COMPUTER- NT,2000 The name of the computer. Win32::Node-
NAME Name

COMSPEC All The path to the command None
interpreter (usually
COMMAND.COM) used
when opening a command
prompt.

HOMEDRIVE NT, 2000 The drive letter (and colon) of None
the user’s home drive.

HOMEPATH NT, 2000 The path to the user’shome None
directory.

Table 11-7. Environment Variables for Windows

Chapter 11: System Information 357

Variable Platform Description Alternatives

HOMESHARE NT, 2000 The UNC name of the user’'s None
home directory. Note that
this value will be empty if the
user’s home directory is unset
or set to local drive.

LOGONSERVER NT,2000 The domain name server the None
user was authenticated on.

NUMBER_OF_ NT, 2000 The number of processors None

PROCESSORS active in the current machine.
oS NT, 2000 The name of the operating Win32::IsWin95
system. There’s no direct Win32:IsWinNT

way, but Win32::IsWin95 and
Win32:IsWinNT return true
if the host OS is Windows
95/98 or Windows NT /2000,
respectively.

OS2LIBPATH NT, 2000 The path to the OS/2 None
compatibility libraries.

PATH All The path searched for None
applications within the
command prompt and for
programs executed via a
system, backtick, or open
function.

PATHEXT NT, 2000 The list of extensions that None
will be used to identify an
executable program. You
probably shouldn’t be
modifying this, but if you
need to define it manually,

.bat, .com, and .exe are
the most important.

Table 11-7. Environment Variables for Windows (continued)

358

Perl: The Complete Reference

Variable

PROCESSOR_
ARCHITECTURE

PROCESSOR_
IDENTIFIER

PROCESSOR _
LEVEL

PROCESSOR_
REVISION

SYSTEMDRIVE

SYSTEMROOT

USERDOMAIN

USERNAME
USERPROFILE

Platform

NT, 2000

NT, 2000

NT, 2000

NT, 2000

NT, 2000

NT, 2000

NT, 2000

NT, 2000
NT, 2000

Description

The processor architecture
of the current machine. Use
Win32::GetChipName,
which returns 386, 486, 586,
and so on for Pentium chips,
or Alpha for Alpha
processors.

The identifier (the
information tag returned by
the CPU when queried).

The processor level: 3 refers
to a 386, 4 to a 486, and 5 to
the Pentium. Values of 3000
and 4000 refer to MIPS
processors, and 21064 refers
to an Alpha processor. See
the PROCESSOR_
ARCHITECTURE entry
earlier in the table.

The processor revision.

The drive holding the
currently active operating
system. The most likely
location is C:.

The root directory of the
active operating system. This
will probably be Windows
or Win.

The domain the current user
is connected to.

The name of the current user.

The location of the user’s
profile.

Alternatives

Win32::GetChip-
Name

None

Win32:GetChip-
Name

None

None

None

Win32::Domain-
Name

None

None

Table 11-7.

Environment Variables for Windows (continued)

Chapter 11: System Information

Variable Platform Description

WINBOOTDIR NT, 2000 The location of the Windows
operating system that was
used to boot the machine. See
the SYSTEMROOT entry
earlier in this table.

WINDIR All The location of the active
Windows operating system,
this is the directory used
when searching for DLLs and
other OS information. See the
SYSTEMROQOT entry earlier
in this table.

Alternatives

None

None

Table 11-7. Environment Variables for Windows (continued)

359

This page intentionally left blank.

The

Rejoronce
Chapter 12

Networking

362

Perl: The Complete Reference

worth reviewing the background of how networks are supported in the modern
world, and from that we can glean the information we need to network
computers using Perl.

Most networking systems have historically been based on the ISO/OSI (International
Organization for Standardization Open Systems Interconnection) seven-layer model.
Each layer defines an individual component of the networking process, from the physical
connection up to the applications that use the network. Each layer depends on the layer
it sits on to provide the services it requires.

More recently the seven-layer model has been dropped in favor of a more flexible
model that follows the current development of networking systems. You can often
attribute the same layers to modern systems, but it’s often the case that individual
protocols lie over two of the layers in the OSI model, rather than conveniently sitting
within a single layer.

Irrespective of the model you are using, the same basic principles survive. You
can characterize networks by the type of logical connection. A network can either be
connection oriented or connectionless. A connection-oriented network relies on the fact
that two computers that want to talk to each other must go through some form of
connection process, usually called a handshake. This handshake is similar to using the
telephone: the caller dials a number and the receiver picks up the phone. In this way,
the caller immediately knows whether the recipient has received the message, because
the recipient will have answered the call. This type of connection is supported by
TCP/IP (Transmission Control Protocol/Internet Protocol) and is the main form of
communication over the Internet and local area networks (LANSs).

In a connectionless network, information is sent to the recipient without first
setting up a connection. This type of network is also a datagram or packet-oriented
network because the data is sent in discrete packets. Each packet will consist of the
sender’s address, recipient’s address, and the information, but no response will be
provided once the message has been received. A connectionless network is therefore
more like the postal service—you compose and send a letter, although you have no
guarantee that the letter will reach its destination, or that the information was received
correctly. Connectionless networking is supported by UDP/IP (User Datagram
Protocol /Internet Protocol).

In either case, the “circuit” is not open permanently between the two machines.
Data is sent in individual packets that may take different paths and routes to the
destination. The routes may involve local area networks, dial-up connections, ISDN
routers, and even satellite links. Within the UDP protocol, the packets can arrive in
any order, and it is up to the client program to reassemble them into the correct
sequence—if there is one. With TCP, the packets are automatically reassembled into
the correct sequence before they are represented to the client as a single data stream.

There are advantages and disadvantages to both types of networks. A connectionless
network is fast, because there is no requirement to acknowledge the data or enter into
any dialogue to set up the connection to receive the data. However, a connectionless

Before we examine the processes behind using network connections in Perl, it’s

Chapter 12: Networking

network is also unreliable because there is no way to ensure the information reached its
destination. A connection-oriented network is slow (in comparison to a connectionless
network) because of the extra dialogue involved, but it guarantees the data sequence,
providing end-to-end reliability.

The IP element of the TCP/IP and UDP/IP protocols refers to the Internet Protocol,
which is a set of standards for specifying the individual addresses of machines within a
network. Each machine within the networking world has a unique IP address. This is
made up of a sequence of four bytes typically written in dot notation, for example,
198.10.29.145. These numbers relate both to individual machines within a network and
to entire collections of machines.

Because humans are not very good at remembering numbers, a system called DNS
(Domain Name System) relates easy-to-remember names to IP addresses. For example,
the name www.mcgraw-hill.com relates to a single IP address. You can also have a
single DNS name pointing to a number of IP addresses, and multiple names point to
the same address. It is also possible to have a single machine that has multiple interfaces,
and each interface can have multiple IP addresses assigned to it. However, in all cases,
if the interfaces are connected to the Internet in one form or another, then the IP
addresses of each interface will be unique.

However, the specification for communication does not end there. Many different
applications can be executed on the same machine, and so communication must be
aimed not only at the machine, but also at a port on that machine that relates to a
particular application. If the IP address is compared to a telephone number, the port
number is the equivalent of an extension number. The first 1024 port numbers are
assigned to well-known Internet protocols, and different protocols have their own
unique port number. For example, HTTP (Hypertext Transfer Protocol), which is used
to transfer information between your web browser and a web server, has a port
number of 80. To connect to a server application, you need both the IP address (or
machine name) and the port number on which the server is “listening.”

The BSD (Berkeley Systems Division, which is a “flavor” of Unix) socket system was
introduced in BSD 4.2 as a way of providing a consistent interface to the different available
protocols. A socket provides a connection between an application and the network. You
must have a socket at each end of the connection in order to communicate between the
machines. One end must be set to receive data at the same time as the other end is sending
data. As long as each side of the socket connection knows whether it should be sending
or receiving information, then the communication can be two-way.

There are many different methods for controlling this two-way communication,
although none is ultimately reliable. The most obvious is to “best-guess” the state that
each end of the connection should be in. For example, if one end sends a piece of
information, then it might be safe to assume it should then wait for a response. If the
opposite end makes the same assumption, then it can send information after it has just
received some. This is not necessarily reliable, because if both ends decide to wait for
information at the same time, then both ends of the connection are effectively dead.
Alternatively, if both ends decide to send information at the same time, the two processes

363

364

Perl: The Complete Reference

will not lock; but because they use the same send-receive system, once they have both
sent information, they will both return to the wait state, expecting a response.

A better solution to the problem is to use a protocol that places rules and
restrictions on the communication method and order. This is how Simple Mail Transfer
Protocol (SMTP) and similar protocols work. The client sends a command to the server,
and the immediate response from the server tells the client what to do next. The
response may include data and will definitely include an end-of-data string. In effect,
it’s similar to the technique used when communicating by radio. At the end of each
communication, you say “Over” to indicate to the recipient that you have finished
speaking. In essence, it still uses the same best-guess method for communication.
Providing the communication starts off correctly, and each end sends the end-of-
communication signal, the communication should continue correctly.

Although generally thought of as a technique for communicating between two
different machines, you can also use sockets to communicate between two processes
on the same machine. This can be useful for two reasons. First of all, communicating
between processes on a single machine (IPC—interprocess communication) allows you
to control and cooperatively operate several different processes. Most servers use IPC
to manage a number of processes that support a particular service.

We'll be looking at the general techniques available for networking between
processes, either on the machine or across a network to a different machine.
Techniques include those using the built-in Perl functions and those using modules
available from CPAN that simplify the process for communicating with existing
protocol standards.

If you want more information on networking with sockets and streams under TCP,
UDP, and IP, then I can recommend The UNIX System V Release 4 Programmers Guide:
Networking Interfaces (1990, Englewood Cliffs, NJ: Prentice Hall), which covers the
principles behind networking, as well as the C source code required to make it work.

Obtaining Network Information

The first stage in making a network connection is to get the information you need
about the host you are connecting to. You will also need to resolve the service port and
protocol information before you start the communication process. Like other parts of
the networking process, all of this information is required in numerical rather than
name format. You therefore need to be able to resolve the individual names into
corresponding numbers. This operation is supported by several built-in functions,
which are described in the sections that follow, divided into their different types
(Hosts, Protocols, Services, Networks, and so on).

Hosts

In order to communicate with a remote host, you need to determine its IP address.
The names are resolved by the system, either by the contents of the /etc/hosts file, or
through a naming service such as NIS/NIS+ (Network Information Service) or DNS.

Chapter 12: Networking 365

The gethostbyname function calls the system-equivalent function, which looks up the
IP address in the corresponding tables, depending on how the operating system has
been configured.

gethostbyname NAME

In a list context, this returns the hostname, aliases, address type, length, and physical
IP addresses for the host defined in NAME. They can be extracted like this:

(Sname, Saliases, saddrtype, $length, @addresses) = gethostbyname (Shost) ;

The $aliases scalar is a space-separated list of alternative aliases for the specified
name. The @addresses array contains a list of addresses in a packed format, which you
will need to extract with unpack. In a scalar context, the function returns the host’s IP
address. For example, you can get the IP address of a host as a string with

Saddress = join('.',unpack("C4",scalar gethostbyname ("www.mchome.com"))) ;

It’s more normal, however, to keep the host address in packed format for use in
other functions.
Alternatively, you can use a v-string to represent an IP address:

Sip = v198.112.10.128;

The resulting value can be used directly in any functions that require a packed IP
address. If you want to print an IP address, use the %v format with sprintf to extract
that value into a string. See Chapter 4, V-Strings, for more information.

In a list context, gethostbyaddr returns the same information as gethostbyname,
except that it accepts a packed IP address as its first argument.

gethostbyaddr ADDR, ADDRTYPE

The ADDRTYPE should be one of AF_UNIX for Unix sockets and AF_INET for
Internet sockets. These constants are defined within the Socket module. In a scalar
context it just returns the hostname as a string.

The *hostent functions allow you to work through the system host database,
returning each entry in the database:

gethostent
endhostent
sethostent

366

Perl: The Complete Reference

The gethostent function iterates through the database (normally the /etc/hosts file)
and returns each entry in the form:

(Sname, Saliases, $addrtype, $length, @addresses) = gethostent;

Each subsequent call to gethostent returns the next entry in the file. This works in the
same way as the getpwent function you saw in Chapter 11.

The sethostent function resets the pointer to the beginning of the file, and endhostent
indicates that you have finished reading the entries. Note that this is identical to the
system function, and the operating system may or may not have been configured to
search the Internet DNS for entries. Using this function may cause you to start iterating
through the entire Domain Name System, which is probably not what you want.

Protocols

You will need to resolve the top-level names of the transmission protocols used for
when communicating over a given service. Examples of transmission protocols include
the TCP and UDP protocols that you already know about, as well as AppleTalk, SMTP,
and ICMP (Internet Control Message Protocol). This information is traditionally stored
on a Unix system in /etc/protocols, although different systems may store it in different
files, or even internally.

The getprotobyname function translates a specific protocol NAME into a protocol
number in a scalar context:

getprotobyname NAME
It can also return the following in a list context:
(Sname, S$Saliases, $protocol) = getprotobyname('tcp');

Alternatively, you can resolve a protocol number into a protocol name with the
getprotobynumber function.

getprotobynumber NUMBER

This returns the protocol name in a scalar context, and the same name, aliases, and
protocol number information in a list context:

(Sname, S$Saliases, Sprotocol) = getprotobyname (6) ;

Alternatively, you can also step through the protocols available using the
getprotoent function:

Chapter 12: Networking

getprotoent
setprotoent
endprotoent

The information returned by getprotoent is the same as that returned by the
getprotobyname function in a list context. The setprotoent and endprotoent functions
reset and end the reading of the /etc/protocols file.

Services

The services are the names of individual protocols used on the network. These relate to
the individual port numbers used for specific protocols. The getservbyname function
resolves a name into a protocol number by examining the /etc/services file or the
corresponding networked information service table:

getservbyname NAME, PROTO
This resolves NAME for the specified protocol PROTO into the following fields:
($name, saliases, S$port, S$protocol name) = getservbyname 'http', 'tcp';

The PROTO should be either 'tcp' or 'udp’, depending on what protocol you want
to use. In a scalar context, the function just returns the service port number.

The getservbyport function resolves the port number PORT for the PROTO
protocol:

getservbyport PORT, PROTO

This returns the same fields as getservbyname:

(sname, S$aliases, S$port, S$protocol name) = getservbyport 80, 'tcp';

In a scalar context, it just returns the protocol name.
You can step through the contents of the /etc/services file using getservent, which
returns the same fields again.

getservent
setservent
endservent

setservent resets the pointer to the beginning of the file, and endservent indicates to
the system that you've finished reading the entries.

367

368

Perl: The Complete Reference

Networks

A network is a collection of machines logically connected together. The logical element
is that networks are specified by their leading IP addresses, such that a network of
machines can be referred to by “198.112.10”—the last digits specifying the individual
machines within the entire network. This information is stored, mostly for routing
purposes, within the /etc/networks file. Just like the hosts that make up the network, a
network specification is composed of both a name and a corresponding address, which
you can resolve using the getnetbyname and getnetbyaddr functions.

getnetbyname NAME
This returns, in a list context:
(Sname, S$aliases, $addrtype, $net) = getnetbyname 'loopback';

In a scalar context, it returns the network address as a string. You can also do the
reverse with the getnetbyaddr function:

getnetbyaddr ADDR, ADDRTYPE

The ADDRTYPE should be AF_UNIX or AF_INET, as appropriate.
As before, you can step through the individual entries within the network file using
the getnetent function:

getnetent
setnetent
endnetent

The getnetent function returns the same information as getnetbyaddr in a list
context. The setnetent function resets the current pointer within the available lists,
and endnetent indicates to the system that you have finished reading the entries.

The Socket Module

The Socket module is the main support module for communicating between machines
with sockets. It provides a combination of the constants required for networking, as well
as a series of utility functions that you will need for both client and server socket systems.
It is essentially a massaged version of the socket.h header file that has been converted
with the h2ph script. The result is a module that should work on your system,
irrespective of the minor differences that operating systems impose on constants.

Chapter 12: Networking 369

The exact list of constants, including those that specify the address (AF_*) and
protocol (PF_*), are system specific, so it’s pointless to include them here. Check the
contents of the Socket.pm file for details.

Address Resolution and Conversion

The inet_aton and inet_ntoa functions provide simple methods for resolving and then
converting hostnames and numbers to the packed 4-byte structure required by most of
the other socket functions. The inet_aton function accepts a hostname or IP address (as
a string) and resolves the hostname and returns a 4-byte packed structure. Thus

inet aton ("www.mcwords.com") ;

and
scalar gethostbyname ("www.mcwords.com") ;

return identical values. In fact, inet_aton returns only the first IP address resolved;
it doesn’t provide the facility to obtain multiple addresses for the same host. This
function is generally more practical than the gethostbyname or gethostbyaddr
function, since it supports both names and numbers transparently. If a hostname
cannot be resolved, the function returns undef.

The inet_ntoa function takes a packed 4-byte address and translates it into a normal
dotted-quad string, such that

print inet ntoa(inet aton("198.112.10.10"));

prints 198.112.10.10.

Address Constants

When setting up a socket for serving requests, you need to specify the mask address
used to filter out requests from specific addresses. Two predefined constants specify
“all addresses” and “no addresses.” They are INADDR_ANY and INADDR_NONE,
respectively. The value of INADDR_ANY is a packed 4-byte IP address of 0.0.0.0. The
value of INADDR_NONE is a packed 4-byte IP address of 255.255.255.255.

The INADDR_BROADCAST constant returns a packed 4-byte string containing
the broadcast address to communicate to all hosts on the current network.

Finally, the INADDR_LOOPBACK constant returns a packed 4-byte string
containing the loopback address of the current machine. The loopback address is the
IP address by which you can communicate back to the current machine. It’s usually
127.0.0.1, but the exact address can vary. The usual name for the local host is localhost,
and it is defined within the /etc/hosts file or the DNS or NIS systems.

370

Perl: The Complete Reference

Socket Structures

Socket functions within Perl call the system equivalents, which themselves use
structures to store the information for communicating with remote hosts. For Internet
communication (that is, within the AF_INET domain), the structure is sockaddr_in,
and for Unix communication (within the AF_UNIX domain), the structure is
sockaddr_un. Although you could create your own Perl versions of the structures
using pack, it’s much easier to use the functions supplied by the Socket module.

The primary function is sockaddr_in, which behaves differently according to the
arguments it is passed and the context in which it is called. In a scalar context, it
accepts two arguments—the port number and packed IP address:

$sockaddr = sockaddr in PORT, ADDRESS

This returns the structure as a scalar. To extract this information, you call the function
in a list context:

(sport, $address) = sockaddr in SOCKADDR_IN

This extracts the port number and packed IP address from a sockaddr_in structure.
As an alternative to the preceding function, you can use the pack_sockaddr_in and
unpack_sockaddr_in functions instead:

$sockaddr = pack_sockaddr_in PORT, ADDRESS
($port, $address) = unpack_sockaddr in SOCKADDR_IN

A similar set of functions pack and unpack addresses to and from the sockaddr_un
structure used for sockets in the AF_UNIX domain:

sockaddr_un PATHNAME
sockaddr_un SOCKADDR_UN
pack_sockaddr_un PATHNAME
unpack sockaddr un SOCKADDR UN

Line Termination Constants

The line termination for network communication should be \n\n. However, because of
the differences in line termination under different platforms, care should be taken to
ensure that this value is actually sent and received. You can do this by using the octal
values \012\012. Another alternative is to use the constants $CR, $LF, and $CRLF,
which equate to \015, \012, and \015\012, respectively.

|

Chapter 12: Networking

These are exported from the Socket module only on request, either individually or
with the :crlf export tag:

use Socket gw/:DEFAULT :crlf/;

Socket Communication

There are two ends to all socket connections: the sender and the receiver.

Connecting to a Remote Socket

use

sub

The process for communicating with a remote socket is as follows:
1. Create and open a local socket, specifying the protocol family (PF_INET or
PF_UNIX), socket type, and top-level protocol number (TCP, UDP, etc.).
2. Determine the IP address of the remote machine you want to talk to.
3. Determine the remote service port number you want to talk to.
4. Create a sockaddr_in structure based on the IP address and remote service port.
5. Initiate the connection to the remote host.
This all sounds very complicated, but in fact, it is relatively easy. Many of the

functions you need to use have already been discussed in this chapter. To speed up the
process, it’s a good idea to use something like the function connectsocket, shown here:

Socket;
connectsocket

my ($SOCKETHANDLE, S$Sremotehost name, S$service name, $protocol name) = @ ;
my ($port num, $sock type, S$protocol num) ;
my (Sremote ip addr, S$remote socket) ;

$protocol num = getprotobyname ($protocol name) ;
unless ($protocol num)

{

Serror = "Couldn't find protocol $protocol name";
return;
$sock type = S$protocol name eq 'tcp' ? SOCK STREAM : SOCK DGRAM;

unless (socket ($SOCKETHANDLE, PF_INET, S$sock type, $protocol num))

{

371

372

Perl: The Complete Reference

Serror = "Couldn't create a socket, S$!";
return;

}

if ($service name =~ /"\d+$/)

{
}

else

{

$port num = S$service name;

Sport num = (getservbyname ($service name, $protocol name)) [2];
unless ($port num)

{

Serror = "Can't find service $service name";

return;

Sremote ip addr = gethostbyname ($Sremotehost name) ;
unless ($remote ip addr)

{

Serror = "Can't resolve $remotehost name to an IP address";
return;
Sremote socket = sockaddr in($port num, S$remote ip addr) ;
unless (connect ($SOCKETHANDLE, $remote socket))
Serror = "Unable to connect to $remotehost name: $!";
return;

}

return(l) ;

I've used a variable, $error, to indicate the type of error, thus allowing you to return
true or false from the function to indicate success or failure. The bulk of the function’s
code is given over to identifying or resolving names and/or numbers for service ports
and other base information. The core of the function’s processes is the socket function,
which associates a filehandle with the relevant protocol family. The syntax of the
socket function is

socket SOCKET, DOMAIN, TYPE, PROTOCOL

Chapter 12: Networking 373

The SOCKET is the name of the filehandle you want to use to communicate over this
network connection. The DOMALIN is the corresponding domain type, which is typically
one of PF_UNIX for the Unix domain and PF_INET for Internet communication. The
TYPE is the type of communication, either packet stream or datagram.

A simple test is used in the above function to see if the top-level protocol (TCP, UDP,
etc.) is 'tcp', in which case it’s safe to assume that you are doing stream communication.
Valid values can be extracted from the Socket module, but it’s likely to be one of
SOCK_STREAM (for streams-based connections, such as TCP) and SOCK_DGRAM
(for datagram connections, such as UDP). The final argument, PROTOCOL, is the
protocol number, as determined by the getprotobyname function.

The next part of the function is responsible for looking up the numeric equivalents
of the service port and hostname, before you build the sockaddr_in structure within
the sockaddr_in function. You then use the newly created structure with the connect
function in order to associate the socket you have created with the communications
channel to a remote machine. The connect function’s synopsis looks like this:

connect SOCKET, NAME

The SOCKET is the socket handle created by the socket function, and NAME is
the scalar holding the sockaddr_in structure with the remote host and service
port information.

Armed with this function, you can create quite complex systems for communicating
information over UDP, TCP, or any other protocol. As an example, here’s a simple
script for obtaining the remote time of a host, providing it supports the daytime
protocol (on service port 13):

use Ssockets;
my $host = shift || 'localhost';

unless (connectsocket (*TIME, S$host, 'daytime', 'tcp'))

{
}

die $Ssockets::error;

$_ = <TIME>;
print "Time on S$host is $ ";
close (TIME) ;

For convenience the connectsocket function has been inserted into its own package,
Ssockets. This is actually the module used in Chapter 5 of the Perl Annotated Archives
book (see Web Appendix A at www.osborne.com).

374

Perl: The Complete Reference

The daytime protocol is pretty straightforward. The moment you connect, it sends
back the current, localized date and time of the remote machine. All you have to do is
connect to the remote host and then read the supplied information from the associated
network socket.

Listening for Socket Connections

use

sub

The process of listening on a network socket for new connections is more involved than
creating a client socket, although the basic principles remain constant. Beyond the
creation of the socket, you also need to bind the socket to a local address and service
port, and set the socket to the “listen” state. The full process is therefore as follows:

1. Create and open a local socket, specifying the protocol family (PF_INET or
PF_UNIX), socket type, and top-level protocol number (TCP, UDP, etc.).

2. Determine the local service port number on which you want to listen for
new connections.

3. Set any options for the newly created socket.
4. Bind the socket to an IP address and service port on the local machine.
5. Set the socket to the listen state, specifying the size of the queue used to hold

pending connections.

You don’t initiate any connections or, at this stage, actually accept any connections.
We'll deal with that part later. Again, it’s easier to produce a simple function to do this
for you, and the listensocket function that follows is the sister function to the earlier
connectsocket:

Socket;
listensocket

my ($SOCKETHANDLE, $service name,
Sprotocol name, $queuelength) = @ ;
my ($port num, $sock type, S$protocol num, $local socket) ;

Sprotocol num = (getprotobyname ($protocol name)) [2];
unless ($protocol num)

{

Serror = "Couldn't find protocol $protocol name";
return;
$sock type = $protocol name eq "tcp" ? SOCK _STREAM : SOCK DGRAM ;

Chapter 12: Networking

if($service name =~ /"\d+$/)

{
}

else

{

$port num = $service name;

Sport num = (getservbyname ($service name, $protocol name)) [2];
unless ($port num)

{

Serror = "Can't find service $service name";

return;

unless (socket ($SOCKETHANDLE, PF INET, $sock type, $protocol num))

{

Serror = "Couldn't create a socket: $!";
return;

}

unless (setsockopt ($SOCKETHANDLE, SOL_SOCKET,
SO_REUSEADDR, pack ("1",1)))

Serror = "Couldn't set socket options: $!";
return;

}

$local socket = sockaddr in($port num, INADDR ANY) ;
unless (bind ($SOCKETHANDLE, $local socket))

{

Serror = "Failed to Bind to socket: $!";

return;

}

unless (listen (SSOCKETHANDLE, S$queuelength))

{

Serror = "Couldn't listen on socket: $!";
return;

}

return(l) ;

Again, the bulk of this function is given over to determining the numerical versions
of the IP addresses, protocols, and service ports that you want to use. Most of the
function is therefore identical to the connectsocket function. The only difference is the

375

376

Perl: The Complete Reference

setting of some socket options, which we'll return to later in this chapter, and the use
of the bind and listen functions.

The bind function attaches your newly created socket to a local IP interface and
service port. This is essentially the same as the connect function used to connect to a
remote port, except that you are attaching the socket to a local port instead.

bind SOCKET, ADDRESS

The port definition does not have to be a specific IP address (although it could be).
Instead you use the predefined INADDR_ANY to allow the connection to be accepted
on any of the local configured IP interfaces. On a machine with a single interface, this
will obviously mean only one interface, but on a machine with multiple interfaces, it
allows you to accept the connection on any of them.

The listen function switches the new socket into listen mode. Without this function,
the socket will never accept new connections. It accepts two arguments—the socket
handle and something called the queue length:

listen SOCKET, LENGTH

The LENGTH parameter is the maximum number of connections that will be held
in a queue by the operating system before the remote hosts receive an “unable to
connect” response. This allows you to control the server loading and response times. It
doesn’t affect the number of connections that can be open at any one time, since that is
controlled (we hope) by the server application. For example, with a web server, since
the response time for an individual request is quite small, you may want to specify a
relatively high value so the time between individual accept calls will be relatively low.
Setting the queue length to a low value will affect performance, since the operating
system may be refusing connections even when your server is not very busy.

It’s also worth keeping in mind the type of communication you expect. With a web
server, you tend to get a high number of relatively short requests in a short space of
time. If you consider that a typical web page consists of one HTML file and ten images,
then you could easily get 11 requests within a few seconds, and you should therefore
set the queue length to a higher value. With an FTP server, you tend to get a smaller
number of concurrent connections, but with longer times to service the actual requests.
This would tend to indicate a lower value, thus helping to reduce the overall loading
of your server.

It’s always important to remember that your server can run as many child
processes as it likes, and so you should also have other safeguards, such as connection
counters or load monitors, to ensure that you are not accepting and servicing more
requests than you can handle. The queue length will make no difference here. If the
time to accept a connection and spawn a new process is one second, you could get 100

Chapter 12: Networking

requests every second and end up with 100 child processes. This could kill a small
server, no matter how small the individual requests might be.

Once your socket is ready and listening, you need to accept new connections as
they are made by clients. The accept function handles this, blocking the current process
until a new connection is made and accepted.

accept NEWSOCKET, SOCKET

The function monitors SOCKET, opening the NEWSOCKET filehandle on the accepted
connection. It returns the packed address of the remote host that made the connection,
or the false value if the connection failed.

This is usually used in combination with fork (see Chapter 14) to support multiple
simultaneous connections from remote hosts. For example, here is a very simple web
server (supporting HTTP) written entirely in Perl. It uses the listensocket function
and demonstrates the simplicity of the network server once you have gotten past the
complexities of creating the original listening socket.

use Ssockets;
use FileHandle;
use Cwd;

use Getopt::S8td;
use Socket;
getopts ('d') ;

$SIG{'INT'} = $SIG{'QUIT'} = \&exit request handler;
$SIG{'CHLD'} = \&child handler;

my (Sres);
my (SSERVERPORT) = 80;

unless (listensocket (*SERVERSOCKET, $SERVERPORT, 'tcp', 5))

{
}

die "$0: ", S$Ssockets::error;

autoflush SERVERSOCKET 1;

chroot (getcwd ()) ;
die "$0: Couldn't change root directory, are you root?"
unless (getcwd() eqg "/");

377

378 Perl: The Complete Reference

print "Changing root to ", getcwd(), "\n" if $opt d;
print "Simple HTTP Server Started\n" if Sopt d;

while (1)
{
ACCEPT_ CONNECT:
{
(Sremaddr = accept (CHILDSOCKET, SERVERSOCKET))
| | redo ACCEPT CONNECT;
}
autoflush CHILDSOCKET 1;
my $pid = fork();
die "Cannot fork, $!" unless defined(S$Spid);
if ($pid == 0)
{
my (Sremip)
= inet ntoa((unpack sockaddr in($remaddr)) [1]);
print "Connection accepted from $remip\n" if Sopt d;

$_ = <CHILDSOCKETS>;
print "Got Request $_" if $Sopt d;
chomp;

unless (m/ (\S+) (\S+)/)

{
print "Malformed request string $ \n" if Sopt d;
bad_request (*CHILDSOCKET) ;

1

else

{
my ($Scommand) = $1;
my (Sarg) = $2;
if (uc($command) eq 'GET')

{

if (open(FILE, "<S$Sarg"))

{

while (<FILE>)

{
}

close (FILE) ;

print CHILDSOCKET $_;

Chapter 12:

else

{

bad_request (*CHILDSOCKET) ;

}

close (CHILDSOCKET) ;
exit (0) ;

}

close (CHILDSOCKET) ;

sub bad_request

{

my ($SSOCKET) = shift;

print $SOCKET <<EOF;
<html>
<heads>
<title>Bad Request</titles
</heads>
<body>
<hl1>Bad Request</hl>
The file you requested could not be found
</body>
</html>
EOF

}

sub child handler

{

wait;

sub exit request_handler

my (Srecvsig) = @ ;

$SIG{'INT'} = $SIG{'QUIT'} = 'IGNORE';
close (SERVERSOCKET) ;

close (CHILDSOCKET) ;

die "Quitting on signal S$recvsig\n";

Networking

379

=
-
==
'
]
A
-

ONININYY90Ud

380 Perl: The Complete Reference

The main loop of this program will continue forever, until either a fatal error occurs
or the program receives the SIGINT or SIGQUIT signal. This operation is dealt with
by signal handlers, which we’ll cover in more detail in Chapter 14.

The main acceptance loop is here,

ACCEPT CONNECT:
(Sremaddr = accept (CHILDSOCKET, SERVERSOCKET))
| | redo ACCEPT CONNECT;

where you just cycle around for as long as it takes until you get a valid connection.
Remember that accept blocks process execution, so it’s not a major concern that you'll
be continually looping through this section. In fact, you should only ever redo the
block if the accepted connection could not be opened properly.

Once you have opened a valid connection, you fork a new child process to handle
the communication using the newly created CHILDSOCKET filehandle. Since you
are forking a new process each time, you don’t have to worry about the fact that the
filehandle name is identical. You close the filehandle in the parent immediately after
the child process has been forked.

There are a couple of other important notes here. First of all, you use a command
line option to handle the printout of additional debugging information. Second, you
use chroot to change the root directory of the script to the current directory. This
guarantees the security of the web server by restricting which files can be served to
only the files within the current directory and all its subdirectories. Even attempts
to access files or directories associated by symbolic links will fail.

Finally, note the communication method employed. Because of the complexities
of two-way communication over a single socket, you have to make some assumptions
about the process involved. For HTTP, the client sends a single-line request and then
waits for the server to send the reply, sending EOF or closing the connection as
appropriate. The information returned by the server must be text based and can consist
of HTTP header information and the actual body of data.

___| Using 10::Socket

The standard Perl distribution actually includes a module that provides a simpler
interface to the built-in socket functions, much like the previous scripts. If you are not
designing a custom solution, you might find that the distributed module better suits
your needs. It’s also more likely to be updated regularly than my own solution, and as

Chapter 12: Networking

part of the standard Perl distribution, it should work on a wide range of platforms
without any modifications to your scripts.

Client Side

Initiating a client network connection with the I0::Socket module is very simple and
actually follows a similar model to the connectsocket function:

use IO::Socket;

Ssock = new IO::Socket::INET (PeerAddr => 'twinspark',
PeerPort => 4003,
Proto => 'tcp'

)i

The $sock scalar now contains a reference to a filehandle that you can use to transfer
information to a remote host.

Server Side

The server side initialization follows a similar model:

use IO::Socket;
Ssock = new IO::Socket::INET (LocalHost => 'twinspark',
LocalPort => 4003,

Proto => 'tcp',
Listen => 5,
Reuse => 1

)i

This follows the same fundamental idea as the listensocket function. It creates a socket
and binds to the address and port specified by LocalHost and LocalPort. The listen
queue is set to the value of the Listen element of the passed hash, and you set the
SO_REUSEADDR option with the Reuse hash element.

Once the socket is created, you can use it as before, although many of the functions
are now available as methods to the newly created socket object. Thus, you can accept
new requests on a server socket with statements like this:

$new_sock = $sock->accept () ;

Note how the client- and server-side object-constructing methods are identical.
The type of socket to be created is determined by the keys passed to the constructor.

381

382 Perl: The Complete Reference

Using 10::Socket and 10::Select

You can employ I0::Select in exactly the same way as we saw in Chapter 8 when
working with more traditional filehandles. For the record, here’s a sample script that
uses 10::Select and 10::Socket to support multiple client connections:

#!/usr/local/bin/perl -w

use strict;
use IO::Socket;
use IO::Select;
use Socket;

(4000) ;

my (Sport)

my Ssocket = IO::Socket::INET->new(LocalPort => S$port,
Listen => 5,
Reuse => 1);

die "Can't create server socket: $!" unless S$Ssocket;
print "Listening for connections on port S$port\n";

my S$readable = IO::Select-s>new;
Sreadable->add (Ssocket) ;

while (1)
{
my (Sready) = IO::Select->select(Sreadable, undef, undef, undef);
foreach my $s (@S$Sready)
{
if ($s == Ssocket)
{
my $new sock = S$socket->accept;
$readable->add ($new_sock) if $new_sock;
print S$new sock "Status server online!\r\n";

print STDERR ("Accepted connection from: ", join('.',
(unpack ('C*', $new_sock->peername)) [4..7]),
Il\nll) ;

}

else

{

my S$buf = <$s>;

Chapter 12: Networking 383

if (defined Sbuf)

{
if ($buf =~ /exit/i)
{
print $s "Bye!\n";
Sreadable->remove (Ss) ;
Ss->close;
}
elsif ($buf =~ /status/i)
{
my Suptime = ~/usr/bin/uptime”;
print $s scalar localtime(time()), ': ',Suptime;
}
!
else
{
Sreadable->remove (S$s) ;
Ss->close;
print STDERR "Client Connection closed\n";
!

Getting Socket Addresses

When connecting with a remote socket, you might take it for granted that you know
the remote IP address of the machine you are talking to. In fact, you can’t necessarily
guarantee it’s the one you expect. It’s possible for a single name to resolve to a number
of IP addresses, and the exact one you have connected to may not be obvious.

When you are running a script for use as a server, the same problem occurs if you
forget to use the IP address returned by the accept function. In both cases, you can
use the getpeername function to return the IP address of the remote machine you are
talking to:

getpeername SOCKET

The function returns the packed sockaddr_in structure of the remote socket
connection. You'll need to extract the real address with something like this:

print "Remote: ",inet ntoa((unpack sockaddr in(getpeername SOCKET)) [1]),"\n";

384

Perl: The Complete Reference

The opposite is true when a script is acting as a server. If you specified one of the
wildcard addresses, such as INADDR_ANY, as the address to bind to, then you may
not know what you have bound to on a multiple-interface host. You can find out that
information with getsockname:

getsockname SOCKET

This returns the same information as getpeername, except that it’s for the local
machine, rather than the remote one.

Note that in both cases, the functions only work on open and connected sockets.
You can’t create a socket and bind it or connect to it in order to get the current IP
address of the local or remote machine. Until a connection has been accepted or
connected, the socket is not attached to any local or remote IP address.

Closing Sockets

Because Perl treats a socket just like any other filehandle, the obvious (and natural)
way to close a socket is to use the close function. However, you can use the shutdown
function to provide a controlled shutdown of a connected socket.

shutdown SOCKET, HOW

The SOCKET is the filehandle of the open socket. The HOW value defines how the
socket should be shut down. If HOW is 0, you cannot use the socket to receive more
information. If HOW is 1, you cannot use the socket for sending information. If HOW
is 2, the socket cannot be used for either sending or receiving information. Note that
this doesn’t actually close the socket connection; it just indicates to the system that the
full-duplex nature of a socket has been modified.

This is perhaps most useful when you are creating a pair of sockets at each end
of a connection—one socket purely for sending and one for receiving information.
Although shutdown doesn’t automatically redirect the socket handlers for you,
shutdown will make sure you do not send data to a remote socket that won’t be
listening for data, thus preventing deadlocking.

Socket Options

You can specify certain options on individual sockets to improve facilities or
performance. For example, the SO_SNDBUF option sets the buffer size when sending
information via a network socket, whereas the SO_REUSEADDR allows you to reuse
an existing address/port if a previous connection is still shutting down. Without
setting this option, new connections will fail, even if you know that you've closed
down the previous socket connection.

Chapter 12: Networking

To set a particular option, you use
setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

The LEVEL is the level within the networking model that you want the option to
affect. Most of the time this will be SOL_SOCKET, to directly affect the BSD network
sockets. The OPTNAME is one of the constants, exported by the Socket module and
summarized in Table 12-1. Note that the list here is for guidance only. The exact
options available will depend both on your operating system and the level of the
connection that you are configuring.

The OPTVAL is the value that you want to assign to the particular option. Because
each option can have a specific value, you cannot combine multiple options into the
same setsockopt call; you must set the options individually. For options that can be
enabled or disabled, 0 indicates that the option should be disabled, and 1 indicates that
it should be enabled.

For example, to switch SO_REUSEADDR on:

setsockopt (SOCKET, SOL_SOCKET, SO REUSEADDR, 1) ;
On some systems you may need to pack the setting into a long integer using pack:

setsockopt (SOCKET, SOL_SOCKET, SO _REUSEADDR, pack(‘'l’,1));

Option Description

SO_DEBUG Enable/disable recording of debugging information.
SO_REUSEADDR Enable/disable local address reuse.

SO_KEEPALIVE Enable/disable keep connections alive.

SO_DONTROUTE Enable/disable routing bypass for outgoing messages.
SO_LINGER Linger on close if data is present.

SO_BROADCAST Enable/disable permission to transmit broadcast messages.
SO_OOBINLINE Enable/disable reception of out-of-band data in band.
SO_SNDBUF Set buffer size for output.

SO_RCVBUF Set buffer size for input.

Table 12-1. Socket Options Under Solaris 2.4

385

386

Perl: The Complete Reference

To get the current options, use getsockopt:
getsockopt SOCKET, LEVEL, OPTNAME

This returns the current setting for OPTNAME or is undefined if the value cannot be
determined. Note that once again you must request each option value individually; it’s
not possible to request all of the currently set options.

Data Transfer

Transferring information over a network is problematic because of line termination and
other issues. However, providing you are careful, you shouldn’t have any difficulties
while using the normal print function and <FILEHANDLE> operator. Since Perl treats
sockets like filehandles, there is no reason why you shouldn’t use any of the available
functions and operators that work with filehandles for transferring information.

To avoid getting into a deadlocked situation when communicating between hosts
on a single socket, you will need to design a suitable protocol that tells each end of
the network link what state it should be in. For simple communication, it should be
enough to use a simple flip-flop situation. For example, the server end sits waiting for
data while the client sends information, and once transfer is complete, the end toggles.
Now the client waits for data while the server sends it. This is the basic idea behind
protocols such as HTTP and SMTP. However, if you are using one of these protocols
for transfer, then you might find one of the CPAN modules, such as Graham Barr’s
excellent libnet bundle, significantly easier to use.

A possible alternative solution, as already discussed, is to open two sockets at each
end of the connection. The client uses shutdown to disable sending on socket A while
disabling receiving on socket B. The server, on the other hand, disables receiving on
socket A while disabling sending on socket B. Although this improves the situation,
you can still enter a deadlocked state if you are expecting to receive data on both ends
of the connection.

You cannot even use select to solve the problem. Many people mistakenly believe
that select eliminates the deadlocking situation. It doesn’t; all it does is provide a
method for a single threaded process to communicate on more than one socket
semi-simultaneously. If both ends of the connection are listening when one of them
should be sending, all select does is monitor multiple sockets very efficiently for no data.

If you are transferring fixed blocks of information, particularly binary data or
fixed-length records, then you might find the send and recv functions to be more
practical. You may also find that your operating system does not support the use of
print and other filehandle constructs for sending information. In these instances, you
will have to use the send and recv functions.

The send function sends a message on a socket handle, just like the send() system
function:

send SOCKET, MSG, FLAGS [, TO]

Chapter 12: Networking 387

The MSG argument is the data string that you want to send. Since Perl automatically
knows the length of a string, you do not need to supply this information. The FLAGS
specify particular operations to be configured for this transmission. Only two are
generally supported—MSG_OOB and MSG_DONTROUTE. MSG_OOB allows you
to send the MSG as out-of-band data. This is generally only supported on Internet
streams. The MSG_DONTROUTE flag switches on the SO_DONTROUTE option
for the duration of the transfer (see the previous “Socket Options” section). The TO
argument, if specified, should be a suitable sockaddr_in structure to send the data to
if the socket has not already been connected to a remote socket.

The recv function accepts information from SOCKET, placing it into SCALAR:

recv SOCKET, SCALAR, LEN, FLAGS

It accepts up to a maximum of LEN bytes from the socket, and SCALAR will be shrunk
or grown accordingly to hold the received information. The function returns the IP
address of the host from which the data was received, or undef on error.

| craham Barr’s libnet Bundle

Graham Barr supports the libnet bundle, which consists of a large number of modules
that support communication over a network with existing TCP/IP servers and protocols,
such as HTTP, FTP, SMTP, and NNTP. Because the complexities of the protocols have
been taken care of for you, the difficulties associated with communicating using these
protocols is virtually eliminated. The interfaces provided are object based, and if you
are familiar with the protocols, then using the modules and the classes provided is very
easy. Even if you don’t understand the protocols, simplified top-level functions are
provided for the most common tasks.

For example, here’s a script that expands an email address, first by resolving the
MX (mail exchanger) hosts for the email address’s domain, and then by communicating
directly with the mail server to expand the email address. This script also uses the
Net::DNS module by Michael Fuhr, which provides an interface to the DNS name-
resolving system. Again, it’s object based and is very easy to use. (Web Appendix B
describes details on the networking modules that are available from CPAN, or use
Appendix C to locate your local CPAN mirror.)

#!/usr/local/bin/perls

use Net::SMTP;
use Net: :DNS;

while (@ARGV)

{

388 Perl: The Complete Reference

my Semail = shift;

my (Suser, Shost) = split '@', Semail;
my Sres = new Net::DNS::Resolver;

my @mx = mx(Sres, Shost);

if (emx)
{
print "Expansions for S$Semail\n";
foreach my $rr (@mx)
{
my (Smxhost) = $Srr-sexchange;
print "Checking S$Smxhost\n";
my Ssmtp = Net::SMTP->new($Smxhost) ;
unless ($smtp)

warn "Couldn't open connection to S$host";
next;
my Srealrecipient = $smtp->expand(Semail) ;

print "Srealrecipient\n" if S$Srealrecipient;
Ssmtp->quit () ;
}
print "\n";
}

else

{

warn "Couldn't find any MX hosts for S$host\n";

You can see from this sample how easy it is both to resolve an address using DNS
and to communicate with an SMTP server. The complexities of opening the remote
connection and handling the protocol and communication have been eliminated, and
something that would otherwise take hundreds of lines is resolved to just 34 lines. To
use it, just specify an address on the command line:

Expansions for mce@mcwords.com
Checking mcwords.com
<mcwords@prluk.demon.co.uk>

Here’s a very simple script using the Net::FTP module that uploads all the files
from a particular directory to a remote FIP server:

Chapter 12: Networking

use Net::FTP;

my $ftp = Net::FTP->new(Scollector);
die "Couldn't FTP\n" unless(S$ftp);
sftp->login(Scolluser, Scollpass) ;
sftp->cwd (Sremlogdir) ;

chdir (slogdir) ;

my @list = glob("perf.*");

for my $file (@list)

{
if (sftp->put($file,sfile))
{
unlink S$file;
}
1
sftp->quit;

| Ggisle Aas’ LWP Bundle

Gisle Aas supports the LWP (libwww-Perl) bundle. Unlike the libnet bundle, which
is concerned with a number of specific protocols at a protocol level, the LWP bundle
provides you with a number of simple methods for downloading and accessing web
pages. As well as allowing you to download standard pages, you can also use cookies,
passwords, and other entities in your requests, and once downloaded, the links and
images in the files can also be extracted.

At the basic level, you can use the LWP::Simple module to download a single page:

use LWP::Simple;
Surl = "http://www.osborne.com";

sfile = "osborne.html";
Src = mirror (Surl, Sfile);

if ($rc == 304)
{
print STDERR "$progname: $file is up to date\n"
}
elsif (!is_success($rc))
{

print STDERR ("$progname: $rc ", status_message(S$rc), " ($surl)\n") ;

}

389

390 Perl: The Complete Reference

Replace $url and $file with a URL and the file to which you want the page
downloaded, and the LWP modules will handle everything else for you.

If you want to make use of a cookies file, you need to use the LWP::UserAgent
module—the same module is actually used by LWP::Simple. The next example opens
a Netscape cookies file, and then builds a new request consisting of the cookie data
and the URL you are requesting before calling the request method to download the
homepage of BlackStar, a DVD/video seller:

use LWP::UserAgent;
use HTTP: :Cookies;

my $cookie jar = HTTP::Cookies::Netscape->new(File =>

"/ .netscape/cookies") ;

my $ua = LWP::UserAgent-s>new;

Sua->cookie jar ($cookie jar);

my Srequest = HTTP::Request->new('GET', "http://www.blackstar.co.uk") ;
Sua->request ($Srequest, "blackstar.html");

The

Rejoronce
Chapter 13

Database Systems

392

Perl: The Complete Reference

information within the Perl environment and the Perl script you have
invoked. However, it is often desirable, if not essential, to create, update,
and access information for external databases. This process is called object persistence,
since the data is created and is persistently (or permanently) available.

There are many different types of database systems. Some of them will be familiar to
many of you, as you probably already use them, although you may not always realize
that you are doing so. Most databases take one of two basic forms: flat file and relational.
With a flat-file database, the information is stored in a fixed format, and the information
stored is considered to be isolated or complete. For example, the /etc/passwd file under
Unix or an .ini file under Windows could both be considered examples of a flat-file
database. The information is stored in its entirety in a format that is easy to understand,
and it does not need to be linked to another database for the information to make sense.

A relational database, on the other hand, uses a number of separate “tables.” Each
table contains a list of information, and links between the tables enable you to store
information in a structured and relative way. For example, imagine a music database. It
might have two tables—one lists the artists and the other lists the individual recordings
they have made. You can access all of the recordings for a particular artist by
examining the links between the two tables.

When it comes to accessing and using databases, there are other problems to contend
with. First of all, you must decide how you are going to store the information within a
file. Using a single- or multicharacter delimiter is a fairly common system and one that
Unix uses in many different places. By using a tab or colon or some other character, you
can separate the individual fields within a record. The return character is often used to
separate the individual records within the entire file.

The problem with this method is that if you want to store information that may
possibly contain one of these delimiting characters, you may experience some corruption
of data or even complete loss of information. A better solution in this instance is to use
a fixed-length record system. Rather than delimiting the individual fields and
records, fixed-length systems specify the length of each field. Providing you know the
format (field sizes and types), you should be able to read entire records from the file and
determine the individual fields by their positions. This is wasteful of space for databases
with very large fields. In a database with 16K records, you can easily eat up a lot of space.
A record with 1K of useful data still takes up 16K of storage space.

Even once you have solved these problems, there are other considerations. Text
databases are great for accessing sequential information or for storing a stream of
information that will be processed by a program at a later time. What they are not so good
at is random access. Searching through a large text database can be a time-consuming
task, since you will need to read in each individual record to determine whether it is the
one you want. There are ways around this: you can use an index system to point to the
records you want, but the chances are that this also uses a text format, and you end up
back at square one.

Up to now, all of the chapters have concentrated on the process of utilizing

Chapter 13: Database Systems

To get around this particular problem, you need to investigate a system that
automatically handles the indexing and searching of your database in a timely manner
but still provides you with a simple interface for extracting the individual records and
fields from the database files. The easiest solution is to use the DBM system (the precise
expansion of the acronym has been lost, but it probably stands for database management).
This is a hashing database using the same key/value pair system as Perl’s internal
hash variable.

The more complex database implementations, especially those relying on relational
features, either require more complex use of the text or DBM database systems or require
the use of an external database implementation. Perl supports access to all of the major
database systems and many of the smaller systems, through a number of extensions
provided through the DBI toolkit, a third-party module available from CPAN. Using
a series of database drivers (DBDs), the DBI toolkit allows you to create and use
databases using Oracle, Sybase, mSQL/mySQL, PostgreSQL, and ODBC (open
database connectivity). Under Windows you can use either the DBI interfaces or the
Win32::0ODBC toolkit, which provides direct access to any ODBC-compliant database,
including FileMaker Pro, Oracle, and Microsoft’s Visual FoxPro, Access, and SQL
Server database products.

In this chapter, we'll look at all four solutions—text, DBM, DBI, and ODBC—and at
more general methods and practices for creating and using databases within Perl. We’ll
also look at ways of using DBM databases for storing complex data and at using DBI
with text files.

| Text Databases

Although they are the most basic of the database systems, text databases provide a reliable
and safe location for storing information. Many log systems using either delimited or
fixed-length records and many of the files that you take for granted on Unix and Windows
systems are actually text based, and are only imported or reported on when required.

If you look at a typical /etc/passwd file, you will notice that it has records—one
per line—where the individual fields are separated by colons:

root:x:0:1:0000-Admin (0000) : /:/sbin/sh
daemon:x:1:1:0000-Admin (0000) :/:

bin:x:2:2:0000-Admin (0000) : /usr/bin:

SyS:x:3:3:0000-Admin (0000) :/:

adm:x:4:4:0000-Admin (0000) : /var/adm:
lp:x:71:8:0000-1p(0000) : /usr/spool/lp:

smtp:x:0:0:mail daemon user:/:
uucp:x:5:5:0000-uucp (0000) : /usr/lib/uucp:
nuucp:x:9:9:0000-uucp (0000) : /var/spool/uucppublic: /usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:

393

394 Perl: The Complete Reference

nobody:x:60001:60001:uid no body:/:
noaccess:x:60002:60002:uid no access:/:
martinb:x:1000:1000:Martin C Brown:/users/martinb:/usr/local/bin/bash

There is a problem with the type of layout shown here if you start using this technique
for more complex databases. What happens if the data you are trying to store contains a
colon? As far as the Perl script is concerned, the colon specifies the end of one field and the
beginning of the next. An additional colon would only upset the information stored in the
“record.” Even worse, what would happen if you wanted to record multiple lines of text in
the database? Individual records are often stored on individual lines; multiline fields would
confuse the script again. You could use separate record delimiters that don’t rely on the
newline character, but again, this adds more complexity.

There are ways around these problems. You could use a different character for the
field and record separators, although this is still open to the same abuse and possible
results. You could just remove the field and record separator characters from the
source before you put them in the database, but this reduces the utility of being able
to store the information in the first place. The simplest solution is to ignore any field or
record separators and instead use fixed-length records to store the information. The use
of fixed-length records implies that you know the maximum size of the data that you
are storing before you place it into the database, and therefore you need to know the
format of the database before you write to and read from it.

Using fixed-length records would allow you to store any sort of information in the
database, including multiple-line text, without worrying about how the data may affect
the database layout. The only problem with fixed-length databases is that you not only
restrict the amount of information you can store, but you also increase the size of the
data file for small records, as the individual fields are “padded” to make up the fixed
lengths. To complicate matters further, you may have trouble choosing a padding
character that won't affect the contents of the fields you are storing. Null characters, for
example, produce all sorts of results when they are included as the text within a browser
window when writing CGI programs. In these situations, you can usually augment the
fixed-length structure by also specifying the field length for each field in each record. But
this too increases the size of the database.

To add more complexity, you will also need to overcome the problems of searching
the file if you are using it as a random-access database. If you know the record number
you want to access, then with either form of text database, you should be able to move
to the location relatively quickly. But if you don’t know the record number, the time
taken to find the data will be a factor of the database size. This is why, practically, text
databases are only good for small-scale installations or in situations where the
information flow is basically one way.

Using a text database for storing log information is an example of a one-way
information flow. One or more programs will add data to the file without referring
back to the data they have written. Another script will be responsible for taking in the

Chapter 13: Database Systems 395

raw data and producing a summary report of the information contained in it. Again,
the information flow is one way: the data comes from the database but is not updated
or modified.

In the following sections, we’ll look at the techniques for reading from and writing
to textual databases, including some example scripts. We'll also examine the methods
you will need to employ if you need to update, rather than read from or append,
information in a text database.

Delimited Databases

Accessing delimited databases is a case of using the split and join functions to extract fields
from and combine fields into the records used to store the information. For example, to
access the password file on a Unix system, which uses colons for the field delimiters and
newlines for record delimiters, you can use a very simple script:

open (D, "</etc/passwd") || die "Can't open file, $!";
while (<D>)
{
chomp;
@fields = split /:/;
print join(' ', @fields),"\n";
1
close (D) || dir "Couldn't close file, $!";

Of course, in this instance it’s easier to use getpwent and other functions to read the
file in a more reliable and safe format, but the principles remain the same.

If you want to import and export records using a different record separator, you can
use the $/ and $\ variables. You can set the values of the input and output field values
when you call the split and join functions. You may also want to investigate the
DBD::CSV module, which allows you to access a comma separate value file as if it were
a SQL database table. See Web Appendix B and the “DBI” section later in this chapter for
more information.

Many of the remaining technicalities surrounding the use of delimited text files also
apply to fixed-length databases, so we’ll examine the problems in the next section.

Fixed-Length Records

Using fixed-length records is also a case of using an existing function set that you
already know about. The pack and unpack functions, which you saw in the previous
chapter, can be used to create fixed-length records that can be written to a file. Because
the bytestring generated by pack is (within reason) architecture independent, using
pack and unpack can be a reliable method for storing and exchanging information
across platforms.

396

Perl: The Complete Reference

Following are three simple scripts: one to add data to a task list, one to report from
it, and one to update the information in a task list. The first is relatively simple. We will
compose the information from that supplied on the command line and append a packed
bytestring to the end of the file.

my (Staskfile) = "tasks.db";

my ($taskformat) = "A40LL";

my (sec,smin, Shour, $mday, $mon, Syear) = (localtime(time)) [0..5];
sSmon++;

Syear += 1900;

die "Usage: $0 title required-date\n" if (@ARGV<2) ;

($mday, $Smon, Syear) = split '/',$SARGV[-11];
Sregdate = ($Syear*10000)+ (Smon*100) +Smday;

open (D, ">>$taskfile") || die "Couldn't open the task file, $!\n";
print D pack($taskformat, $ARGV[0], $regdate,0) ;
close (D) ;

The only important note is that we convert the date into a numerical format. The
reason for this, which will be more important in the next script, is that the numerical
version can be more easily sorted via the standard Perl functions.

Reporting from the database is almost as simple. Once again we employ the unpack
function to extract the individual records in turn:

use Getopt::Std;

my Staskfile = "tasks.db";

my Staskformat

"A40LL";

my Stasklength = length(pack($Staskformat,));
my S$ref=0;

getopts ('drc') ;

open (D, "<$taskfile") || die "Couldn't open the task file, $!\n";

while(read(D,$, stasklength))

{

(stitle, sreqdate, Scompdate) = unpack(staskformat,$);
$lref{sref} = stitle;

}

Chapter 13:

$lref{S$ref} = "Sreqgdate" if ($opt r);
$lref{S$ref} = "Scompdate" if ($opt c);
$ltitle{Sref} = Stitle;
$lregdate{Sref} = Sreqdate;
$lcompdate{$ref} = S$compdate;

Sref++;

close (D) ;

printf ("%$-40s %-10s %-10s\n","Title","Reqg. Date", "Comp.

foreach $key (sort values(\%lref))

{

sub

$lregdate{Skey} =~ s#(....) (..) (..)#53/82/31#;
if ($lcompdate{Skey}>0)

{
next if (Sopt_d);
$lcompdate({skey} =~ s#(....) (..) (..)#83/52/514;
}
else
{
$lcompdate{$key}="";
}

printf ("%$-40s %10s %10s\n",

$1title{Skey}, $1lreqdate{S$key}, $lcompdate{skey}) ;
sort_values
my S$lref = shift;

if ($opt_r || $opt_c)

{

sort {$lref{sa} <=> $lref{sb}} keys %$lref;
}
else
{

sort {$lref{sa} cmp $lref{sb}} keys %$lref;
}

Database Systems

Date") ;

397

398

Perl: The Complete Reference

The final script is more complicated. Updating information in either a delimited
or fixed-length database requires that you know the location of the data that you want
to update. With a delimited database, the data can potentially be of any length, and
so you need to copy the existing information from the current database into a new

tile, substituting the updated information in the new file before continuing the copy
process. It’s not possible to “insert” data into the file—you cannot move data within a
physical file without moving the information somewhere else first. You could do it in
memory, but for large databases, this wouldn’t be practical. Instead, the better solution
is to use external files for the process.

With a fixed-length database, the process is slightly easier. The length of each record
in the database is the same, so updating a record is as easy as overwriting the updated
and packed record in the same physical location within the file. To do this you use the
seek and tell functions. This is a cyclical process in which you read in each record until
you find the one you want, remembering the location of the start of the record in each
case. Then, once the information has been updated, you go back to the start of the record
and rewrite the packed record.

Here’s the script that updates our earlier task file entries:

use Fcntl;

my ($taskfile) = "tasks.db";

my ($taskformat) = "A40LL";

my Stasklength = length(pack ($Staskformat,));

die "Usage: modtask.pl title completed-date\n" if (@ARGV<2) ;

open (D, "+<$taskfile") || die "Couldn't open the task file, $!\n";

while (read(D,$_, Stasklength))

{
(stitle, sreqgdate, Scompdate) = unpack(Staskformat,$);
last if ((Stitle eq SARGV[0]) && (Scompdate eqg 0));
$lastseek=tell (D) ;

}

if (Slastseek >= (-s Staskfile))

{

die "Couldn't find the task specified\n";

}

Chapter 13: Database Systems 399

(Smday, $Smon, Syear) = split '/',SARGV[-1];
Scompdate = (Syear*10000)+ (Smon*100) +Smday;

seek (D, $lastseek, SEEK SET) ;
print D pack($taskformat,stitle, Sregdate, Scompdate) ;

close (D) || die "Couldn't close the database\n";

To use all three scripts, first call addtask.pl (the first script) to create and add a
record to the database, and then update the task you have added by specifying a
completion date:

$ perl -w addtask.pl 'Phone Richard' 25/3/1999

$ perl modtask.pl 'Phone Richard' 26/3/1999

$ perl listtask.pl

Title Reqg. Date Comp. Date
Phone Richard 25/03/1999 26/03/1999

| DBM Databases

For simple structures, such as single-record databases, and especially for a sequential
series of data, text files are exceedingly practical. However, they suffer from performance
issues if you want to access the information on a random basis, or where the amount of
information you wish to store becomes unmanageable in a text database. A better solution
is to store the information in a real database where the information can be recorded and
extracted using identified and unique keys. This enables you to ignore the searching and
storage mechanisms that are required for text databases and instead to concentrate on
writing the code for using, rather than the code for accessing, the database.

The standard database under Unix is a system called DBM, which is based on a
simple key/value pair, much like Perl’s own hash data type. Each entry within the
database will have a unique key, and attached to this will be the piece of data you
want to store. To extract information from the database, you simply request the data
associated with a particular key.

Although it sounds complicated, it is really no different from the way hash variables
are stored within Perl. You access a hashed variable entry within Perl by specifying a
textual key. With some careful programming and the use of well-worded keys, you can
store information in a DBM file in the same way you would store information in any
off-the-shelf database.

400

Perl: The Complete Reference

DBM files are an integral part of the Unix operating system. Many of the standard
components use DBM files for their own storage. Sendmail, for example, uses DBM to
store aliases in a time-efficient manner. The alias file is converted, using the newalias
command, into a DBM database. This is quicker than manually trawling through the
text-based alias file—something that is vitally important when processing a large
number of email messages. As a demonstration of the power of the DBM system, it
is also the storage format for the Network Information Service (NIS/NIS+, formerly
called the Yellow Pages), a networked version of many of the core operating system
configuration files for everything from user data to hostnames and IP addresses.

DBM Implementations

Over the years, the original DBM system has been improved and has gone through a
number of different incarnations, although the original specification remains the same.
Most of the different DBM systems are compatible with each other, but to a greater or
lesser extent, compatibility depends on the platform and implementation involved. It
should be noted, as well, that DBM files are not portable. The storage format used is
specific to a particular hardware platform and operating system. In some cases, even
different versions of the same operating system have incompatible DBM systems.
Furthermore, the format used by DBM is very wasteful of space compared to even a
fixed-length text database. Because of this, copying a DBM file across file systems on
the same machine can be problematic because the OS doesn’t know how to copy the
“empty” space.

Depending on the implementation, a DBM database is composed of either two files or
a combined single file. In the two-file combination, one is a directory table containing a
bit-based representation of the buckets and their index location and has .dir as its suffix.
The second file contains all the data and has .pag as its suffix. The data file is often full
of “holes,” where storage space has been allocated but not used, or where the key has
been deleted. In these instances, the area within the file actually contains no useful
information, although it will be reused when new data is added to the file.

The downside to this method is that some implementations allocate too much storage
space, thereby generating a file that is reported to be 10, 100, or even 1,000 times the size
of the useful information stored within the file. There is, unfortunately, no clear method
for compacting the information into a smaller version of the database. Even using Perl to
copy the contents of the database into a new database will not necessarily provide you
with a suitable solution to the problem. Of course, the flip side to all of this is that the
speed of access, even for a very large database, is very quick.

There is a limitation on the storage size of each key/value pair, which is known as
the bucket size. Creating entries larger than this will either crash you out of Perl or just
truncate the information you attempt to store, depending entirely on how the database
has been implemented at C level. The maximum bucket size is dependent on the DBM
implementation being used, and the information is summarized in Table 13-1.

Chapter 13: Database Systems

Implementation DBM/ODBM NDBM SDBM GDBM Berkeley DB
Module ODBM_File NDBM_File SDBM_File GDBM_File DB_File
Bucket Limit 1-2K 14K 1K (none) None None
Disk Usage Varies Varies Small Big Big
Speed Slow Slow Slow Okay Fast
Data Files No No Yes Yes Yes
Distributable

Byte-Order No No No No Yes
Independent

User-Defined Sort No No No No Yes
Order

Wildcard Lookups No No No No Yes

Table 13-1. DBM Modules in Perl

The following sections describe common DBM implementations and their
advantages, disadvantages, and differences from the range available.

DBM/ODBM

The generic term for the original DBM toolkit on which all the newer toolkits are based
is DBM/ODBM. Although included as standard in most Unix variants, it has been
replaced almost entirely by NDBM as the DBM implementation of choice. Perl refers to
ODBM as “Old DBM.” The supported bucket size is 1K on most platforms, but it may
be as high as 2K on some. The database files are created with .dir and .pag extensions,
although you only specify the prefix name when opening the file.

NDBM

The “new” replacement for the original DBM, with some speed and storage-allocation
improvements, is NDBM. This has replaced the standard DBM libraries and in some cases
is the only implementation available. Depending on the operating system, the bucket size
is anything from 1K to 4K. The database files are created with .dir and .pag extensions,
although you only specify the prefix name when opening the file. NDBM should, in
theory, be compatible with files created using the DBM/ODBM implementations,
although this isn’t guaranteed. You should use this in place of ODBM if it is available.

401

402

Perl: The Complete Reference

SDBM

Substitute /Simple DBM is a speed- and stability-enhanced version of DBM. Included
as standard with the Perl distribution, it’s supported on all Perl platforms except Mac
OS. The SDBM system supports a default bucket size of 1K, but this can be modified at
compile time. The database files are created with .dir and .pag extensions, although
you only specify the prefix name when opening the file.

GDBM

The GNU/FSF implementation of DBM is faster than all implementations except
Berkeley DB. GDBM has also been ported to a larger number of platforms than other
implementations. Unlike other systems, it also supports an unlimited bucket size
and has built-in file locking within the GDBM module. This eliminates a lot of the
complexity surrounding the normal responsibilities of file locking. Unlike other
DBM implementations, the entire hash table is stored in a single file, rather than two
separate files.

Berkeley DB

Berkeley DB is a public domain C library of database access methods, and it supports
not only the traditional DBM implementation but also a number of advanced storage
and indexing systems that allow you to store and retrieve information in a more
efficient fashion. For the technically minded, Berkeley DB supports B+Tree, Extended
Linear Hashing, record-number indexing, and both fixed- and variable-length storage
records. The DB_File Perl module puts a DBM-like wrapper around the B-Tree and
hash implementations, enabling them to be used as DBM replacements. The fixed- and
variable-length record implementation also has a Perl array wrapper for direct use
within Perl scripts.

Berkeley DB libraries also support relational database system facilities such as
multiuser updates and transactions and the ability to recover corrupt database files.
We'll take a look at using the additional features of Berkeley DB, beyond simulating
DBM files, later in this chapter.

DBM Functions

Perl 4 used a system of functions to access DBM files. The process was basically identical
to the process used for any normal file, and the result was very similar to the tie solution
we will see shortly. In each case, the dbmopen function creates a relation between a
Perl hash and an external DBM database. Using these functions, only one type of DBM
implementation is supported, and that’s usually the standard for your operating system
(NDBM, ODBM) or the Perl-supplied SDBM if these are not available.

dbmopen HASH, EXPR, MODE

Chapter 13: Database Systems 403

This binds the database file specified by EXPR to the hash HASH. If the database does
not exist, then it is created using the mode specified by MODE. The file EXPR should
be specified without the .dir and .pag extensions.

For example, to associate the aliases database on a Unix machine to a hash called
%aliases:

Use Fcntl;
dbmopen %aliases,’/etc/aliases’,O RDWR;
foreach (keys %aliases)

{
}

print "$: Saliases{$ }\n";

Once you have finished using the DBM database, you must disassociate the hash
from the underlying DBM file with the dbmclose function:

dbmclose HASH

| Use of these functions is heavily deprecated—and it’s highly likely that they will be

dropped completed in Perl 6.0, due out late in 2001. Use the tie method unless you really
need to retain compatibility with Perl 4.

Using Tied DBM Databases

Using the tie function, which you saw in the last chapter, provides an object-oriented
interface to DBM databases and is now the preferred method within Perl 5. By using tie,
you can create a connection between a standard Perl hash and a DBM database. Since
DBM databases use the same key/value system as Perl hashes, there is no complex
handling of the information. Accessing a key in the hash automatically provides you
with the correct key/value pair in the DBM database. Creating new entries and deleting
them similarly updates the DBM file. The access and control is instantaneous, and it
eliminates so much of the complexity of using a DBM database that it’s very easy to
forget you are even using an external file instead of an internal structure.

The format of the tie function with DBM files is as follows:

tie %hash, DBMTYPE, FILENAME, MODES, FILEMODE;

404 Perl: The Complete Reference

The DBMTYPE element should be the name of a DBM implementation from which to
inherit the necessary methods for the tie function. For example, to create a new database
using GDBM, you might use

tie %db, 'GDBM File', 'database.db', O CREAT|O RDWR, 0644;

You will need the definitions from the Fentl module for the specification of the
different flags when opening and closing the files. The different flags available for all
DBM implementations are shown in Table 13-2. Both GDBM and Berkeley DB have
their own additional flags, which we will examine separately.

Once opened, the DBM file can be accessed using the hash it has been tied to. For
example, the following code fragment opens a text file and creates a DBM database of
the contents. The first line of the text file is assumed to be the list of fields to be used as
keys in the rest of the database.

Flags Description

O_APPEND Appends information to the given file

O_CREAT Creates a new file if it doesn’t already exist

O_EXCL Causes the open to fail if the file already
exists when used with O_CREAT

O_NDELAY Opens the file without blocking; reads or

writes to the file will not cause the process
to wait for the operation to be complete

O_NONBLOCK Behaves as O_NDELAY

O_RDONLY Opens the file read-only

O_RDWR Opens the file for reading and writing

O_TRUNC Opens the file, truncating (emptying) the file
if it already exists

O_WRONLY Opens the file write-only

Table 13-2. File Access Flags

Chapter 13: Database Systems

#!/usr/local/bin/perls -w

use NDBM_File;
use Fcntl;

my (sdbfile, %db,$i,@fieldnames,@fields, skey, $n) ;

die "Usage:\n$0 source\n" if (@ARGV<1);

$dbfile = SARGV [0];

open (D, "<$dbfile") || die "Can't open $dbfile, $!";

(tie %db, NDBM File, $dbfile, O RDWR|O_ CREAT|O EXCL, 0666)
|| die "$0: Error creating $dbfile: $!\n";

$_ = <D>;

chomp ;

s/.//;

@fieldnames = split "\t";

$db{fieldlist} = join(",",@fieldnames) ;

while (<D>)

{
chomp;
@fields = split "\t";
for(sn=0;Sn<=@fields; S$n++)
{
if (defined(sfields[$nl))
{
Skey = $fieldnames([$n] . "-si";
$db{skey} = $fields[s$n];
1
}
Si++;
1

$db{segid} = $i;
close (D) || die "$0: Couldn't close source, $!\n";
untie %db || die "$0: Couldn't close db, $!\n";

405

406

Perl: The Complete Reference

print "Read $i records\n";

Other hash functions, such as each, keys, and delete, work the same way on a DBM
file as on a hash. The changes are immediate: if you delete an entry in the hash tied to
the DBM database, it has been deleted forever; recovery is impossible. You can also
check for the existence of a key within the database using the normal exists function,
and you can check the value of a specific key using defined. The tie object interface
performs all the necessary checks and other operations for you on the actual DBM file.

Also note that the keys and values functions should be used sparingly if the
DBM file is particularly large. Perl will quite happily create a large internal temporary
array to contain the list of information. Unless you are producing a sorted list of the
contents, it’s best to avoid the use of functions altogether. In most cases, you will be
accessing individual key/value pairs from the database, and this should not then be
a problem. However, when searching (perhaps when building a list of records to
display), use the each function (see Chapter 7) to prevent Perl from creating such large
temporary structures.

Converting Between DBM Formats

Because Perl 5 now uses the Tie module to create a link between a hash and a DBM
object, you can use Perl to convert from one DBM implementation to another. The
following example converts an NDBM_File database into a GDBM_File database:

use NDBM_File;
use GDBM_File;
use Fcntl;

die "Usage:$0 old new\n" if (@ARGV<2) ;
my ($old, Snew) = @ARGV;

oldhash, 'NDBM_File', Sold, O_RDONLY, 0444)
die "$0: Error opening source $old: $!\n";
newhash, 'GDBM File', $new, O CREAT|O RDWR|O EXCL, 0666)
die "$0: Error opening dest Snew: $!\n";
$newhash = %oldhash;
untie %oldhash || die "$0: Error closing old DBM file, $!\n";
|| die"$0: Error closing new DBM file, $!\n";

untie %newhash

Chapter 13: Database Systems 407

Given our earlier concerns, you may want to use a less memory-intensive process
for copying the records. Here’s the same example using each to extract the information
before writing it into the new database:

use NDBM File;

use GDBM File;

use Fcntl;

die "Usage:$0 old new\n" if (@ARGV<2) ;

my ($old, Snew) = @ARGV;

%oldhash, 'NDBM_F:i_le', Sold, O_RDONLY, 0444)
| die "$0: Error opening source $old: $!\n";
|

tie (%newhash, 'GDBM File', $new, O CREAT|O RDWR|O EXCL, 0666)
die "$0: Error opening dest Snew: $!\n";
while ((Skey, $value) = each(%oldhash))
{
$newhash{$key} = $value;

1

untie %oldhash || die "$0: Error closing old DBM file, $!\n";
untie %newhash || die "$0: Error closing new DBM file, $!\n";

Using AnyDBM_File
If you are not worried about the DBM implementation you are using, you can use the
AnyDBM_File module to include a DBM implementation from those available. It selects
a class from the implementations, choosing the first valid one from the following list:
NDBM_File, DB_File, GDBM_File, SDBM_File, and ODBM_File. In the unlikely event
that all of these modules are unavailable, the use statement will fail.

When using AnyDBM_File, you should be aware that the implementation selected
may differ from the one you require if you are attempting to open an existing DBM
database. If you do not know the format of the database you are trying to open, you will
have to try and work it out. In general, any DBM file set ending in .dir or .pag will be an
NDBM or ODBM database. If you know these are not supported on your system, then
it’s probably an SDBM database (except on Mac OS, where SDBM is not supported). If
the DBM database is stored in a single file, the most likely implementation is GDBM, but
it’s possible that Berkeley DB is also supported.

408

Perl: The Complete Reference

GDBM Features

The GDBM_File implementation, if available on your system, provides some additional
benefits over the standard DBM implementations. Although the GDBM library supports
DBM/NDBM compatibility, you cannot use the GDBM_File module to open existing
databases. If you need to do this and don’t have DBM/NDBM, try the SDBM module
that comes with Perl.

The biggest benefit with the GDBM implementation of the DBM database system is
that there is no limit on the bucket size. This, theoretically, means you can store arbitrary
pieces of data in a single key/value pair. The size of the GDBM files that are created is
slightly larger than traditional files—about 24K for a “blank” database is about average.
I've successfully used the GDBM system to store large data structures within a database
file—even, in one case, the graphics used for a website.

use GDBM_File;
tie %db, 'GDBM_File', 'db', &GDBM_WRCREAT, 0640;
untie %db;

You can use the modes ordinarily supplied by the Fentl module, or you can instead
use a set of modes defined by GDBM_File, as listed in Table 13-3.

Mode Description

GDBM_READER Open for read-only.

GDBM_WRITER Open for read /write.

GDBM_WRCREAT Open for read /write, creating a new database

if it does not already exist, using the
permissions mode specified.

GDBM_NEWDB Open for read /write, creating a new database
even if one already exists, using the
permissions mode specified.

Table 13-3. GDBM-Specific Modes

Chapter 13: Database Systems 409

In addition, you can specify the GDBM_FAST mode when opening a file for
read /write. This forces disk synchronization with the memory version of the hash only
when the file is closed. This improves performance, but it may produce unpredictable
results if the script exits ungracefully.

Berkeley DB Features

The Berkeley DB system is a more involved and enhanced version of the base DBM
implementation. The module provides a number of different database formats, accessed
and used by means of the same tie function. The modules are the standard key/value
pair database supported by other DBM systems (DB_HASH); a B-Tree-based system,
accessible via a hash (DB_BTREE); and a record-number system using arrays
(DB_RECNO).

Standard Hash Database

A DB_HASH is identical in most respects to Perl’s internal hash structure, only the
key/value pairs are stored in data files, not memory. The functionality provided is
basically identical to that provided by the other DBM-style database engines. DB_File
uses its own hashing algorithm for storing and retrieving the key/value pairs, but you
can supply your own system if you prefer.

use DB _File ;
[$X =] tie %hash, 'DB_File', $filename, $flags, S$mode, $DB HASH;

The value of $flags is identical to that of other databases and refers to the mode in
which the file will be opened. The $mode is the octal mode with which the file should
be created or accessible. The final item is actually a reference to a hash; I've used a
predefined reference in the synopsis above. We’ll return to the configuration options
available via this hash shortly.

The $DB_HASH argument should be a DB_File::HASHINFO object. The object
defines the default options that control how the database is configured, and you can
change the options by simply updating the hash keys. The supported options are listed
in Table 13-4.

410

Perl: The Complete Reference

Hash Key

bsize

ffactor

nelem

cachesize

Hash

Description

Defines the hash table bucket size. The default is 256
bytes, and you may want to increase this if you know
you are storing information larger than this size.
Remember that the size defined here will apply to all
new entries created in the database. Arbitrarily
increasing this may degrade performance and
increase the storage space used by the database.

Indicates the density of information. The value
assigned becomes the number of keys that will
accumulate within a single bucket allocation. The
default is 8, and therefore a maximum of 8 key/value
pairs of 32 bytes each could be stored in a single
bucket. Reducing the value to 1 will increase the file
size by the bucket size (defined in bsize) for each
record. Specifying too large a value may decrease
performance.

An estimation of the final size of the hash table
(number of buckets or the number of elements
divided by ffactor). If you know the number of
elements you are going to store, you can use this to
achieve a slight increase in performance. The value
set is not restrictive; the database will automatically
grow in size if you set a value that is too low. The
default value is 1.

The maximum size in bytes of physical memory to
allocate as a buffer between the in-memory database
and the physical file store. Specifying a large value
will increase performance, since more of the database
will be kept in memory. However, it may also cause a
synchronization error if there is a crash or other
problem, since there may still be data in the cache
that has not been written to a file. A value of 0 lets
the system choose a reasonable value for you.

A reference to a user-defined function that returns a
32-bit quantity suitable for ordering and referencing
a hash.

Table 13-4.

Customizable Elements for DB_HASH Databases

Chapter 13: Database Systems

Hash Key Description

Lorder The byte order to be used for storing integers within
the metadata in the file. The number specified should
represent the order as an integer (that is, 4321 is big
endian, and 1234 is little endian). If a value of 0 (the
default) is specified, the current host order is used
instead. If the file you are using already exists, the
format used within that file is always used. This can
help with compatibility across platforms if you are
sharing a database file on multiple systems that
support different byte orders.

Table 13-4. Customizable Elements for DB_HASH Databases (continued)

For example, to create a database with a bucket size of 1,024 bytes:

Soptions = new DB _File::HASHINFO;
$options->{'bsize'} = 1024;
tie %db, 'DB File', "file.db", O RDWR, 0644, soptions;

The hash element should point to a function that you want to use for creating a
hash value.

B-Tree Hash Database

The B-Tree hash is architecturally identical to the standard hashing system used on
most other DBM systems. The difference is that the keys are stored in an ordered
format using a binary tree. This allows you to use a hash database in an ordered form
without having to resort to the use of sort to order the data before it is used.

use DB _File ;
tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE;

As before, the $flags and $mode are identical to other DBM databases. The
$DB_BTREE argument is another object with a set of base properties that you can
modify according to the options listed in Table 13-5.

411

412

Perl: The Complete Reference

Hash Key
Flags

Cachesize

maxkeypage

minkeypage

psize

Description

A value that should be composed of values or'd
together. Two values are currently available:
R_DUP and R_NOOVERWRITE. The value
R_DUP allows duplicate keys to be entered into
the database. The R_NOOVERWRITE prevents
you from overwriting existing keys. You cannot
specify the two flags together, since they
effectively cancel each other out.

The maximum size in bytes of physical memory
to allocate as a buffer between the in-memory
database and the physical file store. Specifying a
large value will increase performance, since more
of the database will be kept in memory. However,
it may also cause a synchronization error if there
is a crash or other problem, since there may still
be data in the cache that has not been written to

a file. A value of 0 lets the system choose a
reasonable value for you.

The maximum number of keys that will be stored
in a single page. This currently has no effect on the
process within Perl.

The minimum number of keys that will be stored
in a single page. This value defines which keys
will be stored on overflow rather than main pages.
The default value is 2, and this value will be
selected if you try to define a value of 0.

The size, in bytes, of the pages used to store nodes
of the B-Tree structure. The minimum page size is
512 bytes and the maximum is 65,535 (64K).
Ideally, you should choose a size that matches
your data and the minkeypage value, or a value
that matches the underlying size of your operating
system allocation blocks.

Table 13-5. Options for DB_BTREE Databases

Chapter 13: Database Systems

Hash Key

compare

prefix

lorder

Description

A reference to a function that operates the
comparison between keys that will be used when
storing the information. (See the discussion of the
comparison function in this section for more
information.) If none is specified, or if the undef
value is used, then a default function that uses
lexical comparisons is used instead. This function
is basically alphanumeric, with shorter keys
considered as being less than longer keys.

A reference to a function that returns the number
of bytes necessary to determine whether the
second key supplied is greater than the first key.
The basic point behind the function is to optimize
the size of the search tree used to find key/value
pairs. For lexical comparisons, the built-in
function should suffice. See the discussion of the
prefix option in this section for more information.

The byte order to be used for storing integers
within the metadata in the file. The number
specified should represent the order as an integer
(that is, 4321 is big endian, and 1234 is little
endian). If a value of 0 (the default) is specified,
the current host order is used instead. If the file
you are using already exists, the format used
within that file is always used. This can help with
compatibility across platforms if you are sharing a
database file on multiple systems that support
different byte orders.

Table 13-5.

Options for DB_BTREE Databases (continued)

The method for defining these flags is identical to the system for standard hash

databases:

Soptions

new DB File::BTREEINFO;

$options->{'cache'} = 16384;

tie %db,

'DB_File',

"file.db", O RDWR, 0644, $options;

413

414

Perl: The Complete Reference

The comparison function (defined through the compare option) should accept
and compare two keys, returning a numerical value depending on how key1 compares
to key2. The function should return 0 if the two keys are equal, -1 if key1 is less than
key2, and 1 if key1 is greater than key2. For example, to use the default Perl string
comparisons, you might use the following functions:

sub compare

{
my (Skeyl, $Skey2) = @ ;
return 0 if ("\LSkeyl" eq "\LS$key2");
return -1 if ("\LsSkeyl" 1t "\LsSkey2");
return 1 if ("\LsSkeyl" gt "\LsSkey2");

}

More simply, you could just use the cmp operator:

sub compare

{
my (Skeyl, S$key2) = @ ;
"\Ls$keyl" cmp "\LSkey2";

}

Note in both examples that you convert the keys to lowercase to ensure that the
comparison works in proper alpha order rather than the normal ASCII order that
would be implied otherwise.

The prefix option allows you to specify the number of bytes that should be used
when making comparisons between keys. The value should simply return the number of
bytes used to make the comparison. This works with the comparison function to decide
at what size a specific key is given priority over another key in the sorting process.

Record Number Database
The DB_RECNO option enables you to store fixed-length or variable-length records
within a database file. The format used is basically text based. If you want to open and
use a comma-separated file (CSV), you can use the DB_RECNO system to open and
then use the database. Alternatively, you can make use of the fixed-length approach we
looked at, at the start of this chapter.

Unlike the other Berkeley DB databases, the record number database is tied to a
standard array rather than a hash, and individual records are accessed by their record
number using the standard index you would use with any normal hash:

use DB _File ;

Chapter 13: Database Systems

tie @array, 'DB File', $filename, $flags, $mode, $DB_RECNO ;

The options for the SDB_RECNO object are listed in Table 13-6.

Hash Element

flags

cachesize

Description

This is a value based on or’d predefined flags, and
three values are currently defined: R_FIXEDLEN,
R_NOKEY, and R_SNAPSHOT.

The R_FIXEDLEN flag signifies that the records are
of fixed length rather than being byte delimited. Use
the reclen option to specify the length of the record
and bval to specify the character to be used for
padding the record to the specified size. Records are
automatically padded if you supply a record with a
length less than that specified.

The R_NOKEY flag forces the routines and methods
that are used to access the database not to include
the key information. This allows you to access
records that are at the end of the database without
having to read the intervening records.

The R_SNAPSHOT flag specifies that a snapshot of
the file’s contents be taken when the file is opened.

The maximum size, in bytes, of physical memory to
allocate as a buffer between the in-memory database
and the physical file store. Specifying a large value
will increase performance, since more of the database
will be kept in memory. However, it may also cause a
synchronization error if there is a crash or other
problem, since there may still be data in the cache
that has not been written to a file. A value of 0 lets the
system choose a reasonable value for you.

Table 13-6. Options for DB_RECNO Databases

415

416

Perl: The Complete Reference

Hash Element Description

psize Records from a DB_RECNO database are stored in
memory in a B-Tree format. The psize specifies the
number of pages to be used for the nodes of the
B-Tree structure.

lorder The byte order to be used for storing integers within
the metadata in the file. The number specified
should represent the order as an integer (that is,
4321 is big endian, and 1234 is little endian). If a
value of 0 (the default) is specified, the current host
order is used instead. If the file you are using
already exists, the format used within that file is
always used. This can help with compatibility across
platforms if you are sharing a database file on
multiple systems that support different byte orders.

reclen The length, in bytes, of a fixed-length record.

bval The value of the character to be used to mark the
end of a record in a variable-length database, and
the character to use for padding in a fixed-length
database. If no value is specified, then a newline is
used to specify the end of a record in a
variable-length database, and spaces are used to pad
fixed-length records.

bfname The name of the B-Tree file to be used for the B-Tree
structure of the in-memory record-number database. If
none is specified, the hash is stored entirely in memory.

Table 13-6. Options for DB_RECNO Databases (continued)

For example, to set the record length in a fixed-length database:

Soptions = new DB File::BRECNOINFO;
$options->{'reclen'} = 1024;
tie @db, 'DB _File', "file.db", O RDWR, 0644, S$options;

If you want, you can use the array as a stack. Versions of Perl newer than 5.004_57
can use the normal pop, push, shift, and unshift functions directly with the tied array.

Chapter 13: Database Systems
Older versions will need to use the object methods for the object reference returned
when the database is first opened, for example:
$DBX = tie @db, 'DB File', "file.db", O_RDWR, 0644, $DB_RECNO;

You can then use the methods shown in Table 13-7 to push, pop, shift, and unshift
information from the stack.

In-Memory Databases

You can use the features of the Berkeley DB databases for in-memory databases. This
can be useful if you want to use a hash with information stored in an ordered format
(as with DB_BTREE) but don’t want to create a file in the process. To do this, you
specify the undef value as the name of the database file. For example

tie %db, 'DB File', undef, O CREAT|O RDWR, 0666, $DB BTREE;
or, for the standard hash:
tie %db, 'DB File', undef, O CREAT|O RDWR, 0666, S$DB HASH;

If you want to use an in-memory standard hash, the preceding line can be
shortened to

tie %$db, 'DB File';

Method Description

$DBX->push(list) Pushes the elements of list onto the end of the
tied array

$DBX->pop Pops the last element of the array

$DBX->shift Removes and returns the first element of
the array

$DBX->unshift(list) Pushes the elements of list onto the start of the
tied array

$DBX->length Returns the number of elements in the array

Table 13-7. Object Methods for DB_RECNO Databases

417

418 Perl: The Complete Reference

Storing Complex Data in a DBM Database

The simplest model for storing information in a DBM database is identical to the model
used for a Perl hash. You have a unique key of information and use that key to refer to
a single piece of data. However, this is a fairly flat model if you want to store complex
pieces of information in a structured format. Instead, you can use the key/value pairs
to store the more traditional records used in a database system.

By using a formatted key or value, you can store the information for individual
fields within a DBM file. The entire record can be stored either in multiple keys or
within a single key with a structure value. For example, imagine the simple record
structure below:

Firstname, 10 characters
Lastname, 10 characters
Email, 40 characters

You could use a formatted key value of the form field-id, such that a single record
could be entered into the database as

$db{'firstname-1'} = 'Martin’';
$db{'lastname-1'} = 'Brown';
$db{'email-1'} = 'mcemcwords.com';

The first name of the next person in the table would be stored in the key firstname-2,
the last name in lastname-2, and so on. Although this seems like a practical method, it
is a relatively complex system to implement, and it is wasteful of database keys, which
will need to be processed individually.

An alternative solution is to use one of the methods described earlier for text-based
databases. By using delimiters or fixed-length records, an entire record can be stored
within a single key/value pair. Using delimiters, the preceding information could be
written into the database and then recovered from it using the following Perl code:

use Fcntl;
use GDBM File;

tie $db, 'GDBM File', 'Test GDBM', O CREAT|O RDWR, 0644
|| die "Can't open DB File, $!";;

$db{'1'} = join(',',gw/Brown Martin mc@mcwords.com/) ;
$db{'2'} = join(',',qw/Foo Bar foo@foobar.com/) ;
$db{'3'} = join(',',qw/Bar Foo barebarfoo.com/) ;

Chapter 13: Database Systems

foreach $id (sort keys %db)

{
($lastname, $firstname, Semail) = split(/,/,$db{s$id});
print "$id: lastname: $lastname\n";
print "$id: firstname: $firstname\n";
print "$id: email: Semail\n";
}
untie %¥db || die "Can't close DB File, $!";

In this example, the database is populated using a simple numeric key, with the
data added via a join using a comma as the delimiter. To print the information you've
just stored, you work through the database and, using split, place each field’s data into
individual variables, which you then print.

As you know, however, delimited text requires very careful selection of the
delimiter to ensure that the information is stored correctly. Here is the same result
using pack and fixed-length records, which gets around this problem.

use Fcntl;
use GDBM File;

tie $db, 'GDBM File', 'Test GDBM', O CREAT|O RDWR, 0644
|| die "Can't open DB File, $!";

$db{'email-pstr'} 'al0al0a30';
$db{'email-fields'} = join(',', gw/Lastname Firstname Email/);

$db{'email-1'} pack ($db{'email-pstr'},gw/Brown Martin mc@mcwords.com/) ;
$db{'email-2'} = pack(sdb{'email-pstr'},qw/Foo Bar foo@foobar.com/) ;
$db{'email-3'} pack ($db{'email-pstr'},qw/Bar Foo bar@barfoo.com/) ;

@fieldnames = split(/,/,$db{'email-fields"'});

foreach $id (sort grep(/“email-[0-9]+/,keys %db))
{
@fields = unpack ($db{'email-pstr'},$db{s$id});
for($i=0;S8i<@fields;Si++)
{
$id =~ s/email\-//;
print "$id: S$fieldnames[$i]: $fields[$i]l\n";

419

420

}

Perl: The Complete Reference

untie %¥db || die "Can't close DB File, $!"

Note in this example that you also manage to keep track of the field names and sizes
by recording this information into keys within the database. This makes the format of the
database and its contents completely database defined. Also note that I've used a prefix
in the base keys. Although it’s relatively useless here, it can be useful if you want to store
multiple tables within a single database file. Each table has its own name and, in turn, its
own pack string, field list, and sequence.

There is still a problem with this particular solution. It is even more wasteful of
space than a flat text file using fixed-length records. This is because of the internal
storage method used for DBM databases and the problems associated with fixed-length
records. In this example, every record will take up at least 60 bytes. A more complex
record structure will take up significantly more.

Of course, Perl allows you to do more than just use simple key /value pairs. In Chapter 10
we looked at the complex data structures you can create to model information using
nested Perl variables, such as hashes of hashes and arrays of hashes. Unfortunately, you
cannot use normal DBM implementations to create nested hashes of hashes and hashes of
arrays. If we return to our first solution, we can expand it by using a hash of hashes to
store the data in a more structured format:

use Fcntl;

use GDBM File;

tie %db, 'GDBM File', 'Test GDBM', O CREAT|O RDWR, 0644;

|| die "Can't open DB File, $!";

$db{1} = 'Record’';
$db{1}{lastname} = 'Brown';
$db{1}{firstname} = 'Martin’';
$db{1}{email} = 'mc@mcwords.com';
$db{2}{lastname} = 'Foo';
$db{2}{firstname} = 'Bar’';
$db{2}{email} = 'fooefoobar.com';
$db{3}{lastname} = 'Bar’';
$db{3}{firstname} = 'Foo';

$db{3}{email} = 'barebarfoo.com';

Chapter 13: Database Systems

foreach (sort keys %db)

{

}

foreach $field (sort keys %{$db{$ }})

{
}

print "$: $field: $db{$ }{$field}\n";

untie %¥db || die "Can't close DB File, $!"

use
use
use
tie

However, the MLDBM module by Gurusamy Sarathay (available from CPAN)
uses existing DBM modules and the Data::Dumper module to convert such complex
references into a simple format that can be stored within an ordinary hash file. It
implements the same basic idea, using the tie function to associate a hash with a hash
file—the MLDBM object handles all of the complexity for you:

GDBM File;

MLDBM gw (GDBM_ File) ;

Fcntl;

($db, 'MLDBM', 'Test MLDBM', O CREAT|O RDWR, 0644) || die $!;

This overcomes all the previous problems. The data is stored in a structured format,
which can be accessed simply using standard hash techniques. Furthermore, the
storage space used for this system is significantly lower than the fixed-length database
example shown earlier. The storage space is still slightly higher than the delimited
system, due to the use of a secondary level key, but it overcomes the problem of
choosing a suitable delimiter.

Relational Databases with DBM

The relational element of a relational database that most people think of is actually the
automatic lookup of information. When you report from a database that is composed
of many tables, you can choose to print out the “merged” information from all of the
linked tables in order to produce the desired set of results. The clever bit is the linking
between the individual tables, and this is something that is actually possible to do
manually using any database system—text, DBM, or otherwise. With DBM, you have
the advantage over text databases of convenient random access, which is the only
practical way of achieving a “flat” relational system.

You can model relational data in any database system. The only requirement for
using it is that you are able to access all of the tables simultaneously. The actual
method of linking between the tables can be done automatically or manually. With the

421

422

Perl: The Complete Reference

tie interface, you can have as many physical DBM databases open at any one time as
you like (operating system limits permitting). Through the use of the principles you
saw in the previous section, there is no reason why you couldn’t actually model the
information in a single database with structured key/value pairs.

The most critical part of the development of a relational system is the modeling of
the data. Once you have decided on the format of the information and how it is going
to be linked, you also need to consider how the links will work. Let’s look briefly at a
relational system for storing multiple contact information for multiple people using a
DBM database.

The first table is the list of contact names—this will be the lynchpin for our database
because it contains our contact names. The contact table has three fields—first name,
last name, and a list of record numbers for the second table, the numbers table. The
numbers table has two fields—the number type and the number itself. “Number” can
mean pager, phone, fax, or mobile number, email address, and so on.

The first table might be populated like this:

$db{ ‘contact-1’} "Martin;Brown;1,3,4";
$db{ ‘contact-2’} = "Bob;Smith;2,5";

The key is made up of the table name and a unique ID within that table. The
information is stored using delimited text fields in the value portion of the key/value
pair. Note that semicolons separate the individual fields, but commas separate the link
data in the third field.

The numbers table could be populated with the following information:

$db{ ‘numbers-1’} = "Email;mc@mcwords.com";

$db{ ‘numbers-2’} "Email;bsmith@foobar.com";
$db{ ‘numbers-3"} "Fax;01234 456789";
{
{

$db{ ‘numbers-4’} = "Phone;09876 543210";
$db{ ‘numbers-5’} "Mobile; 0789 123456";

To access the complete contact information for Martin Brown, you need to access
record number one of the contact table and then access the related information listed in
field three of that record. In this case, this is records 1, 3, and 4 from the numbers table.
To dump the information from the database in a formatted formation, you might use a
script like this:

use Fcntl;
use GDBM_File;

Chapter 13: Database Systems

tie %db, 'GDBM File', 'Test Rel', O CREAT|O RDWR, 0644
|| die "Can't open DB File, $!";;

foreach $id (sort grep(/”“contact-[0-9]1+/,keys %db))
{
($lastname, $firstname, S$Srelations) = split(/;/,$db{$id});
print "S$firstname S$Slastname\n";
foreach $Ssubid (sort split(/,/,Srelations))
{
($type, $num) = $db{"numbers-$subid"}
if (exists($db{"numbers-$subid"})) ;
print " Stype: S$num\n";

}

untie %¥db || die "Can't close DB File, $!";

The method is basically very similar to the tricks you saw in the previous section for
modeling complex data structures within a DBM database. When run on the database
above, it produces the following results:

Brown Martin
Email: mc@mcwords.com
Fax: 01234 456789
Phone: 09876 543210
Smith Bob
Email: bsmith@foobar.com
Mobile: 0789 123456

If you want to use some of the earlier techniques for including information in the
database about the database, you can even begin to drive the links using formatted
structures. I've developed a simple relational database system, originally designed for
complex contact management, using this type of relational system. It needed to be
ultimately portable to a variety of platforms, and the client wanted to keep away from
proprietary database systems.

423

424

Perl: The Complete Reference

Database File Locking

Without at least some form of file locking, it will be possible for two processes,
Perl-based or otherwise, to access and update the database file at the same time. When
reading from the database, this is not an issue; there is no reason (normally) to lock
people out from the database if all they want to do is look up a value. When updating,
however, the end results could be disastrous. With more than one person updating
different lines, sections, and key/value pairs in the different database types, you could
end up with, at best, a corrupt database and, at worst, one that is completely unreadable.

The best solution is to use the Perl flock function, which uses the best of the underlying
locking mechanisms (flock, lockf, or fentl). You may also want to consider using a separate
file to indicate the lock condition. See the example in Chapter 7 for information on using
and checking the file locks with the flock function.

You will need to take care about how you implement the locking mechanism. With
a text-file database, you can use flock directly on the filehandle you use to access the
database. With DBM databases, the system is more complex, since the actual file is
hidden from you via the tie object interface. For the ODBM_File, NDBM_File, and
SDBM_File, this will mean checking and imposing locks on both files used to store the
DBM data. For GDBM_File, you only need to check the locks on one file.

For DB_File, you can use a method applied to a DB_File object in order to discover
the file descriptor, and then use the duplication notation with the open function to
assign it to a filehandle that can be used with flock. For example:

use Fentl gm/:flock:/;
use DB File;

$dbobj = (tie(%db, 'DB File', 'dbfile.db', O RDWR, 0644)
|| die "Can't tie database to hash, $!";

Ssfileno = $dbobj->fd;
open (DBHANDLE, "+<&=$fileno") || die "Can't open FH, $!";
unless (flock (DBHANDLE, LOCK EX|LOCK NB)) { die "Can't lock: $!" }

Update the database
flock (DBHANDLE, LOCK UN) ;

close (DBHANDLE) ;
untie %db;

This only sets and releases a lock for update. You'll also need to include the necessary
tests to ensure that the file is not already locked.

Chapter 13: Database Systems 425

___| Using the DBI and Win32::0DBC Toolkits

Although text and DBM databases have their place, as the quantity of information
starts to grow, even the best organized DBM systems start to degrade in speed and
become more difficult to manage and update. Professional, and often commercial,
databases have been part of the computing world almost from the start, and using
them has a number of advantages over designing your own DBM system. The
advantages of a relational database management system (RDBMS) include

B Faster access—because an RDBMS is written in C, and often highly optimized
in its routines and storage and indexing methods, it will be much faster than a
typical DBM file for databases with large (>5,000) records.

B Easier management—with a DBM or flat-file database, you have a lot of
management overhead controlling what you delete, how it’s deleted, and the
general housekeeping of the files themselves. An RDBMS does it for you.

B Easier access—most, if not all, RDBMSs use SQL to create, modify, and access
information, and this makes the entire process much easier as all you have to
worry about is writing a suitable query; the RDBMS will do all the actual work.

There are a number of ways to access RDBMS systems from within Perl. Some have
their own interfaces and modules, while others have had a number of modules written
specifically to access their contents. However, a much better solution is to use either
the DBI toolkit, which is available under Unix and Windows, or the Win32::ODBC
toolkit under Windows. Which you choose will largely depend on the database you are
connecting to, your current platform, and how portable and compatible you want your
scripts to be with different database systems.

DBI

The DBI toolkit, developed for the most part by Tim Bunce, is a suite of objects and
methods that allow you to connect and execute queries to a database. What actually
happens is that the DBI module talks to a DBD (database driver) module, which is usually
a C/C++ API to the actual database engine. At all times, you actually communicate with
the DBI module, so the underlying database becomes a relative non-issue.

This ability to separate the methods for executing queries—and getting back
information—from the specifics of talking to the different databases has a number of
advantages, and first and foremost is the ease of use and programming. Because there
are a fixed number of methods for accessing the database, you will always know how
to send a query, check for errors during execution, and get any information back. You
don’t have to worry about the specifics of the database you are using.

More importantly, though, you can develop a database-driven application that
uses one database on your system, but that could be used with just about any
database supported by the DBI kit. Since the currently supported database list

426

Perl: The Complete Reference

includes DB2, Informix, Ingres, JDBC, ODBC, Oracle, PostGreSQL, Sybase, Unify,
Xbase, mSQL/mySQL, and even flat CSV files, you're not going to be short of a
suitable database either for development or production purposes.

Win32::0DBC

The Win32::ODBC module comes as part of the standard ActivePerl distribution,

and like DB, it supports a generic interface for accessing databases, providing those
databases are accessible through the ODBC system. ODBC, open database connectivity,
is a standard now followed by all the major database players, including IBM, Oracle,
and Microsoft. Both DBI and ODBC work in essentially the same manner, supporting

a single API to the database. The difference is in where the interface sits within the
connectivity model.

Under DBI, the DBI module talks to a DBD driver that in turn communicates with
the database. We're therefore using the RDBMS libraries to access the database; we're
just doing it through DBI. ODBC, however, is an API that sits within the RDBMS;
we just use a library to talk using ODBC protocols to the ODBC driver supplied by the
database vendor.

When communicating with a database over a network, the DBD and the database
API that supports it must have network connectivity. The ODBC, on the other hand,
includes a network communication layer, so I can talk to an ODBC-compliant database
over a network through the ODBC system, whether that data source supports network
connectivity or not.

With DBI, I can talk to any database that has had a DBD written for it and to any
networked database that has network ability; with ODBC, I can communicate with any
ODBC-compliant database over a network.

Under Windows, ODBC connectivity is a standard part of the operating system—if
I'install an ODBC-capable application, then a driver is installed and I can access that data
source from any ODBC client. For example, if I install Microsoft Office, ODBC interfaces
are installed for CSV, Excel spreadsheets, and Access databases. Now from within Excel,
I can run queries on flat files, excel spreadsheets, or Access databases. I can do the same
from Perl too. If I were using DBI, I'd need a DBD to access those sources. In reality, DBI
supports CSV databases, and an ODBC DBD exists to communicate with any
ODBC-compliant source.

The other point at which the two differ is in the extended support. The DBI toolkit
explicitly works on a relatively basic level, providing the necessary interface for
communicating with the database and executing queries. The Win32::ODBC toolkit is
a complete API to the ODBC system, including the ability to control the operation and
default data handling of a suitable database. This level of ODBC support is likely to be
incorporated into DBI in due course, but for now, if you want to exercise a significant
level of control over a Windows RDBMS, especially SQL Server, you'd be better off
with Win32::ODBC.

Chapter 13: Database Systems 427

Database Mechanics and Compatibility

The basic operation of both databases is more or less identical. A relatively simple
process of getting information from the database can be summarized on both systems
like this:

1. Open a database connection.

2. Submit a query.

3. Start a loop to retrieve each row.
4. Extract each record.

5. Close the database connection.

Whichever database and interface you decide to use, the query method is the
same—you use SQL statements to create tables, add or modify data, and to get it back.
Although there are minor differences in the exact SQL implementation (as with all
standards) the same statements should return the same information. If you are not
familiar with SQL, then see the “SQL Refresher” section later in this chapter.

If you are developing a script that may use a number of different databases, then here
are some tips for making the process of moving from one driver to another a bit easier:

B Check that the return value from a DBD module matches what you expect. The
DBI module doesn’t normalize all the error codes and values from all database
drivers, so check the documentation specific to the DBD module.

B Write SQL queries as tightly as possible so as to remove ambiguity and reduce the
return dataset to only what you need. Also, don’t rely too much on engine-specific
SQL components, especially data types. Some engines support 20 to 30 different
types for different pieces of information. In reality, you could probably get away
with the types listed in the SQL Refresher section later in the chapter.

B Don't rely on engine-specific features. Transactions are not supported by all
engines, and other features like outer joins, triggers, and persistent sequences
are not always available.

B Avoid making assumptions about what is available. Ensure that your script
knows which database interface it’s using.

The easiest way to get around the issues raised in the previous tips is to write an
extra level of interface between your application and the DBI module. From that
interface you can make decisions about which tools and tricks to use, according to the
database driver. For example, you could create a function called add that sits between
your script and the DBI interface. If your database supports transactions, add would
use them, but for databases that do not support transactions, the function would just
supply the SQL statement without using transactions.

428

Perl: The Complete Reference

Connecting to a Database

The act of connecting to a database associates an object with a connection to the
database itself, and it’s this object through which you communicate with the database.

DBI

Under DBI, you only import the DBI module, not the DBD that you want to use to
connect to the database, and then you create a DBI object using the connect method:

use DBI;
my $dbh = DBI->connect (DSN) ;

The DSN, or Data Source Name, defines the DBD driver, and therefore the RDBMS that
you want to communicate with. For example, to connect to a mySQL database called tv:

use DBI;
my $dbh = DBI->connect ("DBI:mysqgl:tv");

To connect to a database with the same name using PostGreSQL:

use DBTI;
my $dbh = DBI->connect ("dbi:Pg:dbname=mctv","","");

Note here the inclusion of two null arguments after the DSN—under most DBDs, this
is the user name and password required to connect to the database.
The object will be undefined if an error occurs.

Win32::0DBC

When using the Win32::ODBC module, the process is slightly more complex. You can
use the same basic method—import the module and then create a new object using a
specific DSN:

Use Win32::0DBC;
$database = new Win32::0DBC("DSN" [, CONNECT OPTION, ...]);

The difference is in the DSN specification. It can be either the name of a predefined DSN,
created through the ODBC Data Sources control panel, or you can specify the name of

Chapter 13: Database Systems

the database driver and database within the DSN. The optional CONNECT_OPTION
arguments set additional options to be enabled when connecting to the database. The
available options are ODBC-driver specific, so check the database driver for more
information.

To connect to a predefined DSN, just specify the DSN name, in quotes; for example,
to connect to our Acronym DSN, you would use the following line:

$db = new Win32::0DBC ("Acronym") ;

The string form of the DSN allows you to specify additional information when
connecting to a DSN. The options are supplied as a list of keyword=value pairs, each
pair separated by a semicolon. See Table 13-8 for details of the keywords you can use.

Keyword Value
DSN The name of an existing, preconfigured DSN.
FILEDSN The path to a DSN file, which contains the list of

configured options to allow you to connect to an
ODBC database. A DSN file must have the
extension .dsn.

DRIVER The name of the driver to use for opening this
connection. You can get a list of drivers by
calling the Win32::0DBC::Drivers() function.

UID The user ID to use to connect to the ODBC
database.

PWD The password to use to connect to the ODBC
database.

SAVEFILE The path to a file in which to save the DSN

string information as a DSN file. This file can
then be used with the FILEDSN option.

Table 13-8. DSN String Keywords

429

430

Perl: The Complete Reference

For example, to connect to an Access database that requires a login and password:
$db = new Win32::0DBC ("DSN=Acronym; UID=MC; PWD=Hello") ;

The new object will be undefined if the connection to the database fails. To trap
errors, enclose the call in an if statement or check the value of the new object after you
try to connect.

Executing Simple Queries

Simple queries include the single statement operations that do not return information.
For example, the creation of a table, index, or even adding a row of information or
updating it are simple queries that return nothing more than their success (or otherwise)
to the caller.

DBI

Under DBI, the do method will execute a query for you:
Sdbh->do ("create table names (first char(20), second char(20))");
Because the query will only return a success or failure, all we need to do is actually

check the return value of the whole operation to determine whether it succeeded. The
same method can be used for any statement. For example:

Sdbh->do ("insert into names values('Fred',6 'Flintstone')");
Sdbh->do ("create index names on names (first,second)");
Sdbh->do ("delete from names where first = 'Fred'");

For more SELECT statements, you'll need to use the extended query methods.

Win32::0DBC
The Sql method handles simple queries under Win32::ODBC:

$sgl->8gl ("create table names (first char(20), second char(20))");

Again, the return value from the whole operation indicates the success (or
otherwise) of the operation.

Chapter 13: Database Systems

Executing Extended Queries

When you are performing a SELECT or similar query on a database and expect more
than just a success/failure return value, then you need to use more advanced methods
to get the information back, usually on a row-by-row basis.

DBI

The DBI toolkit provides a number of methods and method sequences for pulling
information from the database. You start by defining the query that you want to run on
the database and prepare a select table handler; this is a new object, which will be used
to access the individual rows returned by the SELECT statement. You then execute the
statement—this actually sends the query to the database engine. For example:

my ($sth) = Sdbh->prepare("select * from tv where title LIKE "
Sdbh->quote ("S$Stitles™")
" order by date,time,channel");
$sth-s>execute () ;

To access the information, you call one of the fetch functions in a while or other
loop to extract each row of information from the query. For example:

while (my $row = $sth->fetchrow hashref ())

The fetchrow_hashref method is probably the most practical, as it returns the row
in the form of a hash reference, with each key being the name of a returned column,
and the corresponding value being the value of the field. For example, to extract the
date and time:

$date = $row->{date};
$time = S$row->{time};

Other methods include fetchrow_array, which returns an array of fields in the
order they were specified in the select statement, and fetchrow_arrayref, which returns
a reference to an array on the same basis.

Once you've read all of the rows, you must call finish on the select object ($sth in
the examples above) to complete the sequence.

431

432 Perl: The Complete Reference

Win32::0DBC

The Win32::0DBC module supports the same basic sequence, although you don’t have
to explicitly create a handler to operate the query and extraction process:

$db->Sgl ("SELECT Acronym, Expansion from Acronyms") ;
while ($db->FetchRow ())
{

(Sacronym, Sexpansion) = Sdb->Datal() ;

print "Sacronym: S$Sexpansion\n";

}

The FetchRow method gets a single row as returned by the query—it’s the Data
method that actually extracts and returns the information from the row. By default, it
returns an array of the fields in the order they were specified in the SELECT statement.
You can also extract individual fields by name:

sdb->Sgl ("SELECT * from Acronyms") ;
while ($db->FetchRow ())

{
(Sexpansion, Sacronym) = Sdb->Data('Expansion', 'Acronym') ;

print "Sacronym: Sexpansion\n";

}

Or, you can return the information as a hash and then access the fields directly:

Sdb->Sqgl ("SELECT * from Acronyms") ;
while (Sdb->FetchRow ())

{

$row = Sdb->DataHash() ;
print "$row{Acronym}: $row{Expansion}\n";

}

The result is the same in each case. Note, however, that you don’t have to explicitly
finish the process as you do with DBI.

Closing the Connection
Once you've finished using a database, you must formally close the connection from
within DBI or Win32::ODBC. On some databases, including mySQL and PostGreSQL,
failing to formally close the connection causes a rollback, undoing any insertions,
updates, or deletions that you've conducted within that process.

Chapter 13: Database Systems

Using the DBI module, it’s as simple as
Sdbh->disconnect () ;
and under Win32::ODBC, you use the Close method:

$sgl->Close() ;

Identifying Errors

Both modules work on the same basic premise as the rest of Perl—a false return value
from a function or method call indicates a failure, while a true value indicates success.
However, to get an error message describing why the process failed, you must use a
separate method defined by each module.

DBI

The errstr method returns the error string reported by the last statement—you should
use it in combination with the result code from an operation to actually report an error.
For example:

Sresult = $dbh->do(Squery) ;

print $dbh-serrstr(),"\n" unless (Sresult);
Win32::0DBC
You can use the Win32::ODBC::Error function to get the extended error from the
ODBC interface:

Sdb = new Win32::0DBC ("Acronym") ;

if ($db)
{
Do some querying
1
else
{
die "Couldn't connect to DB:" . Win32::0DBC::Error () ;
1

Doing More

Although this has been a fairly quick overview of what’s possible, you should be able
to do 95 percent of the tasks you need to using the information given in this chapter.

434

Perl: The Complete Reference

The important part of the equation when talking to a SQL database using either the
DBI or Win32::0DBC module is not how to use the modules themselves—they are
actually very simple, and really only support a conduit through which to execute
SQL statements.

The real trick and advantages come from understanding, first, how to design the
database effectively, and second, how to write SQL statements to create, update, and
maintain information in the database. Good database design is beyond the scope of this
book, and indeed, good DB design and implementation only comes from experience.

To try and plug at least some of the gap, I've included a SQL refresher course at the
end of this chapter that covers most of the SQL statements you will need to use.

___| sQL Refresher

SQL has been around for many years—it was the standard query language supported
by many of the early relational systems and was actually designed and developed by
IBM. Other companies, perhaps now better known for their database systems, such
as Oracle and Microsoft, have adopted SQL as their main query language. The SQL
language is now further developed by a consortium of database developers, led
primarily by IBM, Microsoft, and Oracle, the leading players in the database market.

The role of the consortium is to define the SQL language standard. Although some
companies have their own extensions to the SQL language, the core operations of
creating, updating, and querying tables remain the same across all the different
database systems.

Actually, this isn’t entirely true. There are some semantics of the language that are
optional on some systems, and these can occasionally cause problems when migrating
between different database systems. Often, the differences relate to how the databases
have been developed over the years. As a classic example, examine these two CREATE
statements:

CREATE table AUDIO (ID numeric (10,0) identity,
TITLE varchar (30) not null,
ARTIST varchar (30) not null)

and

CREATE table AUDIO (ID number,
TITLE varchar2 (30),
ARTIST varchar2(30))

The two statements create the same table, AUDIO, with a numeric ID field, and two
character fields for TITLE and ARTIST. The first is valid on Microsoft SQL Server 7,

Chapter 13: Database Systems

while the second version works on an Oracle8 database. The differences here are to do
with the supported data types. We’ll look at data types later in this chapter when we
look at creating new tables. We'll also look at other places where there are possible
differences as we work through the different basic statements.

Also note, in the examples given above, that certain words are in uppercase. Although
SQL is not case sensitive, by convention certain words are typed in uppercase so that
you can identify different portions of a SQL statement more quickly. Those that are
normally specified in uppercase are leading statement keywords (CREATE, INSERT,
SELECT) and any additional keywords for the statement (WHERE, INTO, FROM, etc.).
All other elements, such as the file names, are specified in title case or lowercase.

SQL Statements

Although it’s difficult to summarize all of the different operations available via SQL

into a number of distinct statements, essentially there are four main SQL statements

that can be executed on a SQL database. They are SELECT, INSERT, UPDATE, and

DELETE. You might also want to use a fifth statement, CREATE, which creates new
objects (tables, indexes) within a database file. We’ll look at all five statements before
moving on to the topic of executing these statements within Perl.

SELECT

When you want to extract information from the database, you use the SELECT statement.
The SELECT statement retrieves a set of rows and columns from the database, returning a
dataset. The basic format of the SELECT statement is

SELECT [ALL|DISTINCT] field [, field, ...]
FROM table

[WHERE condition]

ORDER BY field [ASC|DESC] [, field [ASC|DESC]]

The field is the name (or names) of the fields from the table that you want to select.
Because the SELECT statement allows you to specify the individual fields from the table
that you want to extract, you can avoid many of the problems normally associated with
extracting data from a database. Instead of manually ignoring the fields you don’t want
to access, you can instead only select the fields you want. You can also specify an asterisk
(*) as the field name, and this will select all fields within the table.

The optional ALL prefix tells the SQL engine to select all of the columns from the
table matching the condition, and is equivalent to the asterisk specification just
mentioned. The optional DISTINCT prefix forces the SELECT statement to only return
a list of distinct (unique) rows from the database. This removes any duplicates from the
table column, irrespective of their location in relation to each other. For example, if you
wanted a list of all of the acronyms in our database, you could use the following code.

436 Perl: The Complete Reference

SELECT Acronym from Acronyms
However, the list returned contains a lot of duplicates:

AAMOF
AFAIC
AFAIK
RSN
RTFM
RTFM
RTFM

RTFM
RTFMA

To just get a list of the acronyms, without any duplicates, change the SELECT
query to include the DISTINCT keyword:

SELECT DISTINCT Acronym from Acronyms
This now returns:

AAMOF
AFAIC
AFAIK
RSN
RTFM
RTFMA

The use of the DISTINCT keyword is especially useful in situations where you
want to give a user a list of possible values, but don’t want to use a separate table to
hold the information. Instead, just use DISTINCT to reduce all of the values already
in the table to a list of accepted values.

You can select fields from multiple tables by specifying the table and field names in
the query, separated by a single period. For example, to extract the contact name and
business from the contact and company tables:

SELECT contact.name, company.name FROM contact, company
WHERE contact.company = company.id

Chapter 13: Database Systems

The condition is an expression that refines the selection of rows from the table. If
the WHERE keyword is not specified, then all rows from the table are selected. Most of
the syntax for conditions are identical to those you will find within Perl. See Table 13-9
for a list of valid conditional operators. Note that in all cases in the table, A is the name
of a field from one of the selected tables, and B (or C) are either constants or further
SELECT statements. For example, to select all of the addresses where the city is
London, you might use the condition city = “London”.

Operator Description

A=B A is equal to B.

A>B A is greater than B.

A>=B A is greater than or equal to B.

A<B A is less than B.

A<=B A is less than or equal to B.

A<>B A does not equal B.

A [NOT] BETWEEN B AND C Value of A is (is NOT) between the range
of values specified by B and C.

A [NOT] LIKE B Value of A is (is NOT) like the value of B.

The value of B should be a string specifying
the string (and wildcard characters) to
match against the contents of A.

EXISTS (B) Returns true for every row returned by the
subquery specified by B.

A IS [NOT] NULL Value A is (is NOT) null (empty).

A[NOT]IN (B, C, ...) Value A is (is NOT) in the list of values

specified within the parentheses.

A <operator> {ALL| ANY} (B) Value A is compared to all or any of the
records returned by subquery B. If the ALL
keyword is used, then all the returned
rows must match the operator condition. If
ANY is specified, then only one of the
returned values must match.

Table 13-9. Condition Operators for the SELECT Statement

438

Perl: The Complete Reference

For example, to extract the acronym and expansion from out of the acronyms
database, but only for acronyms that match “RTFM” we could use the query

SELECT Acronym, Expansion from Acronyms
WHERE Acronym = 'RTFM'

You can also combine multiple statements using the AND and OR keywords to
perform logical comparisons with individual conditions:

SELECT Acronym, Expansion from Acronyms
WHERE Acronym = 'RTFM' AND Expansion = 'Read The Factual Manual'

You can also nest logical comparisons using parentheses to group comparisons and
conditions together.

We can also get more complex and perform wildcard searches. Imagine you are looking
for an acronym that contains the word “Fact”; you might use the following query:

SELECT Acronym, Expansion from Acronyms
WHERE Expansion LIKE '$Fact$%'

The percent (%) character is a wildcard, and it matches zero or more characters, and
any character. Think of it as shorthand for the “.*” you would normally use in a regular
expression. Conversely, the underscore (_) matches any one character; thus, we can look

for all three-letter abbreviations using this query:
SELECT Acronym from Acronyms WHERE Acronym LIKE ' !

If you want to include either of the two wildcard characters in your queries, you
can escape the character with the familiar backslash:

SELECT Salespc from Sales WHERE Salespc LIKE ' \$%'

Not all SQL engines support the escaping of the wildcard characters. You can work
out whether the ODBC driver supports escaping and what character to use by using
the following script:

use Win32::0DBC;

Chapter 13: Database Systems

Sdb = new Win32::0DBC ("Acronym") ;

if ($db->GetInfo ($db->SQL_LIKE ESCAPE CLAUSE()) eq 'Y')

{

print "ODBC Driver supports wildcard escapes\n";
S$char = $db->GetInfo($db->SQL SEARCH PATTERN ESCAPE()) ;
print "Escape Character is: $char\n";

SQL accepts single quotes as delimiters to text strings. The single quotes tell SQL to
treat anything between them as text, rather than as a keyword. For most queries within
Perl, it’s best to use the double quotes to specify the query, so that you can use single
quotes within the string;:

$db->Sqgl ("SELECT Acronym from Acronyms WHERE Acronym LIKE ')

However, be careful when using the single quote in text strings where the quote
has its normal apostrophe meaning. The following query would raise an error:

SELECT Acronym, Expansion from Acronyms WHERE Expansion LIKE '$I'm%'

The error would be raised, even if you embedded the query in a string within Perl,
since you are still including three single quotes in the query you are supplying the SQL
engine. The trick is to use the escape character for SQL. Confusingly, the escape
character for most SQL interfaces is the single quote, so you would rewrite the above
query as follows:

SELECT Acronym, Expansion from Acronyms WHERE Expansion LIKE '$I''m%'

Since you can’t always control the query strings that you are supplying to the SQL
engine, you should probably create a simple function to replace single quotes in query
strings to double quotes:

sub SglEscape ($)

{
}

$_[0] =~ s/"/""/g9;

439

440

Perl: The Complete Reference

Now you can use the function inline to the queries you supply to the database:

$db->Sqgl ("SELECT Acronym, Expansion from Acronyms "
"WHERE Expansion LIKE " . SglEscape("%I'm%")) ;

When using the DBI toolkit, the quote method of the database connection object
will do this for you:

$dbh->do ("SELECT Acronym, Expansion from Acronyms "
"WHERE Expansion LIKE " . $dbh->quote("$I'm%"));

The last thing to be aware of is that double quotes can be used to quote identifiers.
For example, imagine you have created a table called “Audio Tapes”. If you tried to
select data from this table using the following query, an error would be raised:

SELECT * FROM Audio Tapes

Instead, you need to quote the table name by using quoted identifiers. SQL accepts
the double quote as a delimiter for quoted identifiers:

SELECT * FROM "Audio Tapes"

Within a Perl statement, you'll need to escape the double quotes by using the
backslash character:

$db->Sgl ("SELECT * FROM \"Audio Tapes\"");

The final part of the SELECT statement is the ORDER BY clause. This allows you
to specify the order in which information will be returned, according to the normal
sorting orders. You can order the entire dataset by one or more fields within the tables
you have selected. The default operation is to sort in ascending order (lowest to highest
number, and A-Z) or you can explicitly request ascending order by using the ASC
keyword. You can also sort in descending order by using the DESC keyword. For
example, to sort our acronyms, we might use:

SELECT Acronym, Expansion FROM Acronyms ORDER BY Acronym

Joins Joins are a critical part of the relational process. A join is where you create a
logical connection between two columns in two different tables. For example, in an

Chapter 13: Database Systems

order processing system, you might have two tables. One contains the list of orders, the
other contains a list of order lines. A join between the two would enable you to obtain
all of the information from a single order.

You specify a logical join using the WHERE clause to the SELECT statement,
specifying an expression that links the two tables together. For example:

SELECT Order.Order ID, Item.Order ID, Item.Item ID, Item.PLU,
Order.Total FROM Order, Item
WHERE Order.Order_ID = Item.Order_ ID

The join can be to another table, or to the same table in the case of nested information,
such as staff and their supervisors. There are other types of joins, such as inner and
outer joins, and left, right, and full outer joins. For more information on the different
types of joins and the results they produce, see SQL from the Ground Up, by M. Pyefinch
(Osborne/McGraw-Hill, 1999).

INSERT
The INSERT statement adds a row of information to a table. An INSERT statement
has the following syntax:

INSERT INTO table
[(colname [, colname] ...)]
VALUES (value [, value] ...)

The table is the name of a table into which the data will be inserted, and colname
and value are the fields and values that you want to insert. The order of the field
names and the data must match, in order for the information to be inserted correctly.
The specification of field names is optional if you want to insert information into all the
columns of the database.

For example, to add a new record to our acronym database, we might use the
following SQL statement:

INSERT INTO Acronyms (Acronym, Expansion)
VALUES ('PDQ', 'Pretty Darn Quick!')

Since we are creating entries in both columns, we can simplify the statement:

INSERT INTO Acronyms VALUES ('PDQ', 'Pretty Darn Quick!')

441

442

Perl: The Complete Reference

UPDATE

The UPDATE statement updates the information for one or more rows in a table. The
syntax for the UPDATE statement is

UPDATE table

SET column=value

[, column=value ...]
[WHERE condition]

The table is the name of the table in the database. The column and value are the
column names and values that you want to assign to those columns. If the WHERE
keyword is included, then the statement will only update those columns that match
condition. The condition uses the same operators and syntax as the SELECT statement.
Note that if the condition matches multiple rows, all of the rows will be updated with
the given information.

For example, to modify the entry for IIRC in our acronyms database:

UPDATE Acronyms SET Expansion='If I Recall Correctly'
WHERE Acronym='IIRC'

Note, of course, that this would update all of the IIRC entries in the table—we
could supply a more specific statement to ensure we update the correct row:

UPDATE Acronyms SET Expansion='If I Recall Correctly'
WHERE Acronym='IIRC' AND Expansion='If I Remember Correctly'

DELETE

The DELETE statement is essentially identical to the SELECT statement, except that
instead of returning a matching list of rows from a table, it deletes the rows from
the database:

DELETE [FROM] table [WHERE condition]

The table is the name of the table that you want to delete rows from, and condition
is the expression to use to find the rows to be deleted. Note that the FROM keyword is
not really optional; some data sources require it, and others do not.

Chapter 13: Database Systems

For example, to delete all of the IIRC entries from the Acronyms table:
DELETE FROM Acronyms WHERE Acronym = 'IIRC'
You can also delete all of the rows in a table by omitting the search condition:

DELETE FROM Acronyms

CREATE

If you are developing a database system, then there may be times when you need to
build your tables pragmatically within Perl. One major benefit of creating databases

in this way is that you can transport an application to another machine and have the
script create the tables it needs to operate. For turnkey solutions, this is invaluable—it
automates the process of installing a new application, right down to the creation of the
storage mechanisms required.

Not all databases support the creation of database tables. Many have some
constraints or limitations on what can be done with a CREATE statement. However,
for those that do allow it, the basic format for a CREATE statement is shown below.
Not all of the options are included here—if you need to use a more complex SQL
statement to create your tables, use a guide, such as SQL from the Ground Up, by M.
Pyefinch (Osborne/McGraw-Hill, 1999).

CREATE TABLE table
(field typel(size)] [NOT NULL] [index]
[, field typel(size)] [NOT NULL] [index], ...1)

The table is the name of the table to be created. The field is the name of the field to
be created in the table, and type and size define the field’s type and width. The NOT
NULL keywords indicate that the field must contain a value; INSERT and UPDATE
statements that do not populate a NOT NULL field will fail.

The valid data types depend on the ODBC driver that you are using, but there are
some generic types that should work on most systems. See Table 13-10 for a list of the
base types that should be translated by most drivers into the local format.

443

444

Perl: The Complete Reference

Data Type Size Specification
Char (x)

Integer N/A

Decimal (xy)

Date N/A

Logical N/A

Description

A simple character field, with
the width determined by the
value of x

A field of whole numbers,
positive or negative

A field of decimal numbers,
where x is the maximum length
in digits for the number, and y is
the maximum number of digits
after the decimal point

A date field (see the “Formatting
Dates” section that follows)

A field that can have only two
values: true or false

Table 13-10. Generic SQL Data Types

For example, here's how to create a table that will hold the time information for a task:

CREATE TABLE Tasktime (TaskID Integer NOT NULL,
TaskName Char (40),

StartDate Date,
CompDate Date,

TotalHours Decimal (4.2),
Completed Logical)

Formatting Dates

Although the SQL language is standardized, the format for storing specific data strings,

such as dates, is not. Different systems record dates in different orders (d/m/y,
m/d/y, y/m/d, etc.) and to different precisions (2- and 4-digit years). To get around
this, the SQL language allows for an escape clause that accepts a standard format that
is translated by the ODBC driver into the database’s native format.

Chapter 13: Database Systems

You use the escape sequence just as you would a quoted text block:
SELECT Date, Event FROM Event WHERE Date > {d '1999-03-26'}

The SQL language supports three such formats: one for dates, one for times, and a
final one for dates and times called the timestamp. The formats for each are as follows:

{d 'yyyy-mm-dd'} # Date
{t 'hh:mm:ss"'} # Time
{ts 'yyyy-mm-dd hh:mm:ss'} # Timestamp

Note that the formats are explicit—you must specify all the digits, using zeros to fill the
gaps where necessary.

445

This page intentionally left blank.

The

Rejoronce
Chapter 4

Interprocess
Communication

Perl: The Complete Reference

communication (IPC). It can take many different forms, from reading or writing
information from or to another process, through to terminating or restarting
processes, all the way to exchanging large volumes of information between two
Or more processes.

There are many different ways of doing this by using internal methods, such as
open, and external methods that make use of the networking techniques you saw
in Chapter 12. Network communication is expensive resource-wise, and is probably
overkill for many solutions that simply require a conduit for exchanging small
pieces of discrete data.

Most of the solutions center around the use of pipes, which, as the name suggests,
provide the necessary conduit for data exchange. Unix users will be familiar with
the use of pipes, and Windows users will probably have used them without realizing.
We’ve also looked at their simplified use once already, back in Chapter 8.

In this chapter, we’ll look at all the different facilities built into Perl for interprocess
communication. This will include process creation, control, and communication to
allow you to interact with other processes. We'll also look at the signal system, supported
under most platforms as a way of signaling a specific state to a process, and then
look at some IPC-specific techniques.

The ability to control or interact with another process is called interprocess

Processes

Processes are the individual programs that are running on your machine. Some of
these are obvious to you, like the applications and utilities that you use. Others

are hidden from view and control different parts of the operating system operation.
On a Unix machine, these include everything from the core operating system and
scheduler right through to the shell you use to run other programs.

Under Windows, the core operating system is hidden, but there are still references
to the underlying applications and background processes used to support different
services. You can view the individual processes using the Task Manager. The same
effect can be seen under Mac OS, although you will be unable to see the background
processes without a special application—the normal About This Computer window
won’t show them.

Note that most of the functions in this section do not work under the Mac OS, but
the actual interpretation under Windows NT and Unix should be more or less identical
because of the common POSIX support on both platforms. The only feature with
processes that does work under Mac OS is the value of the $$ variable, which is in fact
always 1. This makes the use of the $$ variable when creating unique references—such
as for sessions in web programming—untenable.

Chapter 14: Interprocess Communication

Controlling Perl Execution

You already know about the statements and the operators that can help to control the
execution of a Perl program. You also know about die and warn. The die function reports
an error to STDERR and quits the program, while warn just reports an error to STDERR.

However, there are times when you want to exit a program without triggering an
error message to STDERR, or when you want to trigger an installed signal handler (see
the “Signal Handlers” section, later in the chapter). In these instances, the solution is to
use the exit function:

exit 1;

This immediately causes the script to exit, passing a value of 1 back to the caller.
If you do not specify a value, then a value of 0 is returned, which is generally accepted
as indicating a successful completion.

You should really only use exit within the main part of a script, because using it
within a subroutine is bad practice. What you should do is call return, passing a
suitable value back to the caller to deal with. Furthermore, if you want to trap the
execution of a block, use die within eval to trap the error.

Process Information

The process ID of the current script is permanently available within the $$ variable. Since
this value will be different for each execution, you cannot rely on this number to store
persistent information. On the other hand, the process ID can be used as part of a random
identification number if combined with date, time, and even a random number.

If you want to get the process ID of the parent process, you need to use the getppid
function:

print "The parent of $$ is ",getppid, "\n";

This information is useful if you want to modify process groups or send the parent
process a signal. Under Unix, your parent process ID should be greater than 1; a parent
process ID of 1 indicates that the parent has died and that you’ve been adopted by

the init process.

Process Groups

A collection of processes is logically grouped into process groups. For example, all the
programs run within a shell belong to the same process group, providing they don’t

450

Perl: The Complete Reference

elect to change the process group. You can obtain the process group of a process using
the getpgrp function:

print "Group of current ($$): ", getpgrp(0),
", parent (",getppid,"):", getpgrp (getppid),"\n";

If you do not specify a process, or use a process ID of 0, it returns the process group of
the current process.

You can “daemonize” a process—that is, make it act like a typical Unix daemon
process that runs in the background without a controlling terminal—by calling the
setpgrp function. A daemon process is one that is running in the background, and by
using setpgrp, you can emulate a Unix command line like this:

S script.pl &

To do this, you need to change the process group for the current process to 0. This
needs to be done after forking a new process to ensure that you are not automatically a
member of an existing process group:

my $childpid = fork;
exit if Schildpid;
setpgrp (0, $3);

Because you are starting a daemon process, it’s also a good idea to ensure that
the new process you are creating is safe and well behaved. For example, you should
consider redirecting STDIN, STDOUT, and STDERR either to /dev/null or to an
external log file. You'll see some more examples of this later in this chapter when we
look at the fork function in more detail.

Process Priority

You can obtain and set the priority of a given process, process group, or user, using the
getpriority and setpriority functions:

getpriority WHICH, WHO
setpriority WHICH, WHO, PRIORITY

The value of WHICH should be one of PRIO_PROCESS for an individual process,
PRIO_PGREP for a process group, and PRIO_USER for an individual user. The WHO
value should then be the corresponding process ID, process group ID, or user ID (all
numerical) that you want to obtain or set the priority for. The current priority will be
returned by the getpriority function, and you can set it by supplying a new priority
value in PRIORITY.

Chapter 14: Interprocess Communication

Note that the priorities are arbitrary values, and different values will have different
meanings on different operating systems. For most instances, however, the priority is
in reverse order. The higher the priority number, the lower the actual priority of the
process. All users can decrease the priority of a process (just as they can with nice), but
only the superuser can increase the priority (by setting a lower value).

| Under Windows, the getpriority and setpriority functions don’t work. If you want to
control the priority of a Windows process, then use the Win32::Process module to create
the process. This supports two methods on the newly created process object called
GetPriorityClass and SetPriorityClass that allow you to control the process’s priority.

___| signals

Signals do exactly what the name suggests. They provide a method for signaling a
particular process. Since a single signal is not very practical, there are a whole range of
signals that indicate different events to the process. Some signals are generated by the
operating system and signify some problem with the current execution process. Other
signals can be user generated. Almost all signals can be trapped, both by other
processes and by Perl scripts. The list of POSIX signals is shown in Table 14-1.

POSIX Name Perl Name Description

SIGABRT ABRT Abnormal termination

SIGALRM ALRM The timer set by the alarm function has expired

SIGFPE FPE Arithmetic exceptions; for example, divide
overflow or divide by zero

SIGHUP HUP Hang-up detected on the controlling terminal or
death of a controlling process

SIGILL ILL Illegal instruction indicating a program error

SIGINT INT Interrupt signal (special character from the
keyboard or signal from another application)

SIGKILL KILL Termination signal; cannot be caught or ignored

SIGPIPE PIPE Attempt to write to a pipe with no application

reading from it

Table 14-1. POSIX Signals

451

452 Perl: The Complete Reference

POSIX Name Perl Name Description

SIGQUIT QUIT Quit signal (special character from the keyboard or
signal from another application)

SIGSEGV SEGV Attempt to access an invalid memory address

SIGTERM TERM Termination signal (from another application or OS)

SIGUSR1 USR1 Application-defined (user-defined) signal

SIGUSR2 USR2 Application-defined (user-defined) signal

SIGCHLD CHLD A child process terminated or stopped

SIGCONT CONT Continue the process if currently stopped

SIGSTOP STOP Stop signal; stops the specified process

SIGTSTP TSTP Stop signal from special character from keyboard

SIGTTIN TTIN A read was attempted from the controlling terminal
by a background process

SIGTTOU TTOU A write was attempted to the controlling terminal
by a background process

Table 14-1. POSIX Signals (continued)

Different Perl implementations will support a different range of signals. On most
Unix systems, the list will be longer than that shown in Table 14-1 to cater to the
OS-specific entries supporting features such as threads and resource limits. Under
Windows NT, there is a subset of the full POSIX list, which includes most of the POSIX
signals. Under the Mac OS implementation, there is a very short subset, since the Mac
OS does not treat or handle processes in the same way as Unix or Windows. Mac OS X
however works the same as a Unix implementation. For more information on the list of
signals supported under your current operating system, use this simple script:

foreach $signal (sort keys %SIG)

{
}

print "Ssignal\n";

Chapter 14: Interprocess Communication 453

Signal Handlers

If you have used signal-handling systems within C before, then you will find the
signal-handling abilities of Perl something of a shock. Perl provides an incredibly
simple interface to signal handling using a single %SIG hash. The individual keys of
the %SIG hash are the signal names (as seen in the second column of Table 14-1), and
the corresponding value indicates the operation that should be performed when that
signal is received by the script. For example,

$SIG{INT} = { print "Got SIGINT" };

This example sets up a signal handler to an anonymous subroutine, which will print a
message when an interrupt signal is received. This is a fairly impractical example, as
we don’t do anything with the signal once we’ve caught it.

Usually, you'd create a special signal-handling function:

sub sig int

{
my $signal = shift;
print "Got the signal $signal\n";
$S1G{$signal} = \&sig int;

1

$SIG{INT} = \&sig int;

This example has a number of advantages. First of all, the signal handler is now a
separate function, which means you can use the same handler for a number of signals.
Furthermore, it ensures that the signal is reset to the current signal handler after it has
been received, which guarantees that the handler will always be in place. Also note
from this example that the first argument given to a signal handler is the name of the
signal received.

It's important to remember that you should be passing a reference to the desired
signal-handler function—not simply a bare word, which could be misinterpreted, or
the return value from a function call itself. The following are bad examples that you
should try to avoid:

$SIG{INT} = sig int;
$SIG{INT}

sig int () ;

Both could cause problems. The bare word doesn’t guarantee that the function will be
called correctly. The function call is positively lethal—the value of the signal handler is
now the value returned by the sig_int function.

454 Perl: The Complete Reference

Care should be taken with signal handlers. Since a signal can be received at any
time, it’s possible to receive a signal while another signal handler is executing. It’s
unusual, for example, to do this:

sub sig_int

{
my $signal = shift;
print "Got the signal $signal\n";
do_some_work () ;
$S1G{$signal} = \&sig int;
}

$SIG{INT} = \&sig int;

The obvious solution is to keep the contents of the signal handler as short as possible.
Alternatively, you can set the condition of a signal (or signals) to IGNORE during the
signal handler. This setting will cause Perl to ignore the specified signal until a new
signal handler has been installed, thereby allowing you to work uninterrupted (if you’'ll
excuse the pun).

sub sig int

{
my $signal = shift;
$S1G{$signal} = IGNORE;
do_some_work () ;
$s1G{$signal} = \&sig_int;
}

$SIG{INT} = \&sig int;

An alternative solution is to use Perl’s local keyword to inherit the signal hash from
the enclosing block. This will allow you to set an alternative handler, or IGNORE
status on signals within the current handler, while retaining the handler information
for the parent block, as in

sub sig_int
{
my $signal = shift;
local $SIG{$signal} = 'IGNORE';
do_some_work () ;
$51G{$signal} = \&sig_int;

Chapter 14: Interprocess Communication 455

}

$SIG{INT} = \&sig int;

To reset a signal to its original state (before you started installing your own handlers),
you can set the signal value to DEFAULT:

$SIG{INT} = 'DEFAULT';

A common use for the alarm signal (ALRM) is as a time-out system for different
operations. This can be used for many things, such as setting file options, file locking,
networking communication, or, as in the example below, for accepting input and
setting a default value:

print "Your name is? :\n";
eval
{
local $SIG{ALRM} = sub { die "Timeout"; };
alarm 10;
Sname = <STDIN>;
chomp S$name;
alarm O;
}i
if ($@ and $@ =~ /Timeout/) { $name = 'Anonymous' }
print "Hello $name!\n";

The action you want to place a time-out on is put within the eval block, and the
signal handler calls die when the alarm time has been exceeded. This causes the eval
block to drop out, and you check the return status with the $@ variable, setting a
default name if the user hasn’t supplied one.

| Not all signals can be trapped or ignored. You'll need to check your operating system for
the exact list. Typical signals that cannot be trapped include KILL and STOP.

The _ WARN__ and _ DIE__ Signals

The special signals _ WARN__and _ DIE__ can be used to execute statements when
warn and die are called. This allows you greater control over exactly what happens
when these two functions are called. Normally, warn reports the supplied error to
STDERR and then continues, while a call to die reports the error and then calls exit().
This automatic operation causes a problem if you want to close files safely or even to
report the problem to the user directly and still use the “standard” error-trapping tools.

456

Perl: The Complete Reference

You can, of course, use any of the tricks we’ve seen so far—both the eval and
exception signals will work in most cases, but they still require micromanagement of
your scripts in order for the processes to work effectively. By using these two signals
instead, you can trap errors dynamically and even make decisions about how to report
the error without making major modifications to your code.

Using $SIG{__WARN__}

The warn handler is called whenever the warn function is called. The handler is passed
any arguments passed to the warn function, but the warn function does not actually
operate—the handler acts as a complete replacement for the operation normally
handled by the function. For example,

sub warn_handler

{
}

print STDERR "Woah - trapped a warning!\n\t",@ ;

$SIG{_ WARN } = \&warn handler;

warn "Something went awry\n";
warn "Something went awry again\n";

Running this produces the following output:

Woah - trapped a warning!
Something went awry

Woah - trapped a warning!
Something went awry again

You can see that the message is printed out only once—in this case, from the embedded
call to print in the signal handler.

The _ WARN__ handler is best employed when you want to provide an alternative
way of reporting or recording an error. You'll find examples elsewhere in this chapter
for reporting information directly to logs; all you need to do is install a handler at the
top of your script that traps and handles the warning in an alternative fashion. For
example, here’s a handler that uses a function called writelog to report the error to a
file, instead of to the screen:

sub warn handler

{

writelog("warning: (%s)",join(', ',@));

Chapter 14: Interprocess Communication 457

}

$SIG{ WARN } = \&warn handler;

We don’t need to make any further modifications to the code (aside from adding
the writelog function definition). From now on, all calls to warn will trigger this
handler and force the output to be written to a file instead of STDERR. Similar tricks
allow us to report warnings through Tk:

sub warn_handler

{

dialog(undef, "Warning", join(', ',@),

'warning', 1, "OK") ;

Using S$SIG{__DIE_ }

Unlike _ WARN__, the _ DIE__handler merely acts as an interloper in the
process—the handler is called, but the die continues as normal, both printing out the
error and calling exit(). Consider the following script:

sub die handler

{

print "Woah - trapped a call die\nTrying to exit
gracefully...\n";

}

$s16{_ DIE } = \&die handler;
die "Something went completely wrong\n";

Note that the handler will be passed the text as formatted by die—this means we can
adapt the text and then call die again to actually output the updated version of the text.
For example, the line

die "Just couldn't do it anymore!";
generates

Just couldn't do it anymore! at sigdiemod.pl line 7.

458 Perl: The Complete Reference

but add a handler:

sub die_ handler
{
my (Serror) = @_;
die "Trapped an error: Serror";

}

$s16{_ DIE } = \&die handler;

and the error becomes:

Trapped an error: Just couldn't do it anymore! at sigdiemod.pl line 9.

The die_handler function will be called only once, as the signal handler is reset after
the first call.

The __DIE__ handler is best used when you want to gracefully exit from a
script—perhaps providing a simple prompt to the user and safely closing files or
network connections before finally allowing the script to die. It’s true that you could
use an END block for this process, but doing so means that the closing statements are
executed after die has actually been called. It also relies on the functions, filehandles,
and other artifacts being accessible to the END block at the time of termination.

| Currently the __DIE__ (and _ WARN__) handler is called even within an eval block.
This can cause problems, so consider using the $AS variable to check the status of the
interpreter at the point the handler is called. The $AS variable will be true if the
statements are being called from within an eval string or block.

Sending Signals

You can send signals to other processes using the kill function, which actually just calls
the Unix kill() function. For example, to call the SIGINT handler within the function,
you could use

kill ("INT', $3);

You can use short names or numbers as the first argument to the function, and the
second argument should be the process ID or process group to which you are sending
the signal. To send the signal to all of the processes in the specified signal group, prefix
the process ID with a minus sign:

kill INT => -8$;

Chapter 14: Interprocess Communication 459

Note here that the hash notation has also been used to specify the signal. Since
the => operator is just an alias for the comma, this works perfectly. It also has the
advantage of automatically quoting the signal number to send, which makes more
sense if you think about the process logically. In the preceding example, you are
sending the signal INT to the process group -$$.

By sending the signal number 0 to a process, you can determine whether it is
currently running, or whether it’s possible to send a valid signal. Since you can only
send a signal to processes that you own, this is a good way to test whether a specific
process is still running and whether it is still yours. It is particularly useful when
forking and subsequently monitoring a child process.

For example, the following code checks that the schedule is running on a Solaris
(and indeed most other Unix flavors) machine:

unless (kill 0 => 0)

{
}

die "Panic: Scheduler not running!\n";

Pipes

Pipes are a one-way communication channel that can be used to transfer information
between processes. Because they are one-way, they can only be used to communicate
information to or from a process, although there are ways to get around this.

The most typical use of pipes is within the open function when you want to read
from and write to a particular command, instead of a typical file. This class of pipe is
called an anonymous pipe. You can also have named pipes (within Unix only) that
provide a method for two unconnected processes to communicate with each other.

There are other methods available using pipes, but these are only practical when
used with child processes, so we’ll cover them at a later stage. For now, let’s
concentrate on the basics of opening, reading from, and writing to pipes.

Anonymous Pipes

An anonymous pipe is one implied through the use of the pipe symbol at the beginning
or end of an open statement. For example, to read the output from gzcat, which
decompresses a Gzipped file to the standard input:

open (COMPRESSED, "gzcat file.gz|") or die "Can't fork: $!";
while (<COMPRESSED>)

{

print;

460

Perl: The Complete Reference

}

close (COMPRESSED) or die "Error in gzcat: $!";

Alternatively, to write information and have it immediately compressed, you can pass
input directly to the gzip command:

open (COMPRESS, "|gzip - >file.gz") or die "Can't fork: $!";
print COMPRESS "Compressed Data';
close (COMPRESS) or die "Gzip didn't work: $!";

When using pipes, you must check the return status of both open and close. This is
because each function returns an error from a different element of the piped command.
The open function forks a new process and executes the specified command. The
return value of this operation trapped by open is the return value of the fork function.
The new process is executed within a completely separate process, and there is no
way for open to obtain that error. This effectively means that the open will return true
if the new process could be forked, irrespective of the status of the command you
are executing. The close function, on the other hand, picks up any errors generated by
the executed process because it monitors the return value received from the child
process via wait (see the “Creating Child Processes” section, later in this chapter).

Therefore, in the first example, you could actually read nothing from the command,
and without checking the return status of close, you might assume that the command
failed to return any valid data.

In the second example, where you are writing to a piped command, you need to
be more careful. There is no way of determining the status of the opened command
without immediately calling close, which rather defeats the purpose. Instead, you can
use a signal handler on the PIPE signal. The process will receive a PIPE signal from
the operating system if the piped command fails.

Two-Way Communication

As convenient as it may seem, you can’t do the following:
open (MORE, "|more file|");

This is because a pipe is unidirectional—it either reads from or writes to a piped
command. Although in theory this should work, it can result in a deadlocked process
where neither the parent nor piped command know whether they should be reading
from or writing to the MORE filehandle.

Chapter 14: Interprocess Communication 461

The solution is to use the open2 function that comes as part of the IPC::Open2
module, which is part of the standard distribution:

use FileHandle;

use IPC: :0Open2;

$pid = open2 (*READ, *WRITE, "more file");
WRITE->autoflush() ;

You can now communicate in both directions with the more command, reading
from it with the READ filehandle and writing to it with the WRITE filehandle. This
will receive data from the standard output of the piped command and write to the
standard input of the piped command.

There is a danger with this system, however, in that it assumes the information
is always available from the piped command and that it is always ready to accept
information. But accesses either way will block until the piped command is ready to
accept or to reply with information. This is due to the buffering supported by the
standard STDIO functions. There isn’t a complete solution to this if you are using
off-the-shelf commands; if you are using your own programs, you’ll have control
over the buffering, and it shouldn’t be a problem.

The underlying functionality of the open2 function is made possible using the pipe
function, which creates a pair of connected pipes, one for reading and one for writing:

pipe READHANDLE, WRITEHANDLE

We'll look at an example of this when we look at creating new child processes
with fork.

Named Pipes

A named pipe is a special type of file available under Unix. It resides, like any file, in the
file system but provides two-way communication between two otherwise unrelated
processes. This system has been in use for some time within Unix as a way of accepting
print jobs. A specific printer interface creates and monitors the file while users send
data to the named pipe. The printer interface accepts the data, spools the accepted file
to disk, and then spawns a new process to send it out to the printer.

The named pipe is treated as a FIFO (First In, First Out) and is sometimes simply called
a FIFO. You create a named pipe using the mknod or mkfifo command, which in turn
creates a suitably configured file on the file system. The following example,

system('mknod', 'myfifo', 'p');

462

Perl: The Complete Reference

is identical to this one:

system('mkfifo', 'myfifo');

Once created, you can read from or write to the file just like any normal file, except
that both instances will block until there is a suitable process on the other end. For

example, here is a simple script (the “server”) that accepts input from a FIFO and
writes it into a permanent log file:

my $fifo = 'logfifo';
my $logfile = 'logfile.txt';

unless (-p $fifo)

{
unlink $fifo;
if (system('mkfifo', 'logfifo!'))
{
die "Can't create FIFO: $!";
}
}

open (FIFO, "<$fifo") or die "Can't open fifo for reading: $!";
open (LOG, ">>$logfile") or die "Can't append to $logfile: $!I";
while (<FIFO>)

{

my $date = localtime (time) ;
print LOG "sdate: $_ "\n;

close (FIFO) or die "Can't close fifo: s!";
close (LOG) or die "Can't close log: $!";

Here’s the corresponding log reporter (the “client”), which takes input from the
command line and writes it to the FIFO:

my $fifo = 'logfifo';
die "No data to log" unless @ARGV;

open (FIFO, ">$fifo") or die "Can't open fifo for writing: $!";

Chapter 14: Interprocess Communication 463

print FIFO @ARGV;
close (FIFO) or die "Can't close fifo: s!";

If you run the “server” (the first script above) and then call the “client,” you should
be able to add an entry to the log file. Note, though, that the server will quit once it has
accepted one piece of information, because the client closes the pipe (and therefore
sends eof to the server) when it exits. If you want a more persistent server, call the
main loop within a forked subprocess. For more information, see the discussion of fork
later in the “Creating Child Processes” section.

Named Pipes Under Windows

The Windows named pipe system works slightly differently to that under Unix. For
a start, we don’t have access to the mkfifo command, so there’s no immediately
apparent way to create a named pipe in the first place. Instead, Windows supports
named pipes through the Win32::Pipe module.

The Win32::Pipe module provides the same pipe communication functionality
using Windows pipes as the built-in functions and the mknod or mkfifo commands
do to normal Unix named pipes. One of the biggest differences between Unix and
Windows named pipes is that Windows pipes are network compliant. You can use
named pipes on Win32 systems to communicate across a network by only knowing
the UNC of the pipe—we don’t need to use TCP/IP sockets or know the server’s IP
address or name to communicate. Better still, we don’t need to implement any type of
communications protocol to enable safe communication across the network—the named
pipe API handles that for us.

The Windows implementation also works slightly differently from the point of
view of handling the named pipe. The server creates the named pipe using the API,
which is supported by Perl using the Win32::Pipe module. Once created, the server
uses the new pipe object to send and receive information. Clients can connect to the
named pipe using either the normal open function or the Win32::Pipe module.

Creating Named Pipes
When you create a named pipe, you need to use the new method to create a suitable
Win32::Pipe object:

Spipe = new Win32::Pipe (NAME) ;

The NAME should be the name of the pipe that you want to create. The name you give
here can be a short name; it does not have to be fully qualified (see the “Pipe-Naming
Conventions” sidebar for more information).

464

Perl: The Complete Reference

Pipe-Naming Conventions

When you are creating a new pipe, you give it a simple name. For example, you
can create a pipe called “Status”. Any clients wishing to access the pipe must,
however, use the full UNC name of the pipe. Pipes exist within a simple structure
that includes the server name and the special “pipe” shared resource. For example,
on a machine called “Insentient”, our pipe would be available for use from a

client via the name “\\INSENTIENT \ pipe\Status”.

If you do not know the name of the server, then you should be able to use
“\\.\pipe\Status”, where the single dot refers to the current machine.

You can also nest pipes in their own structure. For example, you could have
two pipes: one in “\\INSENTIENT \ pipe\Status\Memory” and the other in
“\\INSENTIENT\ pipe\Status\Disk”.

The structure is not an actual directory, nor is it stored on the file system—
it’s just another shared resource made available by the Windows operating system
that is accessible using the UNC system.

There are some limitations to creating and using pipes:

B There is a limit of 256 client/server connections to each named pipe. This
means you can have one server and 255 client machines talking to it through
a single pipe at any one time.

B There is no limit (aside from the disk and memory) resources of the machine
to the number of named pipes that you can create.

B The default buffer size is 512 bytes, and you can change this with the
ResizeBuffer method.

B All named pipes created using this module are streams, rather than being
message based (see note).

| Dave Roth, the original author of this module, has updated the module, but the updated
version is not included as standard in the ActivePerl 615 distribution, though it should

have been rolled into the 616 distribution. The new version does allow for message-based
communication, where client and server communicate using fixed-size messages, with
the buffer size determining the message size.

Opening Named Pipes

The easiest way to open an existing pipe is to use the open function:

open (DATA, NAME) ;

Chapter 14: Interprocess Communication 465

NAME is the UNC of the pipe to open. For example:
open (DATA, "\\\\INSENTIENT\\pipe\\MCStatus") ;

Alternatively, and in my experience more reliably, you can use the Win32::Pipe
module to open an existing pipe by supplying the UNC name:

Spipe = new Win32::Pipe ("\\\\INSENTIENT\\pipe\\MCStatus") ;

Note, in both cases, the use of double backslashes—these are required to ensure that
the first backslash is not parsed by the Perl interpreter.

Accepting Connections

Once the pipe has been created, you need to tell the server to wait for a connection
from a client. The Connect method blocks the current process and returns only when
a new connection from a client has been received.

$pipe->Connect () ;

Once connected, you can start to send or receive information through the pipe using
the Read and Write methods.

Note that you do not need to call this method from a client—the new method
implies a connection when accessing an existing pipe.

Reading and Writing Pipes
If you have opened the pipe using open, then you can continue to use the standard
print and <FILEHANDLE> formats to write and read information to and from the
filehandle pointing to the pipe.

If you have used the module to open a pipe, or to create one when developing a
server, you need to use the Read and Write methods. The Read method returns the
information read from the pipe, or undef if no information could be read:

Spipe->Read () ;

Note that you will need to call Read multiple times until all the information within the
pipe’s buffer has been read. When the method returns undef, it indicates the end of the
data stream from the pipe.

To write to a pipe, you need to use the Write method. This writes the supplied
string to the pipe.

Spipe->Write (EXPR) ;

466

Perl: The Complete Reference

The method returns true if the operation succeeded, or undef if the operation
failed—usually because the other end of the pipe (client or server) disconnected before
the information could be written. Note that you write information to a buffer when
using the Write method and it’s up to the server to wait long enough to read all the
information back.

The Pipe Buffer

The information written to and read from the pipe is held in a buffer. The default buffer
size is 512 bytes. You can verify the current buffer size using the BufferSize method.

Spipe->BufferSize ()

This returns the current size, or undef if the pipe is invalid.
To change the buffer size, use the ResizeBuffer method. For most situations, you
shouldn’t need to change the buffer size.

Spipe->ResizeBuffer (SIZE)

This sets the buffer size to SIZE, specified in bytes.

Disconnecting and Closing Pipes

Once the server end of a pipe has finished using the open pipe connection to the client,
it should call the Disconnect method. This is the logical opposite of the Connect
method. You should only use this method on the server of a connection—although it’s
valid to call it from a client script, it has no effect because clients do not require the
Connect method.

Spipe->Disconnect () ;

To actually close a pipe because you have finished using it, you should use the
Close method. From a client, this destroys the local pipe object and closes the connection.
From a server, the Close method destroys the pipe object and also destroys the pipe
itself. Further client connections to the pipe will raise an error.

Spipe->Close() ;

Getting Pipe Errors
You can get the last error message raised by the pipe system for a specific pipe by
using the Error method.

Spipe->Error () ;

Chapter 14: Interprocess Communication 467

When used on a pipe object, it returns the error code of the last operation. An
error code of 0 indicates a success. When used directly from the module, that is
Win32::Pipe::Error(), the function returns a list containing the error code and associated
error string for the last operation, irrespective of the pipe on which it occurred.

In general, you should probably use the $ME variable or the Win32::GetLastError
functions to obtain an error from a function. For example,

$pipe = new Win32::Pipe('MCStatus') or die "Creating pipe: $*E ($!)";

Safe Pipes

You might remember that Chapter 8 briefly discusses the different methods you can
use to open pipes with the open command. Two of these options are —| and |-, which
imply a fork and pipe, providing an alternative method for calling external
programs. For example:

open(GZDATA,"—|") or exec 'gzcat', 'file.gz';

This example forks a new process and immediately executes gzcat, with its standard
output redirected to the GZDATA filehandle. The method is simple to remember. If
you open a pipe to minus, you can write to the filehandle, and the child process will
receive the information in its STDIN. Opening a pipe from minus enables you to read
information that the child sends to its STDOUT from the opened filehandle.

This can be useful in situations where you want to execute a piped command when
running as a setuid script. More useful in general, though, is the fact that you can use
this in combination with exec to ensure that the current shell does not parse the command
you are trying to run. Here’s a more obvious version of the previous example that also
takes care of the setuid permission status:

$child = open(GZCAT, "-|");
if ($pid)
{

while (<GZCAT>)

{
}

close (<GZCAT>) ;

print $_;

1

else

{
(SEUID, SEGID) = (SUID, S$GID);
exec 'gzcat', 'file.gz';

468

Perl: The Complete Reference

Here, the exec’d program will be sending its output (a decompressed version
of file.gz) to the standard output, which has in turn been piped through the GZCAT
filehandle in the parent. In essence, this is no different from a standard piped open,
except that you guarantee that the shell doesn’t mess with the arguments you supply
to the function.

___ | Executing Additional Processes

There are times when you want to run an external program but are not interested in
the specifics of the output information, or if you are interested, you do not expect vast
amounts of data that needs to be processed. In these situations, a number of avenues
are open to you. It’s also possible that you want to create your own subprocess, purely
for your own use. You've already seen some examples of this throughout this book.
We'll look at both techniques in this section.

Running Other Programs

To run an external command, you can use the system function:
system LIST

This forks a new process and then executes the command defined in the first argument
of LIST (using exec), passing the command any additional arguments specified in LIST.
Execution of the script blocks until the specified program completes.

The actual effect of system depends on the number of arguments. If there is more
than one argument in LIST, the underlying function called is execvp(). This bypasses
the current shell and executes the program directly. This can be used when you do not
want the shell to make any modifications to the arguments you are passing. If there is
only one argument, it is checked for shell metacharacters. If none are found, the argument
is split into individual words and passed to execvp() as usual. If any metacharacters
are found, the argument is passed directly to /bin/sh -c (or the current operating
system equivalent) for parsing and execution.

Note that any output produced by the command you are executing will be displayed
as usual to the standard output and error, unless you redirect it accordingly (although
this implies metacharacters). If you want to capture the output, use the qx// operator or
a piped open. For example:

system ("rm","-£f", "myfile.txt");

The return value is composed of the return status of the wait function used on the
forked process and the exit value of the command itself. To get the exit value of the
command you called, divide the value returned by system by 256.

Chapter 14: Interprocess Communication 469

You can also use this function to run a command in the background, providing
you are not dependent on the command’s completion before continuing;:

system("emacs &") ;

The preceding example works on Unix, but other operating systems may use
different methods.

The system function has one other trick. It can be used to let a command
masquerade as a login shell or to otherwise hide the process’s name. You do this
by using a slightly modified version of the command:

system PROGRAM LIST

The first argument is an indirect object and should refer to the actual program you want
to run. The entries in LIST then become the values of the called program’s @ARGV
array. Thus, the first argument becomes the masquerading name, with remaining
arguments being passed to the command as usual. This has the added benefit that LIST
is now always treated as a list, even if it contains only one argument. For example,

to execute a login shell:

system {'/bin/sh'} '-sh’;

A more convenient method for executing a process, especially if you want to
capture the output, is to use the qx// quoting operator:

my Shostname = gx/hostname/;

This is probably better known as the backticks operator, since you can also rewrite this as

my Shostname = “hostname™;

The two are completely synonymous. It’s a question of personal taste which one
you choose to use. Backticks will be more familiar to shell users, since the same
characters are used. The string you place into the ** or qx// is first interpolated, just like
an ordinary double-quoted string. Note, however, that you must use the backslash
operator to escape characters, such as $and @, that would otherwise be interpreted by
Perl. The command is always executed via a shell, and the value returned by the
operator is the output of the command you called.

Also note that like other quoted operators, you can choose alternative delimiter
characters. For example, to call sed from Perl:

gx (sed -e s/foo/bar/g <s$file);

470

Perl: The Complete Reference

Note as well, in this example, that $file will be parsed by Perl, not by the shell.

In the previous examples, for instance, you assigned a variable $hostname to the
output of the hostname command. If the command is called in a scalar context, then
the entire output is placed into a single string. If called in a list context, the output is
split line by line, with each line being placed into an individual element of the list.
The list is split using the value of $/, so you can parse the output automatically by
changing the value of $/.

The return value of the command you called is placed in the special $? variable directly.
You do not need to parse the contents in any way to determine the true exit value.

The function used to support the qx// operator is readpipe, which you can also
call directly:

readpipe EXPR

Replacing the Current Script

You can replace the currently executing script with another command using the
exec function. This works exactly the way the system command works, except that
it never returns. The command you specify will completely replace the currently
executing script. No END blocks are executed, and any active objects will not have
their DESTROY methods called. You need to ensure, therefore, that the current
script is ready to be replaced. It will be, and should be treated as, the last statement
in your script.

exec LIST

All the constructs noted for system apply here, including the argument-list handling.
If the call fails for any reason, then exec returns false. This only applies when the
command does not exist and the execution was direct, rather than via a shell. Because
the function never returns, Perl will warn you (if you have warnings switched on)
if the statement following exec is something other than die, warn, or exit.

Note that the masquerading system also works:

exec {'/bin/sh'} '-sh';

Creating Child Processes

It is common practice for servers and other processes to create “children.” These
subprocesses can be controlled from the parent (see the “Processes” section at the start
of this chapter). You do this by using fork, which calls the fork() system call. fork
creates a new process that is identical in nearly all respects to the parent process. The
only difference is that the subprocess has a new process ID. Open filehandles and

Chapter 14: Interprocess Communication

their buffers (flushed or otherwise) are inherited by the new process, but signal handlers
and alarms, if set, are not:

fork

The function returns the child process ID to the parent and 0 to the child process. The
undef value is returned if the fork operation fails.

Use of the fork function needs some careful consideration within the Perl script.
The execution contents of the new process are part of the current script; you do not call
an external script or function to initiate the new process (you are not creating a new
thread—see Chapter 15 for that). For example, you can see from the comments in the
following code where the boundaries of the child and parent lie:

#Parent Process
print "Starting the parent\n";

unless (Spid = fork)

{
#Start of Child Process
sleep 2;
for (1..10)
{
print "Child, Count $ \n";
sleep 1;
}
exit 0;
}

#End of Child

#Continuation of Parent
for (1..5)

print "Parent, Count $ \n";
sleep 2;

}
waitpid($pid, 0) ;

#End of Parent

471

472 Perl: The Complete Reference

As soon as the fork function returns, the child starts execution, running the script
elements in the following block. You can do anything within this block. All the
functions, modules, and variables are inherited by the child. However, you cannot use
an inherited variable to share information with the parent. We’ll cover the method
for that shortly.

Also note that execution of the parent continues as soon as the fork function
returns, so you get two simultaneously executing processes. If you run the preceding
script, you should get output similar to this:

Starting the parent
Parent, Count 1
Child, Count 1
Parent, Count 2
Child, Count 2
Child, Count 3
Parent, Count 3
Child, Count 4
Child, Count 5
Parent, Count 4
Child, Count 6
Child, Count 7
Parent, Count 5
Child, Count 8
Child, Count 9
Child, Count 10

You can therefore use fork as a quasi-multithreading solution. Many HTTP, FIP,
and other servers use this technique to handle more than one request from a client at
the same time (see the simple web server example in Chapter 12). Each time a client
connects to the server, it spawns a new process solely for servicing the requests of the
client. The server immediately goes back to accepting new requests from new clients,
spawning additional processes as it goes.

Open filehandles are inherited, so had you redirected STDOUT to a different
tile, the child would also have written to this file automatically. This can be used
for parent-child communication, and we’ll look at specific examples of this in the
“Communicating with Children” section, later in the chapter.

Support for fork Under Windows

As a rule, Windows does not support fork() at an operating system level. Historically, the
decision was made during development of the Win32 series (Windows 9x/NT /2000)

to instead support threads. Rather than duplicating the current process, which is a
relatively time-consuming task, you just create a new thread through which to execute
the function that you want to run simultaneously.

Chapter 14: Interprocess Communication 473

However, despite this lack of support, the need for a fork-like function under
Windows was seen as a major part of the cross-platform compatibility puzzle. To that
end, a fork function has been developed which works under the Windows platform.
Support is currently fairly limited, and some of the more useful tricks of the fork
system are not implemented, but the core purpose of the function—to duplicate the
currently executing interpreter—does work. This means that it's now possible to do
most operations that rely on the fork function within ActivePerl.

Rather than creating a child process in the strict sense, the Windows fork function
creates a pseudo-process. The pseudo-process is actually a duplication of the current
interpreter created within a new thread of the main interpreter. This means that using
fork does not create a new process—the new interpreter will not appear within the
process list. This also means that killing the “parent” kills the parent and all its “children,”
since the children are just additional threads within the parent.

The Windows fork function returns the pseudo-process ID to the parent and 0 to
the child process, just like the real fork function. The pseudo-process ID is separate
from the real process ID given to genuine additional processes. The undef value is
returned if the fork operation fails.

| Although the Windows fork function makes use of the threading system built into
Windows to create the processes, you don’t actually have access to the threads within
Perl. If you want to use threads instead of fork, see Chapter 15.

ActivePerl fork Limitations There are some limitations and considerations that
you should keep in mind when using the fork function under ActivePerl—all because
of the way the system works. A brief list of these issues is given here:

B Open filehandles are inherited, so had you redirected STDOUT to a different
file, the child would also have written to this file automatically. This can be
used for parent-child communication, and we’ll look at specific examples of this
in the “Communicating with Children” section, later in the chapter. Note,
however, that unlike Unix fork, any shared filehandles also share their position,
as reported by seek. This means that changing the position within a parent
will also change the position within the child. You should separately open the
file in the child if you want to maintain separate file pointers.

B The $$ and $SPROCESS_ID variables in the pseudo-process are given a unique
process ID. This is separate from the main process ID list.

B All pseudo-processes inherit the environment (%ENV) from the parent and
maintain their own copy. Changes to the pseudo-process environment do not
affect the parent.

All pseudo-processes have their own current directory.

B The wait and waitpid functions accept pseudo-process IDs and operate normally.

474

Perl: The Complete Reference

B The kill function can be used to kill a pseudo-process if it has been supplied with
the pseudo-process’s ID. However, the function should be used with caution, as
killed pseudo-processes may not clean up their environment before dying.

B Using exec within a forked process actually calls the program in a new external
process. This then returns the program’s exit code to the pseudo-process, which
then returns the code to the parent. This has two effects. First, the process ID
returned by fork will not match that of the exec’d process. Secondly, the —| and

| - formats to the open command do not work.

Since the operation of fork is likely to change before this book goes to print, you
should check the details on the fork implementation at the ActiveState web site. See
Appendix F for details.

Waiting for Children

As you fork new processes and they eventually die, you need to wait for the child
processes to exit cleanly to ensure they do not remain as “zombies” within the process
table. Child processes send the SIGCHLD signal to the parent when they exit, but
unless the signal is caught, or the processes are otherwise acknowledged, they remain
within the process table. They are called zombies because they have completed
execution but have not been cleared from the table.

In order to acknowledge the completion of the child process, you need to use one of
the two available functions, wait and waitpid. Both functions block the parent process
until the child process (or processes) has exited cleanly. This should not cause problems
if the functions are used as part of a signal handler, or if they are called as the last
function within a parent that knows its children should have exited, probably because
it sent a suitable signal.

wait
waitpid PID, FLAGS

The wait function simply waits for a child process to terminate. It’s usually used
within a signal handler to automatically reap child processes as they die:

$SIG{CHLD} = sub { wait };

This should guarantee that the child process completes correctly. The other alternative
is to use the waitpid, which enables you to wait for a specific process ID and condition.
Valid flags are defined in the POSIX module, and they are summarized here in

Table 14-2.
Of course, there are times when you specifically want to wait for your children to
exit cleanly.

Chapter 14: Interprocess Communication
Flag Description
WIFEXITED Wait for processes that have exited
WIFSIGNALED Wait for processes that received a signal
WNOHANG Non-blocking wait
WSTOPSIG Wait for processes that received STOP signal
WTERMSIG Wait for processes that received TERM signal
WUNTRACED Wait for processes stopped by signals

Table 14-2. Flags for waitpid

Communicating with Children

It’s possible to do one-way communication between a parent and its children using

the |-and —| methods to the open command. However, this is a one-way transfer, and
the fork is implied by the open command, which reduces your flexibility somewhat.

A better solution is to use the pipe function to create a pair of filehandles.

pipe READHANDLE, WRITEHANDLE

Information written to WRITEHANDLE is immediately available on READHANDLE
on a simple first in, first out (FIFO) basis. Since a forked process inherits open filehandles
from the parent, you can use a pair of filehandles for communicating between the child
and parent and for reading from and writing to the corresponding filehandle. The
following example creates a new subprocess, which accepts calculations that are then
evaluated by eval to produce a result.

use IO::Handle;
pipe (PARENTREAD, PARENTWRITE) ;
pipe (CHILDREAD, CHILDWRITE) ;

PARENTWRITE->autoflush (1) ;
CHILDWRITE->autoflush(1) ;

if (Schild = fork) # Parent code

{

close CHILDTREAD; # We don't need these in the parent

475

476

Perl: The Complete Reference

close PARENTWRITE;

print CHILDWRITE "34+56;\n";

chomp (Sresult = <PARENTREAD>) ;

print "Got a value of S$Sresult from child\n";
close PARENTREAD;
close CHILDWRITE;
waitpid(schild, 0)

else

close PARENTREAD; # We don't need these in the child
close CHILDWRITE;

chomp (Scalculation = <CHILDREAD>) ;

print "Got $calculation\n";

Sresult = eval "Scalculation";

print PARENTWRITE "Sresult\n";

close CHILDREAD;

close PARENTWRITE;

exit;

You can see that the calculation is sent to CHILDWRITE, which is then read by
the child from CHILDREAD. The result is then calculated and sent back to the parent
via PARENTWRITE, where the parent reads the result from PARENTREAD. Note
that you must use newlines as terminators when communicating between the parent
and the child to identify the end of the communication. You could have used any
string (see “Data Transfer” in Chapter 12), but newlines are the natural choice, since
it’s what you use elsewhere.

Another alternative is to use sockets, and you saw many examples of this in Chapter 12.
There is, however, one trick particularly relevant to communication between parents
and children. This is the socketpair function, which is only supported on a small number
of platforms. It works in a similar way to pipe, except that you can use just two
filehandles to communicate between the two processes. Here’s another version of the
preceding example, this time using socketpair:

use IO::Handle;

use Socket;

socketpair (CHILD, PARENT, AF UNIX, SOCK STREAM, PF UNSPEC)
or die "socketpair failed: $!";

PARENT->autoflush (1) ;
CHILD->autoflush (1) ;

Chapter 14: Interprocess Communication 477

if (Schild = fork) # Parent code
{
close PARENT;
print CHILD "34+56;\n";
chomp (Sresult = <CHILD>) ;
print "Got a value of S$Sresult from child\n";
waitpid(schild, 0) ;
close CHILD;

}

else

{
close CHILD;
chomp ($Scalculation = <PARENT>) ;
Sresult = eval "Scalculation";
print PARENT "Sresult\n";
close PARENT;
exit;

}

Note that this works slightly differently, although the basic theory is the same.

The socketpair function creates a pair of network sockets where information sent to
CHILD is readable on PARENT, and vice versa. This means you write information
to the CHILD filehandle in the parent, but read it from PARENT in the child. This is
the same as the PARENTWRITE and PARENTREAD filehandles in the previous
pipe example, except that you have only one filehandle in each to deal with.

Note the importance of the close statements in both this and the previous example.
The filehandles will remain open if you do not explicitly close them correctly in the
child and parent. You must make sure all filehandles in both the parent and child are
closed correctly. This is less important in the pipe version, since Perl will close them
for you, but in the socketpair version you run the risk of either child or parent assuming
that the connection is still open.

| other Function Calls

Although not strictly a method of IPC, Perl does provide a mechanism for calling
functions that are part of the system library, but that are not available as a directly
supported function. In order for this to work, you'll need to create the syscall.ph
Perl header file using the h2ph script:

h2ph /usr/include/sys/syscall.h

478

Perl: The Complete Reference

This will install the Perl header file into the Perl library structure so it’s available via a
normal require statement.

require syscall.ph;
syscall (&SYS_chown, "myfile",0,0) ;

You can supply up to 14 arguments to be passed to the function, and they are
interpreted according to their types. If the scalar is numeric, it is passed to the system
function as an int; otherwise a pointer to a string is passed. If the system call populates
a variable, you may supply a suitable variable, but make sure it’s large enough to
contain the returned value.

The syscall function always returns the value returned by the function you have
called. If the call fails, the return value is -1, and the $! variable is populated accordingly.
A better solution if you regularly make use of a system function not supported
within Perl is to create an XSUB definition for it. See Chapter 17 for more information.

System V IPC

The System V flavor of Unix introduced a number of different methods for interprocess
communication. It centers around three basic premises: messages, semaphores, and
shared memory. The messaging system operates a simple message queue for the
exchange of information. Semaphores provide shared counters across processes and
are usually used to indicate the availability of shared resources. Shared memory allows
for segments of memory to be shared among processes.

From my point of view, as well as a practical one, network sockets (Chapter 12)
provide a much better system for communicating and transferring information between
processes, both locally and remotely. For a start, they are supported on many more
platforms than the System V IPC. Furthermore, they are far more practical in most
instances than the System V IPC functions, which restrict you, necessarily, to a few
minor facilities. System V IPC is not supported on many Unix flavors and certainly not
under Mac OS or Win32 systems. If you want to use this system, I suggest you refer
to the man pages for more information on these functions.

The

Rejoronce
Chapter 15

Other Execution
Enhancements

479

480

Perl: The Complete Reference

written in a text, supply a miniscript on the command line, or execute Perl scripts
within other Perl scripts. Using the embedding techniques we’ll see in Chapter 20,
you can even execute Perl statements and scripts within the confines of a C program.

The term “advanced” is perhaps a little over the top, but in this chapter we’ll look
at alternative methods for executing Perl subroutines and scripts beyond the normal
direct interpretation of a file.

The first method we’ll look at is using Perl on the command line, along with the
options you can supply to Perl to change the way it operates. For example, the -w
command line option turns on warnings—a list of problems that may exist in your
script. There are other tricks, though: you can use Perl on the command line as a form
of scriptable editor and with only a few more keystrokes, it can even operate as a “do it
all” utility.

We'll then move on to the use of threads—a sort of miniprocess within the main
execution of a script. You can use threads as a way to execute a number of subroutines
simultaneously without resorting to the complexities and overheads of the fork
function we saw in Chapter 14. On suitable operating systems (thread support is
very operating-system limited) this allows multiple operations to occur simultaneously—
a great way for handling complex GUISs or client/server systems. It can also be used
where you are processing many files simultaneously without using the round-robin
approach of I0::Select.

We have already seen some examples of using the eval function, which effectively
operates as another Perl interpreter. The eval function has many uses, but its primary use
is as an exception handler to trap operations that would otherwise cause the main
interpreter to fail. A good example here is calling a function that may not be supported on
the current platform—ryou call the function within an eval, and it’s the embedded Perl
interpreter that fails, not the interpreter running your script.

Finally, we’ll consider the security implications of using Perl and how to get
around them using the standard Perl distribution. Perl has always supported a “tainting”
mechanism, which highlights variables and information Perl considers possibly unsafe.
For a more secure environment, you can use the Safe module to create a new, unique
compartment where you can restrict the list of available opcodes (the smallest executable
part of a Perl script). This can reduce the resources and methods available to a script,
preventing it from using functions, or even operators, that you do not want it to run.

Perl code can be executed in a number of different ways. You can execute a script

Perl on the Command Line

During the normal execution process, Perl looks for a script in one of the following
places, in this order:

1. On the command line (via the -e option).

Chapter 15: Other Execution Enhancements

2. Contained in the file specified by the first non-option argument to the Perl
interpreter.

3. Piped in to the interpreter via the standard input. This works either if there are
no arguments or if there is a command line argument.

Perl supports a number of command line options. These can either be specified on
the actual command line, if you are manually executing Perl, or they can be specified
within the #! line at the start of the script. The #! line is always processed by Perl,
irrespective of how the script is invoked. If you are using this method, be aware that
some Unix systems place a limit on the size of the line—usually 32 characters. You
will therefore need to make sure you place the most significant of the command line
options early in the arguments. Although there are no hard-and-fast rules, the -T (taint
checking) and -I arguments should be placed as early as possible in the command line
options, irrespective of where they are specified.

Whether they are specified on the command line or within the #! line, command
line options can either be selected individually, as in,

S perl -p -i.bak -e "s/foo/bar/g"
or they can be combined:

$ perl -pi.bak -e "s/foo/bar/g"

-a
Turns on autosplit mode (implies the split function); fields are split into the @F array.
The use of the -a option is equivalent to

while (<>)

{
}

@F = split (' ');

This is generally used with the -F, -n, or -p option to automatically split and/or
summarize a group of input files.

-C
Tells Perl to use the native wide character APIs, currently only implemented on the
Windows platform.

481

482

Perl: The Complete Reference

-C

Checks the syntax of the script without executing it. Only BEGIN and END blocks
and use statements are actually executed by this process, since they are considered

an integral part of the compilation process. The INIT and END blocks, however, are
skipped. Executing a program that does not have any syntax errors will report “syntax
ok”. For example:

$ perl -wc myscript.pl
myscript.pl syntax OK

If you want to check a number of scripts concurrently, then you will need to use the
looping features of your shell to execute each script as follows:

for file in *.pl
do

perl -wc s$file
done

It’s also a good idea, as shown here, to switch on warnings while testing.

-d[:module]

Without the optional module, this invokes the Perl debugger after your script has been
compiled and places the program counter within the debugger at the start of your
script. If module is specified, the script is compiled and control of the execution is
passed to the specified module. For example, -d:Dprof invokes the Perl profiling
system and -d:ptkdb starts the ptkdb debugger interface in place of the normal
command line debugger. See Chapter 21 for more information.

-Dflags
Specifies the debugging options defined by flags, as seen in Table 15-1. Note that
options can be selected either by their letter combination or by specifying the decimal
value of the combined options. For example, to switch on taint checks and memory
allocation, you would use -Dmu or -D2176.

You will need to have compiled Perl with the -DDEBUGGING compiler directive for
these debugging flags to work. See Chapter 21 (and also Appendix C) for more details
on debugging Perl scripts, or see my book, DeBugging Perl (Osborne /McGraw-Hill) for
a complete description of what each of these options provides.

Chapter 15: Other Execution Enhancements

Number Letter Description
1 p Tokenizing and parsing
2 s Stack snapshots
4 1 Context (loop) stack processing
8 t Trace execution
16 0 Method and overloading resolution
32 C String /numeric conversions
64 p Print preprocessor command for -P
128 m Memory allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 X Syntax tree dump
2048 u Tainting checks
4096 Memory leaks (you need to have used the
-DLEAKTEST directive when compiling Perl)
8192 H Hash dump
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Thread synchronization
Table 15-1. Debugging Flags

-e commandline
The commandline will be interpreted as a single-line Perl script. For example,

$ perl -e 'print 4+5,"\n";'

will print 9.

483

Perl: The Complete Reference

-Fregex

Specifies the pattern to use for splitting when the -a command line option is in use. By
default, the value used is a single space. The regex can be specified including any of the
normal delimiters allowed by split, thatis ", ", and //.

-h

Prints the Perl usage summary but does not execute the Perl interpreter.

-iext
Edits the file “in place”—that is, edits are conducted and written straight back to
the file. The optional ext defines the extension to append to the old version of the file.
Actually, what happens is that the file is moved to the “backup” version, and then the
file and edits are written back into the original. If ext is not specified, a temporary file is
used. Note that you must append the extension, including a period if desired; Perl does
not add any characters to the backup file except those specified.

This is generally used with the -p, -n, and -e options to edit a series of files in a
loop. For example, the command line

$ perl -pi.bak -e "s/foo/bar/g" *

replaces every occurrence of “foo” with “bar” in all files in the current directory.

-ldir

Prepends the directory, dir, to the list used to search for modules (@INC) and the
directories used to search for include files included via the C preprocessor (invoked
with -P). See also the use lib pragma in Chapter 19 and the effects of the PERLLIB
and PERL5LIB environment variables later in the chapter.

-I[char]

Sets the character, char, that will automatically be appended to all printed output.
The specification should be via the octal equivalent. By default, no characters are
automatically added to printed lines. If char is not specified, this makes the value

of the output record separator ($\) equal the value of the input record separator ($/).

-mmodule and -Mmodule

Includes the module specified by module before executing your script and allows
you to specify additional options to the use statement generated. For example, the
command line

$ perl -MPOSIX=:fcntl h,:float h

Chapter 15: Other Execution Enhancements

is equivalent to
use POSIX gw/:fcntl h :float h/;

The -M form also allows you to use quotes to specify the options. For example, the
preceding line could be written as

$ perl -M'POSIX gqw/:fcntl h :float_h/'

In both cases, a single hyphen as the first character after -M or -m indicates that no
should be used in place of use.

-n
Causes Perl to assume the following code around your script for each file specified on
the command line:

while (<>)
{
}

Note that the contents of the files are not printed or otherwise output during
execution, unless specified within the script itself. Any files in the list of those to be
opened that cannot be opened are reported as errors, and execution continues to the
next file in the list.

P
Causes Perl to assume the following code around your script for each file specified on
the command line:

while (<>)

{
}
continue
{
print or die "-p destination: $!\n";
}

As you can see, an error during printing/updating is considered fatal. The -p option
overrides the -n option.

485

Perl: The Complete Reference

Any files in the list of those to be opened that cannot be opened are reported as
errors, and execution continues to the next file in the list.

P

Invokes the C preprocessor on the script before it is parsed by the Perl interpreter.
Care should be taken when using comments in the original C source, since lines
starting with a # character and a keyword, such as if or define, will be interpreted
as a preprocessor directive.

-S

Enables basic command line switching. Once this option has been set, any command
line options specified after the script name are interpreted as the names of variables,
with their values being set to true within the script. For example,

$ perl -s t.pl -true

will create a variable $true within the current invocation of t.pl.
A more advanced system is to use the Getopt::Long or Getopt::Std modules.

-S
Uses the $PATH environment variable to find the script. It will also add extensions to
the script being searched for if a lookup on the original name fails.

-T

Switches on “taint” checking. Variables and information that originate or derive from
external sources are considered to be “unsafe” and will cause your script to fail when
used in functions such as system. This is most often used when a script is executed on
behalf of another process, such as a web server. You should specify this option at the
start of the command line options to ensure that taint checking is switched on as early
as possible. See the “Security” section later in this chapter for more information.

-u

Causes Perl to dump the program core of the interpreter and script after compilation
(and before execution). In theory, this can be used with an undump program to
produce a stand-alone executable, but the Perl-to-C compiler has superseded this
option. See Chapter 19 for more information on these and other methods for generating
stand-alone Perl binaries.

-U

Allows the Perl script to do unsafe operations. These currently include only the
unlinking of directories when you are superuser or when running setuid programs.
This option will also turn fatal taint checks into warnings, providing the -w option is
also specified.

Chapter 15: Other Execution Enhancements

-V
Prints the version and patch level of the Perl interpreter, but does not execute the
interpreter.

-V[:var]

Prints the version and configuration information for the Perl interpreter. If the optional
var is supplied, it prints out only the configuration information for the specified element
as discovered via the Config module. Here is the default output from the function:

$ perl -V
Summary of my perl5 (revision 5.0 version 6 subversion 0) configuration:

Platform:
osname=solaris, osvers=2.8, archname=i86pc-solaris-thread-multi
uname="'sunos twinsol 5.8 generic 108529-03 i86pc 1386 i86pc '
config args='-ds -e -Dcc=gcc -Dthreads'
hint=previous, useposix=true, d sigaction=define
usethreads=define use5005threads=undef useithreads=define usemultiplicity=define
useperlio=undef d sfio=undef uselargefiles=define
use64bitint=undef useé4bitall=undef uselongdouble=undef usesocks=undef

Compiler:
cc='gce', optimize='-0', gccversion=2.95.2 19991024 (release)
cppflags="'-D REENIRANT -fno-strict-aliasing -I/usr/local/include -D IARGEFILE SOURCE -D FILE OFFSET BITS=64'
ccflags ='-D_REENTRANT -fno-strict-aliasing -I/usr/local/include -D_LARGEFILE SOURCE -D FILE OFFSET BITS=64'
stdchar='char', d stdstdio=define, usevfork=false
intsize=4, longsize=4, ptrsize=4, doublesize=8
d_longlong=define, longlongsize=8, d longdbl=define, longdblsize=12
ivtype='long', ivsize=4, nvtype='double', nvsize=8, Off t='off t',
lseeksize=8
alignbytes=4, usemymalloc=y, prototype=define

Linker and Libraries:
ld='gce', ldflags =' -L/usr/local/lib '
libpth=/usr/local/lib /lib /usr/lib /usr/ccs/lib
libs=-1socket -Insl -1db -1dl -1m -lposix4 -lpthread -lc -lcrypt -lsec
libc=/1ib/libc.so, so=so, useshrplib=false, libperl=libperl.a

Dynamic Linking:
dlsrc=dl dlopen.xs, dlext=so, d dlsymun=undef, ccdlflags=' "'
ccedlflags='-fPIC', 1lddlflags='-G -L/usr/local/lib'

Characteristics of this binary (from libperl) :
Compile-time options: MULTIPLICITY USE ITHREADS USE IARGE FILES PERL IMPLICIT CONTEXT
Built under solaris
Compiled at Nov 17 2000 18:12:25
@INC:
/usr/local/lib/perl5/5.6.0/186pc-solaris-thread-multi
/usr/local/lib/perl5/5.6.0
/usr/local/lib/perl5/site perl/5.6.0/i86pc-solaris-thread-multi
/usr/local/lib/perl5/site perl/5.6.0
/usr/local/lib/perl5/site perl

487

488 Perl: The Complete Reference

The specification of var can be a specific option; for example:

$ perl -V:1lns
lns='/usr/bin/ln -s';

shows the name of the symbolic link command.
Alternatively, var can be a regular expression:

$ perl -V:install.*1lib
installarchlib="'/usr/local/lib/perl5/5.6.0/i86pc-solaris-thread-multi'
installprivlib="'/usr/local/lib/perl5/5.6.0"
installsitelib='/usr/local/lib/perl5/site perl/5.6.0'
installvendorlib=""

-W

Prints out warnings about possible typographical and interpretation errors in the
script. Note that this command line option can be overridden by using the no warnings
pragma or adjusting the value of the $AW variable in the source script. See Chapter 19
for more information on the Perl warnings system.

-W
Enables all warnings, ignoring the use of no warnings or $AW. See Chapter 19 for more
information on the Perl warnings system.

-X
Disables all warnings, even if $AW and use warnings have been employed. See
Chapter 19 for more information on the Perl warnings system.

-X[dir]
Extracts the script from an email message or other piped data stream. Perl will ignore
any information up to a line that starts with #! and contains the word perl. Any
directory name will be used as the directory in which to run the script, and the
command line switches contained in the line will be applied as usual. The script
must be terminated either by an EOF or an __ END__ marker.

This option can be used to execute code stored in email messages without first
requiring you to extract the script element.

-O[val]

Specifies the initial value for the input record separator $/.

Chapter 15: Other Execution Enhancements

Special Handling

When running Perl via the command line, there are special treatments for some of the
functions and operators we have already seen. In general, these only affect Perl when
you have called it with the -p and/or -i options. For example:

S perl -pi.bak -e "print" *

As we already know, this puts a notional loop around the single print statement to
iterate through the files on the command line. In fact, the loop is slightly more complex,
and more correctly actually looks like this:

while (SARGV = shift)

{
open (ARGV, S$ARGV) or warn "Can't open $SARGV: $!\n";
while (<ARGV>)
{
}
continue
{
print or die "-p destination: $!\n";
}
}

The special filehandle ARGV is attached to the current file within the list of files
supplied on the command line.

The effect of the eof function is now changed slightly. The statement

eof () ;

only returns the end of file of the last file in the list of files supplied on the command
line. You have to use eof(ARGV) or eof (without parentheses) to detect the end of file
for each file supplied on the command line.

| Perl Environment Variables

The effects of certain elements of Perl and Perl functions can be modified by
environment variables. Many of these variables are set automatically by your shell. In
the case of MacPerl, these values can be configured within the MacPerl environment.

490

Perl: The Complete Reference

HOME

The home directory for the script. This is used by chdir if no argument is specified.

LOGDIR

Used by chdir if no argument is specified and the HOME environment variable is not set.

PATH

This is the list of directories searched when invoking a command via system, exec,
backticks, or other external application callers. This is also the directory list searched
with the -S command line option.

PERLLIB

The colon-separated list of directories used to look for the modules and libraries
required for the Perl script. Note that this list overrides the values defined within the
interpreter. This variable is ignored if PERL5LIB has been set.

PERLSLIB

The colon-separated list of directories used to look for the modules and libraries required
for the Perl script. Note that this list overrides the values defined within the interpreter.

The values here can be added to or overridden entirely using the use lib pragma
(see Chapter 16) and the -1 command line option (explained earlier in this chapter).
Note that only the use lib pragma is supported when taint checking is in effect.

PERL50PT

Allows you to predefine any of the DIMUdmw command line switches for every
invocation of the Perl interpreter. The variable is ignored when taint checking is in effect.

PERL5DB

The command used to load the debugger code when the -d option is specified on the
command line. The default value is

BEGIN {require 'perl5db.pl' }

You can use this variable to permanently enable profiling or to use an alternative
debugger (including those with windowed interfaces). See Chapter 21 for more
information on using the Perl debugger.

PERL5SHELL

This is specific to the Win32 port of Perl (see Chapter 22). It specifies the alternative
shell that Perl should use internally for executing external commands via system or

Chapter 15: Other Execution Enhancements 491

backticks. The default under Windows NT is to use the standard cmd.exe with the /x/c
switches. Under Windows 95 the command.com /c command is used.

PERL_DEBUG_MSTATS

This option causes the memory statistics for the script to be dumped after execution. It
only works if Perl has been compiled with Perl’s own version of the malloc() function.
You can use

$ perl -V:d mymalloc

to determine whether this is the case. A value of define indicates that Perl’s malloc() is
being used.

PERL_DESTRUCT_LEVEL

Controls the destruction of global objects and other references, but only if the Perl
interpreter has been compiled with the -DDEBUGGING compiler directive.

___| Perl in Perl (eval)

A favorite function of many Perl programmers is eval. This function provides a
great number of facilities, the most useful of which is the ability to execute a piece of
arbitrary Perl source code during the execution of a script without actually affecting
the execution process of the main script.

Normally when you run a Perl script, the code contained in the script is parsed,
checked, and compiled before it is actually executed. When the script contains a call to
the eval function, a new instance of a Perl interpreter is created, and the new interpreter
then parses the code within the supplied block or expression at the time of execution.
Because the code is handled at execution time, rather than compile time, the source
code that is executed can be dynamic—perhaps even generated within another part
of the Perl script.

Another advantage of eval is that because the code is executed in a completely
separate instance of the interpreter, it can also be used for checking the availability of
modules, functions, and other elements that would normally cause a break during the
compilation stage of the script.

The basic format for the execution of an expression or block with eval is

eval EXPR
eval BLOCK

In both cases, the variables, functions, and other elements of the program are accessible
within the new interpreter. We’ll look at the specifics of each technique in more detail.

492

Perl: The Complete Reference

Using eval EXPR

When eval is called with EXPR, the contents of the expression (normally a string or
scalar variable) will be parsed and interpreted each time the eval function is called.
This means that the value of EXPR can change between invocations, and it also implies
a small overhead because the code contained within the expression is parsed and
compiled just like any other Perl script.

For example, the following code attempts to import a module based on the value of
a variable, but we already know (from Chapter 6) that use statements are interpreted at
run time, and therefore the following will not work:

if (Swindows)

{
}
else

{
}

use DBI::W320DBC;

use DBI;

What will actually happen is that Perl will parse both use statements, which are
interpreted at compile time, rather than execution time, and therefore probably fail.
However, we can use eval to do the job for us:

Smodule = Swindows ? 'DBI::W320DBC' : 'DBI';
eval " use Smodule; ";

Because the eval statement is evaluating the string in a new instance of the
interpreter, the above example will do what we wanted, loading the correct based
on the value of a variable. Also, because the new interpreter is a subset of the main
interpreter, the newly imported module will also be available to the parent script.

Using eval BLOCK

With the BLOCK form, the contents are parsed and compiled along with the rest of
the script, but the actual execution only takes place when the eval statement is reached.
This removes the slight performance delay, but it also reduces the ability to dynamically
parse and execute a piece of Perl code.

Because the code is parsed at the time of compilation of the rest of the script,
the BLOCK form cannot be used to check for syntax errors in a piece of dynamically
generated code. You also cannot use it in the same way as the example we used for
EXPR formats. If you try the previous operation using the BLOCK form,

Chapter 15: Other Execution Enhancements 493

Smodule = Swindows ? 'DBI::W320DBC' : 'DBI';
eval { use $module; };

the compilation will fail because we’re trying to use a variable in a use statement. Even
if it did work, $module doesn’t have a value yet—the preceding line has not been
executed, so $module is undefined.

| The BLOCK form of eval must have a semicolon at the termination of the block. The
BLOCK you are defining is not the same as that used by while, for, or sub.

Trapping Exceptions
Because eval starts a new instance of an interpreter, any exceptions (serious errors)
raised during the parsing of the statement can be trapped without affecting the
execution of the main script. The text or error message from an exception raised during
the execution of an eval statement, either from the parser (in the case of eval EXPR)
or through an embedded call to a die function, is placed directly into the $@ variable,
and execution of the expression ends. For example, to check for the existence of a
specific module,

eval { use DBI; };
print "Error loading DBI: $@" if (s@);

Alternatively you can force the error using die:

eval { die "Quitting..."; };
print "Error: $e" if (Se);

In all other respects, the eval statement executes a script as normal. The filehandles
STDIN, STDOUT, and STDERR are all still valid, and calls to warn print an error
message to STDERR as normal. Only a call to die, exit, or an exception (missing
function or module or a syntax error) can cause the termination of an eval statement.

You can, however, use the $SIG{__WARN__} signal handler to interrupt the
normal warn execution and update the $@ variable if necessary. See Chapter 14 for
more information on signals, propagation, and the $SIG{__WARN__} signal handler.

Returning Information

The eval statement returns information in the same way as a subroutine—the return
value (not $@) from eval is the value specified in a call to return, or it is the last
evaluated statement in the block or expression. For example,

494 Perl: The Complete Reference

Sretval = eval "54+63";

should contain the value 117.

eval and the _ DIE__ signal handler

If you have installed the _ DIE__ signal handler, you need to take care when using
the die function within an eval block. If you do not want the signal handler to be called
when the die function is used, you can localize the $SIG{__DIE__} function, which
effectively disables the main signal handler for die (if installed) for the duration of the
eval statement. This is as easy as placing the localize statement within the eval block.
This becomes even more useful if you actually make use of the localized signal
handler within the confines of the eval sequence. Since the signal handler is cyclical,
once the localized signal handler has completed, you can call die again to exit the eval
block, thereby producing a customized error message. The following example
prepends some information to the error message produ