

What readers are saying about
Pragmatic Version Control. . .

“This book gave me a boatload of ideas for improving my use
of CVS. Recipes with rationale and examples help me do the
thing I’m worst at: getting started. Why didn’t you write this
10 years ago and mail me a copy!”

Mike Stok, Senior Software Developer,
Exegenix Research Inc.

“An excellent introduction for folks who haven’t used CVS.
Dave Thomas and Andy Hunt are at their usual best.”

Andrew C. Oliver, founder of Apache POI,
SuperLink Software, Inc.

“I’ve been using CVS for years and I’ve learned a LOT! It’s not
only good, it’s important to the software industry. This book
makes arcane magic understandable to the “normal”
developer.”

Will Gwaltney, Development Tester,
SAS Institute

“This is an excellent book; any programmer who hasn’t even
heard of version control will be able to pick up all the skills
necessary to use version control and be productive. I
absolutely love the way the book is written. The use of
scenarios to explain every example and concept just works
perfectly, and best practices are included in all of the
chapters.”

Vinny Carpenter, Enterprise Architect

Pragmatic Version Control
with CVS

Dave Thomas

Andy Hunt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and The Pragmatic Programmers, LLC was aware of a trademark
claim, the designations have been printed in initial capital letters or in all
capitals.

Every precaution was taken in the preparation of this book. However, the
publisher assumes no responsibility for errors or omissions, or for damages
that may result from the use of information (including program listings) con-
tained herein.

For information on the latest Pragmatic titles, visit us online:

http://www.pragmaticprogrammer.com

Copyright c© 2003 The Pragmatic Programmers, LLC. All rights reserved. No
part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-0-4

Text printed on acid-free paper.

First printing, September 2003

http://www.pragmaticprogrammer.com

Contents

About the Starter Kit viii

Preface x

1 Introduction 1
1.1 Version Control in Action 2
1.2 Roadmap . 6

2 What Is Version Control? 7
2.1 The Repository 7
2.2 What Should We Store? 9
2.3 Workspaces and Manipulating Files 11
2.4 Projects, Modules, and Files 12
2.5 Where Do Versions Come In? 13
2.6 Tags . 15
2.7 Branches . 16
2.8 Merging . 18
2.9 Locking Options 19
2.10 Configuration Management (CM) 23

3 Getting Started 24
3.1 Installing CVS 24
3.2 Creating a Repository 29
3.3 CVS Commands 30
3.4 Creating a Simple Project 31
3.5 Starting to Work With a Project 33
3.6 Making Changes 35
3.7 Updating the Repository 37
3.8 When Worlds Collide 38
3.9 Conflict Resolution 40

CONTENTS vi

4 How To. . . 46
4.1 Our Basic Philosophy 47
4.2 Organizing a Version Control System 47

5 Accessing the Repository 49
5.1 Security and User Accounts 51
5.2 CVSROOT: The Destination Parameter String . 52
5.3 Setting up ssh Access 54
5.4 Connecting Using pserver 55

6 Common CVS Commands 56
6.1 Checking Things Out 56
6.2 Keeping Up To Date 59
6.3 Adding Files and Directories 62
6.4 Ignoring Certain Files 67
6.5 Renaming Files 68
6.6 Renaming a Directory 70
6.7 Seeing What’s Changed 71
6.8 Handling Merge Conflicts 75
6.9 Committing Changes 79
6.10 Examining Change History 80
6.11 Removing a Change 83

7 Using Tags and Branches 86
7.1 Tags, Branches and Tagging 87
7.2 Creating a Release Branch 89
7.3 Working in a Release Branch 91
7.4 Generating a Release 92
7.5 Fixing Bugs in a Release Branch 94
7.6 Developer Experimental Branches 95
7.7 Working With Experimental Code 97
7.8 Merging The Experimental Branch 97

8 Creating a Project 98
8.1 Creating the Initial Project 99
8.2 Structure Within the Project 101

9 Using Modules 106
9.1 Subprojects the Easy Way 107
9.2 CVS Modules . 111
9.3 Summary . 117

Prepared exclusively for Francilene Procopio Garcia

CONTENTS vii

10 Third-Party Code 118
10.1 Libraries With Source Code 121
10.2 Modifying Third-Party Code 125

A CVS Summary and Recipes 133
A.1 CVS Command Format 133
A.2 Recipes . 142

B Other Resources 145
B.1 Online CVS Resources 145
B.2 Other CVS Books 145
B.3 Other Version Control Systems 146
B.4 Bibliography . 147

Prepared exclusively for Francilene Procopio Garcia

About the Starter Kit
Our first book, The Pragmatic Programmer: From Journeyman
to Master, is a widely-acclaimed overview of practical topics in
modern software development. Since it was first published in
1999, many people have asked us about follow-on books, or
sequels. We’ll get around to that. But first, we thought we’d
go back and offer a prequel of sorts.

Over the years, we’re found that many of our pragmatic read-
ers who are just starting out need a helping hand to get their
development infrastructure in place, so they can begin form-
ing good habits early. Many of our more advanced pragmatic
readers understand these topics thoroughly, but need help
convincing and educating the rest of their team or organiza-
tion. We think we’ve got something that can help.

The Pragmatic Starter Kit is a three-volume set that covers
the essential basics for modern software development. These
volumes include the practices, tools, and philosophies that
you need to get a team up and running and super-productive.
Armed with this knowledge, you and your team can adopt
good habits easily and enjoy the safety and comfort of a well-
established “safety net” for your project.

This volume, Pragmatic Version Control, describes how to use
version control as the cornerstone of a project. A project with-
out version control is like a word processor without an UNDO
button: the more text you enter, the more expensive a mis-
take will be. Pragmatic Version Control shows you how to use
version control systems effectively, with all the benefits and
safety but without crippling bureaucracy or lengthy, tedious
procedures.

ABOUT THE STARTER KIT ix

Volume II, Pragmatic Unit Testing, discusses how to do effec-
tive unit testing. Unit testing is an essential technique as it
provides real-world, real-time feedback for developers as we
write code. Many developers misunderstand unit testing, and
don’t realize that it makes our jobs as developers easier.

Volume III Pragmatic Automation,1 covers the essential prac-
tices and technologies needed to automate your code’s build,
test, and release procedures. Few projects suffer from having
too much time on their hands, so Pragmatic Automation will
show you how to get the computer to do more of the mun-
dane tasks by itself, freeing you to concentrate on the more
interesting—and difficult—challenges.

These books are created in the same approachable style as
our first book, and address specific needs and problems that
you face in the trenches every day. But these aren’t dummy-
level books that only give you part of the picture; they’ll give
you enough understanding that you’ll be able to invent your
own solutions to the novel problems you face that we haven’t
addressed specifically.

For up-to-date information on these and other books, as well
as related pragmatic resources for developers and managers,
please visit us on the web at:

http://www.pragmaticprogrammer.com

Thanks, and remember to make it fun!

1Expected to be published in 2004.

Prepared exclusively for Francilene Procopio Garcia

Preface
When done right, version control is like breathing; you just
don’t notice doing it, but it keeps your project alive. However,
during our travels to teams around the world, we’ve noticed
something: most of them aren’t doing version control right
(and many aren’t doing it at all).

There are many reasons for this; when pushed most teams
complain that version control is just too complex. They get the
basics, checking stuff in to and out of some central repository,
but when the time comes to create a release, or when they
need to handle third-party code, things start getting out of
hand. Frustrated, the team either stops using version control,
or they bog themselves down with page after page of obscure
procedures.

It needn’t be that way. In this book we show how just a hand-
ful of basic recipes can be used to get 90% of the benefit from
a version control system. Following these recipes, teams will
start enjoying the benefits of version control immediately.

Your continuing feedback is very important to us. To report
errors, omissions, or suggestions please visit our web site.2

2http://www.pragmaticprogrammer.com/sk/vc/feedback.html

PREFACE xi

Typographic Conventions

italic font Indicates terms that are being defined, or
borrowed from another language.

computer font Computer stuff (file names, terminal ses-
sions, commands, and so on).

A warning that this material is more ad-
vanced, and can safely be skipped on your
first reading.

“Joe the Developer,” our cartoon friend,
asks a related question that you may find
useful.

-d ⇒
Destination

An aide-memoir for a command option (in
this case -d).

Acknowledgments

One of the joys of writing a book is that you get to ask friends
to review the drafts. One of the surprises is that they agree
to do it. We’d especially like to thank Steve Berczuk, Vinny
Carpenter, Will Gwaltney, Krista Knight, Andy Oliver, Jared
Richardson, and Mike Stok for all their useful comments and
suggestions.

Dave Thomas and Andy Hunt
September, 2003
pragprog@pragmaticprogrammer.com

Prepared exclusively for Francilene Procopio Garcia

Chapter 1

Introduction
This book tells you how to improve the effectiveness of your
software development process using version control.

Version Control, sometimes called source code control, is the
first leg of our project support tripod. We view the use of
version control as mandatory on all projects.

Version control offers many advantages to both teams and
individuals.

• It gives the team a project-wide undo button; nothing is
final, and mistakes are easily rolled back. Imagine you’re
using the world’s most sophisticated word processor. It
has every function imaginable, except one. For some rea-
son, they forgot to add support for a DELETE key. Think
how carefully and slowly you’d have to type, particularly
as you got near the end of a large document. One mis-
take, and you’d have to start over. It’s the same with
version control; having the ability to go back an hour, a
day, or a week frees your team to work quickly, confident
that they have a way of fixing mistakes.

• It allows multiple developers to work on the same code
base in a controlled manner. The team no longer loses
changes when someone overwrites the edits made by an-
other team member.

• The version control system keeps a record of the changes
made over time. If you come across some “surprising

VERSION CONTROL IN ACTION 2

code,” it’s easy to find out who made the change, when,
and (with any luck) why.

• A version control system allows you to support multiple
releases of your software at the same time as you con-
tinue with the main line of development. With a version
control system, there’s no longer a need for the team to
stop work during a code freeze just before release.

• Version control is a project-wide time machine, allowing
you to dial in a date and see exactly what the project
looked like on that date. This is useful for research, but
it is essential for going back and regenerating prior re-
leases for customers with problems.

This book focuses on version control from a project perspec-
tive. Rather than simply listing the commands available in a
version control system, we instead look at the tasks we need
in a successful project, and then see how a version control
system can help.

How does version control work in practice? Let’s start with a
small story. . . .

1.1 Version Control in Action

Fred rolls into the office eager to continue working on the new
Orinoco book ordering system. (Why Orinoco? Fred’s com-
pany uses the names of rivers for all internal projects.) After
getting his first cup of coffee, Fred updates his local copy of
the project’s source code with the latest versions from the cen-
tral version control system. In the log that lists the updated
files, he notices that Wilma has changed code in the basic
Orders class. Fred gets worried that this change might affect
his work, but today Wilma is off at the client’s site, installing
the latest release, so he can’t ask her directly. Instead, Fred
asks the version control system to display the notes associ-
ated with the change to Orders. Wilma’s comment does little
to reassure him:

* Added new deliveryPreferences field to the Order class

To find out what’s going on, he goes back to the version con-
trol system and asks to see the actual changes made to the

Prepared exclusively for Francilene Procopio Garcia

VERSION CONTROL IN ACTION 3

source file. He notes that Wilma has added a couple of in-
stance variables, but they are set to default values, and noth-
ing seems to change them. This might well be a problem in
the future, but it is nothing that will stop him today, so Fred
continues working.

As he works on his code, Fred adds a new class and a cou-
ple of test classes to the system. Fred adds the names of the
files he creates to the version control system as he creates
them; the files themselves won’t be added until he commits
his changes, but adding their names now means he won’t for-
get to add them later.

A couple of hours into the day, Fred has completed the first
part of some new functionality. It passes its tests, and it won’t
affect anything in the rest of the system, so he decides to
check it all in to the version control system, making it avail-
able to the rest of the team. Over the years, Fred has found
that checking in and out frequently is more convenient than
leaving it for days: it’s a lot easier to reconcile the occasional
conflict if you only have to worry about a couple of files, rather
than a week’s worth of changes from the whole team.

Why You Should Never Answer the Phone

Just as Fred’s about to start the next round of coding, his
phone rings. It’s Wilma, calling from the client’s site. It looks
like there’s a bug in the release she’s installing: printed in-
voices are not calculating sales tax on shipping amounts. The
client is going ballistic, and they need a fix now.

Unless You Use Version Control. . .

Fred double checks the name of the release with Wilma, then
tells the version control system to check out all the files in
that version of the software. He puts it in a temporary di-
rectory on his PC, as he intends to delete it after he finishes
the work. He now has two copies of the system’s source code
on his computer, the mainline and the version released to the
client. Because he’s about to fix a bug, he tells the version
control system to tag his source code with a label. (He’ll add
another tag when he’s fixed the bug. These tags act as flags

Prepared exclusively for Francilene Procopio Garcia

VERSION CONTROL IN ACTION 4

you leave behind to mark significant points in the develop-
ment. By using consistently named tags before and after he
makes the change, other folks in his team will be able to see
exactly what changed should they look at it later on.)

In order to isolate the problem, Fred first writes a test. Sure
enough, it looks like no one ever checked the sales tax cal-
culation when shipping was involved, because his test imme-
diately shows the problem. (Fred makes a note to raise this
during this iteration’s review meeting; this is something that
should never have gone out the door). Sighing, Fred adds the
line of code that adds shipping in to the taxable total, com-
piles, and checks that his test passes. He reruns the whole
test suite as a quick sanity test and checks the fixed code
back into the central version control system. Finally, he adds
a tag to the release branch indicating that the bug is fixed.
He sends a note off to QA, who are responsible for shipping
emergency releases to the client. Using his tag, they’ll be able
to instruct the build system to produce a delivery disk which
includes his fix. Fred then phones Wilma back and tells her
that the fix is in the hands of QA and should be with her soon.

Having finished with this little distraction, Fred removes the
source for the released code from his local machine: no point
in cluttering things up, and the changes he’s made are safely
tucked back into the central server. He then gets to won-
dering: is the sales tax bug that he found in the released
code also present in the current development version? The
quickest way to check is to add the test he wrote in the re-
leased version into the development test suite. He tells the
version control system to merge that particular change in the
release branch into the appropriate file in the development
copy. The merge process takes whatever changes were made
to the release files and makes the same changes to develop-
ment version. When he runs the tests, his new test fails: the
bug is indeed present. He then moves his fix from the release
branch into the development version. (He doesn’t need the
release branch’s code on his machine to do any of this; all
the changes are being fetched from the central version control
system.) Once he’s got the tests all running again, he com-
mits this change back in version control system. That’s one
less bug that’ll bite the team next time.

Prepared exclusively for Francilene Procopio Garcia

VERSION CONTROL IN ACTION 5

Crisis over, Fred gets back to working on his own tasks for
the day. He spends a happy afternoon writing tests and code,
and toward the end of the day decides he’s done. While he’s
been working, other folks in his team have also been making
changes, so he uses the version control system to take their
work and apply it his local copy of the source. He runs the
tests one last time, then checks his changes back in, ready to
start work the next day.

Tomorrow. . .

Unfortunately, the next day brings its own surprises. Over-
night Fred’s central heating finally gave up the ghost. As Fred
lives in Minnesota, and as it’s February, this isn’t something
to be taken lightly. Fred calls in to work to say he’ll be out
most of the day waiting for the repair folks to arrive.

However, that doesn’t mean he has to stop work. Accessing
his office network using a secure connection over the public
Internet, Fred checks out the latest development code on to
his laptop. Because he checked in before he went home the
previous night, everything is there and up to date. He con-
tinues to work at home, wrapped in a blanket and sitting by
the fire. Before he stops for the day he checks his changes in
from the laptop so they’ll be available to him at work the next
day. Life is good (except for the heating repair bill).

Story-book Projects

The correct use of version control on Fred and Wilma’s project
was pretty unobtrusive, but it gave them control and helped
them communicate, even when Wilma was miles away. Fred
could research changes made to code and apply a bug fix to
multiple releases of their application. Their version control
system supports offline work, so Fred gained a degree of loca-
tion independence: he could work from home during his heat-
ing problems. Because they had version control in place (and
they knew how to use it), Fred and Wilma dealt with a number
of project emergencies without experiencing that panic that so
often characterizes our response to the unexpected.

Prepared exclusively for Francilene Procopio Garcia

ROADMAP 6

Using version control gave Fred and Wilma the control and
the flexibility to deal with the vagaries of the real world. That’s
what this book is all about.

1.2 Roadmap

The next chapter, What Is Version Control?, is an introduction
to the concepts and terminology of version control systems.
There are many version control systems to choose from. In
this book we’re going to focus on the freely available CVS;
on a day-to-day basis, CVS is probably the most widely used
version control system.

Chapter 3, Getting Started with CVS, is a tutorial introduction
to using CVS. The remainder of the book is a set of recipes
for using CVS in projects. This section is divided into six
chapters, each containing a number of recipes:

• Different ways of connecting to CVS.

• Common CVS commands.

• Using tags and branches to handle releases and experi-
mental code.

• Creating a project.

• Creating submodules.

• Handling third-party code.

We end with an appendix summarizing all of the recipes and
an appendix containing a brief list of other resources, along
with a bibliography.

Prepared exclusively for Francilene Procopio Garcia

Chapter 2

What Is Version Control?
A version control system is a place to store all the various re-
visions of the stuff you write while developing an application.
They’re basically very simple systems. Unfortunately, over the
years, various people have started using different terms for
the various components of version control. And this can lead
to confusion. So let’s start off by defining some of the terms
that we’ll be using.

2.1 The Repository

You may have noticed that we wimped out; we said that,
“a version control system is a place to store. . . the stuff you
write,” but we never said exactly where all this stuff is stored.
In fact, it all goes in the repository.

In almost all version control systems, the repository is a cen- repository

tral place that holds the master copy of all versions of your
project’s files. Some version control systems use a database
as the repository, some use regular files, and some use a com-
bination of the two. Either way, the repository is clearly a piv-
otal component of your version control strategy. You need it
sitting on a safe, secure, and reliable machine. And it should
go without saying that it needs to get backed up regularly.

In the old days, the repository and all its users had to share
a machine (or at least share a filesystem). This turns out to
be fairly limiting; it was hard to have developers working at

THE REPOSITORY 8

Different Flavors of Networked Access

The writers of version control systems sometimes have
different definitions of what “networked” means. For
some, it means accessing the files in a repository over
shared network drives (such as Windows shares or NFS
mounts). For others it means having a client-server
architecture, where clients interact with server repos-
itories over a network. Both can work (although the
former is hard to design correctly if the underlying file-
sharing mechanism doesn’t support locking reliably).
However, you may find that deployment and security
issues dictate which systems you can use.

If a version control system needs access to shared
drives, and you need to access it from outside your
internal network, then you’ll need to make sure that
your organization allows you to access the data this
way. Virtual Private Network (VPN) packages allow
this kind of secure access, but not all companies run
VPNs.

CVS uses the client-server model for remote access.

different sites, or working on different kinds of machines or
operating systems. As a result, most version control systems
today support networked operation; as a developer you can
access the repository over a network, with the repository act-
ing as a server and the version control tools acting as clients.
This is tremendously enabling. It doesn’t matter where the
developers are; as long as they can connect over a network
to the repository, they can access all the project’s code and
its history. And they can do it securely; you can even use
the Internet to access your repository without sharing your
precious source code with a nosy competitor. Andy and I reg-
ularly access our source code over the Internet when we’re on
the road.

This does lead to an interesting question, though. What hap-
pens if you need to do development, but you don’t have a net-
work connection to your repository? The simple answer is, “it
depends.” Some version control systems are designed solely

Prepared exclusively for Francilene Procopio Garcia

WHAT SHOULD WE STORE? 9

for use while connected to the repository; it is assumed that
you’ll always be online, and that you won’t be able to change
source code without first contacting the central repository.
Other systems are more lenient. The CVS system, which we
use for our examples in this book, is one of the latter. We
can edit away on our laptops at 35,000 feet, and then resyn-
chronize the changes when we get to our hotel rooms. This
online/offline issue is a crucial one when choosing a version
control system; make sure that whatever product you choose
supports your style of working.

2.2 What Should We Store?

All the things in your project are stored in the repository. But
what exactly are the things we’re talking about?

Well, you obviously need program source files to build your
project: the Java, or C#, or VB, or whatever language you’re
using to write your application. In fact, some folks think that
this source code is such an important component of version
control that they use the term “Source Code Control Systems.”

The source code is certainly important, but many people make
the mistake of forgetting all the other things that need to be
stored under version control. For example, if you’re a Java
programmer, you may use the Ant tool to compile your source.
Ant uses a script, normally called build.xml, to control what
it does. This script is part of the build process; without it
you can’t build the application, so it should be stored in the
version control system.

Similarly, many projects use metadata to drive their config-
uration. This metadata should be in the repository too. So
should any scripts you use to create a release CD, test data
used by QA, and so on.

In fact, there’s an easy test when it comes to deciding what
goes in and what stays out. Simply ask yourself “if we didn’t
have an up to date version of x, could we build and deliver
our application?” If the answer is “no,” then x should be in
the repository.

Prepared exclusively for Francilene Procopio Garcia

WHAT SHOULD WE STORE? 10

Joe Asks. . .
What About Generated Artifacts?

If we store all the things needed to build the project,
does that mean that we should also be storing all the
generated files? For example, we might run JavaDoc
to generate the API documentation for our source
tree. Should that documentation be stored in the ver-
sion control system’s repository?

The simple answer is “no.” If a generated file can be
reconstituted from other files, then storing it is simply
duplication. Why is this duplication bad? It isn’t be-
cause we’re worried about wasting disk space. It’s
because we don’t want things to get out of step. If we
store the source and the documentation, and then
change the source, the documentation is now out-
dated. If we forget to update it and check it back
in, we’ve now got misleading documentation in our
repository. So in this case, we’d want to keep a single
source of the information, the source code. The same
rules apply to most generated artifacts.

Pragmatically, some artifacts are difficult to regener-
ate. For example, you may have only a single license
for a tool that generates a file needed by all the de-
velopers, or a particular artifact may take hours to
create. In these cases, it makes sense to store the
generated artifacts in the repository. The developer
with the tool’s license can create the file, or a fast ma-
chine somewhere can create the expensive artifact.
These can be checked in and all other developers
can then work from these generated files.

As well as all the files that go toward creating the released
software, you should also store all your non-code project arti-
facts under version control (anything that you’ll need to make
sense of things later on), including the project’s documenta-
tion (both internal and external). It might also include the
text of significant e-mails, minutes of meetings, information
you find on the web—anything that contributes to the project.

Prepared exclusively for Francilene Procopio Garcia

WORKSPACES AND MANIPULATING FILES 11

2.3 Workspaces and Manipulating Files

The repository stores all the files in our project, but that
doesn’t help us much if we need to add some magic new fea-
ture into our application; we need the files where we can get
to them. This place is called our local workspace. The work- workspace

space is a local copy of all of the things that we need from
the repository to work on our part of the project. For small
to medium-sized projects, the workspace will probably simply
be a copy of all the code and other artifacts in the project.
For larger projects, you may arrange things so that develop-
ers can work with just a subset of the project’s code, saving
them time when building, and helping to isolate subsystems
of the system. You might also hear the workspace called the
working directory or the working copy of the code.

In order to populate our workspace initially, we need to get
things out of the repository. Different version control systems
have different names for this process, but the most common
(and the one used by CVS) is checking out. When you check check out

out from the repository, you extract local copies of files into
your workspace.1 The check out process ensures that you get
up-to-date copies of the files you request, and that these files
are copied into a directory structure that mirrors that of the
repository.

As you work on a project, you’ll make changes to the project’s
code in your local workspace. Every now and then you’ll reach
a point where you’ll want to save your changes back to the
repository. This process is called committing; you’re commit- commit

ting your changes back into the repository.

Of course, all the time that you’re making changes, so are
other members of your team. They’ll also be committing their
changes to the repository. However, these changes do not af-
fect your local workspace; it doesn’t suddenly change just be-
cause someone else saved changes back into the repository.
Instead, you have to instruct the version control system to up-
date your local workspace. During the update, you’ll receive update

1Even if you do your work on the same computer that stores the repos-
itory, you’ll still need to check files out before using them; the repository
should be treated as a black box.

Prepared exclusively for Francilene Procopio Garcia

PROJECTS, MODULES, AND FILES 12

Network

Developer

One

Developer

Three

Developer

Two

ch
ec
k o
ut

commit

update
CVS Repository

Figure 2.1: Clients and a Repository

the latest set of files from the repository. And when your col-
leagues do an update, they’ll receive your latest changes too.
(Just to confuse things, however, some folks also use the term
“check out” to refer to updating, as they are checking out the
latest changes. Because this is a common idiom, we’ll also
use this at times in this book.) These various interactions are
shown in Figure 2.1.

Of course there’s a potential problem here: what happens if
you and a colleague both want to make changes to the same
source file at the same time? It depends on the version control
system you’re using, but all have ways of dealing with the
situation. We talk about this more in the section on page 19
on locking options.

2.4 Projects, Modules, and Files

So far we’ve talked about storing things, but we haven’t talked
about how those things are organized.

At the lowest level, most version control systems deal with
individual files.2 Each file in your project is stored by name

2There are some IDE-like environments that perform versioning at the
method level, but they’re fairly uncommon.

Prepared exclusively for Francilene Procopio Garcia

WHERE DO VERSIONS COME IN? 13

in the repository; if you add a file called Panel.java to the
repository, then other members of your team can check out
Panel.java into their own workspaces.

However, that’s pretty low-level. A typical project might have
hundreds or thousands of files, and a typical company might
have dozens of projects. Fortunately, almost all version con-
trol systems allow you to structure the repository. At the top
level, they typically divide your work into projects. With each
project, they then let you work in terms of modules (and of-
ten submodules). For example, perhaps you are working on
Orinoco, a large web-based book ordering application. All the
files needed to build the application might be stored in the
repository under the Orinoco project name. If you wanted to,
you could check it all out onto your local disk.

The Orinoco project itself might be broken down into a num-
ber of largely independent modules. For example, there might
be a team working on credit card processing and another
working on order fulfillment. With any luck, the folks in
the credit card subproject won’t need to have all the project’s
source to do their job; their code should be nicely partitioned.
So when they check out, they really only want to see the parts
of the project that they’re working on.

CVS allows the repository administrator to divide a project
into modules. A module is a group of files (normally contained module

in one or more file system directory trees) that can be checked
out by name. Modules can be hierarchical, but they don’t
have to be; the same file or set of files can appear in many
different modules. Modules even let you share code between
projects (simply put the files to be shared into a module and
let the other team reference it by name).

Modules give you many different views into your repository,
allowing people in your teams to deal only with the things
they need. We talk about modules in Chapter 9 on page 106.

2.5 Where Do Versions Come In?

This book is all about version control systems, but so far all
we’ve talked about is storing and retrieving files in a reposi-
tory. Where do versions come in?

Prepared exclusively for Francilene Procopio Garcia

WHERE DO VERSIONS COME IN? 14

Behind the scenes, a version control system’s repository is a
fairly clever beast. It doesn’t just store the current copy of
each of the files in its care. Instead it stores every version
that has ever been checked in. If you check out a file, edit it, version

then check it back in, the repository will hold both the original
version and the version that contains your changes.3 Most
systems use a simple numbering system for the versions of a
file. In CVS, the first version of a file is assigned the revision
number 1.1. If a changed version is checked in, that change
is given the number 1.2. The next change gets 1.3, and so
on. (We’ll be talking about more complex numbering soon).
Associated with each of these revision numbers is the date
and time that the file was checked in, along with an optional
comment from the developer describing the change.

This system of storing revisions is remarkably powerful. Us-
ing it, the version control system can do things such as:

• Retrieve a specific revision of a file.

• Check out all of the source code of a system as it ap-
peared two months ago.

• Tell you what changed in a particular file between ver-
sions 1.3 and 1.5.

You can also use the revision system to undo mistakes. If you
get to the end of the week and discover you’ve been going down
a blind alley, you can back out all the changes you’ve made,
reverting back to the code as it was on Monday morning.

There’s a small wrinkle to the way revisions are numbered.
Some version control systems assign a single revision number
to all the files affected by a particular check in, while others
give each file a unique sequence of revision numbers. CVS
falls in to the latter camp. For example, we might check three
files out of a repository and get the following version numbers:

File1.java 1.10
File2.java 1.7
File3.java 1.9

3In reality, most version control systems store the differences between
versions of a file, rather than complete copies of each revision.

Prepared exclusively for Francilene Procopio Garcia

TAGS 15

We edit File1.java and File3.java, but leave File2.java
untouched. If we commit these changes back to the reposi-
tory, it will increment the revision numbers on those files we
changed:

File1.java 1.11
File2.java 1.7
File3.java 1.10

This means you can’t use the individual file version numbers
to keep track of things such as project releases (Version 1.3a
of the Orinoco project, for example). Because this one point
often causes grief in teams just starting to use CVS, let’s re-
peat it. The individual revision numbers that CVS assigns to
files should not be used as external version numbers. Instead,
version control systems provide you with tags (or their equiv-
alent).

2.6 Tags

All these revision numbers are great, but as people we seem to
be better at remembering names such as “PreRelease2” rather
than numbers like 1.47. We also have a problem when the dif-
ferent files that make up a particular release of our software
have different revision numbers. In the previous example, we
might be ready to ship the software built with File1.java,

File2.java, and File3.java, but each file has its own re-
vision number. So how do you tie all these different numbers
together?

Tags to the rescue. Version control systems let you assign tag

names to a group of files (or modules, or an entire project)
at a particular point in time. If you assigned the tag “Pre-
Release2” to this group of three files, you could subsequently
check them out using that same tag. You’d get revision 1.11 of
File1.java, 1.7 of File2.java, and 1.10 of File3.java.

Tags are a great way of keeping track of significant events in
the history of your project’s code. We’ll be using tags exten-
sively later in this document. In fact, tags and branches (the
topic of the next section) have their own chapter, starting on
page 86.

Prepared exclusively for Francilene Procopio Garcia

BRANCHES 16

update commit

update commit

Time

Mainline

Figure 2.2: A Simple Mainline

2.7 Branches

In the normal course of development, most folks are working
on a common code base (although they’ll likely be working on
different parts of it). They’ll be checking stuff out, making re-
visions, and checking the changes back in, and everyone will
share this work. This river of code is often called a mainline. mainline

We show this in Figure 2.2. In this figure (and in the ones
that follow) time flows from left to right. The thicker horizon-
tal line represents the progression of code through time; it is
the mainline of the development. Individual developers check
in and check out code from this mainline into their individual
workspaces.

But consider the time when a new release is about to be
shipped. One small subteam of developers may be preparing
the software for that release, fixing last minute bugs, working
with the release engineers, and helping the QA team. During
this vital period, they need stability; it would set back their
efforts if other developers were also editing the code, adding
features intended for the next release.

One option is to freeze new development while the release is
being generated, but this means that the rest of the team is
effectively sitting idle.

Another option would be to copy the source software out onto
a spare machine and then have the release team just use this
machine. But if we do that, what happens to the changes
that they make after the copy? How do we keep track of
them? If they find bugs in the release code that are also in
the mainline, how can we efficiently and reliably merge these

Prepared exclusively for Francilene Procopio Garcia

BRANCHES 17

fixes back in? And once they’ve released the software, how do
we fix bugs that customers report; how can we guarantee to
find the source code in the same state as when we shipped
the release?

A far better option is to use the branching capabilities built
into version control systems.

Branching is a bit like the hackneyed device in science fiction branch

stories where some event causes time to split. From that point
forward there are two parallel futures. Some other event oc-
curs, and one of these futures splits too. Soon you’re dealing
with a whole bunch of alternative universes (a great device for
resolving the story when you run out of plot ideas).

Branching in a version control system also allows you to cre-
ate multiple parallel futures, but rather than being populated
by aliens and space cowboys, they contain source code and
version information.

Take the case of the team about to release a new version of the
product. So far, all the team has been working in the mainline,
the common thread of code shown in Figure 2.2 on the page
before. But the release subteam wants to isolate themselves
from this mainline. To do this, they create a branch in the
repository. From now until their work is done, the release
subteam will check out from and check in to this branch.
Even after the application is released, this branch will stay
active; if customers report bugs, the team will fix them in this
release branch. This situation is shown in Figure 2.3 on the
following page.

A branch is almost like having a totally separate repository:
people using that branch see the source code it contains and
operate independently of people working on other branches or
the mainline. Each branch has its own history and tracks re-
visions people make independently (although obviously if you
look back past the point where the branch was made you’ll
see that the branch and the mainline become one).

This is exactly what you want when you’re creating releases.
The team working on the release will have a stable code base
to polish up and ship. In the meantime, the main group of
developers can continue making changes to the main line of

Prepared exclusively for Francilene Procopio Garcia

MERGING 18

Create
release
branch

Prepare for
release

Continue
ongoing
development

Release Bug fixes

Figure 2.3: Mainline With a Release Branch

code; there’s no need for a code freeze while the release takes
place. And when customers report problems in the release,
the team will have access to the code in the release branch
so they can fix the bugs and ship updated releases without
including any of the newly developed code in the mainline.

Branches are identified by tags, and file revision numbers
within a branch have extra levels in their numbers. So if
File1.java is at revision 1.14 and you create a branch, you’ll
find that in the branch it may have a revision number of
1.14.2.1, while in the mainline it’s still 1.14. Edit it in the
mainline and you’ll get revision 1.15; edit in the branch and
the revision number will be 1.14.2.2.

You can create branches off of other branches, but typically
you won’t want to; we’ve come across many developers who
have been put off branching for life because of some bad ex-
periences with overly complicated branching in a project. In
this book we’ll describe a simple scheme that does everything
you’ll need but that avoids unnecessary complexity.

2.8 Merging

Back to the science fiction story with the multiple alternate
futures. In order to spice up the plot, writers often allow their
characters to travel between these different universes using
wormholes, polyphase deconfabulating oscillotrons, or just a
good strong cup of piping hot tea.

Prepared exclusively for Francilene Procopio Garcia

LOCKING OPTIONS 19

You can also travel between alternate futures in a version con-
trol system (the cup of tea is optional). Although each checked
out version comes from a particular branch, and gets checked
back in to that branch, it’s easy to have multiple branches
checked out on a single developer’s machine (in different di-
rectories or folders on the hard drive, of course). That way a
developer can be working on both the mainline and on (say)
bug fixes in a release branch at the same time.

Even better, version control systems support merging. Say merge

you fix a bug in the release branch and realize that the same
bug will be present in the mainline code. You can tell the
version control system to work out the changes you made to
the source while you fixed the bug, and then to apply those
changes to the code in the mainline. This largely eliminates
the need to cut and paste changes back and forth between
different versions of a system. We’ll have a lot to say about
merging later on.

2.9 Locking Options

Imagine two developers, Fred and Wilma, working on the same
project. Each has checked out the project’s files onto their
respective local hard drives, and each wants to edit their lo-
cal copy of File1.java. What happens when they come to
check that file back in?

A bad scenario would be for the version control system to ac-
cept Fred’s changes, and then accept Wilma’s version of the
same file. As Wilma’s copy won’t have Fred’s changes in it,
storing Wilma’s copy in the repository will effectively forget all
Fred’s hard work.

To stop this happening, version control systems implement
some form of conflict resolution system (probably a good thing
in the case of Fred and Wilma). There are two common ver-
sions of conflict resolution.

The first is called strict locking. In a strict locking version con- strict locking

trol system, all files that are checked out are initially flagged
as being “read only.” You can look at them, and you can use
them to build your application, but you can’t edit or change

Prepared exclusively for Francilene Procopio Garcia

LOCKING OPTIONS 20

them. To do that, you have to ask the repository’s permis-
sion: “please can I edit File1.java?” If no one else is editing
that same file, then the repository gives you permission and
changes the permissions of your local copy of the file to be
“read/write.” You can then edit. If anyone else asks to edit
that same file while you have it flagged, they’ll be refused. Af-
ter you’ve finished your changes and checked the file back in,
your local copy reverts back to being read only, and it becomes
available for other folks to edit.

The second form of conflict resolution is often called optimistic
locking, although it really is no locking at all. Here, every de- optimistic

lockingveloper gets to edit any checked out file: the files are checked
out in a read/write state. However, the repository will not al-
low you to check in a file that has been updated in the repos-
itory since you last checked it out. Instead, it asks you to
update your local copy of the file to include the latest reposi-
tory changes before checking in. This is where the cleverness
lies. Instead of simply overwriting all your hard work with the
latest repository version of the file, the version control system
attempts to merge the repository changes with your changes.
For example, let’s look at File1.java:

Line 1 public class File1 {
- public String getName() {
- return "Wibble";
- }
5 public int getSize() {
- return 42;
- }
- }

Wilma and Fred both check this file out. Fred changes line 3:

return "WIBBLE";

He then checks the file back in. This means that Wilma’s copy
of the file is out of date. Not knowing this, Wilma changes line
6, so it returns 99 instead of 42. When she goes to check the
file in, she’s told that her copy is out of date; she needs to
merge in the repository changes. This corresponds to the star
marked CONFLICT in Figure 2.4 on the next page.

When Wilma merges the changes into her file, the version con-
trol system is clever enough to spot that Fred’s changes do not
overlap hers, so it simply updates her local copy with a new

Prepared exclusively for Francilene Procopio Garcia

LOCKING OPTIONS 21

public class File1 {

 public String getName() {

 return "Wibble";

 }

 public int getSize() {

 return 42;

 }

}

public class File1 {

 public String getName() {

 return "Wibble";

 }

 public int getSize() {

 return 42;

 }

}

public class File1 {

 public String getName() {

 return "Wibble";

 }

 public int getSize() {

 return 42;

 }

}

 . . .

 public String getName() {

 return "WIBBLE";

 . .

 . . .

 public int getSize() {

 return 99;

 . . .

public class File1 {

 public String getName() {

 return "WIBBLE";

 }

 public int getSize() {

 return 42;

 }

}

public class File1 {

 public String getName() {

 return "WIBBLE";

 }

 public int getSize() {

 return 99;

 }

}

public class File1 {

 public String getName() {

 return "WIBBLE";

 }

 public int getSize() {

 return 99;

 }

}

Fred Repository Wilma

ch
ec
ko
ut

checkout

commit

edit

edit

co
mm

it

CONFLICT
update &

 merge

co
mm

it

Figure 2.4: Fred and Wilma make changes to the same file,
but the conflict is handled by a merge.

Prepared exclusively for Francilene Procopio Garcia

LOCKING OPTIONS 22

line 3, leaving her changes still in her file. When she checks
in, she’ll be storing back her changes and leaving Fred’s in-
tact.

What happens if Fred and Wilma both updated line 3, but
made different changes to it? Assuming Fred checks in first,
his changes will be accepted. When Wilma goes to check in,
she’ll again be told that her copy is out of date. This time,
though, when she goes to merge in the repository version the
system will notice that she’s made a change to a line that has
also been changed in the repository. There’s a conflict. In this
case, Wilma will see some warning messages, and the conflict
will be marked up in her copy of the source file. She’ll have to
resolve it manually (probably by talking with Fred to find out
why they were both working on the same line of code).

Given this description you might think that optimistic locking
is a somewhat reckless way of developing systems; multiple
people editing the same files at the same time. Often peo-
ple who haven’t tried it reason that it can’t work, and insist
on working only with version control systems that implement
strict locking.

In reality, though, strict locking turns out to be a lot of extra
hassle with no particular payback. If you try an optimistic
locking system (such as CVS) you’ll be surprised at just how
rarely conflicts arise. It turns out that in practice the normal
ways of dividing up work on a team mean that people work
on different areas of the code; they don’t bump in to each
other that often. And when they do need to edit the same
file, they’re often working on different parts of it. In a strict
locking system, one would have to wait for the other to finish
and check in before proceeding. In an optimistic locking sys-
tem, both can proceed. We’ve tried both kinds of locking over
the years, and our strong recommendation is that the vast
majority of teams should use a version control system with
optimistic locking.

Prepared exclusively for Francilene Procopio Garcia

CONFIGURATION MANAGEMENT (CM) 23

2.10 Configuration Management (CM)

Sometimes you’ll hear folks talking about Configuration Man-
agement or Software Configuration Management systems (of-
ten abbreviated as CM or SCM). At first sight they seem to
be talking about version control. And that’s largely true; the
practices of CM rely very heavily on having good version con-
trol in place. But version control is just one tool used by
configuration management.

CM is a set of project management practices that enables you
to accurately and reproducibly deliver software. It uses ver-
sion control to achieve its technical goals, but also uses a lot
of human controls and cross checks to make sure that things
are not forgotten. You can think of configuration management
as a way of identifying the things that get delivered, and ver-
sion control as a means of recording that identification. CM
is a large (and to some extent ill-defined) topic, and we won’t
be covering it more in this book.

For now, though, let’s concentrate on how to use version con-
trol systems to get our jobs done. The next chapter is a gentle
introduction to a particular version control system, CVS.

Prepared exclusively for Francilene Procopio Garcia

Chapter 3

Getting Started

Before committing your next multi-million dollar project to
CVS, it’s probably a good idea to get some experience with
the system first. In this chapter we’ll work with a live CVS
repository as we develop and maintain a trivial project.

As is often the case, the first steps with CVS are often the
most difficult.

• You may have to install the CVS software on your com-
puter.

• Before you can use a repository to check in a project, the
repository has to be set up, and you must have access to
it.

You also have a number of choices when it comes to inter-
acting with this repository. You can use the traditional CVS
command-line tools, you can use a GUI front-end, and you
can use facilities built into your IDE.

Finally, there are some differences depending on the operating
system you use. We’ll highlight these as we go along.

We’ll take all these things one step at a time.

3.1 Installing CVS

Obviously, you need to install the CVS software before you
can run it. The same software both manages the repository

INSTALLING CVS 25

Figure 3.1: Windows command window

and gives you the command-line tools you need to access that
repository.

Our first step is to determine if CVS is already installed on
your computer. The easiest way to do this is from the com-
mand line. If you’re familiar with the command line, you can
skip the next section.

The Command Line

The command line is a low-level facility that lets you run com-
mands directly on your computer. The command line is a
powerful tool, but it can also be fairly cryptic: you’re working
down in the engine room when you’re issuing commands.

On Windows boxes, you can get to a command line window
by using [Start]/[Run], and typing cmd as the name of the
program to run (on some older Windows versions you might
have to type command instead). You should see a window that
looks like Figure 3.1.

On Unix boxes, you may be working at the command line
already. If instead you use a desktop environment such as
Gnome or KDE, look for the terminal, konsole, or xterm

application and run it. You should see a window like that in

Prepared exclusively for Francilene Procopio Garcia

INSTALLING CVS 26

Figure 3.2: Unix command window

Figure 3.3: Window after executing “echo hello”

Figure 3.2. (If you’re using Mac OS X, your shell application
is hidden in Application/Utilities.)

You use the command line window to enter commands and
view their output; no GUI front ends here. For example, in the
command line window you just created, enter the following

Prepared exclusively for Francilene Procopio Garcia

INSTALLING CVS 27

Joe Asks. . .
Shells, Prompts, Command Windows??

Terminology can get confusing when we’re dealing
with command-lines, so let’s clear things up a bit.

A command processor, also called a shell, is a pro-
gram that accepts a command and executes it. The
command can have parameters, and the command
processor often has additional capabilities (such as
redirecting the application’s output to a file). Under
Windows, cmd and command are common command
processors (which you use depends on which version
of Windows you use). On Unix boxes, there’s a great
choice of shells, from the original sh, through csh,
bash, tcsh, zsh, and so on.

Back before we had GUI systems, the command pro-
cessor or shell was how you interacted with your com-
puter. When you booted up DOS, you got the DOS
prompt, and you were talking with the command ap-
plication; your computer monitor was effectively a
dumb terminal.

Now that we have fancy front ends, we need a place
to run these command processors, so folks have writ-
ten terminal applications that run in windows. When
one of these terminal applications is running a com-
mand processor or a shell, you can type in commands
at the prompt and have them execute. Sometimes
we’ll call these windows executing a command pro-
cessor a command window.

command and hit the Enter key (sometimes labeled Return).

echo Hello

You should see the text “Hello” echoed back at you, and just
below it a new prompt where you can enter another command.
An example is shown in Figure 3.3 on the preceding page.

Prepared exclusively for Francilene Procopio Garcia

INSTALLING CVS 28

Prompts

One of the joys of the command window is that you can cus-
tomize the prompt that the shell uses to tell you it’s reading
for input. You can include the time, the current directory,
your user name, and all sorts of other essential information
in the prompt field. Unfortunately, this flexibility can also
lead to confusion: looking back at the previous screenshots
you can see that the Windows prompt looks totally different
from the Unix prompt.

In this book, we’ll try to simplify things by standardizing on a
generic prompt in our examples. We’ll show the name of the
current directory followed by a greater-than sign (“>”). For
example, we might give an example of a command as follows:

work> cvs update

This means that we’re in a directory called “work” and we
issued the command cvs update. It should be simple to map
this “logical” prompt to the prompt you actually see in your
operating system’s command window.

The commands in this book are not Windows or Unix specific:
they should work on both systems. The only differences are in
the names of files; Windows uses drive letters and backward
slashes between the components of file names, and Unix uses
forward slashes. Use appropriate file names for your environ-
ment, and things should work out fine.

Is CVS Installed?

Bring up a command window on your computer and enter
the command “cvs -v” (followed by the Return key, but you -v⇒

Versionknew that. . .). If CVS is correctly installed on your box you’ll
see something similar to Figure 3.4 on the next page, and you
can skip ahead to the next section.

If CVS isn’t installed on your computer, you’ll need to install
it. This isn’t tricky, but it depends on your operating system,
and potentially on your company’s policies (if you’re running
this exercise on a corporate computer). So rather than rein-

Prepared exclusively for Francilene Procopio Garcia

CREATING A REPOSITORY 29

Figure 3.4: Determining the CVS Version

vent the wheel here, we’ll refer you over to the home of CVS,1

where you’ll find all the materials you’ll need to download and
install your own copy of CVS. If you’re a Windows user, you’ll
find a pre-built binary distribution in the the cvshome down-
loads section. If you’re a Unix user, you can either build from
the source on their site, or (if you’d prefer), you can find a
prepackaged binary version from your distribution’s vendor.
(For example, if you’re running a Redhat system, there are
RPMs that will install CVS on your system). Whichever sys-
tem you’re installing for, remember to make sure that the var-
ious CVS programs are in your PATH so that you can use them
from the command line. We’ll see you after you’ve finished. . . .

3.2 Creating a Repository

CVS needs a repository to run. In this step we’ll create one,
just for ourselves, to play with.

Now you may already have access to a CVS repository; per-
haps your company has one set up. For now we’ll ignore it,
and run with our own. This gives us the ability to play freely
without worrying about messing things up. You might want to
leave this repository lying around for a while, too. Sometimes

1http://www.cvshome.org

Prepared exclusively for Francilene Procopio Garcia

cvshome
http://www.cvshome.org

CVS COMMANDS 30

when you need to experiment to see how best to do things, it’s
useful to have a sandbox to play safely in.

You have a single decision to make before creating the repos-
itory: where to put it on your hard drive. The CVS repository
consists of a hierarchy of files and directories in the regular
filesystem on your computer. All you have to do it tell CVS
where the top of this hierarchy is. In the examples that fol-
low, we assume that you use the directory sandbox for your
repository. Windows users can reference this directory as
C:\sandbox, while Unix users can put it in their home di-
rectory using ∼/sandbox.

The simplest way to create a repository is using cvs init

command from the command line.

Unix: cvs -d ˜/sandbox init

Windows: cvs -d C:\sandbox init

The -d parameter tells CVS where the repository is (it’s a little -d⇒
Destinationknown fact that “repository” starts with a silent and invisible

letter “d”). You can think of the -d option as defining the
destination of CVS commands.

If you want, you can list the contents of the repository direc-
tory you just created: you should find that it contains a sin-
gle subdirectory, CVSROOT, which holds some administrative
files. Congratulations; you’re now a CVS administrator!

We’ll now go on to add a project to this repository. How-
ever, remember that you never create files in this repository
directly: you can only manipulate it using CVS commands.

3.3 CVS Commands

Up until now we’ve been using the command line to interact
with CVS. If you prefer something prettier, various develop-
ers have written GUI front ends to CVS; rather than work at
the command-line level, you can instead point and click to
achieve the same thing. Some developers like this style of
interface, others prefer the underlying commands.

Prepared exclusively for Francilene Procopio Garcia

CREATING A SIMPLE PROJECT 31

Among the more popular front ends are the open source prod-
ucts WinCvs2 and Tortoise CVS.3 The latter product is partic-
ularly interesting, as it adds CVS client support to the Win-
dow’s Explorer. There is also mention on the Tortoise CVS site
of a project4 to add CVS support to Visual Studio, although
this project is still in beta status as of September, 2003.

If you normally use an IDE for development, you should also
look to see if that IDE supports CVS directly. Many (including
the popular open source IDE Eclipse) do, and this can be a
real time saver. Check your IDE’s documentation for details.

Having talked about all these fancy front ends, it’s important
to remember that knowing the underlying command line in-
terface is important; when you come to automating some of
your development tasks, that automation will need to interact
with the repository, and it will do that using the command
line interface. For that reason (and because showing every
possible GUI-based interface would be impossible), in the de-
scriptions that follow we’ll show the command line interface
to CVS. However the terms we use should map directly onto
the terminology of any GUI interface you use.

3.4 Creating a Simple Project

In this section we’ll start to populate our repository with a
new project (every good project has a name, so we’ll call this
project Sesame). We’ll do this by creating a couple of files, and
then importing them into a sesame project in our repository.
(The project name is officially Sesame, with an uppercase “S,”
but we’ll use lowercase for the project name in the repository.)

So, let’s assume that we’re just starting work on the Sesame
project. We don’t yet have a project in the repository, because
we don’t yet have anything to put in it. Let’s fix that. Cre-
ate a temporary directory on your computer (we’ll call ours
tmpdir). Then, using your favorite editor or IDE, create two
files in the this directory: Color.txt and Number.txt.

2http://www.wincvs.org
3http://www.tortoisecvs.org
4http://sourceforge.net/projects/cvssccplugin/

Prepared exclusively for Francilene Procopio Garcia

http://www.wincvs.org
http://www.tortoisecvs.org
http://sourceforge.net/projects/cvssccplugin/

CREATING A SIMPLE PROJECT 32

File Color.txt:
black

brown

red

orange

yellow

green

File Number.txt:
zero

one

two

three

four

Hmm, I hear folks saying, these sure don’t look like source
programs. But remember, we use our repository to hold all
the stuff we need to build our project. Perhaps we’re working
on a children’s education program, and these files contain
data for a particular game. (Well, it could happen. . .)

We now need to tell CVS that these files should be imported
in to a new project in the repository. To do this, we’ll use the
cvs import command. It’s unfortunate that we’re having to
use import so soon in the book, as it has the most manda-
tory parameters of any CVS command. For now, we won’t go
into too much detail; we cover cvs import in more detail on
page 99.

To import the two files we just created from the command line,
go to the temporary directory that contains them. If you’re
using a Windows box, issue the following command.

tmpdir> cvs -d C:\sandbox import -m "" sesame sesame initial

N sesame/Color.txt
N sesame/Number.txt

No conflicts created by this import

If instead you’re on a Unix platform, do:

tmpdir> cvs -d ˜/sandbox import -m "" sesame sesame initial
N sesame/Color.txt
N sesame/Number.txt

No conflicts created by this import

The -d parameter does the same thing here that it did on the
cvs init command—it tells CVS where to find the reposi-
tory. The import keyword tells CVS that we want to import -m⇒

Messagea project. The -m and the empty string that follow it lets you

Prepared exclusively for Francilene Procopio Garcia

STARTING TO WORK WITH A PROJECT 33

associate a log message with this import. There are circum-
stances where this is useful (particularly when dealing with
third-party code), but for now an empty log message is fine.

The next parameter, sesame, is the name to give the project
in the repository. This is how you’ll refer to it in future, so
choose wisely.

The last two parameters are tags; we won’t worry about them
for now. If you want to import your own code, using the
project name for the first tag and “initial” for the second will
work just fine.

Notice that as CVS performs the import, it logs what it is do-
ing. In this case it shows the names of our two files with an
“N” in front of them. This means that they are new, and that
they have been added to the repository.

So, now we’ve got these files safely tucked away in the repos-
itory. If we are brave (or foolish), we can go ahead and delete
the copies in our temporary directory. However, the prudent
(and pragmatic) developer would probably want to verify that
they are indeed correctly stored in the repository before delet-
ing them. And the easiest way to do that is to get CVS to
check the files in the Sesame project out into your local work
area. Once we’ve confirmed that everything is there, and that
it looks correct, we can delete our originals. The next section
shows how this is done.

3.5 Starting to Work With a Project

It doesn’t matter whether you’re starting work with a new
project (such as project Sesame, which we just created), or
if you’re joining a project that’s been running for months and
has thousands of source files. What you do to start working
with the project’s files is the same:

1. Decide where to put the working copies of the files on
your local machine.

2. Check the project out of the repository into that location.

The first decision is normally fairly simple. We tend to have a
single directory on our boxes called “work.” We then check all

Prepared exclusively for Francilene Procopio Garcia

STARTING TO WORK WITH A PROJECT 34

work/

poppy/

project contents for poppy. . .
sesame/

project contents for sesame. . .
sunflower/

project contents for sunflower. . .

Figure 3.5: A Checked-out Tree

projects somewhere under this directory. For simple projects,
we tend to check out directly under work/. For more complex
ones, we need to create a local workspace. For now, let’s as-
sume we are working with simple projects. If we have checked
out three separate projects called poppy, sesame, and sun-

flower, we’d end up with directories that looked something
like Figure 3.5.

So, if you haven’t already got one, let’s start off by creating a
work directory, either from the command line or using your
File Manager.

Unix: mkdir ˜/work

Windows: mkdir \work

Now we’ll check the project out into this directory. The -d

option tells CVS where to find the repository, the co stands
for check out, and the sesame is the name of the project.

Unix: cd ˜/work

cvs -d ˜/sandbox co sesame

Windows: cd \work
cvs -d C:\sandbox co sesame

You should see some output that looks something like:

work> cvs -d ˜/sandbox co sesame
cvs checkout: Updating sesame
U sesame/Color.txt
U sesame/Number.txt

You now have a local copy of the Sesame project containing
the two files that we initially imported. From now on, we’ll be
working with these copies of the files, because these are the

Prepared exclusively for Francilene Procopio Garcia

MAKING CHANGES 35

ones that are being managed by CVS. After checking that they
look correct, we can go ahead and delete the original copies in
our temporary directory. We’ve handed control of these files
over to our version control system, and it’s just too confusing
to have the original and the managed copies lying around on
our machine. We’ll make sesame our current directory and
work with the checked-out files.

3.6 Making Changes

Despite all our hard work, our customer comes back com-
plaining; it appears we’re several colors short of a full palette.
So, fire up your favorite editor and add the four lines to the
end of the file:

File Color.txt:
black

brown

red

orange

yellow

green

blue

purple

gray

white

add these lines

After saving these changes to disk, let’s see what CVS now
thinks about the state of our project. We can use the cvs

status command to give us the status of one or more files.

work/sesame> cvs status Color.txt
==
File: Color.txt Status: Locally Modified

Working revision: 1.1 Thu Apr 17 17:03:13 2003
Repository revision: 1.1 /Users/.../sesame/Color.txt,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The important line here is the status: CVS recognizes that this
file has been modified locally (and that these changes have not
yet been saved in the repository).

If we do all our work in small increments, it’s easy to remem-
ber what changes we made to individual files. However, if
we’ve forgotten why a file has been modified (or if we just want

Prepared exclusively for Francilene Procopio Garcia

MAKING CHANGES 36

to double-check), we can use the cvs diff command to show
us the changes between the repository version of the file and
our local copy:

work/sesame> cvs diff Color.txt
Index: Color.txt
==
RCS file: /Users/dave/sandbox/sesame/Color.txt,v
retrieving revision 1.1
diff -r1.1 Color.txt
6a7,10
> blue
> purple
> gray
> white

The output contains a bunch of information. The first line
tells us the name of the file being examined. This has a couple
of uses. First, if we’re examining a bunch of files with one
command, it helps us identify where we are. It is also used
when generating patches (but that’s not something we’ll be
looking at for a while yet).

The three lines after the row of equals signs tell us the name
and revision number of the repository file, along with the low-
level command that’s being used to generate the diff.

The somewhat cryptic “6a7,10” tells us that after line 6 we’ve
added new lines 7 through 10. Following this, the logging
lines starting with “>” show the actual lines that were added.

The command-line CVS has a feature which displays the local
and repository versions of a file side-by-side:

work/sesame> cvs diff --side-by-side Color.txt
Index: Color.txt
==
RCS file: /Users/dave/sandbox/sesame/Color.txt,v
retrieving revision 1.1
diff --side-by-side -r1.1 Color.txt
black black
brown brown
red red
orange orange
yellow yellow
green green

> blue
> purple
> gray
> white

This is an area where the GUI front-ends to CVS have a dis-
tinct advantage: if you use such a tool you’ll probably find
that you’ll be able to generate nice color-coded displays of file
differences.

Prepared exclusively for Francilene Procopio Garcia

UPDATING THE REPOSITORY 37

3.7 Updating the Repository

Having made our changes (and of course having run the unit
tests), we’re ready to save our latest version in the repository.
On a single-person project such as Sesame, this is really very
simple—you use the cvs commit command.

work/sesame> cvs commit -m "Client wants 4 more colors"
cvs commit: Examining .
Checking in Color.txt;
/Users/dave/sandbox/sesame/Color.txt,v <-- Color.txt
new revision: 1.2; previous revision: 1.1
done

The commit function is used to save any changes we’ve made
back in to the repository. The -m option is used to attach a
meaningful message to the changes. If you don’t specify the
-m option, CVS will pop open an editor window and ask you to
enter one; this can be somewhat disconcerting the first time
it happens.

Even though we asked CVS to commit all files in the Sesame
project, it’s clever enough to know that Number.txt has not
changed, so only Color.txt gets updated to a new revision
(1.2 in this case).

Following the commit, use the status function to show us that
the repository has indeed been updated:

work/sesame> cvs status Color.txt
==
File: Color.txt Status: Up-to-date

Working revision: 1.2 Thu Apr 17 17:26:17 2003
Repository revision: 1.2 /Users/.../sesame/Color.txt,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

We can also look at the history of the file (CVS calls this the
file’s log).

work/sesame> cvs log Color.txt

RCS file: /Users/dave/sandbox/sesame/Color.txt,v
Working file: Color.txt
head: 1.2
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

revision 1.2

Prepared exclusively for Francilene Procopio Garcia

WHEN WORLDS COLLIDE 38

date: 2003/04/17 18:24:56; author: dave; state: Exp; lines: +4 -0
Client wants 4 more colors

revision 1.1
date: 2003/04/17 17:11:36; author: dave; state: Exp;

===

3.8 When Worlds Collide

Everyone gets nervous when they first hear that CVS doesn’t
lock files for editing. They wonder, “What happens if two peo-
ple edit the same file at the same time?” In this section we’ll
find out (and hopefully in the process put any worries you
may have to rest). To do this, we’ll need another user (so that
we can have multiple people editing a file at the same time).
Unfortunately, our supplier of do-it-yourself human cloning
kits is on the run, so we’ll have to make do with simulating
the other you.

When it comes to handling conflicts, CVS doesn’t really know
about users. Instead, it cares about making sure that files in
different workspaces are consistent. This means that we can
simulate our second user simply by checking out a new copy
of our project; we just need to put it in a different place than
the first copy. When we first checked out our project, CVS put
it in a directory called sesame, which is the project name. To
check it out again, we’ll need to override that default behavior.
There is only one rule; do not check out the second copy of the
project inside the current sesame project directory. Instead,
check it out in to a directory parallel to the one we’ve been
working in. Let’s call that directory aladdin. To do this, we -d⇒

Target Directoryuse a second -d option, specifying the new directory name.

Unix: cd ˜/work

cvs -d ˜/sandbox co -d aladdin sesame

Windows: cd \work
cvs -d C:\sandbox co -d aladdin sesame

CVS will generate output that is something like the following.

cvs checkout: Updating aladdin
U aladdin/Color.txt
U aladdin/Number.txt

We’ve checked out the project we’ve been working on all along
(Sesame) from the same sandbox repository. But we tell CVS

Prepared exclusively for Francilene Procopio Garcia

WHEN WORLDS COLLIDE 39

to store the files in a new directory, called aladdin. Be-
cause we checked in the files from our original directory, we
now have two copies of the project on our hard drive, one in
sesame, the other in aladdin. Right now the two sets of files
are identical (skeptical readers, feel free to check). Remember
that two different directories are our simulation of having two
people working on our project, each with their own checked-
out copy of the files.

Let’s first do a quick sanity check. We’ll alter a file in one
directory, check it in, then ask CVS to update our local copy
in the other directory.

First, edit the file Number.txt in the sesame directory, adding
two new lines (five and six):

File Number.txt:
zero

one

two

three

four

five

six

Now check this file back in to the repository:

work/sesame> cvs commit -m "Customer needed more numbers"
cvs commit: Examining .
Checking in Number.txt;
/Users/dave/sandbox/sesame/Number.txt,v <-- Number.txt
new revision: 1.2; previous revision: 1.1
done

Now for the first moment of truth. Over in the aladdin direc-
tory, its version of Number.txt is now out of date (because
the repository now holds a more recent version). Let’s pop
over there and check.
work/sesame> cd ../aladdin
work/aladdin> cvs status Number.txt
==
File: Number.txt Status: Needs Patch

Working revision: 1.1 Thu Apr 17 17:11:36 2003
Repository revision: 1.2 /Users/.../sesame/Number.txt,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The status line tells us that our copy of the file needs patching
(updating) to bring it up to date. Before we do this, we might

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 40

ask CVS to tell us what’s different between our version of the
file and the version currently in the repository (as there are
times when you might want to defer an update if it affects
stuff you’re currently working on). Again, we use the cvs

diff command.
work/aladdin> cvs diff -rHEAD Number.txt
Index: Number.txt
==
RCS file: /Users/dave/sandbox/sesame/Number.txt,v
retrieving revision 1.2
retrieving revision 1.1
diff -r1.2 -r1.1
6,7d5
< five
< six

The -rHEAD option tells CVS that we want to compare our lo- -r⇒
Revisioncal copy of Number.txt against whatever revision is the most

recent in the repository (the head of the branch). After an-
other one of those cryptic 6,7d5 lines, we see that two new
lines have been added (which shouldn’t be a surprise). If we
hadn’t specified the -r flag, CVS would compare our local
copy of Number.txt against the repository version that was
checked out to produce it (1.1 in this case). As we haven’t
altered the file in our Aladdin persona, this would show no
changes.

We can update our copy in the aladdin directory to merge in
the changes we made over in sesame.

work/aladdin> cvs update
cvs update: Updating .
U Number.txt

The tracing shows that CVS has Updated the Number.txt file
locally. If we look at it, we’ll see that we now have the two
extra lines.

3.9 Conflict Resolution

So, what happens if two people edit the same file at the same
time? It turns out that there are two scenarios. The first is
when the changes don’t overlap. Simulating this takes a little
effort, so hang in there.

First, edit the copy of Number.txt in the sesame directory.
Make the first line upper case.

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 41

File Number.txt (in sesame):

ZERO

one

two

three

four

five

six

Now edit the version of Number.txt over in aladdin. This
time make the last line upper case.

File Number.txt (in aladdin):
zero

one

two

three

four

five

SIX

What we’ve just done is simulate two developers each mak-
ing local changes to the same file. Right now, these changes
are independent, because the repository knows about neither.
Let’s change that. A coin toss told us that Aladdin checked in
his version of the changed file first.

work/aladdin> cvs commit -m "Make ’six’ important"
cvs commit: Examining .
Checking in Number.txt;
/Users/dave/sandbox/sesame/Number.txt,v <-- Number.txt
new revision: 1.3; previous revision: 1.2
done

A short time later, the sesame developer checks in too. (Re-
member, this version of the file has the first line in upper
case.)

work/sesame> cvs commit -m "Zero needs emphasizing"
cvs commit: Examining .
cvs commit: Up-to-date check failed for ’Number.txt’
cvs [commit aborted]: correct above errors first!

Uh oh! CVS is using words such as “errors,” and even ends
the message with an exclamation mark. We’re doomed.

Or not. Let’s try doing what it (indirectly) suggests and bring
our local version of the file up to date with the repository.
Remember that our file has an upper case “zero,” while the
repository version has an upper case “six.”

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 42

work/sesame> cvs update
cvs update: Updating .
RCS file: /Users/dave/sandbox/sesame/Number.txt,v
retrieving revision 1.2
retrieving revision 1.3
Merging differences between 1.2 and 1.3 into Number.txt
M Number.txt

Notice the additional messages. CVS tells us that it isn’t sim-
ply updating our local file; instead it’s merging our changes
with the repository version. Let’s look at our local version:

File Number.txt:
ZERO

one

two

three

four

five

SIX

Magic! Our version now contains both our changes and the
Aladdin changes. We both edited a file at the same time, and
CVS worked it out.

Before we get too smug, though, remember that our local
change (the ZERO) hasn’t yet been stored in the repository.
We ask CVS to commit our change and it succeeds, because
our local version contains the latest repository revisions.

work/sesame> cvs commit -m "Zero needs emphasizing"
cvs commit: Examining .
Checking in Number.txt;
/Users/dave/sandbox/sesame/Number.txt,v <-- Number.txt
new revision: 1.4; previous revision: 1.3
done

The next time Aladdin updates, he’ll get our changes too.

work/sesame> cd ../aladdin
work/aladdin> cvs update
cvs update: Updating .
U Number.txt

Butting Heads—When Changes Clash

In the previous example, the changes made by the two (vir-
tual) developers didn’t overlap. What happens if two develop-
ers edit the same lines in the same file at the same time? Let’s
find out.

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 43

Go into the sesame directory and change the second line in
Number.txt from “one” to “ichi”. Don’t check this change in.
Now go across to the aladdin directory and change the same
line from “one” to “uno”. Let’s assume that once again Aladdin
gets to check in his changes first.

work/aladdin> cvs commit -m "User likes Italian one"
cvs commit: Examining .
Checking in Number.txt;
/Users/dave/sandbox/sesame/Number.txt,v <-- Number.txt
new revision: 1.5; previous revision: 1.4
done

Now let’s go back to the sesame directory. Remembering that
we’re supposed to be simulating two separate users, we pre-
tend we don’t know about the changes made by Aladdin, and
so try to check in our changes.

work/sesame> cvs commit -m "One should be Japanese"
cvs commit: Examining .
cvs commit: Up-to-date check failed for ’Number.txt’
cvs [commit aborted]: correct above errors first!

We’ve seen this message before: we need to update to get the
repository changes.

work/sesame> cvs update
cvs update: Updating .
RCS file: /Users/dave/sandbox/sesame/Number.txt,v
retrieving revision 1.4
retrieving revision 1.5
Merging differences between 1.4 and 1.5 into Number.txt
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in Number.txt
C Number.txt

Now this looks scary: CVS is telling us that there were con-
flicts found while merging the repository revision in to our
local changes. Have we lost all our hard work? No.

When conflicts happen, it’s mostly because two developers
had some kind of misunderstanding. In this case, one de-
veloper wanted to change the line to Italian, while the other
wanted Japanese. If you think about this for a while, it be-
comes apparent that what we have here is a breakdown in
communication; there’s a problem in the team (or at least in
the team’s process). Whatever the cause, we’re left wondering,
“what should the line really be?” CVS doesn’t have a hotline
to the customer, so it can’t solve the problem. Instead, it adds
special annotations to the file to show what the conflict is. In

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 44

this case if we look at the file Number.txt, we’ll see it now
looks like:

File Number.txt:
ZERO

<<<<<<< Number.txt

ichi

=======

uno

>>>>>>> 1.5

two

three

four

five

SIX

The lines with the <<<<<< and >>>>>>> show where the
conflict occurred. Between them we can see both our change
and the conflicting change in the repository. Time to do some
detective work. The first thing we need to do is to find out who
made the change in the repository. The cvs log command
displays the history of one or more files, so it’ll help us find
out what happened here.

work/sesame> cvs log -r1.5 Number.txt

RCS file: /Users/dave/sandbox/sesame/Number.txt,v
Working file: Number.txt
head: 1.5
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 5; selected revisions: 1
description:

revision 1.5
date: 2003/04/22 18:22:07; author: dave; state: Exp; lines: +1 -1
User likes Italian one
===

Looking at the last couple of lines, we can see the name of the
author of the change, along with their check-in comment. We
wander over and ask him about the change. A quick call to
the customer resolves the problem: the customer wanted the
word “one” in Japanese, and “two” in Italian. Aladdin must
have misheard. Armed with this new information, we can now
resolve the conflict. Edit Number.txt in the sesame direc-
tory, remove CVS’s conflict markers, and make the changes
requested by the customer.

Prepared exclusively for Francilene Procopio Garcia

CONFLICT RESOLUTION 45

File Number.txt (sesame):

ZERO

ichi

due

three

four

five

SIX

Having removed the conflict markers, we can now commit this
file.
work/sesame> cvs commit -m "One is Japanese, two Italian"
cvs commit: Examining .
Checking in Number.txt;
/Users/dave/sandbox/sesame/Number.txt,v <-- Number.txt
new revision: 1.6; previous revision: 1.5
done

CVS actually helped us discover a misunderstanding. We re-
solved the conflict, and everyone’s happy. Optimistic locking
may actually deserve its name. And, just to make things even
less scary, we need to emphasize that conflicts rarely happen
on real projects.

However, it’s also worth noting that CVS is not a mindreader.
It might happen that two people fix the same bug in two dif-
ferent ways. If these changes don’t conflict at the source code
level, CVS will happily accept both, even though it may make
no sense to have both fixes in the same code. The lack of
a conflict means that you haven’t trodden on anyone else’s
changes at the textual level, but you should still rely on unit
tests to verify that the change works.

That’s all for our quick tour around CVS. However, you may
want to leave your sandbox repository lying around. Later on,
you might find it helpful if you want to experiment with a par-
ticular facility before doing it for real in the project repository.

Prepared exclusively for Francilene Procopio Garcia

Chapter 4

How To. . .
Even though version control sounds great in theory, many
teams don’t use it. Sometimes this is because the theory
doesn’t seem to translate into practice too well. It’s all very
well reading a document that says something like “generate
a release branch,” but what does that actually mean when it
comes down to typing in the correct CVS commands?

Another problem is that teams sometimes embrace version
control too vigorously, creating very complex structures to
hold their source, with correspondingly frightening lists of in-
structions for achieving even the simplest task. The result?
Eventually (and in our experience that means very quickly)
the team gives up; using the version control system is seen to
be just too much hassle.

The remaining chapters in this book address both of these
problems. They present a simple way to organize your ver-
sion control system, and a set of basic practices for doing the
everyday things that a team needs to do. We suggest that to
start out you use these basic practices as a set of recipes; fol-
low them whenever you need to achieve a certain result. Try
hard not to deviate too much from them; if you find yourself
wanting to create a scenario we don’t cover, think hard before
proceeding. Perhaps you don’t really need it.

As with any set of recipes, you’ll soon find yourself feeling
more and more comfortable following them. This is the time
to start experimenting slightly. However, we suggest you don’t

OUR BASIC PHILOSOPHY 47

try something new directly in a real project’s repository. In-
stead, set up the scenario in a test repository (such as the one
we set up in the previous chapter) and try things out there.

4.1 Our Basic Philosophy

We think version control is one of the three essential techni-
cal practices; every team needs to be proficient in all three
(the others are Unit Testing [HT03] and Automation [Pro04]).
Every team should be using version control, all the time, and
for everything they produce. So we have to make it simple, ob-
vious, and lightweight (because if we don’t, people will even-
tually stop doing it).

Simplicity means that doing something that should be simple
will actually be simple. Checking in all my changes is a sim-
ple (and common) operation, so the basic operation should
be one or two actions. Creating a new customer release is a
somewhat more complex concept, so it’s OK to use a few more
steps doing it, but it should still be as simple as possible.

Version control has to be obvious: we need to arrange things
so that it is clear what we’re doing, and what version of the
software we’re doing it to. There should be no guessing when
it comes to the source.

Finally, we’re describing a lightweight process; we don’t want
version control to get in the way of getting real work done.

4.2 Organizing a Version Control System

Here are our basic rules for organizing your source in a CVS
repository.

• Before you start, you need to establish an effective and (see page 49)

secure way to access your repository.

• Once you’ve gained access, there is a simple set of CVS (see page 56)

commands that you’ll be using daily.

• Each project that your company develops must be avail- (see page 98)

able as a distinct CVS module. You should be able to
check out a project’s complete source from a single point.

Prepared exclusively for Francilene Procopio Garcia

ORGANIZING A VERSION CONTROL SYSTEM 48

• If projects contain subcomponents that can be worked (see page 106)

on in isolation, or if you intend to share components be-
tween projects, these components should be stored in
named modules.

• If your project incorporates code from third parties (ven- (see page 118)

dors, or perhaps open-source projects), you need to man-
age this as a resource.

• Developers use tags to identify significant points in time, (see page 86)

including releases, bug fixes, and the start of major code
experiments.

Prepared exclusively for Francilene Procopio Garcia

Chapter 5

Accessing the Repository

Before we describe all the individual CVS techniques, there’s
an important first step: you actually need to be able to access
the repository.

So far all our experiments have been with a local repository,
one that’s on the same machine as its user(s). However, this
is unlikely to be an effective way of working with teams. Here
you need a central repository with each user accessing it over
the network from their own machine. In this section we’ll
discuss the various options for connecting to the repository,
and give guidance on selecting the method that’s right for your
team.

CVS gives you a number of options for accessing a repository
over a network, and this can be confusing. So, let’s start with
something reassuring: it doesn’t much matter if you chose the
wrong method to start with. The connection method doesn’t
affect the repository at all, so you can always switch to a dif-
ferent method without affecting any of your work.

Second, it’s important to note that you don’t have to chose a
single connection method. You may have some clients con-
necting one way, and others connecting using a totally dif-
ferent method. In fact, this might well be the best way of
organizing things if you have some developers in house and
others accessing the repository over the Internet.

CHAPTER 5. ACCESSING THE REPOSITORY 50

Most remote CVS repositories are accessed using one of two
techniques: pserver or external. In pserver mode, CVS runs
a server process on the repository machine, and all clients
connect to it. In this way, CVS is like a web server or an ftp
server: it handles the connection details and manages secu-
rity. Pserver mode has some advantages:

• It is relatively simple to set up.

• It can enforce read-only users (people who can check out
and update, but not commit changes).

• It supports anonymous access (a facility commonly used
by open source projects to grant repository access to the
unwashed masses).

However pserver mode also has some drawbacks.

• It uses its own network port, and many corporate fire-
walls will not allow this traffic to pass.

• It uses very weak encryption of passwords, and file con-
tents are transmitted in cleartext.

• It requires separate administration (that is to say, if you
already administer remote access for users to the repos-
itory box for other purposes, you’ll be duplicating some
effort with CVS users).

Because of these issues, we recommend that pserver mode
only be used to provide remote, anonymous access to the
repository.

Accessing the repository using the ext (or external) method
works slightly differently. Here, CVS uses existing operating
system commands to set up a data pipe (or tunnel) between
the client and the server. The default version of external CVS
uses a program called rsh (which stands for “remote shell”).
This is somewhat unfortunate. rsh was developed back when
networking meant stringing some cable across the lab and
when every network user was a trusted friend. rsh is conve-
nient, but not particularly secure; rsh traffic should never be
allowed to enter your network from the public Internet.

Fortunately there’s a secure and plug-compatible alternative,
ssh. We strongly recommend that all external access to CVS

Prepared exclusively for Francilene Procopio Garcia

SECURITY AND USER ACCOUNTS 51

repositories should be through ssh tunnels. If you want to
use rsh for internal access, go ahead. Just make sure that
if you’re working in a hotel room and need to access your
repository, you switch across to ssh. (The good news here is
that because ssh and rsh are compatible, you can use both
with the same working copy of the repository, as we’ll see in a
minute.)

So, to summarize:

1. For internal access, any method works. We recommend
using ssh tunneling, simply because you may as well
using a single method for all access.

2. For regular external access, use ssh tunneling.1

3. To provide anonymous public access to your repository,
use pserver mode.

So, having decided on a connection method, how do you ac-
tually use it? To some extent that depends on the tool you’re
using. Here we’ll show how you do it from the command line;
if you use a GUI tool or IDE, consult its documentation for
details for your environment.

5.1 Security and User Accounts

CVS has the concept of users: people who access and make
changes to the repository. It doesn’t matter whether you use
pserver or ssh access, you’ll have to have a user id in order to
be able to access CVS.

With ssh mode, you have to be able to log in to your server
using a valid user id for that server. This means that every
CVS user must correspond to a user account on the server (in
Unix terms, you must have an entry in the /etc/password

file).

With pserver mode, you have more flexibility. You can set up
accounts that correspond to server’s user accounts, or you
can set up the server to have CVS-specific user ids which

1CVS also supports Kerberos and GSSAPI access, but these are rarely
used in practice.

Prepared exclusively for Francilene Procopio Garcia

CVSROOT: THE DESTINATION PARAMETER STRING 52

(to some extent) are independent of the operating system’s
user accounts. All this mapping of user names is done by the
repository administrator (using the file passwd in the reposi-
tory’s CVSROOT module). The details of this configuration are
beyond the scope of this book. (Reader Ray Schneider wrote
to remind us that there are freely available tools that help ad-
minister pserver. He mentions both cvsadmin and cvspadm.)

Either way, the repository administrator might be tempted to
cheat and set up a single user id which everyone uses to ac-
cess the repository. Although this works, it is really not a
good idea. One of the benefits of CVS is that it keeps track of
who did what; a year from now you can look through the logs
and find out who altered a certain line in a particular source
file. You lose this flexibility if everyone is known to CVS as
cvsuser.

Having separate user ids also allows the repository adminis-
trator to set up access controls for parts of the repository. For
example, it might be corporate policy to give all members of a
team full access to their project’s code, but read-only access
to other teams’ code. Although setting up this kind of access
control is beyond the scope of this book, you clearly need to
be able to identify individual users in order to implement it;
using just a single user account on the server defeats these
types of access control rules.

5.2 CVSROOT: The Destination Parameter
String

CVS uses something similar to a URL to specify the location of
the repository. This string, sometimes called the CVSROOT ,
encodes the access type, along with the user, server, name,
and location of the repository you want to use. The syntax of
this string is relatively messy:

:type :user @server :repository location

The values that you enter for the various fields depend on the
type of access you want to use, ssh or pserver. We’ll look at
the specifics shortly. First, we have to know how to pass these
values into CVS.

Prepared exclusively for Francilene Procopio Garcia

CVSROOT: THE DESTINATION PARAMETER STRING 53

Passing CVSROOT to CVS Commands

Many CVS commands accept the -d parameter, allowing you
to specify the CVSROOT explicitly. We’ve already seen this
facility when we first created our sandbox repository.

work> cvs -d ˜/sandbox checkout project

This same technique works with the more complex client-
server connection methods as well. For example, if you were
connecting using the pserver method to a repository on the
server xyz.com in the directory /var/cvs, and if your ac-
count on that machine was called wilma, you could check
out using:

work> cvs -d :pserver:wilma@xyz.com:/var/cvs checkout proj1

Remembering to enter this string every time you use CVS isn’t
easy. Fortunately you don’t have to. When you’re first setting
up a workspace, or when you’re using other commands that
require an explicit repository location, you can save some typ-
ing by establishing a default repository to use. Command line
users can do this by setting the CVSROOT (and possibly the
CVS RSH) environment variables. CVSROOT tells CVS the de-
fault repository to use (and is equivalent to the -d parameter).
CVS RSH tells CVS what program to use when the connection
method is :ext:—we’ll want to use ssh.

To set these environment variables in Windows, right-click My
Computer, select the “Advanced” tab, and click on “Environ-
ment Variables.” For a single interactive session, you can also
use the shell.
C:\> set CVSROOT=:pserver:wilma@xyz.com:/var/cvs

In Unix, the solution depends on the shell you use. For bash,
zsh, and their ilk, add something like the following to your
.profile (the export command sets an environment variable
globally; without it, the variable would disappear once your
profile had finished executing).

export CVSROOT=:pserver:wilma@xyz.com:/var/cvs

Under the C shell, you’d use setenv rather than export to
achieve the same thing.

Prepared exclusively for Francilene Procopio Garcia

SETTING UP SSH ACCESS 54

Once you’re working inside a checked-out tree, CVS automat-
ically defaults to using the repository that holds the files in
this tree.

5.3 Setting up ssh Access

Before using ssh tunneling with CVS, you’ll need a working
ssh setup that lets you communicate between your client ma-
chines and the CVS repository machine. You can buy com-
mercial versions of ssh (for example from www.ssh.com) or
use open source versions (such as www.openssh.com). Set-
ting up ssh is beyond the scope of this book; for our purposes
we assume that you’ve got it installed, and that you can log in
using the command:

ssh -l user my.server.machine

In order to use ssh with CVS, you need to know your user
name on the server, the name of the server machine, and
the location of the repository directory on that machine. (A
server can handle multiple repositories: you select the one
you want to use at this stage.) Armed with this information,
you can then set your CVSROOT environment variable, speci-
fying the remote machine and repository. You specify a type
of ext, telling CVS to use an external program to tunnel its
way through the network. Because you’re using an external
program to access CVS, you need to tell it which one by set-
ting the CVS RSH environment variable. In this case, we use
ssh.

To access the repository /var/repository on the machine
my.repository.com, logging in as the user dave, you’d set
your environment variables as follows:

CVSROOT :ext:dave@my.repository.com:/var/repository
CVS RSH ssh

In Windows, you can use the GUI to set environment variables
(as described previously), or you can set the values from the
command line. In Windows, the commands would be:

C:\> set CVS_RSH=ssh

C:\> set CVSROOT=:ext:dave@my.repository.com:/var/repository

Prepared exclusively for Francilene Procopio Garcia

www.ssh.com
www.openssh.com

CONNECTING USING PSERVER 55

In Unix, add something like the following like to your .profile:

export CVS_RSH=ssh
export CVSROOT=:ext:dave@my.repository.com:/var/repository

Once this magic is complete, all your cvs commands will au-
tomatically be tunneled through a secure, encrypted link to
the server.

5.4 Connecting Using pserver

If you’ve decided to use pserver to access your repository, then
your repository administrator will need to set up a CVS pass-
word for you on the server.

As with the ssh approach, it’s probably easiest to set the
CVSROOT environment variable to tell your client where to find
the repository. This time, you’ll be using the pserver access
method, rather that ext. There’s no need to set the CVS RSH

variable when using pserver.

CVSROOT=:pserver:dave@my.repository.com:/var/repository
export CVSROOT

However, before you start issuing CVS commands, you first
have to log in (not surprisingly, using cvs login):

cvs login

You’ll be prompted for a password (which will have been given
to you by the repository administrator). You should only have
to enter this password once, as CVS remembers it for you
between sessions. If you are (rightly) concerned about the
security implications of this, you can use the cvs logout

command to make CVS forget your password. However, if
you’re really concerned about security, you should probably
be using ssh tunneling anyway.

Prepared exclusively for Francilene Procopio Garcia

Chapter 6

Common CVS Commands
In the chapter Getting Started (starting on page 24) we ex-
plored CVS by creating a dummy project and experimenting
with some basic commands. In this chapter we’ll take this
further. Here we’ll be presenting a set of recipes: the CVS
commands that you use to do everyday tasks.

This section is not exhaustive. Later on in this book we’ll be
looking at more advanced issues, such as release manage-
ment, workspaces, and managing third-party code. However,
the commands and techniques in this chapter should handle
90% of the work you do with CVS.

These examples assume that you have your repository up and
running, and that you have your environment set up to refer-
ence that repository. In fact, that latter point is the subject of
the first recipe.

6.1 Checking Things Out

The cvs checkout command (often abbreviated to cvs co)
takes a portion of the repository and places it in your local
workspace. (We have a lot to say about workspace manage-
ment starting on page 106.)

The simplest form checks out one or more modules or sub-
modules into local directories with the same name. The fol-
lowing commands check out the contents of the repository

CHECKING THINGS OUT 57

modules client and server, storing them as subdirectories
of the work/ directory.

˜> cd work
work> cvs co client server

In the section on submodules starting on page 106, we’ll show
you how you can also check out just part of a directory tree.
The following checks out just the files stored in and below
client/templates, storing them in the directory tree start-
ing at work/client/templates.

work> cvs co client/templates

By default CVS checks out the head of the default branch
(normally the mainline). You can override this using the -r or
-D options.

The -r option lets you check out a specific revision. The re-
vision can be specified using absolute version numbers (such
as 1.34), or by using tags. Because CVS keeps separate revi-
sion histories for each file, it’s normally pretty meaningless to
check out an entire project based on absolute version num-
bers (version 1.34 of File1.java might have been created
two months after version 1.34 of File2.java). Instead, you’ll
probably use tags. We’ll talk about tags in more detail later,
but basically they are a symbolic name you can give to the
current state of a set of files. As well as tags that you create,
CVS provides two “magic” tags: HEAD represents the most re-
cent version in the repository, and BASE refers to the revision
you most recently checked out into the current directory. Un-
less you’re messing around with tags and branches (which we
cover in Chapter 7), you won’t have to worry about HEAD, as
it’s the default for most commands.

work> cvs co -r REL_1_34 client

While the -r tag checks files out according to their version
number, the -D tag checks out by date. The date that fol- -D⇒

by Datelows the -D option can be in a variety of formats, includ-
ing ISO8601, Internet e-mail standard, and various abbre-
viations. See Table 6.1 on the next page for details.

Once you check out a directory tree for a particular revision,
that revision is “sticky.” This means that all subsequent work
in that checked-out tree applies to that revision. This only

Prepared exclusively for Francilene Procopio Garcia

CHECKING THINGS OUT 58

Specification Examples

ISO8601 2003-06-04
20030604
2003-06-04 20:12
2003-06-04T20:12
2003-06-04 20:12Z
2003-06-05 20:12:00-0500

E-Mail format Mon Jun 9 17:12:56 CDT 2003
Mon, Jun 9 17:12:56 2003
Jun 9 17:12:56 2003
June 9, 2003

Relative 1 day ago
27 minutes ago
last monday
yesterday
third week ago

Table 6.1: Sample date specifications accepted by the CVS -D
option.

makes sense if the revision that you check out corresponds to
a branch (such as a release branch, which we cover in depth
starting on page 89). If you do a cvs status command on a
file with a sticky tag, you’ll see that tag listed.

Sticky tags are CVS’s mechanism for letting you work with
multiple copies of files. By associating a tag with the file, CVS
knows that you’re working with a file from a particular point
in the past, or from a particular branch in the repository tree.
Because of this, CVS knows not to do things such as overwrite
the version of the file at the head of the mainline when you
next check in.

If you are checking out multiple releases into the same work-
space, you’ll probably want to override CVS’s choices of di-
rectory names (otherwise the REL 1 34 version of client will
overwrite the current version of client). You can specify the
directory to check out into using the -d option (which in this
case will put the files in a directory called rel1.34).

work> cvs co client
work> cvs co -r REL_1_34 -d rel1.34 client

Prepared exclusively for Francilene Procopio Garcia

KEEPING UP TO DATE 59

6.2 Keeping Up To Date

If you’re not the only person working on a project, the chances
are pretty good that the repository is being updated by others
even as you are working. It’s a good idea to incorporate their
changes into your working copy fairly frequently; the longer
you leave it, the bigger the hassle of fixing any conflicts.1 We
typically update our working copies every hour or so through-
out the day.

The cvs update command is issued in a working directory.
It brings all files in the directory (and its subdirectories) up
to date with the repository. However, by default it does not
create any new directories that were added to the repository
since you last checked out; to do this, add the -d option. The
following command updates all the files and directories in the
client project.

work> cd client
work/client> cvs update -d

You can choose to update just part of your checked-out tree.
If you issue the command in a subdirectory of a project, then
only files at or below that point will be updated. This may
save time, but is also leaves you exposed to working on an
inconsistent set of files.

You can also specify one or more individual files or directories
to update by naming them on the command line.

work/client> cvs update File1.java templates

During the update process, CVS will trace the names of all
directories it enters, and will show the status of each file
with significant activity. For example, the following is the log-
ging produced when updating the directory tree containing
the Pragmatic Starter Kit books.

StarterKit> cvs update
? SourceCode/tmpdoc.ilg
? SourceCode/tmpdoc.toc
cvs server: Updating .
RCS file: /home/CVSROOT/PP/doc/StarterKit/pragprog.sty,v

1Frequent merges serve another purpose. If another developer is going
down the wrong path, or if their changes are promising to be problematic in
the long term, you’ll find out sooner if you merge often. The earlier you get
this feedback, the less the pain involved in fixing the problem.

Prepared exclusively for Francilene Procopio Garcia

KEEPING UP TO DATE 60

retrieving revision 1.16
retrieving revision 1.17
Merging differences between 1.16 and 1.17 into pragprog.sty
M pragprog.sty
cvs server: Updating SourceCode
A SourceCode/CommonCommands.tip
M SourceCode/HowTo.tip
A SourceCode/Releases.tip
cvs server: Updating SourceCode/images
cvs server: Updating UnitTest
P UnitTest/DesignIssues.tip
U UnitTest/InAProject.tip
P UnitTest/Introduction.tip
cvs server: Updating UnitTest/code
U UnitTest/code/Age.java
U UnitTest/code/TestMyStack.java
U UnitTest/code/testdata.txt
cvs server: Updating UnitTest/code/rev1
cvs server: Updating UnitTest/code/rev2
cvs server: Updating UnitTest/code/rev3
cvs server: Updating util

Lines starting with a question mark show files that are in
the local workspace that CVS doesn’t know about. See Sec-
tion 6.4 on page 67 for information on removing this tracing.
Lines starting with “A” show files that have been added locally
but not yet committed to the repository, while “M” flags files
that have been locally modified. “U” and “P” show files that
have been updated because their repository versions are more
up-to-date than our local ones. The recipe section contains a
complete list of these flag characters on page 134.

Also notice that this logging shows a file, pragprog.sty, that
has been modified by both authors. In this case, CVS was able
to reconcile the changes and update Dave’s locally modified
copy with Andy’s changes too. Sometimes the changes over-
lap, and so CVS flags the file with a “C,” indicating a merge
conflict. See Section 6.8 on page 75 for details of handling
merge conflicts.

The output from cvs update can be fairly verbose. You can -q⇒
Quietcut down on the amount of tracing using the global CVS -q

option (yes, it goes before the “update” command).

work/client> cvs -q update -d

Prepared exclusively for Francilene Procopio Garcia

KEEPING UP TO DATE 61

Joe Asks. . .
What are all these CVS options?

In some ways, CVS is more like a subsystem than a
single command. When you type (say):

cvs checkout

the initial “cvs” identifies that you’re talking to CVS,
and the “checkout” identifies the subcommand that
you want to execute.

Because of this, CVS has two separate places where
you can specify options. Options that are global to
the CVS subsystem (such as the -d option that speci-
fies the location of the repository, and -q, which asks
for a less logging) have to appear immediately after
the cvs command. Options that are specific to a
particular subcommand appear after that subcom-
mand’s name. One such specific option is -d flag of
the checkout subcommand, which overrides the de-
fault destination of the checkout. Thus the following
CVS command will check out quietly from the reposi-
tory at /usr/repository, storing the result in the di-
rectory temp.

cvs -q -d /usr/repository checkout -d temp

Tell CVS to operate
quietly.

Specify the CVS
repository.

Override the
default destination
directory.

Prepared exclusively for Francilene Procopio Garcia

ADDING FILES AND DIRECTORIES 62

6.3 Adding Files and Directories

The cvs add commands tells CVS that files and directories
should be added to the repository.

proj> mkdir timelib
proj> cvs add timelib
Directory /Users/.../proj/timelib added to the repository
proj> cd timelib
proj/timelib> #.. create and edit file Time.java ...
proj/timelib> cvs add Time.java
cvs add: scheduling file ‘Time.java’ for addition
cvs add: use ’cvs commit’ to add this file permanently

If you want, you can add a creation message using the -m

option (although that’s not very common). More useful is the
-kb option, used to flag a file as binary.

CVS and Binary Files

CVS is designed to deal primarily with files that contain text:
programs, XML, and so on. This means it can do some clever
things:

• It can store each revision as a set of changed lines, rather
than storing the whole file for each change.

• It can deal with the differences in line endings between
operating systems (in particular the newline versus car-
riage return/newline difference between Unix and DOS
or Windows).

• It can add annotations to files by substituting certain
keywords (a feature that we don’t recommend using, see
the sidebar on the following page).

However, give CVS a binary file to manage (a DLL, perhaps, or
a Word document), and these features cause things to break.

• The tools that CVS uses to calculate the differences be-
tween revisions don’t work on binary files.

• Binary files don’t have line endings as such. Changing
every occurrence of a byte containing a newline to two
bytes containing a carriage return and a newline will
probably break the file.

Prepared exclusively for Francilene Procopio Garcia

ADDING FILES AND DIRECTORIES 63

Joe Asks. . .
Why Not Use CVS’s Keywords?

If you use certain “magic” sequences, things such
as $Author$ and Log, CVS will augment them
with additional text each time you check the file out.
The $Author$ keyword will be changed to include
the name of the person who committed the revision
you’re fetching. The Log keyword will prompt CVS
to insert a full log of the changes to the file into the file
itself.

Initially, this seems like a good idea: you’re adding
documentation to the file, and it costs you no effort.
What could be wrong with that?

There are three problems with keyword expansion,
one philosophical, and two practical.

The philosophical problem is that you’re duplicating
information. Everything that can be inserted using
keywords is already stored within CVS (it has to be,
otherwise CVS couldn’t add it in the first place). So
why not just go to the horse’s mouth and ask CVS di-
rectly. That way you’ll get authoritative information
that’s guaranteed to be up to date.

The second problem is that all this extra stuff in the
source files gets in the way of reading the code.
We’ve seen source with two or three full pages of log
messages at the top of it, all before you get to a sin-
gle line of real code. Code is there to be read, and
anything that gets in the way of reading it is bad.

The third problem is that once you have keywords
in CVS files, it becomes awkward to merge changes
between different branches, or move files between
repositories. You have to remember to use the right
options at the right times, and somehow that always
seems to get forgotten just before a major release.

So, keyword expansion really doesn’t have many
benefits, and it has several drawbacks. We recom-
mend not using it.

Prepared exclusively for Francilene Procopio Garcia

ADDING FILES AND DIRECTORIES 64

• If a binary file happens to contain a sequence that looks
like a CVS keyword, it would be wrong to expand it;
again, you’d likely break the file’s format.

To deal with this, CVS has a hack. If you specify the -kb -kb⇒
Keyword:
Binary

option when you add a file, you’re telling CVS to treat the
file as binary. It stores complete copies of the file at each
revision, and does no end-of-line or keyword processing. So,
when adding a binary file, it is important to remember to use
the -kb flag.

work> cvs add -kb DataFormat.doc

However, just because it is important doesn’t mean we always
remember to do it. Fortunately, we can recover the situation.

If we realize that we didn’t use the -kb option before we check
in, we will have to re-add the file, this time with the correct
flag. This is slightly tricky, because before adding it a second
time we have to remove it, and we can’t remove it while the
file still exists in my working directory. To get around this, we
have to rename the file temporarily using the Unix mv com-
mand. (The Windows equivalent is ren.)

work> cvs add DataFormat.doc #<-- forgot the -kb option
cvs add: scheduling file ‘DataFormat.doc’ for addition
cvs add: use ’cvs commit’ to add this file permanently
work> mv DataFormat.doc Temp.doc
work> cvs remove DataFormat.doc
cvs remove: removed ‘DataFormat.doc’
work> mv Temp.doc DataFormat.doc
work> cvs add -kb DataFormat.doc #<-- use the option
cvs add: scheduling file ‘DataFormat.doc’ for addition
cvs add: use ’cvs commit’ to add this file permanently
work> cvs commit -m "Add new data format document"

If we realize our mistake only after we’ve checked the file in,
things get a little tricker. The safest way to fix this is to change
the flag in the repository, and then update the repository with
a known, working copy of the binary file. Let’s say that we
incorrectly committed DataFormat.doc without the -kb flag.
Here’s what we’d do.
work> # reset the flag in the repository
work> cvs admin -kb DataFormat.doc
work> # then reset the flags in our workspace
work> cvs update -A DataFormat.doc
work> # copy a known good copy over this file
work> cp ˜/docs/DataFormat.doc DataFormat.doc
work> # and save this back in the repository
work> cvs commit -m "Reset -kb flag"

Prepared exclusively for Francilene Procopio Garcia

ADDING FILES AND DIRECTORIES 65

If you spend a lot of time dealing with binary files, you might
want to investigate the cvswrappers facility, which allows
you specify to CVS the characteristics of files based on their
names. We cover this in the next section, but you can safely
skip this if you want.

File Characteristics and cvswrappers

The CVS wrapper facility allows you to set the default char-
acteristics of files based on their file names.2 You can specify
wrappers in three ways:

1. In the file CVSROOT/cvswrappers in the repository.

2. In a per-user .cvswrappers file (note the leading dot).
This file must be stored in your home directory. To us,
this seems like a questionable practice; if a set of file
names should be treated specially, then it makes sense
to do it globally for the repository, and not just for one
user of the repository.

3. Via the -W command line option to the cvs import and
cvs update commands. This is useful for one-offs, par-
ticularly when importing existing trees.

In all cases, you specify a pattern that matches one or more
filenames, and then the CVS options you want to use for files
whose names match that pattern. For example, you may be
about to import an existing source tree that contains a large
number of Java .jar files and Microsoft Word documents.
Both types of files are binary, and should be added with the
-kb option.

We could handle this in a couple of ways. If this was the
only time we were likely to be adding these types of file to
our repository, you could use the -W option to cvs import. -W⇒

Define wrapperYou’d have to specify -W twice on the command line, once
for each pattern to match. There’s also some fairly arcane
escaping to be done to get the various quotation marks and

2The wrappers facility lets you do more than this. For example, you can
also specify the names of programs to filter files as they pass in to and out
of the repository. All this additional functionality is beyond the scope of this
book.

Prepared exclusively for Francilene Procopio Garcia

ADDING FILES AND DIRECTORIES 66

asterisks to pass cleanly from the command line into CVS. For
our particular shell, the command would look something like
the following.

myproj> cvs import -W "*.jar -k ’b’" -W "*.doc -k ’b’" \
-m ’’ myproj ...

The problem with using the -W option is that it’s easy to for-
get to use it the next time you import something. Because
of this, you might want to look at setting the options perma-
nently in the cvswrappers file, stored in the repository under
CVSROOT. First, check out the CVSROOT files.

tmp> cvs co CVSROOT
cvs checkout: Updating CVSROOT
U CVSROOT/checkoutlist
U CVSROOT/commitinfo
U CVSROOT/config
U CVSROOT/cvswrappers
U CVSROOT/editinfo
U CVSROOT/loginfo
U CVSROOT/modules
U CVSROOT/notify
U CVSROOT/rcsinfo
U CVSROOT/taginfo
U CVSROOT/verifymsg

Now change into the checked-out CVSROOT directory and edit
the file cvswrappers. To add the -kb option to .jar and
.doc files, add the following two lines to the end of the file
using your favorite editor.

*.jar -k ’b’
*.doc -k ’b’

Now commit these changes back to the repository.

tmp/CVSROOT> cvs commit -m "Make all .doc/.jar files binary"
cvs commit: Examining .
Checking in cvswrappers;
/Users/dave/sandbox/repo/CVSROOT/cvswrappers,v <-- cvswrappers
new revision: 1.2; previous revision: 1.1
done
cvs commit: Rebuilding administrative file database
CVSROOT> cd ..
tmp> cvs release -d CVSROOT
U cvsignore
U cvswrappers
U loginfo
U modules
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘CVSROOT’: yes

Prepared exclusively for Francilene Procopio Garcia

IGNORING CERTAIN FILES 67

6.4 Ignoring Certain Files

During development, we generate lots of intermediate files. C
programmers generate object files, Java programmers gener-
ate class files, and we all generate the ubiquitous temporary
files. Transient files such as these should not be stored in the
repository; they should be rebuilt from the source files when
needed. However, if you just leave them lying around, CVS
will complain about them every time you do an update or a
commit.3 Fortunately there’s a simple way to tell CVS not to
bother with certain files.

If a directory contains a file called .cvsignore (note the lead-
ing “dot”), CVS will read its contents as a list of files to be
ignored in that directory. Each line in the .cvsignore file
can be a single file name or a pattern that matches multi-
ple files. For example, if you’re working in the client di-
rectory and you want CVS to ignore a temporary source file,
Dummy.java, along with all class and log files, you could cre-
ate a .cvsignore file containing the following lines:

File .cvsignore:

Dummy.java

*.class

*.log

You then have an option. If you check the .cvsignore file in
to CVS, other developers will ignore the same set of files in this
directory the next time they check out. If you don’t check it
in, then the rules it contains will apply just to you. In general
we recommend checking in .cvsignore files; it means that
everyone is working with the same environment.

work/client> cvs add .cvsignore

work/client> cvs commit -m "Ignore Dummy, log, class files" \
.cvsignore

3“Complain” is probably too strong a term. CVS will list the names of
the files with a question mark next to each, indicating its bemusement that
someone would have files lying around that it doesn’t know about.

Prepared exclusively for Francilene Procopio Garcia

RENAMING FILES 68

6.5 Renaming Files

Taking a tip from the elephant family, CVS never forgets. Most
of the time this is a good thing, but it can be a pain when it
comes to renaming files (and, as we’ll see, it’s an even bigger
pain when it comes to renaming directories).

You can’t directly rename a file using CVS. Instead, you re-
name a working copy of the file in your local workspace, tell
CVS to remove the old file from the repository (using cvs

remove), and then add the file back under the new name.

For example, let’s assume that we want to rename our file
Contacts.java to ContactMgr.java. We need to go through
the following steps:

proj> cvs -q update -d
proj> mv Contacts.java ContactMgr.java
proj> cvs remove Contacts.java
cvs remove: scheduling ‘Contacts.java’ for removal
cvs remove: use ’cvs commit’ to remove this file permanently
proj> cvs add ContactMgr.java
cvs add: scheduling file ‘ContactMgr.java’ for addition
cvs add: use ’cvs commit’ to add this file permanently
proj> cvs commit -m "Rename Contacts.java to ContactMgr"
cvs commit: Examining .
cvs commit: Examining timelib
RCS file: /Users/dave/sandbox/proj/ContactMgr.java,v
done
Checking in ContactMgr.java;
/Users/.../proj/ContactMgr.java,v <-- ContactMgr.java
initial revision: 1.1
done
Removing Contacts.java;
/Users/.../proj/Contacts.java,v <-- Contacts.java
new revision: delete; previous revision: 1.6
done

There are a couple of side effects of doing this. The first is that
the new file starts again at revision 1.1. All the previous revi-
sion history stays with Contacts.java; the file ContactMgr.
java starts off with a clean slate.

The reason for this is that Contacts.java is actually still in
the repository; it’s just been moved into a special area (called
the Attic) where it won’t participate in CVS operations. As
of revision 1.7, the file no longer exists. However, remember
that one of CVS’s jobs is to act as a time machine. If I want to
build the software as it was yesterday, I expect to see the file
Contacts.java magically reappear.

Prepared exclusively for Francilene Procopio Garcia

RENAMING FILES 69

Because the file with the new name starts at revision 1.1, it
won’t contain the history that the file with the original name
had. To get to this history (the log messages, changes, and so
on) you’ll need to tell CVS to look at the original name.

Similarly, even though the file is no longer in our workspace,
we can ask CVS for its status. The result tells us that the file
is not in our workspace and that as of version 1.7 it has been
shuffled off into the Attic.
proj> cvs status Contacts.java
==
File: no file Contacts.java Status: Up-to-date

Working revision: No entry for Contacts.java
Repository revision: 1.7 /Users/.../proj/Attic/Contacts.java,v

Let’s try checking out revision 1.6 (the last version where it
actually existed).

proj> cvs update -r1.6 Contacts.java
U Contacts.java
proj> cvs status Contacts.java
==
File: Contacts.java Status: Up-to-date

Working revision: 1.6 Thu Jun 12 23:57:33 2003
Repository revision: 1.6 /Users/.../proj/Attic/Contacts.java,v
Sticky Tag: 1.6
Sticky Date: (none)
Sticky Options: (none)

It comes back successfully, as we’d hoped. However, it is an
anachronism in a workspace that contains otherwise up-to-
date files, so let’s use the -A option of cvs update to tidy
things up. The -A option effectively brings a workspace back -A⇒

clearAll flagsinto the state it should be in according to the repository.

proj> cvs update -A
cvs update: Updating .
cvs update: warning: Contacts.java is not (any longer) pertinent
cvs update: Updating timelib

What happens if sometime later we create a new file and call
it Contacts.java, just like the deleted one. That won’t phase
CVS at all; it’ll just add it to the repository with the next avail-
able revision number for that file (1.8). If you subsequently
ask CVS for revisions prior to 1.7, you’ll get the old version
(stored in the Attic). If you ask for later revisions (or if you
just use the default latest revision) you’ll get the new file.

Prepared exclusively for Francilene Procopio Garcia

RENAMING A DIRECTORY 70

6.6 Renaming a Directory

Renaming files in CVS is fairly straightforward. The steps
for renaming directories follow a similar pattern, but they’re
somewhat more awkward.

1. Create the new directory.

2. Add the new directory to CVS.

3. Move the files from the old directory to the new.

4. Use cvs remove in the old directory to tell CVS that the
files are no longer there.

5. Use cvs add in the new directory to add the files there.

6. Commit the changes, and do a cvs update with the -P -P⇒
Prune directoriesoption to remove the old directory from your workspace.

(The -P option prunes empty directories.)

We’ll illustrate this by renaming the directory timelib (which
contains the single file Time.java) to timelibrary. In this
example, we’ll use the Unix shell commands mkdir, mv, and
ls, which create directories, move files, and list directory con-
tents respectively. Under Windows, the command to create a
directory is also called mkdir. The ren command renames
files, and dir lists directory contents.

proj> mkdir timelibrary
proj> cvs add timelibrary
Directory /Users/.../proj/timelibrary added to the repository
proj> mv timelib/Time.java timelibrary
proj> cvs remove timelib/Time.java
cvs remove: scheduling ‘timelib/Time.java’ for removal
cvs remove: use ’cvs commit’ to remove this file permanently
proj> cvs add timelibrary/Time.java
cvs add: scheduling file ‘timelibrary/Time.java’ for addition
cvs add: use ’cvs commit’ to add this file permanently
proj> cvs commit -m "Rename timelib/ to timelibrary/"
cvs commit: Examining .
cvs commit: Examining timelib
cvs commit: Examining timelibrary
Removing timelib/Time.java;
/Users/dave/sandbox/proj/timelib/Time.java,v <-- Time.java
new revision: delete; previous revision: 1.1
done
RCS file: /Users/.../proj/timelibrary/Time.java,v
done
Checking in timelibrary/Time.java;
/Users/.../proj/timelibrary/Time.java,v <-- Time.java
initial revision: 1.1
done

Prepared exclusively for Francilene Procopio Garcia

SEEING WHAT’S CHANGED 71

proj> cvs update -P
cvs update: Updating .
cvs update: Updating timelib
cvs update: Updating timelibrary
proj> ls
CVS ContactMgr.java Numbers.txt timelibrary

Clearly this is not an optimal process; lack of built-in support
for renaming is one of CVS’s biggest weaknesses.

There’s another minor annoyance. If someone comes along in
the future and checks out a fresh copy of our project, they’ll
get Time.java correctly appearing in timelibrary/. How-
ever, they’ll also get an empty timelib/ directory, a place
holder for the deleted files. You can remove this by doing a
cvs update with the -P option, or by using -P on the original
checkout.

6.7 Seeing What’s Changed

The cvs diff command allows you to view the differences
between versions of files. You can compare the version of a
file in the repository with your locally modified copy, and you
can see the differences between two versions of a file in the
repository.

The simplest version of cvs diff shows you the changes
you’ve made to a file or files.

work/client> cvs diff File1.java
Index: File1.java
==
RCS file: /Users/dave/sandbox/proj/File1.java,v
retrieving revision 1.2
diff -r1.2 File1.java
10c10,12
< total += amount;

> if (amount.isPositive()) {
> total += amount;

> }

This output shows that when we last checked out File1.

java it was at revision 1.2. We subsequently edited it, adding
an if statement around the addition.

Some folks find context diffs easier to read; they show not -c⇒
Context diffjust the change, but a section of the file before and after the

change was made. Just add the -c flag.

Prepared exclusively for Francilene Procopio Garcia

SEEING WHAT’S CHANGED 72

work/client> cvs diff -c File1.java
Index: File1.java
==
RCS file: /Users/dave/sandbox/repo/proj/File1.java,v
retrieving revision 1.2
diff -c -r1.2 File1.java
*** File1.java 2003/06/10 19:52:36 1.2
--- File1.java 2003/06/10 19:53:20

*** 7,13 ****

public void addInterestPayment(Money amount) {
! total += amount;

}
--- 7,15 ----

public void addInterestPayment(Money amount) {
! if (amount.isPositive()) {
! total += amount;

! }
}

As we saw back page on page 36, there’s another format for
cvs diff listings. You can request side-by-side diffs using
the option --side-by-side.

There’s a hidden gotcha in all of these forms of cvs diff. The
command shows the differences between the file you checked
out and the file as it is now in your workspace. However,
if someone has subsequently changed the file and checked
those changes in, you won’t see them in the diff. We’ll see
how to handle this shortly.

Finding Differences Between Versions

We’ve already seen CVS’s -r and -D options when we looked
at the checkout and update commands. The -r option allows
us to specify a revision or tag, and -D allows us to specify a
date. We can use these options with cvs diff as well. You
can specify either option once or twice. If an option is specified
once, you’re asking CVS to find the differences between that
revision in the repository and your local working copy. If you
specify the options twice, CVS lists the differences between
the two revisions in the repository (your local changes are not
shown in this case).

For example, on page 60 we showed an example of a cvs

update command that generated a merge; the local copy had
been changed, and so had the version in the repository. We

Prepared exclusively for Francilene Procopio Garcia

SEEING WHAT’S CHANGED 73

might be curious to see just what changes had been made in
the repository since we checked the file out. The message that
was logged was as follows:

doc/StarterKit> cvs update
cvs server: Updating .
RCS file: /home/CVSROOT/PP/doc/StarterKit/pragprog.sty,v
retrieving revision 1.16
retrieving revision 1.17
Merging differences between 1.16 and 1.17 into pragprog.sty
M pragprog.sty

We can examine the differences using the revision numbers
shown in the log:

doc/StarterKit> cvs diff -r1.16 -r1.17 pragprog.sty
Index: pragprog.sty
==
RCS file: /home/CVSROOT/PP/doc/StarterKit/pragprog.sty,v
retrieving revision 1.16
retrieving revision 1.17
diff -r1.16 -r1.17
211a211,216
> %
> % Place holder for Exercise package
> %
> \newenvironment{EXERCISES}{}{}
> \newenvironment{EXERCISE}{\par{}\hrulefill\\EXERCISE:\par}{}
> \newenvironment{ANSWER}{\par{}ANSWER:\par}{}

By specifying the two version numbers as parameters to cvs

diff, I can see that Andy has added three stubs for exercises
to the LATEX macros that we use to format these books.

Earlier we said that a common gotcha with cvs diff is that
it doesn’t by default show you changes between your local
version and the latest repository version. To find this out,
you need to use the special tag “HEAD,” which always refers
to the latest repository version.

work/client> cvs diff -r HEAD File1.java
Index: File1.java
==
RCS file: /Users/dave/sandbox/proj/File1.java,v
retrieving revision 1.3
diff -r1.3 File1.java
10c10,12
< total += amount;

> if (amount.isPositive()) {
> total += amount;
> }
14,16c16

< public Money getTotal() {
< return total;

< }

Prepared exclusively for Francilene Procopio Garcia

SEEING WHAT’S CHANGED 74

Diffs and Patch

If you’ve spent any time developing in the open source com-
munity, you’ll have come across folks flinging source patches
around the world. These patches are based on the same diffs
that CVS can generate, which turns out to be remarkably use-
ful.

Perhaps you’re working with an open source library, and you
need to make a change. The library is hosted on Source-
Forge,4 which among other things provides free CVS repos-
itories for open source developers. As a member of the public,
SourceForge lets you check the source code of the project out
of the repository, but because you aren’t on the list of devel-
opers, you can’t check changes back in.

This is where patches come in. Simply ask CVS to give you a
list of all the changes you’ve made (using cvs diff). E-mail
the file containing the diff output to the library’s maintainer,
who will be able to use the patch program to apply those
patches to their source. The only new facility we’re using here
is the -u option to cvs diff. All this does is produce output -u⇒

Unified diffin unified diff format. While different maintainers have their
own standards for submitting patches, and some like context
diffs (-c), the majority seem to prefer unified diffs (-u).

The following command creates a file called diff.list con-
taining all the diffs that have been made to files in or below
the directory oslibrary:

oslibrary> cvs diff -u >diff.list

You can then e-mail this file to the maintainer, who can apply
these patches to his or her version of the source using a magic
incantation:5

oslibrary> patch -p0 <diff.list

Patches are useful outside the context of open source. You
can use patches to send suggested changes to other mem-

4http://sourceforge.net
5It’s a magic incantation because we don’t have the space to explain it

here. You’ll probably want to spend some time studying the documentation
for the patch command if you want to start using it to apply diffs to your own
source.

Prepared exclusively for Francilene Procopio Garcia

http://sourceforge.net

HANDLING MERGE CONFLICTS 75

bers of your project team. If your clients have your source
code, you can even use patches to distribute those three-in-
the-morning urgent fixes that seem to crop up from time to
time. Just remember to check in the changes you’ve made
into the repository as well.

6.8 Handling Merge Conflicts

CVS doesn’t lock files: everyone in a project can edit any file at
any time. This one feature of CVS seems to give some people
sleepless nights. “What stops two people editing the same file
at the same time?” they ask. “Won’t work get lost?” The sim-
ple answers are “nothing, and no.” If they edit different parts
of that same file, CVS will happily merge the two changes to-
gether, and life carries on.

Sometimes, however, two people edit the same parts of the
same file (although it happens far more rarely than you might
first think). When that happens, CVS cannot automatically
perform a merge: it wouldn’t know whose changes to keep.
In these cases, CVS declares that the two versions of a file
conflict and passes the matter back to a human (you) to solve.

To illustrate a conflict, we’ll use our old friend Numbers.txt

again. This time, we’ll check it out into two separate work-
spaces.

work> cvs co -d proj1 project
cvs checkout: Updating proj1
U proj1/Numbers.txt
work> cvs co -d proj2 project
cvs checkout: Updating proj2
U proj2/Numbers.txt

In the proj1 directory, we’ll change line 1 of Numbers.txt,
so that the file now contains the following:

File Numbers.txt:
ONE

two

three

We’ll then check this change in.

proj1> #... edit ...
proj1> cvs commit -m "Make ’one’ uppercase"
cvs commit: Examining .
Checking in Numbers.txt;

Prepared exclusively for Francilene Procopio Garcia

HANDLING MERGE CONFLICTS 76

/Users/dave/sandbox/proj/Numbers.txt,v <-- Numbers.txt
new revision: 1.2; previous revision: 1.1
done

Now we’ll bop over to proj2. Remember that we want to cre-
ate a merge conflict, so we’ll pretend that we don’t know that
someone changed the file we’re about to work on. In proj2

we’ll alter Numbers.txt, changing line one to be “One.”

proj2> cvs commit -m "Capitalize ’One’"
cvs commit: Examining .
cvs commit: Up-to-date check failed for ‘Numbers.txt’
cvs [commit aborted]: correct above errors first!

So far, so good. We can’t check in until we’re up to date, so
we do a cvs update.

proj2> cvs update
cvs update: Updating .
RCS file: /Users/dave/sandbox/proj/Numbers.txt,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into Numbers.txt
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in Numbers.txt
C Numbers.txt

CVS is telling us two things here: there’s a conflict in the
merge, and it’s now our job to fix it.

Fixing a Conflict

The first question to be answered when fixing a merge conflict
is, “why did this happen in the first place?” This isn’t an issue
of blame, but it often is one of communication. What are two
developers doing editing the same lines of code in the same
file at the same time?

Sometimes there’s a good reason. Perhaps they both discover
the same bug at the same time and both decide to fix it. Or
perhaps they’re both adding functionality which uses a com-
mon data structure, and both add fields to that structure at
the same time. These are reasonable changes, and they might
lead to a conflict.

But often conflicts happen because folks aren’t doing a good
job of letting others know what’s going on. So, we strongly
recommend that if you come across a merge conflict without a
sensible explanation you make a point of mentioning it at the

Prepared exclusively for Francilene Procopio Garcia

HANDLING MERGE CONFLICTS 77

next team meeting. The goal here is to discuss the cause, and
to come up with ways of improving communication so that
the chances of something similar happening in the future are
reduced.

Now that’s all fine, but you’re still left with a conflict. CVS
marks these in the local copy of the file using sequences of
>>> and <<< characters.

File Numbers.txt:
<<<<<<< Numbers.txt

One

=======

ONE

>>>>>>> 1.2

two

three

Your local changes

Changes in the repository

Here we can see our new change (the “One”) along with the
original change (“ONE”). In many ways this is like the output
of a context diff (described on page 71).

We now have to decide how to fix this. In the real world, this
involves a negotiation with the other person who made the
change; simply blowing their hard work away and replacing it
with yours is a great way to jeopardize your invitation to the
next project picnic.

The resolution could go a number of ways:

1. You decide to scrap your changes and use the version in
the repository. In this case, just delete your copy of the
file and do an update.

proj2> rm Numbers.txt
proj2> cvs update
cvs update: Updating .
cvs update: warning: Numbers.txt was lost
U Numbers.txt

2. You decide to keep your changes and lose those in the
repository. If you happen to have your version of the file
in an editor buffer, simply save it back out, and then do
a cvs commit. This version will now be in the repository.
If you don’t have it lying around, then you’ll have to use
the techniques in the next point.

Prepared exclusively for Francilene Procopio Garcia

HANDLING MERGE CONFLICTS 78

Conflicts and Code Layout

While reviewing a draft of this book, Andy Oliver raised
a good point about conflicts and code formatting.
The problem happens like this:

Fred likes his code indented at two-character multi-
ples, but Wilma prefers the more dramatic indenta-
tion with four-character alignment.

Fred:
for (i = 0; i < max; i++) {
if (values[i] < 0) {

process(values[i]);

}
}

Wilma:
for (i = 0; i < max; i++) {

if (values[i] < 0) {
process(values[i]);

}
}

One day Fred happens to be editing some of Wilma’s
code and decides he dislikes the indentation. He tells
his editor to reindent the whole file to two-character
offsets. He then makes a small change to one line,
saves the file, and commits the changes back in to
the repository.

The problem is that as far as CVS is concerned, every
line in the file has changed. If Wilma (or anyone else)
changes something, they’ll get a merge conflict, be-
cause Fred’s change to the indentation means that
the corresponding line in the repository is different to
the line in Wilma’s workspace.

Now you can get around this: you can tell the cvs
diff command to ignore changes in whitespace
when calculating the difference between files using
the -b option, for example. However, this doesn’t get
around the fact that you have changed the whole
file, and that folks with local changes to that file will
get conflicts the next time they update.

Prepared exclusively for Francilene Procopio Garcia

COMMITTING CHANGES 79

Conflicts and Code Layout (continued)

The rule is simple: don’t wantonly change the layout
of a shared file. If you do need to change the inden-
tation, first make sure that no one else on the team
has made local changes to the file. Then change the
layout and check in the changed file. Then tell folks to
update, so they’ll all be working on the new version.
This’ll cut down on the number of conflicts people ex-
perience, and will reduce the amount of hate mail
you receive.

3. If you decide that you want to use parts of both versions,
then you’ll need to do some manual editing. Simply edit
the file that contains the conflict markers, making it look
the way you want. Be sure to remove the conflict marks.
For example, in our case we might decide that the first
line shouldn’t be “One” or “ONE,” but “First.”

File Numbers.txt:
<<<<<<< Numbers.txt

One

=======

ONE

>>>>>>> 1.2

two

three

=⇒
First

Two

Three

6.9 Committing Changes

After you make a set of changes (and, in an ideal world, after
you’ve tested that they don’t break anything), you’ll want to
store them in the repository. We’ve already done this many
times in this book; you simply use cvs commit.

However, we’d like to recommend a slightly more complex se-
quence of commands to follow at every commit.

work/project> cvs -q update -d
work/project> #... resolve conflicts ...
work/project> #... run tests ...
work/project> cvs commit -m "check in message"

Prepared exclusively for Francilene Procopio Garcia

EXAMINING CHANGE HISTORY 80

The first line brings our local workspace in to step with the
current state of the repository. This is important; although
our code may work fine with the project files as they were
when we last updated our workspace, other folks may have
changed things that break our new code. After updating, we
might have to resolve conflicts.

Even if there are no conflicts, we should then compile our
code and run our tests again, fixing any problems that arise.
This ensures that when we do check in we’ll be checking in
something that actually works in the larger project context.

Once we’ve checked that everything is correct, we can commit
our changes, using the -m option to add a meaningful mes-
sage. If you omit the -m option, CVS will bring up an editor
and let you type in a longer comment. See the sidebar on the
following page for suggestions on log messages.

6.10 Examining Change History

You can look at the log messages that you and your team have
entered using the cvs log command.

doc/StarterKit> cvs log pragprog.sty

RCS file: /home/CVSROOT/PP/doc/StarterKit/pragprog.sty,v
Working file: pragprog.sty
head: 1.5
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:

revision 1.5
date: 2003/06/01 13:34:54; author: dave; state: Exp; lines: +30 -5
Added support for colors in code and files.

revision 1.4
date: 2003/05/30 18:30:44; author: andy; state: Exp; lines: +17 -1
Fixed up spacing of callout macros.

revision 1.3
date: 2003/05/30 16:21:44; author: andy; state: Exp; lines: +2 -0

Added convenient \CF macro (we can rename this if you want)

revision 1.2
date: 2003/05/30 13:25:58; author: dave; state: Exp; lines: +32 -0
Fix problem with embedding files.

revision 1.1
date: 2003/05/30 03:48:34; author: dave; state: Exp;
Initial load

Prepared exclusively for Francilene Procopio Garcia

EXAMINING CHANGE HISTORY 81

Meaningful Log Messages

What makes a good log message? To answer this
question, imagine that you were another developer
coming to this code base a couple of years from now.
You are puzzling over a particular piece of the system,
trying to work out why something is done a certain
way. You notice that changes were made in this area,
and hope that the log messages will give you hints as
to the motivation for the particular design chosen.

Now, back to the present. What little breadcrumbs
can you drop in to the log messages today to help
your fellow developers a couple of years from now?

Part of the answer comes from realizing that CVS al-
ready stores the actual details of the changes you
made to the code. There’s no point in writing a log
message that says “Changed timeout to 42.”, when
a simple diff could show that setTimeout(10) be-
came setTimeout(42). Instead, use the log mes-
sage to answer the question “why?”

If the round-robin DNS returns a machine that
is unavailable, the connect() method attempts
to retry for 30mS. In these circumstances our
timeout was too low.

If a change is being made in response to a bug re-
port, include the tracking number in the log message:
the description of the problem is already in the bug
database, and doesn’t need to be repeated here.

Finally (and perhaps controversially), we feel that it
is perfectly acceptable to use blank log messages,
but only when there’s nothing meaningful to say. For
example, as I type this document, I stop and format it
every 30 minutes or so. If it succeeds, I check it in for
safekeeping. There’s nothing much to say here, so I
just do

work> cvs commit -m ""

However, if I change something that affects the way
the document is built (the common macros, for ex-
ample), I’ll add an explanatory log message.

Prepared exclusively for Francilene Procopio Garcia

EXAMINING CHANGE HISTORY 82

You can use the -r option multiple times to select individual
revisions to report upon. You can also use the -d option. One
-d option reports on the latest entry before the given date,
while two -d options reports on entries in the date range. A
useful way of checking on activity in the last couple of days
is:

work> cvs log -d "2 days ago" -d today

Line-by-line History

The cvs annotate command displays the contents of one or
more files. For each line in each file it shows the latest revi-
sion number to change that line, along with the author of the
change and the date the change was made.

doc/StarterKit> cvs ann OurColors.sty
Annotations for OurColors.sty

: : :

1.3 (dave 05-Jun-03): %%
1.3 (dave 05-Jun-03): %% Colors for sections and chapter titles
1.3 (dave 05-Jun-03): %%
1.3 (dave 05-Jun-03): \definecolor{SECCOLOR}{rgb}{.2, .2, .2}
1.3 (dave 05-Jun-03): \definecolor{SUBSECCOLOR}{rgb}{.2, .2, .2}
1.3 (dave 05-Jun-03): \definecolor{SUBSUBSECCOLOR}{rgb}{.1, .1, .1}
1.3 (dave 05-Jun-03):
1.4 (andy 05-Jun-03): %%
1.4 (andy 05-Jun-03): %% The rule under captions
1.4 (andy 05-Jun-03): %%

1.4 (andy 05-Jun-03): \definecolor{CAPTIONRULECOLOR}{rgb}{.4, .4, .4}
1.4 (andy 05-Jun-03):
1.6 (dave 10-Jun-03): %%
1.6 (dave 10-Jun-03): %% The color of line numbers in code listings
1.6 (dave 10-Jun-03): %%

1.6 (dave 10-Jun-03): \definecolor{LINENUMBERCOLOR}{rgb}{.4, .4, .4}
1.3 (dave 05-Jun-03):

This is a great tool when you’re involved in software archeol-
ogy; you can quickly find the patterns to changes and identify
exactly which lines were changed by a particular revision.

cvs annotate takes a single -r or -D option, which can be
used to specify the “as of” revision or date for the annotation.

Prepared exclusively for Francilene Procopio Garcia

REMOVING A CHANGE 83

6.11 Removing a Change

Sometimes we all make changes to code that we’d rather forget
about.

If the change is a set of changes in our local workspace that
have yet to be checked in, then we can simply delete those
files in the workspace and update from the repository.

If the change is already committed, CVS can help us remove
it. There are a number of ways of doing this; here we’ll show
a sequence of steps that we consider to be the simplest and
least error prone. For this example, let’s assume we’re work-
ing on a contact management system. We’ve been making
preliminary releases to beta sites, and things have been going
well until a client phones up in a panic; when they removed a
client contact from their address list, it removed all the client’s
information from the database too.

The first step is to make sure we’re up to date.

proj> cvs -q update -d

Then we identify the exact revision that we want to remove.
cvs log is useful for this. Let’s have a look at the log for the
main contact manager class.

proj> cvs log Contacts.java

RCS file: /Users/dave/sandbox/proj/Contacts.java,v
Working file: Contacts.java
head: 1.5
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:
Manage contact list

revision 1.5
date: 2003/06/11 16:36:17; author: dave; state: Exp; lines: +2 -0
Reformat PMB addresses

revision 1.4
date: 2003/06/11 16:35:40; author: fred; state: Exp; lines: +1 -0
Remove client from db too

revision 1.3
date: 2003/06/11 16:35:11; author: jane; state: Exp; lines: +2 -0
Sort clients into alpha order (CR:142)

revision 1.2

: : : : : :

Prepared exclusively for Francilene Procopio Garcia

REMOVING A CHANGE 84

Revision 1.4 looks suspicious, so we use cvs annotate or
cvs diff to see exactly what changed between revisions 1.3
and 1.4.
proj> cvs diff -c -r1.3 -r1.4 Contacts.java
Index: Contacts.java
==
RCS file: /Users/dave/sandbox/proj/Contacts.java,v
retrieving revision 1.3
retrieving revision 1.4
diff -c -r1.3 -r1.4
*** Contacts.java 2003/06/11 16:35:11 1.3
--- Contacts.java 2003/06/11 16:35:40 1.4

*** 15,20 ****
--- 15,21 ----

public void removeClient(Client c) {
clientList.remove(c);

+ database.deleteAll(c);

}

This looks like the problem. However, before we start wan-
tonly hacking someone else’s change, let’s do some investi-
gating. Looking at the log, we see that this particular change
was made by Fred, so we wander over and chat. It turns out
that this was a simple misunderstanding; Fred hadn’t real-
ized that the call would delete all the client records. It’s OK to
remove the change.6

We now have to remove the changes to Contacts.java that
were made between revisions 1.3 and 1.4. Let’s look at the
command first.
proj> cvs update -j1.4 -j1.3 Contacts.java
RCS file: /Users/dave/sandbox/proj/Contacts.java,v
retrieving revision 1.4
retrieving revision 1.3
Merging differences between 1.4 and 1.3 into Contacts.java

The -j option tells CVS that you want to merge changes into -j⇒
Join fromthe current working copy. When we specify two -j options,

we tell CVS to merge the changes between those two revi-
sions. Then we do something neat: we specify the revisions in
reverse order (1.4 comes first, then 1.3). This tells CVS to cal-
culate the change that would be required to convert 1.4 back
to 1.3, and then apply that change to our current working
copy.

6It would also be prudent to do a quick search of the rest of the code to
see if Fred has used the deleteAll() call in other places.

Prepared exclusively for Francilene Procopio Garcia

REMOVING A CHANGE 85

At this point, we’re back into a normal flow. We’ve made a
change to the source, so we should test it, then commit the
change back in to the repository.

cvs/proj> cvs commit -m "Revert deleteAll change from 1.4"

Reverting Bigger Changes

In the previous example we had just a single file to change.
How can we handle changes that involve many files? The
answer is that it depends.

One way is to apply the single file recipe to each file in turn.
It’s necessary to get the individual revision number of the
change for each file (because CVS keeps revision numbers on
a per-file, not per-commit basis).

A better way might be to anticipate changes that are likely to
be controversial, and to use tags to flag them in the repository.
The tags then apply to all files, regardless of their particular
revision numbers. You can then use the same update trick to
remove the change by using the tag names for the -r options.

proj> cvs update -j after_change -j before_change

Prepared exclusively for Francilene Procopio Garcia

Chapter 7

Using Tags and Branches

Most of CVS is pretty simple: you update from your reposi-
tory, edit files, and save the changes back after you’ve tested.
However, many developers are put off by tags and branches.
Perhaps they’ve worked previously in teams which abused
branches, and where a diagram of the repository structure
would have looked like a bowl of spaghetti rather than a con-
trolled, linear development. Or perhaps they worked in a team
where merges between branches were delayed and delayed, so
that when they did finally occur it was a nightmare resolving
the conflicts. Or perhaps it’s just the incredible flexibility that
branches offer; with so much choice, it’s hard to know what
to do.

In reality, tags and branches can (and should) be simple to
use. The trick is to use them in the correct circumstances.
In this chapter we present two scenarios where we feel that
branches should be used; generating releases, and giving de-
velopers a place to experiment.

Beyond these circumstances, we suggest you think hard be-
fore adding branches to a repository. Excessive branching can
quickly render any project’s repository unusable.

Before we go into the specific recipes, we need to discuss tags
and branches in general.

TAGS, BRANCHES AND TAGGING 87

7.1 Tags, Branches and Tagging

A tag is a symbolic name. The name must start with a letter,
and can contain letters, digits, hyphens, and underscores.1

REL 1 0, rev-99, and TRY DT 031215 are all valid tag names,
REL 1.0, Bug(123), and q&a are not.

There are two types of tag. Regular tags give a name to the
files in a module at a certain point of time. Branch tags are
used to name an entire branch in the repository.

Regular Tags

Every file in a CVS repository has its own sequence of version
numbers. A file typically starts out at version 1.1, and every
time an updated version is checked in, the version number
increases (1.2, 1.3, and so on). However, every file has its own
sequence of numbers. If you start out a new project with three
files, file a, file b, and file c, they’ll all have a version
number of 1.1. However, if you edit file b twice and file c

once, checking the source in each time, you’ll end up with:

File Version
file a 1.1
file b 1.3
file c 1.2

These three files represent the current state of your applica-
tion; if we were to release it now, we’d want to release version
1.1 of file a, 1.3 of file b, and 1.2 of file c; there’s no
single version number that can represent the current release
of the application. This is where regular tags come in. A tag
creates an internal list of the version numbers currently as-
sociated with each file. For example, we could tag the current
state of our repository with the tag REL 1. From this point for-
ward, we could check out our source using the tag REL 1 and
get version 1.1 of file a, 1.3 of file b, and 1.2 of file c.

You can have as many tags as you need in a repository, but
tag names must be unique. For a particular file, multiple

1The restrictions on tag names are designed to avoid conflicts between
them and (for example) revision numbers (although it’s arguable that the
designers of CVS went too far).

Prepared exclusively for Francilene Procopio Garcia

TAGS, BRANCHES AND TAGGING 88

tags can refer to the same version number (so if file b didn’t
change between now and the next release, both REL 1 and
REL 2 would refer to its version 1.3).

Branch Tags

We first talked about branches on page 16, when we discussed
how we can use them to handle releases in a version control
system. A branch represents a fork in the history of the repos-
itory; the same file may have two or more sets of independent
changes made to it, each set existing in a separate branch.

When you create a branch in CVS, you have to give it a branch
tag. This tag represents the point at which the branch forks
off its base codeline. When you subsequently refer to the
branch tag, it’s as if you were referring to the state of the
files at the point the branch was created.

Tags in Practice

There are many possible uses for tags (and branches). How-
ever, excessive tagging and branching can end up being re-
markably confusing. So to keep things simple, we suggest
that initially you use tags for four different purposes:

Release branches. We recommend putting each release of a
project onto a separate branch. The release branch tag
is used to name that branch.

Releases. The release branch will contain one (and possibly
more) releases: points at which the project is shipped.
The release tags identify these points.

Bug Fixes. Formally reported bugs are fixed on the release
branch, and (if appropriate) the fix is then merged into
other release branches and the mainline. The two bug
fix tags identify the point just before and just after the
bug is fixed.

Developer Experiments. Sometimes a subteam has to make
far-reaching changes to a project’s code base. During
the time that these changes are being made, the code is
incompatible with the rest of the system, and will break

Prepared exclusively for Francilene Procopio Garcia

CREATING A RELEASE BRANCH 89

Thing To name Tag Style Examples

Release branch RB rel RB 1 0

RB 1 0 1a

Releases REL rel REL 1 0

REL 1 0 1a

Pre bug fix PRE track PRE 13145

PRE 4129

Post bug fix POST track POST 13145

POST 4129

Developer TRY initials yymmdd TRY DT 030631

experiments TRY AH 021225

Table 7.1: Possible Tag Naming Conventions

the main build. The developers may choose to create
a branch labeled with a developer experiment tag and
perform their changes there.

It’s a good idea to agree upon a convention for tag names
with your team. Table 7.1 shows one simple scheme; this
is what we’ll be using in this document. In this table, rel
stands for the release number (with punctuation converted to
underscores) and track is a bug tracking number.

Now let’s look at when you use all these different tags, and
the recipes for how to use branching and tagging.

7.2 Creating a Release Branch

At intervals throughout the life of your software you’ll want to
generate releases. As the date for each release nears, atten-
tion will start to focus away from adding new features, instead
concentrating on tidying the smaller release-specific details.
Although initially the whole team may participate in this pro-
cess, there’ll come a time when the law of diminishing returns
takes effect, and it becomes more efficient to have a release
subteam focus on polishing the code for release. If this sub-

Prepared exclusively for Francilene Procopio Garcia

CREATING A RELEASE BRANCH 90

Create
release
branch

Prepare for
release

Continue
ongoing
development

Release Bug fixes

RB 1 0

REL 1 0

Figure 7.1: Tagging a Release Branch

team was working in the mainline, the rest of the team would
be stalled, waiting for them to finish.

Instead, at this point in the process, move the code to be re-
leased into its own branch. While the release team works in
that branch, the rest of the project can continue in the main-
line. When the release itself is made, that point in the release
branch is tagged with the release number. Changes made by
the release team in the release branch can then be merged
back in to the mainline, as shown in Figure 7.1. We’ve al-
ready seen the top half of this diagram when we described
branches in abstract terms back on page 18. The bottom half
of the diagram shows the same repository, but illustrates the
tags that we’re going to apply.

Create the release branch using the cvs rtag command. As
this applies the tag to the current version in the repository,
make sure everyone is checked in, so that the repository is
up to date. In the example that follows, we do a cvs commit

Prepared exclusively for Francilene Procopio Garcia

WORKING IN A RELEASE BRANCH 91

to ensure our workspace is checked in, then use cvs rtag to
create a branch for release R1.0 of the CVS module project.

work/project> cvs commit -m ""
cvs commit: Examining .
work/project> cvs rtag -b RB_1_0 project
cvs rtag: Tagging project

The -b option to rtag causes CVS to create a branch and give
it the branch tag that we supply (RB 1 0 in this case). However,
we haven’t yet done anything to affect our local workspace: it
is still working in the mainline. The next tip shows how to
check out the release branch.

7.3 Working in a Release Branch

To access a release branch, you need to check out the project
specifying the branch tag. You can do this in your current
project directory (in which case you’ll replace your workspace
with the contents of the release), or you can do it to a separate
local directory tree. We recommend the latter; it leads to less
confusion, and simplifies working on both branches at the
same time. To do this, we change back to our work directory,
then check out, giving the branch tag and overriding the de-
fault directory name, so the source will be checked out under
the directory rb1.0. When you check out a branch, you are
checking out the most recent files in that branch; it’s equiva-
lent to the way that checking out in the mainline returns the
latest development copies of the files.

work/project> cd ..
work> cvs co -r RB_1_0 -d rb1.0 project
cvs checkout: Updating rb1.0
U rb1.0/file_a
U rb1.0/file_b
U rb1.0/file_c

If we now edit a file in this checked out release directory and
commit the changes back, we’ll see that CVS adds the changes
back into the branch, and not into the mainline. You can tell
this from the version number that has been assigned to the
changed file; it is on a branch from the mainline version 1.3.2

2The branch, which is labeled with the tag RB 1 0 has the version number
1.3.2, and the first version of the file on this branch is numbered 1.3.2.1.

Prepared exclusively for Francilene Procopio Garcia

GENERATING A RELEASE 92

work> cd rb1.0
work/rb1.0> # ... edit file_b ...
work/rb1.0> cvs commit -m "Tidy error msg"
cvs commit: Examining .
Checking in file_b;
/Users/dave/sandbox/project/file_b,v <-- file_b
new revision: 1.3.2.1; previous revision: 1.3
done

We can now continue to refine the files in preparation for the
actual release.

7.4 Generating a Release

After all the tweaking is over, and the acceptance tests run,
the team decides to generate a release. The most important
consideration is to ensure that we tag the correct combination
of files on the correct branch, so that we know precisely what’s
in the release.

We could use the cvs rtag command to do this, but that
means that we have to synchronize with the rest of the team
to ensure the files in the repository are stable at the time we
issue the command. A better approach is to use a subtly
different command. cvs tag tags files, just like cvs rtag, but
uses the revisions that are checked out into a local workspace
to determine how to apply the tag. The following commands
create a tag for the release REL 1 0, after first running the
tests on our local version and making sure we’ve committed
all our files in to the repository.

work/rb1.0> cvs update
work/rb1.0> # ... run tests ...
work/rb1.0> cvs commit -m "..." # if needed
work/rb1.0> cvs tag REL_1_0
cvs tag: Tagging .
T file_a
T file_b
T file_c

From now on, developers will be able to check out the code
used to build this release by specifying the release tag.

work> cvs co -r REL_1_0 -d rel1.0 project
cvs checkout: Updating rel1.0
U rel1.0/file_a
U rel1.0/file_b
U rel1.0/file_c

Prepared exclusively for Francilene Procopio Garcia

GENERATING A RELEASE 93

Joe Asks. . .
tag? rtag? What’s up?

CVS provides two commands for tagging files and
modules. What’s the difference between them, and
when do we use each?

The clue lies in the names: the command cvs rtag
tags a module in the repository, while plain cvs tag
tags files based on our local workspace.

Because rtag uses the repository, we don’t even
need to be in a local workspace to use it (although if
we are, it’ll use that repository’s ROOT automatically).
To use cvs rtag you need only give a tag and a mod-
ule name. The default action is to apply that tag to
the current HEAD version of that module in the repos-
itory. (Having said that, you can also do a whole lot
more; see the command description on page 140 for
more details.)

cvs tag is different: you have to use it while you’re
in a local workspace. It applies the given tag to files
as they were when you last checked-out or updated.
This is significant; if you’ve edited a file locally, it will be
eventually stored with a new version number. How-
ever if you issue a cvs tag command before commit-
ting, that tag will refer to the previous version. (If you
use the -c flag, cvs tag will check that local files are
not modified before applying the tag.)

So you should use cvs rtag when the tag applies to
some repository-wide state (for example, when you’re
generating a release) and use cvs tag when the
event is more local (for example, when you’re about
to fix a bug).

Prepared exclusively for Francilene Procopio Garcia

FIXING BUGS IN A RELEASE BRANCH 94

7.5 Fixing Bugs in a Release Branch

Bugs happen. The trick is to handle them in a controlled
manner. In a release branch, this means that we need to keep
track of the changes made to fix the bug, and then make sure
that we apply those fixes to every other branch that might
contain the same problem. The latter problem is particularly
important. By their nature, branches contain duplicates of
code. That means that if you find a bug in the source code in
one branch, there’s always the possibility that the same bug
exists in another branch (after all, originally the source code
was the same, bugs and all). In the case of a release branch,
we need to be able to apply our fix back to the mainline. We
might also need to apply it to other release branches (if they
also contain the buggy code).

Without version control, this is a tricky problem. With ver-
sion control, we can control the process better. We do this by
getting the version control system to keep track of the source
code changes made while fixing the bug, and then merging
those changes in to the code in other affected branches.

Logically, the process works as follows. First, we fix the bug,
using tags so we can isolate the changes we make.

• Check out a copy of the branch containing the bug into
your local workspace.

• Tag the repository with a pre-fix tag.

• Generate a test to reveal the bug, fix the code, and verify
the build.

• Commit your changes back in to the repository.

• Tag the repository with a post-fix tag.

Now we go in to all the other affected branches (potentially in-
cluding the mainline) and merge the changes we just made in
to them. The changes can be determined from the repository
by asking for the difference between the pre-fix tag and the
post-fix tag.

In CVS terms, we use the following recipe. These examples
assume that the bug is reported in the 1.0 branch, and that
we’ve given it the tracking number 1234.

Prepared exclusively for Francilene Procopio Garcia

DEVELOPER EXPERIMENTAL BRANCHES 95

work> cvs co -r RB_1_0 -d rb1.0 project
cvs checkout: Updating rb1.0
U rb1.0/file_a
U rb1.0/file_b
U rb1.0/file_c
work> cd rb1.0
work/rb1.0> cvs tag PRE_1234
cvs tag: Tagging .
T file_a
T file_b
T file_c
work/rb1.0> # create test, fix problem, validate
work/rb1.0> cvs commit -m "Fix PR1234"
cvs commit: Examining .
Checking in file_c;
/Users/dave/sandbox/project/file_c,v <-- file_c
new revision: 1.2.2.1; previous revision: 1.2
done
work/rb1.0> cvs tag POST_1234
cvs tag: Tagging .
T file_a
T file_b
T file_c

We now need to apply this fix to the mainline code. To do
this, we go to our mainline workspace, make sure that it is
up-to-date, and then merge in the fix from the release branch.
Finally, run our tests, and if they pass we commit the changes
back in to the mainline.
work/rb1.0> cd ../project
project> cvs update
cvs update: Updating .
project> cvs update -j PRE_1234 -j POST_1234
cvs update: Updating .
RCS file: /Users/dave/sandbox/project/file_c,v
retrieving revision 1.2
retrieving revision 1.2.2.1
Merging differences between 1.2 and 1.2.2.1 into file_c
project> # ... test ...
project> cvs commit -m "Apply fix for PR1234 from RB1.0"
cvs commit: Examining .
Checking in file_c;
/Users/dave/sandbox/project/file_c,v <-- file_c
new revision: 1.3; previous revision: 1.2
done

7.6 Developer Experimental Branches

Sometimes developers need to make wide-ranging changes to
a project (for example to change a persistence layer, or in-
troduce a new security mechanism). These are the kinds of
changes that take a minimum of several days to code. These
changes can’t be introduced incrementally: they affect too

Prepared exclusively for Francilene Procopio Garcia

DEVELOPER EXPERIMENTAL BRANCHES 96

much code. These changes are typically at a low level in the
application, and normally have a far-reaching impact on the
rest of the system.

If a single developer wants to make a wide-ranging change
to the source, he or she could work in their local workspace.
However, this has a couple potential downsides. First, the de-
veloper loses the benefit of version control while they’re work-
ing on the change; they lose the ability to revert just sections
of their work, they lose revision history, and so on. They
also don’t have their work in a central repository, so there’s a
chance that it won’t be backed up.

If multiple developers are working on a wide-ranging change,
then they have bigger problems; they need to be able to share
changes and work on the same (experimental) code base.

The answer is to put the experimental code into a branch in
the version control system. The developers working on the
changes use that branch in their workspace. When they’ve
finished their work, they can make the decision about inte-
grating their work back in to the mainline. If they decide that
experiment is a failure, they can abandon the branch. Oth-
erwise they simply merge the changes made in the branch
back in to the mainline. Whatever their decision, future work
continues in the mainline, and the branch becomes history.

Creating a developer branch is effectively the same as creating
a release branch. We tag the branch with an experimental tag.

work/project> cvs commit -m ""
cvs commit: Examining .
work/project> cvs rtag -b TRY_DT_030925 project
cvs rtag: Tagging project

This does not change the tags in the current working direc-
tory; in order to switch to the newly created branch, you need
to do an update, specifying the branch tag.

work/project> cvs update -r TRY_DT_030925
cvs update: Updating .

To return your working files to the mainline, use cvs update

with the -A parameter:

work/project> cvs update -A
cvs update: Updating .

Prepared exclusively for Francilene Procopio Garcia

WORKING WITH EXPERIMENTAL CODE 97

7.7 Working With Experimental Code

When you work with an experimental code branch, you can
either replace the code in your current workspace (using cvs

update with the -r option) or you can check out into a sep-
arate directory tree. To be reliable, if you use the update
method you need to ensure you issue the command from the
top level of your directory tree.

work/project> cvs update -r TRY_DT_092503
cvs rtag: Updating project

If you decide instead to check out into a separate directory
(our preferred option), remember to use the -d option to over-
ride the default directory name.

work/project> cd ..
work> cvs co -r TRY_DT_092503 -d proj_exp project
cvs checkout: Updating proj_exp
U proj_exp/file_a
U proj_exp/file_b
U proj_exp/file_c
work> cd proj_exp

7.8 Merging The Experimental Branch

Merging the experimental branch into the mainline uses a sin-
gle -j tag, indicating that CVS should merge in all changes in
the branch. Before issuing the command, you need to make
sure that all changes in the experimental branch are checked
in, and that you’ve moved across to a workspace in the main-
line. (This little dance is the reason we recommend checking
the experimental branch out into a separate directory tree).

In the example that follows, we’ll assume that the directory
proj exp contains the experimental code and project con-
tains the mainline. The merge then proceeds as follows:

work> cd proj_exp
work/proj_exp> cvs commit -m "Finalize changes"
work/proj_exp> cd ..
work> cd project
work/project> cvs update -j TRY_DT_092503
cvs update: Updating .
RCS file: /Users/dave/sandbox/project/file_a,v
retrieving revision 1.1
retrieving revision 1.1.4.1
Merging differences between 1.1 and 1.1.4.1 into file_a
RCS file: /Users/dave/sandbox/project/file_c,v
...

Prepared exclusively for Francilene Procopio Garcia

Chapter 8

Creating a Project

The word “project” is fairly loosely defined. One person work-
ing for a week to implement a web form can be a project,
as can many hundred laboring for many years. But most
projects share a set of common characteristics:

1. Each project has a name. This may sound trivial, but we
tend to give things names when we want to identify them
as independent entities. Names don’t have to be external
brands, approved by marketing and subject to field tests
in major metropolitan areas. Project names are simply
internal to your organization.

2. Each project is cohesive; things in the project work to-
gether to achieve some business aim.

3. The components within a project tend to be maintained
as a unit; you’ll release a version of the project as a
whole.

4. The stuff in a project shares a common set of engineering
standards and guidelines, and uses a common architec-
ture.

It is important to consider this list when putting projects into
a version control system, because it is often hard to know
where to draw the boundaries between different projects. Get-
ting the project structure wrong is a major source of frus-
tration when using version control, and can lead to a lot of
wasted effort as time goes on.

CREATING THE INITIAL PROJECT 99

So, before creating projects in your repository, spend some
time planning. For example, is your project going to imple-
ment a framework that the company will use in future devel-
opment efforts? If so, then perhaps that framework should be
a separate project in its own right, with your current project
and those other future projects sharing in its use. Is your
project developing multiple independent components? Per-
haps each should be its own project. Or is your project writ-
ing an extension for an existing chunk of code? Perhaps then
it should be a subproject of that original project.

8.1 Creating the Initial Project

There are basically four ways to create a project under CVS.

1. Import: Load existing source into the repository as a new
CVS project.

2. Über-project: Create all your projects as sub-projects of
a company-wide dummy project.

3. Clean-slate: Create an empty CVS project in the reposi-
tory, check this project out in a client, then add files to
it from there.

4. Copy in an existing RCS repository. RCS is an early re-
vision control system; CVS is based on RCS.

The last two methods are rarely used in practice. The “clean-
slate” approach requires having access to the repository, and
there is great potential for messing things up. The “RCS copy”
method is both ugly and not particularly appropriate (unless
you happen to have a whole lot of code sitting in RCS). That
leaves us with two options: import and über-project.

The Import Method

If you have existing source files (even if it’s just the project’s
README file) you can use the CVS import facility to create a
new project. In the examples that follow, we’ll assume you’re
working on the Wibble project (the Wickedly Integrated Busi-
ness to Business Lease Exchange).

Prepared exclusively for Francilene Procopio Garcia

CREATING THE INITIAL PROJECT 100

You’ll need a directory tree containing the files that you want
to import (and only the files you want to import; be sure to
clean up all the various backup files and other dross before
going any further). Make sure that you’re in the top-level di-
rectory of this tree (in our case, in the directory wibble), then
issue the cvs import command:

wibble> cvs import -m "Initial import" wibble wibble initial

There’s a lot going on in this command, so let’s look at each
piece.

The -m option specifies the message to be logged with this
import. In this case we use “Initial import.”

Next comes the name of the project where we’re going to place
the source. In this case we use “wibble,” our project’s name.
This project will be added to the top level of the repository.

The next two parameters are both required and superfluous.
They’re required because the command insists that you sup-
ply them, but they’re superfluous because they don’t really
mean much in this context. we’ll see what they’re really used
for when we talk about third party code on page 118. For
now, just use the strings “wibble” (the project name, again)
and “initial” and move on.

Your project is now checked in. You should check it out using
a normal cvs checkout command and, if everything is OK,
you can delete the original directory tree that you used for the
import.

The Über-project Method

The second method for creating projects is in some ways the
simplest. However, we pay for that simplicity; we have to be
fairly disciplined when we use it.

In this method, your repository administrator initially creates
an empty repository. From then on, to add a new project you:

• Check out the top-level of this repository. To do this,
you use the regular cvs checkout command, but add
the -d and -l options, and specify the special project
name of “.” (a period). The -d option is used to specify

Prepared exclusively for Francilene Procopio Garcia

STRUCTURE WITHIN THE PROJECT 101

the directory name of the workspace, and the -l option
tells CVS not to check out the entire repository contents;
only top-level directories are created in the workspace.

• Create your new project directory in this checked-out
workspace, and use cvs add to add it to the repository.

• Release the entire checked-out workspace (because you
don’t need the entire repository).

• Check out again, this time specifying the name of the
project that you just created.

work> cvs checkout -l -d tmp .
cvs checkout: Updating tmp
work> cd tmp
work/tmp> mkdir new_project
work/tmp> cvs add new_project
Directory /Users/.../new_project added to the repository
work/tmp> cd ..
work> cvs release -d tmp
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘tmp’: yes
work> cvs checkout new_project
cvs checkout: Updating new_project
work> cd new_project
work/new_project> # edit ...
work/new_project> cvs add ...

If you decide to use this approach, you need to be disciplined
when it comes to keeping projects distinct. It is both tempting
and easy to treat all the company’s projects as a single big
project, and to start using code (or even altering code) that
doesn’t really belong to your project.

8.2 Structure Within the Project

Your company may well already have standards which dic-
tate how to organize the source code and directories within a
project. If you’re developing with Java, for example, you might
be using the Jakarta conventions for laying out directories.1

If you don’t currently use a standard, here are some basic
suggestions.

1http://jakarta.apache.org/site/dirlayout.html

Prepared exclusively for Francilene Procopio Garcia

http://jakarta.apache.org/site/dirlayout.html

STRUCTURE WITHIN THE PROJECT 102

Top-Level Files

README Incredible though it seems, a couple of years from
now the latest red-hot project will have faded down to
a dull gray, and you’ll have a hard time remembering
exactly what the Wibble project was all about. So cre-
ate a file called README in the top-level project directory.
Write a small paragraph describing what this project is
all about: the business problems it is solving, the basic
technologies used, and so on. This isn’t meant to be a
full description; it’s just an aide-memoir intended to trig-
ger those long-dormant neurons when you come back
after a long absence.

BUILDING Create another top-level file called BUILDING. This
will contain simple hints to future code archaeologists
who might want to rebuild this project from source. Be-
cause you’ll be automating the build, this document will
be short: Figure 8.2 on page 105 shows an example.

GLOSSARY Create one more top-level file called GLOSSARY.
Make it a habit to document all project-specific jargon
in this file. Not only will this make it easier for future
developers when they’re trying to work out what a “wib-
ble channel” is, but it will also guide the project team
when it comes to naming classes, methods, and vari-
ables.

Top-Level Directories

Most projects will have at least the following top-level directo-
ries.

doc/ Check all project documentation into doc/ and its sub-
directories. Don’t forget to add memos and e-mails that
describe decisions reached. It’s normal to have directo-
ries under doc/ which contain different document types,
or for different phases of the project.

If your project relies on external documentation (for ex-
ample, the description of an algorithm or a file format
held on a third-party web site), consider copying this
and storing it under the doc/ directory tree (copyright

Prepared exclusively for Francilene Procopio Garcia

STRUCTURE WITHIN THE PROJECT 103

permitting, of course). This will make it easier for future
maintainers if the external site has since gone away. If
you can’t copy this material into your project, create a
file in doc/ called BIBLIOGRAPHY and add links and a
brief description in it.

data/ Many projects carry along data (for example, informa-
tion needed to populate lookup tables in the database).
Keep this data in a single location (if for no other reason
that someone, at sometime, will urgently need to find out
why we’re charging 127% sales tax in Guam).

db/ If your project uses a database, store all the schema-
related stuff here. Work hard not to fall in to the habit of
modifying schemas online. Have your data base admin-
istrator create SQL scripts for each update, scripts that
both update the schema and and migrate the data. By
keeping these in the repository, you’ll be able to migrate
any version of the database to any other version.

src/ The project’s source code should be stored under this
directory.

util/ A directory to hold various project-specific utility pro-
grams, tools, and scripts. Some teams have a directory
called tools/ instead.

vendor/ If your project uses third-party libraries or header
files that you want to archive along with your own code,
do it under a top-level vendor/ directory.

vendorsrc/ Sometimes a project will import and include code
from a third-party (for example, if it is using an open
source library and needs to ensure that it will have ac-
cess to a particular version of the source for the life of the
application). You’ll include the binary libraries (and pos-
sibly the header files) in the vendor directory, but you’ll
also want to retain the source from which these libraries
were built. Store these sources under the vendorsrc/

directory. We have more to say about vendor source code
in Third-Party Code starting on page 118.

A possible file layout for the Wibble project is shown in Fig-
ure 8.1 on the next page. In this project we have all our own

Prepared exclusively for Francilene Procopio Garcia

STRUCTURE WITHIN THE PROJECT 104

work/

wibble/
 README

 BUILDING

 GLOSSARY

src/

 build.xml

util/

 ...

vendor/ vendorsrc/doc/

 ...

client/

 A.java

 B.java

server/

 Y.java

 Z.java

lib/

 junit.jar

 xerces.jar

junit/

 .. source

xerces/

.. source

Figure 8.1: Possible Workspace Layout

source code (divided into client and server components) along
with some imported open source code (the JUnit and Xerces
frameworks).

In addition, many projects will have a standard set of directo-
ries that are used during the build or release project. These
directories do not contain files that should be stored in the
repository (as their contents are generated on the fly), but
some teams still find it convenient to have these directories
appear in every developer’s workspace. To do this, you can
add these empty directories to the repository; they’ll appear in
the workspace when developers check out.2 (An equally valid
alternative is not to store these directories in CVS. Instead,
have your build scripts create them as needed, and then tidy
them up when you’re done with them. If you use this scheme,
remember to add the directory names to your .cvsignore file
to stop CVS complaining every time you check in or out.)

2Reader Maik Schmidt points out that these empty empty directories
won’t be created on check-out if the user specifies the -P (prune) option to
the cvs update or cvs checkout commands. To avoid this problem, he cre-
ates and checks in an empty, invisible file into each of these directories. His
convention is to use the name .keepme for these files

Prepared exclusively for Francilene Procopio Garcia

STRUCTURE WITHIN THE PROJECT 105

Prerequisites:

* Oracle 9.6i (perhaps later versions, but

that configuration’s not tested)

* GCC 2.96

Building:

./configure [--with-oracle=<dir>]

make

make test

make install

More info:

doc/building.html

Figure 8.2: Sample BUILDING file

You’ll also want to keep your test code somewhere, but opin-
ions vary wildly on where this should be. Some teams like
keeping it in parallel directories to their source tree, others
put the tests in subdirectories of the source files being tested.
To some extent the “correct” answer depends on the language
being used. For example, the Java package naming rules
mean that if you want to test protected methods you’ll need to
construct parallel trees (or put your tests in the same direc-
tory as the source being tested). We cover this in more detail
in the companion book Pragmatic Unit Testing [HT03].

There are no hard-and-fast rules for structuring directories
in a project. However, being consistent across projects will
greatly help people who come along in future, and will give you
the flexibility to move between projects without experiencing
that “I’m totally lost” feeling.

Prepared exclusively for Francilene Procopio Garcia

Chapter 9

Using Modules

Small projects are easily managed as a whole; people typi-
cally have the entire project source available in their local
workspaces and tests are run across the entire project source.
However, once projects (and their teams) reach a certain size,
we find it useful to partition them into subprojects. The rules
for these subprojects are similar to those for overall projects:
subprojects should be named, cohesive, maintained as a unit,
and internally consistent. The subprojects should be rela-
tively independent of each other, and should work together
to implement the overall requirement. (If they don’t work to-
gether in this way, then they shouldn’t be subprojects; they
should be top-level projects.)

One classic division of a large project might be into client-side
and server-side components. The client team works on the
client subproject, and the server team works on the server
code. The division into subprojects helps enforce the disci-
pline to produce a clean interface in the software, and will
help encourage the teams to produce software that is testable
in isolation (so the server code will be capable of being tested
without having the client code present, for example).

Other projects might be better divided horizontally; backend
applications might be broken into database access code, cal-
culation modules, external systems interfaces, and so on.

Most large projects benefit from being divided into subpro-
jects, and most are realistically divided both vertically (as with

SUBPROJECTS THE EASY WAY 107

repository

proj1

client

server

proj2

db

logic

library

currency

date

xml

Figure 9.1: Projects and Subprojects

the client/server split) and horizontally. Spend a little time
before creating a large project considering how the source
code in the repository should map onto the project’s architec-
ture. Don’t worry about getting it exactly right upfront; you
can always adjust things as you go along. But starting with
the discipline in place will make it easier to continue that way.

9.1 Subprojects the Easy Way

When you organize your source into a directory structure you
will normally break subprojects into their own distinct sub-
trees. For example, Figure 9.1 shows a repository containing
two projects and a set of common libraries. (This diagram
shows the logical structure of the repository; a real repository
might have more layers). The team working on project proj1
have decided to split their code into client and server com-
ponents. The proj2 team seem to have split into layers, with
a directory holding the database access code and another for
the program logic. In addition, both teams have some com-
mon code that they share in the library tree.

In this environment, you can manually control how much of
the repository you have in your local workspace. For example,
you might be a developer on the client-side of proj1. You
need the xml and date libraries to build your application.

Prepared exclusively for Francilene Procopio Garcia

SUBPROJECTS THE EASY WAY 108

work

proj1

client

library

date

xml

Figure 9.2: A Developer’s Workspace

You could check out just these parts of the repository using
commands such as:

work> cvs co proj1/client
work> cvs co library/xml
work> cvs co library/date

By default, CVS checks out these parts of the repository into
a directory structure that mirrors the repository. This means
that our developer’s workspace would look something like Fig-
ure 9.2.

It is possible to override CVS’s behavior; the cvs checkout

command takes an optional parameter which specifies the
place to put the checked-out files. However, this is a feature
that should be used with care. To see why, we’ll need to look
at how we’d go about building this project code.

Let’s assume that you follow our third project recommenda-
tion and have implemented an automated build system. This
system will take the project source out of the repository and
run your build script to compile and link the project’s source
code. In order for this to work, the build script will need to
know where all the source code is.

If we’re just working within a single project, all the source files
sit in a single directory structure, so the relative path from
one component to another will always be the same. However,
once we include a second module in the build life gets more
interesting. Now our code has to be able to get to code in other
modules. How can it do this? Different teams have come up
with different solutions:

Prepared exclusively for Francilene Procopio Garcia

SUBPROJECTS THE EASY WAY 109

• Customize the build environment. Every developer
must set up the parameters for their IDE to point to
the appropriate directories. The automated build has
the directories for that machine hard wired in. Although
very common, this is a remarkably error-prone proce-
dure. It is common to have different versions of a library
checked out multiple times on the same machine (for ex-
ample, if you are both working on the mainline develop-
ment and also fixing a bug in a previous release). If you
forget to update all the various build parameters, you
could be building the new source with the old libraries,
or vice-versa. And, if your project uses different operat-
ing systems during the build, this method isn’t particu-
larly portable. Relying on manual procedures like this is
just not a good idea.

• Use environment variables. The various build scripts
use environment variables to reference the tops of the
various module trees, and the contents of the trees are
relative references from there. This is slightly better than
manually configuring your build scripts for each ma-
chine; the configuration is done once in each machine’s
environment. It also means that the build scripts can
be checked in to the repository; the script is the same
on each machine and only the environment variables
change. However, it still suffers from the multiple ver-
sion problem; switching back and forth between different
checked-out versions of the same code is error prone.

IDEs such as Eclipse provide support for this style of
operation; you can set up machine-level configuration
variables, and then reference these from each projects’
build instructions.

• Use relative paths. Rather than having each user con-
figure his or her machine for the build, instead arrange
things so that the build environment is self-contained
and identical on each box. We do this by making it a
rule that the relative path between any two things in
the repository remains the same when we check those
things out. Another way of saying this is that the struc-
ture of the checked out source in a local workspace will

Prepared exclusively for Francilene Procopio Garcia

SUBPROJECTS THE EASY WAY 110

always mirror the structure in the repository (although
the workspace may contain just a subset of the stuff in
the repository).

This is a good way of organizing things: all the build
scripts know where everything else is, because the rel-
ative path will always be the same. Developers mov-
ing between machines will find the checked-out directory
structure identical on each.

Because of this, we strongly recommend that you:

1. Chose a directory structure that works.

2. Use it in the repository.

3. Insist that all developers check out using this structure.

Once you have this in place, build tools will know where to
find libraries and other project components, and developers
can move from machine to machine without having to spend
hours tracking down how each is configured.

Multi-repository Projects

CVS versions 1.11 and later allow you to check out code from
multiple repositories (or from multiple locations in the same
repository) into subdirectories of an already checked-out tree.
If you perform an update or commit command at the top level,
CVS will automatically switch between repositories as it tra-
verses through the directory tree.

In some special cases this is a remarkably useful feature.
However, in general it suffers from the same build issues
that arise when checking out multiple projects from the same
repository into random places in your workspace. We advise
against using this facility unless your team has established a
coherent set of standards which dictate where various subdi-
rectories should be placed. Again, the objective is to aim for
total consistency between all team members.

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 111

9.2 CVS Modules

CVS stores its repository in a standard file system directory
tree. Until now, we’re been relying on the fact that when you
issue the command “cvs co name”, CVS looks for a top-level
directory in the repository called name and checks it out into
your workspace. However, CVS also allows you to partition
your repository into modules. In many ways modules can
help you address all the problems of organizing the source in
your repository into usable chunks.

A CVS module is basically a way of giving a name to one or
more subdirectories in a repository. However, as with most
things, there’s more to it than that. CVS actually supports
three kinds of module: alias modules, regular modules, and
the elegantly-named ampersand modules. But before we look
at each of these, we first need to know how to configure these
modules in CVS.

CVS Configuration

You may have noticed the special directory, CVSROOT, that au-
tomatically appeared in the repositories that you created. This
directory contains a number of CVS configuration and option
files. Because this directory is present in the repository, you
can check it out just like any other.

work> cvs -d ˜/sandbox co CVSROOT
cvs checkout: Updating CVSROOT
U CVSROOT/checkoutlist
U CVSROOT/commitinfo
U CVSROOT/config
U CVSROOT/cvswrappers
U CVSROOT/editinfo
U CVSROOT/loginfo
U CVSROOT/modules
U CVSROOT/notify
U CVSROOT/rcsinfo
U CVSROOT/taginfo
U CVSROOT/verifymsg

Because we’re concerned with configuring modules in a repos-
itory, we need to work with the file CVSROOT/modules. If you
open this file in an editor, you’ll notice it contains a whole lot
of comment lines (that start with a “#” character) and nothing
else. That’s because our sandbox repository does not yet have

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 112

Three different line formats are valid:

key -a aliases...

key [options] directory

key [options] directory files...

#

Where "options" are composed of:

-i prog Run "prog" on "cvs commit" from top-level of module.

-o prog Run "prog" on "cvs checkout" of module.

-e prog Run "prog" on "cvs export" of module.

-t prog Run "prog" on "cvs rtag" of module.

-u prog Run "prog" on "cvs update" of module.

-d dir Place module in directory "dir" instead of module name.

-l Top-level directory only -- do not recurse.

#

NOTE: If you change any of the "Run" options above, you’ll have

to release and re-checkout any working directories of these modules.

#

And "directory" is a path to a directory relative to $CVSROOT.

#

The "-a" option specifies an alias. An alias is interpreted as if

everything on the right of the "-a" had been typed on the command line.

#

You can encode a module within a module by using the special ’&’

character to interpose another module into the current module.

This can be useful for creating a module that consists of many

directories spread out over the entire source repository.

Figure 9.3: A Typical Empty modules File

any modules defined. (A typical empty modules file is shown
in Figure 9.3.)

As an experiment, let’s try defining a module. If you’re work-
ing with our original sandbox repository, you should have
an existing top-level directory called sesame already defined.
Let’s define a module so that we can also refer to sesame as
projectX. Using an editor, add the following line to the bot-
tom of the checked-out modules file:

projectX sesame

Having made the change, we now need to get it back into the
repository. That’s simple; just commit it.

work/CVSROOT> cvs commit -m "Add module projectX"
cvs commit: Examining .
Checking in modules;
/Users/dave/sandbox/CVSROOT/modules,v <-- modules
new revision: 1.2; previous revision: 1.1
done
cvs commit: Rebuilding administrative file database

Notice there’s some additional logging here: CVS recognizes
that we’ve changed some configuration information and up-
dates itself accordingly.

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 113

Now let’s test that we can use projectX as a module name.
Go back to your work directory and try to check it out.

work> cvs -d /Users/dave/sandbox co projectX
cvs checkout: Updating projectX
U projectX/Color.txt
U projectX/Number.txt

You should now have a subdirectory of work called projectX

containing the contents of the sesame project.

Before we go any further, let’s tidy up. We’ve checked out two
modules (CVSROOT and projectX) that we won’t be needing,
so let’s release their contents. This removes them from our
workspace (but does not remove them from the repository).
We’ll use the cvs release command to do this. Specifying
the -d option makes CVS remove our local copy of the files.

work> cvs -d /Users/dave/sandbox release -d CVSROOT
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘CVSROOT’: yes

work> cvs -d /Users/dave/sandbox release -d projectX
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘projectX’: yes

Having looked at the mechanics of defining modules, let’s look
at the kinds of modules we can create.

Alias Modules

Alias modules are simple shortcuts: “when I say X convert it
to Y/Z.” Use alias modules when you want to divide a reposi-
tory into subprojects, and you want to ensure that people use
consistent directory structures.

Remember our developer who only wanted to check out a sub-
set of the project shown in Figure 9.1 on page 107? Using
basic CVS commands, the developer would have to use the
following commands to check out each individual subproject.

work> cvs co proj1/client
work> cvs co library/xml
work> cvs co library/date

For a small tree such as this example, this isn’t a big problem.
However, once projects start to grow, this can get onerous.
This is where we can use aliases. For our sample project, we
could add the following lines to our modules file:

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 114

client -a proj1/client
xml -a library/xml
date -a library/date

Now our developer could just type:

work> cvs co client
work> cvs co xml
work> cvs co date

CVS looks up the names, and converts them into the paths
in the modules file. It then checks out using these paths.
This means that even though you say “cvs co xml”, CVS
will still put the checked-out files in the workspace directory
library/xml. This way we can keep all the checked-out code
in consistent places.

However, we can take this a couple of steps further. Perhaps
these three portions of the tree form some meaningful group.
We can turn them into a module too, so that we can now refer
to them using a consistent name. In the modules file, add the
line:

clientall -a proj1/client library/xml library/date

Now our developer can check out all three subtrees using a
single command.

work> cvs co clientall
cvs checkout: Updating proj1/client
cvs checkout: Updating library/xml
cvs checkout: Updating library/date

Finally, we can tidy this up. Rather than repeat the paths to
the various subtrees in our modules file, we can use the indi-
vidual aliases in our compound alias, leading to the following
four lines (and diagrammatically in Figure 9.4 on the following
page).

client -a proj1/client
xml -a library/xml
date -a library/date
clientall -a client xml date

Regular Modules

While alias modules allow you to define short names for exist-
ing subtrees in the repository, regular modules allow you to
rename a section of the tree as you check it out. For exam-

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 115

clientall

Repository

proj1 library

date xmlclient

Figure 9.4: Modules and Aliases

ple, you could define a module using the following line in the
modules file:

clnt proj1/client

If you then check out using that module name, CVS will ignore
the path of the files in the repository and instead check out
into the directory clnt. A file such as proj1/client/README
will be checked out into clnt/README.

Now earlier we went on about how this kind of moving of direc-
tories is a bad idea when you’re checking out a project from
multiple places in a repository; files move in relation to one
another, and the build becomes tricky to orchestrate.

However, when subprojects don’t depend on each other, this
kind of renaming can be a great convenience. For example,
at the Pragmatic Programmers offices we keep all our work in
a central CVS repository. It contains project code, documen-
tation, our websites, and the sources to our books. Much of
this stuff is independent; the course material for Introduction
to Ruby doesn’t depend on anything else in the repository, so
it makes sense to be able to check it out on its own. So in our
own modules file, you’ll find the lines

courses PP/doc/Courses
halfruby PP/doc/Courses/HalfDayRuby

This means that we can check out the module halfruby and
the course material will appear in a directory of the same
name; there’s no need to create (or traverse) a full directory

Prepared exclusively for Francilene Procopio Garcia

CVS MODULES 116

tree to get to this single set of files. Note also that the alias
doesn’t have to point to a leaf directory; checking out the mod-
ule courses will fetch all our course material.

Alias modules let us put multiple directories and other aliases
in the module definition. We can’t do this with regular mod-
ules; each definition must reference exactly one directory (but
see the next section on ampersand modules for a way around
this). However, you can perform one extra piece of magic with
regular modules; you can include a list of specific files and
directories after the main directory path. If you do this, only
those files and directories will be checked out.

For example, the files in the Half-Day Ruby course are pretty
large. If I was in a hotel room using a dial-up connection and I
needed just the sample code for the course, I wouldn’t want to
waste time downloading megabytes worth of Powerpoint pre-
sentations. I could check out just the samples subdirectory
using a CVS command; CVS is smart enough to let you add
paths to modules just as you can with top-level directories.

work> cvs co halfruby/samples

However, if this was something that we did a lot, we could add
a line to the modules file.

halfrubysamp PP/doc/Courses/HalfDayRuby/samples

Checking out the module halfrubysamp will create a direc-
tory called halfrubysamp and populate it with the samples
from the repository.

Ampersand Modules

Earlier we said that in general, modules can be rooted in only
a single directory. However, that was a wee lie. There’s an ad-
ditional syntax that can be used to overcome that restriction.
A module may be defined in terms of a list of other modules
by prefixing those other modules’ name with an ampersand
character (“&”). For example, Andy and Dave may have mod-
ules set up for all their Ruby courses and talks.

halfruby PP/doc/Courses/HalfDayRuby
fullruby PP/doc/Courses/OneDayRuby
introruby PP/doc/Talks/IntroRuby
vacation PP/doc/Talks/SummerVacation

: :

Prepared exclusively for Francilene Procopio Garcia

SUMMARY 117

work

allruby

fullruby

Full-day Ruby material. . .
halfruby

Half-day Ruby material. . .
introruby

Introduction to Ruby material. . .
vacation

Summer vacation Ruby material. . .

Figure 9.5: Checking-out an Ampersand Module

It would be convenient to be able to check all of these out with
a single command. We could do this by adding a new module.

allruby &halfruby &fullruby &introruby &vacation . . .

We could then check out all our Ruby material using a single
command.

work> cvs co allruby

This checks out the Ruby material into the directory structure
shown in Figure 9.5. The top-level directory is named after
the module, and its immediate children are named after the
included modules.

9.3 Summary

Use CVS modules when you want to create a logical structure
for your project by bringing together separate pieces from your
repository. They reduce developer error by giving you a single
place to define exactly what is meant by a particular project
or subproject. They also allow you to maintain a consistent
external structure for all your projects.

Prepared exclusively for Francilene Procopio Garcia

Chapter 10

Third-Party Code

All projects rely to some extent on external libraries: C pro-
grams use the libc library, Java programs use rt.jar, and
so on. Should these libraries form part of your personal work-
space?

To answer that question, ask yourself another. You need to
be able to rebuild a working program at some arbitrary time
in the future. Will you be able to use the versions of these
libraries that will be available then?

If you feel comfortable that the libraries used by your code will
be available (and compatible) over the life of your application,
then there’s no need to do anything special with them; just
use them as installed on your machine.

Looking beyond standard language facilities, many projects
include other, less stable, libraries in their projects. For ex-
ample, many Java developers will use the JUnit framework1

to test their code. Compared to the standard libraries, these
frameworks are fairly volatile (as of June 2003, JUnit is al-
ready up to version 3.8). Although the changes between ver-
sions are mostly compatible, there can be changes that af-
fect your application.2 As a result, we’d recommend that you

1http://www.junit.org
2For example, we’ve seen interactions between the Ant build tool and var-

ious revisions of JUnit.

http://www.junit.org

CHAPTER 10. THIRD-PARTY CODE 119

include these libraries in your workspace, and (by extension)
in your project’s repositories.

Having made the decision that you want to include a third
party library in your workspace and repository, you now have
to decide what to include and where to put it.

The first decision is what files to include. This is relatively
easy. If you use the library in the form distributed by the
maker, and you feel confident that the library will continue
to work unmodified through the life of the application, then
storing the binary form of the library is all that is needed.
We suggest putting all these libraries in subdirectories of a
top-level vendor/ directory. If the library is architecture-
independent (for example a Java .jar file), then it can simply
sit in a subdirectory called lib/. If instead you have libraries
that depend on the target architecture (and assuming your
application is targeted at more than one architecture) you’ll
need to have subdirectories below vendor/ for each architec-
ture and operating system combination. A common naming
scheme for these subdirectories is to use arch-os where arch
is the target architecture (i586 for an Intel Pentium, ppc for
a PowerPC, and so on) and os is the operating system (linux,
win2k, and so on). Always remember to use the -kb flag when
importing or adding a binary file (such as a .DLL (dynamic link
library) or other library) to CVS.

Languages such as C and C++ require that you include source
header files in application code that uses a particular library.
These header files are supplied with the library, and should
also be stored in the workspace and repository. We suggest
storing them in an include/ subdirectory beneath vendor.
Structure the subdirectories of vendor/include/ in such a
way that the compilers can find the libraries’ include files nat-
urally. As an example, consider a C library called datetime

which performs date and time calculations. It comes with a
binary library archive, libdatetime.a, and two header files,
datetime.h and extras.h. The datetime.h header library
is intended to be installed at the top level of the include hi-
erarchy, while extras.h is expected to be in a subdirectory
called dt/. That is, a program that used both header files
would normally start:

Prepared exclusively for Francilene Procopio Garcia

CHAPTER 10. THIRD-PARTY CODE 120

proj/ ← top level of project
vendor/

lib/

libdatetime.a

include/

datetime.h

dt/

extras.h

Figure 10.1: Sample Repository With Third Party Library

#include <datetime>
#include <dt/extras>
// . . .

In this case, we’d organize our repository (and our workspace)
as shown in Figure 10.1.

Integrating with the Build Environment

If you include vendor libraries or header files in your work-
space, you’ll need to make sure that your compilers, linkers,
and IDEs can get to them. There’s a minor problem: you
need to make sure that you don’t check anything in to the
repository that contains absolute path names (as this might
not work on some other developer’s machine). Instead, you
have a couple of options:

1. Arrange your build tools so that all path names are rela-
tive to (say) the top level project directory. This is work-
able if you’re using an external build tool such as “make”
or “ant,” but it can get tricky.

2. Set up some external environment variable to point to
the top of the project tree, and make all references in the
build relative to this variable. This allows each developer
to have different values in the external variable, but then
to share a common build environment layout.

The external variable need not be a true operating sys-
tem environment variable. The Eclipse IDE, for exam-
ple, allows each user to set internal variables, and then

Prepared exclusively for Francilene Procopio Garcia

LIBRARIES WITH SOURCE CODE 121

to have a common shared build structure that refer-
ences these variables. This means that all developers
can share a common Eclipse build definition, but that
developers can still install the source in different loca-
tions.

We recommend the second approach.

10.1 Libraries With Source Code

Sometimes a library comes with source code (or is distributed
only as source code). If you have both source and binary
versions of the library available, which should you store in
the repository, and how should you set up your workspace?

The answer is an exercise in risk management. Having the
source available means that you are always in the position
(technically, at least) to fix bugs and add features, something
you can’t do with a binary library. This is clearly a good
thing. At the same time, including the source code for all
the libraries used by your project can slow down builds and
complicate the structure of your project. It also gives future
maintainers a headache. If there’s a bug, do they need to
consider potential changes to the library source, or can they
concentrate on the code written by your organization?

Our recommendation is to add vendor source to your reposi-
tory, but to treat it specially. To do this, you have to do a bit
of role-playing.

Imagine for a minute that you are the writer of this particular
library, and that every now and then you release an updated
version of the code to your user base. Being a high-quality
library writer, you naturally put all your source in a version
control system, and practice all the necessary release control
procedures.

Now come back from the role-play (remember, breathe in,
breathe out, breathe in, breathe out). In an ideal world, we
should be able to hook straight in to our vendor’s repository
and extract releases directly from there. But we can’t, so we
have to do the work ourselves. Whenever we receive code, bug
fixes, and new releases from a vendor, we have to pretend that

Prepared exclusively for Francilene Procopio Garcia

LIBRARIES WITH SOURCE CODE 122

we had generated the code, and handle it in our version con-
trol system as if we were the vendor handling it in theirs. This
turns out to be simpler than it sounds.

Importing the Initial Source

When we first receive the source code for a third-party library,
we need to import it into our repository. We recommend keep-
ing this code separate from the code of your project. If you
anticipate importing code from multiple sources over time, it
probably makes sense to keep it all under a common top-level
directory; we suggest calling it vendorsrc/ (to differentiate it
from vendor/, which contains libraries and header files).

To make this more concrete, let’s assume that we’ve decided
to use version 4.3 of the GNU readline library in our project.

We start by downloading the latest sources from the GNU ftp
site. We’ll store this in a temporary directory.

˜> cd tmp
tmp> ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:dave): ftp
331 Please specify the password.
Password:
230 Login successful. Have fun.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/gnu/readline
250 Directory successfully changed.
ftp> get readline-4.3.tar.gz
local: readline-4.3.tar.gz remote: readline-4.3.tar.gz
961662 bytes received in 00:06 (136.48 KB/s)
ftp> bye
221 Goodbye.

We then unpack the archive. This creates a source tree in a
subdirectory (which we know from experience will be called
readline-4.3). We make this our current working directory.

tmp> tar zxf readline-4.3.tar.gz
tmp> cd readline-4.3

We are now in a position to import this source into our repos-
itory. We’ll store it in the repository under vendorsrc/fsf/
readline. (Remember, all our third-party code is stored un-
der vendorsrc/. In this case, the vendor is the Free Software
Foundation, and the “product” is readline.)

Prepared exclusively for Francilene Procopio Garcia

LIBRARIES WITH SOURCE CODE 123

tmp/readline-4.3> cvs import -ko -m "load 4.3" \
vendorsrc/fsf/readline FSF_RL RL_4_3

N import/aclocal.m4
N import/ansi_stdlib.h
N import/bind.c
N import/callback.c
N import/chardefs.h
N import/compat.c

: :
N import/support/shobj-conf
N import/support/wcwidth.c

No conflicts created by this import

That’s quite a command: we break it down in Figure 10.2 on
the next page. The -ko flag is important, but subtle. Nor- -ko⇒

Keywords Offmally, CVS will expand special keywords (such as $Author$)
in each of the files it manages. This lets you add annotations
to the files. (This isn’t a practice we encourage, so we haven’t
shown it so far in this book.) The problem is that the key-
words are expanded every time the file is checked out. If the
vendor also uses CVS, and if the vendor has used these tags,
then the source you receive will have the vendor’s information
in these fields. However, if you just import these files as they
stand and check them back out, CVS will update the tags, and
suddenly your name will appear in the author field. While this
may be vaguely satisfying, it will cause problems later when
you come to merge in changes with the next vendor release.
CVS will notice that these tag lines have changed, and you’ll
get conflicts when merging with the vendor’s code. Specify-
ing the -ko option turns off tag expansion for all files in the
import, so you won’t see this problem.

The vendor tag gives us a way to refer to this entire set of code.
In this case, we can refer to the readline code using the tag
FSF RL. All code for readline will share this tag.

The release tag specifies the code that makes up this particu-
lar release. If the FSF comes up with version 4.4 of readline,
we’ll check it in with a different release tag. This means that
we’ll always be able to get back to the 4.3 release using the
original RL 4 3 tag.

Having imported this code into the repository, we can delete
the temporary directory that we used.

Prepared exclusively for Francilene Procopio Garcia

LIBRARIES WITH SOURCE CODE 124

cvs import -ko -m ”load 4.3” vendorsrc/fsf/readline FSF RL RL 4 3

Tell CVS not to
expand
keywords in the
imported files.

Comment
associated with
this import.

Where to store
imported files in
the repository.

Vendor tag for
this software

Tag associated
with this release

Figure 10.2: A CVS “import” command

Importing New Vendor Releases

When a vendor releases a new version of their software, you
might want to incorporate it into your repository.3 Assum-
ing that you haven’t made any local changes to the vendor’s
source code, then this is easy; simply import it again, follow-
ing the same steps as above:

1. Download the new source, and unpack it in to a tempo-
rary directory.

2. Issue a CVS import command, using the same repository
location and vendor tag, but with an updated release tag.

For example, if the FSF released readline version 4.4, we could
do:
tmp> tar zxf readline-4.4.tar.gz
tmp> cd readline-4.4

tmp/readline-4.4> cvs import -m -ko "load 4.4" \
vendorsrc/fsf/readline FSF_RL RL_4_4

N import/aclocal.m4
N import/ansi_stdlib.h
N import/bind.c
N import/callback.c
N import/chardefs.h
N import/compat.c

: :
N import/support/shobj-conf
N import/support/wcwidth.c

No conflicts created by this import

3Many teams make the mistake of constantly chasing the latest and great-
est vendor releases. This isn’t always prudent. If the features added at a
particular release don’t enhance your application, is it worth the risk of in-
corporating new code? Sometimes skipping minor releases and only merging
major changes is a better idea.

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 125

10.2 Modifying Third-Party Code

Sometimes the reason for importing third-party source code
is to allow your team to make changes. You may need to
add some application-specific functionality, or you might have
local bug fixes that you need to apply.

Clearly the ideal solution would be to supply this changed
code back to the third party and let them incorporate it into
their own copy. That way when they send you the next re-
lease, their code will incorporate your changes, and life will
be wonderful.

However, that isn’t always possible. In these cases, we need
to maintain our local changes and (ideally) have them auto-
matically roll forward from each vendor release to the next.

Fortunately for us, CVS makes this relatively easy. In the
background, the import mechanism is actually building and
managing a simple release tree. It works like this.

When you first import code into CVS, it creates a mainline,
and then immediately creates a branch (numbered 1.1.1). It
then places the code that you import into this branch (so
the first source files will have a revision number of 1.1.1.1).
Although this sounds complicated, it’s really no different to
the description we had of a simple release structure back on
page 18. And that isn’t a coincidence; behind the scenes CVS
is handing these imports as if you were the vendor performing
releases. The vendor tag that you give the import command
turns out to be the tag given to the release branch, and the
release tags given on each import identify the points on that
branch where each individual release’s code sits. This is il-
lustrated in Figure 10.3 on the next page.

If you check out vendor code, you’ll be checking out of the
release branch (the branch labeled with the vendor tag). You
can verify this; doing a cvs status on a file will show a re-
vision number with four levels (so the first revision will be
1.1.1.1). However, there’s some magic here. If you edit ven-
dor code and check it back in, CVS will place your changes in
the mainline, but the revision number will be 1.2, not 1.1.1.2.
CVS reserves the code in the vendor branch for vendor code.

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 126

FSF RL

MainLine

Local
changes in
mainline

RL 4 3 RL 4 4 . . .

Figure 10.3: Imported Third Party Code. Code is imported
in to a release branch, labeled by the vendor tag. Each im-
port generates a new release tag in that branch. Local work
automatically takes place in the mainline.

What happens if you edit third-party code, and then a new
release comes along? Let’s find out. To do this, we’ll set up a
dummy repository. We’ll then pretend to be a vendor (called
Acme) and create a couple of simple files. With our project
team hat back on, we’ll then import these, and check them
out into our workspace. We’ll then make a change and check
it in.

Back in the vendor directory we’ll prepare an updated release.
We’ll then try to import it, and we’ll work out how to merge the
vendor changes with our own.

Because all this role playing can get confusing, once we get
started we’ll show the full path of the current directory at the
start of each of the sequences of commands. In the prompts
themselves, we’ll just show the directory name. In general,
when we’re playing vendor we’ll be in the directory:

tmp/3rdparty/Acme

When we’re a client dealing with checked-out vendor files we’ll
be in the directory:

tmp/3rdparty/work/vendorsrc/Acme

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 127

Step 1: Set up the Repository

We’ll do all our work in a directory called 3rdparty; this will
let us clean everything up at the end. The repository goes in
a subdirectory called repository.

In directory tmp
tmp> mkdir 3rdparty
tmp> cd 3rdparty
tmp/3rdparty> export CVSROOT=˜/tmp/3rdparty/repository
tmp/3rdparty> cvs init
tmp/3rdparty> ls # use ’dir’ under Windows
repository

Step 2: Create the Third-Party Code

We’ll create a directory called Acme that contains the third-
party code. This directory will be the one we import into
CVS. We’ll use an editor to create two files, Color.txt and
Number.txt using our favorite editor.

in directory tmp/3rdparty
tmp/3rdparty> mkdir Acme
tmp/3rdparty> cd Acme

edit files, giving. . .

File Color.txt:
black

brown

red

orange

yellow

green

File Number.txt:
zero

one

two

three

four

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 128

Step 3: Import the Vendor Code

We’ve finished playing vendor for a minute. Now we’ll pretend
that we’ve received this code from the vendor and import it in
to the repository, storing it in vendorsrc/Acme.

In directory tmp/3rdparty/Acme
Acme> cvs -ko import -m "load" vendorsrc/Acme Acme REL_1_0
N vendorsrc/Acme/Color.txt
N vendorsrc/Acme/Number.txt

No conflicts created by this import

Step 4: Set Up The Workspace

We’ll now create a workspace and check out this vendor code
there.
In directory tmp/3rdparty/Acme
Acme> cd ..
tmp/3rdparty> mkdir work
tmp/3rdparty> cd work
tmp/3rdparty/work> cvs co vendorsrc/Acme
cvs checkout: Updating vendorsrc/Acme
U vendorsrc/Acme/Color.txt
U vendorsrc/Acme/Number.txt

Step 5: Modify The Vendor Code

Part way through our project, we discover a problem in the
vendor code; their numbers file uses “zero,” but our project
standards call for “naught.” The vendor ignores our pleas for
a change, claiming we are their only customer to use Middle-
English numbering (can that be?). So we bite the bullet and
make the change ourselves. We edit the file in our workspace,
then check it back in.
In directory tmp/3rdparty/work
work> cd vendorsrc/Acme
Acme> # ... edit file ...
Acme> cvs commit -m "Zero becomes naught"
cvs commit: Examining .
Checking in Number.txt;
.../repository/vendorsrc/Acme/Number.txt,v <-- Number.txt
new revision: 1.2; previous revision: 1.1
done

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 129

Step 6: The Vendor Makes a Change

Meanwhile, back at Acme Corp, they decide to produce V1.1
of the product. As part of the added value in this new release,
they’re adding three new numbers to their numbers file. We’ll
simulate this by going back to our Acme directory (the one at
the top level) and editing the file.

In directory tmp/3rdparty/work/vendorsrc/Acme
Acme> cd ../../../Acme
tmp/3rdparty/Acme> # ... edit file ...

After the edit, the new numbers file contains:

File Number.txt:
zero

one

two

three

four

five

six

seven

This file still has “zero” in it; remember that Acme did not
make the change to “naught.” That’s only in our local copy.

Step 7: Import the New Revision

Acme sends us the new revision, so with our client hats on we
import it into CVS.

In directory tmp/3rdparty/Acme
Acme> cvs import -ko -m "update" vendorsrc/Acme Acme REL_1_1
U vendorsrc/Acme/Color.txt
C vendorsrc/Acme/Number.txt

1 conflicts created by this import.
Use the following command to help the merge:

cvs checkout -jAcme:yesterday -jAcme vendorsrc/Acme

CVS was smart enough to recognize that this import was ac-
tually updating existing files. The Color.txt file updated
successfully (in fact it is unchanged) but the Number.txt file
has a potential conflict; it has been changed by us (as the
client) and also by the vendor. CVS was nice enough to sug-
gest the command we could use to fix the situation. Normally,
this command would work fine. Unfortunately it won’t work
for us. To see why, let’s look at the command in more detail.

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 130

As we saw in Chapter 7.2, the -j option is used to merge in
changes during checkout or update. In this case we’re using
two -j options. The first option, -jAcme:yesterday, tells
CVS to look at the Acme branch as it was yesterday, before (in
theory) we imported the latest release. The second, -jAcme
says look at it as it is now. The two together ask CVS to
compute the difference; this difference is the changes that the
vendor made. These changes are then applied to the current
head of our mainline. The net result of all this is that the
vendor’s changes are used to update our local copy.

Although this incantation would normally work (because few
vendors produce more than one release per day), it doesn’t
work too well in our example, as we didn’t even have any ven-
dor code yesterday. Instead, we’ll use an alternate form of the
-j option, which allows us to merge based on release tags.

To do this, change back to our workspace, and issue the fol-
lowing command.

In directory tmp/3rdparty/Acme
Acme> cd ../work
work> cvs co -jREL_1_0 -jREL_1_1 vendorsrc/Acme
cvs checkout: Updating vendorsrc/Acme
RCS file: /Users/dave/tmp/3rdparty/repository/vendorsrc/Acme/Number.txt,v
retrieving revision 1.1.1.1
retrieving revision 1.1.1.2
Merging differences between 1.1.1.1 and 1.1.1.2 into Number.txt

Remember that we gave the first import the revision tag of
REL 1 0 and the second the tag REL 1 1. This lets us tell CVS
to apply the differences between these two releases to our cur-
rent mainline code. The result can be seen in the tracing that
follows the command: CVS merges the vendor’s changes in
to our local file. Let’s look at it and confirm that we have the
vendor’s three additional numbers, and that our “naught” has
not been changed.

In directory tmp/3rdparty/work
work> cd vendorsrc/Acme
Acme> cvs status Number.txt
==
File: Number.txt Status: Locally Modified

Working revision: 1.2 Result of merge
Repository revision: 1.2 /Users/dave/tmp/3rdparty/repos...
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

We can also check the file contents.

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 131

File Number.txt:
naught

one

two

three

four

five

six

seven

Had there been conflicts between the vendor code and our
changes, we’d have seen the normal conflict markers in the
file.

Step 8: Save the Merged File

Now that we’ve merged the changes (and run the tests to con-
firm the system still works) we can check everything back in
to the repository.

In directory tmp/3rdparty/work/vendorsrc/Acme
Acme> cvs commit -m "Merged 1.1 changes"
cvs commit: Examining .
Checking in Number.txt;
/Users/.../vendorsrc/Acme/Number.txt,v <-- Number.txt
new revision: 1.3; previous revision: 1.2
done

Prepared exclusively for Francilene Procopio Garcia

MODIFYING THIRD-PARTY CODE 132

Summary: Modifying Third-Party Code

Managing vendor releases using these simple steps is both
straightforward and powerful. CVS automatically maintains
a release branch that contains the unmodified code from the
vendor, tagged at each release. Our mainline in the repository
contains the same code, but with all our local changes. Using
the -j options allows us to merge the vendor’s changes at
each release into our local version of their code.

To summarize, the steps are:

• Import the vendor code:

cvs import -ko -m "load" vendor module \
vendor release

• Check out vendor code into a local workspace:

cd work

cvs co vendor module

• Make local changes to vendor code and check back in:

cvs commit -m "summary of changes"

• If the vendor issues a new release, import it into the ven-
dor branch:

cvs import -ko -m "update" vendor module \
vendor release tag

• Fix conflicts between vendor changes and our changes:

cvs co -jrelease 1 -jrelease 2 vendor module

• Save the changes back:

cvs commit -m "summary of changes"

Prepared exclusively for Francilene Procopio Garcia

Appendix A

CVS Summary and Recipes

This section is a brief summary of CVS commands, and the
particular recipes used in this book.

A.1 CVS Command Format

cvs <global options..> command <options and arguments. . .>

Global Options

-H Displays usage information for command.
-Q Cause CVS to be really quiet.
-q Cause CVS to be somewhat quiet.
-r Make checked-out files read-only.
-w Make checked-out files read-write (default).
-l Turn history logging off.
-n Do not execute anything that will change the disk.
-t Show trace of program execution – try with -n.
-v CVS version and copyright.
-b bindir Find RCS programs in “bindir”.
-T tmpdir Use “tmpdir” for temporary files.
-e editor Use “editor” for editing log information.
-d CVSROOT Overrides CVSROOT environment variable as the

root of the CVS tree.
-f Do not use the /.cvsrc file.
-z # Use compression level “#” for net traffic.
-a Authenticate all net traffic.
-s VAR=VAL Set CVS user variable.

CVS COMMAND FORMAT 134

Flag Characters

During update operations, CVS will display a list of file names pre-
ceded by flag characters. The following table lists the meanings of
these characters.

A file file has been added locally and is not yet in the repository.
C file A conflict was detected when trying to update file (that is,

local changes conflicted with changes made in the repos-
itory version). Your local copy of the file contains conflict
markers, and the original version of the file is stored in a
new file called .#file.version.

M file file has been modified in your workspace and needs to be
stored back to bring the repository up-to-date.

P file Equivalent to “U,” documented below. The “P” flag signifies
that the server used a patch to bring the file up to date.

R file file has been removed from your working copy of the repos-
itory (using cvs remove). The repository version will be
removed when you run cvs commit.

U file The local copy of file has been updated to bring it up-to-
date with the repository. This happens both when the
repository version is later than the local version and when
a new file is in the repository but not (yet) available locally.

? file file exists in your workspace but nothing is known about it
in the repository. You can use cvs add to add it, or possibly
update .cvsignore to tell CVS to ignore it.

CVS Environment

The following environment variables are commonly used with CVS.
They are described in more detail in Connecting to CVS on page 49.

CVSROOT

Specifies the default repository location and access method.
Setting this variable means you don’t need to use the global
CVS -d option.

CVS RSH

Specifies the program to be used to access the remote reposi-
tory. We recommend using ssh for this purpose.

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 135

CVS Commands

CVS supports a rich set of commands, listed in the table that follows.
In this book we use only a subset of these (marked † in the following
table). In the sections that follow, we’ll show the specific options
for these commands. These descriptions are based on the CVS help
information: use cvs --help for details.

add† Add a new file/directory to the repository
admin† Administration front end for rcs
annotate† Show last revision where each line was modified
checkout† Checkout sources for editing
commit† Check files into the repository
diff† Show differences between revisions
edit Get ready to edit a watched file
editors See who is editing a watched file
export Export sources from CVS, similar to checkout
history Show repository access history
import† Import sources into CVS, using vendor branches
init† Create a CVS repository if it doesn’t exist
log† Print out history information for files
login† Prompt for password for authenticating server
logout† Removes entry in .cvspass for remote repository
rdiff Create “patch” format diffs between releases
release† Indicate that a Module is no longer in use
remove† Remove an entry from the repository
rtag† Add a symbolic tag to a module
status† Display status information on checked out files
tag† Add a symbolic tag to checked out version of files
unedit Undo an edit command
update† Bring work tree in sync with repository
watch Set watches
watchers See who is watching a file

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 136

Add New File or Directory add

cvs add [-k rcs-kflag] [-m message] files...

-k Use rcs-kflag to add the file with the specified kflag. Commonly
used as “-kb” to add binary files to the repository.

-m Use message for the creation log.

Administer Underlying Repository admin

cvs admin rcsoptions...

-k Use “rcs-kflag” to change the flags associated with a file. Some-
times used to change the status of a file to binary (using “-kb”).

Show Revisions for Lines in Files annotate

cvs annotate [-lRf] [-r rev |-D date] [files...]

-l Local directory only, no recursion.
-R Process directories recursively.
-f Use head revision if tag/date not found.
-r rev Annotate file as of specified revision/tag.
-D date Annotate file as of specified date.

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 137

Check Out Sources For Editing checkout

cvs checkout [-ANPRcflnps] [-r rev | -D date]

[-d dir] [-j rev1] [-j rev2] [-k kopt]

modules...

-A Reset any sticky tags/date/kopts.
-N Don’t shorten module paths if -d specified.
-P Prune empty directories.
-R Process directories recursively.
-c Show contents of the module database.
-f Force a head revision match if tag/date not found.
-l Local directory only, not recursive.
-n Do not run module program (if any).
-p Check out files to standard output (avoids sticki-

ness).
-s Like -c, but include module status.
-r rev Check out revision or tag (implies -P; is sticky).
-D date Check out revisions as of date (implies -P; is sticky).
-d dir Check out into dir instead of module name.
-k kopt Use RCS kopt -k option on checkout.
-j rev Merge in changes made between current revision

and rev.

Check Files in to the Repository commit

cvs commit [-nRlf] [-m msg | -F logfile] [-r rev]

files...

-n Do not run the module program (if any).
-R Process directories recursively.
-l Local directory only (not recursive).
-f Force the file to be committed; disables recursion.
-F file Read the log message from file.
-m msg Log message.
-r rev Commit to this branch or trunk revision.

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 138

Show Differences Between Revisions diff

cvs diff [-lNR] [rcsdiff-options]

[[-r rev1 | -D date1] [-r rev2 | -D date2]]

[files...]

-l Local directory only, not recursive.
-R Process directories recursively.
-D date1 Diff revision for date against working file.
-D date2 Diff rev1/date1 against date2.
-N Include diffs for added and removed files.
-r rev1 Diff revision for rev1 against working file.
-r rev2 Diff rev1/date1 against rev2.
–ifdef=arg Output diffs in ifdef format.
rcsdiff Common options include -c for context diffs, -u for

unified diffs, and --side-by-side.

Import Sources Into CVS import

cvs import [-d] [-k subst] [-I ign] [-m msg]

[-b branch] [-W spec] repository

vendor-tag release-tags...

-d Use the file’s modification time as the time of import.
-k sub Set default RCS keyword substitution mode.
-I ign Files to ignore (! to reset).
-b bra Vendor branch id.
-m msg Log message.
-W spec Wrappers specification line.

Create a CVS Repository init

cvs init

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 139

Print File History log

cvs log [-lRhtNb] [-r[revisions]] [-d dates]

[-s states] [-w[logins]] [files...]

-l Local directory only, no recursion.
-R Only print name of RCS file.
-h Only print header.
-t Only print header and descriptive text.
-N Do not list tags.
-b Only list revisions on the default branch.
-r[revisions] Specify revision(s)s to list.
-d dates Specify dates (D1<D2 for range, D for latest before).
-s states Only list revisions with specified states.
-w[logins] Only list revisions checked in by specified logins.

Log In to PServer login

cvs login

Stop Using a Module release

cvs release [-d] directories...

-d Delete the local copy of the given directories.

Remove Entry from Repository remove

cvs remove [-flR] [files...]

-f Delete the file before removing it.
-l Process this directory only (not recursive).
-R Process directories recursively.

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 140

Tag Module in Repository rtag

cvs rtag [-aflRnF] [-b] [-d] [-r tag |-D date] tag

modules...

-a Clear tag from removed files that would not other-
wise be tagged.

-f Force a head revision match if tag/date not found.
-l Local directory only, not recursive.
-R Process directories recursively.
-n No execution of “tag program”.
-d Delete the given Tag.
-b Make the tag a “branch” tag, allowing concurrent de-

velopment.
-r rev Existing revision/tag.
-D Existing date.
-F Move tag if it already exists.

Display Status of Files status

cvs status [-vlR] [files...]

-v Verbose format; includes tag information for the file.
-l Process this directory only (not recursive).
-R Process directories recursively.

Tag Local Files tag

cvs tag [-lRF] [-b] [-d] [-c] [-r tag |-D date] tag

[files...]

-l Local directory only, not recursive.
-R Process directories recursively.
-d Delete the given tag.
-r rev Existing revision/tag.
-D date Existing date.
-f Force a head revision if specified tag not found.
-b Make the tag a ”branch” tag, allowing concurrent de-

velopment.
-F Move tag if it already exists.
-c Check that working files are unmodified.

Prepared exclusively for Francilene Procopio Garcia

CVS COMMAND FORMAT 141

Bring Local Files Up To Date update

cvs update [-APdflRp] [-k kopt] [-r rev |-D date]

[-j rev] [-I ign] [-W spec] [files...]

-A Reset any sticky tags/date/kopts.
-P Prune empty directories.
-d Build directories, like checkout does.
-f Force a head revision match if tag/date not found.
-l Local directory only, no recursion.
-R Process directories recursively.
-p Send updates to standard output (avoids stickiness).
-k kopt Use RCS kopt -k option on checkout.
-r rev Update using specified revision/tag (is sticky).
-D date Set date to update from (is sticky).
-j rev Merge in changes made between current revision

and rev.
-I ign Files to ignore (! to reset).
-W spec Wrappers specification line.

Prepared exclusively for Francilene Procopio Garcia

RECIPES 142

A.2 Recipes

Connecting via SSH . Page 54

set CVSROOT to :ext:user@address:repository

set CVS_RSH to ssh

Issue normal CVS commands.

Connecting via pserver . Page 55

set CVSROOT to :pserver:user@address:repository

cvs login

Checking things out . Page 57

cvs co module...

Checking out a particular revision . Page 57

cvs co -r tag module

Updating a Workspace . Page 59

cvs -q update -d

Updating Specific Files . Page 59

cvs -q update file...

Adding Files and Directories .Page 62

cvs add name...

Adding Binary Files . Page 62

cvs add -kb name...

Ignoring certain files . Page 67

Add names to .cvsignore file

(remember to cvs add .cvsignore)

Renaming files. .Page 68
cvs -q update -d

rename old name to new name

cvs remove old name

cvs add new name

cvs commit -m "Rename old name to new name"

Renaming a Directory . Page 70
mkdir new dir

cvs add new dir

move files from old dir/ new dir...

cvs remove old dir/file...

cvs add new dir/file...

cvs commit -m "Rename old dir/ to new dir/"

cvs update -P

Seeing what’s changed since checkout . Page 71

cvs diff file or dir

Seeing what’s changed between versions . Page 72

cvs diff -r r1 [-r r2] file or dir

Prepared exclusively for Francilene Procopio Garcia

RECIPES 143

Committing changes .Page 79

cvs commit -m "message"

Examining change history . Page 80

cvs log file or dir

cvs annotate file or dir

Undo change made between r1 and r2. .Page 84

cvs update -jr2 -jr1 file

Creating a Release Branch . Page 90

cvs commit -m "..."

cvs rtag -b RB_x_y project

Checking out a Release Branch . Page 91
cd work

cvs co -r RB_x_y -d rbx.y project

Generating a Release . Page 92

cvs update

... run tests ...

cvs commit -m "..." # if needed

cvs tag REL_x_y

Checking Out a Release . Page 92
cd work

cvs co -r REL_x_y -d relx.y project

Fixing Bugs in a Release Branch . Page 94

cd work

cvs co -r RB_x_y -d rbx.y project

cd rbx.y

cvs tag PRE_bugno

create test, fix problem, validate

cvs commit -m "Fix PRbugno"

cvs tag POST_bugno

Apply Bug Fix to Another Branch . Page 95
cd workingdir

cvs update

cvs -j PRE_bugno -j POST_bugno update

test...

cvs commit -m "Apply fix for PRbugno from RBx.y"

Creating Experimental Branches . Page 95

cvs commit -m ""

cvs rtag -b TRY_initials_yymmdd project

Using an Experimental Branch . Page 95

cvs update -r TRY_initials_yymmdd

Returning to the Head of the Mainline . Page 95

cvs update -A

Prepared exclusively for Francilene Procopio Garcia

RECIPES 144

Merging An Experimental Branch . Page 97
In experimental workspace:

cvs commit -m "Finalize changes"

cd mainline

cvs update -j TRY_initials_yymmdd

Creating Sub-modules . Page 110
cvs co CVSROOT

cd CVSROOT

edit file: modules

cvs commit -m "Add module name"

cd ..

cvs release -d CVSROOT

Importing Third Party Code. .Page 122

cvs import -ko -m "msg" rep locn vendor tag

Prepared exclusively for Francilene Procopio Garcia

Appendix B

Other Resources
CVS is probably the most commonly used version control sys-
tem in the world, so help is normally just a Google query away.
However, here are some resources that we find especially use-
ful.

B.1 Online CVS Resources

CVS Home Page
⇒ www.cvshome.org

The canonical site for CVS. Here you’ll find information on new re-
leases, downloads, the list of Frequently Asked Questions, and doc-
umentation.

Clicking the Hosted Projects link in the side panel takes you to a list

of auxiliary CVS projects. Under the Integration link you’ll find tools

that might help you integrate CVS with your particular environment.

CVS Manual
⇒ www.cvshome.org/docs/manual/

Per Cederqvist’s manual for CVS is available in HTML, PDF, and

Postscript formats.

B.2 Other CVS Books

This book takes a recipe-based approach to CVS. We believe
that the commands documented here represent the essential
subset of CVS for the vast majority of project teams. The
bibliography contains references to three other CVS books

www.cvshome.org
www.cvshome.org/docs/manual/

OTHER VERSION CONTROL SYSTEMS 146

([Fog99], [Pur00], and [Ves03]) which contain more detailed
information on the nitty-gritty of CVS.

It also contains a reference to a higher-level book, Software
Configuration Management Patterns [BA03], which explains
some of the theory behind the things we do with version con-
trol systems.

B.3 Other Version Control Systems

The list below is a set of pointers to some well-known ver-
sion control systems. We’ve tried hard to be non-judgemental;
different folks are looking for different capabilities in their
tools. Before investing in any of the commercial products,
we strongly recommend searching for other users and get-
ting their opinions. You’ll find some surprisingly strong reac-
tions. . . .

BitKeeper
⇒ www.bitkeeper.com

BitKeeper uses an interesting approach to version control; it operates

largely without a central server or repository.

ClearCase
⇒ www.rational.com/products/clearcase/index.jsp

Originally a Rational product, now owned by IBM.

Forte Code Management Software
⇒ wwws.sun.com/software/sundev/previous/teamware

Formerly by Forte TeamWare, now owned by Sun, and the inspira-

tion for BitKeeper.

PVCS
⇒ www.merant.com

The professional offering includes version control, change manage-

ment, bug tracking, and build automation.

Perforce
⇒ www.perforce.com

Powerful version control system. Many developers feel it has the

simplest-to-use branching model.

Subversion
⇒ subversion.tigris.org

An open-source project intended to produce an eventual replacement

for CVS. Usable, but as of September 2003 is still alpha quality.

Prepared exclusively for Francilene Procopio Garcia

www.bitkeeper.com
www.rational.com/products/clearcase/index.jsp
wwws.sun.com/software/sundev/previous/teamware
www.merant.com
www.perforce.com
subversion.tigris.org

BIBLIOGRAPHY 147

Visual SourceSafe
⇒ msdn.microsoft.com/ssafe/

Microsoft’s version control offering, so expect good integration with

Microsoft tools.

B.4 Bibliography

[BA03] Stephen P. Berczuk and Brad Appleton. Soft-
ware Configuration Management Patterns: Effec-
tive Teamwork, Practical Integration. Addison-Wes-
ley, 2003.

[Fog99] Karl Franz Fogel. Open Source Development with
CVS: Learn How to Work With Open Source Soft-
ware. The Coriolis Group, third edition, 1999.

[HT03] Andy Hunt and Dave Thomas. Pragmatic Unit Test-
ing with JUnit. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2003.

[Pro04] Pragmatic Programmers. Pragmatic Automation.
The Pragmatic Programmers, LLC, Raleigh, NC,
and Dallas, TX, (planned for) 2004.

[Pur00] Gregor N. Purdy. CVS Pocket Reference. O’Reilly &
Associates, Inc, Sebastopol, CA, 2000.

[Ves03] Jennifer Vesperman. Essential CVS. O’Reilly &
Associates, Inc, Sebastopol, CA, 2003.

Prepared exclusively for Francilene Procopio Garcia

msdn.microsoft.com/ssafe/

Index

Symbols
<<<<<< and >>>>>

conflict markers, 44, 77

A
add (CVS command), 62, 101,

136
-kb option, 64, 119

Add files to repository, 62
admin (CVS command), 136
Alias modules, 113
Ampersand modules, 116
annotate (CVS command), 82,

136
-D option, 82
-r option, 82

Ant, 9
relative path in script, 109,

120
Appleton, Brad, 146
Architecture-specific directories

for third-party code, 119
Artifact (store or not), 10
Attic (stores deleted files), 68
Audit functionality, 2
Automation, ix, 47

B
-b option to:

diff, 78
Berczuk, Stephen P., 146
Binary files, 62

and cvswrappers, 65
fixing status, 64

BitKeeper, 146
Books, CVS, 145
Branch, 16–18, 86–97

experimental, 95
HEAD tag, 40, 73
mainline, 16, 57

bug fixes, 95
merge experiments, 97
release, 89–95

bug fixes, 94
generating, 92

tag, 88
vendor, 125
version numbering, 91

Bugs
fixing in release, 94

Build
environment variables, 109,

120
parameters, 108
third-party code and, 120

build.xml, 9
BUILDING file, 102

C
-c option to:

diff, 71
Change

removing from file, 83
third-party code, 125

Check out, 12
by date, 57
by revision number, 57
description, 11
into workspace, 34, 56–58
module, 113
override directory, 58
sticky, 57

checkout (CVS command), 34,
56, 108, 137

CLEARCASE 149 CVSWRAPPERS

-D option, 57
-d option, 100
-j option, 130
-l option, 100
-P option, 104
-r option, 57

ClearCase, 146
cmd (Windows shell), 25
co (CVS command), see CVS,

checkout

Code freeze
avoiding, 16, 89

Code Management System
(Forte), 146

command (Windows shell), 25
Command line

using, 25
Commit

changes, 79
definition, 11
up-to-date check failed, 41

commit (CVS command), 37, 79,
137

-m option, 37
Configuration files (CVS), 111
Configuration Management, 23
Conflict

during merge, 22, 43, 75–79
fixing, 76
markers (<<. . . and
>>. . .), 44, 77

resolution, 19, 38–45
Context diff, 71
Create

module, 112
project, 31, 98
repository, 29

CVS
add (command), 62, 101,

136
admin (command), 136
alternatives to, 146
annotate (command), 82,

136
books, 145
checking installation, 28
checkout (command), 34,

56, 108, 137
co (command), see CVS,

checkout

command format, 133

commands, 135–141
commit (command), 37, 79,

137
configuration files, 111
.cvsignore, 67
cvswrappers, 65
-d (option), 30, 53
diff (command), 36, 40,

71, 78, 138
flag characters, 134
home page, 145
ignoring files, 67
import (command), 32, 65,

100, 138
init (command), 30, 138
installing, 24
keyword expansion, 123
log (command), 37, 44, 80,

139
login (command), 55, 139
logout (command), 55
manual, 145
modules, 111–117
options, 61, 133
-q (option), 60
release (command), 139
remove (command), 68, 139
rtag (command), 90, 93,

140
status (command), 35, 58,

140
tag (command), 92, 93, 140
Tortoise front end, 31
update (command), 59, 65,

69, 71, 141
WinCvs front end, 31

CVS RSH

environment variable, 53,
54, 134

cvsadmin, 52
.cvsignore, 67, 104
cvspadm, 52
CVSROOT, 52
CVSROOT

directory, 111
CVSROOT

environment, 53
environment variable, 54,

134
cvswrappers, 65

-D OPTION TO: 150 FIXING CONFLICTS

D
-D option to:

annotate, 82
checkout, 57
diff, 72

-d option to:
checkout, 100
CVS, 30, 53
log, 82
update, 59

data/ directory, 103
Database, see Repository
Date

for cvs checkout, 57
for cvs diff, 72
formats, 58

db/ directory, 103
Deleted file

in Attic, 68
recovering, 69

Developers
experimental code, 95
sharing code, 1, 22

diff (CVS command), 36, 40, 71,
78, 138

-b option, 78
-c option, 71
-D option, 72
-r option, 40, 72
-u option, 74

Difference
and patch, 74
between files, 36
between versions, 72
context diff, 71
display side-by-side, 36, 72
stored in repository, 14n
unified diff, 74

Directory
architecture specific, 119
include/, 119
pruning empty, 71
renaming, 70
structure, 33

submodules, 108
top-level in project, 102
vendor include/, 119

doc/ directory, 102
Documentation

CVS, 145
DOS and Unix line endings, 62

E
Editing files, 19
Elephant

memory, 68
Environment variable

CVS RSH, 53, 54, 134
CVSROOT, 53, 54, 134
for build parameters, 109,

120
Examples

GNU readline, 122
Orinoco, 2
Wibble, 99

Experimental-code branches, 95
Explorer

integrating CVS, 31
export

environment variable, 53
ext (connection), see Network,

ext
External libraries, see

Third-party code

F
File

adding to repository, 62
binary, 62
checked out read only, 19
deleted, 68
difference, 36
editing, 19
entity in repository, 12
generated, 10
header, 119
ignoring, 67
intermediate, 67
line endings, 62
locking, see Locking
merge, see Merge
modified locally, 35
recovering, 69
relative paths in build

scripts, 109, 120
removed, 68
renaming, 68
top-level in project, 102
transient, 67
undeleting, 69
undoing change to, 83

Fixing conflicts, 76

FLAG CHARACTERS (IN STATUS MESSAGES) 151 MERGE

Flag characters (in status
messages), 134

Fogel, Karl Franz, 146
Forte

Code Management System
(formerly TeamWare), 146

G
GLOSSARY file, 102
GNU readline example, 122
GSSAPI, 51n

H
HEAD tag, 40, 73
Header files, 119
History, see Log

I
IBM

ClearCase, 146
IDE

build parameters, 109
CVS support, 31
method-level check in, 12n

Ignoring files, 67
Import

creating a project, 99
third-party releases, 124

import (CVS command), 32, 65,
100, 138

-kb option, 119
-ko option, 123
-m option, 32, 100, 123
-W option, 65

Import third-party code, 122–124
include/ directory, 119
init (CVS command), 30, 138
Installing CVS, 24
Intermediate files, 67
Internet, see Network

J
-j option to:

checkout, 130
update, 84

JUnit, 118

K
-kb option to:

add, 64, 119

import, 119
Kerberos, 51n
Keywords, CVS, 123
-ko option to:

import, 123
konsole (Unix shell), 25

L
-l option to:

checkout, 100
Libraries, external, see

Third-party code
Line endings, 62
Locking, 19

and conflicts, 38, 75
optimistic, 20, 45
strict, 19

Log
line-by-line history, 82
listing for file, 37, 80
meaningful messages, 81
of changes, 2

log (CVS command), 37, 44, 80,
139

-d option, 82
-r option, 82

login (CVS command), 55, 139
logout (CVS command), 55

M
-m option to:

commit, 37
import, 32, 100, 123

Mac OS X shell, 26
Mainline, see Branch, mainline
Makefile

relative path in script, 109,
120

Manual
CVS, 145

Merant
PVCS, 146

Merge, 18
automatic on update, 20
bug fix into mainline, 95
conflict, 22
conflicts during, 43, 75–79
experimental code to

mainline, 97
repository with local file, 42,

59

METADATA 152 REMOVE (CVS COMMAND)

third-party code changes,
129

with -j, 84
Metadata

store in repository, 9
Method

IDE versioning of, 12n
Microsoft

Visual SourceSafe, 147
Modified

locally, 35
third-party code, 125

Module, 13, 111–117
˜s in modules file, 111
alias, 113
ampersand, 116
check out, 113
checking out, 56
define new, 112
regular, 114

Modules
submodules, see

Submodules
modules file, 111

N
Naming convention

tag, 89
Network

access repository, 8, 49
ext, 50
pserver, 52
pserver, 50, 55
rsh, 50
security, 50
ssh, 50, 54

Number
revision, see Version

O
Offline

access repository, 9
see also Network

Oliver, Andrew, 78
Open Source, 74
Optimistic locking, 20, 45
Options

CVS, 61, 133
Organizing repository, 47
Orinoco example, 2

P
-P option to:

checkout, 104
update, 71, 104

Parameters (build), 108
passwd file, 52
Patch program, 74
Pragmatic Starter Kit, viii

Automation, ix
Unit Testing, ix

Project, 13, 98–105
and subprojects, 106
checking out, 34
creating, 31
directory structure, 104
importing, 99
multi-repository, 110
structure, 99, 101
top-level directories, 102
top-level files, 102
über, 100

Prompt
format, 28
see also Command line

Pruning empty directories, 71
pserver, see Network, pserver
Purdy, Gregor N., 146
PVCS, 146

Q
-q option to:

CVS, 60

R
-r option to:

annotate, 82
checkout, 57
diff, 40, 72
log, 82

Rational Software
ClearCase, 146

README file, 102
Regular module, 114
Regular tag, 87
Relative file path, 109, 120
Release, see Branch, release
release (CVS command), 139
Release tag, 123
Remote access, see Network
Remote shell (rsh and ssh), 50
remove (CVS command), 68, 139

REMOVED FILE 153 -U OPTION TO:

Removed file
in Attic, 68
recovering, 69

Renaming directories, 70
Renaming files, 68
Repository, 7

accessing, 49–55
adding files, 62
compare to workspace, 71
creating, 29
creating sandbox, 30
files stored in, 12
multi-˜ projects, 110
organization, 47
remote access, see Network
resyncing workspace, 69
security, 50
stores differences, 14n
tags, 90
test, 47
updating, 37, 79
user accounts, 51
what to store, 9

Reverting a file, 83
Revision, see Version
rtag (CVS command), 90, 93,

140

S
sandbox

creating, 30
Schneider, Ray, 52
SCM, 23
Secure shell (ssh), 50, 54
Security

network, 50
user accounts, 51

setenv, 53
Shell

command, see Command
line

remote, 50
secure, see Network, ssh

Side-by-side diff, 36, 72
Source code, 9

third-party, 121
Source Code Control, see Version

Control
SourceForge, 74
src/ directory, 103

status (CVS command), 35, 58,
140

Sticky revision, 57
Strict locking, 19
Structure of projects, 99, 101
Submodules, 106–117
Subversion, 146
Symbolic tag, see Tag
Synchronize

with repository, see Update,
Commit

T
Tag, 15, 86–97

branch, 88
bug fixes, 94
definition, 87
for cvs diff, 72
HEAD, 40, 73
naming conventions, 89
on checkout, 57
regular, 87
release, 92, 123
to bracket large changes, 85
vendor, 123

tag (CVS command), 92, 93, 140
TeamWare, 146
Temporary files, 67
terminal (Unix shell), 25
Test code location, 105
Test repository, 47
Third-party code, 118–132

and build environment, 120
architecture specific, 119
dealing with source, 121
import new releases, 124
importing, 122–124
location of, 103, 119
merging changes, 129
modifying, 125
release tag, 123
vendor branch, 125
vendor tag, 123

Top-level
directories, 102
files, 102

Tortoise (front end), 31
Transient files, 67

U
-u option to:

ÜBER-PROJECT (CREATING) 154 XTERM (UNIX SHELL)

diff, 74
Über-project (creating), 100
Undeleting files, 69
Undo button, 1, 14
Undoing change to file, 83
Unified diff, 74
Unit Testing, ix, 47
Unix, see Command line

line endings, 62
Up-to-date check failed, 41
Update

definition, 11
repository, 37

update (CVS command), 59, 65,
69, 71, 141

-d option, 59
-j option, 84
-P option, 71, 104
-W option, 65

User accounts, 51
util/ directory, 103

V
Vendor, see Third-party code
vendor/ and vendorsrc/

directories, 103
vendor/ and vendorsrc/

directories, 119
Vendor tag, 123
vendor include/ directory, 119
Verbosity

reducing, 60
Version

and tags, 87
check out by date, 57
check out specific, 57
definition, 14
difference between, 72
named, see Tag

numbering, 14
numbering in branches, 91
of renamed file, 68
sticky, 57

Version Control
alternatives to CVS, 146
see also top-level index

entries
Vesperman, Jennifer, 146
Visual SourceSafe, 147
VSS (Visual SourceSafe), 147

W
-W option to:

import, 65
update, 65

Wibble example, 99
WinCvs (front end), 31
Windows, see Command line

Explorer (integrate CVS), 31
line endings, 62

work directory, see Workspace
Workspace, 33

and building, 108
and submodules, 108
and third-party code, 118
checking out into, 56
compare to repository, 71
definition, 11
multiple, 91
save files to repository, 37,

79
structure, 104
syncing with repository, 69
updating from repository, 59

X
xterm (Unix shell), 25

	About the Starter Kit
	Preface
	Introduction
	Version Control in Action
	Roadmap

	What Is Version Control?
	The Repository
	What Should We Store?
	Workspaces and Manipulating Files
	Projects, Modules, and Files
	Where Do Versions Come In?
	Tags
	Branches
	Merging
	Locking Options
	Configuration Management (CM)

	Getting Started
	Installing CVS
	Creating a Repository
	CVS Commands
	Creating a Simple Project
	Starting to Work With a Project
	Making Changes
	Updating the Repository
	When Worlds Collide
	Conflict Resolution

	How To…
	Our Basic Philosophy
	Organizing a Version Control System

	Accessing the Repository
	Security and User Accounts
	CVSROOT: The Destination Parameter String
	Setting up ssh Access
	Connecting Using pserver

	Common CVS Commands
	Checking Things Out
	Keeping Up To Date
	Adding Files and Directories
	Ignoring Certain Files
	Renaming Files
	Renaming a Directory
	Seeing What's Changed
	Handling Merge Conflicts
	Committing Changes
	Examining Change History
	Removing a Change

	Using Tags and Branches
	Tags, Branches and Tagging
	Creating a Release Branch
	Working in a Release Branch
	Generating a Release
	Fixing Bugs in a Release Branch
	Developer Experimental Branches
	Working With Experimental Code
	Merging The Experimental Branch

	Creating a Project
	Creating the Initial Project
	Structure Within the Project

	Using Modules
	Subprojects the Easy Way
	CVS Modules
	Summary

	Third-Party Code
	Libraries With Source Code
	Modifying Third-Party Code

	CVS Summary and Recipes
	CVS Command Format
	Recipes

	Other Resources
	Online CVS Resources
	Other CVS Books
	Other Version Control Systems
	Bibliography

