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Preface
Results matter, whether you are a mathematician, scientist, or engineer. The time that you 
spend doing tedious mathematical calculations could be spent in more productive ways. Sage 
is an open-source mathematical software system that helps you perform many mathematical 
tasks. There is no reason to compute integrals or perform algebraic manipulations by hand 
when software can perform these tasks more quickly and accurately (unless you are a 
student who is learning these procedures for the first time). Students can also benefit from 
mathematical software. The ability to plot functions and manipulate symbolic expressions 
easily can improve your understanding of mathematical concepts. Likewise, it is largely 
unnecessary to write your own routines for numerical mathematics in low-level languages 
such as FORTRAN or C++. Mathematical software systems like Sage have highly optimized 
functions that implement common numerical operations like integration, solving ordinary 
differential equations, and solving systems of equations.

Sage is a collection of nearly 100 mathematical software packages, which are listed at 
http://www.sagemath.org/links-components.html. When possible, existing tools 
are integrated into Sage, rather than duplicating their functionality. The entire collection of 
tools can be downloaded and installed as a binary distribution or compiled from source code. 
The Python language provides a unified interface to all of the packages. Python is a high-
level, interpreted, object-oriented programming language that is already well established 
in the research community. Users can interact with Sage through an interactive command-
line interface or a graphical notebook interface. Sage can also be used as a Python library or 
embedded in LaTeX documents. Sage is "officially" available for recent versions of OS X, Linux, 
Solaris, and Open Solaris. It runs on Windows with the help of a virtual machine and it can 
be used on other platforms, with varying degrees of support. A current list of all the available 
platforms can be found at http://wiki.sagemath.org/SupportedPlatforms.
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The mission statement of the Sage project is:

Creating a viable, free, open source alternative to Magma, Maple, 
Mathematica, and Matlab.

If you are familiar with any of these commercial mathematical software systems, then you 
already have a good idea what Sage does. Sage offers several advantages over its commercial 
competitors. Sage is free, open-source software, released under the GNU Public License 
version 2 or higher (GPLv2+). There is no cost to download and install Sage, whether you 
want to put it on your personal computer, install it in a university teaching lab, or deploy 
it on every workstation in a company. This advantage is especially important in developing 
countries. The GPL license also means that Sage is free, as in "freedom." There are no 
restrictions on how or where you use the software, the license can never be revoked, and 
there is no annual maintenance fee. Another advantage is that you have access to every 
line of source code, so you can see how every calculation is performed, and track exactly 
what changes are made from one version to the next. Unlike commercial software, the bug 
list for Sage is public, and it can be accessed at http://trac.sagemath.org/. Users are 
encouraged to participate in the development of Sage by reporting and fixing bugs, and 
contributing new capabilities. With bugs and source code open for public review, you can 
have a high degree of confidence that Sage will produce correct results.

This book is written for people who are new to Sage, and perhaps new to mathematical 
software altogether. For this reason, the examples in the book emphasize undergraduate-level 
mathematics such as calculus, linear algebra, and ordinary differential equations. However, 
Sage is capable of performing advanced mathematics, and it has been cited in over 80 
mathematical publications. A full list can be found at http://www.sagemath.org/library-
publications.html. To benefit from this book, you should have some fundamental 
knowledge of computer programming, but the Python language will be introduced as needed 
throughout the book. The next chapter will take you through some examples that showcase a 
small subset of Sage's capabilities.

What this book covers
Chapter 1, What can You do with Sage? covers how Sage can be used for: making simple 
numerical calculations; performing symbolic calculations, solving systems of equations and 
ordinary differential equations; making plots in two and three dimensions; and analyzing 
experimental data and fitting models.

Chapter 2, Installing Sage covers how to install a binary version of Sage on Windows and 
install a binary version of Sage on OS X; install a binary version of Sage on GNU/Linux; 
compile Sage from source.
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Chapter 3, Getting Started with Sage covers using the interactive shell; using the notebook 
interface; learning more about operators and variables; defining and using callable symbolic 
expressions; calling functions and making simple plots; defining your own functions; and 
working with objects in Sage.

Chapter 4, Introducing Python and Sage covers how to: use lists and tuples to store 
sequential data; iterate with loops; construct logical tests with "if" statements; read and 
write data files; and store heterogeneous data in dictionaries.

Chapter 5, Vectors, Matrices, and Linear Algebra covers how to create and manipulate vector 
and matrix objects; how Sage can take the tedious work out of linear algebra; learning about 
matrix methods for computing eigenvalues, inverses, and decompositions; and getting 
started with NumPy arrays and matrices for numerical calculations.

Chapter 6, Plotting with Sage covers how to plot functions of one variable; making various 
types of specialized 2D plots such as polar plots and scatter plots; using matplotlib to 
precisely format 2D plots and charts; and making interactive 3D plots of functions of two 
variables.

Chapter 7, Making Symbolic Mathematics Easy covers how to create symbolic functions 
and expressions, and learn to manipulate them; solve equations and systems of equations 
exactly, and find symbolic roots; automate calculus operations like limits, derivatives, and 
integrals; create infinite series and summations to approximate functions; perform Laplace 
transforms; and find exact solutions to ordinary differential equations.

Chapter 8, Solving Problems Numerically covers how to find the roots of an equation; 
compute integrals and derivatives numerically; find minima and maxima of functions; 
compute discrete Fourier transforms, and apply window functions; numerically solve an 
ordinary differential equation (ODE), and systems of ODEs; use optimization techniques  
to fit curves and find minima; and explore the probability tools in Sage.

Chapter 9, Learning Advanced Python Programming covers how to define your own classes; 
use inheritance to expand the usefulness of your classes; organize your class definitions in 
module files; bundle module files into packages; handle errors gracefully with exceptions; 
define your own exceptions for custom error handling; and use unit tests to make sure your 
package is working correctly.

Chapter 10, Where to go from here covers how to export equations as PNG and PDF 
files; export  vector graphics and typeset mathematical expressions for inclusion in LaTeX 
documents; use LaTeX to document Sage worksheets; speed up collision detection using 
NumPy vector operations; create a Python script that uses Sage functionality; and create 
interactive graphical examples in the notebook interface. 
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What you need for this book
Required: 

 � Sage

 � If using Windows, VMWare Player or VirtualBox is also required.

 � Recommended, but not strictly necessary: LaTeX

 � Optional, for building Sage from source on Linux: GCC, g++, make, m4, perl,  
ranlib, readline, and tar

 � Optional, for building Sage from source on OS X: XCode

 � A web browser is required to use the notebook interface

Who this book is for
If you are an engineer, scientist, mathematician, or student, this book is for you. To get the 
most from Sage by using the Python programming language, we'll give you the basics of the 
language to get you started. For this, it will be helpful if you have some experience with basic 
programming concepts.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.
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You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have 
learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can use the help function to learn more 
about it."

A block of code is set as follows: 

print('This is a string')
print(1.0)
print(sqrt)

Any command-line input or output is written as follows:

sage: R = 250e3

sage: C = 4e-6

sage: tau = R * C

sage: tau

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "clicking the Next button 
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to  
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in  
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help  
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can 
visit http://www.PacktPub.com/support and register to have the files e-mailed directly 
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers 
from frustration and help us improve subsequent versions of this book. If you find any 
errata, please report them by visiting http://www.packtpub.com/support, selecting 
your book, clicking on the errata submission form link, and entering the details of your 
errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable 
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.





1
What Can You Do with Sage?

Sage is a powerful tool—but you don't have to take my word for it. This chapter will 
showcase a few of the things that Sage can do to enhance your work. At this point, don't 
expect to understand every aspect of the examples presented in this chapter. Everything will 
be explained in more detail in the later chapters. Look at the things Sage can do, and start to 
think about how Sage might be useful to you. In this chapter, you will see how Sage can be 
used for:

 � Making simple numerical calculations

 � Performing symbolic calculations

 � Solving systems of equations and ordinary differential equations

 � Making plots in two and three dimensions

 � Analysing experimental data and fitting models

Getting started
You don't have to install Sage to try it out! In this chapter, we will use the notebook interface 
to showcase some of the basics of Sage so that you can follow along using a public notebook 
server. These examples can also be run from an interactive session if you have installed Sage.
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Go to http://www.sagenb.org/ and sign up for a free account. You can also browse 
worksheets created and shared by others. If you have already installed Sage, launch the 
notebook interface by following the instructions in Chapter 3. The notebook interface 
should look like this:

Create a new worksheet by clicking on the link called New Worksheet:
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Type in a name when prompted, and click Rename. The new worksheet will look like this:

Enter an expression by clicking in an input cell and typing or pasting in an expression:
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Click the evaluate link or press Shift-Enter to evaluate the contents of the cell.

A new input cell will automatically open below the results of the calculation. You can also 
create a new input cell by clicking in the blank space just above an existing input cell. In 
Chapter 3, we'll cover the notebook interface in more detail.

Using Sage as a powerful calculator
Sage has all the features of a scientific calculator—and more. If you have been trying to 
perform mathematical calculations with a spreadsheet or the built-in calculator in your 
operating system, it's time to upgrade. Sage offers all the built-in functions you would expect. 
Here are a few examples:
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If you have to make a calculation repeatedly, you can define a function and variables to make 
your life easier. For example, let's say that you need to calculate the Reynolds number, which 
is used in fluid mechanics:

You can define a function and variables like this:

Re(velocity, length, kinematic_viscosity) = velocity * length / 
kinematic_viscosity

v = 0.01
L = 1e-3
nu = 1e-6
Re(v, L, nu)

When you type the code into an input cell and evaluate the cell, your screen will look  
like this:

Now, you can change the value of one or more variables and re-run the calculation:
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Sage can also perform exact calculations with integers and rational numbers. Using the pre-
defined constant pi will result in exact values from trigonometric operations. Sage will even 
utilize complex numbers when needed. Here are some examples:

Symbolic mathematics
Much of the difficulty of higher mathematics actually lies in the extensive algebraic 
manipulations that are required to obtain a result. Sage can save you many hours, and  
many sheets of paper, by automating some tedious tasks in mathematics.  We'll start with 
basic calculus. For example, let's compute the derivative of the following equation:

The following code defines the equation and computes the derivative:

var('x')
f(x) = (x^2 - 1) / (x^4 + 1)
show(f)
show(derivative(f, x))
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The results will look like this:

The first line defines a symbolic variable x (Sage automatically assumes that x is always 
a symbolic variable, but we will define it in each example for clarity). We then defined a 
function as a quotient of polynomials. Taking the derivative of f(x) would normally require 
the use of the quotient rule, which can be very tedious to calculate. Sage computes the 
derivative effortlessly.

Now, we'll move on to integration, which can be one of the most daunting tasks in calculus. 
Let's compute the following indefinite integral symbolically:

The code to compute the integral is very simple:

f(x) = e^x * cos(x)
f_int(x) = integrate(f, x)
show(f_int)

The result is as follows:

To perform this integration by hand, integration by parts would have to be done twice, 
which could be quite time consuming. If we want to better understand the function we just 
defined, we can graph it with the following code:

f(x) = e^x * cos(x)
plot(f, (x, -2, 8))
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Sage will produce the following plot:

Sage can also compute definite integrals symbolically:

To compute a definite integral, we simply have to tell Sage the limits of integration:

f(x) = sqrt(1 - x^2)
f_integral = integrate(f, (x, 0, 1))
show(f_integral)

The result is:

This would have required the use of a substitution if computed by hand.
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Have a go hero
There is actually a clever way to evaluate the integral from the previous problem without 
doing any calculus. If it isn't immediately apparent, plot the function f(x) from 0 to 1 and see 
if you recognize it. Note that the aspect ratio of the plot may not be square.

The partial fraction decomposition is another technique that Sage can do a lot faster than 
you.  The solution to the following example covers two full pages in a calculus textbook —
assuming that you don't make any mistakes in the algebra!

f(x) = (3 * x^4 + 4 * x^3 + 16 * x^2 + 20 * x + 9) / ((x + 2) * (x^2 + 
3)^2)
g(x) = f.partial_fraction(x)
show(g)

The result is as follows:

We'll use partial fractions again when we talk about solving ordinary differential equations 
symbolically.

Linear algebra
Linear algebra is one of the most fundamental tasks in numerical computing. Sage has many 
facilities for performing linear algebra, both numerical and symbolic. One fundamental 
operation is solving a system of linear equations:

Although this is a tedious problem to solve by hand, it only requires a few lines of code in 
Sage:

A = Matrix(QQ, [[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2],
    [3, 1, -2, 2]])
B = vector([0, 6, -1, 3])
A.solve_right(B)
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The answer is as follows:

Notice that Sage provided an exact answer with integer values. When we created matrix 
A, the argument QQ specified that the matrix was to contain rational values. Therefore, 
the result contains only rational values (which all happen to be integers for this problem). 
Chapter 5 describes in detail how to do linear algebra with Sage.

Solving an ordinary differential equation
Solving ordinary differential equations by hand can be time consuming. Although many 
differential equations can be handled with standard techniques such as the Laplace 
transform, other equations require special methods of solution. For example, let's try to 
solve the following equation:

The following code will solve the equation:

var('x, y, v')
y=function('y', x)
assume(v, 'integer')
f = desolve(x^2 * diff(y,x,2) + x*diff(y,x) + (x^2 - v^2) * y == 0,
    y, ivar=x)
show(f)

The answer is defined in terms of Bessel functions:

It turns out that the equation we solved is known as Bessel's equation. This example 
illustrates that Sage knows about special functions, such as Bessel and Legendre functions. It 
also shows that you can use the assume function to tell Sage to make specific assumptions 
when solving problems. In Chapter 7, we will explore Sage's powerful symbolic capabilities.
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More advanced graphics
Sage has sophisticated plotting capabilities. By combining the power of the Python 
programming language with Sage's graphics functions, we can construct detailed 
illustrations. To demonstrate a few of Sage's advanced plotting features, we will solve a 
simple system of equations algebraically:

var('x')
f(x) = x^2
g(x) = x^3 - 2 * x^2 + 2

solutions=solve(f == g, x, solution_dict=True)

for s in solutions:
    show(s)

The result is as follows:

We used the keyword argument solution_dict=True to tell the solve function to return 
the solutions in the form of a Python list of Python dictionaries. We then used a for loop 
to iterate over the list and display the three solution dictionaries. We'll go into more detail 
about lists and dictionaries in Chapter 4. Let's illustrate our answers with a detailed plot:

p1 = plot(f, (x, -1, 3), color='blue', axes_labels=['x', 'y'])
p2 = plot(g, (x, -1, 3), color='red')

labels = []
lines = []
markers = []
for s in solutions:
    x_value = s[x].n(digits=3)
    y_value = f(x_value).n(digits=3)
    labels.append(text('y=' + str(y_value), (x_value+0.5, 
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        y_value+0.5), color='black'))
    lines.append(line([(x_value, 0), (x_value, y_value)], 
        color='black', linestyle='--'))
    markers.append(point((x_value,y_value), color='black', size=30))

show(p1+p2+sum(labels) + sum(lines) + sum(markers))

The plot looks like this:

We created a plot of each function in a different colour, and labelled the axes. We then used 
another for loop to iterate through the list of solutions and annotate each one. Plotting will 
be covered in detail in Chapter 6.

Visualising a three-dimensional surface
Sage does not restrict you to making plots in two dimensions. To demonstrate the 3D 
capabilities of Sage, we will create a parametric plot of a mathematical surface known as 
the "figure 8" immersion of the Klein bottle. You will need to have Java enabled in your web 
browser to see the 3D plot.

var('u,v')
r = 2.0
f_x = (r + cos(u / 2) * sin(v) - sin(u / 2) 
    * sin(2 * v)) * cos(u)
f_y = (r + cos(u / 2) * sin(v) - sin(u / 2)
    * sin(2 * v)) * sin(u)
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f_z = sin(u / 2) * sin(v) + cos(u / 2) * sin(2 * v)
parametric_plot3d([f_x, f_y, f_z], (u, 0, 2 * pi), 
    (v, 0, 2 * pi), color="red")

In the Sage notebook interface, the 3D plot is fully interactive. Clicking and dragging with 
the mouse over the image changes the viewpoint. The scroll wheel zooms in and out, and 
right-clicking on the image brings up a menu with further options.

Typesetting mathematical expressions
Sage can be used in conjunction with the LaTeX typesetting system to create publication-
quality typeset mathematical expressions. In fact, all of the mathematical expressions in this 
chapter were typeset using Sage and exported as graphics. Chapter 10 explains how to use 
LaTeX and Sage together.
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A practical example: analysing experimental data
One of the most common tasks for an engineer or scientist is analysing data from an 
experiment. Sage provides a set of tools for loading, exploring, and plotting data. The 
following series of examples shows how a scientist might analyse data from a population of 
bacteria that are growing in a fermentation tank. Someone has measured the optical density 
(abbreviated OD) of the liquid in the tank over time as the bacteria are multiplying. We want 
to analyse the data to see how the size of the population of bacteria varies over time. Please 
note that the examples in this section must be run in order, since the later examples depend 
upon results from the earlier ones.

Time for action – fitting the standard curve
The optical density is correlated to the concentration of bacteria in the liquid. To quantify 
this correlation, someone has measured the optical density of a number of calibration 
standards of known concentration. In this example, we will fit a "standard curve" to the 
calibration data that we can use to determine the concentration of bacteria from optical 
density readings:

import numpy
var('OD, slope, intercept')

def standard_curve(OD, slope, intercept):
    """Apply a linear standard curve to optical density data"""
    return OD * slope + intercept

# Enter data to define standard curve
CFU = numpy.array([2.60E+08, 3.14E+08, 3.70E+08, 4.62E+08, 
    8.56E+08, 1.39E+09, 1.84E+09])
optical_density = numpy.array([0.083, 0.125, 0.213, 0.234,
    0.604, 1.092, 1.141])
OD_vs_CFU = zip(optical_density, CFU)

# Fit linear standard
std_params = find_fit(OD_vs_CFU, standard_curve, 
    parameters=[slope, intercept], 
    variables=[OD], initial_guess=[1e9, 3e8],
    solution_dict = True)

for param, value in std_params.iteritems():
    print(str(param) + ' = %e' % value)

# Plot
data_plot = scatter_plot(OD_vs_CFU, markersize=20,
    facecolor='red', axes_labels=['OD at 600nm', 'CFU/ml'])

fit_plot = plot(standard_curve(OD, std_params[slope],
    std_params[intercept]), (OD, 0, 1.2))

show(data_plot+fit_plot)
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The results are as follows:

What just happened?
We introduced some new concepts in this example. On the first line, the statement import 
numpy allows us to access functions and classes from a module called NumPy. NumPy is 
based upon a fast, efficient array class, which we will use to store our data. We created a 
NumPy array and hard-coded the data values for OD, and created another array to store 
values of concentration (in practice, we would read these values from a file) We then defined 
a Python function called standard_curve, which we will use to convert optical density 
values to concentrations. We used the find_fit function to fit the slope and intercept 
parameters to the experimental data points. Finally, we plotted the data points with the 
scatter_plot function and the plotted the fitted line with the plot function. Note that we 
had to use a function called zip to combine the two NumPy arrays into a single list of points 
before we could plot them with scatter_plot. We'll learn all about Python functions 
in Chapter 4, and Chapter 8 will explain more about fitting routines and other numerical 
methods in Sage.
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Time for action – plotting experimental data
Now that we've defined the relationship between the optical density and the concentration 
of bacteria, let's look at a series of data points taken over the span of an hour. We will 
convert from optical density to concentration units, and plot the data.

sample_times = numpy.array([0, 20, 40, 60, 80, 100, 120, 
    140, 160, 180, 200, 220, 240, 280, 360, 380, 400, 420,
    440, 460, 500, 520, 540, 560, 580, 600, 620, 640, 660,
    680, 700, 720, 760, 1240, 1440, 1460, 1500, 1560])

OD_readings = numpy.array([0.083, 0.087, 0.116, 0.119, 0.122,
    0.123, 0.125, 0.131, 0.138, 0.142, 0.158, 0.177, 0.213,
    0.234, 0.424, 0.604, 0.674, 0.726, 0.758, 0.828, 0.919, 
    0.996, 1.024, 1.066, 1.092, 1.107, 1.113, 1.116, 1.12, 
    1.129, 1.132, 1.135, 1.141, 1.109, 1.004, 0.984, 0.972, 0.952])

concentrations = standard_curve(OD_readings, std_params[slope],
     std_params[intercept])
exp_data = zip(sample_times, concentrations)

data_plot = scatter_plot(exp_data, markersize=20, facecolor='red', 
    axes_labels=['time (sec)', 'CFU/ml'])
show(data_plot)

The scatter plot looks like this:
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What just happened?
We defined one NumPy array of sample times, and another NumPy array of optical density 
values. As in the previous example, these values could easily be read from a file. We used 
the standard_curve function and the fitted parameter values from the previous example 
to convert the optical density to concentration. We then plotted the data points using the 
scatter_plot function.

Time for action – fitting a growth model
Now, let's fit a growth model to this data. The model we will use is based on the Gompertz 
function, and it has four parameters:

var('t, max_rate, lag_time, y_max, y0')

def gompertz(t, max_rate, lag_time, y_max, y0):
    """Define a growth model based upon the Gompertz growth curve"""
    return y0 + (y_max - y0) * numpy.exp(-numpy.exp(1.0 + 
    max_rate * numpy.exp(1) * (lag_time - t) / (y_max - y0)))

# Estimated parameter values for initial guess
max_rate_est = (1.4e9 - 5e8)/200.0
lag_time_est = 100
y_max_est = 1.7e9
y0_est = 2e8

gompertz_params = find_fit(exp_data, gompertz, 
    parameters=[max_rate, lag_time, y_max, y0],
    variables=[t], 
    initial_guess=[max_rate_est, lag_time_est, y_max_est, y0_est],
    solution_dict = True)

for param,value in gompertz_params.iteritems():
    print(str(param) + ' = %e' % value)

The fitted parameter values are displayed:

Finally, let's plot the fitted model and the experimental data points on the same axes:

gompertz_model_plot = plot(gompertz(t, gompertz_params[max_rate],
    gompertz_params[lag_time], gompertz_params[y_max],
    gompertz_params[y0]), (t, 0, sample_times.max()))

show(gompertz_model_plot + data_plot)
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The plot looks like this:

What just happened?
We defined another Python function called gompertz to model the growth of bacteria 
in the presence of limited resources. Based on the data plot from the previous example, 
we estimated values for the parameters of the model to use an initial guess for the fitting 
routine. We used the find_fit function again to fit the model to the experimental data, 
and displayed the fitted values. Finally, we plotted the fitted model and the experimental 
data on the same axes.

Summary
This chapter has given you a quick, high-level overview of some of the many things that Sage 
can do for you. Don't worry if you feel a little lost, or if you had trouble trying to modify the 
examples. Everything you need to know will be covered in detail in later chapters.

Specifically, we looked at:

 � Using Sage as a sophisticated scientific and graphing calculator

 � Speeding up tedious tasks in symbolic mathematics

 � Solving a system of linear equations, a system of algebraic equations, and an 
ordinary differential equation
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 � Making publication-quality plots in two and three dimensions

 � Using Sage for data analysis and model fitting in a practical setting

Hopefully, you are convinced that Sage will be the right tool to assist you in your work, and 
you are ready to install Sage on your computer. In the next chapter, you will learn how to 
install Sage on various platforms.





2
Installing Sage

Remember that you don't actually have to install Sage to start using it. You can start learning 
Sage by utilizing one of the free public notebook servers that can be found at http://www.
sagenb.org/. However, if you find that Sage suits your needs, you will want to install a 
copy on your own computer. This will guarantee that Sage is always available to you, and 
it will reduce the load on the public servers so that others can experiment with Sage. In 
addition, your data will be more secure, and you can utilize more computing power to solve 
larger problems. This chapter will take you through the process of installing Sage on various 
platforms.

In this chapter we shall:

 � Install a binary version of Sage on Windows and install a binary version of Sage on 
OS X

 � Install a binary version of Sage on GNU/Linux

 � Compile Sage from source

Before you begin
At the moment, Sage is fully supported on certain versions of the following platforms: some 
Linux distributions (Fedora, openSUSE, Red Hat, and Ubuntu), Mac OS X, OpenSolaris, and 
Solaris. Sage is tested on all of these platforms before each release, and binaries are always 
available for these platforms. The latest list of supported platforms is available at http://
wiki.sagemath.org/SupportedPlatforms. The page also contains information about 
platforms that Sage will probably run on, and the status of efforts to port Sage to various 
platforms.
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When downloading Sage, the website attempts to detect which operating system you 
are using, and directs you to the appropriate download page. If it sends you to the wrong 
download page, use the "Download" menu at the top of the page to choose the correct 
platform. If you get stuck at any point, the official Sage installation guide is available at 
http://www.sagemath.org/doc/installation/.

Installing a binary version of Sage on Windows
Installing Sage on Windows is slightly more involved than installing a typical Windows 
program. Sage is a collection of over 90 different tools. Many of these tools are developed 
within a UNIX-like environment, and some have not been successfully ported to Windows. 
Porting programs from UNIX-like environments to Windows requires the installation of 
Cygwin (http://www.cygwin.com/), which provides many of the tools that are standard 
on a Linux system. Rather than attempting to port all of the necessary tools to Cygwin on 
Windows, the developers of Sage have chosen to distribute Sage as a virtual machine that 
can run on Windows with the use of the free VMWare Player. A port to Cygwin is in progress, 
and more information can be found at http://trac.sagemath.org/sage_trac/wiki/
CygwinPort.

Downloading VMware Player
The VMWare Player can be found at http://www.vmware.com/products/player/. 
Clicking the Download link will direct you to a registration form. Fill out and submit the form. 
You will receive a confirmation email that contains a link that must be clicked to complete 
the registration process and take you to the download page. Choose Start Download 
Manager, which downloads and runs a small application that performs the actual download 
and saves the file to a location of your choice.

Installing VMWare Player
After downloading VMWare Player, double-click the saved file to start the installation 
wizard. Follow the instructions in the wizard to install the Player. You will have to reboot  
the computer when instructed.

Downloading and extracting Sage
Download Sage by following the Download link from http://www.sagemath.org. The 
site should automatically detect that you are using Windows, and direct you to the right 
download page. Choose the closest mirror and download the compressed virtual machine. 
Be aware that the file is nearly 1GB in size. Once the download is complete, right-click the 
compressed file and choose Extract all from the pop-up menu.
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Launching the virtual machine
Launch VMware Player and accept the license terms. When the Player has started, click Open a 
Virtual Machine and select the Sage virtual machine, which is called sage-vmware.vmx. Click 
Play virtual machine to run Sage. If you have run Sage before, it should appear in the list of 
virtual machines on the left side of the dialog box, and you can double-click to run it.

When the virtual machine launches, you may receive one or more warnings about various 
devices (such as Bluetooth adapters) that the virtual machine cannot connect to. Don't 
worry about this, since Sage doesn't need these devices.
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Start Sage

Once the virtual machine is running, you will see three icons. Double-clicking the Sage 
Notebook icon starts the Sage notebook interface, while the Sage icon starts the command-
line interface. The first time you run Sage, you will have to wait while it regenerates files. 
When it finishes, you are ready to go.

You may get the warning "External network not set up" when launching the notebook 
interface. This does not cause any problems.
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When you are done using Sage, choose Shut Down… from the System menu at the top of the 
window, and a dialog will appear. Click the Shut Down button to close the virtual machine.

Installing a binary version of Sage on OS X
On Mac OS X, you have the option of installing a pre-built binary application, or downloading 
the source code and compiling Sage yourself. One advantage of the pre-built binary is 
that it is very easy to install, because it contains everything you need to run Sage. Another 
advantage of the binary is that building Sage from source requires a lot of computational 
resources, and may take a long time on older machines. However, there are a number of 
disadvantages to prebuilt binaries. The binary download is quite large, and the installed files 
take up a lot of disk space. Many of the tools in the binary may be duplicates of tools you 
already have on your system. Pre-built binaries cannot be tuned to take advantage of the 
hardware features of a particular platform, so building Sage from source is preferred if you 
are looking for the best performance on CPU-intensive tasks. You will have to choose which 
method is right for you.
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Downloading Sage
Download Sage by following the Download link from http://www.sagemath.org. The site 
should automatically detect that you are using OS X, and direct you to the right download 
page. Choose a mirror site close to you. Select your architecture (Intel for new Macs, or 
PowerPC for older G4 and G5 macs). Then, click the link for the correct .dmg file for you 
version of Mac OS X. If you aren't sure, click the Apple menu on the far left side of the menu 
bar and choose About This Mac.

Installing Sage
Once the download is complete, double-click the .dmg file to mount the disk image. Drag 
the Sage folder from the disk image to the desired location on your hard drive (such as the 
Apps folder).

If the copy procedure fails, you will need to do it from the command line. Open the Terminal 
application and enter the following commands. Be sure to change the name sage-4.5-
OSX-64bit-10.6-i386-Darwin.dmg to the name of the file you just downloaded:

$ cd /Applications

$ cp -R -P /Volumes/sage-4.5-OSX-64bit-10.6-i386-Darwin.dmg /sage .

After the copy process is complete, right-click on the icon for the disk image, and choose 
Eject.

Starting Sage
Use the Finder to visit the Sage folder that you just created. Double-click on the icon called 
Sage. It should open with the Terminal application. If it doesn't start, right-click on the icon, 
go to the Open With submenu and choose Terminal.app. The Sage command line will 
now be running in a Terminal window. The first time you run Sage, you will have to wait 
while it regenerates files. When it finishes, you are ready to go.
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There are three ways to exit Sage: type exit or quit at the Sage command prompt, or press 
Ctrl-D in the Terminal window. You can then quit the Terminal application.

Installing a binary version of Sage on GNU/Linux
As with Mac OS X, you have the option of installing a pre-built binary application for your 
version of Linux, or downloading the source code and compiling Sage yourself. The same 
trade-offs apply to Linux. Keep in mind that the Sage team only distributes pre-build binaries 
for a few popular distributions. If you are using a different distribution, you'll have to compile 
Sage from source anyway. The following instructions will assume you are downloading a 
binary application. I will use Ubuntu as an example, but other versions of Linux should be 
very similar.

Most modern Linux distributions use a package manager to install and remove 
software. Sage is not available as an officially supported package for any Linux 
distribution at this time. "Unofficial" packages have been created for Debian, 
Mandriva, Ubuntu, and possibly others, but they are unlikely to be up to date 
and may not work properly. An effort to integrate Sage with Gentoo Linux can be 
found at https://github.com/cschwan/sage-on-gentoo.

Downloading and decompressing Sage
Download the appropriate pre-built binary from http://www.sagemath.org/download-
linux.html. Choose the closest mirror, and then choose the appropriate architecture for 
your operating system. If you're not sure whether your operating system is built for 32 or 64 
bit operation, open a terminal and type the following on the command line:

$ uname –m

If the output contains 64, then your system is probably a 64-bit system. If not, it's a 32-bit. 
An alternative way to check is with the following command:

$ file /usr/bin/bin

If the file type contains 64, your kernel probably supports 64 bit applications. If not, you 
need the 32 bit version. Select the appropriate prebuilt binary and save it to your computer.
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Once the download is done, uncompress the archive. You can use the graphical archiving tool 
for your version of Linux (the Ubuntu archiver is shown in the following screenshot). If you 
prefer the command line, type the following:

tar --lzma -xvf sage-*...tar.lzma

Running Sage from your user account
After decompression, you will have a single directory. This directory is self-contained, so 
no further installation is necessary. You can simply move it to a convenient location within 
your home directory. This is a good option if you don't have administrator privileges on the 
system, or if you are the only person who uses the system. To run Sage, open a terminal and 
change to the Sage directory (you will have to modify the command below, depending on the 
version you installed and where you installed it):

cfinch@ubuntu:$ cd sage-4.5.3-linux-32bit-ubuntu_10.04_lts-i686-Linux

Run Sage by typing the following:

cfinch@ubuntu:$ ./sage

Don't forget the period before the slash! The first time you run Sage, you will have to wait 
while it regenerates files, as shown in the following screenshot. When it finishes, you are 
ready to go.
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There are three ways to exit Sage: type exit or quit at the Sage command prompt, or press 
Ctrl-D in the terminal window.

Installing for multiple users
If you are the administrator of a shared system, you may want to install Sage so that 
everyone can use it. Since Sage consists of one self-contained directory, I suggest moving it 
to the /opt directory:

sudo mv sage-4.5.3-linux-32bit-ubuntu_10.04_lts-i686-Linux /opt

[sudo] password for cfinch:

To make it easy for everyone to run Sage, make a symbolic link from /usr/bin to the actual 
location:

cfinch@ubuntu:/usr/bin$ sudo ln -s /opt/sage-4.5.3-linux-32bit-
ubuntu_10.04_lts-i686-Linux/sage sage

[sudo] password for cfinch:

As before, Sage will have to regenerate its internal files the first time it runs after moving. 
You should run Sage once as a user with administrative privileges, because other users won't 
have the necessary write permissions to save the files. Once this is completed, any user will 
be able to use Sage by typing Sage at the command prompt.
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Building Sage from source
This section will describe how to build Sage from source code on OS X or Linux. Although 
Sage consists of nearly 100 packages, the build process hides much of the complexity. It 
is impossible to provide instructions for all of the platforms that can build Sage, but the 
following guidelines should cover most cases. The official documentation for building Sage 
from source is available at http://sagemath.org/doc/installation/source.html.

Prerequisites
In order to compile Sage, you will need about 2.5GB of free disk space, and the following 
tools must be installed:

 � GCC

 � g++

 � gfortran

 � make

 � m4

 � perl

 � ranlib

 � tar

 � readline and its development headers

 � ssh-keygen (only needed to run the notebook in secure mode)

 � latex (highly recommended, though not strictly required)

If you are running OS X (version 10.4 or later), install XCode to get all of these tools. XCode 
is available for free when you sign up as a developer at http://developer.apple.com/. 
Make sure that you have XCode version 2.4 or later.

If you are running Linux, use your package manager to install any missing tools. For example, 
on a Debian-based system like Ubuntu, run the following on the command line:

$ sudo apt-get install build-essential m4 gfortran

$ sudo apt-get install readline-common libreadline-dev

To install LaTeX (optional):

$ sudo apt-get install texlive xpdf evince xdvi
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Downloading and decompressing source tarball
Download the latest source tarball from http://sagemath.org/download-source.
html. Open a terminal, change to the directory where you saved the tarball, and 
decompress it with the following command:

$ tar -xvf sage-*.tar

Building Sage
If you have a multi-core or multi-processor machine, you can speed up the build process 
by performing a parallel compilation. You can control this by setting the MAKE environment 
variable. For example, using Bash syntax, you can set the MAKE variable to use four cores:

$ export MAKE="make -j4"

Change to the Sage directory:

$ cd sage-*

Build Sage:

$ make

Sage may take a long time (1 hour to several days) to compile, depending on the speed of 
the machine.

Installation
When the compilation process is done, you should be able to run Sage from the build 
directory. If you want to move the Sage installation or make it available to other users on a 
shared Linux system, follow the directions in the previous sections.

Summary
At this point, you should have a functioning Sage installation on your machine. In the next 
chapter, you'll learn the basics of using Sage.





3
Getting Started with Sage

In this chapter, you will learn the basic ideas that will be the foundation for using all the 
features of Sage. We will start by learning how to use the command line and notebook 
interfaces efficiently. Then, we'll look at basic concepts like variables, operators, functions, 
and objects. By the end of the chapter, you should be able to use Sage like a sophisticated 
scientific graphing calculator.

 � Using the interactive shell

 � Using the notebook interface

 � Learning more about operators and variables

 � Defining and using callable symbolic expressions

 � Calling functions and making simple plots

 � Defining your own functions

 � Working with objects in Sage

How to get help with Sage
The Sage documentation is accessible from the interactive shell and the notebook interface. 
Further help is available on the Web. The main Sage documentation page at http://www.
sagemath.org/help.html provides links to dozens of resources. A few of these links are 
especially useful:

 � The official Sage tutorial can be found at http://www.sagemath.org/doc/
tutorial/, and it is also accessible from the Help link in the notebook interface. 
The Python language tutorial at http://docs.python.org/tutorial/ will also 
be helpful.

 � The reference manual at http://www.sagemath.org/doc/reference/ 
provides the full API documentation, along with many examples.
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 � Thematic tutorials at http://www.sagemath.org/doc/thematic_tutorials/
index.html focus on specific topics.

 � The "Constructions" document at http://www.sagemath.org/doc/
constructions/index.html describes how to do specific things with Sage.

Interactive resources, including mailing lists, an IRC channel, and a discussion forum are 
available if you get stuck. A complete list of these resources can be found at http://www.
sagemath.org/development.html. The mailing lists sage-support and sage-devel are 
intended for general questions. Other lists are available to discuss more specific topics.

Starting Sage from the command line
In the previous chapter, we learned how to start Sage. If you want to pass options to Sage 
when it starts, you can do so with command line arguments.

1. On OS X or a UNIX-like platform, start by opening a terminal window. On Windows, 
start the virtual machine and double-click the Terminal icon.

2. If you have added the Sage application directory to the PATH environment variable, 
you can just type sage at the command prompt. If not, you will need to enter the full 
path to the Sage binary.

3. Add command line arguments, separated by spaces, and press Enter. For example, 
type the following at the command prompt to start Sage and automatically launch 
the notebook interface:

 $ /Applications/sage/sage -notebook

There are many command line arguments, but you probably won't need them right away.  
Three of the most useful arguments are as follows:

Argument Description
-help Describe the most widely used command line arguments
-advanced Describe more advanced command line arguments
-notebook Start Sage and launch the notebook interface



Chapter 3

[ 43 ]

Using the interactive shell
The interactive shell provides a command-line interface to Sage. When you are done using 
Sage, remember to type quit or exit at the Sage prompt, or press Ctrl-D, to exit the 
interactive shell. In the following examples, lines which start with the Sage command prompt 
sage: indicate commands that you need to type in. Lines without the prompt indicate output 
from Sage. Although most of the examples in this book utilize the notebook interface, they 
will work in the interactive shell, unless noted otherwise.

Time for action – doing calculations on the command line
Let's say that you need to make some quick calculations to design a simple electrical circuit. 
We will use the example of a series RC circuit, which consists of a resistor and a capacitor 
connected in series:

The voltage across the capacitor can be described by a linear, first-order differential 
equation. Eventually we will learn to solve differential equations with Sage, but for now we 
will just use the solution, which is well known:

1. Define variables.

First, we'll define some variables to work with. Type in the following text at the 
command prompt, and press Enter after every line:
sage: R = 250e3

sage: C = 4e-6

sage: tau = R * C

sage: tau

1.00000000000000 
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Sage doesn't give any output from variable definitions. You can type the variable 
name and press Enter to see what it contains.

2. Perform a calculation.

The voltage across the capacitor is a function of time. Let's set an initial voltage v0 
and compute the voltage after one second:
sage: v0 = 100.0

sage: t = tau

sage: v0 * exp(-t / tau)

36.7879441171442

Here, we utilized the built-in function exp(x), which computes the value of e to the 
power x. After a period of time equal to the time constant has elapsed, the voltage 
is about 36% of its original value.

3. Change some values.

How does the voltage decay as time advances?
sage: t = 4 * tau

sage: v0 * exp(-t / tau)

1.83156388887342

After a length of time equal to four time constants, the voltage is less than two per cent of 
its original value. Now, let's see how the value of tau impacts the voltage at a fixed time. 
Pressing the Up arrow allows you to scroll through the commands that you recently entered, 
in reverse order. To scroll the other way, press the Down arrow. Use the Up and Down arrows 
to get v = v0 * exp(-t / tau) on the command line, and edit it to match the following. 
Press Enter to see the result.

sage: t = tau

sage: v0 * exp(-t / (2 * tau))

60.6530659712633

Now, let's see what happens if tau gets smaller. Press the Up arrow to edit the previous 
command:

sage: v0 * exp(-t / (tau / 4))

1.83156388887342
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The time constant controls how quickly the voltage decays. If you are going to work on 
something else, but might want to come back to this calculation, you can save your session 
with this command:

sage: save_session('RC_circuit')

This will save your variables in a file called RC_circuit.sobj in the top level of your home 
directory. You can enter an absolute or relative path to save the file in other locations. You 
can load these variables at any time in the future using the following command:

sage: load_session('RC_circuit')

sage: who

C   t   tau   v   v0

The who command lists the variables that you have already defined. This is very handy if you 
have a lot of variables and don't remember one of the names.

What just happened?
This example demonstrated some basic principles of command-line interaction with Sage. To 
perform a calculation, type an expression on the command line, and press Enter to see the 
result. If the result of a calculation is stored in a variable, it won't be shown. Typing the name 
of a variable and pressing Enter shows its value. You can use the Up and Down arrow keys to 
scroll through previous commands, edit a command, and run it again.

Getting help
There are three ways to get help from the Sage command line. To see the documentation for 
a command or function, type a ? on the command line after the command. For example, to 
learn about the exp function type following:

sage: exp?
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When you use any of the help commands, the normal contents of the terminal will be 
replaced by a help screen, which looks like this:

Use the arrows to scroll up and down. Use the Spacebar to page down, and the b key to 
page up. Press q to leave the help screen and return to the command line. If you want to see 
the documentation and the source code for the function (if the code is available), type two 
question marks after the function name:

sage: exp??

Finally, to see the complete class documentation, use the help function:

sage: help(exp)

Command history
The Sage command line has a number of built-in shortcuts that help you work more 
efficiently. Most of these will be familiar to people who have worked with UNIX-like 
command line interfaces. We have already seen that you can use the Up arrow on your 
keyboard to scroll through commands that you have previously entered. To see a list of 
everything you have typed in this session, type %hist at the command prompt.
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We can use the %macro command, in conjunction with the %hist command, to define 
macros. Let's say we frequently need to define some physical constants, so we want to save 
those commands as a macro. First, enter the following commands and then display them 
with the %hist command:

sage: epsilon_zero = 8.85418782e-12

sage: mu_zero = 1.25663706e-6

sage: NA = 6.0221415e23

sage: %hist

1: epsilon_zero = RealNumber('8.85418782e-12')

2: NA = RealNumber('6.0221415e23')

3: mu_zero = RealNumber('1.25663706e-6')

4: _ip.magic("hist ")

Note that the results of the %hist command will be different on your screen, because 
the command history for your session is not the same as the history for the session used 
to create this example. Look at the output from %hist and note the number to the left of 
each command. Now, use the %macro command to define a macro called constants using 
commands 1-3. You will have to replace the numbers 1 and 3 with the appropriate numbers 
from your command line history.

sage: %macro constants 1-3

Macro `constants` created. To execute, type its name (without quotes).

Macro contents:

epsilon_zero = RealNumber('8.85418782e-12')

NA = RealNumber('6.0221415e23')

mu_zero = RealNumber('1.25663706e-6')

We can now use the command constants to quickly define some variables that contain 
physical constants. For more information about the %macro command, type the following:

sage: %macro?

Tab completion
Tab completion can also make your life easier. Type the first letter (or first few letters) of a 
command at the prompt, and press Tab to see a list of possible completions. For example, 
type pl and press Tab:

sage: pl
plot                 plot_step_function   plotkin_bound_asymp
plot3d               plot_vector_field    plotkin_upper_bound
plot_slope_field     plot_vector_field3d
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Interactively tracing execution
Only the interactive shell allows you to trace the execution of a command interactively. Use 
the trace function, which accepts a string that contains a Sage command. For example, to 
trace the execution of the following exp function:

sage: trace("exp(1.0)")

This command starts the Python debugger, which gives you the ipdb> prompt. To step 
through execution of the function, type step (or just s) at the prompt and press Enter. Type 
? to get help on other commands you can use in the debugger. Type quit (or just q) to quit 
the debugger and return to the Sage command line. A typical session looks like this:

Using the notebook interface
The notebook interface is a more flexible way to work with Sage. Your calculations and the 
resulting numbers and plots can be saved together in a worksheet. You can add headings and 
text to document what you've done. In Chapter 10, we'll learn how to use LaTeX to typeset 
mathematical expressions right in a worksheet.



Chapter 3

[ 49 ]

Starting the notebook interface
There are several ways to start the notebook interface. If you are running Sage in a virtual 
machine on Windows, double-click on the icon labelled Sage Notebook. If you are starting 
Sage from the command line, you can use the –notebook option to start Sage and launch 
the notebook interface. If you already have the Sage interactive shell running, use the 
notebook() function to start the notebook interface:

sage: notebook()

If a web browser doesn't open automatically, manually start the web browser and go to 
http://localhost:8000.

If this is your first time running the notebook interface, follow the prompts in the terminal 
to enter a password for the administrative account.
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When you have entered a password, you will see a screen that allows you to log in. Log in 
using the name and password you just created.

Once you have logged in, you will see the home page for the notebook interface:
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You can create a new worksheet by clicking the New Worksheet link. When prompted, enter 
a name in the dialog box. The blank worksheet should look like this:

You can access many powerful features of the notebook interface from this page:

 � The File menu allows you to perform operations such as saving, renaming, and 
deleting worksheets

 � The Action menu allows you to control the evaluation of cells, such as interrupting 
a calculation that is taking too long

 � The Data menu allows you to attach a data file to a worksheet

 � The sage menu allows you to choose which tool evaluates the code in a cell

The six tabs towards the right side of the screen allow you to perform other operations:

 � The Worksheet tab shows the default view of the worksheet

 � The Edit tab allows you to edit a text representation of the worksheet

 � The Text tab shows you a read-only text representation of the worksheet

 � The Undo tab shows a revision history of the worksheet, and allows you to go back 
to a previous version

 � The Share tab allows you to give other Sage users the ability to edit your worksheets

 � The Publish tab allows you to make your worksheet available on the Web, where it 
can be viewed by anyone who can access the web server on your computer
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Time for action – doing calculations with the notebook interface
Now, we will use the Notebook interface to repeat the calculations that we did with the 
interactive shell. We will add some text to document what we've done.

1. Define variables.

The empty white box in the middle of the worksheet is an input cell. Click in the 
input cell and type in the following text:
R = 250e3 # ohms
C = 4e-6 # Farads
tau = R * C
tau

To evaluate the cell, press Shift-Enter or click the evaluate link, which is found just 
below the bottom-left corner of the input cell. As soon as the code executes, an 
empty input cell appears on the screen below the previous cell. The screen will look 
like this:

2. Perform a calculation.

You can also insert an empty input cell by moving the cursor into the blank space 
above or below an existing cell. When a thin, solid bar appears in the blank space, 
click to insert a new input cell. Enter the following code in the next input cell:
v0 = 20.0    # Volts
t = 1.0      # seconds
v0 * exp(-t / tau)

Click the evaluate link or press Shift-Enter to execute the code. The result will appear 
below the input box.
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3. Add documentation.

Let's add a text field to document what we've done. Move the mouse cursor to the 
empty space just above the first input box. As your mouse enters this area, a thin, 
solid bar will appear. Hold down the Shift key and click on this rectangle to insert 
a new text cell. The text cell will include a graphical editor that allows you to enter 
text and apply HTML formatting. Choose Heading 1 from the menu at the upper 
left corner of the editor, and type RC Circuit Analysis into the box. Click the Save 
Changes button to exit the editor.
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4. Save your work.

Click the Save button at the top-right corner of the worksheet. If you are done with 
this notebook, click Save & quit.

What just happened?
We repeated the calculation that we performed earlier. This time, we were able to create 
a single document that contains calculations, results, and documentation. We made use of 
comments in the input cells to note the units for each value (you can also use comments on 
the command line). A # sign indicates the beginning of a comment. Sage ignores anything 
on the line after the #. Get in the habit of using comments to remind yourself how the 
code works. As in the interactive shell, no output is displayed when a value is assigned to a 
variable. Only the last line of an input cell will produce output on the screen. We'll see how 
to produce more output in the next section.

Getting help in the notebook interface
To get help with the notebook interface, click the Help link in the upper-right corner of the 
notebook window. To get help on a command or function, type the command name in an 
empty input cell, followed by a ?. Press Tab, or evaluate the cell, to see the documentation. 
You can also type the command name followed by ?? to see the source code. Another 
option is to type help(command), which will result in a link that you can click to open 
the documentation in a new tab or window. To search the documentation, type search_
doc("my query") in an empty input cell and evaluate the cell. You can also search the 
source code by using search_src("my query").

Working with cells
The example showed some of the basic commands that can be used to edit worksheets. 
The following shortcuts are useful for working with cells:

Evaluate cell With cursor in cell, hold Shift and press Enter
Insert new input cell Move cursor between cells and click when solid bar appears

Insert new text cell Move cursor between cells and Shift-click when solid bar appears

Delete cell Delete cell contents, and then press Backspace

Split cell at cursor Press Ctrl-;
Join two cells Click in the lower cell and press Ctrl-backspace
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Working with code
The notebook interface also provides some shortcuts to make it easier to edit code in 
input cells:

Tab completion Start typing the name of a command, function, or object and 
press Tab to see possible completions.

Indent block of text Highlight block and press > to indent or < to unindent.  In 
Firefox, highlight block and press Tab to indent or Shift-Tab to 
unindent.

Comment a block of code Highlight code and press Ctrl-.
Uncomment a block of code Highlight code and press Ctrl-,
Close parenthesis Press Ctrl-0 to automatically insert a closing parenthesis 

(if needed). Press Ctrl-0 multiple times to close multiple 
parentheses.

Closing the notebook interface
When you are done with your worksheet, click Save & quit at the upper-right corner of the 
window. This will return you to the main screen of the notebook interface. Click Sign out (in 
the upper-right hand corner of the window) to exit. To return to the command line interface, 
click in the terminal window and press Ctrl-C to terminate the web server and resume using 
the command line.

Have a go hero – using the notebook interface
We have just touched on a few aspects of the analysis of RC circuits. Using the Wikipedia 
article as a reference, add more text boxes to explain more about the calculations we just 
performed.

http://en.wikipedia.org/wiki/RC_circuit
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Displaying results of calculations
Before we go any further, we need to learn about the print function. print takes one 
argument, which is enclosed in parenthesis. print evaluates its argument and writes the 
result to either the interactive shell or an output cell in a worksheet. If the argument is a 
string, print simply prints the string. If the argument is another type, it will be converted 
to a string before being printed. By default, each call to the print function will result in a 
new line of output. For example, enter the following code in an input cell to see how print 
works in a worksheet:

print('This is a string')
print(1.0)
print(sqrt)

The result looks like this:

We'll use print extensively to display the output from Sage calculations. In older Python 
code, you will often see print used as a statement instead of a function:

print 'This is a string'

Python versions 2.6 and later support using print as either a statement or a function. 
However, in Python 3 and later only the function syntax will be supported. Therefore,  
we will use print as a function in order to make our code compatible with future versions 
of Python.

Operators and variables
Operators and variables are two fundamental elements of numerical computing. Sage uses 
the Python programming language as the interface for all of its components, so writing 
code for Sage is very similar to writing Python code. Sage extends the Python language with 
additional types that are well suited for mathematical calculations. In this section, we'll learn 
more about how operators and variables work in Sage.
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Arithmetic operators
The following table lists the operators that are available in Sage:

Operator Function Operator Function

= Assignment == Equality

+ Addition > Greater than

- Subtraction >= Greater than or equal to

* Multiplication < Less than

/ Division <= Less than or equal to

** or ^ Power != Not equal to

% Modulo (remainder)

// Integer quotient

Note that the assignment operator is a single equal sign, while the test for equality is a 
double equal sign. The following example illustrates the difference between the two:

sage: a = 4    # assigns the value 4 to a

sage: a == 5   # tests whether a is equal to 5

False

When performing arithmetic, it is important to know which operations take precedence over 
others. Operations with higher precedence will be done first. The following table lists the 
operators in order from lowest to highest precedence:

or 

and 

not 

in, not in 

is, is not 

>, <=, >, >=, ==, !=, <> 

+, - 

*, /, % 

**, ^

If there is any ambiguity, use parenthesis to make it clear which operations should be done 
first. This will also make your code easier to read.
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Pop quiz – working with operators
Try to figure out what answer Sage will give to the following math problems, and check your 
answers with Sage:

2 + 3^2
4 + 2 * 5
3 * 2 == 2 * 10
5 * 2 > 7 + 1
2 + 1 == 3 * 1 and 5 < 6
True and not False or True

Numerical types
Variables in Sage, like Python, are dynamically typed. Unlike traditional languages such as C 
or FORTRAN, Sage does not require you to declare variables before using them. A variable 
can be assigned a real number in one line of code, an integer in another line, and a string 
in the next. However, mathematical operations require numerical types to be defined with 
more accuracy. The results of a calculation can change, depending on the types of variables 
involved. In the following examples, we will use the type function to determine the type of 
any variable in Sage.

Integers and rational numbers
When you define a variable without using a decimal point or exponential notation, Sage 
assumes the variable is an integer. Operations on integers can result in integers, rational 
numbers, or symbolic expressions. Evaluate the following code in an input cell:

a = 10
print(a)
print(type(a))
print(a / 3)
print(type(a / 3))
print(sqrt(a))
print(type(sqrt(a)))
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The result should look like this:

Real numbers
A real number is any decimal number. Sage creates a real number when you define a variable 
using a decimal point or exponential notation. You can use the notation "1e9" to represent 
"one times ten to the power nine."

b = 10.0
print(b)
print(type(b))
print(b / 3)
print(type(b / 3))
print(sqrt(b))
print(type(sqrt(b)))

The result should look like this:

Most operations in Sage can return real numbers with arbitrary precision.  Later in the 
chapter, we'll see how to find out how many bits of precision are available for a real 
number. Note that the results of a floating-point calculation depend on how the floating-
point operations are implemented on a particular type of processor. Therefore, floating-
point numbers shown here may be slightly different when the calculations are repeated on 
different platforms.
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Complex numbers
Complex numbers consist of a real part and an imaginary part. Sage represents a complex 
number with a complex number type or a symbolic type, depending on how you define the 
number. If you define a complex number on the command line using the built-in constant I 
(or i) to represent the square root of -1, then the number is stored as a symbolic expression. 
Operations on integers and rational numbers will also return a symbolic expression. In 
contrast, the square root of a negative real number is stored as a complex number type.

c1 = sqrt(-1.0)
print(c1)
print(type(c1))

c2 = sqrt(-1)
print(c2)
print(type(c2))

c3 = 1.0 + i*sqrt(2.0)
print(c3)
print(type(c3))

The result should look like this:

Symbolic expressions
In addition to numerical calculations, Sage has extensive capabilities to perform symbolic 
mathematics. We'll cover this subject in detail in Chapter 7. For now, we'll use the var 
function to declare symbolic variables.

var('x, y, z')
print(x)
print(type(x))
z = x + y
print(z)
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The result should look like this:

var accepts a string argument with variable names separated by commas (we'll cover strings 
in a bit). It makes the code more readable if you use a space after each comma.

Defining variables on rings
For engineering and scientific computation, you will generally use real or complex numbers 
and ignore the other types. However, when working with symbolic mathematics or doing 
theoretical work, it may be very important to specify the correct ring for a variable. Sage 
allows you to specify the ring over which a number is defined. Four commonly used rings are 
as follows:

Ring Constructor in Sage

Integers ZZ

Rational numbers QQ

Real numbers RR

Complex numbers CC

You can use rings to specify the type of a variable, as shown in this example:

integer_var = ZZ(4)
rational_var = QQ(4/3)
real_var = RR(4/3)
complex_var = CC(sqrt(-1))
print(integer_var)
print(rational_var)
print(real_var)
print(complex_var)

The result should look like this:
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Notice that the expression QQ(4/3) returns an exact rational number, but RR(4/3) returns 
a floating-point approximation. A useful trick is to use I to define a complex number, and 
then use CC to force the result to have a complex number type rather than a symbolic 
expression type.

Combining types in expressions
It often happens that integers, rational numbers, real numbers, and complex numbers 
need to be combined in a mathematical expression. Most of the time, you don't need to 
worry about this because Sage will automatically choose the best type for the result of the 
calculation, so that no information will be lost. For example, adding an integer to a real 
number results in a real number, to avoid losing the non-integer part of the result.

Pop quiz – understanding types
What type will result from the following Sage commands? Check your answers with the type 
function in Sage.

3/2
2/3.0
sin(pi/3)
sqrt(-1)
sqrt(-1.0)
CC(7 + 3 * i)

Strings
Strings are another fundamental type in Python and Sage. We will use strings extensively, in 
conjunction with the print function, to display results from our calculations. We will also 
use strings to document functions that we define.

Time for action – using strings
Let's practice with strings:

string_1 = 'Single quoted string'
string_2 = "Sometimes it's good to use double quotes"

multiline_string = """    This string
    contains single quotes ' and double quotes "
    and spans multiple lines"""

print(string_1)
print(string_2)
print(multiline_string)
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numerical_value = 1.616233
print('The value is ' + str(numerical_value))

The result should look like this:

What just happened?
A string literal is an arbitrary sequence of characters enclosed in quotation marks, such 
as 'Single quoted string' in the example above. String literals can be assigned to 
variables, like any other type. Single or double quotes can be used. If you need to use a 
single quote within the string, you need to enclose the string in double quotes, as we did 
with the string literal assigned to the variable string_2. Enclosing a string in triple quotes 
(either single or double) allows you to include newlines and quotation marks in the string. 
We used triple quotes to assign a string value to the variable multiline_string.

The last two lines of the example show how we can use strings to improve the output 
from our calculations. The str function returns a string representation of its argument, 
which is a real number in this example. Every object in Sage, including functions, has a 
string representation, although it's not necessarily useful. We then used the + operator to 
concatenate (join) the two strings. This operator performs addition if used with numerical 
types, and concatenation if used with strings. This is known as operator overloading. We'll 
use print, str, and the + operator extensively to improve the output from our calculations.

Callable symbolic expressions
The definition of the word "function" is a potential source of confusion in Sage because there 
are two types of constructs that are commonly referred to as functions. Mathematicians 
define a function as a relation that associates each element of a given set (called the domain) 
with an element of another set (the range). In computer programming, a function is a block 
of code within a larger program that performs a specific task. Sage supports both types of 
functions. In order to avoid confusion, we will use the term "callable symbolic expression" 
to refer to a function in the mathematical sense. The word "function" will refer to a function 
definition using the Python programming language, which we will learn about in the next 
section.
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Time for action – defining callable symbolic expressions
Let's say we want to define this mathematical function and perform some calculations  
with it:

  

Evaluate the following code to define the function:

var('a, x')
f(x) = a * x^3

print(type(f))
print(f)
show(f)

print(f(2, a=5))
print type(f(2, a=5))

The result should look like this:

Now, let's define another function, which is the derivative of f(x):

Evaluate the following code to define g(x):

g(x) = derivative(f, x)
show(g)
g(x=2, a=3)
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The result should look like this:

What just happened?
We started out using the var function to define some symbolic variables. Technically, we 
didn't need to explicitly define x as a symbolic variable, because Sage assumes that x is 
symbolic by default. We then used the notation f(x) = a * x^3 to define a callable 
symbolic expression called f, and we confirmed that f was symbolic by using the type 
function. We used the print function to display f, and then introduced a new function 
called show to display a typeset representation of f. Finally, we called f with specific values 
for x and a. When we evaluate f, the result always has a symbolic type, even when the 
result is a numerical value.

In the next section, we created a new callable symbolic expression called g that is defined as 
the derivative of f with respect to x. derivative is a Sage function for computing symbolic 
derivatives, which we'll cover in Chapter 7. We then computed the value of g for specific 
numerical values of a and x to verify that g is also a callable symbolic expression.

Automatically typesetting expressions
Near the top of every worksheet is a check box with the label Typeset. When it's not 
checked, symbolic expressions are displayed on a single line:

When the box is checked, expressions are typeset:

The Typeset check box has no effect on the print or show functions; print always displays 
an expression as text, and show always typesets expressions.
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Functions
Functions are a way to encapsulate and modularize data processing. Data can be passed to 
a function using arguments. The function performs some kind of operation, and (optionally) 
returns a result.

Time for action – calling functions
We've already seen many simple examples of calling functions. Now, we'll use the plot 
function to illustrate more advanced ways to call functions. Evaluate the following code:

var('x')
sinc(x) = sin(x) / x

plot(sinc, (x, -10, 10))

The result should look like this:

 

Now, let's customize our plot:

plot(sinc, x, xmin=-15, xmax=15, thickness=2, color='red', 
    legend_label='sinc')
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The customized plot should look like this:

What just happened?
In the first part of the example, we defined a callable symbolic expression that represents the 
sinc function. This function has important applications in signal processing and information 
theory. We plotted the function using a simple call to the plot function. When calling a 
function with multiple arguments, it is important to put the arguments in the right order. 
The first argument to plot is the callable symbolic expression. The second argument is known 
as a tuple, which we'll learn about in the next chapter. The tuple contains the independent 
variable, the minimum value of the plotting domain, and the maximum value of the domain.

In the second part of the example, we used keyword arguments to customize the plot. 
The arguments we used in previous examples are called positional arguments. Positional 
arguments are required, and they must occur in the correct order. A keyword argument is 
optional—if a keyword argument is not specified in the function call, it takes on a default 
value. If keywords are used, the arguments can be placed in any order. However, keyword 
arguments must come after all the positional arguments. In general, a function is called using 
the syntax:

result = function_name(argument_1, argument_2, … , argument_n, 
keyword=value)
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The number of positional arguments in the function call must match the number in the 
definition. The function does not have to return a value, and you don't have to assign its 
return value to a variable. In simple cases, it's possible to pass optional arguments without 
keywords by passing the optional arguments in the right order. However, this is discouraged, 
because it makes the code less readable and more prone to bugs.

Sage has very sophisticated plotting capabilities, which we will cover in Chapter 6. If you are 
interested in learning more now, evaluate the command plot? in a worksheet cell or in the 
interactive shell to get help on the plot function.

Have a go hero – make some more plots
Use the plot command to make plots of some of the built-in mathematical functions listed 
in the next section. Practice using keyword arguments to customize the plots. Then, use the 
built-in functions to define a callable symbolic expression, and plot it.

Built-in functions
A vast number of functions are pre-defined in Sage. Even more are available through Python 
modules, which we will learn about in the next chapter. For now, here is a brief summary of 
the most commonly used mathematical functions, and how to access them in Sage:

Function Sage Function Sage

sine sin(x) square root sqrt(x)

cosine cos(x) ex exp(x)

tangent tan(x) natural logarithm log(x)

arcsine arcsin(x) absolute value abs(x)

arccosine arccos(x) complex conjugate conjugate(x)

arctangent arctan(x)

Numerical approximations
Any numerical type in Sage can be converted to a real number with the numerical_approx 
function (this function can also be abbreviated as n or N). For example:

print(pi)
print(numerical_approx(pi))
print(type(numerical_approx(pi)))
print(numerical_approx(pi, prec=16))
print(numerical_approx(pi, digits=5))
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The result should look like this:

The numerical_approx function accepts three arguments. The first argument, which 
is mandatory, is the item to be converted to a real number. The keyword argument prec 
can be used to specify the number of bits of precision for the real number. Alternately, the 
keyword argument digits can be used to specify the number of digits of precision.

The reset and restore functions
It's possible to accidentally re-define a built-in function or constant. For example, the letters 
i and n are commonly used as names for counting variables in loops. Fortunately, the 
restore function can be used to restore predefined global variables (such as i and n) to 
their default values. Here's a short example:

print(e + i * 5)

i = 10
e = 5
print(e + i * 5)

restore('e i')
print(e + i * 5)

The result should look like this:

If you call restore without any arguments, it will restore all the predefined variables to 
their default values. Another useful function is called reset. This function deletes all the 
variables you have defined, restores all global variables to their default values, and resets the 
interfaces to other computer algebra systems.
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If you start getting strange results from your calculations, you may have 
accidentally re-defined a built-in function or constant. Try calling the reset() 
function and running the calculation again. Remember that reset will delete 
any variables or functions that you may have defined, so your calculation will 
have to start over from the beginning.

Defining your own functions
Sage allows you to define your own functions using Python syntax. This will be very useful for 
keeping your code organized, especially as we move into writing longer programs.

Time for action – defining and using your own functions
Let's return to the series RC circuit that we have been using as an example. We will now 
define a function that computes the voltage across the capacitor. You can enter the following 
code in an input cell in a worksheet, or on the command line. When you type the colon at 
the end of the first line and press Enter, the cursor will automatically indent the lines that 
follow. Make sure that you consistently indent each line inside the function.

def RC_voltage(v0, R, C, t):
    """
    Calculate the voltage at time t for an R-C circuit
    with initial voltage v0.
    """
    tau = R * C
    return v0 * exp(-t / tau)
    
R = 250e3   # Ohms
C = 4e-6    # Farads
v0 = 100.0    # Volts
t = 1.0      # seconds

v = RC_voltage(v0, R, C, t)
print('Voltage at t=' + str(n(t, digits=4)) + 's is ' + 
    str(n(v, digits=4)) + 'V')

This block of code produces the following output:

Voltage at t=1.000s is 36.79V
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If you are using the interactive shell, pressing Enter after the first line will create a blank line 
so that you can enter the next line of the function, instead of executing the code. To return 
to the command prompt, press Enter on a blank line. Defining a function on the command 
line looks like this:

sage: def RC_voltage(v0, R, C, t,):

....:     """

....:     Calculate the voltage at time t for a series R-C circuit 

....:     with initial voltage v0.

....:     """

....:     tau = R * C

....:     return v0 * exp(-t / tau)

....:  

Our function even has documentation like a built-in function. Executing the following 
command displays the documentation:

RC_voltage?

Having trouble getting the code running?
Python, like most programming languages, is very picky about how you type in 
the code. This is often frustrating for new programmers, but you'll quickly get 
used to it. Go over what you typed in and look for these common mistakes. 
Did you forget the colon after the parenthesis when defining the function? Did 
you uniformly indent each line within the function? Did you use three double 
quotes on each end of the documentation string? Also, pay attention to the error 
messages that are produced, particularly the last one.

What just happened?
We defined a function and found that it can be used just like the built-in functions in Sage. 
Sage functions are defined using the general form:

def function_name(argument_1, argument_2, … , argument_n):
   """
Documentation string here
"""

   statement one
   statement two
   ...
   return some_value
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The first line declares the name of the function and the argument list. Don't forget the colon 
after the argument list! It's also valid to define a function without any arguments, in which 
case the parenthesis must be empty.

The body of the function is a block of code that is uniformly indented. A unique feature of 
the Python language is that indentation is used to delimit blocks of code, rather than using 
symbols like curly braces. That is why it is so important to indent each line in the body of the 
function by the same amount. The first item within the function body is called the docstring. 
While this is optional, it's good to get in the habit of including it. Sage displays the docstring 
when the user asks for help on the function. The docstring is triple-quoted, which means 
that Sage will display its contents exactly as you format them. Next, the function can have 
any number of statements. Note that our function has its own local variable, tau. You can 
also define functions within functions. The final line of the function definition is the return 
keyword, followed by one or more variables whose values will be returned. If the function 
doesn't return anything, the return keyword can be used without any variable names, or 
return can be omitted.

If you find a block of code occurring more than once in your program, stop and 
move that block of code to a function. Duplicate blocks of code will make your 
programs harder to read and more prone to bugs.

Functions with keyword arguments
There are two good reasons to use keyword arguments when defining a function. One 
reason is to allow the user to omit arguments that are seldom changed from their default 
value. The other is to reduce confusion when calling the function. In the example above, it 
might be easy to accidentally interchange the resistance and capacitance values when calling 
the function, resulting in a bug that's hard to track down.

Time for action – defining a function with keyword arguments
Let's re-define our function with keyword arguments: 

def RC_voltage(t, v0=100, R=1000, C=1e-9):
    """
    Calculate the voltage at time t for an R-C circuit
    with initial voltage v0.
    """
    tau = R * C
    return v0 * exp(-t / tau)
    

res = 250e3   # Ohms
cap = 4e-6    # Farads
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v0 = 100.0    # Volts
t = 1.0      # seconds

v = RC_voltage(t, v0=v0, R=res, C=cap)
print('Voltage at t=' + str(n(t, digits=4)) + 's is ' + 
    str(n(v, digits=4)) + 'V')

The output is the same as the previous example.

What just happened?
Declaring keyword arguments is very similar to declaring positional arguments. If there are 
keyword arguments, they must be defined after the positional arguments. The default value 
of each keyword argument must be given. The following is the general form of a function 
definition with positional and keyword arguments:

def function_name(argument_1, argument_2, … , argument_n,
   keyword_arg_1=default_value,… , keyword_arg_n=default_value ):
   """
   Documentation string here
   """

   statement one
   statement two
   ...
   return some_value

In our function definition, we used keyword arguments for the initial voltage, resistance, 
and capacitance. We had to move the time argument t so that it came before the keyword 
arguments. When we called the function, we used the keywords v0, R, and C to specify the 
initial voltage, resistance, and capacitance. In this case, it doesn't really make sense to use 
a keyword argument for t, since it's the only positional argument and there is no chance of 
confusing it with the keyword arguments.

Objects
Over the past three decades, object-oriented programming (OOP) has created a fundamental 
shift in the way that programmers approach problems. In the early days of OOP, people 
involved in scientific computing could largely ignore object-oriented principles. Today, that 
is no longer the case. While the algorithms of scientific computing are still fundamentally 
procedural, the software packages are increasingly constructed in an object-oriented fashion. 
OOP allows scientific software to be more organized, easier to use, and more maintainable. 
In this section, you will learn how to use pre-defined objects in Sage. In Chapter 9, you will 
learn how to create custom objects.
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Time for action – working with objects
If you are already familiar with objects from another programming language (such as Java or 
C++), then you will immediately be familiar with objects in Sage. If not, this example should 
help you understand the concept:

real_number = RR(10/3)
print(type(real_number))
print('Value: ' + real_number.str())
print(real_number.n(digits=5))
print('Precision: ' + str(real_number.precision()))
print(real_number.ceil())

The result should look like this:

What just happened?
We've already been using objects without knowing it—every number in Sage is actually an 
object! An object is a construct that consists of data (called attributes) and behaviours (called 
methods). An object's attributes and methods are defined by a class. We say that an object 
is an instance of a particular class. In our example, the object called real_number is an 
instance of a class called RR. We create an object using syntax that is just like a function call:

new_object = Class_Name(arg1, arg2, …)

The number and type of arguments (positional vs. keyword) will depend upon the class 
definition.

The object called real_number has an attribute that stores a representation of the floating-
point number 1.4372. It has another attribute that stores the precision of the floating-point 
number. Objects can have other objects as attributes, leading to very complicated structures. 
An object's attributes can be interrogated and manipulated using methods. Methods are 
functions that are associated with an object. For example, the precision method returns 
the number of bits of precision for the real number:

real_number.precision()

We can use the str method to obtain a string representation of a real number:

real_number.str()
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Methods are called with the syntax:

result = object_name.method_name(argument_1, argument_2, … , 
argument_n)

One of the strengths of object-oriented programming is that the design of the object limits 
the ways that we can manipulate its data. For example, it wouldn't make any sense if we 
were allowed to change the value of a floating-point number without updating the number 
of bits of precision.

As you start using objects, you may be frustrated by the lack of direct access to 
the data. You may find yourself tempted to avoid using the methods, and directly 
manipulate the data in an object. This defeats the purpose of using objects! If 
the methods seem to be hindering your use of the object, you probably aren't 
using them right. Take another look at the documentation and examples, and 
re-think your approach.

Getting help with objects
If you know an object's class, you can use the help function to see its architecture. In the 
previous example, we used the type function to determine that a real number's class is 
sage.rings.real_mpfr.RealNumber. We can use the help function to learn more 
about it. In the interactive shell, the class documentation looks like this:

sage: help(sage.rings.real_mpfr.RealLiteral)

Help on class RealNumber in module sage.rings.real_mpfr:

class RealNumber(sage.structure.element.RingElement)

 |  File: sage/rings/real_mpfr.pyx (starting at line 1034)

 |  

 |  A floating point approximation to a real number using any specified

 |  precision. Answers derived from calculations with such

 |  approximations may differ from what they would be if those

 |  calculations were performed with true real numbers. This is due to

 |  the rounding errors inherent to finite precision calculations.

 |  

 |  The approximation is printed to slightly fewer digits than its

 |  internal precision, in order to avoid confusing roundoff issues

 |  that occur because numbers are stored internally in binary.

 |  



Getting Started with Sage

[ 76 ]

 |  Method resolution order:

 |      RealNumber

 |      sage.structure.element.RingElement

 |      sage.structure.element.ModuleElement

 |      sage.structure.element.Element

 |      sage.structure.sage_object.SageObject

 |      __builtin__.object

 |  

  ...

The same information is available from the notebook interface, but the formatting will differ. 
You can view the source code for a class by typing its name, followed by two question marks:

RR??

You can quickly access a list of methods by typing the name of an object followed by a period 
and pressing Tab. If the object has many methods and you are using the interactive shell, 
Sage will give you fair warning:

sage: real_number.

Display all 105 possibilities? (y or n)

If you are using the notebook interface, a table of methods will appear:

To find out more about a particular method, type the name of the object, a period, and the 
method name, followed by a question mark. Here is an example of how this looks in the 
interactive shell (it will also work in the notebook interface):

sage: real_number.cos?

Type:      builtin_function_or_method

Base Class:   <type 'builtin_function_or_method'>
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String Form:  <built-in method cos of sage.rings.real_mpfr.RealLiteral 
object at 0x100478c08>

Namespace:   Interactive

Definition:   real_number.cos(self)

Docstring:

    

       Returns the cosine of this number

    

       ...

As with classes and functions, typing two question marks after the method name will display 
its source code.

Learning object-oriented programming for the first time can be confusing, but it will pay off. 
For now, we've only talked about how to use pre-defined types of objects. In Chapter 9, you 
will learn how to define your own classes for creating custom objects.

Summary
In this chapter, we learned the basics of interacting with Sage. Specifically, we covered:

 � How to use the interactive shell

 � How to use the notebook interface to perform calculations and add documentation 
to worksheets

 � Operators and variables

 � Calling functions

 � Making simple plots

 � Defining our own functions

 � Working with objects

We have only started to unlock the power and flexibility of Sage. In the next chapter, we will 
learn more about the programming features of Python that are available in Sage.





4
Introducing Python and Sage

By now, you have learned the basic principles of interacting with Sage. We will now unlock 
the power of the Python programming language. The programmatic features of Python 
complement the mathematical features of Sage.

In this chapter, we shall learn how to:

 � Use lists and tuples to store sequential data

 � Iterate with loops

 � Construct logical tests with "if" statements

 � Read and write data files

 � Store heterogeneous data in dictionaries

So, let's start programming…

Python 2 and Python 3
It is important to understand that two stable versions of Python are available. Python 2 was 
first released in October 2000, and version 2.7 is the latest in a long line of evolutionary 
upgrades. The Python developers realized that certain aspects of the Python language 
could not be improved without breaking compatibility with existing code. The result was 
Python 3, which is the first release of Python that is intentionally backwards-incompatible. 
In other words, some code written for Python 2 will have to be modified to run on a Python 
3 interpreter. For this reason, the migration from Python 2 to Python 3 has been rather slow, 
even though Python 3 is mature and stable. Version 2.7 is the final release of Python 2, and 
new features are being added only to Python 3. Sage uses Python 2.7 (as of Sage version 
4.6), so the code in this book is written for Python 2.7. Whenever possible, the examples 
have been written so that they will continue to run when Sage eventually switches to Python 
3. When looking at Python documentation and examples online, make sure that you are 
reading about Python 2, rather than Python 3.
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Writing code for Sage
In this chapter, we'll be writing longer blocks of code. While all of the examples can be 
entered and run using the notebook interface, it is often easier to edit large sections of code 
with a text editor that is specifically designed for programming. These text editors have 
special features, such as syntax highlighting and automatic indentation that can help you 
write code more easily and avoid some common bugs. Unlike word processors or rich-text 
editors, programmer's text editors save pure text files that do not contain hidden formatting 
information that can confuse the Python interpreter. Many good text editors are available; 
the following editors are some popular free and open-source options. GNU Emacs and vim 
are two popular editors for Linux systems, although Windows, OS X, and Solaris versions are 
also available. If you are used to the Windows or Mac user interface, it will take some time 
to get comfortable with the user interface for Emacs or vim. Kate (KDE) and gedit (GNOME) 
are available for Linux users who prefer a more conventional user interface. Notepad++ is a 
free, open-source programmer's text editor for Windows, with a familiar installation process 
and a friendly user interface. TextWrangler is a free text editor for OS X (although it is not 
open source). jEdit is a Java-based cross-platform editor that will run on any platform that 
supports Java. To find out more and download the software, use the following links:

 � http://www.gnu.org/software/emacs/

 � http://www.vim.org/

 � http://projects.gnome.org/gedit/

 � http://kate-editor.org/

 � http://notepad-plus-plus.org/

 � http://www.barebones.com/products/textwrangler/

 � http://www.jedit.org/

Since Sage uses the Python programming language, Sage code follows the same conventions 
as Python code. These conventions are described in the Style Guide for Python (http://
www.python.org/dev/peps/pep-0008/). It is a good idea to familiarize yourself with 
these conventions and follow them, so that your code can be easily read by other members 
of the Sage and Python communities. Since Python uses indentation to denote blocks of 
code, one of the most important rules is to never mix tabs and spaces. If you use an external 
text editor, configure the editor so that it inserts four spaces (rather than an invisible tab 
character) every time you press the Tab key.
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Long lines of code
The convention in the Python and Sage communities is to create scripts that are 80 
characters wide. If a line of code is longer than 80 characters, it will have to be continued  
on the next line. If a line needs to be continued, add a backslash \ as the last character on 
the line:

term1 = (v2 * cos(n * float(pi)) - v1) / n \
    * sin(n * float(pi) * x_val/l) \
    * exp(-k * n**2 * float(pi)**2 * t / l**2)

This is called "explicit line joining." Expressions contained within parentheses, square 
brackets, or curly braces can be split over more than one line without using a backslash, 
which is called "implicit line joining." Implicitly joined lines can even contain comments:

parameters = {'diffusion coefficient' : k,    # m^2/sec
    'length' : l,    # m
    'left_BC' : v1,    # m
    'right_BC' :v2,    # m
    'time' : t,    # sec
    'num_x_steps' : num_x_steps}

In pure Python code, the indentation of the continuation lines is not important, although 
they are usually indented for clarity. Sage occasionally has a problem with extra whitespace 
in continuation lines, which is why certain examples in this book have continuation lines that 
are not indented.

Running scripts
If you have entered code into a text editor, save the file with a .sage extension. Files with a 
.sage extension may contain code that is specific to Sage, and a standard Python interpreter 
may not be able to run them. Sage can also run files that have a .py extension. Files with 
a .py extension should contain only Python code, so that they can be run with a standard 
Python interpreter.

A file containing Sage source code can be loaded and run in Sage with the load command:

load("/Users/cfinch/Documents/Articles/Sage Math/Chapters/Chapter 4/
example1.py")

This works with either the Notebook or command-line interface. attach is another handy 
command:

attach("/Users/cfinch/Documents/Articles/Sage Math/Chapters/Chapter 4/
example1.py")
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attach is similar to load, but it continues to monitor the text file for changes. Once you 
make changes in the text editor and save them, all you have to do is press Enter on the Sage 
command line, and Sage will automatically reload and re-run the file.

Sequence types: lists, tuples, and strings
Python has seven compound data types that are known as sequence types because they are 
used to represent sequences of items. In this section, we will learn about three of the most 
commonly used sequence types. We'll start with lists, and learn many ways to create and 
manipulate them. The concepts we learn will then be applied to tuples and strings.

Lists in Python are similar in concept to arrays in C and Fortran, and equivalent to lists in 
Mathematica and vectors in MATLAB. Python lists are much more powerful and flexible 
than arrays in lower-level programming languages like C.

Time for action – creating lists
Enter the following code into an input cell in a Sage notebook. Alternatively, you can create a 
new text file containing the code, save it with a .sage extension, and use the load command 
to run it in Sage.

# Creating lists with Python
list1 = ['a', 'b', 'c', 'd', 'e']
print("A list of characters: " + str(list1))

list2 = []
print("\nAn empty list: " + str(list2))
list2.append('f')
list2.append('g')
print("After appending items: " + str(list2))

list3 = list()
list3.extend(list1)
print("\nList 3 after extending: " + str(list3))
list3.append(list2)
print("List 3 after appending a list:" + str(list3))

list_of_ints = range(1, 11, 2)
print("\nA list of integers: " + str(list_of_ints))

# Sage-specific list creation
list_of_floats = srange(0.0, 2*n(pi), step=n(pi)/2, universe=RDF)
print("A list of real numbers:")
print(list_of_floats)
print("A list of symbols:")
print(srange(0, 2*pi, pi/4))
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list_of_ints_2 = [1..11, step=2]
print("Another list of integers: " + str(list_of_ints_2))

The output should look like this:

What just happened?
We demonstrated several ways to create lists. We started by using standard Python syntax 
to create lists. A list can be defined with square brackets. The list can be empty, or you can 
initialize the list with any number of items separated by commas:

new_list_object = [element_1, element_2, element_3]
empty_list = []

If you create an empty list, you can populate the list by using the append method to add a 
new item to the end of the list:

empty_list.append(new_item)

You can use the extend method to add multiple elements to the end of the list:

empty_list.append([list_of_items])

You can also use append to add a list of items to an existing list, but the results will be 
different from extend:
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extend adds each item to the list, while append adds the entire list as a single item. This 
example also demonstrates that you can nest lists, and that a single list can contain items of 
different types.

The items in a list usually have the same type. Technically, it is possible to 
mix types in a list, but this is generally not a good idea for keeping your code 
organized and readable. If the need arises to use items of different types, it may 
be better to use a dictionary, which is described later in this chapter.

Certain built-in functions also return lists, such as the function list. If list is called with 
a sequence type argument, it returns a list that contains the items of the sequence type; 
if called with no argument, it returns an empty list. The range function creates a list of 
integers. In its most basic form, it returns a list of integers that starts at zero and increments 
by one until it reaches (but does not include) the specified value:

sage: range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If two arguments are provided, range returns a list that starts at the first argument and 
increments by one until it reaches (but does not include) the second argument:

sage: range(5,10)

[5, 6, 7, 8, 9]

If a third argument is present, it is used as the increment from one value to the next:

 sage: range(2,10,3)

[2, 5, 8]

Sage provides some additional ways to create lists that complement the standard ways of 
creating lists in Python. The srange function is a more flexible version of range that can 
create lists composed of any Sage numerical type. In the example, we used srange to create 
a list of double-precision floating point numbers, as well as a list of symbolic values. srange 
accepts the following optional arguments:

Keyword Default 
value

Description

end None Endpoint for sequence

step 1 Step

universe None Force all items to lie in the same universe (such as a particular field 
or ring)

check True Ensure all elements lie in the same universe
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Keyword Default 
value

Description

include_endpoint False Include endpoint in sequence

endpoint_
tolerance

1.0e-05 For inexact rings, used to determine whether endpoint has been 
reached

Sage has another shortcut for creating a list of integers that is similar to the range function:

[start_value..endpoint, step=1]

The start value and endpoint are enclosed in square brackets and separated by two decimal 
points. The step can be specified with the step keyword (the default step is one).

Getting and setting items in lists
Now that we know how to create lists, we will learn how to get and set items in the list.

Time for action – accessing items in a list 
Evaluate the following code:

list1 = ['a', 'b', 'c', 'd', 'e']
print("A list of characters: " + str(list1))

# Getting elements with indices and slices
print("list1[0] = " + str(list1[0]))
print("list1[1:4] = " + str(list1[1:4]))
print("list1[1:] = " + str(list1[1:]))
print("list1[:4] = " + str(list1[:4]))
print("list1[-1] = " + str(list1[-1]))
print("list1[-3:] = " + str(list1[-3:]))

The results should look like this:
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What just happened?
The items in a list can be accessed using an integer value, which is known as an index. 
The index is placed in a square bracket like this:

sage: list1[0]

'a'

The index of the first item is zero, the index of the next element is one, and so on. It's  
also possible to select elements from the end of the list instead of the beginning. The  
last element is -1, the second-to-last is -2, etc.

Multiple elements can be selected at once using slice notation. The colon is the slice 
operator. The slice starts at the index corresponding to the number before the colon and 
goes up to (but does not include) the index corresponding to the number after the slice.

list1[start_index:stop_index]

If the first number is omitted, the slice starts at the beginning of the list.

list1[:stop_index]

If the number after the colon is missing, the slice goes all the way to the end of the list.

list2[start_index:]

The value of an item in a list can be changed using indices. You can also change multiple 
items at the same time with slices. You can replace a slice of a list with a different number of 
elements, and even delete the slice altogether. Slicing is a very powerful technique—and a 
source of bugs until you understand it thoroughly!

Pop quiz – lists and indexing
Test your understanding of lists with the following examples. Try to predict what the result 
will be, and check your answers using Sage.

a = [1,3,5,7,9,11]
b = [0,2,4,6,8,10]
print(a[1])
print(a[0:4])
print(a[-1])
print(a[-4:-1])
print(a[-4:])

a[0] = 3.7324
print(a)
a[0:3] = b[0:3]
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print(a)
b[-2:] = []
print(b)

List functions and methods
Like everything in Sage, lists are objects. Every list has methods for manipulating the data 
in the list. We've already used the append method to add items to the end of a list.

mylist.append(value)    # Appends an item to end of list

In the next section, we will use the append method in conjunction with a for loop to 
create a list of values.

The len function is used so often with lists that it's worth mentioning on its own. This 
function returns the number of items in the list.

Python lists have many advanced features. It will be worth your time to browse 
the Python documentation at:
http://docs.python.org/tutorial/datastructures.
html#more-on-lists 
http://docs.python.org/library/stdtypes.html#sequence-
types-str-unicode-list-tuple-buffer-xrange

Tuples: read-only lists
Lists are one example of a Python sequence type. A closely related type of sequence is called 
a tuple. Tuples behave a lot like lists, but the data in a tuple is immutable. That means that 
the data is essentially read-only—the elements in a tuple cannot be modified. Tuples are less 
flexible than lists, and therefore less widely used.

Time for action  –  returning multiple values from a function
Tuples are often used to return multiple values from a Python function. Let's create a simple 
function that takes the x, y, and z components of a Euclidean vector and returns the unit 
vector that points in the same direction.

def get_unit_vector(x, y, z):
    """
    Returns the unit vector that is codirectional with 
    the vector with given x, y, z components.
    This function uses a tuple to return multiple values.
    """
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    norm = sqrt(x**2 + y**2 + z**2)
    return x / norm, y / norm, z / norm
    
x = 3.434
y = -2.1
z = 7.991

unit_x, unit_y, unit_z = get_unit_vector(x, y, z)

print("Unit vector:")
print("x: " + str(unit_x) + " y: " + str(unit_y) +
    " z: " + str(unit_z))
print("Norm: " + str(sqrt(unit_x**2 + unit_y**2 + unit_z**2)))

Execute the code. The results should look like this:

What just happened?
This example demonstrated how to return multiple values from a function. The function 
definition should be familiar to you by now. The only new feature occurs in the last line of 
the function:

    return x / norm, y / norm, z / norm

All you have to do to create a tuple is string together multiple values with commas in 
between. This is called "tuple packing." Optionally, you can put parenthesis around the tuple:

    return (x / norm, y / norm, z / norm)

The only thing that's a little tricky is when the tuple only has one element:

sage: tup = ('data',)

sage: tup = 'data',

You have to place a comma after the element, in order to distinguish the tuple from a simple 
variable. Alternatively, you can build up tuple by starting with an empty tuple and joining 
other tuples using the + sign:

sage: tup = ()

sage: tup = tup + ('string data',)

sage: tup += (0.314,)

sage: tup
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('string data', 0.314000000000000)

Note that Python allows you to replace the construct var=var+value with the shortcut 
var+=value. This shortcut can be used with any mathematical operator in Python.

In the example, the function returned a three-element tuple, and we assigned the three 
elements of the tuple to three variables using syntax similar to this:

sage: three_element_tuple = = ('a', 'b', 'c')

sage: v1, v2, v3 = three_element_tuple

This is the inverse of creating a tuple, so it is called "tuple unpacking." We can also access 
elements of a tuple using index and slice notation, just like we did with lists.

sage: tup = 0.9943, 'string data', -2

sage: tup[1]

'string data'

sage: tup[1:]

('string data', -2)

Note that slicing a tuple returns another tuple. Let's see what happens when we try to 
modify an element in a tuple:

sage: tup[1] = 'new data'

----------------------------------------------------------------------

TypeError                            Traceback (most recent call last)

/Users/cfinch/Documents/Articles/Sage Math/Chapters/Chapter 4/<ipython 
console> in <module>()

TypeError: 'tuple' object does not support item assignment

That's what we mean when we say tuples are immutable!

Strings
In the previous chapter, you learned a little bit about strings. It turns out that strings in 
Python are very powerful because they have all the features of sequence types. Strings are 
immutable sequences, like tuples, and support indexing and slicing.
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Time for action – working with strings
Let's see how we can apply the principles of sequence types to strings. We'll also see 
how to improve our output with the print function. Enter and run the following code:

first_name = 'John'
last_name = 'Smith'
full_name = first_name + ' ' + last_name
print(full_name)
print(len(full_name))
print(full_name[:len(first_name)])
print(full_name[-len(last_name):])
print(full_name.upper())
print('')

n_pi = float(pi)
n_e = float(e)

print(n_pi)
print("pi = " + str(n_pi))
print("pi = {0}   e = {1}".format(n_pi, n_e))
print("pi = {0:.3f}   e = {1:.4e}".format(n_pi, n_e))

The results should look like this:
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What just happened?
We started out by defining two strings that represent a person's first name (given name) 
and last name (family name). We joined the strings using the + operator, and computed the 
length of the combined string with the len function. We then used some slice operations 
to extract the first and last name from the string containing the full name. Like everything 
else in Python, a string is an object, with a host of pre-defined methods. Because strings 
are immutable, methods that modify the string actually return a copy of the string which 
contains the modified data. For example, the upper method used in the example returned a 
new string containing an upper-case version of the existing string, rather than modifying the 
existing string. To get around this, we can assign the new string to the old variable:

sage: full_name = full_name.upper()

sage: full_name

'JOHN SMITH'

For a complete list of string methods in Python, check out http://docs.python.org/
library/stdtypes.html#string-methods

In the second part of the example, we used the float function to obtain Python floating-
point numbers that approximate pi and e. When we print the value of a number using the 
print function or the str function, we have no control over how that number is displayed. 
The format method of the string object gives us much more control over how the numbers 
are displayed. We created a special string literal using double quotes, and called the format 
method with one or more arguments. The first argument of the format method is used 
to replace {0}, the second argument is used to replace {1}, and so on. This is exactly 
equivalent to using the str function to convert the numbers to strings, and then joining 
them with the + operator. The final line of the example shows the real advantage of using 
format. By placing a format specification inside the curly braces, we can precisely control 
how numerical values are displayed. We displayed pi as a floating-point number with three 
decimal places, and we displayed e as an exponential with four decimal places. Format 
specifications are very powerful, and can be used to control the display of many types of 
data. A full description of format specifications can be found at http://docs.python.
org/library/string.html#format-string-syntax.

The format method is relatively new in Python. A lot of code uses the older syntax:

print 'pi = %5.3f.' % n_pi

While the older syntax still works, it is deprecated and will eventually be removed from the 
language. Get in the habit of using the format method.
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Other sequence types
The principles you have learned in this section also apply to four other sequence types: 
Unicode strings, byte arrays, buffers, and xrange objects. We will learn more about xrange 
in the next section. The unicode type is used to hold Unicode strings. Unicode is a system 
that is designed to represent almost all of the different types of characters used in the vast 
majority of the world's languages. In Python 2.x (currently used in Sage), built-in strings (the 
str type) do not support Unicode. In Python 3.x, the str class has been upgraded to support 
Unicode strings, and the unicode type is obsolete. The bytearray type is designed to store 
a sequence of bytes, and seems to be used mainly for working with encoded characters. The 
buffer type is rarely used, and has been eliminated from Python 3.

For loops
A Python for loop iterates over the items in a list. The for loop in Python is conceptually 
similar to the foreach loop in Perl, PHP, or Tcl, and the for loop in Ruby.  The Python for 
loop can be used with a loop counter so that it works like the for loop in MATLAB or C, the 
Do loop in Mathematica, and the do loop in Fortran.

Time for action – iterating over lists
Let's say you have some data stored in a list, and you want to print the data in a particular 
format. We will use three variations of the for loop to display the data.

time_values = [0.0, 1.5, 2.6, 3.1]
sensor_voltage = [0.0, -0.10134, -0.27, -0.39]

print("Iterating over a single list:")
for value in sensor_voltage:
    print(str(value) + " V")

print("Iterating over multiple lists:")
for time, value in zip(time_values, sensor_voltage):
    print(str(time) + " sec    " + str(value) + " V")
    
print("Iterating with an index variable:")
for i in range(len(sensor_voltage)):
    print(str(time_values[i]) + " sec    " + 
        str(sensor_voltage[i]) + " V")
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The output should be:

What just happened?
We started by creating two lists: one to hold time values, and one to hold the measured 
value at each time point. In the first for loop, we iterated over the data list and printed 
each value. We iterated over the list with the syntax:

for loop_variable in list_name:
    statement 1
    statement 2

On the first iteration, the loop variable takes on the value of the first item in the list, and the 
statements in the loop body are executed. On each subsequent iteration, the loop variable 
takes on the value of the next item in the list, and the statements in the loop body are 
repeated for each item in the list.

The second for loop demonstrated how to loop over multiple lists simultaneously with the 
zip function. zip accepts one or more sequence types (with the same number of elements) 
as arguments and returns a list of tuples, where each tuple is composed of  the one element 
from each sequence. The syntax time,value was used to unpack each tuple, so that we 
could access the values through the variables time and value. Iterating over both lists 
allowed us to print out both the time and the corresponding measured value, which is much 
more useful.

The third loop in the example demonstrated a different way to iterate over lists with  
the syntax:

for loop_counter in range(len(list_name)):
    statement 1
    statement 2
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The range and len functions were used to generate a list of indices for the given list, and 
the for loop iterated over the list of indices. The loop variable i was used as an index to 
access the elements of the lists. This technique allows the Python for loop to be used in a 
way that is conceptually similar to the for loop in MATLAB or C, the Do loop in Mathematica, 
and the do loop in Fortran.

The Python function xrange can be used in place of the range function in a for loop to 
conserve memory. The range function creates a list of integers, and the for loop iterates 
over the list. This list of integers can waste a lot of memory if the loop has to iterate millions 
of times. The xrange function returns an xrange object, that generates each integer only 
when it is required. The xrange function accepts the same arguments as range. There is 
also a Sage function called xsrange, which as before is analogous to srange.

Don't forget to put a colon at the end of the for statement!
Remember to consistently indent every statement in the loop body.
Although the variable i is often used as a loop counter, the default 
value of i in Sage is the square root of negative one. Remember 
that you can use the command restore('i') to restore i to its 
default value.

Time for action – computing a solution to the diffusion equation
It's time for a more involved example that illustrates the use of for loops and lists in 
numerical computing. The analytical solution to a partial differential equation often includes 
a summation of an infinite series. In this example, we are going to write a short program that 
computes a solution to the diffusion equation in one dimension on a finite interval of length 
l. The diffusion equation is defined by:

The diffusion equation can be used to model physical problems such as the diffusion of 
heat in a solid, or the diffusion of molecules through a gas or liquid. The value of v(x,t) can 
represent the temperature or concentration at a point x and time t. The value of v is fixed at 
each end of the interval:
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The initial condition is that v is equal to an arbitrary function f(x):

The solution to this boundary value problem can be found in a textbook such as The 
Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger:

This formula is quite complicated, and it's difficult to understand its physical meaning just by 
looking at it. Let's use Sage to visualize the solution to this boundary value problem. Create a 
plain text file using the editor of your choice, and enter the following code. Save the file with 
a .sage extension, such as example1.sage. If you are going to use the command line to run 
the program, note the path to the location where you saved the file.

from matplotlib import pyplot as plt

def diffusion_profile(x,t,v1,v2,k,l):
    """
    Compute the value at each point in space for a range of 
    x values at a single time point.

    Arguments:
    x   list of x values
    t   time value (real number)
    v1  concentration at left boundary
    v2  concentration at right boundary
    k   diffusion coefficient
    l   length of interval

    Returns a list of values at each point in space. 
    """

    pi_n = pi.numerical_approx()

    v = []
    for x_val in x:
        sum1 = 0.0
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        sum2 = 0.0
        for n in xrange(1,100):
            term1 = (v2 * cos(n * float(pi)) - v1) / n \
                * sin(n * float(pi) * x_val/l) \
                * exp(-k * n**2 * float(pi)**2 * t / l**2)
            sum1 += term1
            term2 = sin(n * float(pi) * x_val / l) \
                * exp(-k * n**2 * float(pi)**2 * t / l**2) \
                * l / (float(pi) * n) * (1 - cos(n * float(pi)))
            sum2 += term2

        v.append(v1 + ((v2 - v1) * x_val / l
        + 2 / float(pi) * sum1 + 2 / l * sum2))

    return v
    
# Define coefficients
k = 0.1
l = 1.0
v1 = 0.0
v2 = 1.0
t = 1.0
x_max = 1.0
num_x_steps = 10

# Create a list of x values
dx = x_max/num_x_steps
x = srange(0.0, x_max + dx, dx)

# Set up plotting
plt.figure(figsize=(6,4))  # open new plotting window
plt.hold(True)    # keep old plots

# Plot
profile = diffusion_profile(x,t,v1,v2,k,l)
plt.plot(x, profile)  # plot the profile

# Finalize plot
plt.xlabel('x')   # label the x axis
plt.ylabel('v')   # label the y axis
plt.title('t='+str(t))    # add a title above plot
plt.axis([0.0, x_max, 0.0, 1.0]) # set xmin, xmax, ymin, ymax
plt.savefig('series_solution.png')   # save a picture

Run the source code from the Sage command line or notebook interface using the load 
command:

load example1.py
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The program saves the plot as an image. If you ran the program from the Sage command 
line, you will have to open the file in an image viewer. If you ran the program from the 
Notebook interface, Sage will automatically open the image file in a cell in your worksheet.

What just happened?
We defined a function that computes the temperature (or concentration) for a range of 
x values at a particular time. We then defined parameters for the problem, and used the 
function to solve the problem. We then used functions from matplotlib to plot the results. 
Let's go over each step of the example in more detail.

The function was defined as described in Chapter 3. We added a detailed docstring that 
documents the arguments and describes what the function does. The first statement in the 
function used the numerical_approx method to obtain a floating-point representation of 
the symbolic constant pi. The calculation consists of two nested for loops. The outer loop 
iterates over the list of x values. The inner loop is used to sum up the first 100 terms of the 
infinite series. The inner for loop uses the xrange function to obtain a list counter variable, 
which we need to compute the value of each term in the series. With only 100 terms, we 
could have used the range function in place of xrange. Note that we used the backslash 
/ to explicitly join several long lines in the function. We also used implicit line joining in the 
statement:

v.append(v1 + ((v2 - v1) * x_val / l
        + 2 / float(pi) * sum1 + 2 / l * sum2))

A backslash is not required for this statement because the expression is enclosed in 
parenthesis.
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Defining the parameters for the problem was straightforward. We used the Sage function 
srange to generate a list of x values. We then used the pyplot interface to matplotlib 
to plot the results. The first line of the script makes functions and classes from matplotlib 
available to our program:

from matplotlib import pyplot as plt

Specifically, we are importing the module called pyplot from the package called matplotlib, 
and we are assigning plt as a shortcut to pyplot. To access these functions and classes, we 
use the syntax plt.function_name. This keeps pyplot names from getting mixed up with 
Sage names. Plotting with pyplot will be covered in detail in Chapter 6.

When loops are nested, the code in the innermost loop executes most often. 
When a calculation needs to run fast, you will get the greatest speed increase 
by optimizing the code in the innermost loop. We'll cover optimization in 
Chapter 10.

Pop quiz – lists and for loops
1. What is the value of the sum computed in the following loop?

sum = 0
for i in range(10):
    sum += i
print(sum)

2. How many lines will be printed when the following loop runs?
for i in range(3):
    for j in range(4):
        print("line printed")

Enter the code in Sage to check your answers.

Have a go hero – adding another for loop
Try changing the value of the constant t to see the effect on the profile (suggested values: 
0.01, 0.05, 0.1, and 1.0). This is a tedious process that can be automated with a for loop. 
Define a list containing time values, and add another for loop that repeats the calculation 
for various values of t.
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To create a plot like the one shown below, these two plotting statements should be placed 
before the loop:

plt.figure(figsize=(6,4))  # open new plotting window
plt.hold(True)    # keep old plots

Your loop should include only one plotting statement in the loop body:

pylab.plot(x, profile)  # plot the profile

The rest of the plotting statements should come after the loop.

List comprehensions
A list comprehension is a way of creating a list that is similar to a for loop, but more 
compact.

Time for action – using a list comprehension
Let's see how list comprehensions work by comparing them to a for loop that performs a 
similar operation. Enter the following code in a text file or an input cell in a worksheet:

list1 = [' a  ', '    b   ', 'c   ']

list1_stripped = []
for s in list1:
    list1_stripped.append(s.strip())
print(list1_stripped)

list1_stripped_2 = [s.strip() for s in list1]
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print(list1_stripped_2)

list2 = []
for val in srange(0.0, 10.0, 1.0):
    if val % 2 == 0:
        list2.append(numerical_approx(val**2, digits=3))
print(list2)

list3 = [numerical_approx(val**2, digits=3) for val in 
    srange(0.0, 10.0, 1.0) if val % 2 == 0]
print(list3)

Run the example. You should get:

What just happened?
This example demonstrated how a list comprehension can be used in place of a for loop 
to create a list. In the first part of the example, we defined a list of strings, each of which 
contained whitespace before and/or after the character. First, we defined an empty list and 
used a for loop to iterate over the list of strings. The string method strip was used to 
remove the whitespace from each string, and we used the list method append to create 
a new list of stripped strings. We then used a list comprehension to perform the same 
operation. The general syntax for a list comprehension is:

new_list = [ operation_on_value for value in existing_list ]

If you are creating a new list, then the existing list can be generated by a function like range 
or srange. In the second part of the example, we used a for loop with the srange function 
to generate a list of even floating-point numbers. We used an if clause so that our list 
will contain only squares of even numbers. We did this to demonstrate how the if clause 
works—a better way to generate a list of even numbers would be to give srange a step size 
of two. We then repeated the operation with a list comprehension. We'll learn more about 
if statements soon. List comprehensions are somewhat more compact than an equivalent 
for loop. For more examples of list comprehensions, see http://docs.python.org/
tutorial/datastructures.html#list-comprehensions
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While loops and text file I/O
Lists and loops are the two basic tools we need to access data that is stored in a file. The 
problem with using a for loop to access a data file is that we don't necessarily know how 
many iterations will be needed, because we don't always know how many lines are in the 
file. The solution is to use a while loop.

Time for action – saving data in a text file
Let's save the results of a calculation to a text file. In the next example, we will get the data 
back into Sage. When you enter the following code, change the path to the data file so that it 
gets saved in a convenient location.

from matplotlib import pyplot as plt
import os

# Create some data
times = srange(0.0, 10.0, 0.1)
data = [sin(t) for t in times]
    
# Plot the data
plt.figure(figsize=(6,4))
plt.plot(times, data)
plt.savefig('example2a.png')
plt.close()

# Save data to a text file
path = '/Users/cfinch/Documents/Writing/Sage for Beginners/Chapters/
Chapter 4/'
fileName = 'data.txt'
text_file = open(os.path.join(path, fileName), 'w')
for i in range(len(data)):
    text_file.write('{0}, {1}{2}'.format(times[i], data[i], 
        os.linesep))
    
text_file.close()
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Run the script using one of the methods previously described. A plot of the data is saved to a 
PNG file, and the data is saved to a text file with two columns. The plot should look like this:

The first few lines of the text file should look like this:

0.000000000000000, 0.000000000000000
0.100000000000000, 0.0998334166468282
0.200000000000000, 0.198669330795061

What just happened?
We used the srange function to generate a list of time points, and then used a list 
comprehension to create a list containing the sine of each time point. We plotted the data, 
using the pyplot interface to matplotlib, like we did in a previous example. The data 
was then saved to a text file.

The file object is the key component in file operations. A file object is created using the  
open function:

text_file_object = open('data.txt', 'w')

The first argument to open is a string containing the name of the file. The second argument 
is a string that indicates in which mode the file should be opened. The first letter of the 
mode string chooses read, write, or append mode. The letter b can be appended to the 
mode string to indicate that the file should be opened in binary mode. If the mode string is 
omitted, the file is opened for reading in text mode.
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Text 
mode 
string

Binary mode 
string

Result

r rb File is opened for reading. The file must already exist. Attempting to 
write to the file returns an error.

w wb File is opened for writing. If the file exists, it will be overwritten.

a ab File is opened for appending. Data that is written to the file will be 
appended at the end of the file.

If you open a file in text mode, the special character \n may be converted to the appropriate 
newline character for your platform. If you don't want this conversion to happen, add the 
letter 'b' to the end of the mode string to open the file in binary mode.

We used the write method of the file object to write data to the file:

text_file.write(my_string)

The write method accepts one argument, which is the string to be written to the file. When 
we were finished with the file, we used the close method to close it. It's very important to 
close a file, especially when the file is open for writing. Many operating systems buffer data, 
rather than writing every little piece of data to the file. Closing the file is the easiest way to 
ensure that all of the data actually gets written to the file.

We used a module called os from the Python standard library module to help us write code 
that can run on multiple platforms. A text file must have a special character to denote the 
end of each line in the file. Unfortunately, for historical reasons, each family of operating 
systems (Mac, Windows, and UNIX) uses a different end-of-line character. The os module has 
a constant called linesep that contains the correct character for the platform that the code 
is run on. We used the statement import os to make the module available, and accessed 
the constant using the syntax  os.linesep. We also used the function os.path.join to 
join the path to the file name with the correct character for the current operating system.

Time for action – reading data from a text file
Now, we will read the data from the text file. This is a good place to demonstrate the 
while loop, since we won't always know in advance how many lines are in the file. Run the 
following code to load the data.

from matplotlib import pyplot as plt
import os

path = '/Users/cfinch/Documents/Writing/Sage for Beginners/Chapters/
Chapter 4/'
fileName = 'data.txt'
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# Read in the data file
times = []
data = []

text_file = open(os.path.join(path, fileName), 'r')
line = text_file.readline()
while len(line) > 0:
    print(line)
    # split each line into a list of strings
    elements = line.split(',')
    
    # Strip newlines and convert strings to real numbers
    times.append(float(elements[0].strip()))
    data.append(float(elements[1].strip()))
    line = text_file.readline()

text_file.close()

# Plot the data
plt.figure()
plt.plot(times, data)
plt.savefig('example2b.png')
plt.close()

The data is plotted to another image file. This plot should be identical to the plot in the 
previous example. When you run this example in the Notebook interface, Sage will not print 
every line of the file. When text output gets too long, Sage will truncate the output and 
provide a link that you can click to see the rest of the output. The result will look like this:



Chapter 4

[ 105 ]

What just happened?
This script demonstrated how to open a text file for reading and read in one line at a time. 
The open function was used to create a file object as previously described. Since we are 
reading data, the readline method was used to read one line of data from the file and 
return the line as a string. Once again, we used the os module to handle operations involving 
paths and newlines.

While loops
A while loop is used when we don't know how many iterations will be required. The general 
syntax for a while loop is:

while conditional_expression:
    statement 1
    statement 2
    ...

The loop iterates as long as the conditional expression evaluates to the Boolean value True. 
The loop terminates as soon as the expression evaluates to False. In this example, the 
loop iterates as long as the string that is read from the file has one or more characters. The 
readline method returns a string for every line in the file. Even a blank line has a newline 
character, so the conditional expression will be True for every line in the file. The readline 
method returns an empty string after reading the last line of the file, which causes the 
conditional expression to evaluate to False and end the loop. There are two very important 
things to remember when using a while loop:

1. Make sure the conditional expression can be evaluated before the first iteration of 
the loop. In the example, the first line is read from the file before the while loop.

2. Make sure that the conditional expression will evaluate to False at some point. 
Otherwise, the loop will repeat endlessly. The last statement of the loop in the 
example loads another line from the file. When the end of the file is reached, the 
conditional expression will evaluate to False.

Parsing strings and extracting data
Since each line of the file was read as single string, we had to do some work to extract the 
numerical data. First, we used the split method of the string object to break the string 
at the comma:

elements = line.split(',')
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The result was a list of strings called elements. The first element of this list is the string that 
contains the time value. Next, we used the strip method of the string object to remove 
any unnecessary white space, such as the invisible newline character that is found at the end 
of every line:

elements[0].strip()

Finally, we used the float function to convert the string to a Python floating-point number, 
and appended the result to a list. In the example, the parsing operations were combined like 
this:

times.append(float(elements[0].strip()))
data.append(float(elements[1].strip()))

Finally, the lists are ready to be plotted.

Alternative approach to reading from a text file
A Python file object is iterable, which means that you can iterate over a file object just like 
you can iterate over a list. This allows you to use the following syntax:

for line in text_file:
    # split each line into a list of strings
    elements = line.split(',')
    
    # Strip newlines and convert strings to real numbers
    times.append(float(elements[0].strip()))

When using this approach, you should not include a call to text_file.readline() in 
the loop body.

Have a go hero – define a function for reading the text file
It's good practice to organize your code as you're writing. In the previous example, we should 
separate the code that reads the data from the file from the code that does the plotting. 
Define a function that takes a file name as an argument and reads the data. Use a tuple to 
return a list of time values and a list of data values. Call the function to read the data, and to 
plot the data.
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Have a go hero – replace a for loop with a while loop
In a previous example, we used a for loop to sum up the first 100 terms of an infinite 
series. The number 100 was chosen somewhat arbitrarily because it happened to work for 
this particular example. Some infinite series may require more than 100 terms to converge, 
while others may only require a few terms. We can improve this aspect of the program by 
replacing the for loop that performs the summation with a while loop. The summation 
should continue until the sum changes very little from one iteration to the next.

If statements and conditional expressions
We have already seen conditional expressions in the context of while loops. Conditional 
expressions can be used with if statements to allow a program to make decisions while it is 
running. There are numerous applications for if statements. For example, they can be used 
to detect invalid values and prevent errors:

input_value = 1e99
if input_value > 1e10:
    print("Warning: invalid parameter detected.")
else:
    print("--- Start of iteration ---")

The general syntax for an if statement is the following:

if conditional_expression:
    statements
else:
    statements

The else clause is optional. Python doesn't have a switch statement for choosing between 
multiple values. Instead, it has a special keyword called elif, which is a contraction of "else 
if." This can be used to emulate a switch statement. For example, we can use if with elif 
to choose an algorithm based on user input:

solution_type = "numerical"

if solution_type == "analytical":
    print('analytical')
elif solution_type == "numerical":
    print("numerical")
elif solution_type == "symbolic":
    print("symbolic")
else:
    print("ERROR: invalid solution type")
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if statements are not ideal for catching runtime errors. In Chapter 9, we 
will learn about exceptions, which are a much more elegant way to deal with 
runtime errors.

Storing data in a dictionary
Dictionaries are another fundamental data structure in Python. A dictionary is similar to a 
list in that it is comprised of a series of data elements. One important difference is that a 
dictionary uses "keys" instead of indices to access elements. The keys can be strings or other 
data types. While a list is a sequence, the elements in a dictionary don't have any intrinsic 
order. A dictionary is a good choice to collect different types of data.

Time for action – defining and accessing dictionaries
Let's go back to our program that computes an analytical solution to a boundary value 
problem. Certain parameters are required to carry out the calculation. So far, we just stored 
the parameter as a collection of numbers. In a more complex program, this simplistic 
approach could introduce subtle bugs if we accidentally used one of the parameter variables 
for something else.

# Define parameters
k = 0.1
l = 1.0
v1 = 0.0
v2 = 1.0
t = 1.0
num_x_steps = 10

# Store parameters in a dictionary
parameters = { 'diffusion coefficient' : k,
    'length' : l,
    'left_BC' : v1,
    'right_BC' :v2,
    'time' : t,
    'num_x_steps' : num_x_steps
}

# Access the dictionary
print("Value of time is {0}".format(parameters['time']))
parameters['time'] = 2.0
print("New value of time is {0}".format(parameters['time']))
print('')
print("Dictionary contains {0} items:".format(len(parameters)))
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for key, value in parameters.iteritems():
    print('{0} : {1}'.format(key, value))

Run the script and review the output, which should look like this:

What just happened?
We have collected a variety of parameters into a single data structure using a dictionary. We 
used strings as keys to the dictionary to make it easy to recall parameter values. We defined 
the dictionary using curly brackets to enclose key-value pairs:

empty_dict = {}
my_dict = { key1:value1, key2:value2, …, keyN:valueN}

Many operations on dictionaries are analogous to operations on lists. We demonstrated  
how to get and set values of items in the dictionary using square brackets:

value = my_dict['key name']

Because the keys are not necessarily numbers, there is no equivalent of slices for 
dictionaries. The len function is also used to return the number of (key,value) pairs in a 
dictionary.

We then iterated over the dictionary to print the keys and values using the iteritems 
method:

for key, value in parameters.iteritems():
    print(key)
    print(value)

The method iterkeys iterates only over the keys, while itervalues iterates only over 
the values. A full list of dictionary methods can be found at http://docs.python.org/
library/stdtypes.html#dict
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Note that iterating over a dictionary won't necessarily print the items in the same order 
every time! An important distinction between dictionaries and lists is that the elements in 
a dictionary have no intrinsic order. You should not rely upon the elements of a dictionary 
being returned in any particular order.

Ordered dictionaries
Python 2.7 and versions above 3.1.3 contain a new class called OrderedDict, 
which works just like an ordinary dictionary except that it remembers the order 
in which items were inserted. This class is not available in Sage 4.6.1 because 
Sage is still using Python 2.6, but it should be available soon.

Lambda forms
Sometimes you need to define a short, simple Python function. You can always use the def 
keyword to define the function and give it a name. You can also use the lambda keyword to 
define an anonymous function that consists of a single expression.

Time for action – using lambda to create an anonymous 
function

Why would you want an anonymous function? Let's try sorting a list of dictionaries:

data = [{'Name':'Albert', 'age':32}, 
    {'Name':'Yuen', 'age':16},
    {'Name':'Priya', 'age':45}]

print(sorted(data))
print(sorted(data, key=lambda item : item['age']))

The results should look like this:

What just happened?
We defined a list of dictionaries, each of which contains data about a person. We then 
used the sorted function to sort the items in the list. The first time we called sorted, it 
appeared that the list had been sorted alphabetically, by the first letter of each name. This 
behaviour is unpredictable—if we added a last name to each dictionary, would the first 
or last name be used as the sorting key? To prevent this kind of problem, we can use the 
keyword key to specify a function that is called on each item before sorting takes place. In 
the second function call, we used lambda to define an anonymous function that returns the 
integer value of 'age' from the dictionary. We can see that the list is now sorted by age.
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The general syntax for declaring an anonymous function with lambda is:

lambda arg_1, arg_2, ... , arg_n : expression

There can be multiple arguments, but only one expression. Like nested functions, lambda 
forms can reference variables from their containing scope. Lambda forms are not used often 
in Python programming, but they do show up occasionally in Sage examples.

Summary
We learned about some key aspects of Python in this chapter. When combined with the 
information in Chapter 3, we now have all the tools we need to implement algorithms in 
Sage.

Specifically, we covered:

 � How to create and run Sage scripts

 � Basic principles of sequence types like lists, tuples, and strings

 � How to store data more permanently in text files

 � Repeating operations and iterating over lists with loops

 � Using conditional expressions and logic to make decisions in a program

 � How to use dictionaries to store data

This chapter provides a working knowledge of Python, but it is hardly complete. Refer to 
the Python documentation on the Web to learn more about the details of this powerful 
programming language. Now that we have been introduced to sequence types like lists, we 
can learn about specialized array and matrix types for performing mathematical calculations.





5
Vectors, Matrices, and Linear Algebra

Linear algebra is a fundamental task for mathematical software. Linear algebra is easily 
automated because it involves tedious computations that must be performed according 
to well-defined formulas and algorithms. Sage has extensive support for various types of 
calculations with vectors and matrices. Sage's vector and matrix objects build upon the basic 
mathematical types that we learned about in Chapter 3. We will also learn about a Python 
library called NumPy that is very useful for numerical calculations.

In this chapter we will:

 � Learn how to create and manipulate vector and matrix objects

 � See how Sage can take the tedious work out of linear algebra

 � Learn about matrix methods for computing eigenvalues, inverses, and 
decompositions

 � Get started with NumPy arrays and matrices for numerical calculations

There are many ways to do linear algebra in Sage. Sage is a collection of tools, each of which 
has its own way of representing vectors and matrices. Therefore, you will find that there are 
multiple ways to accomplish the same thing. We will focus on the high level constructs that 
are unique to Sage. Then, we will introduce the NumPy package, which provides a powerful 
set of tools for numerical computation. Let's get started!

Vectors and vector spaces
Vectors and matrices are so important that they are represented by special types of objects 
in Sage. We'll start with vectors.
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Time for action – working with vectors
Vectors have important applications in physics and engineering. Vectors are used to 
represent position, velocity, angular momentum, electromagnetic fields, and so on. Let's see 
how to perform some basic operations with vectors in Sage. You can enter the following code 
in an input cell in a worksheet, or enter it line by line in the interactive shell. You can also 
enter the code into a plain text file, save it with a .sage extension, and run it from the Sage 
command line as described in the previous chapter:

R3 = VectorSpace(QQ, 3)
(b1, b2, b3) = R3.basis()
print("Basis for space:")
print b1
print b2
print b3

vector1 = R3([-1, 2, 7])    # define some vectors
vector2 = R3([4, -9, 2])

print("Linear combinations:")
var('a b')
print(a * vector1 + b * vector2)

print("Norm of vector 1:")
print(sqrt(vector1 * vector1))    # definition
print(vector1.norm())    # using norm method

print("Scalar multiplication:")
print(2 * vector1)

print("Scalar (dot) products:")
print(vector1 * vector2)               # using operators
print(vector1.inner_product(vector2))  # using methods
print(b1 * b2)

print("Pairwise product:")
print(vector1.pairwise_product(vector2))

print("Vector (cross) product:")
print(vector1.cross_product(vector2))
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Execute the code (remember that you can press Shift-Enter in an input cell to run the code 
from the Notebook interface). If you are using the notebook interface, the result should  
look like this:

What just happened?
This example demonstrated some of the most useful operations that Sage can perform on 
vectors. We started by defining a vector space that consists of three-element vectors with 
rational numbers as elements. While it's not strictly necessary to define the vector space, it 
does provide some helpful tools, such as access to the basis vectors of the space. We then 
defined a pair of vectors and demonstrated various operations, such as the cross product 
and dot product.

Creating a vector space
The VectorSpace class is used to create an object that represents a vector space.

my_vector_space = VectorSpace(base_field, dimension)

The first argument is the base field, such as the field of rational, real, or complex numbers, 
over which the vector space is defined. You can also define a vector space over the symbolic 
ring to perform symbolic calculations. The second argument is the dimension of the space, 
which is effectively the number of elements in each vector.
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At this point, it is important to explain more about rings and fields. Rings were introduced in 
Chapter 3. Fields are a superset of rings; every field is a ring, but not every ring is a field. The 
following table summarizes the rings and fields that we have used so far:

Full name Shortcut Ring? Field? Description
IntegerRing ZZ Yes No Integers
RationalField QQ Yes Yes Rational numbers
RealField RR Yes Yes Real numbers
ComplexField CC Yes Yes Complex numbers

All of the rings we have used so far are also fields, with the exception of integers. Therefore, 
you cannot use integers as the base field for a vector. However, you can use the symbolic 
ring SR as a base field for a vector or vector space. The reason is that the symbolic ring is not 
a ring in the strict mathematical sense. The symbolic ring is simply a way of stating that a 
particular construct will contain symbols instead of numerical values.

Creating and manipulating vectors
There are two ways to create a vector object. In the example, we first defined a vector space, 
and used the vector space to create the vector. A list of elements (of the appropriate length) 
is used to define the elements of the new vector:

new_vector = my_vector_space([element_1, element_2, element_n])

The other way is to use the vector function, which automatically constructs a vector space 
over the specified field and returns a vector object:

new_vector = vector(base_field,[element_1, element_2, element_n])

The first argument is the base field, and the second is a list of elements. Both ways return 
equivalent vectors.

Time for action – manipulating elements of vectors
The elements of a vector can be manipulated like the elements of any other Python 
sequence type, such as lists and strings. That means individual elements are accessed using 
square brackets, as shown in the following example:

u = vector(QQ, [1, 2/7, 10/3])    # QQ is the field of rational 
numbers
print("u=" + str(u))
print("Elements: {0}, {1}, {2}".format(u[0], u[1], u[2]))
print("The slice [0:2] is {0}".format(u[0:2]))
print("The last element is {0}".format(u[-1]))
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u[len(u) - 1] = 3/2
print("The last element is now {0}".format(u[-1]))

print "Assigning a real value to an element:"
u[2] = numerical_approx(pi, digits=5)
print(u)

The output from this code will look like this if you are using the notebook interface:

What just happened?
We created a vector called u, defined over the field of rational numbers (remember that QQ 
is a short form of RationalField) and manipulated the elements of the vector just like 
elements in a list. We demonstrated that the usual tricks for accessing list elements work on 
vectors. When we accessed an individual element of the vector, the result had a numerical 
type. When we used slicing to extract one or more elements from a vector, the resulting 
elements were returned as a vector object. We also used indexing to change the value of an 
element in the vector.

Something interesting happened when we tried to assign a real value to an element of the 
vector. Rather than returning an error, Sage found a rational number to represent the real 
value. The lesson here is that it's important to choose the right base field in order to get the 
right results. In general, you can use the RealField (RR) for most numerical calculations, 
unless you are working with complex number, when you should use ComplexField (CC). 
For purely symbolic calculations, use the symbolic ring SR.

Vector operators and methods
Sage supports a wide variety of arithmetic operations on vectors. The operators + and 
– perform vector addition and subtraction, respectively. The * operator performs scalar 
multiplication if one variable is a vector and the other is a scalar. If both variables are vectors, 
the * operator returns the inner (or scalar) product. The inner product is also available as a 
method of the vector object, as shown in the example. Other vector methods include:
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u.dot_product(v) Same as the inner product u.v

u.cross_product(v) Cross product u x v

u.inner_product(v) Inner (scalar)product u.v

u.pairwise_product(v) Returns the vector (u[0]*v[0], u[1]*v[1], … , u[n-1]*v[n-1])

u.norm(p) p-norm of vector u.  p=0 is the Euclidean norm.  p=1 is the sum of the 
elements, and p=Infinity is the maximum element in u.

Matrices and matrix spaces
We will now look at matrices and matrix spaces. Sage uses a different type of object to 
represent matrices.

Time for action – solving a system of linear equations
One of the most basic operations in mathematics is solving a system of linear equations. 
Many sophisticated numerical techniques, such as the finite element method, are designed 
to reduce a complicated problem to a system of linear algebraic equations that must be 
solved. Let's see how vectors and matrices in Sage can make this easier. We will repeat the 
example from Chapter 1, and explain it in more detail:

Enter the following code in a worksheet. If you are using the interactive shell, you will need 
to have LaTeX installed to use the show command. If you don't have LaTeX, replace show 
with print in this example and the ones that follow:

M4 = MatrixSpace(QQ, 4)    # Rational numbers
print("Identity matrix:")
show(M4.identity_matrix())

A = M4.matrix([[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2],
    [3, 1, -2, 2]])
print("Matrix A:")
show(A)

b = vector(QQ, [0, 6, -1, 3])    # Rational numbers
print("Vector b:")
show(b)

solution = A.solve_right(b)
print("Solution to A.x=b:")
show(solution)



Chapter 5

[ 119 ]

Execute the code.  The result will look like this:

What just happened?
We solved a system of linear equations in just a few lines of code. First, we created a space of 
4x4 matrices, defined over the ring of rational numbers. We were able to get away with using 
rational numbers because this is a textbook example that was contrived to have an integer 
solution! In practice, it makes more sense to define a matrix over the ring of real or complex 
numbers. Defining the matrix space gave us access to the appropriate identity matrix. We 
used the show function to display the matrix as it would appear in a typeset document. You 
can also use the print function. We then created a matrix in this space, and filled it with 
integer elements. We also defined a vector of the appropriate length, and used the solve_
right method to solve the matrix equation Ax=b. The backslash operator can be used as a 
shortcut for the solve_right method:

A\b    # equivalent to A.solve_right(b)
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Creating matrices and matrix spaces
The MatrixSpace class is used to create an object that represents a matrix space. The first 
argument is the base ring. Note that MatrixSpace requires a ring as its first argument, 
while VectorSpace requires a field. The second argument is the number of rows in the 
matrix, and the third argument is the number of columns. If the third argument is omitted, 
the matrix is assumed to be square. The optional fourth argument can be used to indicate 
that the matrix is sparse, which can reduce memory usage.

my_matrix_space = MatrixSpace(base_ring , nrows [, ncols] [, sparse])

Creating new matrices is similar to creating new vectors. Each row of the matrix is defined as 
a list of elements. If you have already created a matrix space, a new matrix is created using 
the matrix method:

new_matrix = my_matrix_space.matrix([row1, row2, row3])

If you don't need to explicitly create a matrix space, use Matrix to create a matrix in a 
single step:

new_matrix = Matrix(base_ring,[row1, row2, row3])

Accessing and manipulating matrices
The elements of a matrix can be accessed using notation similar to the notation for vectors, 
lists, and other Python sequence types. However, two indices are required to specify the row 
and the column of each element.

Time for action – accessing elements and parts of a matrix
Let's experiment with different ways to access individual elements and parts of a matrix. 
Enter and evaluate the following code:

 A = Matrix(QQ, [[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2],
    [3, 1, -2, 2]])
print("Matrix A:")
show(A)

# Getting elements of a matrix
print("A[0] = {0}".format(A[0]))
print("A[1, 2] = {0}".format(A[1, 2]))
print("A[2, 1] = {0}".format(A[2, 1]))
print("A[0:2]")
show(A[0:2])
print("A[0, 2:4] = {0}".format(A[0, 2:4]))
print("A[:,0]:")
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show(A[:,0])

# Getting parts of a matrix
print("Third row:")
print(A.row(2))
print("Second column:")
print(A.column(1))
print("Lower right submatrix:")
show(A.submatrix(2, 2, 2, 2))

The result should look like this:
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What just happened?
The individual elements of a matrix are accessed using a pair of indices separated by a 
comma. The first index selects the row, and the second selects the column. Like all Python 
sequence types, the indices start at zero. When you access a single element, the result is a 
simple numeric type. Using a single index returns an entire row at once, as a vector object. 
Slicing is a little more complicated. Using a single slice argument returns one or more rows, 
in the form of a matrix object. If you give two arguments and one of them is a slice, the 
returned type might be a vector or a matrix. Here are some guidelines:

 � Accessing a single element returns a simple numeric type

 � Accessing a single row, or a slice of a single row, returns a vector type

 � Accessing elements from more than one row (such as a column or sub-matrix) 
returns a matrix type

We also used the row, column, and submatrix methods of the Matrix object to get parts 
of the matrix. The types returned by these operations are also determined by the guidelines 
given above. Try using the type function to check the type returned from the operations in 
this example.

Manipulating matrices
The previous example showed how we can get parts of matrix. A Sage matrix object also has 
methods for performing elementary row operations on the matrix.

Time for action – manipulating matrices
Let's try some elementary row operations to see how they work. Evaluate the  
following code:

 A = Matrix(QQ, [[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print("Matrix A:")
show(A)

# Elementary row operations
print("Scaling second row by two:")
A.rescale_row(1, 2)
show(A)

print("Swapping first and second rows:")
A.swap_rows(0, 1)
show(A)

print("Adding 3*(row 1) to row 0:")
A.add_multiple_of_row(0, 1 ,3)
show(A)
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print("A in echelon form:")
show(A.echelon_form())

The result will look like this:

What just happened?
We defined a matrix A and used its methods to perform some elementary row operations. 
You could use a sequence of these operations to reduce a matrix to echelon form. However, 
it's much easier to let Sage take care of that by using the echelon_form method.
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Pop quiz – manipulating matrices
Test your understanding of selecting elements and parts of matrices. For the matrix defined 
below, what will the output be from each of these operations? Check your answers by 
entering the code in Sage:

A = Matrix(QQ, [[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(A[1])
print(type(A[1]))
print(A[1,2])
print(A[1:3,1:3])
print(type(A[1:3,1:3]))
print(A.column(2))

Matrix algebra
Sage defines standard operations for performing matrix algebra. A few are available through 
the standard operators, and the rest are available as matrix methods.

Time for action – matrix algebra
Let's try some basic matrix algebra. Enter and evaluate the following code:

M3 = MatrixSpace(QQ, 3, 2)

A = M3.matrix([[3, 2, 1], [4, 5, 6]])
B = M3.matrix([[2, 2, 2], [1, 2, 3]])
print("Matrix addition:")
show(A + B)

print("Scalar multiplication:")
show(1/2 * A)

var('a b c d e f')
C = Matrix(QQ, [[4, 2, 1], [5, 3, 7]])
D = Matrix(SR, [[a, b], [c, d], [e, f]])
print("Matrix multiplication:")
show(C * D)

var('x1 x2 x3')
X = vector([x1,x2,x3])
print("Multiplying a matrix and a vector:")
show(C * X)
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The result should look like this:

What just happened?
We performed some basic matrix algebra. The + and – operators perform element-by-
element addition and subtraction. The * operator performs scalar multiplication if one 
variable is a scalar, and it performs matrix multiplication if both arguments are matrices or 
one is a matrix and one is a vector. We also demonstrated how to define a matrix over the 
symbolic ring.

Other matrix methods
Matrix objects in Sage have many handy methods for calculating various scalars and matrices 
associated with a given matrix, such as its determinant, inverse matrix, and adjoint matrix.
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Time for action – trying other matrix methods
Let's test out some other methods of the Matrix object:

A = matrix(QQ, [[2, 5, 4], [3, 1, 2], [5, 4, 6]])
print("Matrix A:")
show(A)

# Scalar operations
print("Determinant of A: {0}".format(A.det()))
print("Rank of A: {0}".format(A.rank()))
print("Euclidean norm: {0}".format(A.norm()))
print("Frobenius norm: {0}".format(A.norm('frob')))

# Matrix operations
print("Transpose of A:")
show(A.transpose())
print("Inverse of A:")
show(A.inverse())
print("Adjoint of A:")
show(A.adjoint())
print("Testing adj(A)/det(A) == inverse(A)")
A.adjoint()/A.det() == A.inverse()

The output should look like this:
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What just happened?
We created an object that represents a 3 by 3 matrix of rational numbers, and used its 
methods to calculate the determinant and rank of A. We then calculated its inverse and 
its adjoint, and verified the relationship between them. We also used the norm method to 
compute two different norms of the matrix. When called with no arguments, norm returns 
the Euclidean norm. The available norms are:

Argument Result

1 The largest column-sum norm

2 The Euclidean norm (default)

Infinity The largest row-sum norm

'frob' The Frobenius (sum of squares) norm

Eigenvalues and eigenvectors
Computing the eigenvalues and eigenvectors for a matrix is important for many areas of 
applied mathematics. Sage includes functions and methods that eliminate the tedious 
calculations that would be required to perform this important task by hand.

Time for action – computing eigenvalues and eigenvectors
Let's see how to compute the eigenvalues and eigenvectors for a 3x3 matrix. Evaluate the 
following code:

 A = Matrix(QQ, [[2, -3, 1], [1, -2, 1], [1, -3, 2]])
print("Matrix A:")
show(A)

print("Eigenvalues:")
print(A.eigenvalues())
ev = A.eigenvectors_right()
for v in ev:
    print("Eigenvalue: {0}".format(v[0]))
    print("   Multiplicity: {0}".format(v[2]))
    print("   Eigenvectors:")
    for e in v[1]:
        print("   " + str(e))
    

print("Eigenmatrices:")
D, P = A.eigenmatrix_right()
print("D:")
show(D)
print("P:")
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show(P)
print(A*P == P*D)

The output should look like this:
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What just happened?
We defined a 3x3 matrix of rational numbers, and used the eigenvalues method to return 
a list of eigenvalues. We then used the eigenvectors_right method to return a list of 
tuples that contain data about the eigenvectors. We used a for loop to iterate through the 
list and print the information in a more readable format. Each element in the list is a tuple 
with three elements. The first is the eigenvalue, the second is the eigenvector, and the third 
is the multiplicity of the eigenvalue. Finally, we calculated and displayed the eigenmatrices D 
and P for matrix A, which satisfy the relation A*P=P*D.

Have a go hero – verifying the eigenvalues and eigenvectors
Let A be an m x n matrix with eigenvalues given by:

For each eigenvalue, there is an eigenvector x, which satisfies the relation:

In the previous example, we found the eigenvalues and eigenvectors for matrix A. Use Sage 
to verify that each of those eigenvalues and eigenvectors satisfies the relation above.

Decomposing matrices
Another important task in applied mathematics is decomposing a matrix into a combination 
of special matrices. There are a variety of well-known decompositions (also known as 
factorizations) that are used to solve various practical problems in applied mathematics.

Time for action – computing the QR factorization
The QR factorization can be used to solve linear least squares problems. The QR factorization 
decomposes an m x n matrix A (with m≥n) into two matrices called Q and R, such that 
A=QR. Q is an m x n matrix with orthonormal columns and R is an n x n matrix that is upper 
triangular and invertible. In this example, we will see how easy it is to compute the QR 
factorization with Sage.

# This is an example where it's important to specify the correct ring
A = Matrix(RDF, [[1, -1, 4], [1, 4, -2], [1, 4, 2], [1, -1, 0]])
print("Matrix A:")
show(A)
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Q, R = A.QR()
print("Matrix with orthonormal basis:")
show(Q)
print("Upper diagonal matrix:")
show(R)
print("Q*R recovers A:")
show(Q*R)

The output should look like this:
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What just happened?
We defined a 4 by 3 matrix called A over the ring called RDF, which is a shortcut for 
RealDoubleField. An RDF object is a double-precision approximation of a floating point 
number, while a RealField object can have an arbitrary number of bits of precision. This is 
another example where it is very important to choose the right ring. Matrix decompositions 
in Sage are only defined for matrices constructed on RDF and its counterpart CDF, or 
ComplexDoubleField. The QR method returns a tuple containing the matrices Q and R. 
We printed out the matrices and verified that A = Q*R.

Time for action – computing the singular value decomposition
The singular value decomposition, or SVD, has numerous applications in statistics, signal 
processing, and numerical analysis. An m x n matrix A is decomposed into three matrices: an 
m x m unitary matrix U, an m x n diagonal matrix sigma, and an n x n real unitary matrix V. 
These matrices satisfy the relation:

Here, V* denotes the transpose of the complex conjugate of V.

It's also easy to compute the SVD with Sage:

A = Matrix(RDF, [[1,1], [1,1], [0,0]])
print("Matrix A:")
show(A)
    

print "SVD:"
U, Sigma, V = A.SVD()
print("U:")
show(U)
print("Sigma:")
show(Sigma)
print("V:")
show(V)
print("U.Sigma.V* recovers A:")
show(U*Sigma*(V.conjugate().transpose()))
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The result should look like this:

What just happened?
As in the previous example, we defined a 4 by 3 matrix called A over the field called RDF. The 
SVD method returns a tuple containing the matrices U, Sigma, and V. We displayed these 
matrices, and verified that they satisfy the mathematical relation shown in the introduction. 
Matrix objects in Sage have methods for computing other decompositions. The method LU 
computes the LU decomposition, and the method cholesky_decomposition computes 
the Cholesky decomposition.

The final line of this example shows that methods can be "chained" together. The methods 
are evaluated in order, from left to right. The reason this works is that the expression 
v.conjugate() returns a matrix object. We then call the method transpose of this 
matrix object. In many cases, chaining methods can make your code more concise and 
readable. Of course, it should be avoided if it makes the code less readable.
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An introduction to NumPy
NumPy is a package that turns Python into a powerful numerical computing language. The 
core of NumPy is a powerful n-dimensional array class. The package also includes tools for 
numerical linear algebra, Fourier transforms, and many other commonly used numerical 
methods. To find out more about NumPy, check out http://numpy.scipy.org/.

The current release of Sage is 4.6.1, which includes NumPy version 1.5. Because 
NumPy is constantly evolving, the latest version of NumPy may differ slightly 
from the version included with the latest version of Sage. Be aware of this as you 
are looking at the documentation, especially if you are using a different version 
of NumPy in other Python code!

Time for action – creating NumPy arrays
The array class is the core of NumPy. Let's explore the various ways that we can create 
NumPy arrays:

import numpy

print("array:")
a = numpy.array([1,2,3,9,10,11])
print(a)

print("arange:")
b = numpy.arange(0.0, 10.0, 3.0/2)
print(b)

print("zeros:")
c = numpy.zeros(5,dtype=int)
print(c)

print("ones:")
d = numpy.ones((4,1), dtype=numpy.float64)
print(d)

print("ones, 2D array:")
e = numpy.ones((3,2))
print(e)

print("empty:")
f = numpy.empty((1,4), dtype=numpy.float32)
print(f)
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The result should look like this:

What just happened?
In the first line of the script, we used the import statement to make NumPy functions and 
objects available to Sage. In order to keep NumPy types separate from Sage types with the 
same name, we access the NumPy types with the syntax numpy.type. In this example, we 
used several functions to create NumPy arrays. All of these functions accept the optional 
argument dtype, which specifies the type for the elements in the array (NumPy types are 
not the same as Sage types). We used the print function instead of the show function to 
display the arrays we created. Since NumPy objects return only plain text representations, 
there is no reason to use show to display NumPy objects.

Creating NumPy arrays
NumPy includes many convenient functions for creating arrays. The array function takes 
a Python list as an argument, and returns an array with the contents of the list, with each 
element converted to the specified type. arange is an extension of the range function that 
we learned about in Chapter 4.  The basic syntax is as follows:

new_array = arange([start,] stop [,step] [,dtype])



Chapter 5

[ 135 ]

If only one argument is provided, start is assumed to be zero and step is assumed to be 
one. If two arguments are given, the first is used as start and the second is assumed to be 
stop, and step is assumed to be one. ones and zeros return an array of the given shape 
and the specified type, with every element set to 1 or 0. The shape argument can be an 
integer or a tuple. An integer creates a "row" array, while a tuple of the form (n,1) creates 
a "column" array. Tuples of the form (m,n) or (m,n,p) create two-dimensional and three-
dimensional arrays, respectively. empty is the fastest way to create an array of a specified 
shape. It allocates the appropriate amount of space for the elements, based on the specified 
type, but does not initialize the element values. Note that the values in an empty array will 
be different every time it is created.

NumPy types
Every NumPy array has a type, and all the elements in the array must have the same type. 
The following table will help you choose the appropriate type. When choosing a type, the 
main factors are the maximum value that needs to be stored, the amount of precision 
required, and the amount of memory required for the array. You must consider the amount 
of RAM needed to hold the array during calculations, and the amount of disk space required 
if you are going to save the array to a file. For the simple exercises in this chapter, you will be 
safe using the default 64-bit types:

bool Boolean (True or False) stored as a byte
int Default integer for the platform (normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float Shorthand for float64
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex Shorthand for complex128
complex64 Complex number, represented by two 32-bit floats (real and imaginary 

components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary 

components)
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Indexing and selection with NumPy arrays
All of the indexing and slicing tricks that we've learned so far also apply to NumPy arrays. 
NumPy adds a few indexing tricks that help with processing numeric data.

Time for action – working with NumPy arrays
Let's explore some ways to select elements and sub-arrays from NumPy arrays:

import numpy

a = numpy.arange(9.0)
print("Array a:")
print(a)

a = a.reshape((3,3))
print("Array a, reshaped:")
print(a)

print("Selecting an element: {0}".format(a[1,0]))
print("Selecting a row: {0}".format(a[1]))

print("Selecting a submatrix:")
print(a[1:3,1:3])

b = numpy.arange(9.0, 0.0, -1.0)
print("\nArray b: {0}".format(b))
indices, = numpy.where(b > 4.0)
print("Indices of elements of b > 4.0: {0}".format(indices))
print("b > 4.0: {0}".format(b[b > 4.0]))

The output should be as follows:
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What just happened?
We used the arange function to create an array with nine floating-point elements. Since 
we only provided a single argument, NumPy assumes that the first element is zero and the 
increment is one. We then used the array's reshape method to return a two-dimensional 
array with three rows and three columns. reshape accepts a tuple that contains the 
dimensions of the new array. Note that reshape returns a new array instead of modifying 
the original array, so we have to use the syntax a = a.reshape((3,3)) to overwrite the 
original array. Elements and subsets of this array were selected using the same slice notation 
that we used with Sage vectors and matrices.

We created a one-dimensional array to demonstrate how to select elements by value 
from NumPy arrays. In this case, we specified a negative step, so arange created an array 
with decreasing values. We used the where function to get a list of indices that met a 
specific condition. where returns a list of lists of indices, so we used tuple unpacking to 
obtain a single list. When where is used with multi-dimensional arrays, each list of indices 
corresponds to one dimension of the array. The final line of the example shows a shortcut for 
obtaining the elements of an array that meet a certain criterion.

Have a go hero – replacing lists with NumPy arrays
In Chapter 4, we used lists and loops to compute the analytical solution to a partial 
differential equation (see Time for action – computing a solution to the diffusion equation). 
Go back to that example and replace the lists with NumPy arrays.

 � Replace the list called x with a NumPy array

 � Use arange to replace the for loop that was used to define the x coordinates for 
the calculation

 � Use empty to create an array to replace the list called ideal_concentration

NumPy matrices
NumPy also includes a matrix class, which is distinct from the two-dimensional array that we 
created in the previous example.

Time for action – creating matrices in NumPy
To illustrate some of the similarities and differences between the linear algebra features of 
Sage and NumPy, we'll repeat an earlier example in which we computed the singular value 
decomposition of a matrix:

import numpy as np
print "Two ways of creating a Numpy matrix:"
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A = np.matrix('1 1; 1 1; 0 0')    # Matlab syntax
print(A)
A2 = np.matrix([[1,1], [1,1], [0,0]])
print(A2)

print("Singular value decomposition:")
U, s, Vstar = np.linalg.svd(A, full_matrices=False)
print("U:")
print(U)
print("s:")
print(s)
print("Transpose of conjugate of V:")
print(Vstar)

Sigma = np.diag(s)
print("Reconstructed matrix Sigma:")
print(Sigma)
print(np.dot(U, np.dot(Sigma, Vstar)))

The result should look like this:
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What just happened?
The example demonstrated two ways of creating a NumPy matrix object. To start with, we 
used the statement import numpy as np so that we can use np as a shortcut for numpy. 
This feature is handy for long package names that are used many times, but it can also lead 
to confusion when misused. We then tried two ways of creating NumPy matrix. The first way 
uses syntax that will be familiar to MATLAB users; the second uses standard Python notation.

We then computed the singular value decomposition using the svd function from NumPy.  
This function returns slightly different results than the SVD method of a Sage matrix object. 
numpy.linalg.svd returns the conjugate transpose of matrix V, instead of V. NumPy 
returns a vector instead of a full matrix for Sigma, so we had to construct matrix Sigma using 
the diag function. diag accepts an array (or other sequence type) as an argument, and 
returns a matrix with the elements of the array as the diagonal elements. For more about 
the svd function in NumPy, try the following:

np.linalg.svd?

Learning more about NumPy
This has been a very brief introduction to NumPy. We will use arrays in Chapter 6 when we 
learn about plotting, and again in Chapter 8 when we learn about numerical methods. Even 
then, we will barely begin to exploit the power of NumPy. Here are some resources to learn 
more:

 � The official NumPy documentation page at http://docs.scipy.org/doc/

 � The NumPy Tutorial at http://www.scipy.org/Tentative_NumPy_Tutorial

 � Download the Guide to NumPy from http://www.tramy.us/numpybook.pdf

Summary
We have seen that Sage can reduce or eliminate the tedious computations that are required 
when doing linear algebra by hand. The capabilities of Sage are equivalent to those found in 
commercial mathematical software systems. Specifically, we covered:

 � Creating vector spaces and vector objects, and performing basic operations like 
inner products and cross products

 � Creating matrix objects, performing elementary row operations, and matrix algebra

 � Using matrix methods to calculate scalars and matrices such as determinants, 
inverses, eigenvalues, and eigenvectors
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 � Using matrix methods to factorize and decompose matrices

 � Creating and manipulating NumPy arrays and matrices for working with numerical 
data

In the next chapter, we will learn about the plotting and graphics capabilities of Sage.



6
Plotting with Sage

Graphs, plots, and charts are useful tools to understand the behaviour of functions and 
visualize data. Sage comes with some powerful plotting tools.

In this chapter we will:

 � Learn how to plot functions of one variable

 � Make various types of specialized 2D plots such as polar plots and scatter plots

 � Use matplotlib to precisely format 2D plots and charts

 � Make interactive 3D plots of functions of two variables

Let's start plotting!

Confusion alert: Sage plots and matplotlib
The 2D plotting capabilities of Sage are built upon a Python plotting package called 
matplotlib. The most widely used features of matplotlib are accessible through Sage 
functions. You can also import the matplotlib package into Sage, and use all of its features 
directly. This is very powerful, but it's also confusing, because there's more than one way 
to do the same thing. To further add to the confusion, matplotlib has two interfaces: the 
command-oriented Pyplot interface and an object-oriented interface. The examples in this 
chapter will attempt to clarify which interface is being used.

Plotting in two dimensions
Two-dimensional plots are probably the most important tool for visually presenting 
information in math, science, and engineering. Sage has a wide variety of tools for making 
many types of 2D plots.
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Plotting symbolic expressions with Sage
We will start by exploring the plotting functions that are built in to Sage. They are generally 
less flexible than using matplotlib directly, but also tend to be easier to use.

Time for action – plotting symbolic expressions
Let's plot some simple functions. Enter the following code:

p1 = plot(sin, (-2*pi, 2*pi), thickness=2.0, rgbcolor=(0.5, 1, 0),
    legend_label='sin(x)')
p2 = plot(cos, (-2*pi, 2*pi), thickness=3.0, color='purple',
    alpha=0.5, legend_label='cos(x)')
plt = p1 + p2
plt.axes_labels(['x', 'f(x)'])

show(plt)

If you run the code from the interactive shell, the plot will open in a separate window. If you 
run it from the notebook interface, the plot will appear below the input cell. In either case, 
the result should look like this:
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What just happened?
This example demonstrated the most basic type of plotting in Sage. The plot function 
requires the following arguments:

graphics_object = plot(callable symbolic expression, (independent_var, 
ind_var_min, ind_var_max))

The first argument is a callable symbolic expression, and the second argument is a tuple 
consisting of the independent variable, the lower limit of the domain, and the upper 
limit. If there is no ambiguity, you do not need to specify the independent variable. Sage 
automatically selects the right number of points to make a nice curve in the specified 
domain. The plot function returns a graphics object. To combine two graphics objects in 
the same image, use the + operator: plt = p1 + p2. Graphics objects have additional 
methods for modifying the final image. In this case, we used the axes_labels method 
to label the x and y axes. Finally, the show function was used to finish the calculation and 
display the image.

The plot function accepts optional arguments that can be used to customize the appearance 
and format of the plot. To see a list of all the options and their default values, type:

sage: plot.options

{'fillalpha': 0.5, 'detect_poles': False, 'plot_points': 200,

'thickness': 1, 'alpha': 1, 'adaptive_tolerance': 0.01, 'fillcolor':

'automatic', 'adaptive_recursion': 5, 'exclude': None, 'legend_label':

None, 'rgbcolor': (0, 0, 1), 'fill': False}

Here is a summary of the options for customizing the appearance of a plot:

Keyword Description

alpha Transparency of the line (0=opaque, 1=transparent)

fill True to fill area below the line

fillalpha Transparency of the filled-in area (0=opaque, 1=transparent)

fillcolor Color of the filled-in area

rgbcolor Color of the line
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Sage uses an algorithm to determine the best number of points to use for the plot, and how 
to distribute them on the x axis. The algorithm uses recursion to add more points to resolve 
regions where the function changes rapidly. Here are the options that control how the plot 
is generated:

Keyword Description

adaptive_recursion Max depth of recursion when resolving areas of the plot where the 
function changes rapidly

adaptive_tolerance Tolerance for stopping recursion

detect_poles Detect points where function value approaches infinity (see next 
example)

exclude A list or tuple of points to exclude from the plot

plot_points Number of points to use in the plot

Specifying colors in Sage
There are several ways to specify a color in Sage. For basic colors, you can use a 
string containing the name of the color, such as red or blue. You can also use 
a tuple of three floating-point values between 0 and 1.0. The first value is the 
amount of red, the second is the amount of green, and the third is the amount 
of blue. For example, the tuple (0.5, 0.0, 0.5) represents a medium purple color.

Some functions "blow up" to plus or minus infinity at a certain point. A simplistic plotting 
algorithm will have trouble plotting these points, but Sage adapts.

Time for action – plotting a function with a pole
Let's try to plot a simple function that takes on infinite values within the domain of the plot:

pole_plot = plot(1 / (x - 1), (0.8, 1.2), detect_poles='show', 
    marker='.')
print("min y = {0}   max y = {1}".format(pole_plot.ymax(), 
    pole_plot.ymin()))
pole_plot.ymax(100.0)
pole_plot.ymin(-100.0)

# Use TeX to make nicer labels
pole_plot.axes_labels([r'$x$', r'$1/(x-1)$'])

pole_plot.show()
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The output from this code is as follows:

What just happened?
We did a few things differently compared to the previous example. We defined a callable 
symbolic expression right in the plot function. We also used the option detect_
poles='show' to plot a dashed vertical line at the x value where the function returns 
infinite values. The option marker='.' tells Sage to use a small dot to mark the individual 
(x,y) values on the graph. In this case, the dots are so close together that they look like a fat 
line. We also used the methods ymin and ymax to get and set the minimum and maximum 
values of the vertical axis. When called without arguments, these methods return the 
current values. When given an argument, they set the minimum and maximum values of the 
vertical axis.

Finally, we labeled the axes with nicely typeset mathematical expressions. As in the previous 
example, we used the method axes_labels to set the labels on the x and y axes. However, 
we did two special things with the label strings:

r'$\frac{1}{(x-1)}$'
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The letter r is placed in front of the string, which tells Python that this is a raw string. When 
processing a raw string, Python does not interpret backslash characters as commands (such 
as interpreting \n as a newline). Note that the first and last characters of the string are 
dollar signs, which tells Sage that the strings contain mark-up that needs to be processed 
before being displayed. The mark-up language is a subset of TeX, which is widely used for 
typesetting complicated mathematical expressions. Sage performs this processing with a 
built-in interpreter, so you don't need to have TeX installed to take advantage of typeset 
labels. It's a good idea to use raw strings to hold TeX markup because TeX uses a lot of 
backslashes. To learn about the typesetting language, see the matplotlib documentation at: 

http://matplotlib.sourceforge.net/users/mathtext.html

In Chapter 10, we'll see how TeX and its relative LaTeX can help us typeset mathematical 
expressions.

Time for action – plotting a parametric function
Some functions are defined in terms of a parameter. Sage can easily plot parametric 
functions:

var('t')
pp = parametric_plot((cos(t), sin(t)), (t, 0, 2*pi),
    fill=True, fillcolor='blue')
pp.show(aspect_ratio=1, figsize=(3, 3), frame=True)

The output from this code is as follows:
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What just happened?
We used two parametric functions to plot a circle. This is a convenient place to demonstrate 
the fill option, which fills in the space between the function and the horizontal axis. The 
fillcolor option tells Sage which color to use for the fill, and the color can be specified 
in the usual ways. We also demonstrated some useful options for the show method (these 
options also work with the show function). The option aspect_ratio=1 forces the x and y 
axes to use the same scale. In other words, one unit on the x axis takes up the same number 
of pixels on the screen as one unit on the y axis. Try changing the aspect ratio to 0.5 and 
2.0, and see how the circle looks. The option figsize=(x_size,y_size) specifies the 
aspect ratio and relative size of the figure. The units for the figure size are relative, and don't 
correspond to an absolute unit like inches or centimetres. The option frame=True places a 
frame with tick marks around the outside of the plot.

Time for action – making a polar plot
Some functions are more easily described in terms of angle and radius. The angle is the 
independent variable, and the radius at that angle is the dependent variable. Polar plots are 
widely used in electrical engineering to describe the radiation pattern of an antenna. Some 
antennas are designed to transmit (or receive) electromagnetic radiation in a very narrow 
beam. The beam shape is known as the radiation pattern. One way to achieve a narrow 
beam is to use an array of simple dipole antennas, and carefully control the phase of the 
signal fed to each antenna. In the following example, we will consider seven short dipole 
antennas set in a straight line:
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# A linear broadside array of short vertical dipoles 
# located along the z axis with 1/2 wavelength spacing
var('r, theta')
N = 7
normalized_element_pattern = sin(theta)
array_factor = 1 / N * sin(N * pi / 2 * cos(theta)) \
/ sin(pi / 2 * cos(theta))

array_plot = polar_plot(abs(array_factor), (theta, 0, pi), 
    color='red', legend_label='Array')
radiation_plot = polar_plot(abs(normalized_element_pattern 
    * array_factor), (theta, 0, pi), color='blue',
    legend_label='Radiation')

combined_plot = array_plot + radiation_plot
combined_plot.xmin(-0.25)
combined_plot.xmax(0.25)
combined_plot.set_legend_options(loc=(0.5, 0.3))

show(combined_plot, figsize=(2, 5), aspect_ratio=1)

Execute the code. You should get a plot like this:
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What just happened?
We plotted a polar function, and used several of the plotting features that we've already 
discussed. There are two subtle points worth mentioning. The function array_factor is 
a function of two variables, N and theta. In this example, N is more like a parameter, while 
theta is the independent variable we want to use for plotting. We use the syntax (theta, 
0, pi) in the plot function to indicate that theta is the independent variable. The second 
new aspect of this example is that we used the methods xmin and xmax to set the limits of 
the x axis for the graphics object called combined_plot. We also used the set_legend_
options of the graphics object to adjust the position of the legend to avoid covering up 
important details of the plot.

Time for action – plotting a vector field
Vector fields are used to represent force fields such as electromagnetic fields, and are used 
to visualize the solutions of differential equations. Sage has a special plotting function to 
visualize vector fields.

var('x, y')
a = plot_vector_field((x, y), (x, -3, 3), (y, -3, 3), color='blue')
b = plot_vector_field((y, -x), (x, -3, 3), (y, -3, 3), color='red')
show(a + b, aspect_ratio=1, figsize=(4, 4))

You should get the following image:
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What just happened?
The plot_vector_field function uses the following syntax:

plot_vector_field((x_function,y_function), (x,x_min,x_max), (y,y_
min,y_max))

The keyword argument color specifies the color of the vectors.

Plotting data in Sage
So far, we've been making graphs of functions. We specify the function and the domain, and 
Sage automatically chooses the points to make a nice-looking curve. Sometimes, we need to 
plot discrete data points that represent experimental measurements or simulation results. 
The following functions are used for plotting defined sets of points.

Time for action – making a scatter plot
Scatter plots are used in science and engineering to look for correlation between two 
variables. A cloud of points that is roughly circular indicates that the two variables are 
independent, while a more elliptical arrangement indicates that there may be a relationship 
between them. In the following example, the x and y coordinates are contrived to make a 
nice plot. In real life, the x and y coordinates would typically be read in from data files. Enter 
the following code:

def noisy_line(m, b, x):
    return m * x + b + 0.5 * (random() - 0.5)
    
slope = 1.0
intercept = -0.5
x_coords = [random() for t in range(50)]
y_coords = [noisy_line(slope, intercept, x) for x in x_coords]
sp = scatter_plot(zip(x_coords, y_coords))
sp += line([(0.0, intercept), (1.0, slope+intercept)], color='red')
sp.show()

The result should look similar to this plot. Note that your results won't match exactly, since 
the point positions are determined randomly.
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What just happened?
We created a list of randomized x coordinates using the built-in random function. This 
function returns a random number in the range 0 ≤ x < 1. We defined a function called 
noisy_line that we then used to create a list of randomized y coordinates with a linear 
relationship to the x coordinates. We now have a list of x coordinates and a list of y 
coordinates, but the scatter_plot function needs a list of (x,y) tuples. The zip function 
takes the two lists and combines them into a single list of tuples. The scatter_plot 
function returns a graphics object called sp. To add a line object to the plot, we use the 
following syntax:

sp += line([(x1, y1), (x2,y2)], color='red') 

The += operator is a way to increment a variable; x+=1 is a shortcut for x = x + 1. 
Because the + operator also combines graphics objects, this syntax can be used to add a 
graphics object to an existing graphics object.

Time for action – plotting a list
Sometimes, you need to plot a list of discrete data points. The following example might be 
found in an introductory digital signal processing (DSP) course. We will use lists to represent 
digital signals. We sample the analogue function cosine(t) at two different sampling rates, 
and plot the resulting digital signals.

# Use list_plot to visualize digital signals
# Undersampling and oversampling a cosine signal

sample_times_1 = srange(0, 6*pi, 4*pi/5)
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sample_times_2 = srange(0, 6*pi, pi/3)
data1 = [cos(t) for t in sample_times_1]
data2 = [cos(t) for t in sample_times_2]

plot1 = list_plot(zip(sample_times_1, data1), color='blue')
plot1.axes_range(0, 18, -1, 1)
plot1 += text("Undersampled", (9, 1.1), color='blue', fontsize=12)
plot2 = list_plot(zip(sample_times_2, data2), color='red')
plot2.axes_range(0, 18, -1, 1)
plot2 += text("Oversampled", (9, 1.1), color='red', fontsize=12)

g = graphics_array([plot1, plot2], 2, 1) # 2 rows, 1 column
g.show(gridlines=["minor", False])

The result is as follows:

What just happened?
The function list_plot works a lot like scatter_plot from the previous example, so I 
won't explain it again. We used the method axes_range(x_min, x_max, y_min, y_
max) to set the limits of the x and y axes all at once. Once again, we used the += operator 
to add a graphics object to an existing object. This time, we added a text annotation instead 
of a line. The basic syntax for adding text at a given (x,y) position is text('a string', 
(x,y)). To see the options that text accepts, type the following:

sage: text.options
{'vertical_alignment': 'center', 'fontsize': 10, 'rgbcolor': (0, 0, 
1),
'horizontal_alignment': 'center', 'axis_coords': False}
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To display the two plots, we introduced a new function called graphics_array, which uses 
the basic syntax:

graphics_array([plot_1, plot_2, ..., plot_n], num_rows, num_columns)

This function returns another graphics object, and we used the show method to display the 
plots. We used the keyword argument gridlines=["minor", False] to tell Sage to 
display vertical lines at each of the minor ticks on the x axis. The first item in the list specifies 
vertical grid lines, and the second specifies horizontal grid lines. The following options can be 
used for either element:

"major" Grid lines at major ticks
"minor" Grid lines at major and minor ticks
False No grid lines

Try playing with these options in the previous example.

Using graphics primitives
We've already seen that Sage has graphics primitives such as lines and text annotations. Sage 
has other types of graphics primitives that can be used for plotting.

Time for action – plotting with graphics primitives
A class of mathematical models called random sequential adsorption (RSA) models deals 
with the patterns that result when two-dimensional shapes are randomly deposited onto a 
plane. The following method can be used to visualize these kinds of models:

# Since the circles are random, your plot will not
# look exactly like the example!
circle_list = []
for i in range(15):
    x = -5 + 10 * random()
    y = -5 + 10 * random()
    circle_list.append(circle((x, y), 1, facecolor='red',
        edgecolor=(0, 0, 1), thickness=2, fill=True))
gr = sum(circle_list)
gr.axes(False)
gr.show(aspect_ratio=1, frame=True, gridlines=True, figsize=(4, 4))
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You should get a plot that resembles the one below. Because the positions of the circles are 
randomly generated, your plot will not look exactly like this one.

What just happened?
We created a list of graphics objects with a for loop and the circle function. The basic 
syntax for the circle function is as follows:

graphics_object = circle((center_x, center_y), radius)

In order to plot all the circles at once, we used the sum function to add up the list. We 
then prevented the axes from being drawn by calling the method gr.axes(False). 
Finally, when calling the show method we used the keyword argument frame=True to 
draw a frame, with ticks and labels, around the outside of the plotting area. The argument 
gridlines=True is a shortcut to activate both horizontal and vertical grid lines. Sage has 
many other types of primitives, including elliptical arcs, arrows, disks, ellipses, points, and 
polygons, that are described in the Sage reference manual.
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Using matplotlib
We can access matplotlib directly to do things that we can't do with Sage plotting functions. 
matplotlib has such a large number of options and features that it deserves a separate book. 
We will only touch on a few basic features. If you want to know more, the matplotlib website 
has excellent documentation:

http://matplotlib.sourceforge.net/contents.html

Time for action – plotting functions with matplotlib
To illustrate the similarities and differences between plotting with matplotlib and plotting 
with Sage, we will repeat the first example of this chapter using the Pyplot interface to 
matplotlib. Enter and evaluate the following code:

import numpy
import matplotlib.pyplot as plt

x = numpy.arange(-2 * numpy.pi, 2 * numpy.pi, 0.1)
func1 = numpy.sin(x)
func2 = numpy.cos(x)

plt.figure(figsize=(5.5, 3.7))    # size in inches
plt.plot(x, func1, linewidth=2.0, color=(0.5, 1,0), 
label='$f(x)=sin(x)$')
plt.plot(x, func2, linewidth=3.0, color='purple', alpha=0.5, 
label='$f(x)=cos(x)$')
plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.title('Plotting with matplotlib')
plt.legend(loc='lower left')
plt.savefig('demo1.png')
plt.close()
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The result should be as follows:

What just happened?
We gained access to matplotlib functions and types with the following line:

import matplotlib.pyplot as plt

We can now access these functions as plt.function_name. We also import numpy so 
that we can use its numerical arrays.

There is an important difference between the Sage plot function and the matplotlib plot 
function. matplotlib always plots lists or arrays of discrete points, rather than callable 
symbolic expressions. This block of code creates an array of x values:

x = numpy.arange(-2*numpy.pi, 2*numpy.pi, 0.1)
func1 = numpy.sin(x)
func2 = numpy.cos(x)

func1 and func2 are arrays of y values. Notice that we specify the NumPy version of sin 
and cos, since the Sage functions don't know what to do with NumPy arrays. The syntax for 
plotting with matplotlib is as follows:

plt.figure()
plt.plot(x_values, y_values)
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The first line creates an empty figure. The optional argument figsize=(x_size, y_
size) sets the figure size in inches. The second line plots the data points that are specified 
in the arrays or lists. By default, the points are connected with straight line segments. If 
you specify points that are too far apart, you will see the line segments instead of a smooth 
curve. The options for the plt.plot function are very similar to the options for the Sage 
plot function. The following code labels the x and y axes, and places a title above the figure:

plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.title('Plotting with matplotlib')
plt.legend(loc='lower right')

The legend method places a legend on the figure. You can use TeX to format any text on the 
plot by wrapping the text in dollar signs. The following code actually displays the plot:

plt.savefig('demo1.png')
plt.close()

If you are running this example from the notebook interface, the graphic will automatically 
appear in the notebook. If you're running it in the interactive shell, you won't see any output. 
The savefig function will save an image file in your home directory. To specify a different 
path for saving files, pass a full or relative path in addition to the file name. For example:

sage: plt.savefig('Sage for Beginners/Chapter 6/Images/polar_plot.png')

matplotlib can save figures in a variety of image formats, such as png, pdf, ps (PostScript), 
eps (encapsulated PostScript), and svg (scalable vector graphics). It will automatically 
determine the correct format from the extension of the file name. You can also use the 
format keyword to specify the image format. PNG is a raster format, which is compatible 
with Microsoft Office and OpenOffice. For publications, it is best to use a vector format like 
PostScript, EPS, or PDF. The SVG format is used for displaying vector graphics on the Web.

Using matplotlib to "tweak" a Sage plot
Every Sage plot is actually an encapsulated matplotlib figure. We can get the underlying 
figure and modify it.
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Time for action – getting the matplotlib figure object
Let's say you've made a plot with Sage, but you want to fix one or two formatting details, and 
Sage doesn't give you enough control. In this example, we'll use the object-oriented interface 
of matplotlib:

# Create a Sage plot, as shown in the first example
p1 = plot(sin, (-2*pi, 2*pi), thickness=2.0, rgbcolor=(0.5,1,0))
p2 = plot(cos, (-2*pi, 2*pi), thickness=3.0, color='purple', 
alpha=0.5)
plt = p1 + p2

# Get the Matplotlib object
fig = plt.matplotlib()
from matplotlib.backends.backend_agg import FigureCanvasAgg 
fig.set_canvas(FigureCanvasAgg(fig))    # this line is critical
ax = fig.gca()        # get current axes

# Add a legend and plot title
ax.legend(['sin(x)', 'cos(x)'])
ax.set_title('Modified with matplotlib')

# Add a y axis label in a custom location
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin, ymax*1.2)
ax.set_ylabel('$f(x)$', y=ymax*0.9)

# Fancy annotation of a point of interest
x_value = numerical_approx(-3*pi/4)
y_value = numerical_approx(cos(-3*pi/4))
ax.annotate('Point', xy=(x_value, y_value),
    xytext=(-6, -0.5), color='red',
    arrowprops=dict(arrowstyle="->", connectionstyle="angle3"))

# Show the matplotlib figure
fig.savefig('Sage_to_matplotlib.png')
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The output should look like this:

What just happened?
We modified a plot with matplotlib. First, we used Sage plotting commands to create a 
Sage graphics object. We then used the matplotlib method of the Sage graphics object 
to obtain the underlying matplotlib figure object. The rest of this example uses matplotlib 
functions, rather than Sage functions, to modify the figure. It is critical to use the following 
line of code:

fig.set_canvas(FigureCanvasAgg(fig))

The canvas is a "backend," which controls how matplotlib outputs the graphics it creates. Once 
we set the right canvas, we used the gca method of the figure object to get an object that 
represents the current axes. We then used methods of the axes object to modify the plot.

Time for action – improving polar plots
In a previous example, we made polar pots with the Sage function polar_plot. However, 
polar plots in matplotlib look nicer because they are plotted on special axes. Let's use 
matplotlib to make these plots again. This example uses the Pyplot interface to matplotlib:

import numpy
import matplotlib.pyplot as plt

# Repeat the antenna pattern example with the Pyplot interface
N = float(7)
theta = numpy.arange(0, numpy.pi, numpy.pi/100)
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def normalized_element_pattern(theta):
    return abs(numpy.sin(theta))

def array_factor(theta, N):
    return abs(float(1 / N) * numpy.sin(float(N * pi / 2)
        * numpy.cos(theta))
        / numpy.sin(float(pi / 2) * numpy.cos(theta)))

plt.figure(figsize=(6, 4))
plt.subplot(121, polar=True)
plt.polar(theta, normalized_element_pattern(theta))
plt.title('Element factor')

plt.subplot(122, polar=True)
plt.polar(theta, array_factor(theta, N), color='red',
    label="Array factor")
plt.polar(theta, array_factor(theta, N) * 
    normalized_element_pattern(theta),
    label="Pattern", color='blue')
plt.legend(loc='lower right', bbox_to_anchor = (1, 0))

plt.subplots_adjust(wspace=0.3)
plt.savefig('Polar_plot.png')
plt.close()
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What just happened?
We made polar plots on nicely formatted polar axes. We introduced a new Pyplot function 
called subplot, which creates multiple axes on a single figure, arranged as a grid. Subplot 
accepts three integer arguments that specify the arrangement of axes and chooses one of 
the axes as the current axes object. The first integer specifies the number of columns in 
the grid, the second integer specifies the number of rows in the grid, and the third integer 
selects the current axes object. The first subplot, which is number one, is located in the 
upper-left corner of the figure. Subplot numbers increase from left to right across a row, and 
from top to bottom. It is possible, although not recommended, to omit the commas between 
arguments and pass a single three-digit integer value to subplot. This rather unusual syntax 
was chosen for compatibility with the subplot function in MATLAB. We used the polar 
keyword to choose polar axes for each of the subplots.

We also introduced a function called subplots_adjust, which we used to increase the 
amount of horizontal space between the plots. This command can be used to adjust the 
amount of space around and between subplots, using the following keyword arguments:

Keyword Default Meaning

left 0.125 Space to the left of the subplots

right 0.9 Space to the right of the subplots

bottom 0.1 Space below the subplots

top 0.9 Space above the subplots

wspace 0.2 Space between columns of subplots

hspace 0.2 Space between rows of subplots

Plotting data with matplotlib
Because matplotlib plots arrays of points, it is well suited to working with data. You can make 
many kinds of charts and publication-quality graphics with matplotlib.

Time for action – making a bar chart
Bar charts are often used to present experimental data in scientific papers. Let's make a 
chart with bars that represent the average value of some experimental data and add error 
bars to represent the standard deviation:

import numpy
import matplotlib.pyplot as plt

# Define experimental data
cluster1_data = numpy.array([9.7, 3.2])
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cluster1_x = numpy.array([2,4])
cluster1_error = numpy.array([1.3, 0.52])

cluster2_data = numpy.array([6.8, 7.3])
cluster2_x = numpy.array([8,10])
cluster2_error = numpy.array([0.72, 0.97])

# Join data arrays for plotting
data = numpy.concatenate([cluster1_data, cluster2_data])
bar_centers = numpy.concatenate([cluster1_x, cluster2_x])
errors = numpy.concatenate([cluster1_error, cluster2_error])

# Plot 
fig = plt.figure(figsize=(5,4))    # size in inches
plt.bar(bar_centers, data, yerr=errors,
    width=2.0, align='center', color='white', ecolor='black')
plt.ylabel('outcome')
plt.text(4, 4, '*', fontsize=14)

# Label ticks on x axis
axes = fig.gca()
axes.set_xticks(bar_centers)
axes.set_xticklabels(['trial 1', 'trial 2', 'trial 3', 'trial 4'])

plt.savefig('Bar_Chart.png')
plt.close()

The output should look like this:
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What just happened?
We created a publication-quality bar chart using the bar function from matplotlib. This 
function has two mandatory arguments. The first argument sets the horizontal location of 
each bar, and the second sets the height of each bar. Here is a summary of the optional 
arguments we used to customize the appearance of the plot:

Keyword Description

yerr Sets the size of the error bars on top of each bar.

width Width of each bar.

align Determines how the first argument is interpreted. If set to 'center', 
the array sets the location of the centre of each bar; otherwise, it sets the 
location of the left edge.

color The color of the fill inside the bars.

ecolor The color of the edge (outline) of the bars.

There are other optional arguments, which are described in the matplotlib documentation.

We used the text function to add text to the plot—in this case, an asterisk to indicate 
that one of the bars is statistically distinct from the others. The text function requires 
the x and y coordinates of the text, and a string containing the text to be displayed. The 
fontsize keyword allowed us to change the size of the text. In order to customize the tick 
labels on the x axis, we used the gca method of the figure object to get its axes object. We 
then passed an array of bar centres to the set_xticks method so that ticks will only be 
displayed at the centre of each bar. We used the set_xticklabels method to label the 
ticks with strings instead of numbers.

Time for action – making a pie chart
matplotlib can also make business graphics that are more commonly associated with 
spreadsheets. Let's try a pie chart:

import numpy
import matplotlib.pyplot as plt

data = [1.0, 10.0, 20.0, 30.0, 40.0]
explode = numpy.zeros(len(data))
explode[3] = 0.1

plt.figure(figsize=(4, 4))
plt.pie(data, explode=explode, labels=['a', 'b', 'c', 'd', 'e'])
plt.title('Revenue sources')

plt.savefig('Pie_chart.png')
plt.close()
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The plot should look like this:

What just happened?
We made a pie chart. The pie function in matplotlib only requires one argument, which is a 
list of numbers that indicate the relative size of the slices. The explode option takes a list of 
numbers that show how far to offset each piece of the pie from the centre. In this case, we 
created an array of zeros and set the fourth element to 0.1, which offset the fourth slice of 
the pie. We used the keyword explode to pass this array to the pie function. We used the 
labels keyword to pass a list of strings to be used as labels for each slice.

Time for action – plotting a histogram
matplotlib has a built-in function for making histograms, which are used to visualize the 
distribution of values in a set of data. In this example, we will generate an array of random 
numbers that are drawn from a Gaussian distribution:

import numpy
import matplotlib.pyplot as plt

data = numpy.random.normal(0, 1, size=1000)

plt.figure(figsize=(4, 4))
plt.hist(data, normed=True, facecolor=(0.9, 0.9, 0.9))

plt.savefig('Histogram.png')
plt.close()
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The result should be similar to the following plot. Because we are generating random data, 
your plot will not look exactly like this one:

What just happened?
We used the hist function to visualize the distribution of values in an array of pseudo-
random numbers. hist requires one argument, which is an array containing the data. In 
practice, the data would typically consist of experimental measurements, sensor data, or 
the results of a Monte Carlo simulation. We used the optional argument normed=True to 
indicate that the histogram should be normalized, which means that its integral is one. The 
facecolor keyword was used to specify the fill color of the bars as a tuple of R, G, B values.

Plotting in three dimensions
Sage can make 3D plots for visualizing functions of two variables, as well as parametric 
plots that create three-dimensional surfaces. It also has a variety of tools for making two-
dimensional representations of three-dimensional surfaces.
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Time for action – make an interactive 3D plot
Let's make an interactive 3D plot.

var('x, y')
p3d = plot3d(y^2 + 1 - x^3 - x, (x, -pi, pi), (y, -pi, pi))
p3d.show()

If you run this example in the notebook interface, a Java applet called Jmol will run in the 
cell below the code. If you run it from the interactive shell, Jmol will launch as a stand-alone 
application. Clicking and dragging on the figure with the left mouse button will rotate the plot 
in 3D space. Clicking and dragging with the centre button, or moving the scroll wheel, zooms 
in and out. Right-clicking brings up a menu that allows you to set various options for Jmol. 
Since Jmol is also used to visualize the 3D structures of molecules, some of the options are not 
relevant for plotting functions. Here is a screenshot of the function, plotted with Jmol:

What just happened?
We made a cool 3D plot that allowed us to explore a function of two variables. When 
running Jmol as an applet in a worksheet, you can click on the "Get Image" link below the 
plot to save an image of the plot in its current state. However, the image quality is not 
particularly high because it is saved in JPEG format. When Jmol is called from the command 
line, it runs as a stand-alone application, and more options are available. You can save files 
in JPEG, GIF, PPM, PNG, or PDF format. Note that the PDF format is a bitmap embedded in a 
PDF file, rather than a true vector representation of the surface. The syntax for using plot3d 
is very simple:

plot3d(f(x,y), (x, x_min, x_max), (y, y_min, y_max))
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There are a few optional arguments to the show method that you can use to alter the 
appearance of the plot. Setting mesh=True plots a mesh on the surface, and setting 
dots=True plots a small sphere at each point. You can also use the transformation 
keyword argument to apply a transformation to the data—see the plot3d documentation 
for more information.

Higher quality output
We can improve the quality of saved images using ray tracing, which is an algorithm for 
generating images that is based on optical principles. Sage comes with ray tracing software 
called Tachyon, which can be used to view 3D plots. To activate Tachyon, use the show 
method with the viewer keyword as shown below:

p3d.show(viewer='tachyon', frame=False, axes=True)

Depending on the speed of your computer, the ray tracing may require a few seconds to a 
few minutes.

The frame keyword selects whether or not to draw a box around the outer limits of the plot, 
while the axes keyword determines whether or not the axes are drawn.
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Parametric 3D plotting
Sage can also plot functions of two variables that are defined in terms of a parameter.  You 
can make very complex surfaces in this way.

Time for action – parametric plots in 3D
We will plot two interlocking rings to demonstrate how complex surfaces are easily plotted 
using three functions of two parameters:

var('u, v')
f1 = (4 + (3 + cos(v)) * sin(u), 4 + (3 + cos(v)) * cos(u),
    4 + sin(v))
f2 = (8 + (3 + cos(v)) * cos(u), 3 + sin(v), 4 + (3 + cos(v)) 
    * sin(u))
p1 = parametric_plot3d(f1, (u, 0, 2 * pi), (v, 0, 2 * pi),
    texture="red")
p2 = parametric_plot3d(f2, (u, 0, 2 * pi), (v, 0, 2 * pi),
    texture="blue")
combination = p1 + p2
combination.show()

The result should look like this:
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What just happened?
We made a very complex 3D shape using the parametric_plot3d function. The optional 
arguments for this function are the same as the options for the plot3d function.

Contour plots
Sage can also make contour plots, which are 2-D representations of 3-D surfaces. While 3D 
plots are eye-catching, a 2D plot can be a more practical way to convey information about 
the function or data set.

Time for action – making some contour plots
The following code will demonstrate four different ways to make a 2D plot of a 3D surface 
with Sage:

var('x, y')
text_coords = (2, -3.5)

cp = contour_plot(y^2 + 1 - x^3 - x, (x, -3, 3), (y, -3, 3),
    contours=8, linewidths=srange(0.5, 4.0, 0.5), fill=False,
    labels=True, label_colors='black', cmap='gray', colorbar=False)
cp += text("Contour", text_coords)

ip = implicit_plot(y^2 + 1 - x^3 - x, (x, -3, 3), (y, -3, 3))
ip += text("Implicit", text_coords)

rp = region_plot(y^2 + 1 - x^3 - x < 0, (x, -3, 3), (y, -3, 3),
    incol=(0.8, 0.8, 0.8))    # color is an (R,G,B) tuple
rp += text("Region", text_coords)

dp = density_plot(y^2 + 1 - x^3 - x, (x, -3, 3), (y, -3, 3))
dp += text("Density", text_coords)

show(graphics_array([cp, ip, rp, dp], 2, 2), aspect_ratio=1, 
    figsize=(6, 6))
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The output should be as follows:

What just happened?
The plots we made demonstrate four different ways of visualizing the function we plotted in 
the previous example. All four functions follow the same syntax as plot3d:

contour_plot(f(x,y), (x, x_min, x_max), (y, y_min, y_max))
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contour_plot plots level curves on the surface. In other words, z is constant on each 
curve. implicit_plot does the same thing, but only plots the curve where z=0. region_
plot determines the curve for which z=0, and then fills in the region where z<0. Finally, 
density_plot converts the z value of the function to a color value and plots a color 
map of the z values over the x-y plane. We used the contour plot to demonstrate some of 
the keyword arguments that can be used to control the appearance of the plot. Here is a 
summary of the options we used:

Keyword Description

contours The number of contours to draw

linewidths A list of line widths, corresponding to the number of contours

fill True to fill in between the contours

labels True to label each contour

label_colors Color to use for labels

cmap Color map to use for contour lines

colorbar True to display the a scale bar showing the color map

Summary
We have seen that Sage has powerful graphics capabilities. Specifically, we learned about:

 � Plotting functions of one variable, in rectangular and polar coordinates

 � Setting options that control the appearance of plots

 � Visualizing data with list_plot and scatter_plot

 � Using graphics primitives to customize

 � Using matplotlib to gain more control over the formatting of plots

 � Making various types of charts for presenting data

 � Making three-dimensional plots and contour plots

In the next chapter, we will learn how to use the powerful symbolic capabilities of Sage to 
solve difficult problems in mathematics, engineering, and science.





7
Making Symbolic Mathematics Easy

Every engineer, scientist, and mathematician has taken classes that introduced calculus, 
and many have learned more advanced mathematics such as differential equations. 
Unfortunately, the majority of a student's time is often spent performing algebra rather 
than understanding advanced concepts. Sage has powerful tools that automate the tedious 
process of moving symbols around in algebraic expressions. Further, Sage is capable of 
differentiating and integrating complicated functions, and performing Laplace transforms 
that would otherwise need to be looked up in a reference book. In fact, Sage can perform 
integrals and Laplace transforms that can't realistically be performed by hand. Students and 
professionals will find it worth their time to learn how to utilize Sage to perform tedious 
mathematics so that they can focus on understanding important concepts and performing 
creative problem-solving.

Although this chapter will focus on undergraduate-level mathematics, Sage is also useful 
for mathematical research, as evidenced by the list of publications that reference Sage 
(http://sagemath.org/library-publications.html). The lead developer of Sage 
is a number theorist, and Sage is ahead of its commercial competitors in the area of number 
theory.

In this chapter, we will learn how to:

 � Create symbolic functions and expressions, and learn to manipulate them

 � Solve equations and systems of equations exactly, and find symbolic roots

 � Automate calculus operations like limits, derivatives, and integrals

 � Create infinite series and summations to approximate functions

 � Perform Laplace transforms

 � Find exact solutions to ordinary differential equations

So let's get on with it...
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Using the notebook interface
All of the examples in this chapter were written using the notebook interface. I highly 
recommend using the notebook for performing symbolic calculations. The show function 
(or method) generates nicely formatted output that is much easier to read than the text 
representation that you get on the command line.

Calling Maxima directly
Sage uses Maxima, an open-source computer algebra system, to handle many 
symbolic calculations. You can interact directly with Maxima from a Sage 
worksheet or the interactive shell by using the maxima object. For a complete 
tutorial with many examples, see http://www.sagemath.org/doc/
reference/sage/interfaces/maxima.html.

Defining symbolic expressions
Before we can start doing integrals, derivatives, and transforms, we have to define the 
variables and functions that we are going to be working with. Functions and relations  
in Sage are called symbolic expressions.

Time for action – defining callable symbolic expressions
In Chapter 3, we learned how to define a mathematical function as a callable symbolic 
expression. Since we'll be working with callable symbolic expressions extensively in this 
chapter, let's learn a little more about how to use them. Enter the following code into an 
input cell in a worksheet, and evaluate the cell:

var('a, b, c, x')
f(x) = a * x^2 + b * x + c    # A callable symbolic expression
print("f(x):")
f.show()
print("Variables in f: {0}  Arguments in f: {1}".format(
    f.variables(), f.arguments()))
print("Type of f: {0}".format(type(f)))

g(x) = f.derivative(x)
print("g(x):")
g.show()
print("Variables in g: {0}  Arguments in g: {1}".format(
    g.variables(), g.arguments()))

g_plot = plot(g(a=1, b=-1), (-1, 1))
g_plot.axes_labels(['x', 'g(x)'])
show(g_plot, figsize=(3,3), aspect_ratio=1.0)
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The output is shown below:

What just happened?
We started with a var statement to tell Sage that x, a, b, and c are symbolic variables, which 
also erases any previous values that we may have assigned to these variables.  Technically, 
we could have omitted x from this list, since Sage automatically assumes that any variable 
called x is a symbolic variable. We then defined a callable symbolic expression  f(x). We 
used the variables method to list all of the variables that are present in f. We also used 
the method arguments to determine which variables are arguments. In this case, x is 
the only argument because we defined f to be a function of x. In Sage, an argument is an 
independent variable, while the other variables are more like parameters that are expected 
to take on fixed values.
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We used the derivative method to compute the derivative of f with respect to x, and 
assign the result to another callable symbolic expression called g. Again, the methods 
variables and arguments were used to see which variables and arguments are present in 
g. Notice that the variable c is not present in g. Finally, we plotted function g to demonstrate 
how to plot a callable symbolic expression with one argument and multiple variables. In 
order to make a plot, Sage needs to have numerical values for the parameters a and b. In 
the plot function call, we used keyword syntax to set values for these variables, and we set 
limits for the domain of x in the usual way.

Relational expressions
A symbolic expression doesn't have to define a mathematical function. We can also express 
equality and inequality with symbolic expressions.

Time for action – defining relational expressions
Let's express some simple inequalities as relational expressions to see how they work:

exp1 = SR(-5) < SR(-3)    # use the symbolic ring
print("Expression {0} is {1}".format(exp1, bool(exp1)))

exp2 = exp1^2
print("Expression {0} is {1}".format(exp2, bool(exp2)))

forget()
exp3 = x^2 + 2 >= -3 * x^2
print("Expression {0} is {1}".format(exp3, bool(exp3)))

p1 = plot(exp3.lhs(), (x, -5, 5), legend_label='lhs')
# also lhs() or left_hand_side()

p2 = plot(exp3.rhs(), (x, -5, 5), color='red', legend_label='rhs')
# also rhs() or right_hand_side()

show(p1 + p2)
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The output is shown in the following screenshot:

What just happened?
We defined a simple relational expression that expresses an inequality between two 
integers. We used the SR function to create symbolic objects, rather than integer objects, 
that represent the values -5 and -3. This is important because we need to give Sage a 
symbolic expression to work with. To evaluate the truth of the inequality, we used the bool 
function. Next, we used the syntax exp1^2 to square both sides of the inequality, and used 
bool to evaluate the new inequality. This would not have worked if we had defined the 
inequality using integers.

We then created a relational symbolic expression involving the symbolic variable x. Since 
the expression involves at least one symbolic variable, Sage treats the entire expression as 
a symbolic expression. That's why we didn't need to use SR to create symbolic variables 
instead of numerical variables. We called the forget function before evaluating the 
expression, which clears any assumptions about any variables that may have been set (we'll 
cover assumptions in the next example). To help understand why this expression evaluates 
to True, we plotted each side of the expression on the same axes. The method left (and its 
synonyms lhs and left_hand_side) return the left-hand side of an expression, while the 
method right (and its synonyms rhs and right_hand_side) return the right-hand side. 
The plot shows that the right-hand side is less than the left-hand side for all values of x, so 
the expression evaluates to True. If the inequality is false for only one point in the domain, 
then it evaluates to False.
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Time for action – relational expressions with assumptions
Let's try a more complicated expression that states an inequality between two functions. 
We'll use plots to illustrate what's happening:

forget()

expr = -20 * x - 30 <= 4 * x^3 - 7 * x
print("Expression {0} is {1}".format(expr, bool(expr)))

p1 = plot(expr.left(), (x, -5, 5), legend_label='lhs')    
p2 = plot(expr.right(),(x, -5, 5), color='red', legend_label='rhs')

assume(x > 0)
print("Now assume x > 0")
print("Expression {0} is {1}".format(expr, bool(expr)))
show(p1 + p2)

The output is shown in the following screenshot:
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What just happened?
We started the example with a call to the forget function, to clear any assumptions that 
we may have made in other cells. The first expression evaluated to False, because the 
expression on the left-hand side is greater than the expression on the right-hand side over 
part of the domain. However, when we used the assume statement to assert that x>0, the 
expression evaluated to True. Looking at the plot, we can see why this is true.

Manipulating expressions
We've already seen how to square both sides of a relational expression. There are many 
ways to manipulate relational expressions with Sage.

Time for action – manipulating expressions
Enter the following code into an input cell in a worksheet, and evaluate the cell:

var('x, y')
expr = (y - 7) / (x^2 + 1) == x^3 - 5
print("Expression:")
expr.show()

print("Two ways of multiplying both sides:")
show(expr.multiply_both_sides(x^2 + 1))
show(expr * (x^2 + 1))
# also divide_both_sides

expr = expr * (x^2 + 1)

print("Two ways of adding to both sides:")
show(expr.add_to_both_sides(7))
show(expr+7)
# also subtract_from_both_sides
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The results are shown in the following screenshot:

What just happened?
This example showed how to perform one of the most basic algebraic re-arrangements: 
performing the same operation on both sides of a relation. We can do this by using methods 
of the symbolic expression object (add_to_both_sides, subtract_from_both_sides, 
multiply_both_sides, divide_both_sides). We can also use the arithmetic operators 
+, -, *, and / to perform the same operation on both sides of a relation. Note that these 
operations return a new symbolic expression, instead of modifying the existing expression. 
To modify the expression, we use the syntax expr = expr * (x^2 + 1). We can also use 
the shortcuts +=, -=, *=, and /=, just like ordinary arithmetic.

Manipulating rational functions
Sage has special operations that are useful for working with rational functions. A rational 
function is any function that can be written as the ratio of two polynomial functions. Rational 
functions often occur when using the Laplace transform to solve ordinary differential 
equations.
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Time for action – working with rational functions
Let's say you have used the Laplace transform to solve an ordinary differential equation. You 
have a rational function in the s domain, and you need to transform it back to the original 
problem domain. Here are some tools you can use to manipulate the symbolic expression to 
make it easier to perform the inverse Laplace transform:

var('s')
F(s) = (s + 1) / (s^2 * (s + 2)^3)
show(F)

print("Numerator: ")
show(F.numerator())
print("Denominator: ")
show(F.denominator())

print("Expanded:")
show(F.expand_rational())

print("Partial fraction expansion:")
pf(s) = F.partial_fraction()
show(pf)

The results are shown in the following screenshot:
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What just happened?
We defined a rational function, and demonstrated the utility methods numerator and 
denominator to obtain different parts of the expression. The method expand_rational 
separates the expression into a sum of terms by multiplying out products of sums and 
exponentials, splitting the numerator into terms, and distributing multiplication over 
addition. The method partial_fraction returns the partial fraction expansion of the 
expression. This is an extremely tedious calculation to perform by hand, and it is often the 
most time-consuming step in solving a differential equation with the Laplace transform.

Substitutions
When working with symbolic expressions, it is often necessary to substitute one variable 
or function for another. Substitution is often a critical step when deriving an equation or 
simplifying an expression.

Time for action – substituting symbols in expressions
Let's see how to perform symbolic substitutions with Sage.

var('x, y')
f(x) = 1 / x + 3 * x^2 + cos(x)
f.show()
print("Substitute for x with a keyword:")
show(f.subs(x=(7 * x)))
print("Substitute for x with a relational expression:")
show(f.substitute(x == 7 * x))

print("Substitute sine for cosine:")
show(f.substitute_function(cos, sin))
print("Substitute using a dictionary:")
show(f.substitute({1 / x: y^3, cos(x):sin(x)}))
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The results are shown in the following screenshot:

What just happened?
We used several methods to substitute both variables and functions in a callable symbolic 
expression. The methods called subs and substitute are identical. If you only need to 
replace a single symbol, a keyword argument can be used to specify which variable is to be 
replaced, and what expression should take its place. Multiple keywords can be used to make 
multiple substitutions at the same time. A relational expression can be used to replace a 
single symbol, or a sub-expression. We then used the method substitute_function to 
replace one function (sine) with another (cosine). Finally, we demonstrated that a dictionary 
can be passed to the substitute (or subs) method to specify the substitution. Each 
key:value pair in the dictionary describes one substitution. The key is the expression to 
be replaced, and the value is the replacement. Using a dictionary is very flexible, because 
you can replace a variable, a sub-expression (such as 1/x), or a function. When you use a 
dictionary to replace a function, note that you have to describe the functions as cos(x) and 
sin(x), rather than cos and sin.
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Another way to perform substitutions is with the substitute_expression method 
(and its synonym subs_expr). These methods use the subst command in Maxima, which 
performs a formal pattern substitution. The results may not be mathematically meaningful, 
so it is best to avoid these two methods if possible.

Expanding and factoring polynomials
Expanding a polynomial is the process of converting the polynomial from a product of  
sums to a sum of products.  Factoring is the opposite process, in which a sum of products  
is converted into a product of factors.

Time for action – expanding and factoring polynomials
A number of methods are especially useful when working with polynomials. Let's see how 
they work:

var('x')
exp1 = (x + 3)^3 == (x - 1)^2
show(exp1)

print("Expanded expression:")
exp2 = exp1.expand()
show(exp2)

print("Expand left-hand side only:")
show(exp1.expand('left'))
lhs = exp1.expand('left').lhs()

print("Factor LHS:")
show(lhs.factor())

print("Information about the expanded LHS:")
print("  Highest degree of x on LHS: {0}".format(lhs.degree(x)))
print("  Coefficients: {0}".format(lhs.coeffs(x)))
print("  Coefficient of x^2: {0}".format(lhs.coeff(x,2)))
print("  Trailing coefficient of LHS: {0}".format
    (lhs.trailing_coefficient(x)))
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The output is shown in the following screenshot:

What just happened?
We defined a relational symbolic expression that equates two polynomials. We used the 
expand method (with no arguments) to multiply out the polynomials on each side of the 
equality. We also used the expand method with the optional argument 'left' to expand 
only the left-hand side (you can also use 'right'). We then used the factor method 
to factor the expanded left-hand side of the expression, and recovered its original form. 
These two methods are complementary, and can be used to move back and forth between 
different representations of a polynomial.

We also demonstrated some methods that return information about polynomials. The 
method degree returns the largest exponent of the given symbol in the polynomial. The 
method coeffs (or coefficients) returns a list that contains the coefficients of each 
term in the polynomial. Each item in the list is another list. The first item is the coefficient, 
and the second item is the degree of the term with that coefficient. The coeff (or 
coefficient) method allows us to get the coefficient for a specific term. Its first argument 
specifies a symbol, and its second argument specifies the power of that symbol. You may 
need to expand or factor the polynomial before calling this method. Finally, the method 
trailing_coefficient (or trailing_coeff) was used to obtain the coefficient for the 
smallest power of x in the left-hand side.
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The factor function in Sage is used to factor both polynomials and integers. 
This behaviour is different from Mathematica, where Factor[] is used to 
factor polynomials and FactorInteger[] is used to factorize integers.

Manipulating trigonometric expressions
Expressions involving trigonometric functions can be difficult to manipulate because of the 
numerous trigonometric identities that can be used (http://en.wikipedia.org/wiki/
List_of_trigonometric_identities).  Fortunately, Sage can automate this process.

Time for action – manipulating trigonometric expressions
 Sage has several methods that are used primarily when an expression involves trigonometric 
functions.  Let's try them out.

var('x, y')
f(x, y) = sin(x) * cos(x)^3 + sin(y)^2
print("f(x, y)")
f.show()

g(x, y) = f.reduce_trig()    # also trig_reduce
print("After trig_reduce:")
g.show()

print("After expanding:")
show(g.expand_trig())       # also trig_expand

print("Simplify to get original expression:")
show(g.expand_trig().trig_simplify())    # also simplify_trig

The output is shown in the following screenshot:
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What just happened?
We demonstrated some useful methods that are specifically designed to manipulate 
expressions that involve trigonometric functions. expand_trig and reduce_trig (or 
trig_expand and trig_reduce) are complementary methods that have a similar function 
to those used in the previous example. We also introduced the method called trig_
simplify (or simplify_trig), which attempts to represent an expression in the most 
compact way.

Logarithms, rational functions, and radicals
There are special rules for manipulating logarithms and radicals, so Sage has special methods 
for expanding and simplifying expressions involving these operations.  There is also a 
separate method for simplifying rational expressions.

Time for action – simplifying expressions
In the following example, we will see how Sage can be used to simplify expressions that 
involve exponentials, logarithms, rational functions, and square roots:

var('x')

# Logs
f(x) = log(x^2 * sin(x) / sqrt(1 + x))
print("Original function:")
f.show()
print("This form is easier to work with:")
show(f.expand_log())
print("Simplify expanded form:")
show(f.expand_log().simplify_log())

# Rational functions
f(x) = (x + 1) / (x^2 + x)

print("Original function:")
f.show()
print("Simplified:")
show(f.simplify_rational())

# Radicals
f(x) = sqrt(x^2+x)/sqrt(x)
print("Original function:")
f.show()
print("Simplified:")
show(f.simplify_radical())
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The output is shown in the following screenshot:
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What just happened?
We demonstrated some special methods for expanding and simplifying expressions involving 
logs, rational functions, and radicals. The following table summarizes the methods available 
in Sage for simplifying and expanding expressions:

Method(s) Description
expand_log log_
expand

Expands logarithms of powers, logarithms of products, and logarithms 
of quotients

simplify_log

log_simplify

Attempt to simplify an expression involving logarithms

simplify_rational 
rational_simplify

Attempt to simplify an expression involving rational expressions

radical_simplify 
simplify_radical 
exp_simplify

simplify_exp

Attempt to simplify an expression involving radicals

simplify_
factorial

factorial_
simplify

Simplify an expression by combining factorials and expanding binomials 
into factorials

simplify_full

full_simplify

Applies the following operations, in order: simplify_factorial, 
simplify_trig, simplify_rational, simplify_radical, 
simplify_log, and again simplify_rational

It can be tricky to get an expression in the form that you want. You may have to experiment 
with various combinations of expanding, simplifying, and factoring an expression. Part of the 
problem is that it is difficult to quantify the "simplest" form of an expression. Most of the 
commands in Sage that factor, expand, or simplify expressions accept optional arguments 
that control how they work. Look at the documentation for each method for more 
information.

Logarithms in Sage
The log function in Sage assumes the base of the logarithm is e. If you want to 
use a different base (such as 10), use the optional argument with keyword base 
to specify the base. For example: log(x, base=10)
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Solving equations and finding roots
Solving equations is a fundamental task in mathematics. A related task is finding the values 
of the independent variables for which a function is equal to zero, which is known as finding 
its roots.

Time for action – solving equations
Enter the following code into an input cell in a worksheet, and evaluate the cell:

var('x, y')

# Solve a single equation
f(x) = x^3 - 1
solution1 = solve(f == 0, x)
for solution in solution1:
    print(solution)

# Solve a system of equations
solutions = solve([x^2 + y^2 == 1, y^2 == x^3 + x + 1], x, y,
    solution_dict=True)
print("\nSolution to system:")
for solution in solutions:
    print("x = {0}   y = {1}".format(solution[x], solution[y]))
    
# Solve an inequality
print("\nSolution to inequality:")
solve(-20 * x - 30 <= 4 * x^3 - 7 * x, x)
# Plotted in previous example

The output is shown in the following screenshot:
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What just happened?
We used the solve function to solve an equation, a system of equations, and an inequality. 
The first argument to solve is an equation or a list of equations. The next argument (or 
arguments) is the variable or variables to solve for. By default, the solutions are returned 
as a list of symbolic expressions. The optional keyword argument solution_dict=True 
causes the solutions to be returned as a list of dictionaries. Each dictionary has a key for each 
variable that was solved for, and the value for a key is the solution for that variable. Solving 
an inequality uses the same syntax. In this case, Sage was unable to find a symbolic solution 
to the inequality.

Finding roots
Finding the roots of an equation (also known as the zeros of the equation) is closely related 
to solving an equation.  Callable symbolic expressions in Sage have a special method that 
finds their roots.

Time for action – finding roots
Enter the following code into an input cell in a worksheet, and evaluate the cell:

# A problem we already know the answer to
var('a, b, c, x')
f(x) = a * x^2 + b * x + c
root_list = f.roots(x)
for root in root_list:
    print("Root with multiplicity {0}:".format(root[1]))
    show(root[0])

# Something more complicated
g(x) = expand((x^2 - 1)^3 * (x^2 + 1) * (x - 2));
g.show()
root_list = g.roots(x)
for root in root_list:
    print("Root: {0}  multiplicity: {1}".format(root[0], root[1]))
p1 = plot(g, (-2, 2))
p1.ymin(-10)
p1.show()
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The output is shown in the following screenshot:



Chapter 7

[ 193 ]

What just happened?
We started off by finding the roots for the general second-order polynomial with the roots 
method. The result is a list of tuples that represent the roots. The first item in each tuple is 
the multiplicity, and the second item is the root. We passed the variable x to roots. If this 
argument is not provided, roots formulates the solution in terms of the default variable. We 
then looked at a higher-order polynomial, which has three real roots and two complex roots. 
The analytical results are confirmed by a plot of the function that shows the real roots of the 
function. The roots method accepts several optional arguments that control its behaviour:

Keyword Default Description

explicit_solutions True If False, also include implicit roots

multiplicities True If False, return a list of roots without multiplicities

ring None If a ring is specified, the expression is converted to a polynomial 
over the ring, and the roots are found over the ring

Differential and integral calculus
Many branches of advanced mathematics are built upon a foundation of basic calculus. The 
following examples will demonstrate how to use Sage to compute limits, derivatives, and 
integrals of symbolic functions.

Time for action – calculating limits
The concept of the limit is often used to define the integral and the derivative. Run the 
following code to see how to compute limits with Sage:

var('x')

# Something easy
f(x) = 1 / x
print("Limit of 1/x as x->0+: {0}".format(limit(f, x=0, 
    dir='plus')))
print("Limit of 1/x as x->0-: {0}".format(limit(f, x=0
    dir='minus')))
p1 = plot(f, (x, -1, 1), detect_poles='show')
p1.axes_range(-1, 1, -10, 10)
p1.show()

# Something more complex
g(x)=(2 * x + 8) / (x^2 + x - 12)
g.show()
print("Limit of g(x) as x->-4: {0}".format(limit(g, x=-4)))
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h(x) = (x^2 - 4) / (x - 2)
h.show()
print("Limit of h(x) ax x->2: {0}".format(lim(h, x=2)))

The results are shown in the following screenshot:
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What just happened?
We started out by defining a simple function with a discontinuity at zero. We used the 
function limit (or lim) to compute the limit as x approaches zero. The first argument to 
limit is a function, and the second argument is the value at which to compute the limit. 
If the dir keyword argument is present, a one-sided limit is computed from either above 
or below the specified value. The values '+', 'plus', or 'right' compute the limit from 
above, while '-', 'minus'¸ or 'left' compute the limit from below. If dir is omitted, 
a two-sided limit is computed. limit also accepts the keyword argument taylor, which 
is False by default. If taylor=True, then a Taylor series is used to approximate the 
function when computing the limit. The second function we defined looks more complicated, 
although the limit calculation is straightforward. The third case demonstrated that Sage is 
able to handle indeterminate forms, where the function evaluates to 0/0 at the given point.

Derivatives
The derivative describes how a function responds to an infinitesimal change in one of its 
independent variables.  Derivatives are used to compute rates of change. 

Time for action – calculating derivatives
Run the following code to see how to compute derivatives with Sage:

var('x, y')
f(x, y) = 3 * x^4 * y^3 + 9 * y * x^2 - 4 * x + 8 * y
print("f(x,y):")
f.show()

dfdx(x, y) = diff(f, x)
print("df/dx:")
dfdx.show()
dfdy(x, y) = diff(f, y)
print("df/dy:")
dfdy.show()

print("Second derivative:")
d2fdx2(x, y) = derivative(f, x, 2)    # Synonym for diff
d2fdx2.show()

# Trigonometric functions
g(x) = sqrt(x^3 + csc(x))
print("g(x):")
g.show()
dgdx(x) = g.diff(x)
print("dg/dx:")
dgdx.show()



Making Symbolic Mathematics Easy

[ 196 ]

# Implicit differentiation
# The next line tells Sage that y is a function of x
y(x) = function('y', x)
expr = 5 * y^2 + sin(y) == x^2
print("Expression:")
expr.show()

# take the derivative and solve for dy/dx
dydx = solve(diff(expr), diff(y))
print("dy/dx:")
dydx[0].show()

The results are shown in the following screenshot:
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What just happened?
Sage is able to compute derivatives for many types of functions. You can use a function 
called diff (or differentiate or derivative), or an equivalent method with the 
same names. In the example, we used both the function form and the method form. When 
calling diff as a function, the first argument is a function which is differentiated against 
the variable specified in the second argument. If a third argument is present, it is the degree 
of the derivative (the default is one, for the first derivative). We started by defining a long 
polynomial function of two variables, x and y. We then differentiated with respect to each 
variable. We also computed the second derivative. We didn't have to change anything to 
compute the derivative of a trigonometric function. In the final part of the example, we 
demonstrated how to do implicit differentiation. The function y(x) was defined implicitly 
by a relational symbolic expression. We used the syntax y(x) = function('y', x) 
to create a new symbolic function called y that is a function of x. The first argument of 
function is a string that contains the name of the new function. The next argument is 
the argument of the symbolic function (it can have multiple arguments). We then used the 
diff function to compute the derivative of the entire expression, and then used the solve 
function to isolate the derivative.
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Integrals
Sage is able to integrate many symbolic functions that would need to be looked up in a table 
of integrals, or computed using laborious methods like integration by parts.  Sage can easily 
compute symbolic integrals that cannot be found in any book. 

Time for action – calculating integrals
Run the following example to see how to compute integrals with Sage:

var('x')
print("Elementary integrals:")

f = x^2
print(f.integrate(x))
print(integral(e^x,x))
print(integral(1/x,x))
print(integral(sinh(x), x))
print(integral(1/sqrt(1+x^2),x))

print("\nIntegration by parts:")
print(integral(e^x*cos(x), x))
print(integral(sqrt(x^2-25)/x, x))

print("\nDefinite integral:")
print(integral(1/(1+x^2), x, -1, 1))

print("\nImproper integral:")
print(integral(1/(1+x^2), x, -infinity, infinity))

print("\nDivergent integral:")
print(integral(1/(1-x), x, 1,2))    # Diverges

The results are shown in the following screenshot:
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What just happened?
The function integrate (or integral) is used to compute integrals, and the methods 
called integrate and integral do exactly the same thing. We started out by showing that 
Sage knows about lots of the elementary integrals. We then showed that Sage easily handles 
functions that need to be integrated by parts, which can be very tedious to do by hand. If 
integrate is called as a function, the first argument is the function to be integrated, and 
the second argument is the variable of integration. If there are no additional arguments, 
the integral is assumed to be indefinite. If two additional arguments are present, they 
are used as the limits of integration. We showed that Sage can compute definite integrals 
and improper integrals (one or more limits at infinity.) In the final case, we showed what 
happens when an integral diverges: Sage simply prints an appropriate error message and 
exits. integrate also accepts the optional keyword argument algorithm to choose 
the integration algorithm, which can be set to 'maxima' (the default), 'sympy', or 
'mathematica_free' (which uses http://integrals.wolfram.com/).

Series and summations
An infinite series is a summation of a sequence with an infinite number of terms. Truncated 
series are useful for approximating functions. In this section, we'll look at the capabilities 
that Sage has for computing infinite sequences and computing their sums.

Time for action – computing sums of series
Enter the following code into an input cell in a worksheet, and evaluate the cell:

var('x, n, k')

f(x) = sin(x) / x^2
f.show()

print("Power series expansion around x=1:")
s(x) = f.series(x==1, 3)
s.show()

print("Sum of alternating harmonic series:")
h(k) = (-1)^(k + 1) * 1 / k
print h.sum(k, 1, infinity)

print("Sum of binomial series:")
h(k) = binomial(n, k)
print h.sum(k, 1, infinity)

print("Sum of harmonic series:")
h(k) = 1 / k
print h.sum(k, 1, infinity)    # Diverges
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The results are shown in the following screenshot:

What just happened?
We started by defining a function and using the series method to compute a power series 
around the point x=1. The first argument to series is the point at which to create the 
series, and the second argument is the order of the computed series. Notice that Sages uses 
"big O" notation to denote the order of the series.

We then created several infinite series and computed their sums. Sage can compute the sum 
of any convergent series using the sum method. The first argument to sum is the summation 
variable, the second argument is the lower endpoint, and the third argument is the upper 
endpoint of the series. We used this method to compute the sum of the alternating 
harmonic series and the binomial series. However, we ran into trouble when we tried to 
compute the sum of the harmonic series, which is divergent. Fortunately, Sage handled this 
problem gracefully.

Taylor series
A Taylor series is a series expansion of a function around a point.  If the point is zero, the 
series is known as a Maclaurin series.  Taylor series are often used to approximate functions.

Time for action – finding Taylor series
Run the following code to see how to compute a one-dimensional Taylor series with Sage.

var('x,k')
colors=['red', 'black', 'green', 'magenta']

x1 = pi/2
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xmin = x1 - pi;    xmax = x1 + pi

f(x) = sin(x)
p1 = plot(f, (xmin, xmax), color='blue')

Taylor_series_3(x) = f.taylor(x, x1, 3)
p1 += plot(Taylor_series_3, (xmin, xmax), legend_label='3',
    color='red')

Taylor_series_5(x) = f.taylor(x, x1, 5)
p1 += plot(Taylor_series_5, (xmin, xmax), legend_label='5',
    color='green')

Taylor_series_7(x) = f.taylor(x, x1, 7)
p1 += plot(Taylor_series_7, (xmin, xmax), legend_label='7',
    color='black')

Taylor_series_7.show()
show(p1)

The results are shown in the following screenshot:
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What just happened?
The Taylor series expansion approximates the behaviour of a function in the vicinity of a 
point. With an infinite number of terms, the series should match the function exactly in a 
small region near the point. However, the Taylor series provides a good approximation with 
only a finite number of terms. We used Sage to create a plot that illustrates how the Taylor 
series approaches the function sin(x) near the point pi/2 as the number of terms in the series 
increases.

We used the taylor method to create the Taylor series. The first argument is the 
independent variable, the second argument is the point, and the third argument is the order 
of the series. In this case, we constructed Taylor series of order 3, 5, and 7 and plotted them 
on the same axes with the sine function, in the vicinity of the point pi/2. We also displayed 
the seventh-order Taylor series.

Have a go hero – Taylor series
Compute the Taylor series for the exp function about the point x=1. Use a plot to see how 
well the Taylor series approximates the function as you increase the order of the Taylor 
series.

Laplace transforms
The Laplace transform is defined as the integral:

This is for functions that are defined for t ≥ 0. The Laplace transform is widely used for 
solving ordinary differential equations. It has applications in the theory of electrical circuits, 
control systems, and communication systems. If you need to learn or review the basics of 
Laplace transforms, you may want to consult Shaum's Outline of Laplace Transforms by 
Murray Spiegel (McGraw-Hill, 1965).

Time for action – computing Laplace transforms
Evaluate the following code to see how to compute Laplace transforms with Sage:

var('t, a, k, s')
print("Elementary transform:")
f(t) = sin(k * t)
F(s) = f.laplace(t, s)
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F.show()

print("Inverse transform:")
G(s) = 1 / ((s - 1) * (s + 2) * (s + 4))
G.show()
g(t) = G.inverse_laplace(s, t)
g.show()

The results are shown in the following screenshot:

What just happened?
We used Sage to compute the Laplace transform and the inverse Laplace transform. 
Normally, finding the Laplace transform would have required looking up the elementary 
forms in a table. Computing the inverse transform requires performing a partial fraction 
expansion and then finding the resulting terms in a table. The process is much faster with 
Sage, and Sage can compute transforms that cannot practically be computed by hand. We 
used the laplace method to compute the forward transform, and inverse_laplace to 
compute the reverse transform. Each of these methods computes the transform with respect 
to a variable (the first argument) using a transform parameter (the second argument.) It's 
easier to think of the first argument as the variable you are transforming from, and the 
second as the variable you are transforming to.
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Solving ordinary differential equations
Ordinary differential equations (ODEs) are widely used in applied mathematics, engineering, 
and the sciences. Sage enables you to find exact solutions to many ODEs.

Time for action – solving an ordinary differential equation
The following code demonstrates how to solve ordinary differential equations with Sage:

var('x, x1, x2, t')

# Finding a general solution
print("General solution:")
y = function('y', x)
ode = 4*diff(y, x, 2) + 36 * y == csc(3 * x)
y(x) = desolve(ode, y)
y.show()

# Solving an initial-value problem
print("Solving an initial-value problem:")
y = function('y', x)
ode = diff(y, x, 2) - 4 * diff(y, x) + 13 * y == 0
y(x) = desolve(ode, y, [0, -1, 2], ivar=x)
y.show()

# Solving a system of first-order equations
print("Solving a system of first-order ODEs:")
x1 = function('x1', t)
x2 = function('x2', t)
ode1 = 2 * diff(x1, t) + diff(x2, t) - x2 == t
ode2 = diff(x1, t) + diff(x2, t) == t^2
y1, y2 = desolve_system([ode1, ode2], [x1, x2], 
    ics=[0, 0, 0])
y1.show()
y2.show()
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The results are shown in the following screenshot:

What just happened?
The first step towards solving a differential equation with Sage is to create a symbolic 
function that represents the solution. In this example, we used function to create a 
symbolic function called y that is a function of x. We then created a relational symbolic 
expression called ode that implicitly defines y(x). Once the problem is set up, it is simple 
to call the desolve function to obtain the solution. desolve requires two arguments: the 
relational expression that defines the differential equation, and the dependent variable. 
It returns an expression for the general solution of the ODE. If the function has more than 
one independent variable, then the independent variable must be specified using the ivar 
keyword.

In the next part of the example, we used desolve to solve an initial-value problem with a 
second-order ODE. The initial values of the independent variable, the dependent variable, 
and the first derivative of the dependent variable are used to form a list (in this order), 
which was passed as an argument to desolve. Sage solves the initial-value problem and 
returns the solution as a symbolic expression. In the third part of the example, we used 
desolve_system to solve a system of two first-order ODEs. desolve_system can solve 
systems of many first-order differential equations. Since a higher-order ODE can be written 
as a system of first-order ODEs, this does not limit the usefulness of desolve_system. We 
defined two symbolic functions, x1 and x2, which are functions of t. The first argument 
of desolve_system is a list of differential equations, and the second argument is a list of 
dependent variables to solve for. We used the optional argument with keyword ics to set 
initial conditions for the independent variable (t), x1, and x2, respectively. The result is a 
pair of symbolic expressions for x1 and x2. In the next chapter, we'll see how Sage can help 
us solve differential equations numerically.
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Summary
We covered a lot of material in this chapter. Sage makes it fast and easy to do tedious 
symbolic tasks like computing integrals and Laplace transforms for complicated functions. In 
fact, the hardest part is making sure that you have defined your functions and expressions 
correctly.

Specifically, we covered:

 � Working with symbolic expressions

 � Manipulating symbolic expressions to put them in the form you want

 � Performing basic calculus operations like computing limits, derivatives, and integrals

 � Finding series representations, and computing their sums

 � Computing Laplace transforms

 � Finding exact solutions to ordinary differential equations

Sage has powerful symbolic capabilities. However, many real-world problems simply 
don't have analytical solutions. In other cases, Sage might not be able to find an analytical 
solution, even when it exists—software is never perfect! Some symbolic operations may 
consume so much memory or CPU time that they become impractical. Integrals, systems of 
equations, and differential equations often require numerical methods of solution. Sage also 
has powerful numerical capabilities, which we'll explore in the next chapter.



8
Solving Problems Numerically

The previous chapter described how to use Sage to solve many difficult problems in symbolic 
mathematics. While this capability is very useful, many real-world problems do not lend 
themselves to symbolic computation. Some differential equations don't have closed-form 
solutions, and not every integral can be computed in terms of elementary functions. In other 
cases, a function value may have to be computed from a look-up table that was derived 
from experimental results, which precludes symbolic computation. In this chapter, we will 
demonstrate some of the tools in Sage that allow us to solve problems numerically.

We will learn how to:

 � Find the roots of an equation

 � Compute integrals and derivatives numerically

 � Find minima and maxima of functions

 � Compute discrete Fourier transforms, and apply window functions

 � Numerically solve an ordinary differential equation (ODE), and systems of ODEs

 � Use optimization techniques to fit curves and find minima

 � Explore the probability tools in Sage

Let's get started!
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Sage and NumPy
One potential source of confusion in this chapter is that Sage incorporates functions from 
NumPy, Maxima, the GNU Scientific Library (GSL), and other sources. Whenever possible, we 
will use functions in Sage. However, sometimes we need to go to NumPy to perform a particular 
calculation. To minimize the possibility of confusion, do not use the syntax from numpy import 
*. This imports every name from NumPy into Sage, overriding some pre-defined Sage functions 
and objects. Use the syntax shown in the examples, which keeps NumPy functions separate 
from Sage functions.

Solving equations and finding roots numerically
We've already looked at solving systems of linear equations in Chapter 5, when we learned 
about linear algebra. We created matrices using integers or symbols, but you can just as 
easily create vectors and matrices with real numbers or floating-point numbers. Chapter 5 
also covered some numerical operations on matrices, such as computing the QR factorization 
and singular value decomposition. Now, we will learn how to find roots of equations 
numerically in Sage.

Time for action – finding roots of a polynomial
Let's start by finding the roots of a polynomial.

g(x) = expand((x^2 - 1)^3 * (x^2 + 1) * (x - 2));
g.show()

print("Root at x = {0}".format(g.find_root(-2,2)))
print("Root at x = {0}".format(g.find_root(-2,0)))
print("Root at x = {0}".format(g.find_root(0.5,1.5)))

plt = plot(g, (x, -1.2, 2.01))
show(plt, figsize=(4, 3))
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The output is shown in the following screenshot:

What just happened?
We defined a fairly complicated polynomial equation with a number of real and imaginary 
roots. We can see that the function will have real roots at 1, -1, and 2 simply by looking at 
the factored form of the function, which can be confirmed by looking at the plot. When 
trying out a new numerical method, it's always a good idea to start with a problem that you 
know the answer to, so that you can evaluate the accuracy and reliability of the method. The 
find_root function is a relatively simple way to find a single root within a given domain, 
specified by the given end points. In the first call, we gave find_root a wide span that 
contained three roots, and it happened to find the root at x=2. In the next two calls, we used 
a narrower span that only included a single root in each span. Finding roots numerically is 
relatively simple, but you have to understand the equation you are working with to find the 
correct root.
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Finding minima and maxima of functions
Sometimes, we are interested in the minima or maxima of a function, rather than the zero 
crossings. For example, an engineer might define a function that estimates the cost of a 
product. Finding the minimum of this function will help the engineer design a product with 
the lowest cost. Conversely, one might want to maximize a function that represents the 
performance of a system. The problem of finding minima and maxima is a form of numerical 
optimization, which we'll cover later in the chapter.

Time for action – minimizing a function of one variable
We'll define another function of one variable and let Sage find the minimum:

var('x')
f = lambda x: 3 * x^3 - 7 * x^2 + 2

minval, x_min = find_minimum_on_interval(f, 0, 3)
print("Min on interval [0,3]: f({0}) = {1}".format(x_min, minval))

maxval, x_max = find_maximum_on_interval(f, -1, 1)
print("Max on interval [-1,1]: f({0}) = {1}".format(x_max, maxval))

f_plot = plot(f, (x, -1, 2.5))
min_point = point((x_min, minval), color='red', size=50)
max_point = point((x_max, maxval), color='black', size=50)
show(f_plot + min_point + max_point, figsize=(4, 4))

The results are shown in the following screenshot:
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What just happened?
We defined a function that represents a cubic polynomial using the lambda construct. Recall 
from Chapter 4 that lambda is a shorthand way of defining a Python function. We used a 
Python function, rather than a callable symbolic expression, because numerical methods are 
designed to work with functions that return real numbers. The functions find_minimum_
on_interval and find_maximum_on_interval work in a similar way to find_root. 
Each function accepts the endpoints of an interval and finds the minimum or maximum of 
the function on that interval, and returns a tuple that contains the (x,y) coordinates of the 
minimum or maximum. These functions also accept the keyword argument tol to specify 
the tolerance determines when the algorithm has converged on a maximum or minimum 
(the default is 1.48e-8). The keyword argument maxfun sets a limit on the maximum number 
of function evaluations (default 500) that will be used to find the point of interest. Finally, we 
used the point graphics function to illustrate the points that we found.

Functions of more than one variable
Finding minima of a function of multiple variables is a more challenging problem because 
each independent variable adds a new dimension to the search space. Sage uses a more 
sophisticated function for minimizing functions of two or more variables.

Time for action – minimizing a function of several variables
Now, we'll minimize a function of two variables, and use a contour plot to illustrate the 
results:

var('x, y')
f = 100 * (y - x^2)^2 + (1 - x)^2 + 100 * (2 - y^2)^2 + (1 - y)^2
min = minimize(f, [0,0], disp=0)

plt = contour_plot(f, (x, -0.3, 2), (y, -0.3, 2), fill=False,
    cmap='hsv', labels=True)

pt = point(min, color='red', size=50)
show(plt+pt, aspect_ratio=1, figsize=(4, 4))
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The plot is shown below:

What just happened?
We started out by defining a callable symbolic expression that represents a polynomial 
function of two variables. We then used minimize to find a minimum of the function 
near the point (0,0). minimize works a little differently from the functions in the previous 
examples. Rather than specifying limits on the domain of the problem, you need to pass 
an initial guess to minimize so that it knows where to start searching for a minimum. Like 
the functions find_root and find_minimum_on_interval, minimize will only find a 
minimum in the vicinity of its starting point (if it exists), which is known as a local minimum. 
We used the keyword argument disp=0 to prevent the function from displaying text that 
summarizes its solution process.

We will pause here to clarify the concept of local and global minima. A local minimum is the 
lowest value that a function takes on over a portion of its domain. A function can have many 
local minima. A function's global minimum is the lowest value of the function over its entire 
domain. There is no general algorithm that can find the global minimum of an arbitrary 
function. Therefore, minimize (and all the other minimum-finding functions in Sage) are 
only guaranteed to find a local minimum (assuming one exists), which may happen to also be 
the global minimum.
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Minimizing a function of several variables is significantly more complicated than minimizing a 
function of one variable. minimize is actually an interface to several minimization algorithms. 
If the function to be minimized is symbolic, the default algorithm is the Broyden-Fletcher-
Goldfarb-Shannon (bfgs) algorithm. If the function is a Python function, the simplex algorithm 
is the default. The following table summarizes the options that can be passed to minimize:

Keyword Description

disp 0 disables text output (default is 1)

algorithm A string value that specifies algorithm:
'default' chooses default (see text)
'simplex' chooses the simplex method
'powell' chooses Powell's conjugate gradient descent method
'bfgs' chooses Broyden-Fletcher-Goldfarb-Shannon (bfgs)
'cg' chooses conjugate-gradient (requires gradient)
'ncg' chooses Newton-conjugate-gradient (requires gradient and Hessian)

gradient Function that computes the gradient

hessian Function that computes the Hessian

If the function to be minimized is symbolic, you do not have to provide the Hessian or the 
gradient because Sage will compute them symbolically. If the function to be minimized is 
a Python function and you choose an algorithm that requires the Hessian or the gradient, 
you will have to provide functions that compute the Hessian and/or the gradient. The 
Sage reference manual has an example that demonstrates how to minimize a Python 
function with an algorithm that requires a gradient: http://www.sagemath.org/doc/
reference/sage/numerical/optimize.html

Numerical approximation of derivatives
In the previous chapter, we learned how to use Sage to compute derivatives of symbolic 
functions. Now, we will learn how to approximate derivatives numerically.

Time for action – approximating derivatives with differences
Let's start by defining a function of one variable. We'll use NumPy to estimate the derivative 
numerically, and we'll plot the estimate with matplotlib.

import numpy as np
import matplotlib.pyplot as plt

import matplotlib as mpl
mpl.rc('font', size=10)      # set default font size
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dx = 0.01
x = np.arange(0, 2, dx)
f = power(x, 3)
dfdx = 3*power(x, 2)

plt.figure(figsize=(4, 4))
plt.plot(x, f, label='f(x)')
plt.plot(x, dfdx, color='red', label='Analytical df/dx')

df = np.diff(f)
plt.plot(x[:-1], df/dx, color='black', label='Numerical df/dx')

plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend(loc='best')
plt.savefig('diff.png')
plt.close()

The output is shown in the following screenshot:
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What just happened?
We defined a simple polynomial, f(x)=x3. Its derivative can easily be calculated in closed form: 
f'(x)=3x2. We defined a NumPy array of x values and computed the value of the function at 
each point. We then used the diff function from NumPy to compute the forward finite 
difference at each point in the domain. The forward finite difference is defined as:

diff accepts three arguments. The first is a NumPy array containing values of the function. 
The optional keyword argument n specifies which order difference to take (the default is 
one, which approximates the first derivative). The optional keyword argument axis specifies 
which axis of the array to use (if the array has more than one dimension). This keyword 
allows diff to be used to approximate a partial derivative of a function of several variables. 
To estimate the derivative, the finite difference at each point is divided by the distance 
between points, which we have defined as dx. We then plotted the numerical estimate of 
the derivative along with the analytical derivative and verified that they match.

In this example, we evaluated a new numerical method by solving a problem with a known 
answer. If used incorrectly, a numerical technique may give an invalid result without any 
warning. It's important to replicate a known result to make sure you are using the method 
correctly.

Computing gradients
For functions of multiple variables, we can use partial derivatives to compute the derivative 
with respect to one of the independent variables. The gradient gives the direction of 
steepest descent at any given point in the domain.

Time for action – computing gradients
Enter the following code into a cell in a Sage worksheet, and evaluate it:

import numpy as np
import matplotlib.pyplot as plt

def func(x,y):
    return exp(-1 / 3 * x^3 + x - y^2)
    
dx = 0.2; dy = 0.2

grid = np.ogrid[-2 : 2 + dx : dx, -2 : 2 + dx : dx]
xlen = max(grid[0].shape)
ylen = max(grid[1].shape)

f = np.empty([xlen, ylen])
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for i in range(xlen):
    for j in range(ylen):
        f[i, j] = func(grid[0][i], grid[1][0,j])
        
plt.figure(figsize=(5, 5))
c = plt.contour(grid[0].flatten(), grid[1].flatten(), f)
plt.clabel(c)         # label contours
plt.axis('scaled')    # aspect ratio=1.0

# Compute and plot gradient of function
grad = np.gradient(f, dx, dy)
plt.quiver(grid[0].flatten(), grid[1].flatten(), grad[0], grad[1])

plt.savefig('contour.png')
plt.close()

A contour plot of the function is shown below, with overlaid vectors representing 
the gradient:
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What just happened?
Computing the gradient is actually the easiest aspect of this example. Since we are using 
NumPy, we first need to define a two-dimensional grid of points. We use the ogrid function 
from NumPy, which does exactly that. We then used two nested for loops to compute the 
value of the function at each point in the grid. We used the contour function from Pyplot to 
display the level contours of the function, and used the gradient function to compute the 
gradient at each point of the grid. gradient is very similar to diff, except that it expects 
an N-dimensional array as its first argument. The next N arguments specify the grid spacing 
for each dimension of the array. Finally, we used the quiver plotting function from Pyplot 
to display a vector that represents the gradient at each point of the grid. We can see that the 
gradient is normal to the contour lines at each point.

Numerical integration
Numerical integration (known in older literature as "quadrature") is another fundamental 
operation in numerical mathematics.

Time for action – numerical integration
Let's start by using Sage functions to numerically integrate a symbolic function of one 
variable:

var('x')
f(x) = e^x * cos(x)
f.show()

a = 0
b = 8
p = plot(f, (x, a, b))
p.show(figsize=(4, 3))

print("Integral of f(x) from {0} to {1}:".format(a,b))
print("  Analytical definite integral: {0}"
    .format(f.integral(x, a, b).n()))

integral_value, tolerance, num_evals, error_code = \
    f.nintegral(x, a, b)
    
print("  Using nintegral: {0}".format(integral_value))
# also nintegrate

integral_value, tolerance = numerical_integral(f, a, b)
print("  Using numerical_integral: {0}".format(integral_value))
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A plot of the function, along with the integration results, is shown below:

What just happened?
We defined a symbolic function f(x) and defined an interval on which to compute the definite 
integral. As a point of reference, we used the symbolic integration method integral 
with limits to compute the definite integral symbolically. We used the method n (which is 
a shortcut for numerical_approx) to convert the symbolic result into a decimal number for 
comparison to the results of numerical integration.

Sage has two types of numerical integration. We used the numerical integration method 
nintegral (also called nintegrate) to perform the integration numerically. These 
methods call Maxima to perform the computation, and return a tuple with four elements:

 � Approximation to the integral (float)

 � Estimated absolute error of the approximation (float)

 � The number of integrand evaluations (integer)

 � An error code (integer)
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We repeated the calculation with numerical_integral, which uses the GNU Scientific 
Library. This function returns a tuple that contains the integral value and an estimate of the 
error. numerical_integral can be used to integrate functions that are defined as callable 
symbolic expressions or as Python functions. Both methods of numerical integration use 
algorithms that automatically adapt to the function that is being integrated. We can see that 
all three types of integration obtain equivalent results.

Numerical integration with NumPy
Sometimes, we may need to integrate a function that cannot be defined by a Python 
function or a symbolic expression. This situation may occur if the function values come 
from experimental measurements or simulation results. For example, if we have an array 
of flux values over time, we can integrate the flux over time to obtain the total amount of 
substance. If the values of a function are stored in an array, we can use NumPy to perform 
the integration.

Time for action – numerical integration with NumPy
We'll repeat the calculation from the previous example with NumPy. Execute the following 
code and see what happens:

import numpy as np
def func(x):
    return np.exp(x) * np.cos(x)

a=0; b=8
dx = 0.1

for i in range(4):
    x = np.arange(a, b + dx, dx)
    f = func(x)

    print("dx = {0}  integral = {1}".format(dx, np.trapz(f,x)))
    dx = dx / 10

The output is shown in the following screenshot:
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What just happened?
We defined a Python function that represents the mathematical function used in the 
previous example. We then used a for loop to numerically integrate the function with 
trapz, using different spacing of the independent variable x. The first argument to trapz is 
a NumPy array that contains the values of the function to be integrated. The x values can be 
specified as either an array of values (which do not have to be uniformly spaced) or a single 
scalar value dx that defines the spacing between points. If the array containing the function 
values has more than one dimension, the axis keyword can be used to specify the axis of 
integration.

Remember that all NumPy functions operate on arrays of discrete points. The trapz 
function is a very simple integrator that uses the trapezoidal rule to integrate a sequence of 
points. Unlike the integration functions in Sage, trapz cannot adapt to the function being 
integrated. To demonstrate this, we performed the integral with four different step sizes. You 
can see that the precision of the integral increases as the step size decreases.

Discrete Fourier transforms
The Fourier transform is used in optics, acoustics, radio engineering, and many other fields. 
It is most often used to transform a time-domain signal into the frequency domain so that 
its frequency components can be analysed. Because most applications involve signals that 
are sampled at discrete times, the discrete Fourier transform (DFT) is an important part of 
numerical computing.

Time for action – computing discrete Fourier transforms
Since the discrete Fourier transform operates on an array of samples from a signal, we'll use 
the signal-processing tools in NumPy:

import numpy as np
import matplotlib.pyplot as plt

dt = 0.01
t = np.arange(-10, 10, dt)
f = np.sinc(t)

plt.figure(figsize=(6, 3))
plt.plot(t, f)
plt.savefig('f.png')
plt.close()

fourier_transform = np.fft.fft(f)
spectrum = np.absolute(fourier_transform)
phase = np.angle(fourier_transform)
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freq = np.fft.fftfreq(t.shape[-1], d=dt)

spectrum = np.fft.fftshift(spectrum)
phase = np.fft.fftshift(phase)
freq = np.fft.fftshift(freq)

plt.figure(figsize=(6,3))
plt.plot(freq, spectrum)
plt.title('Magnitude')
plt.axis([-1.5, 1.5, spectrum.min(),spectrum.max()])
plt.savefig('spectrum.png')

plt.figure(figsize=(6,3))
plt.plot(freq, phase)
plt.title('Phase')
plt.axis([-1.5,1.5, phase.min(),phase.max()])
plt.savefig('phase.png')

plt.close()

The following plots show the function, its magnitude spectrum, and its phase spectrum:
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What just happened?
We first generated a time-domain signal to work with. The arange function was used 
to create a series of sample times, and the sinc function was used to compute the sinc 
function at those times. The first plot shows the time-domain function that we are going to 
analyse. We then used the fft function to compute the Fourier transform, which returns a 
NumPy array of complex values. It is customary to plot the frequency spectrum as magnitude 
and phase, so we used the absolute function to get the magnitude and the angle function 
to get the phase. The fftfreq function accepts an array of sample times and the time step, 
and uses them to compute the frequency values for plotting the frequency spectrum. The 
fftshift function was used to shift the magnitude and phase arrays and the frequency 
array so that the zero-frequency point was in the centre of the array. This is helpful for 
making plots.
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Window functions
The sinc function that we used in the previous example is actually an approximation to the 
true sinc function, which extends from negative infinity to positive infinity. Because we used 
finite data to compute the Fourier transform, we introduced a distortion into the frequency 
spectrum. One way of reducing this distortion is by applying a window function to the signal 
before performing the transform. All the common window functions are built into NumPy.

Time for action – plotting window functions
Let's plot the window functions available in NumPy:

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(6,4))
plt.plot(np.bartlett(51), label="Bartlett")
plt.plot(np.blackman(51), label="Blackman")
plt.plot(np.hamming(51), label="Hamming")
plt.plot(np.hanning(51), label="Hanning")
plt.plot(np.kaiser(51,3), label="Kaiser")
plt.legend(loc='best')
plt.savefig('window_functions.png')
plt.close()

The output is shown below:
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What just happened?
Calling the function hamming(51) returns an array containing 51 samples of the Hamming 
window function. The sample at the centre of the array corresponds to the centre of the 
window, where it reaches the value of 1. The other window functions work the same way, 
except that the Kaiser window also requires a shape parameter.

Have a go hero – using window functions
Apply some of the window functions to the sinc function in the example and compute the 
DFT to see how the window functions affect the frequency spectrum.

HINT: Generate an array of samples of the window function that has the same number 
of samples as the array containing the sinc function, and multiply the two arrays before 
performing the DFT.

Solving ordinary differential equations
In the previous chapter, we looked at some tools for finding exact solutions to ordinary 
differential equations (ODEs). Sometimes, finding an exact solution is impossible or 
impractical. Sage also has a powerful set of tools for solving ordinary differential equations 
numerically.

Time for action – solving a first-order ODE
Let's start by solving a single, first-order, ordinary differential equation. We'll compare the 
exact solution to the numerical solution:

var('x, y')
y = function('y', x)
ode = diff(y, x) + 1 / x * y == x * y^2
sol = desolve(ode, y, ics=[10, 1])
sol.show()
exact_plot = plot(sol, (x, 0.1, 10), color='red', marker='.')

rk4_plot = desolve_rk4(ode, y, ics=[10, 1], output='slope_field',
    end_points=[0, 10])
show(exact_plot + rk4_plot, figsize=(4, 3))

The symbolic solution is shown in the following screenshot, and its graph is plotted on the 
same axes as the numerical solution and the slope field:
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What just happened?
As we explained in the previous chapter, we defined a symbolic ordinary differential 
equation and found the solution using desolve. The warning messages occur during the 
calculation of the slope field, and can be safely ignored. We then used the desolve_rk4 
function to compute the solution numerically. As its name implies, the functions use the 
4th order Runge-Kutta method to integrate a single first-order ordinary differential equation 
numerically (the function rk from Maxima's dynamics package is used to perform the 
integration). desolve_rk4 accepts the following keyword arguments:

Keyword Default Description
ics None List of initial conditions for each variable.
ivar None Independent variable. Only required if there is more than one choice 

for the independent variable.
end_
points

None The end points of the interval of integration.
If end_points is a or [a], integrate between min(ics[0],a) 
and max(ics[0],a).
If end_points is None, then end_points=ics[0]+10.
If end_points is [a,b] integrate between min(ics[0],a) 
and max(ics[0],b).
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Keyword Default Description
step 0.1 Step size for the independent variable.
output 'list' 'list' returns a list of lists of [x,y] values.

'plot' returns a plot of the solution as a graphics object.

'slope_field' returns a plot of the solution and the slope field 
as a graphics object.

Solving a system of ODEs
Sage also has tools to solve systems of ordinary differential equations numerically. We can 
use this capability to solve any higher-order ODE, since any higher-order ODE can be broken 
down into a system of first-order differential equations. For the next two examples, we will 
look at the van der Pol oscillator:

It can be written in terms of two first-order ODEs:

Time for action – solving a higher-order ODE
Let's see if Sage can find a symbolic solution:

var('t')
x = function('x', t)
y = function('y', t)
u = 1.0

de1 = diff(x,t) - y == 0
de2 = diff(y,t) + x - u * y * (1 - x^2) == 0

Van_der_Pol = [de1, de2]
desolve_system(Van_der_Pol, [x, y], ics=[0, 2, 0])
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If you run this code, Sage will return an error. It is unable to find a symbolic solution. Now, 
let's try to solve it numerically:

var('t, x, y')
u = 1.0

Van_der_Pol = [y, -x + u * y * (1 - x^2)]
sol = desolve_system_rk4(Van_der_Pol, [x, y], ivar=t,
    ics=[0, 2, 0], end_points=[0, 20])
t = [i for i, j, k in sol]
x_sol = [j for i, j, k in sol]
y_sol = [k for i, j, k in sol]

# Plot results
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 3))
plt.plot(t, x_sol)
plt.xlabel('t')
plt.ylabel('y(t)')
plt.subplots_adjust(bottom=0.15)
plt.savefig('Van_der_Pol_rk4.png')
plt.close()

# Limit cycle in the phase plane
plt.figure(figsize=(4, 4))
plt.plot(x_sol, y_sol)
plt.axis('scaled')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('Van_der_Pol_rk4_phase.png')
plt.close()



Solving Problems Numerically

[ 228 ]

The results should look like this:
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What just happened?
We used the function desolve_system_rk4 to solve the system. This function operates 
just like desolve_rk4, except that it accepts a list of differential equations as its first 
argument (both of these functions utilize the rk function from Maxima to compute the 
solution.). An initial condition must also be provided for each variable—three, in this case. 
We had to use the ivar keyword to specify that t is the independent variable. The function 
returns the solution as a list of lists:

[[0, 2, 0],
[0.1, 1.99093050354, -0.172638259608], 
[0.2, 1.96694849768, -0.300697407982],
…
[0.4, 1.88817476497, -0.47282676678]]

We used list comprehensions to separate the solutions for x, y, and t into three different 
lists. Since we are working with lists of points, we used matplotlib for plotting. The first plot 
is the time-varying solution to the van der Pol differential equation. Note that we used the 
matplotlib function subplots_adjust to ensure that the label for the t axis is visible. For 
certain combinations of figure size, font size, and plot size you will occasionally have to use 
subplots_adjust to make a figure look right. In the second plot, we plotted x vs. y to 
create a phase-plane plot. This is known as the limit cycle. Try varying the value of u in the 
range of 0 to 5 to see how it impacts the solution.

Solving the system using the GNU Scientific Library
Sage is a collection of tools. You often have a choice of several methods for accomplishing the 
same task. While this can be confusing, one algorithm may be able to solve a problem that 
another one couldn't. For solving ODEs, Sage also allows you to access the ODE solver from the 
GNU Scientific Library (GSL). This solver gives you access to more solution algorithms.

Time for action – alternative method of solving a system of ODEs
We'll solve the same problem again, using the numerical ODE solver from the GSL.

def f_1(t, y, params):
    return [y[1], -y[0] - params[0] * y[1] * (y[0]**2 - 1.0)]

def j_1(t, y, params):
    return [ [0.0, 1.0], [-2.0 * params[0] * y[0] * y[1] - 1.0,
    -params[0] * (y[0] * y[0] - 1.0)] ]

T = ode_solver()
T.algorithm = "rk8pd"
T.function = f_1
T.jacobian = j_1
T.ode_solve(y_0=[2, 0], t_span=[0, 20], params=[1.0], 
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    num_points=1000)
interpolator = T.interpolate_solution()
plot(interpolator, (0, 20), axes_labels=('t','y'), figsize=(4,3))

The output is shown in the following screenshot:

What just happened?
This solver has a very different interface from the one in the previous example. The ordinary 
differential equations are defined by a Python function called f_1. The first argument to this 
function is the independent variable, the second is a list of dependent variables, and the 
third is a list of parameters. y[0] represents the variable y, and y[1] represents x. In this case, 
the parameter list has only one element, which is the value of u. We used similar syntax 
to define the Jacobian function, j_1. The Jacobian is only required for certain integration 
algorithms; see the ode_solver documentation for more details.

The code T = ode_solver() creates a solver object. We used the attribute algorithm 
to choose the rk8pd (Runge-Kutta Prince-Dormand 8,9) algorithm, and used the attributes 
function and jacobian to pass in the functions we just defined. We called the method 
ode_solve to solve the system, which accepts the following arguments:

Keyword Description
y_0 List of initial conditions. Note that y[0] is y and y[1] is x, which is backwards 

compared to the previous example!
t_span Domain of solution, specified as a list: [start, stop].
params List of parameter values (in this case, u=1).
num_points Number of points for the solution.
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Finally, we used the method interpolate_solution to obtain a spline object that 
contains the solution. We used the plot function to plot the solution. The ode_solver 
object is very powerful, and it is described in detail in the Sage documentation.

Numerical optimization
We briefly touched on numerical optimization in the section on finding minimum values of 
functions. In general, optimization is a process of choosing the best element from a set of 
possible elements. The criteria for choosing the "best" element are quantified in the form of 
an objective function that is to be minimized or maximized. The elements may be discrete 
elements, or they may take on a continuous range of values. In general, optimization is a very 
difficult problem that can be approached in many different ways. We will focus on the case 
in which we seek to minimize a scalar-valued objective function by choosing the values of 
variables from a continuous set. The values of the variables may be limited by constraints. 
Optimization is of great importance in science and engineering, where it is used for fitting 
functions to data sets and finding optimal combinations of design parameters.

Time for action – linear programming
First, we'll solve a linear programming problem with Sage. Although it is limited to solving 
problems in which the objective function and the constraints are linear functions of the 
variables, linear programming is widely taught in applied mathematics courses and has many 
practical applications. Let's see how Sage can help us visualize what's going on in an example 
problem from the Sage documentation. The problem to be solved is as follows:

Minimize –4x1–5x2  subject to the following linear inequality constraints:

2x1+x2≤3

x1+2x2≤3

x1≥0

x2≥0

var('x, y')
c=vector(RDF,[-4, -5])
G=matrix(RDF,[[2, 1], [1, 2], [-1, 0], [0, -1]])
h=vector(RDF,[3, 3, 0, 0])

sol=linear_program(c, G, h)
print("Minimum: {0}".format(sol['x']))
print("Slack variables: {0}" .format(sol['s']))
c1_plot = implicit_plot(2 * x + y == 3, (x,0,2), (y,0,2))
c2_plot = implicit_plot(x + 2 * y == 3, (x,0,2), (y,0,2))
c3_plot = implicit_plot(x == 0, (x,0,2), (y,0,2))
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c4_plot = implicit_plot(y == 0, (x,0,2), (y,0,2))

min_plot = point(sol['x'], color='red', size=50)

rp = region_plot([2 * x + y <= 3, x + 2 * y <= 3, x >= 0,  y >= 0],
    (x,0,2), (y,0,2))
    
g = graphics_array([c1_plot+c2_plot+c3_plot+c4_plot+min_plot,
    rp], 1, 2)
g.show(aspect_ratio=1)

The output is shown below:

What just happened?
A linear program consists of a linear function to be minimized or maximized, and a set of 
linear constraints. In this case, there are only two variables, which makes it easier to visualize 
what's going on. We specified the function as a vector of coefficients called c. We created 
a matrix G that represents the left-hand side of the constraints. Each row in the matrix is a 
vector of coefficients for that constraint. Note that linear_program expects all constraints 
to specified as lhs < rhs, so we have to enter the third and fourth constraints with negative 
coefficients. The right-hand sides of the constraints were used to form another vector called 
h. The two vectors and the matrix were passed as arguments to linear_program, which 
returns the solution as a dictionary. The dictionary contains information about the solution, 
the minimized parameters, the slack variables, and the solution to the dual program (for 
more about slack variables and the dual program, see http://en.wikipedia.org/
wiki/Linear_programming or an optimization textbook). linear_program accepts 
an optional argument with the keyword solver, which determines which solver is used. 
If the value is None (the default), the solver from the Python package CVXOPT is used. If 
solver='glpk', the solver from the GNU Linear Programming Kit (GLPK) is used.
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The plotting features of Sage can help us visualize the problem and the solution. We 
formulated the constraints as equalities, and utilized the implicit_plot function to plot 
the resulting lines in the x-y plane. We used the point function to add a dot to indicate the 
location of the minimum. We also used region_plot to plot the region defined by the 
inequalities. Going further, we could use a contour plot to show how the objective function 
varies over the domain.

Fitting a function to a noisy data set
Fitting a function to data is one of the most common applications of numerical optimization 
for engineers and scientists. This is often referred to as "least squares fitting," because an 
optimal fit is achieved when the sum of squared errors is minimized.

Time for action – least squares fitting
The following is adapted from an example in the Sage documentation:

var('a, b, c, x')
set_random_seed(0.0)
data = [(i, 1.2 * sin(0.5 * i - 0.2) + 0.1 *
    normalvariate(0, 1)) for i in xsrange(0, 4 * pi, 0.2)]
data_plot = list_plot(data)

model(x) = a * sin(b * x - c)

fitted_params = find_fit(data, model, solution_dict=True)
print("a = {0}".format(fitted_params[a]))
print("b = {0}".format(fitted_params[b]))
print("c = {0}".format(fitted_params[c]))

g(x) = model.subs(a=fitted_params[a], b=fitted_params[b], c=fitted_
params[c])
fitted_plot = plot(g(x), (x, 0, 4 * pi), color='red')
show(data_plot + fitted_plot, figsize=(4, 3))
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The noisy data, and the fitted function, are shown below:

What just happened?
After declaring some symbolic variables, we called the set_random_seed function to fix 
the seed for the pseudo-random number generator. A pseudo-random number generator 
will always generate the same sequence of numbers for a given seed value. Setting the 
seed ensures that the plot you create will be identical to the one in the example. We 
used a fairly complex list comprehension to construct the pseudo-random data set. We 
also defined a callable symbolic expression called model that has one variable and three 
variable parameters. We then used find_fit to vary the parameters until an optimal fit 
was achieved. find_fit has only two required arguments: a list containing the data and 
the model to be fitted. The keyword argument solution_dict=True tells the function to 
return the fitted values as a dictionary, rather than a list of relations. Having the parameter 
values in a dictionary allows us to substitute the values back into the model, using the 
subs method. Finally, we plotted the fitted function. find_fit accepts several additional 
optional arguments:

Keyword Default Description
initial_guess 1 for each 

parameter
List containing an initial guess for each parameter.
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Keyword Default Description
parameters None List of parameters (only required if the model is a Python 

function).
variables None List of variables (only required if the model is a Python 

function).

Constrained optimization
Constrained optimization is useful when there are constraints on the parameter values. 
These may be simple constraints, such as a parameter that must be greater than zero.  
The constraints can also be more complicated functions that involve several parameters.

Time for action – a constrained optimization problem
The following example is adapted from a textbook on operations research:

#Ronald L. Rardin. "Optimization in Operations Research."  
# Prentice-Hall, Upper Saddle River, NJ, 1998.  Example 14.3, p. 792

# Global constants
d1 = 2.5
d2 = 40
t1 = 0.6
t2 = 1.0
p0 = 200

initial_guess = [20, 500]

def x3(x):
    return 36.25 * (d2 - x[0]) * (t2 - t1) / t1 * log(x[1] / p0)
def x4(x):
    return 348300 * (d2 - x[0]) * (t2 - t1)/ x[1]
    
def f(x):
    return 61.8 + 5.72 * x[0] + 0.0175 * x3(x)^0.85 + \
        0.0094 * x4(x)^0.75 + 0.006 * t1 * x3(x)
    
c_1 = lambda p: p[0]
c_2 = lambda p: p[1]
c_3 = lambda p: t2 * p[0] - d1 * t1 - d2 * (t2 - t1)
c_4 = lambda p: p[1] - p0

(x1, x2) = minimize_constrained(f, [c_1,c_2,c_3,c_4], initial_guess)

print('x1 = {0}'.format(x1))
print('x2 = {0}'.format(x2))
print('x3 = {0}'.format(x3([x1,x2])))
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print('x4 = {0}'.format(x4([x1,x2])))
print('x5 = {0}'.format(f([x1,x2])))

The fitted values are:

What just happened?
First, we defined some constants that are used in the models. These are fixed values that are 
not optimized. This problem has four parameters, but only the first two are independent. 
Parameters x3 and x4 are functions of x1 and x2, so we defined Python functions to calculate 
their values. We also defined the objective function f, which is the function that we want 
to minimize. The objective function has one argument, which is a list that contains the 
two parameters to be fitted. We then defined four constraint functions using the lambda 
construct (we could also have used normal function definitions). We called minimize_
constrained to perform the actual optimization. It requires three arguments: the objective 
function, a list of constraints, and a list of initial guesses for each parameter. The optional 
parameter gradient is a function that is required if the constraints are given as a list 
of intervals. The keyword parameter algorithm can be used to specify the algorithm. 
Currently, the only alternative is 'l-bfgs-b'.

Probability
We will end this chapter with a brief introduction to probability in Sage. Many applications, 
such as Monte Carlo simulations, require a series of pseudorandom numbers that are drawn 
from a specified distribution. Sage has many built-in probability distributions that can be 
used to generate pseudorandom numbers, as well as obtaining analytical distributions.

Time for action – accessing probability distribution functions
In the following code, we will see how to access probability distributions in Sage, obtain 
random variates from a specified distribution, and plot their distribution:

import matplotlib.pyplot as plt

variance = 0.75

# GNU Scientific Library
gaussian = RealDistribution('gaussian', variance)
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gaussian.set_seed(0.0)
random_values = [gaussian.get_random_element() for i in range(1000)]

gaussian_plot = gaussian.plot((-5, 5))

# Get the Matplotlib object for the Gaussian plot
fig = gaussian_plot.matplotlib()
from matplotlib.backends.backend_agg import FigureCanvasAgg 
fig.set_canvas(FigureCanvasAgg(fig))    # this line is critical
ax = fig.gca()

# Add a histogram
ax.hist(np.array(random_values), normed=True, facecolor='white')
ax.axis([-3, 3, 0, 0.6])

fig.savefig('hist.png')

The result should look like this:
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What just happened?
We first called RealDistribution, which returns a Sage probability distribution object. 
Sage uses the random number generators from the GNU Scientific Library. In this case, we 
specified a Gaussian distribution with a variance of 0.75. We then called the set_seed 
method to ensure that the histogram generated in this example would match the plot you 
obtain when you run the code. To get a single real number drawn from this distribution, call 
the get_random_element method. To plot a histogram from a bunch of random numbers, 
we used a list comprehension to call this method repeatedly. If you are not concerned about 
the formatting of the plot, you can use the generate_histogram_plot method of the 
RealDistribution object to plot a histogram showing the distribution of random values 
from the specified distribution.

In this example, we wanted to make a plot that shows a normalized histogram superimposed 
on a plot of the normal distribution. Unfortunately, Sage does not yet have a function for 
plotting histograms. We called the plot method of the RealDistribution object to plot 
the analytical Gaussian distribution. We then obtained a matplotlib figure from the Sage 
graphics object, following the procedure described in Chapter 6. We obtained the current 
axes using the gca function and added a histogram plot, using the matplotlib function hist 
as described in Chapter 6.

NumPy also features high-quality random number generators, which can be found in the 
numpy.random module. You can generate an entire NumPy array of random variates 
with a single function call, which avoids the need to use a list comprehension. If you need 
to generate a very large number of random variates, using NumPy can speed up your 
code significantly because it avoids the relatively slow process of looping in Python. The 
documentation for the random module can be found at http://docs.scipy.org/doc/
numpy/reference/routines.random.html. The documentation is also included with 
Sage, and can be accessed by executing the following commands:

import numpy
numpy.random?

Summary
This chapter covered a broad range of techniques in numerical mathematics. We learned 
about the tools that Sage offers for:

 � Finding the zeros of a function

 � Computing integrals and derivatives numerically

 � Finding minimum values of functions of one or more variables

 � Computing the discrete Fourier transform, and using window functions

 � Solving an ordinary differential equation (ODE) numerically
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 � Numerically solving a higher-order ODE by transforming it into a system of  
first-order ODEs

 � Using optimization techniques for linear programming, fitting curves to data,  
and finding an optimal solution in the presence of constraints

 � Using probability distributions to obtain pseudo-random numbers

By now, you have all the basic information that you need to start using Sage to solve 
problems in applied mathematics. However, there is still more to learn! Python is a very 
powerful programming language that makes complex programming tasks possible. We'll 
learn more about advanced programming techniques in the next chapter.





9
Learning Advanced Python 

Programming
In Chapter 4, we learned about the basic elements of Python programming that you need to 
use Sage effectively. Throughout the following chapters, we saw various examples of objects 
in Sage, such as the ode_solver object we used in the last chapter. In this chapter, you will 
learn how to define your own classes to create custom objects. Objects are a way to bundle 
data and algorithms together to help you keep your code organized. You will also learn to 
handle runtime errors in your programs by using exceptions. Finally, you will learn how unit 
testing can help you avoid bugs in your code. Many of the concepts in this chapter are used 
by software engineers on large projects. It might seem to be "overkill" to use these principles 
on the short scripts you have been writing, but short scripts tend to grow into long programs. 
A little bit of discipline early in the programming process can save a lot of time later on.

In this chapter, you will learn how to:

 � Define your own classes

 � Use inheritance to expand the usefulness of your classes

 � Organize your class definitions in module files

 � Bundle module files into packages

 � Handle errors gracefully with exceptions

 � Define your own exceptions for custom error handling

 � Use unit tests to make sure your package is working correctly

Let's see how object-oriented programming can help us write code more effectively.
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How to write good software
Writing good software requires a combination of creativity and discipline. This section is 
a brief overview of the discipline of software development. There are many approaches 
to developing software, and the subject can be highly controversial! Look at what others 
have done and develop a process that works for you or your team. A good place to start is 
http://en.wikipedia.org/wiki/Software_development_methodology. First, we'll 
outline the formal software development process that is used for large projects. Then, we'll 
see how elements of this process can be applied to any project.

The first stage is requirements analysis, which is the process of defining and documenting 
exactly what the software is supposed to accomplish. The requirements are used to write 
a specification for the project. The specification is then used to define the structure of the 
program, such as functions, classes, data, methods, and so on. The next stage is writing the 
actual code, which is followed by testing to ensure that the software meets the specification. 
A critical aspect of the project is writing documentation, which ideally takes place while 
the code is being written. Once the software is working correctly and released to the users, 
it enters the maintenance phase. Bugs are fixed as they are reported, improvements are 
made, and new features may be added. The maintenance phase can be easy or it can 
be a nightmare, depending on the quality of the software design, implementation, and 
documentation.

All of these concepts can (and should) be applied to the short scripts that you write on 
a daily basis. Requirements analysis can be as simple as pausing before implementing 
a function or class to think about what it needs to accomplish. One trick is to write the 
docstring before writing the actual code. Use the docstring to organize your thoughts 
and document what the inputs and outputs of the code will be. Before you jump into 
writing code, think about the approach you're going to take. For more complex code, you 
might want to consult books, journal articles, or open-source projects to see how others 
have approached the subject (and make sure that you are not re-inventing the wheel). In 
practice, a lot of projects start off as little scripts or snippets of code, and gradually grow 
into monsters. It's important to recognize when your code is getting out of control. Take a 
short break from programming, and ask yourself how to organize the code more effectively. 
Do you need to define a function to replace redundant code? Would it help to use an object 
represent this concept? Do the variable names make sense? Do you have enough comments 
to make it clear what's going on? If you have to fix a bug in this code six months from now, 
will you understand how it works? If not, take the time to improve the documentation right 
now. In the long run, it will save you a lot of time if you develop the discipline to write clean, 
organized, well-documented code.
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Version control (also known as revision control or source control) is a process of tracking and 
managing changes in programs and documentation. Version control tools can be very helpful 
even for small projects, and they are essential for large projects with multiple developers. 
For example, the Sage project uses an open-source version control tool called Mercurial. The 
Web interface at http://hg.sagemath.org/ allows you to browse the Sage source code 
and track changes. Sage also provides functions that allow you to work with Mercurial from 
within the notebook interface. The documentation for the Mercurial interface is available 
at http://www.sagemath.org/doc/reference/sage/misc/hg.html. Other popular 
open-source version control tools include Bazaar, Git, and Subversion.

Object-oriented programming
An object is a construct that contains data and has methods that operate on its data. A 
class defines how data is stored in an object, and what methods are available to work with 
the data. A class is like a blueprint that describes how a house is to be built. An object is 
like a house that is constructed from the blueprint. Many houses can be constructed from 
the same blueprint. Although the houses are built from the same plans and have the same 
structure, each house is an independent entity, and the contents of each house can be 
different. In Python, an object is known as an instance of a class. If you're new to object-
oriented programming, a good starting point is to use objects as models of concrete objects 
in the real world. Once you've become familiar with the concept, you can use objects to 
represent all kinds of concepts. For more information about the general principles of object-
oriented programming, read http://en.wikipedia.org/wiki/Object-oriented_
programming.
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Time for action – defining a class that represents a tank
To start out, we will define a class that models a tank (meaning a tracked, armored fighting 
vehicle). A tank typically runs on two continuous tracks, and it has a rotating turret that 
houses a powerful cannon. The relationship between the various components of a tank is 
shown in the following diagram:

Based on this conceptual representation, we will define classes to represent the cannon, 
the tracks, and turret. We will then define another class that utilizes these classes to model 
a tank. To keep the example simple, we'll use point values to represent the relative strength 
of the tank's armor and the damage inflicted by its main gun. Although this is a simple "toy" 
example, a class like this could be used as the foundation of a video game or a simulator for 
military training:

class Cannon():

    """Model of a large cannon."""

    def __init__(self, damage):
        """Create a Cannon instance
            Arguments:
                damage      Integer that represents
                    the damage inflicted by the cannon
        """
        # _damage   amount of damage inflicted by cannon (integer)
        # _operational  True if operational, False if disabled
        self._damage = damage
        self._operational = True

    def __str__(self):
        return 'Damage value:' + str(self._damage)

class Track():

    """Model of a continuous track."""

    def __init__(self):
        # _operational  True if operational, False if disabled
        self._operational = True

class Turret():

    """Model of a tank turret."""
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    def __init__(self, gun):
        """Create a Turret instance
            Arguments:
                gun      instance of Gun class
        """
        # _gun   instance of Gun class
        # _operational  True if operational, False if disabled
        self._gun = gun
        self._operational = True

    def __str__(self):
        return(str(self._gun))

class Tank():

    """Model of an armored fighting vehicle."""
    

    def __init__(self, armor_values, cannon_damage_value):
        """Create a tank instance
            Arguments:
                armor_values    A dictionary of armor values 
                    of the form:
                    {'front' : 100, 'side' : 50, 'rear' : 25, 
                        'turret' : 75}
                cannon_damage_value     Integer that represents
                    the damage inflicted by the main gun
        """
        # Initialize armor
        self._frontal_armor = armor_values['front']
        self._left_armor = armor_values['side']
        self._right_armor = armor_values['side']
        self._rear_armor = armor_values['rear']
        self._turret_armor = armor_values['turret']

        # Add tank components
        main_gun = Cannon(cannon_damage_value)
        self._turret = Turret(main_gun)
        self._left_track = Track()
        self._right_track = Track()

    def __str__(self):
        import os
        ls = os.linesep
        description = 'Tank parameters:' + ls
        description += '  Armor values:' + ls
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        description += '    Front:' + str(self._frontal_armor) + ls
        description += '    Left:' + str(self._left_armor) + ls
        description += '    Right:' + str(self._right_armor) + ls
        description += '    Rear:' + str(self._rear_armor) + ls
        description += '    Turret:' + str(self._turret_armor) + ls
        description += '  Weapons:' + ls
        description += '    Main cannon:' + ls
        description += '    ' + str(self._turret) + ls
        return description

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50

# Create a tank object
tank = Tank(armor_values, main_gun_damage)
print(tank)

Use the load command on the Sage command line or in a cell in a worksheet to run the 
code. If you run it from the command line, the output should look like this:

sage: load("4460_9_1.py")

Tank parameters:

  Armor values:

    Front:100

    Left side:50

    Right side:50

    Rear:25

    Turret:75

  Weapons:

    Main cannon:

    Damage value:50

What just happened?
We used our knowledge of a real-world object (an armored fighting vehicle) to construct 
a conceptual model of a tank. We then used Python to implement an object-oriented 
representation of a tank. We defined a Tank class, which uses point values to keep track of 
the amount of armor on the tank. Each instance of the Tank class has an associated instance 
of the Turret class, which in turn has an instance of a Cannon. Each Tank instance also has 
two instances of the Track class, to represent the left and right tracks.
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The keyword class is used to start each class definition, followed by the name of the 
class, and a set of parenthesis and a colon. By convention, Python class names start with an 
upper-case letter, and use a mix of upper- and lower-case letters, rather than underscores, 
to separate words (known as camel case, because the upper-case letters can resemble the 
humps of a camel). This convention helps us distinguish between an object named tank 
and a class named Tank. The pair of parenthesis is used for inheritance, which we'll get to 
in moment. Methods for the class are defined using function definition syntax, and they are 
indented to show that they are part of the class definition. The first argument to a method 
is special, and by convention the name self is used. self refers to the instance itself. The 
self argument allows a method to access data and call other methods from the class or 
instance, using the syntax self.method_name(). However, when the methods are called 
from outside of the class, the self keyword is omitted.

The first method we defined for each class is called __init__. In Python, the __init__ 
method is automatically called when an instance is first created. This special method has 
the same purpose as a constructor in other object-oriented languages. If data needs to 
be initialized every time an instance is created, that code should go into __init__. If no 
initialization needs to be done, then you can omit this method from the class definition. The 
Tank class and the Turret class have additional arguments to __init__ that are used to 
set initial values for the data in the objects, while the Cannon and Track classes do not 
have any arguments. Keyword arguments can also be used with the __init__ method. An 
instance of the Tank class can be created using function call syntax. The name of the class is 
used instead of a function name, and the argument list must match the arguments required 
by the __init__ method (ignoring self, as previously mentioned).

Instance variables are created in the __init__ method with the syntax self.var_name 
= value. Instance variables can be public or non-public. Public instance variables can be 
modified by code outside of the class, while non-public variables are only supposed to be 
modified within the class. By convention, public instance variables have regular names, and 
non-public instance variables have names that start with a single underscore. We defined 
our class with non-public instance variables to encourage users to use methods to get and 
set the values. Methods can also be non-public, in which case their names also start with a 
single underscore. Note that Python does not prevent outside code from modifying non-public 
variables or calling non-public methods. That is why they are called non-public, rather than 
private. Python doesn't have truly private instance variables or methods.
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Another special method is called __str__, which is an optional method that returns a 
string representation of an object. Because we have defined this method for the Tank and 
Cannon classes, we can use the syntax print(tank) to display useful data about the 
instance. This method is also called when the instance is an argument to the str function.  
Notice how the __str__ method of the Tank class actually calls the str function to get a 
text representation of the Cannon instance. It would be possible for the __str__ method 
of the Tank class to go and get the value of _damage directly from the Cannon object and 
convert it to a string, but this would be an unwise shortcut. In the future, we might decide 
to completely change the internal structure of the Cannon class, and the variable damage_
value may go away. By using methods to access the data from an object, we keep our code 
more organized and prevent bugs. If we try to use print with an instance that does not 
have a __str__ method, we will only get a cryptic message about the type of object and its 
memory address. For example:

sage: print(tank._left_track)

<__main__.Track instance at 0x100463440>

Note that the memory address that is printed on your system will probably be different.

Immediately after each class definition and function definition, there is a triple-quoted string 
called a docstring. This string is used to document the purpose of the class or function. When 
you ask for help on a class or instance, Sage and Python use the docstring to provide help. 
For example:

sage: Tank?

Type:      classobj

String Form:   __main__.Tank

Namespace:   Interactive

File:      /Applications/sage/local/lib/python2.6/site-packages/IPython/
FakeModule.py

Docstring:

    Model of an armored fighting vehicle.

Constructor information:

Definition: Tank(self, armor_values, cannon_damage_value)

Docstring:

    Constructs a tank instance

       Arguments:

          armor_values    A dictionary of armor values of the form:

             {'front' : 100, 'side' : 50, 'rear' : 25, 'turret' : 75}
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          cannon_damage_value     Integer that represents the damage

             inflicted by the main gun

You should write docstrings for all public modules, functions, classes, and methods. A 
general guide to writing good docstrings can be found at http://www.python.org/
dev/peps/pep-0257/. Our Tank class is useful for organizing and displaying data, but 
the instances don't do much. Let's make them do something useful.

Making our tanks move
At a simplistic level, a tank only has to do two things: move and shoot. Let's start by giving 
our tank model the ability to move.

Time for action – making the tanks move
To start out, we will define attributes and methods that allow the tank instances to move. 
Execute this enhanced version of the previous example:

class Cannon():

    """Model of a large cannon."""
    

    def __init__(self, damage):
        """Create a Cannon instance
            Arguments:
                damage      Integer that represents
                    the damage inflicted by the cannon
        """
        # _damage   amount of damage inflicted by cannon (integer)
        # _operational  True if operational, False if disabled
        self._damage = damage
        self._operational = True
    

    def __str__(self):
        return 'Damage value:' + str(self._damage)
    

    

class Track():
    

    """Model of a continuous track."""
    

    def __init__(self):
        # _operational  True if operational, False if disabled
        self._operational = True
    

    

class Turret():
    

    """Model of a tank turret."""
    

    def __init__(self, gun):
        """Create a Turret instance
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            Arguments:
                gun      instance of Gun class
        """
        # _gun   instance of Gun class
        # _operational  True if operational, False if disabled
        self._gun = gun
        self._operational = True
    

    def __str__(self):
        return(str(self._gun))
    

    

class Tank():

    """Model of an armored fighting vehicle."""
    
    def __init__(self, armor_values, cannon_damage_value, position):
        """Create a tank instance
            Arguments:
                armor_values    A dictionary of armor values 
                    of the form:
                    {'front' : 100, 'side' : 50, 'rear' : 25, 
                        'turret' : 75}
                cannon_damage_value     Integer that represents
                    the damage inflicted by the main gun                
position    (x,y) tuple of coordinates
        """
        # Initialize armor
        self._frontal_armor = armor_values['front']
        self._left_armor = armor_values['side']
        self._right_armor = armor_values['side']
        self._rear_armor = armor_values['rear']
        self._turret_armor = armor_values['turret']
    

        # Add tank components
        main_gun = Cannon(cannon_damage_value)
        self._turret = Turret(main_gun)
        self._left_track = Track()
        self._right_track = Track()
    

        # Intialize position
        self._x = position[0]
        self._y = position[1]
    

    def __str__(self):
        import os
        ls = os.linesep
        description = 'Tank parameters:' + ls
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        description += '  Armor values:' + ls
        description += '    Front:' + str(self._frontal_armor) + ls
        description += '    Left:' + str(self._left_armor) + ls
        description += '    Right:' + str(self._right_armor) + ls
        description += '    Rear:' + str(self._rear_armor) + ls
        description += '    Turret:' + str(self._turret_armor) + ls
        description += '  Weapons:' + ls
        description += '    Main cannon:' + ls
        description += '    ' + str(self._turret) + ls
        return description
    

    def move(self, direction, distance):
        """Move the tank.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction >= 360):
            print("Error: Direction must be greater than or equal \
to zero and less than 360.")
        elif distance < 0:
            print("Error: Negative distance.")
        else:
            self._x += n(distance * cos(direction * pi / 180))
            self._y += n(distance * sin(direction * pi / 180))
    

    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))
    

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)
    

# Create a tank object
tank = Tank(armor_values, main_gun_damage, initial_position)
    

pos = tank.get_position()
print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
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# Move 10m north
tank.move(0.0, 10.0)
pos = tank.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Now move 10m east
tank.move(90.0, 10.0)
pos = tank.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move southwest, back to the origin
tank.move(225.0, sqrt(10.0**2 + 10.0**2))
pos = tank.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Try a move which doesn't make sense
tank.move(-2,-1)

If you run this example from the command line, you should get the following results:

sage: load("4460_9_2.py")

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Current position: x = 10.00m  y = 10.00m

Current position: x = -0.00m  y = 0.00m

Error: Direction must be greater than or equal to zero and less than 360.

What just happened?
We defined two new methods, and made some changes to __init__. If our tanks are going 
to move, they must have an initial position, so we added an argument called position to 
__init__. This argument is a tuple, which is used to initialize two new attributes, x and y 
(for simplicity, we'll assume the tank is located on a plane). We also added a method called 
get_position, which simply returns the current location of the tank as a tuple of Python 
float values. We have to force the return values to be floats to ensure that they will be 
formatted correctly when the values are printed. Sage RealNumber objects evaluate to 
strings when used as arguments to format, so they must be converted to Python 
floating-point numbers in order to use Python's format specifications for real numbers.
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The new method called move is a little more interesting. It accepts a direction and a 
distance, and updates the x and y coordinates of the tank accordingly. However, this method 
checks to ensure that the direction and distance are valid before the tank is moved. If the 
arguments are not valid, an error message is printed and the tank does not move. This 
method illustrates a principle of object-oriented programming: whenever possible, define 
methods and use them to interact with the data in an object. Utilize the input methods to 
make sure the inputs are valid before you accept them. move calculates a new position for 
the tank (in Cartesian coordinates) using the Sage functions sin and cos. The n function 
(short for numerical_approx) is used to ensure that the x and y values are stored as Sage 
RealNumber objects.

Have a go hero – checking the values passed to __init__
The __init__ method doesn't check whether or not the armor values, cannon damage 
value, and initial position are valid. You could accidentally construct a tank with a negative 
armor value, for example. It's also a good idea to check the type of the arguments, or force 
them to have the correct type, to avoid unexpected results. The armor value and cannon 
damage value should be integers and the position should be a tuple of real numbers. Add 
code to validate the values that are passed to __init__.

Creating a module for our classes
Our classes are getting to the point where they are useful, but the code is also getting rather 
lengthy.  With each new example, we find ourselves duplicating much of the code from the 
previous example. Python provides modules to help us re-use code without duplication.

Time for action – creating your first module
Create a new Python file called tank.py that contains the following code:

import sage.all
    
class Cannon():
    

    """Model of a large cannon."""
    

    def __init__(self, damage):
        """Create a Cannon instance
            Arguments:
                damage      Integer that represents
                    the damage inflicted by the cannon
        """
        # _damage   amount of damage inflicted by cannon (integer)
        # _operational  True if operational, False if disabled
        self._damage = damage
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        self._operational = True
    

    def __str__(self):
        return 'Damage value:' + str(self._damage)
    

    

class Track():

    """Model of a continuous track."""
    

    def __init__(self):
        # _operational  True if operational, False if disabled
        self._operational = True
    

    

class Turret():
    

    """Model of a tank turret."""
    

    def __init__(self, gun):
        """Create a Turret instance
            Arguments:
                gun      instance of Gun class
        """
        # _gun   instance of Gun class
        # _operational  True if operational, False if disabled
        self._gun = gun
        self._operational = True
    

    def __str__(self):
        return(str(self._gun))
    

    

class Tank():
    

    """Model of an armored fighting vehicle."""
    

    def __init__(self, armor_values, cannon_damage_value, position):
        """Create a tank instance
            Arguments:
                armor_values    A dictionary of armor values 
                    of the form:
                    {'front' : 100, 'side' : 50, 'rear' : 25, 
                        'turret' : 75}
                cannon_damage_value     Integer that represents
                    the damage inflicted by the main gun
                position    (x,y) tuple of coordinates
        """
        # Initialize armor
        self._frontal_armor = armor_values['front']
        self._left_armor = armor_values['side']
        self._right_armor = armor_values['side']
        self._rear_armor = armor_values['rear']
        self._turret_armor = armor_values['turret']
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        # Add tank components
        main_gun = Cannon(cannon_damage_value)
        self._turret = Turret(main_gun)
        self._left_track = Track()
        self._right_track = Track()
    

        # Intialize position
        self._x = position[0]
        self._y = position[1]
    

    def __str__(self):
        import os
        ls = os.linesep
        description = 'Tank parameters:' + ls
        description += '  Armor values:' + ls
        description += '    Front:' + str(self._frontal_armor) + ls
        description += '    Left:' + str(self._left_armor) + ls
        description += '    Right:' + str(self._right_armor) + ls
        description += '    Rear:' + str(self._rear_armor) + ls
        description += '    Turret:' + str(self._turret_armor) + ls
        description += '  Weapons:' + ls
        description += '    Main cannon:' + ls
        description += '    ' + str(self._turret) + ls
        return description
    

    def move(self, direction, distance):
        """Move the tank.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction >= 360):
            print("Error: Direction must be greater than or equal \
to zero and less than 360.")
        elif distance < 0:
            print("Error: Negative distance.")
        else:
            self._x += n(distance * cos(direction * pi / 180))
            self._y += n(distance * sin(direction * pi / 180))
    

    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
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        current location.
        """
        return (float(self._x), float(self._y))

In the same directory, create another Python file that contains the following code:

import tank
    

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)
    

# Create a tank object
tank_1 = tank.Tank(armor_values, main_gun_damage, initial_position)
    

pos = tank_1.get_position()
print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move 10m north
tank_1.move(0.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Now move 10m east
tank_1.move(90.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move southwest, back to the origin
tank_1.move(225.0, sqrt(10.0**2 + 10.0**2))
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Try a move which doesn't make sense
tank_1.move(-2,-1)

Execute the script you just created. You should see the following results, which are identical 
to the previous example:

sage: load 4460_9_3.py

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Current position: x = 10.00m  y = 10.00m

Current position: x = -0.00m  y = 0.00m

Error: Direction must be greater than or equal to zero and less than 360.
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What just happened?
We took the code from the previous example and split it into two files. The first one, which 
we called tank.py, is a module that contains our class definitions. The name of this file 
becomes the name of the module, so it should follow the Python naming conventions for 
modules: use lower-case letters, with underscores if necessary, and keep the name as short 
as possible while still being clear about what the module contains.

We have to make one important change to the code in the tank module. We now have to 
import names from Sage using the syntax import sage.all. We can then access Sage 
variables and functions with the following syntax:

sage.all.cos(direction * sage.all.pi / 180)

To understand why we have to do this, we have to know a little bit about namespaces 
and scope in Python. A namespace is a conceptual space that maps names to objects. 
A scope is a portion of a Python program in which names from a certain namespace are 
directly accessible. When working on the Sage command line, all of the built-in names 
(of classes, functions, instances, variables, and so on) are accessible. Our module has its 
own, separate namespace, so names that we take for granted on the command line aren't 
directly accessible in the module. Hence, we use the import statement to make all the 
standard Sage names available throughout our module. In fact, each time a function or class 
is defined, a new local namespace is created. That's why the names you create within a 
function definition are only visible within that function (and functions declared within that 
function). The technical aspects of namespaces and scoping are explained in the Python 
documentation.

Ideally, a Python package would be designed so that the user only has to import the sub-
packages or modules that are required to use a subset of its functionality. However, the only 
way to use Sage names in a Python module (as of Sage version 4.6.1) is to import sage.
all. There is no way to import a subset of Sage's functionality. Since Sage is rather large, we 
placed the import statement at the beginning of the class definition so that Sage is imported 
only once, when the tank module is loaded. If we placed the import statement in method 
move, it could potentially be imported more than once (although the Python interpreter tries 
to avoid this), slowing down the function call.

The second file is a script that imports the module and uses the classes to create and move 
a tank instance. We use the syntax import tank to import the module called tank.py. We 
can then use the syntax tank.Tank to access the Tank class from the tank module. We 
don't have to import any of the other classes, because we don't access them outside of the 
tank module. Note that we have also changed the name of the tank instance to tank_1 so 
that it does not conflict with the module name. This makes it possible to use the command 
reload(tank) to reload the module (see tip).
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reload the  module after making changes
Let's say you created the module tank.py and used import tank to make 
its names available in a Sage script, or on the Sage command line. During 
testing, you found and fixed a bug, and saved the module file. However, Sage 
won't recognize that you changed anything unless you use the command 
reload(tank) to force it to reload the module. When working with multiple 
modules in a package, you may need to import a module on the command line 
(or in a worksheet cell) before reloading it.

Expanding our simulation to other kinds of vehicles
So far, we have defined a rudimentary framework for a simulation of tank combat. What 
if we want to include other types of military vehicles in our simulation, such as armored 
personnel carriers (APCs), armored cars, and supply trucks? We could define a class for each 
of those vehicles, but there would certainly be some duplication between the classes. For 
example, every vehicle class would need to define a method to get the vehicle position and 
move the vehicle.  How can we avoid this duplication?

Time for action – creating a vehicle base class
We can avoid duplicating code in related classes by applying the object-oriented principle 
of inheritance. Inheritance allows a class to be derived from a base class. The derived 
class inherits the methods and attributes of the base class, and adds its own attributes 
and methods. This can be rather confusing, so we'll jump into a concrete example. Since 
tanks, APCs, armored cars, and trucks are all vehicles, we will create a base class for ground 
vehicles. Then, we will define derived classes to represent various types of vehicles. Enter 
the following code into a file called vehicle.py:

import sage.all
    

class Cannon():
    

    """Model of a large cannon."""
    
    def __init__(self, damage):
        """Create a Cannon instance
            Arguments:
                damage      Integer that represents
                    the damage inflicted by the cannon
        """
        # _damage   amount of damage inflicted by cannon (integer)
        # _operational  True if operational, False if disabled
        self._damage = damage
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        self._operational = True
    

    def __str__(self):
        return 'Damage value:' + str(self._damage)
    

    

class Track():
    

    """Model of a continuous track."""
    

    def __init__(self):
        # _operational  True if operational, False if disabled
        self._operational = True
    

    

class Turret():
    

    """Model of a tank turret."""
    

    def __init__(self, gun):
        """Create a Turret instance
            Arguments:
                gun      instance of Gun class
        """
        # _gun   instance of Gun class
        # _operational  True if operational, False if disabled
        self._gun = gun
        self._operational = True
    

    def __str__(self):
        return(str(self._gun))
        
class Ground_Vehicle():
    """Base class for all ground vehicles"""
    def __init__(self, position):
        """Create a vehicle instance
                position    (x,y) tuple of coordinates
        """
        # Intialize position
        self._x = position[0]
        self._y = position[1]
        
    def move(self, direction, distance):
        """Move the tank.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
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        """
        if (direction < 0) or (direction >= 360):
            print("Error: Direction must be greater than or equal \
to zero and less than 360.")
        elif distance < 0:
            print("Error: Negative distance.")
        else:
            self._x += sage.all.n(distance * sage.all.cos(direction * 
sage.all.pi / 180))
            self._y += sage.all.n(distance * sage.all.sin(direction * 
sage.all.pi / 180))
        
    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))
    

class Tank(Ground_Vehicle):
    """Model of an armored fighting vehicle."""
    def __init__(self, armor_values, cannon_damage_value, position):
        """Constructs a tank instance
            Arguments:
                armor_values    A dictionary of armor values 
                    of the form:
                    {'front' : 100, 'side' : 50, 'rear' : 25, 
                        'turret' : 75}
                cannon_damage_value     Integer that represents
                    the damage inflicted by the main gun
                position    (x,y) tuple of coordinates
        """
        # Initialize armor
        self._frontal_armor = armor_values['front']
        self._left_armor = armor_values['side']
        self._right_armor = armor_values['side']
        self._rear_armor = armor_values['rear']
        self._turret_armor = armor_values['turret']
    

        # Add tank components
        main_gun = Cannon(cannon_damage_value)
        self._turret = Turret(main_gun)
        self._left_track = Track()
        self._right_track = Track()
    

        Ground_Vehicle.__init__(self, position)
    

    def __str__(self):
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        import os
        ls = os.linesep
        description = 'Tank parameters:' + ls
        description += '  Armor values:' + ls
        description += '    Front:' + str(self._frontal_armor) + ls
        description += '    Left:' + str(self._left_armor) + ls
        description += '    Right:' + str(self._right_armor) + ls
        description += '    Rear:' + str(self._rear_armor) + ls
        description += '    Turret:' + str(self._turret_armor) + ls
        description += '  Weapons:' + ls
        description += '    Main cannon:' + ls
        description += '    ' + str(self._turret) + ls
        return description

Now, we need to modify the script that creates Tank instances so that the tank class is 
imported from the vehicle module instead of the tank module:

import vehicle
    

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)
    

# Create a tank object
tank_1 = vehicle.Tank(armor_values, main_gun_damage, initial_position)
    

pos = tank_1.get_position()
print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move 10m north
tank_1.move(0.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Now move 10m east
tank_1.move(90.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move southwest, back to the origin
tank_1.move(225.0, sqrt(10.0**2 + 10.0**2))
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
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# Try a move which doesn't make sense
tank_1.move(-2,-1)

When we run this script, we should get the same results as the previous example:

sage: load("4460_9_4.py")

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Current position: x = 10.00m  y = 10.00m

Current position: x = -0.00m  y = 0.00m

Error: Direction must be greater than or equal to zero and less than 360.

What just happened?
We created a base class called Ground_Vehicle to contain methods and attributes that are 
common to all ground vehicles. For now, every ground vehicle has a position that is stored 
as a pair of coordinates, a method to update the position, and a method that returns the 
current position. Since a vehicle has to have a defined position for movement to make any 
sense, the __init__ method accepts one argument that sets the initial position.

The first line of the Tank class definition was modified to show that the class is derived from 
the class Ground_Vehicle:

class Tank(Ground_Vehicle):

Since the methods move and get_position are defined in Ground_Vehicle, we removed 
them from the Tank class definition. We say that Tank inherits these methods from 
Ground_Vehicle. We can also override inherited methods. For example, let's say that we 
have defined a class that represents a wheeled vehicle:

class Wheeled_Vehicle(Ground_Vehicle):

We want to implement a special version of the move method that reduces the mobility 
of wheeled vehicles when they travel off-road. If we define a method called move in the 
Wheeled_Vehicle class, it will override the move method defined in the base class.

We also made an important change in the __init__ method of the Tank class. We used 
the following syntax to call the __init__ method of the base class to set the initial position 
of the vehicle:

Ground_Vehicle.__init__(self, position)

You must explicitly call the __init__ method of the base class (if it has one) from the 
__init__ method of the derived class in order to properly initialize the object.
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Note that we didn't have to make any changes in the code that creates Tank instances, aside 
from changing the name of the module we are importing. Changes to the class structure 
were transparent to the code that creates and uses Tank instances. A well-designed class 
implements an interface, and all interaction with the class takes place through the interface. 
If you improve the design of the class without changing its function, a process known as 
refactoring, the interface should not change. Although Python does not have a formal 
language element for defining interfaces, it's helpful to think in terms of interfaces when 
designing classes.

Creating a package for our simulation
A logical step in developing our simulation is to add derived classes for different types of 
vehicles. Before we do that, let's take a minute to improve the organization of the code by 
creating a package. A package is a collection of modules, organized in a tree of directories.

Time for action – creating a combat simulation package
Create a directory called combatsim. The name of the directory is the name of the package, 
so it should follow the Python naming conventions for packages. The name should use 
lower-case letters and should be as short as possible, in case someone wants to use your 
package on a system that doesn't support long names. Underscores are officially discouraged 
in package names, but don't be afraid to use them if it makes the package name easier to 
understand. Now, create a new file in the directory called __init__.py. Leave this file empty. 
It only needs to be present to tell the Python interpreter that this directory is a package.

In the directory combatsim, enter the following code in a file called components.py. 
Essentially, we're just going to cut and paste to place the definitions for the Cannon, Track, 
and Turret classes into their own files. We will repeat the process with the definitions of 
the classes Ground_Vehicle and Tank.

class Cannon():

    """Model of a large cannon."""

    def __init__(self, damage):
        """Create a Cannon instance
            Arguments:
                damage      Integer that represents
                    the damage inflicted by the cannon
        """
        # _damage   amount of damage inflicted by cannon (integer)
        # _operational  True if operational, False if disabled
        self._damage = damage
        self._operational = True

    def __str__(self):
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        return 'Damage value:' + str(self._damage)

class Track():

    """Model of a continuous track."""

    def __init__(self):
        # _operational  True if operational, False if disabled
        self._operational = True

class Turret():

    """Model of a tank turret."""

    def __init__(self, gun):
        """Create a Turret instance
            Arguments:
                gun      instance of Gun class
        """
        # _gun   instance of Gun class
        # _operational  True if operational, False if disabled
        self._gun = gun
        self._operational = True

    def __str__(self):
        return(str(self._gun))

Now, create another file in the combatsim directory called vehicle.py, and enter the 
following code to define the Ground_Vehicle base class:

import sage.all

class Ground_Vehicle():
    """Base class for all ground vehicles"""
    def __init__(self, position):
        """Create a vehicle instance
                position    (x,y) tuple of coordinates
        """
        # Intialize position
        self._x = position[0]
        self._y = position[1]
        

    def move(self, direction, distance):
        """Move the tank.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
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                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction >= 360):
            print("Error: Direction must be greater than or equal \
to zero and less than 360.")
        elif distance < 0:
            print("Error: Negative distance.")
        else:
            self._x += sage.all.n(distance * sage.all.cos(direction * 
sage.all.pi / 180))
            self._y += sage.all.n(distance * sage.all.sin(direction * 
sage.all.pi / 180))
        
    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))

Create another file in the combatsim directory called tank.py, and enter the following code:

import sage.all

class Ground_Vehicle():
    """Base class for all ground vehicles"""
    def __init__(self, position):
        """Create a vehicle instance
                position    (x,y) tuple of coordinates
        """
        # Intialize position
        self._x = position[0]
        self._y = position[1]
        
    def move(self, direction, distance):
        """Move the vehicle.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North
                    is 0, east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction > 360):
            print("Error: Direction must be greater than or equal \
to zero and less than 360.")
        elif distance < 0:
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            print("Error: Negative distance.")
        else:
            self._x += sage.all.n(distance * sage.all.cos(direction * 
                sage.all.pi / 180))
            self._y += sage.all.n(distance * sage.all.sin(direction * 
                sage.all.pi / 180))
        
    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))

Finally, we need to make a slight change in the code that creates instances of the Tank class. 
Enter the following code in a file that resides in the same directory as combatsim. When you 
are done, the file hierarchy should look like this:

from combatsim import tank

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)

# Create a tank object
tank_1 = tank.Tank(armor_values, main_gun_damage, initial_position)

pos = tank_1.get_position()
print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))

# Move 10m north
tank_1.move(0.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
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# Now move 10m east
tank_1.move(90.0, 10.0)
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))

# Move southwest, back to the origin
tank_1.move(225.0, sqrt(10.0**2 + 10.0**2))
pos = tank_1.get_position()
print("Current position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))

# Try a move which doesn't make sense
tank_1.move(-2,-1)

When you run the code, you should get the same results as before, if you have done 
everything right:

sage: load("4460_9_5.py")

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Current position: x = 10.00m  y = 10.00m

Current position: x = -0.00m  y = 0.00m

Error: Direction must be greater than or equal to zero and less than 360.

What just happened?
We have now split the example into four files. Class definitions reside in a package called 
combatsim, which contains the modules components, vehicle, and tank. The first line 
of the file tank.py is:

from components import *

This code imports all of the names from the module components. Since we are importing 
names from another module in the same package, and we created both modules, it's okay 
to use import *. In general, you should avoid using import * outside of these special 
circumstances. The reason is that two modules might define functions or classes with the 
same name. If you import * from several packages, you don't know which function or class 
you are actually using. For example, NumPy and Sage both define the sin function, but its 
behaviour is different. That is why we always import numpy and then access individual 
functions with the syntax numpy.sin(x).
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We also had to modify the import statements in the file that creates Tank instances. 
The line imports the name Tank from the module named tank in the package named 
combatsim:

from combatsim.tank import Tank

The syntax follows this pattern:

from package.module import name

The following line imports only the class Ground_Vehicle from the module 
called vehicle:

from vehicle import Ground_Vehicle

Importing only the classes you absolutely need makes your code much easier to debug and 
maintain than using import *. Now that we've gotten things organized, it's time to take 
advantage of our new base classes.

Have a go hero – adding another derived class
Using the Tank class as an example, add a derived class for another type of ground vehicle, 
such as an armored personnel carrier (APC). Create a new module in the combatsim package 
and use it to define your class. A typical APC is similar to a tank, with two tracks, an armored 
hull, and a gun turret. However, the APC also carries infantry, and the gun is typically a 
small-calibre, rapid-fire cannon. You'll need to add component class definitions in the file 
components.py to represent the automatic cannon and the cargo of infantry. Once you have 
a working APC class, try adding a cargo truck. Since trucks have four or six wheels instead of 
tracks, you'll have to add a component to represent the wheels.

Potential pitfalls when working with classes and  
instances
We've learned the general thought processes and the syntax needed to design our own 
classes, and organize them in modules and packages. In the following example, we're going 
to move away from our combat simulation and construct some simple test classes to further 
illustrate how Python classes work. The purpose of these examples is to demonstrate some 
behavior that may seem strange and cause your programs to behave in unexpected ways if 
you don't understand the underlying principles.
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Time for action – using class and instance attributes
Enter the following code into a text file, or an input cell in a worksheet:

class Test():
    class_list = []
    def __init__(self):
        self.instance_list = []
        
instance_1 = Test()
instance_2 = Test()

instance_1.instance_list.append(1)
instance_2.instance_list.append(2)

print("Instance 1 instance_list:" + str(instance_1.instance_list))
print("Instance 2 instance_list:" + str(instance_2.instance_list))

print("Appending values to class_list:")
instance_1.class_list.append(3)
instance_2.class_list.append(4)

print("Instance 1 class_list:" + str(instance_1.class_list))
print("Instance 2 class_list:" + str(instance_2.class_list))

print("Adding new attributes:")
instance_1.new_list = [5,6]
instance_2.new_list = [7,8]

print("Instance 1 new list:" + str(instance_1.new_list))
print("Instance 2 new list:" + str(instance_2.new_list))

The output should look like this:

sage: load("4460_9_6.py")

Instance 1 instance_list:[1]

Instance 2 instance_list:[2]

Appending values to class_list:

Instance 1 class_list:[3, 4]

Instance 2 class_list:[3, 4]

Adding new attributes:

Instance 1 new list:[5, 6]

Instance 2 new list:[7, 8]
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What just happened?
We defined a simple class called Test, which has two data attributes. instance_list is 
defined in the __init__ method, just like the instance attributes we've used in previous 
examples. class_list is defined outside of __init__, similar to the way in which 
methods are defined. This makes class_list a class attribute. We then created two 
instances of the class and performed some experiments with the attributes.

We appended a different number to each of the instance lists, and printed the contents of 
the list. Because each instance gets its own copy of an instance attribute, each list contains 
a single value. When we appended numbers to the class_list attribute, the results 
were very different. The reason is that there is only one copy of a class attribute, which is 
shared by all instances of that class. Appending a number to the class_list attribute of 
instance_1 is exactly the same as appending a number to the class_list attribute of 
instance_2, since both operations work on the same list! Finally, we added a new attribute 
called new_list to each instance. Attributes that are added after an instance is created are 
instance attributes, as we can see by their behavior.

Time for action – more about class and instance attributes
Enter the following code into a text file, or an input cell in a worksheet:

class Test2():
    value1 = 5
        
    def method1(self):
        return 'Old Method '

instance_1 = Test2()
instance_2 = Test2()

print("Instance 1, value1 = " + str(instance_1.value1))
print("Instance 2, value1 = " + str(instance_2.value1))

print("Changing value1:")
instance_1.value1 = 6
print("Instance 1, value1 = " + str(instance_1.value1))
print("Instance 2, value1 = " + str(instance_2.value1))

print("Instance 1, method1: " + instance_1.method1())
print("Instance 2, method1: " + instance_2.method1())

def new_method():
    return 'New Method'

print("Adding a new method:") 
instance_1.method1 = new_method

print("Instance 1, method1: " + instance_1.method1())
print("Instance 2, method1: " + instance_2.method1())
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The output should look like this:

sage: load("4460_9_7.py")

Instance 1, value1 = 5

Instance 2, value1 = 5

Changing value1:

Instance 1, value1 = 6

Instance 2, value1 = 5

Instance 1, method1: Old Method 

Instance 2, method1: Old Method 

Adding a new method:

Instance 1, method1: New Method

Instance 2, method1: Old Method

What just happened?
This example demonstrates some of the more subtle aspects of class and instance attributes. 
Class Test2 has a class data member called value1 which happens to be an integer. Initially, 
both instances reported the same value for value1. We then used the following statement 
to assign a new value to value1:

instance_1.value1 = 6

However, when we printed the value from both instances, we got different numbers, even 
though value1 was defined as a class attribute. This happens because the statement above 
replaces the class attribute value1 with an instance attribute called value1. instance_1 
now has its own instance attribute called value1, while instance_2 has a class attribute 
called value1. Recall that in the previous example, the class attribute was a list, and we 
appended data to the list. This modifies the existing list, rather than replacing it, so it 
remains a class attribute.

We then demonstrated that class methods follow the same rules as class attributes. All 
instances of a class share the same methods. We can define a new function and use it to 
replace an existing method (or add a new method, if we give it a new name). The same rules 
apply to methods as to attributes. The new method becomes an attribute method, and it is 
only attached to instance_1.
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Creating empty classes and functions
There are two circumstances where it is advantageous to define a class without adding any 
attributes or methods. One is during the initial stage of coding a module or package, when 
you want to define a class or a function as a "placeholder" or a "stub" and fill it in later. The 
other is when you need a class to act like a struct in C or a record in Pascal. Let's look at 
an example to see how empty classes and functions work.

Time for action – creating empty classes and functions
Enter the following code into a text file, or an input cell in a worksheet:

# Create an empty class to use as a data structure
class Struct():
    pass
    

# Use pass to define empty methods
class VTOL():
    """Class to represent airborne vehicles with VTOL
    (Vertical Take-Off/Landing) capabilities, such as
    helicopters, tilt-rotors, and Harrier jump jets.
    """
    def __init__(self):
        pass
    

    def move(self, horizontal_angle, vertical_angle, distance):
        pass
    

data_container = Struct()
    

data_container.name = "String data"
data_container.count = 14
data_container.remainder = 0.1037
    

print(data_container.name)
print(data_container.count)
print(data_container.remainder)

The output should look like this:

sage:  load 4460_9_8.py   

String data

14

0.1037
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What just happened?
If you attempt to define a function or a class with no indented code following it, the Python 
interpreter will give you an error message. The pass keyword allows us to define empty 
classes and functions. We defined an empty class called Struct and created an instance, 
and then added instance attributes. This is a convenient shortcut when you need to group 
some different data types together (a dictionary is another option).

We also defined a "skeleton" class that could potentially be added to the vehicles module 
in our combatsim package. We used the pass keyword to define empty methods. This is a 
good strategy to use when you are designing a class. Think about all the methods you want 
to add, and what arguments they will need. If you don't have time to implement them all 
right away, use the pass keyword to define empty methods so that you don't forget about 
them. It's even better if you add a docstring to each empty method, to describe what it's 
supposed to do.

Handling errors gracefully
Your programs are eventually going to have errors. Generally, errors fall into two categories: 
errors in the design of the program logic (bugs), and errors that happen when the code is 
used incorrectly. The first type of error can be minimized with thoughtful program design, 
and caught by thorough testing (described in the next section). Errors of the second kind 
are almost guaranteed to happen. An integer will be passed where a float is expected, a 
denominator will approach zero, or there won't be enough lines in a data file. In Python, 
these runtime errors are called exceptions, to distinguish them from syntax errors that will 
prevent a program from running. We can easily generate a few examples on the command 
line. Here's a TypeError exception, which occurs when something has the wrong type:

sage: sin("one")

-----------------------------------------------------------------------

TypeError                             Traceback (most recent call last)

/Users/cfinch/Documents/Articles/Sage Math/Chapters/Chapter 9/
Code/<ipython console> in <module>()

/Applications/sage/local/lib/python2.6/site-packages/sage/symbolic/
function.so in sage.symbolic.function.GinacFunction.__call__ (sage/
symbolic/function.cpp:6572)()

/Applications/sage/local/lib/python2.6/site-packages/sage/symbolic/
function.so in sage.symbolic.function.Function.__call__ (sage/symbolic/
function.cpp:4336)()
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TypeError: cannot coerce arguments: no canonical coercion from <type 
'str'> to Symbolic Ring

And here's a ZeroDivisionError exception, which is self-explanatory:

sage: 1/0

-----------------------------------------------------------------------

ZeroDivisionError                     Traceback (most recent call last)

/Users/cfinch/Documents/Articles/Sage Math/Chapters/Chapter 9/
Code/<ipython console> in <module>()

/Applications/sage/local/lib/python2.6/site-packages/sage/structure/
element.so in sage.structure.element.RingElement.__div__ (sage/structure/
element.c:11973)()

/Applications/sage/local/lib/python2.6/site-packages/sage/rings/integer.
so in sage.rings.integer.Integer._div_ (sage/rings/integer.c:11163)()

/Applications/sage/local/lib/python2.6/site-packages/sage/rings/integer_
ring.so in sage.rings.integer_ring.IntegerRing_class._div (sage/rings/
integer_ring.c:5022)()

ZeroDivisionError: Rational division by zero

Exceptions don't have to cause the program to come to a sudden halt and spew out 
incomprehensible error codes to the user. Python provides tools for customizing and 
handling exceptions that help us manage runtime errors.

Time for action – raising and handling exceptions
Let's go back to the combat simulation example. We wrote code that printed an error 
message when the move method received invalid arguments. We will rewrite the 
error-handling code to use exceptions. Replace the contents of the file vehicle.py in 
the combatsim package with the following code:

import sage.all

class Ground_Vehicle():
    """Base class for all ground vehicles"""
    def __init__(self, position):
        """Create a vehicle instance
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                position    (x,y) tuple of coordinates
        """
        # Intialize position
        self._x = position[0]
        self._y = position[1]
        
    def move(self, direction, distance):
        """Move the vehicle.
            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction >= 360):
            raise ValueError("Error: Direction must be greater \
than or equal to zero and less than 360.")
        if distance < 0:
            raise ValueError("Error: Distance must be >= 0.")

        self._x += sage.all.n(distance * sage.all.cos(direction * 
            sage.all.pi / 180))
        self._y += sage.all.n(distance * sage.all.sin(direction * 
            sage.all.pi / 180))
        
    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))

Enter the following code into a Python file in the same directory as combatsim:

from combatsim import tank

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)

# Create a tank object
tank_1 = tank.Tank(armor_values, main_gun_damage, initial_position)

pos = tank_1.get_position()
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print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))

# Move 10m north
try:
    tank_1.move(0.0, 10.0)
except ValueError as error:
    print(error.args[0])
else:
    pos = tank_1.get_position()
    print("Current position: x = {0:.2f}m  y = {1:.2f}
m".format(pos[0], pos[1]))

# Try invalid direction
try:
    tank_1.move(361, 10.0)
except ValueError as error:
    print(error.args[0])
else:
    pos = tank_1.get_position()
    print("Current position: x = {0:.2f}m  y = {1:.2f}
m".format(pos[0], pos[1]))

# Try invalid distance
try:
    tank_1.move(90, -1.0)
except ValueError as error:
    print(error.args[0])
else:
    pos = tank_1.get_position()
    print("Current position: x = {0:.2f}m  y = {1:.2f}
m".format(pos[0], pos[1]))

The results should look like this:

sage: load("4460_9_9.py")

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Error: Direction must be greater than or equal to zero and less than 360.

Error: Distance must be >= 0.
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What just happened?
We modified the move method in the Ground_Vehicle class so that it raises an exception 
when it encounters an invalid argument. An exception is an object that gets passed up the 
chain of calling functions until it gets handled or causes the program to terminate. When an 
exception is raised, execution stops and the exception is immediately passed to the calling 
code. For example, if the direction argument to the move method is invalid, an exception 
will be raised and the value of distance will not be checked. The following syntax raises an 
exception:

raise ExceptionType(args)

There are many types of pre-defined exceptions, which we'll describe soon. In this case, we 
chose the ValueError exception, since we are checking for invalid values of the arguments. 
ValueError exceptions accept a single optional argument, which is a string that describes 
the error in more detail.

The general syntax for handling exceptions looks like this:

try:
   statement 1
   statement 2
    ...
except ExceptionType1 as error:
   handle exception
except ExceptionType2:
   handle exception
else:
   statements
finally:
    clean up

To handle exceptions raised by one or more statements, enclose the statements in a try 
block. After the try block, enclose exception-handling code in one or more except blocks. 
If you want access to the exception object, you can use the following syntax which assigns 
the name error to the exception object:

except ExceptionType1 as error:

We can then access a tuple containing the exception's arguments with error.args. Since 
this exception has a single string argument, we printed the value of the first argument in  
the tuple. You can handle multiple exception types with the following syntax:

except (ExceptionType1, ExceptionType2) as error:
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The else keyword is used to indicate code that should only be executed if there is no 
exception. In this example, we only want to print the position of the tank if it has changed. 
We only want to print the location if there is no exception and the tank moves, so we placed 
the print function in the else clause. You can also include a finally clause, which is a 
good place to put clean-up statements like closing open files. The code in a finally clause 
will be executed whether or not an exception is raised.

Using exceptions has improved our simulation in several ways. The classes defined in the 
combatsim package no longer rely on the print function to pass error messages to the user. 
This makes the package much more flexible. If the combat simulator is eventually used with 
a graphical user interface, printing error messages to the terminal won't be very effective. 
Handling exceptions also allows the code to continue running after an exception occurs. If we 
didn't handle exceptions, execution would have stopped the first time move was called with 
invalid arguments.

Exception types
The following exceptions are built in to Python. Try to raise the most appropriate error to 
inform your users what the problem is. More information on any exception type can be 
found using the Sage help system, or the Python documentation.

AssertionError KeyError RuntimeError UnicodeDecodeError

AttributeError KeyboardInterrupt StopIteration UnicodeTranslateError

EOFError MemoryError SyntaxError ValueError

FloatingPointError NameError SystemExit VMSError

GeneratorExit NotImplementedError TypeError WindowsError

IOError OSError UnboundLocalError ZeroDivisionError

ImportError OverflowError UnicodeError

IndexError ReferenceError UnicodeEncodeError

Have a go hero – raising exceptions in the __init__ method of Tank
In a previous exercise, you were asked to check for valid arguments in the __init__ method 
of the Tank class. While this was good practice, it wasn't very practical, because the instance 
was created even if you caught an error. Now, modify the __init__ method again to raise 
exceptions when errors are found.
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Creating your own exception types
You can also create your own exception types by defining an exception class that is derived 
from one of the existing exception types. This is handy when you want to distinguish 
categories of errors that are unique to your program.

Time for action – creating custom exception types
We will finally give our tanks the ability to fire their cannons. Adding a fire method means 
that we will need to raise exceptions related to cannon fire, in addition to exceptions that 
come from movement. To handle this situation, we will define custom error classes. Create a 
file called exceptions.py in the combatsim directory and enter the following code:

class CombatsimError(Exception):
    """Base class for exceptions generated by combatsim"""
    

    def __init__(self, value):
        """Create a CombatsimError exception.
        Arguments:
            value   String describing the error
        """
        Exception.__init__(self, value)
    

class MoveError(CombatsimError):
    def __init__(self, value):
        CombatsimError.__init__(self,value)
    

class ShootError(CombatsimError):
    def __init__(self, value):
        CombatsimError.__init__(self,value)

Enter the following code in vehicle.py in the combatsim directory:

import sage.all
from exceptions import *
    

class Ground_Vehicle():
    """Base class for all ground vehicles"""
    def __init__(self, position):
        """Create a vehicle instance
                position    (x,y) tuple of coordinates
        """
        # Intialize position
        self._x = position[0]
        self._y = position[1]
        
    def move(self, direction, distance):
        """Move the vehicle.
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            Arguments:
                direction   floating-point number representing 
                    the compass angle of movement in degrees. North is 
0, 
                    east is 90, south is 180, and west is 270. 
                    0 <= direction < 360
                distance       distance to move (in meters)
        """
        if (direction < 0) or (direction >= 360):
            raise MoveError("Error: Direction must be greater \
than or equal to zero and less than 360.")
        if distance < 0:
            raise MoveError("Error: Distance must be >= 0.")
    

        self._x += sage.all.n(distance * sage.all.cos(direction * 
            sage.all.pi / 180))
        self._y += sage.all.n(distance * sage.all.sin(direction * 
            sage.all.pi / 180))
        
    def get_position(self):
        """Returns a tuple with the (x,y) coordinates of the tank's
        current location.
        """
        return (float(self._x), float(self._y))

Enter the following code in tank.py in the combatsim directory:

from components import *
from exceptions import *
from vehicle import Ground_Vehicle
    

class Tank(Ground_Vehicle):
    """Model of an armored fighting vehicle."""
    def __init__(self, armor_values, cannon_damage_value, position):
        """Constructs a tank instance
            Arguments:
                armor_values    A dictionary of armor values 
                    of the form:
                    {'front' : 100, 'side' : 50, 'rear' : 25, 
                        'turret' : 75}
                cannon_damage_value     Integer that represents
                    the damage inflicted by the main gun
                position    (x,y) tuple of coordinates
        """
        # Initialize armor
        self._frontal_armor = armor_values['front']
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        self._left_armor = armor_values['side']
        self._right_armor = armor_values['side']
        self._rear_armor = armor_values['rear']
        self._turret_armor = armor_values['turret']
    

        # Add tank components
        main_gun = Cannon(cannon_damage_value)
        self._turret = Turret(main_gun)
        self._left_track = Track()
        self._right_track = Track()
    

        Ground_Vehicle.__init__(self, position)
    

    def __str__(self):
        import os
        ls = os.linesep
        description = 'Tank parameters:' + ls
        description += '  Armor values:' + ls
        description += '    Front:' + str(self._frontal_armor) + ls
        description += '    Left:' + str(self._left_armor) + ls
        description += '    Right:' + str(self._right_armor) + ls
        description += '    Rear:' + str(self._rear_armor) + ls
        description += '    Turret:' + str(self._turret_armor) + ls
        description += '  Weapons:' + ls
        description += '    Main cannon:' + ls
        description += '    ' + str(self._turret) + ls
        return description
        
    def fire(self, direction, elevation):
        """ Fire the cannon.
            Arguments:
            direction   degrees, 0 <= direction < 360
            elevation   degrees, 0 <= direction < 90
        """
        if (direction < 0) or (direction >= 360):
            raise ShootError("Error: Firing direction must be \
greater than or equal to zero and less than 360.")
        if (elevation < 0) or (elevation >= 90):
            raise ShootError("Error: Firing elevation must be \
greater than or equal to zero and less than 90.")
        
        print "Bang!" 
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Enter the following code in a new Python file in the same directory as combatsim:

from combatsim import tank
import combatsim.exceptions as ex
    

# Define parameters for the tank
armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
    'turret' : 75}
main_gun_damage = 50
initial_position = (0.0, 0.0)
    

# Create a tank object
tank_1 = tank.Tank(armor_values, main_gun_damage, initial_position)
    

pos = tank_1.get_position()
print("Initial position: x = {0:.2f}m  y = {1:.2f}m".format(pos[0], 
pos[1]))
    

# Move 10m north
try:
    tank_1.move(0.0, 10.0)
except ex.MoveError as error:
    print(error)
else:
    pos = tank_1.get_position()
    print("Current position: x = {0:.2f}m  y = {1:.2f}
m".format(pos[0], pos[1]))
    

# Valid arguments to fire method
try:
    tank_1.fire(325,24)
except ex.ShootError as error:
    print(error.args[0])
    

# Invalid arguments to fire method
try:
    tank_1.fire(325,-1)
except ex.CombatsimError as error:
    print(error.args[0])
    

 # Invalid arguments to move and fire methods   
try:
    tank_1.move(-1,1)
    tank_1.fire(325,97)
except (ValueError, ex.ShootError) as error:
    print("Firing error.")
    print(error.args[0])
except ex.MoveError as error:
    print("Movement error:")
    print(error.args[0])
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The results should look like this:

sage: load("4460_9_10.py")

Initial position: x = 0.00m  y = 0.00m

Current position: x = 10.00m  y = 0.00m

Bang!

Error: Firing elevation must be greater than or equal to zero and less 
than 90.

Movement error:

Error: Direction must be greater than or equal to zero and less than 360.

What just happened?
We added a new module called exceptions to the combatsim package. This module 
defines a base class called CombatsimError, which is derived from the Python base class 
Exception. In general, custom exceptions are derived from Exception. We then derived 
two new classes, MoveError and ShootError, which are derived from CombatsimError. 
It is convention to create a custom base class for all exceptions raised by a module or 
package, and to use the word "Error" when naming exception classes.

We added one line at the top of vehicle.py to import all of the new exception definitions. 
Remember that, in general, it is best to avoid the syntax import *. In this case, we are 
importing names from another module within the same package, so it is unlikely that names 
will conflict. We changed the move method so that it raises a MoveError exception, instead 
of a ValueError exception, if either of the parameters is invalid. We also import the new 
exception classes in tank.py, and we added a method called fire. This method accepts 
two arguments, direction and elevation, which are the compass direction (in degrees) 
in which the cannon is pointing and the elevation of the gun above horizontal (in degrees), 
respectively. For simplicity, we assume that the elevation must be greater than or equal to 0 
degrees and less than 90 degrees. If either the direction or elevation is incorrect, the method 
raises a ShootError exception.

In the file 4460_9_10.py, we import the module containing our custom exception classes. 
Each try block that contains a call to the move method now catches exceptions of the 
MoveError class. We added a try block containing a call to the new fire method, which 
catches exceptions of type ShootError. We also called the fire method inside a try 
block that catches errors of the exception base class, CombatsimError. This works because 
ShootError is derived from CombatsimError, and the exception handler for a base class 
will also handle any derived exceptions.
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Finally, we called both the move method and the fire method in the same try block. 
We use two except statements to catch two different exception classes and handle them 
differently. This is a good reason to define your own exception classes—if we had just raised 
ValueError exceptions, we would have had no way to know where an exception came 
from (other than looking at its argument). Note that the output only shows a MoveError, 
even though the call to tank.fire would have produced an error as well (elevation > 
90). Because the move method raised an exception, the interpreter skipped directly to the 
except block, ignoring the rest of the statements in the try block.

Tips for using exceptions correctly
The whole idea of using exceptions is to make it easier to identify and handle 
specific runtime errors in your programs. You defeat the purpose of using 
exceptions if you place too many lines of code in a try block, because then it's 
hard to tell which statement raised the exception. It's also a bad idea to have a 
bare except: statement that doesn't specify the exception type that is being 
caught. This syntax will catch any type of exception, including SystemExit and 
KeyboardInterrupt exceptions, making it hard to terminate a misbehaving 
program. It's also considered bad practice to catch an exception without properly 
handling it, as this practice can mask errors.

Unit testing
As object-oriented programs get larger and more complicated, debugging can become more 
difficult. Unit testing is a paradigm for verifying and validating software. A unit is the smallest 
part of the program that can be tested, such as an individual function or method. Unit testing 
is the practice of testing each individual unit, by itself, to ensure that it responds correctly. 
Python has a package in the standard library called unittest to help you implement unit 
tests for your code.

Time for action – creating unit tests for the Tank class
Let's see how unittest can help us test the Tank class. Enter the following code into a text 
file in the same directory as the combatsim package:

import combatsim
import combatsim.exceptions as ex
import unittest

class TestTank(unittest.TestCase):
    """Tests for the combatsim package."""

    def setUp(self):
        """Called before EACH test is run."""
        # Define parameters for the tank
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        armor_values = {'front' : 100, 'side' : 50, 'rear' : 25,
            'turret' : 75}
        main_gun_damage = 50
        initial_position = (0.0, 0.0)

        # Create a tank object
        self.tank = combatsim.tank.Tank(armor_values, main_gun_damage, 
initial_position)

    def test_get_position(self):
        """Test method get_position"""
        position = self.tank.get_position()
        self.assertEqual(position, (0.0, 0.0))
        
    def test_move(self):
        """Test method move"""
        self.tank.move(0, 1)
        position = self.tank.get_position()
        self.assertEqual(position, (1, 0))

    def test_move_arg1(self):
        """Test method move, arg 1 invalid"""
        self.assertRaises(ex.MoveError, self.tank.move, 360, 1)

    def test_move_arg2(self):
        """Test method move, arg 2 invalid"""
        self.assertRaises(ex.MoveError, self.tank.move, 159, -1)
        
    def test_fire(self):
        """Test method fire.  This test is designed to FAIL \
so you can see what a failed test looks like."""
        result = self.tank.fire(90,30)
        self.assertEqual(result, True)
        
suite = unittest.TestLoader().loadTestsFromTestCase(TestTank)
unittest.TextTestRunner(verbosity=2).run(suite)

Run the script. You should get output like this:

sage: load("4460_9_11.py")

Test method fire.  This test is designed to FAIL so you can see what a 
failed test looks like. ... Bang!

FAIL

Test method get_position ... ok

Test method move ... ok

Test method move, arg 1 invalid ... ok
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Test method move, arg 2 invalid ... ok

======================================================================

FAIL: Test method fire.  This test is designed to FAIL so you can see 
what a failed test looks like.

----------------------------------------------------------------------

Traceback (most recent call last):

  File "./4460_9_11.py", line 42, in test_fire

    self.assertEqual(result, True)

AssertionError: None != True

----------------------------------------------------------------------

Ran 5 tests in 0.006s

FAILED (failures=1)

What just happened?
We started out by importing the Tank class from combatsim.tank and importing the 
combatsim.exceptions module, just like we did before. We also imported the unittest 
module. We created a class called TestTank, which is derived from unittest.TestCase, 
for the purpose of testing the Tank class. Each of the methods of TestTank tests a specific 
feature of the Tank class. However, we need to create an instance of the Tank class before 
we can start testing. The method called setUp is called before each test is run. If we had to 
do some cleanup (such as closing a file or a database connection) after each test, we would 
have placed this code in a method called tearDown.

Each test method has a docstring that explains what it does. The docstring is especially 
important for test methods because it is used to document the result of the test. The 
method test_get_position starts by calling the get_position method of a Tank 
instance created by setUp. The next statement uses assertEqual to check that the 
position returned by get_position matches the position specified in setUp. This is all you 
have to do—the rest is handled automatically by unittest. The next method, test_move, 
works in a similar way.
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The methods test_move_arg1 and test_move_arg2 are somewhat different. These 
methods intentionally cause the move method to raise an exception by passing invalid 
arguments. The syntax for this is slightly different. The assertRaises method takes three 
arguments: the name of the exception that should be raised, the method to be tested, and 
any arguments for the method to be tested. In this case, the arguments are two numbers 
that represent direction and distance. I also included a method called test_fire, which 
fails because the fire method doesn't really do anything. This method was included so that 
you can see what happens when a test fails. Notice that the test method docstring is printed 
to help you understand which test failed.

The final two lines of the example are shortcuts to help us create a test suite and run the 
tests. The following statement creates a test suite called suite:

suite = unittest.TestLoader().loadTestsFromTestCase(TestTank)

The following line calls the run method of a class called TextTestRunner that comes 
with unittest:

unittest.TextTestRunner(verbosity=2).run(suite)

This class provides a simple text interface that runs the tests and prints the results.

This short example demonstrates only the most basic features of unittest. Look at the 
unittest documentation to get an idea of what it can do to help you test larger and more 
complex packages. There are more assert methods to handle various types of output from 
the methods you are testing. Here is a list of the assert methods available in Python 2.6; 
even more are available in Python 2.7 and higher:

assertTrue(expr) Test fails if expr is False

assertEqual(first, second) Test fails if first is not equal to second

assertNotEqual(first, second) Test fails if first is equal to second

assertAlmostEqual(first, second,  
[,places])

Test fails if the difference between first and second is 
greater than places decimal places (default 7)

assertNotAlmostEqual(first, 
second[,places])

Test fails if the difference between first and second is 
smaller than places decimal places (default 7)

assertRaises(exception, callable 
[,args])

Test fails unless exception is raised by callable 
(with optional args passed to callable)

assertFalse(expr) Test fails if expr is True
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Strategies for unit testing
Defining unit tests requires careful thought and a fair amount of judgement. It's impossible, 
or at least highly impractical, to test every possible execution path in most programs. Before 
writing tests, the developer should think about the intended use of the code and refer back 
to the requirements that may have been defined before the code was written. The following 
are some suggestions for unit tests:

 � Boundary (or edge) cases test how the code performs when one of its parameters 
reaches an extreme value

 � A corner case tests what happens when all of the parameters take on extreme 
values

 � Branch testing attempts to test all branches of the source code at least once

 � Exception tests check to make sure that exceptions are raised and handled properly

 � Run the code with a set of fixed inputs to ensure that it reproduces known results 
(such as published results)

 � Randomly generate valid inputs and run the code to see if certain combinations of 
parameters lead to an error

For some types of tests, such as corner cases, the author of the code is the best person to 
write the test. On large projects, unit tests are often written by someone other than the 
author of the code. The tests are written to cover the requirements that were defined for 
the software. This approach has the advantage that the tests may uncover assumptions that 
were made by the person who wrote the code.

If you have written some code that you would like to have included in the Sage library, you 
will have to become familiar with the testing standards of the Sage project. The Sage project 
uses a type of testing called doctesting to ensure quality. The docstring for each function 
or module is written in a special format that includes a section with examples. Doctesting 
automatically searches for examples in the docstring (hence the name), runs them, and 
verifies that the results are correct. More information about doctesting Sage modules and 
the conventions for writing docstrings is available at:

http://www.sagemath.org/doc/developer/doctesting.html

http://www.sagemath.org/doc/developer/conventions.html

Have a go hero – creating some unit tests
Define two methods to verify that the fire method of the Tank class raises the right 
exception when invalid arguments are passed to the method. Use test_move_arg1 as 
an example.



Chapter 9

[ 289 ]

Summary
This chapter introduced you to the principles of object-oriented programming. You have 
learned how to create classes in Python, and how to use them to organize your code. We 
also touched on some general software engineering principles, including the concept of unit 
testing. Specifically, we:

 � Defined classes to represent an armoured fighting vehicle

 � Used inheritance to represent other types of military vehicles

 � Organized the class definitions into modules

 � Created a package to contain our modules

 � Learned how to handle exceptions

 � Defined our own exceptions specific to the Vehicle and Tank classes

 � Created unit tests to make sure our classes are working correctly

Now, we'll move on to some advanced techniques to help you get the most out of Sage.
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Where to go from here

The previous chapters have introduced you to many aspects of Sage. This chapter contains a 
collection of topics that you may find useful after you have become familiar with the basics 
of Sage. Specifically, we will learn how to:

 � Export equations as PNG and PDF files

 � Export  vector graphics and typeset mathematical expressions for inclusion  
in LaTeX documents

 � Use LaTeX to document Sage worksheets

 � Speed up collision detection using NumPy vector operations and Cython

 � Create a Python script that uses Sage functionality

 � Create interactive graphical examples in the notebook interface

Let's get started.

Typesetting equations with LaTeX
Sage makes it easy to document and publish mathematical results with a document mark-up 
language called LaTeX. The TeX typesetting system is used to process LaTeX files to create 
documents, in much the same way that web browsers parse HTML documents to create web 
pages. A plain text file containing LaTeX markup is passed to the TeX processor. The processor 
parses the source file, includes graphics from other files, and produces a vector graphics file 
in a format such as DVI (Device Independent), Postscript, or PDF. Other types of documents 
can also be created. Many publishers of mathematical and scientific books and journals 
encourage authors to submit their work as LaTeX files, and some journals require authors to 
use it. Both TeX and LaTeX are available under open-source licenses. LaTeX requires an entire 
book of its own; this section will only give you the bare minimum of information you need to 
use LaTeX with Sage. Sage does not include LaTeX, so we will start by installing LaTeX.
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Installing LaTeX
In order for the following examples to run, you need to have LaTeX installed on your system. 
If you are building Sage from source, it is recommended that you install LaTeX before building 
Sage. For UNIX operating systems like Solaris and OpenSolaris, and UNIX-like systems such as 
Linux, install the TeX Live distribution. If it is not available through your distribution's package 
manager, it can be downloaded directly from http://www.tug.org/texlive/. For OS X, 
install MacTeX, which is based on TeX Live. MacTex can be found at http://www.tug.org/
mactex/.

You can install TeX on Windows, but Sage will not be able to access it because Sage runs 
in a Linux virtual machine. You will have to install a Linux version of TeX within the virtual 
machine. If you simply want to run TeX on Windows, try MiKTeX (http://www.miktex.
org/). proTeXt (http://www.tug.org/protext/) is another distribution for Windows 
that is based on MiKTeX and includes some additional tools.

First, let's verify that the basic tools are installed. The following commands can be entered 
on the command line, or in an input cell in a worksheet. The results will vary, depending on 
which operating system you are using. On OS X, you will see:

sage: print latex.engine()

latex

sage: print sage.misc.viewer.viewer()

sage-open

sage: print sage.misc.viewer.pdf_viewer()

sage-native-execute sage-open

sage: print sage.misc.viewer.dvi_viewer()

sage-native-execute sage-open

The first line shows that an external LaTeX processor is available, and will be used as the 
engine for processing LaTeX. The next three lines show that sage-open will be used to view 
both PDF and DVI files. This means that the default applications for OS X will be used to open 
PDF and DVI files. On Ubuntu Linux (or Windows, since Sage runs in a Linux virtual machine), 
you will see:

sage: print latex.engine()

latex

sage: print sage.misc.viewer.viewer()

xdg-open

sage: print sage.misc.viewer.pdf_viewer()

sage-native-execute xdg-open

sage: print sage.misc.viewer.dvi_viewer()

sage-native-execute xdg-open
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OpenSolaris:

sage: print latex.engine()

latex

sage: print sage.misc.viewer.viewer()

xdg-open

sage: print sage.misc.viewer.pdf_viewer()

sage-native-execute xdg-open

sage: print sage.misc.viewer.dvi_viewer()

sage-native-execute xdg-open

sage: print sage.misc.viewer.pdf_viewer()

sage-native-execute xdg-open

If you have set the SAGE_BROWSER environment variable to force Sage to use 
a particular web browser, you might have trouble viewing PDF or DVI files in an 
external viewer. If this occurs, unset SAGE_BROWSER, and change the default 
web browser for your operating system so that Sage will use the correct browser.

Time for action – PDF output from the notebook interface
Enter the following code into an input cell in a worksheet, and evaluate the cell.

var('n,x,t')
J_n(n,x) = 1/pi*integral(cos(n*t-x*sin(t)), t)
J_n
show(J_n)
view(J_n)
view(J_n, mode='display'))
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You should see the following results in your worksheet:

Let's say you want to generate a PDF file. Enter the following code after evaluating the code 
from the first example:

restore('i'))
J_n_2(n, x) = 1 / (2 * pi) * integral(exp(-i * (n * t - x * sin(t))), 
t, -pi, pi)
view([J_n, J_n_2], title='Representations of the Bessel function',, 
sep='\hrule', viewer='pdf', mode='display')

You will not see any output in the worksheet. Instead, the external viewer should open a 
new window with a PDF file that contains the following content:
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If you only want to output a single equation as a PDF file, rather than an entire page, try this:

view(J_n, viewer='pdf', tightpage=True, mode='display')

The results should look like this:

Now, try this:

sage.misc.latex.png(J_n, 'J_n.png')

You should see this:

What just happened?
In the first example, we defined a function J_n that represents a Bessel function of the first 
kind. Bessel functions are a type of "special function" that are used to represent solutions to 
certain types of partial differential equations. You don't need to know any more than that to 
understand this example, but you can find more information at http://en.wikipedia.
org/wiki/Bessel_function.

We used the familiar show function to display the Bessel function, and we demonstrated 
how to use the view function. view returns a LaTeX representation of its argument. When 
called from the notebook interface, the LaTeX mark-up is automatically parsed by jsMath, 
which produces an HTML expression that your browser can display. jsMath is a collection 
of JavaScript programs that display mathematical content on web pages. It is installed 
on the server side, so the user doesn't need to install any software to view mathematical 
expressions. However, mathematical expressions will look much better if the user downloads 
a set of TeX fonts. 
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You may have noticed the little jsMath button on the lower right-hand corner of every Sage 
worksheet. When you click the button, you get a control panel that allows you to set various 
options. Click the button labelled Hi-Res Fonts for Printing to download the TeX fonts (if the 
button is greyed out, you already have the fonts). You can find out more about jsMath and 
download the TeX fonts directly at:

http://www.math.union.edu/~dpvc/jsMath/

The output from show is somewhat larger than the output produced by view. The reason is 
that LaTeX has two modes for displaying mathematics: inline and display. Inline mode is used 
when you want to put mathematical symbols on the same line as text, and display mode is 
used when you want to display an expression on a line by itself. By default, view uses inline 
mode, but we can change that with the mode keyword. When we used the mode keyword 
to set the mode to 'display', the output from view was equivalent to the output from 
show.

The next part of the example showed how to generate a PDF file containing mathematical 
expressions. We defined another callable symbolic expression called J_n_2, which is an 
alternative representation of a Bessel function. Note that we started the example with the 
line restore('i'). By default, Sage defines the symbol i as the square root of negative 
one, which is how we intend to use it in this example. However, i is frequently used as a 
counting variable in for loops. We used the restore function to restore the symbol to its 
default value, to ensure that the code runs correctly even if i has already been used as a 
counting variable in a previous calculation.
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When view receives the keyword argument viewer='pdf', the LaTeX output is used to 
create an external PDF file instead of being passed to jsMath. This part of the example also 
showed how to typeset multiple expressions in the same PDF document. We created a list 
containing both equations, and used this list as the first argument to view. When view 
receives a list of objects for output to a PDF file, it typesets each one on its own line. The 
sep keyword argument specifies what kind of separation should be used between the 
expressions. In this case, the LaTeX command \hrule creates a horizontal line. Sometimes, 
we don't want to generate a whole page of output for a single equation. The third part of the 
example shows how the keyword argument tightpage=True shrinks the page to fit tightly 
around a single typeset expression.

In the fourth part of the example, we used the png function to create a bitmap image 
of a mathematical expression. Bitmaps are not the best way to represent mathematical 
expressions, but sometimes they might be the only option. The png function uses the system 
TeX installation to create a DVI file, and then uses an external program called dvipng to 
convert it to a PNG bitmap. This will only work if an external installation of LaTeX is present.

The view function in the interactive shell
You can also use the view function on the Sage command line. However, you will need to 
have a LaTeX distribution installed on your system in order to see the output.

LaTeX mark-up in the notebook interface
The previous example produced some nice output, but it was not very flexible. What if we 
are writing an entire paper or book with LaTeX, and we want to integrate equations from 
Sage into our work? Let's see what else we can do with LaTeX.

Time for action – working with LaTeX markup in the 
notebook interface

Enter the following into an input cell in the worksheet:

var('n, x, t')
J_n(n, x) = 1 / pi * integral(cos(n * t - x * sin(t)), t, 0, pi)
latex(J_n)

You will get a string of LaTeX mark-up that represents the object J_n:

\left( n, x \right) \ {\mapsto} \ \frac{\int_{0}^{\pi} \cos\left(-n t + x 
\sin\left(t\right)\right)\,{d t}}{\pi}

You can paste this text directly into an existing LaTeX document. This function will also work 
on the Sage command line.
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You can also use the notebook interface to evaluate LaTeX expressions. Enter this into an 
input cell (you can copy and paste the markup for the mathematical expression from the 
previous example):

%latex
You can paste LaTeX markup directly into a cell:
\[
\left( n, x \right) \ {\mapsto} \ \frac{\int \cos\left(-n t + x \sin\
left(t\right)\right)\,{d t}}{\pi}
\]
You can also put expressions like \(y=x^3\) inline.

The result should be:

Another neat trick is that we can actually embed Sage commands into LaTeX mark up.  
Enter the following code into another input cell:

%latex
You can also embed Sage commands in LaTeX markup like this:
\[
\sage{latex(J_n(n,x))}
\]

The result should be:

We can also use LaTeX to typeset mathematical expressions in text cells in the notebook. Use 
shift-click to insert a new text cell, and enter the following text:
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When you save the text, the cell should look like this:

What just happened?
Every Sage object is required to provide a LaTeX representation of itself. In the previous 
examples, we saw how to use the view function to generate LaTeX and automatically 
process it to create graphics. In this example, we used the latex function to return a string 
of LaTeX commands that represent a mathematical expression. We then created a new cell in 
the worksheet and entered %latex in the first line. This directs Sage to evaluate the rest of 
the cell as a LaTeX expression. We pasted in the output from the latex function, adding \[ 
before the markup and \] after. The backslash with square brackets tells the LaTeX processor 
that the enclosed commands should be processed in "math mode." Square brackets cause 
the expression to be rendered in display mode, while parenthesis are used to indicate inline 
mode. This example uses both modes to illustrate the differences. You will sometimes see 
two dollar signs $$ used to indicate math display mode, and a single dollar sign $ used to 
indicate inline mode. Using dollar signs is discouraged, since it can cause problems with 
certain LaTeX packages. While you wouldn't want to typeset a whole document in a Sage 
notebook cell, the ability to process LaTeX mark-up is very useful for previewing snippets of 
LaTeX to make sure it will display correctly.
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The next block of code shows how to embed a Sage command into LaTeX mark-up. The 
LaTeX command \sage{sage_command} tells the TeX processor to run sage_command 
using Sage, insert the results into the LaTeX mark-up, and continue processing. In this case, 
we simply used the latex function to return the LaTeX representation of a function. This 
is handy, because your LaTeX output will automatically incorporate any changes you make 
in your mathematical expressions. We can take this a step farther, and use the \sage 
command in LaTeX mark-up outside of Sage. This requires some extra configuration of your 
TeX distribution; more details can be found at:

http://www.sagemath.org/doc/tutorial/sagetex.html

Time for action – putting it all together
Let's produce a simple document with LaTeX that incorporates typeset equations and graphics. 
This is a suitable starting point for a report, journal article, or homework assignment. First, let's 
make a plot of the Bessel function of the first kind for three values of n.

from matplotlib import pyplot as plt
import numpy

def J_n_numerical(n, x):
    integrand(n1, x1, t) = cos(n1 * t - x1 * sin(t))
    J_n = numpy.zeros(len(x))
    for j in range(len(x)):
        J_n[j] = 1 / pi.n() * integrand(n1=n, x1=x[j]).nintegrate(t, 
0, pi)[0]
    return J_n

n_values = [0, 1, 2]
x = numpy.arange(0.0, 10.0, 0.1)

plt.figure()
for n in n_values:
    plt.plot(x, J_n_numerical(n, x), label='n=' + str(n))
plt.xlabel('x')
plt.ylabel('J(x)')
plt.legend(loc='upper right')
plt.savefig('J_n.pdf')
plt.close()

The plot will be saved as a PDF file in the SAGE_TEMP directory, so you won't see the plot 
in your browser. Instead, you will see a link to the file. Click this link to open the file in a PDF 
viewer, and save a copy in a convenient location. Now, create a plain text file and save it with 
a .tex extension in the same directory as the PDF plot. Enter the following LaTeX mark-up in 
the text file:
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\documentclass{report}
\usepackage{graphicx}

\begin{document}

\title{A Simple \LaTeX{} Document}
\author{Your Name}

\maketitle

\begin{abstract}
The abstract text goes here.
\end{abstract}

\section{Introduction}
Write your introduction here.

\section{Mathematics}
Some text...

\subsection{Subsection Heading Here}
Equations...

\begin{equation}
    \label{simple_equation}
    \left( n, x \right) \ {\mapsto} \ \frac{\int_{0}^{\pi} \cos\
left(-n t + x \sin\left(t\right)\right)\,{d t}}{\pi}
\end{equation}

\subsection{Subsection Heading Here}
Graphics...

\begin{figure}
    \centering
    \includegraphics[width=3.0in]{J_n.pdf}
    \caption{Bessel function of the first kind}
\end{figure}

\section{Conclusion}
Write your conclusion here.

\end{document}

The exact method you will use to process the LaTeX document depends on which operating 
system and TeX distribution you are using. On Linux or OS X, you can use the command line. 
In a terminal window, change to the directory where you saved the LaTeX source file and PDF 
file. On the command line, enter:

pdflatex Bessel_functions.tex
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Your TeX distribution may include other applications that eliminate the need to use the 
command line. You will get a bunch of text output in the terminal that can be safely ignored 
as long as no errors are generated. A new PDF file should be created in the same directory. 
The PDF file should look like this:
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What just happened?
This example used information from several previous chapters. We'll start by reviewing how 
we plotted the Bessel function. Because the integral used to define the Bessel function does 
not have an analytical solution, we had to use numerical integration. We used matplotlib for 
plotting because it is better than the built-in plot function for numerical data, and  gives 
us the option to save the plot in various file formats. We defined a function called J_n_
numerical that accepts an array of x values and returns an array of values of the Bessel 
function. Within this function, a NumPy array is created using the zeros function, and a 
for loop is used to iterate over the x values. The nintegrate method is used for numerical 
integration. The resulting array of function values was plotted using the plot command 
from Matplotlib, and we added axes labels and a legend. Finally, we saved the plot as a PDF 
file. If you are comfortable with LaTeX, an alternative procedure is to save the data in a file so 
that it can be read and plotted with a LaTeX package called PGFPlots (http://pgfplots.
sourceforge.net/).

We then created a fairly minimal LaTeX source file. The source file begins with the  
\documentclass{article} command, which sets the document class to article. 
There are many other classes, but the basic options are article, report, and book. 
This command is required in all LaTeX source files. Your document is also required to  
include a pair of commands: \begin{document} at the beginning and \end{document} 
at the end. The other commands are optional. We also chose to use the command  
\usepackage{graphicx}, that is similar in concept to the import statement in Python, 
to use the package called graphicx. We will use this package to import the graphics we 
saved with Sage.

We copied the LaTeX mark-up that represents our equation from the Sage worksheet, and 
pasted it between the commands \begin{equation} and \end{equation}. We then 
used the commands \begin{figure} and \end{figure} to define a figure, and used 
the \includegraphics[width=3.0in]{J_n.pdf} command to include the PDF file 
we saved. If the PDF file isn't in the same directory as the LaTeX source file, then you must 
include the path to the file. The \caption{} command adds a caption to the figure.

This section is only a brief introduction to LaTeX, which requires a book or two of its own. 
This example demonstrates how LaTeX can produce a beautiful document with a minimum 
of effort. It will be worth your time to learn more about this powerful tool. A list of LaTeX 
resources can be found at http://www.latex-project.org/guides/
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Have a go hero – Bessel functions of the second kind
Using the previous example as a foundation, add a section that documents Bessel functions 
of the second kind. Define a symbolic function, get its LaTeX representation, and paste it into 
a new section of the LaTeX document. Then, define a numerical function that can be used for 
plotting and plot the graph using Matplotlib. Include the plot in your LaTeX document. You 
may find this Wikipedia article useful as a reference, and to make sure your plot is correct:

http://en.wikipedia.org/wiki/Bessel_function

Speeding up execution
In this section, we're going to learn how to make Sage and Python code run faster. This 
section has been left until the last chapter because optimizing the speed of your code is 
only important in a few specific circumstances. This philosophy is summarized in a famous 
quote from Donald Knuth, author of the TeX typesetting system: "We should forget about 
small efficiencies, say about 97% of the time: premature optimization is the root of all evil." 
If you consider the amount of time that you spend on a programming project, from start 
to finish, only a small portion is usually spent waiting for the program to run. Most of the 
time is spent writing the program, testing it, fixing bugs, and going back into the code a year 
later and trying to figure out why you wrote it a certain way. To truly save time, the most 
important thing you can do is to write neat, legible code, and document it well.  However, in 
mathematical and scientific computing, there are circumstances where it is helpful to reduce 
a program's runtime. For example, climate simulations and some number theory calculations 
can consume days of time on massively parallel clusters. Testing and debugging also go much 
faster when a program runs in seconds instead of minutes. Keep these general principles in 
mind as we go through the following series of examples.

Time for action – detecting collisions between spheres
We will use collision detection as an example to demonstrate some common optimization 
techniques. Detecting collisions is an important part of Monte Carlo simulations, that are 
used in physics and chemistry to simulate the motion of molecules and particles. Collision 
detection is also used in flight simulators and video games. It is easy to detect collisions 
between spheres, so most collision detection algorithms define a "bounding sphere" around 
each complex object, and check for intersections between the bounding spheres. If the 
bounding spheres intersect, then more computationally expensive calculations are used to 
determine whether or not the objects themselves actually overlap.
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This example is designed to be run from the notebook interface. First, let's create a box full 
of randomly placed spheres. The number of spheres is set so that the example runs in a 
reasonable length of time on a 2009 MacBook Pro. You may need to adjust the number of 
spheres to get reasonable runtimes on your particular system. Enter the following code into 
an input cell in a worksheet:

dimension = 20
num_particles = 500
radius = 1.0

rng = RealDistribution('uniform', [0,dimension], seed=1)

x = [rng.get_random_element() for i in range(num_particles)]
y = [rng.get_random_element() for i in range(num_particles)]
z = [rng.get_random_element() for i in range(num_particles)]

We can visualize the particles in three dimensions using the following code. Rendering 
500 spheres in 3D takes a while, so you may not want to run this part of the example  
on an older system.

grobs = []
for i in range(num_particles):
    grobs.append( sphere((x[i], y[i], z[i]), size=radius, 
color='red'))
show(sum(grobs))

Finally, check for collisions by running the following code from a worksheet cell:

%time
import numpy
collisions_1 = numpy.zeros(num_particles, dtype=numpy.bool)

for i in range(num_particles):

    for j in range(0,i):
        r = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2)
        if r < 2*radius:
            collisions_1[i] = True
        
    for j in range(i+1,num_particles):
        r = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2)
        if r < 2*radius:
            collisions_1[i] = True
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The spheres look like this:

The collision detection itself doesn't give any output; it stores the results in an array of 
Boolean values. The execution time is printed:

As we optimize the code in the following examples, we will check to make sure the results 
match the results from this example.

What just happened?
We started out by using list comprehensions and the RealDistribution class (introduced 
in Chapter 8) to obtain three lists of x, y, and z coordinates that represent the centres of the 
spheres. 500 spheres were randomly distributed throughout a cubic region of space. We 
then used the sphere function to obtain a 3D graphical representation of each sphere, and 
displayed them together. The sphere function accepts the following arguments:
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Keyword Default value Description
center (0,0,0) Position of the centre of the sphere (x, y, z)
radius 1 Radius of the sphere
color blue Color of the sphere
opacity 1 Floating point number between 0 (transparent) and 1 (opaque)

The input cell that contains the actual collision detection algorithm starts with %time on the 
first line. This tells Sage to time the execution of the code in the cell. We placed the code to 
create and plot the spheres in separate cells because we only want to measure the runtime 
of the collision detection. We then created a NumPy array of Boolean values, initialized to 
False, using the zeros function (we would have used ones if we wanted the default values 
to be True). Later on, you'll see why we used a NumPy array for this purpose instead of a list.

The actual collision detection algorithm is simple. The outer for loop iterates over each 
sphere in the list. The formula:

is used to compute the distance between the centre of sphere i and each of the other 
spheres. If the centre-centre distance is less than twice the radius, then the spheres intersect 
and the value of collisions_1[i] is set to True. This approach is conceptually simple 
and computationally inefficient. If there are N particles in the list, the collision detection 
must be performed N2 times. The performance of the algorithm scales poorly as the number 
of particles increases. Fortunately, there is a lot we can do to improve this!

The Sage notebook interface reports two runtimes for the code: CPU time and wall time. The 
CPU time is the amount of time that code actually ran on the processor, while the wall time 
is simply the total time required for the code to run (as it would be measured by a clock on 
the wall). For this example, the two are almost identical. If the CPU had to wait on another 
operation to finish, such as accessing a file on disk, the wall time could be considerably 
longer than the CPU time.

Time for action – detecting collisions: command-line version
This example repeats the previous example using the command-line interface. Create a script 
in a plain-text editor and enter the following code:

dimension = 20
num_particles = 500
radius = 1.0

rng = RealDistribution('uniform', [0,dimension], seed=1)
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x = [rng.get_random_element() for i in range(num_particles)]
y = [rng.get_random_element() for i in range(num_particles)]
z = [rng.get_random_element() for i in range(num_particles)]

import numpy
collisions_1 = numpy.zeros(num_particles, dtype=numpy.bool)

start_time = walltime()
for i in range(num_particles):

    for j in range(0,i):
        r = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2)
        if r < 2*radius:
            collisions_1[i] = True
        
    for j in range(i+1,num_particles):
        r = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2)
        if r < 2*radius:
            collisions_1[i] = True
            
print(walltime(start_time))

Save it with a .sage extension, and use the load command to run it in the interactive shell. 
The runtime will be displayed when the script is finished:

sage: load collision_detection_1_Sage.sage

4.08416008949

What just happened?
This example is very similar to the previous example. The major difference is the way in 
which the run time is measured. The function wall_time(t) returns the length of time 
that has elapsed since time t. We called wall_time at the beginning of the block of code 
to determine the start time. We then called wall_time again at the end of the block, 
passing the start time as an argument, to get the amount of time required to run the block 
of code. This process can be used to adapt the following notebook examples so they can 
be run on the command line. The function cputime can be used to obtain the CPU time in 
the same way. The cputime function has one additional optional keyword argument called 
subprocesses, which is False by default. If set to True, cputime will also measure the 
CPU time used by any subprocesses that are spawned by Sage (Sage creates subprocesses to 
run tools such as Gap or Singular).
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Tips for measuring runtimes
Measuring run times can be tricky.  Here are a few tips to make your measurements as 
accurate as possible:

1. Make sure nothing else is using the CPU while you run the code. This may seem 
obvious, but you need to be especially careful if your code is running for a long 
period of time. Make sure a scheduled process, like a virus scan, doesn't start in the 
middle of the run. On OS X or Linux, use the top command (in a terminal) to see 
information about running processes. In Solaris or OpenSolaris, use prstat. For 
Windows, use the Task Manager.

2. Disk access is much slower than calculations on the CPU. Avoid reading or writing 
files, and don't use so much memory that your program has to swap to disk (unless, 
of course, you're trying to benchmark disk access).

3. Disable writing to the screen when benchmarking—this is also slow.

4. Run the code several times and average the results. You might have to discard the 
timing value for the first run, which may be much slower because it has to compile 
code, or load libraries or data into memory.

5. Optimization can be very specific to a particular language, operating system, and 
type of CPU. Your results may vary!

Optimizing our algorithm
The algorithm you use to solve a problem has a major impact on the time required to solve 
the problem, so improving the algorithm is one of the things you should consider when 
you need to reduce the run time. However, optimizing an algorithm may require a lot of 
your time, and the resulting code may be much harder to debug (which is why premature 
optimization is considered to be the root of all evil). Before you start optimizing, try to take 
advantage of the many optimized routines that are built into Sage. Also, look at journal 
articles, books, and open-source projects to see if an optimized algorithm already exists.

Time for action – faster collision detection
In this example, we are going to apply a couple of simple tricks and see how they impact 
the runtime. Assuming you've already defined the spheres in the previous example, you can 
enter and run the following code in a worksheet cell:

%time
import numpy
collisions_2 = numpy.zeros(num_particles, dtype=numpy.bool)

r_min = 4*radius**2

for i in range(num_particles):
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    for j in range(0,i):
        r_squared = (x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2
        if r_squared < r_min:
            collisions_2[i] = True

    for j in range(i+1,num_particles):
        r_squared = (x[i] - x[j])**2 + (y[i] - y[j])**2 + (z[i] - 
z[j])**2
        if r_squared < r_min:
            collisions_2[i] = True

The code will print the runtime:

It's about twice as fast! Not bad for two minor changes. Now, try this:

%time
import numpy
collisions_3 = numpy.zeros(num_particles, dtype=numpy.bool)

r_min = 4*radius**2

for i in range(num_particles):
    for j in range(0,i):
        r_squared = (x[i] - x[j])*(x[i] - x[j]) + \
            (y[i] - y[j])*(y[i] - y[j]) + (z[i] - z[j])*(z[i] -z[j])
        if r_squared < r_min:
            collisions_3[i] = True
                    
    for j in range(i+1,num_particles):
        r_squared = (x[i] - x[j])*(x[i] - x[j]) + \
            (y[i] - y[j])*(y[i] - y[j]) + (z[i] - z[j])*(z[i] - z[j])
        
        if r_squared < r_min:
            collisions_3[i] = True

Let's check to make sure we are still getting the right answers:

print((collisions_1 == collisions_2).all())
print((collisions_2 == collisions_3).all())
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The result should be True for both lines.

What just happened?
We made two changes in this example that significantly reduced the runtime. First, we 
realized that we don't actually have to calculate the square root of the distance between  
the centres of the spheres. We can compare the squared distance to (2r)2:

The square root is a computationally intensive operation. Eliminating the square root cut 
the execution time in half, which is a pretty good return for such a simple change. We 
also moved the calculation of the squared radius out of the loop so that it only has to be 
computed once. In the second part of the example, we used multiplication instead of the 
exponential operator to perform the squaring operation. This change again decreased the 
runtime by more than 50%.

The final step of this example was to compare the results from these two runs to the results 
from the first example. Using NumPy arrays to store the results makes the comparison a 
lot easier. We can test for equality between two arrays with the == operator. The result is a 
NumPy array of Boolean values that are True where the two arrays match and False where 
they do not. If the two arrays are identical, the result should be True everywhere. Since the 
result is an array, we used the all method, which returns True if all the values of the array 
are True.

Optimizing with NumPy
So far, we have been using NumPy because of its useful features, but it can also help us 
speed up our code. Using NumPy, you can perform operations on arrays without using 
Python for loops. NumPy operations are much faster than Python loops, because the 
critical parts of NumPy are written in C and optimized for speed.

Time for action – using NumPy
Enter the following code in a new cell in the worksheet to define the spheres using NumPy:

import numpy

dimension = 20
num_particles = 500
radius = 1.0

rng = numpy.random.mtrand.RandomState(seed=[1])
x_np = rng.uniform(0, dimension, num_particles)
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y_np = rng.uniform(0, dimension, num_particles)
z_np = rng.uniform(0, dimension, num_particles)

Now, enter the following code in another cell to detect collisions:

%time
collisions_4 = numpy.zeros(num_particles, dtype=numpy.bool)

r_min = numpy.float64(4*radius**2)

for i in range(num_particles):

    for j in range(0,i):
        r_squared = (x_np[i] - x_np[j])*(x_np[i] - x_np[j]) \
            + (y_np[i] - y_np[j])*(y_np[i] - y_np[j]) \
            + (z_np[i] - z_np[j])*(z_np[i] - z_np[j])
        if r_squared < r_min:
            collisions_4[i] = True

    for j in range(i+1,num_particles):
        r_squared = (x_np[i] - x_np[j])*(x_np[i] - x_np[j]) \
            + (y_np[i] - y_np[j])*(y_np[i] - y_np[j]) \
            + (z_np[i] - z_np[j])*(z_np[i] - z_np[j])
        if r_squared < r_min:
            collisions_4[i] = True

The notebook prints the runtime:

In another cell, try using NumPy this way:

%time
collisions_5 = numpy.zeros(num_particles, dtype=numpy.bool)

r_min = numpy.float64(4*radius**2)

for i in range(num_particles):
    if i>0:
        d2 = numpy.power((x_np[i]-x_np[0:i]),2) \
            + numpy.power((y_np[i]-y_np[0:i]),2) \
            + numpy.power((z_np[i] - z_np[0:i]),2)
        if d2.min() < r_min:
           collisions_5[i] = True
           
    if i+1 < num_particles:
        d2 = numpy.power((x_np[i]-x_np[i+1:]),2) \
            + numpy.power((y_np[i]-y_np[i+1:]),2) \
            + numpy.power((z_np[i]-z_np[i+1:]),2)
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        if d2.min() < r_min:
            collisions_5[i] = True

The notebook prints the runtime:

Finally, let's make sure that both computations return the same results:

print((collisions_4 == collisions_5).all()

As before, the result should be True for both cases.

What just happened?
We started out by creating spheres using NumPy's random number capabilities. We 
created an instance of RandomState and initialized it with a seed so that it would provide 
repeatable, pseudo-random numbers. RandomState has methods that return numbers 
drawn from various types of random distributions. In this case, we used the uniform 
method to obtain numbers drawn from a uniform distribution between zero and the 
maximum size of the box. The first two arguments to uniform define the lower and 
upper limits, and the third argument defines the number of random numbers to generate. 
The function returns a NumPy array containing the random numbers. Dozens of other 
distributions are available; a complete list is available in the NumPy Reference.

In the first part of the example, replacing Sage functions and operators with NumPy functions 
actually increased the runtime! This example demonstrated that simply replacing Sage 
functions with NumPy functions doesn't speed up the code. However, this attempt did not 
utilize the full power of NumPy. The second part of the example showed how to use NumPy to 
optimize execution speed. The inner for loops were replaced with NumPy vector operations. 
The expression x_np[i]-x_np[0:i] computes the difference between the single value of 
x_np[i] and all the values in the array x_np[0:i], and returns an array. The NumPy function 
power squares all of these values, and + operator performs element-by-element addition on 
the results from each power operation. In the end, the array d2 held the square of the distance 
from particle i to each of the other particles. We then used the min method of the array 
class to find the minimum squared distance between sphere centers. If this value is less than 
(2r)2, then the spheres overlap.

Many numerical algorithms consist of nested loops. The statements in the 
innermost loop are executed more times than statements in the outer loops, so 
you will get the most "bang for your buck" by focusing your optimization efforts 
on the innermost loop.
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More about NumPy
NumPy vector operations are fast because the NumPy library consists of highly optimized, 
compiled code. Instead of spending your time figuring how to optimize a mathematical 
operation, you can take advantage of the hard work that has already been done. One of the 
reasons that compiled code is fast is because it utilizes parallel processing. Modern CPUs 
(even single-core units) have the ability to execute multiple instructions in parallel. When 
you define a loop in an interpreted language like Python, the interpreter executes the loop 
operations sequentially. When you compile code that contains a loop, the compiler checks 
to see if the loop operations have to be executed sequentially. If not, the loop is converted 
to a different form and its instructions are executed in parallel on the CPU. By using vector 
operations on NumPy arrays, you can take advantage of parallel execution to speed up 
mathematical operations.

Just about every common mathematical operation is implemented as a function or method 
in NumPy. Mathematical operations such as addition, subtraction, multiplication, division, 
and exponents are performed element by element. The result is an array with the same 
length as the original. In previous chapters, we have already touched on a few, such as the 
fast Fourier transform and window functions. A categorized list of all the NumPy functions is 
available at:

http://www.scipy.org/Numpy_Functions_by_Category

Optimizing with Cython
Cython is a language for writing C extensions for the Python language. The Cython language 
is very similar to Python, but supports some additional features that allow it to be compiled 
to highly optimized C code. It is very easy to use Cython from Sage.

 Time for action – optimizing collision detection with Cython
1. Define a function with Cython:

%cython
import numpy

def cython_collisions(x, y, z, radius):
    num_particles = len(x)
    collisions = numpy.zeros(num_particles, dtype=numpy.bool)

    r_min = numpy.float64(4*radius**2)

    for i in range(num_particles):
        if i>0:
            d2 = numpy.power((x[i]-x[0:i]),2) \
                + numpy.power((y[i]-y[0:i]),2) \
                + numpy.power((z[i] - z[0:i]),2)
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            if d2.min() < r_min:
               collisions[i] = True
           
        if i+1 < num_particles:
            d2 = numpy.power((x[i]-x[i+1:]),2) \
                + numpy.power((y[i]-y[i+1:]),2) \
                + numpy.power((z[i]-z[i+1:]),2)
            if d2.min() < r_min:
                collisions[i] = True
                
    return collisions

When you run this cell, it may take a minute or two to compile for the first time.  
The results will look similar to this:

2. In another cell, enter the following code to create the particles and call the Cython 
function:
%time
import numpy

dimension = 20
num_particles = 500
radius = 1.0

rng = numpy.random.mtrand.RandomState(seed=[1])
x_np = rng.uniform(0, dimension, num_particles)
y_np = rng.uniform(0, dimension, num_particles)
z_np = rng.uniform(0, dimension, num_particles)

collisions_6 = cython_collisions(x_np, y_np, z_np, radius)

3. The results should look like this:

4. Verify that the results are correct:
print((collisions_4 == collisions_6).all())

The result should be True.
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What just happened?
We created a Cython cell by placing %cython on the first line. We then defined a function 
that checks for collisions between hard spheres, using essentially the same code from the 
previous example. When we ran the cell, Cython compiled the code into a C extension. 
The only visible result of the computation is two links that appeared in the worksheet. 
Clicking the left-hand link will show you the C code that Cython generated. The right-hand 
link will take you to an optimization report that shows your Cython source code with color 
highlighting. Code that has a white or lightly colored background is highly "typed," meaning 
that it translates to almost pure C without any calls to the Python API. Code that is more 
brightly colored requires more calls to Python, and therefore runs slower. The optimization 
report for this code shows that there is plenty of room for improvement in the optimization. 
However, when we ran the code to test the Cython function, the execution was more than 
three times faster than the previous example. We also verified that the results are the same. 
This brief demonstration shows how useful Cython can be for optimizing code, and how 
easy it is to use Cython from Sage. You can learn more about the Cython project at http://
cython.org/

Have a go hero – further optimization with Cython
Increase the number of particles in the example until it takes several seconds for the Cython 
code to run on your computer. Then, continue optimizing the Cython code, following the 
instructions and examples on the Cython website. Use the optimization report as a guide to 
tell you which parts of the code are closest to pure C.

Calling Sage from Python
You may want to create Python scripts that take advantage of the functionality of Sage, 
without having to run Sage itself. You can think of Sage as a giant module that can be 
imported into a Python program, which can then be run from the command line. We briefly 
used this capability in Chapter 9, when we imported some simple mathematical functions 
from Sage to use in a Python module.

Time for action – calling Sage from a Python script
Sage has advanced numerical integrators that adapt to the rate of change in the function 
being integrated. Let's say that you want to use one of these integrators to integrate an 
analytical function. You only want to use the integrator, so you don't want to manually start 
Sage and load a script just to access one function. We can create a stand-alone Python script 
that calls Sage when necessary. Create a new plain text file, enter the following code, and 
save it with a .py extension.
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#!/usr/bin/env sage -python
from sage.all import *

vars={}

# Define limits of integration
vars['a'] = 0
vars['b'] = 8

sage_eval('None', cmds='f(x)=e^x*cos(x)', locals=vars)
print vars['f']

sage_eval('None', cmds='value, tol = numerical_integral(f,a,b)', 
locals=vars)
print(vars['value'])

There are two ways to run this script. One option is to open a terminal and enter the 
following command. If the Sage installation is on your path, you can simply type:

$ sage –python /path/to/script/4460_10_8.py

in which you specify the full or relative path to the script. If Sage is not on your path, you 
will have to either provide the full path to the Sage executable, or change to the top-level 
directory of your Sage installation. For example:

$ $ /Applications/sage_source/sage-4.6.1/sage -python 4460_10_8.py

The result should be:

x |--> e^x*cos(x)

1257.25293971

You can also set up the script so that it can be executed directly. On Solaris, OS X, or Linux, 
use the chmod command on the command line:

bash$ chmod u+x 4460_10_8.py

The directory where Sage is installed also has to be in your system PATH variable. For 
example, on a UNIX or UNIX-like system:

bash$ echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/texbin:/usr/X11/bin

bash$ PATH=$PATH:/Applications/sage

bash$ export PATH

bash$ echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/texbin:/usr/X11/bin:/
Applications/sage
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Run the script from the command line by typing:

bash$ ./4460_10_8.py

The result should be:

x |--> e^x*cos(x)

1257.25293971

What just happened?
Writing a Python script that uses Sage requires a different approach than writing a Sage 
script. Our script has to be valid Python, so we can't directly use Sage-specific syntax, like a 
mathematical function definition: f(x)=e^x*cos(x). First, we have to use the statement 
from sage.all import * to access names from Sage. Then, we have to use the sage_
eval function to "wrap" Sage expressions. This function accepts four arguments:

Argument Keyword Default Description

source A string to be evaluated

local variables locals None A dictionary of variables for Sage to use

commands cmds '' A string of commands to be executed before the 
source is evaluated

pre-parse source preparse True Disable the Sage pre-parser

We created an empty dictionary called vars, and created items a and b to contain integers 
that define the interval of integration. We then used the function call:

sage_eval('None', cmds='f(x)=e^x*cos(x)', locals=vars)

to define the function we want to integrate. Note that the source was set to 'None', and the 
function definition was passed as a command string. After this function call, the dictionary of 
variables contains a new item called f, which holds the Sage function. We then performed 
the integration with:

sage_eval('None', cmds='value, tol = numerical_integral(f,a,b)', 
locals=vars)

Once again, the integration function call is passed as a command string. Basically, any 
expression that involves variable assignment needs to be passed with the cmd keyword. 
The source string is only used to evaluate expressions that don't involve assigning values to 
variables. When this command string is executed, Sage gets the values of a and b from the 
dictionary of variables, and computes the integral. Afterwards, you can see that the variables 
value and tol have been added to the dictionary.
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In this example we used the all module to import everything from Sage at once. This may 
cause you a little concern since Sage is huge, and it is considered good practice to import 
only the functions and classes that you actually need. At this point, Sage is not structured 
in such a way that you can import a subset of packages and modules and expect that it will 
work correctly. You have to import everything. 

If you want to try this example interactively on the Python command line, run 
Sage with the –python option to get an interactive Python shell. You can then 
run each of these expressions on the command line and see the results.

Have a go hero – solving an ODE symbolically from Python
In Chapter 8, we learned how to solve an ordinary differential equation with the desolve 
function. Repeat that example using a Python script to access Sage functions to solve the 
equation. You won't be able to view plots from the Python script, so don't try to plot the 
solution.

Introducing Python decorators
We need to take a little detour here to introduce one of the newer features of the Python 
language: the Python decorator. This is not an implementation of the "decorator" design 
pattern, although the concepts are similar. We'll need decorators to implement the 
interactive graphics that will be introduced in the next section.

Time for action – introducing the Python decorator
Enter the following code into a cell in a workbook and run it. You can also run this on the 
Sage command line, but the HTML formatting will not look nice!

def html_table(func):
    
    def display_output(*args):
        result = func(*args)
        html_string = '<table border=1><tr>'
        for item in result:
            html_string += '<td>' + str(item) + '</td>'
        html_string += '</tr></table>'
        html(html_string)
        return result
        
    return display_output
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@html_table
def square_list(my_list):
    for i in range(len(my_list)):
        my_list[i] = my_list[i]**2
    return my_list
    
x = square_list([1.0, 2.0, 3.0])
print x

The result should be:

What just happened?
We defined a simple function called square_list, that accepts a list as an argument, 
squares every item in the list, and returns the squared list. Since you've just been introduced 
to NumPy, you should recognize that this is not really a useful function in Sage, but it will 
serve to illustrate how decorators work. We defined a decorator function called html_table 
that accepts a function as an argument called func. The decorator function defines and 
returns a new function called display_output that accepts the same arguments as func 
and returns the same results as func. However, before it returns, display_output creates 
and displays an HTML table that shows the values in the list. We use the @ symbol to indicate 
that html_table decorates square_list. The syntax:

@decorator_function
def my_function():
   pass

is simply a shortcut for:

def my_function():
   pass

decorator_function(my_function)

When we call square_list, the call is intercepted and html_table is called with square_
list as its argument. html_table returns an "improved" version of square_list which 
is then called with the appropriate arguments. The result is the formatted list that you see in 
the output.
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This has been only a brief introduction to function decorators. Class decorators were 
introduced in Python 2.6. If you're going to be writing your own decorators, you will need to 
learn more about how to do it correctly. Python decorators are very flexible and powerful, 
and they give you the power to write convoluted code. The following resources should help 
you:

http://docs.python.org/release/2.4/whatsnew/node6.html

http://docs.python.org/release/2.6/whatsnew/2.6.html#pep-3129-class-
decorators

http://wiki.python.org/moin/PythonDecoratorLibrary

Pop quiz – understanding function decorators
What is the output from the following code? Try to figure it out, and then run it to check 
your answer.

def decorator(func):
    
    def print_value(*args):
        print "Value is:"
        result = func(*args)
        return result
        
    return print_value
    
@decorator
def my_function(my_arg):
    print my_arg
    return my_arg
    
x = my_function('text')

Have a go hero – improving the decorator
The html_table decorator can only handle a one-dimensional list, but it could easily be 
extended to multi-dimensional lists, Sage matrices, or NumPy matrices. Extend the decorator 
function so that it displays two-dimensional data as an HTML table. Use the starting tag 
<tr> and ending tag </tr> to create a new row in the table. For help with HTML tables, 
check out:

http://www.w3schools.com/html/html_tables.asp
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Have a go hero – the memoize decorator
The optimization technique known as "memoization" speeds up function calls by caching 
the results of previous function calls and returning a saved value when the function is called 
again when the same arguments are used. A Python decorator is a good way to add this  
ability to existing Python functions. Look at the examples in the links below, and implement  
a "memoize" decorator that you can use to speed up function calls.

http://en.wikipedia.org/wiki/Memoization

http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

Making interactive graphics
The Sage notebook interface can be used to make interactive examples that are controlled 
by simple graphical controls. This feature is comparable to the Manipulate function in 
Mathematica. Interactive graphics are especially useful for creating teaching tools to help 
students learn new mathematical concepts. We will make extensive use of the Python 
decorators that were introduced in the previous section.

Time for action – making interactive controls
This example consists of a gallery of all the basic controls that can be used in the Sage 
notebook interface. The code is followed by the result from running that code in an input cell.

@interact
def _(t=text_control('Static text goes here')):
    pass

@interact
def _(value = slider(vmin=0, vmax=10, step_size=1, default=5,
    label='Slide me:', display_value = True)):
    print value
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Here is a shorthand way to create the same type of control:

@interact    # Shortcuts
def _(value1=(1..10), value2=(0,100,10), value3=(1,10)):
    print value1
    print value2
    print value3

@interact
def _(value = range_slider(0, vmax=10, step_size=1, default=(3,7),
    label='Slide me:', display_value = True)):
    print value
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@interact
def _(checked = checkbox(True, "Check the box:")):
    print checked

Here is a shorthand way to create the same type of control:

@interact
def _(check_value = True):    # Shortcut
    print check_value

@interact
def _(value1 = selector(['a','b','c'], label='Choose one:', 
        default='b'),
    value2 = selector(['a','b','c','d'], label='Choose one:', 
        default='b', nrows=2, ncols=2)):
    print value1
    print value2

Here is a shorthand way to create the same type of control:

@interact    # Shortcuts
def _(value1 = ['a','b','c'], value2=[1,2,3,4,5,6]):
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    print value1
    print value2

@interact
def _(s = input_box(default='type here', label='Type something: ',
    type=str, width=40)):
    print s

Here is a shorthand way to create the same type of control:

@interact    # Shortcut
def _(s1, s2 = 'type here'):
    print s1
    print s2

@interact
def _(m = input_grid(nrows=2, ncols=2, default=0,
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    label='Input matrix:')):
    print m

Here is a shorthand way to create the same type of control:

default_matrix = Matrix(QQ, 2, 4)

@interact    # Shortcut
def _(input_matrix = default_matrix):
    print input_matrix

@interact
def _(color = color_selector(default=(1,0,0), 
    label='Choose a color:', widget='farbtastic', hide_box=False)):
    print color
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Here is a shorthand way to create the same type of control:

@interact    # Shortcut
def _(color = Color('red')):
    print color
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What just happened?
This example makes use of Python function decorators, that were introduced in the previous 
example. Sage defines a decorator called interact. When you decorate a function with @
interact, interact is called, and the function you defined is passed as an argument. 
interact uses your function to construct an interactive graphical user interface. The syntax 
for doing this is somewhat unusual. The keyword arguments of your function define the 
elements of the interface, and the statements in the body of the function determine what 
happens when the user interacts with the controls. The code that creates a check box is a 
good place to start:

@interact
def _(checked = checkbox(True, "Check the box:")):
    print checked

The name of the function we define doesn't really matter, as long as it doesn't conflict with 
any other names, so the convention is to use a single underscore. There's nothing magical 
about the underscore; you could give the function any name. The function has a single 
keyword argument. The keyword is the variable name that will contain the result from 
the control, and checkbox is the function that creates the control. checkbox takes two 
optional arguments: the default value, and a label for the control. When the user clicks 
on the checkbox, the statements in the function body are executed. In this case, the value 
returned by the control is just printed below the control.

There are also shortcuts for creating many of the controls. The shortcuts typically give you 
less control over the appearance of the controls. I don't recommend using the shortcuts, 
because someone who is unfamiliar with the shortcut will have no idea how the code works 
until they study the documentation for the interact module. Code should generally be 
self-explanatory. The shortcuts are listed here so that you can understand what is going on if 
you come across them in other examples.

Using interactive controls

Time for action – an interactive example
Let's take an example from Chapter 8 and make it interactive. Run the following code in a 
worksheet:

var('x,y')

@interact
def _(c1 = slider(vmin=0, vmax=3, default=2, label='c1:'),
        c2 = slider(vmin=-3, vmax=3, default=1, label='c2:'),
        c3 = slider(vmin=-3, vmax=3, default=1, label='c3:'),
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        c4 = slider(vmin=0, vmax=3, default=2, label='c4:')):

    c=vector(RDF,[-4,-5])
    G=matrix(RDF,[[c1,c2],[c3,c4],[-1,0],[0,-1]])
    h=vector(RDF,[3,3,0,0])

    sol=linear_program(c,G,h)
    print "Minimum:" + str(sol['x'])
    print "Slack variables: " + str(sol['s'])

    c1_plot = implicit_plot(c1*x + c2*y ==3, (x,0,6), (y,0,6))
    c2_plot = implicit_plot(c3*x + c4*y == 3, (x,0,6), (y,0,6))
    c3_plot = implicit_plot(x == 0, (x,0,6), (y,0,6))
    c4_plot = implicit_plot(y == 0, (x,0,6), (y,0,6))

    min_plot = point(sol['x'], color='red', size=50)

    rp = region_plot([c1*x + c2*y <= 3, c3*x + c4*y <= 3, x >= 0,  
        y >= 0], (x,0,6), (y,0,6))
        
    g = graphics_array([c1_plot+c2_plot+c3_plot+c4_plot+min_plot,
        rp],1,2)
    g.show(aspect_ratio=1)

The results should look like this:
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Play with the sliders to adjust two of the lines that constrain the minimization problem. 
Notice that the coordinates of the minimum are printed every time you move a slider,  
and the plots change to reflect the new constraints and the location of the minimum.

What just happened?
We started with an example from Chapter 8, and made it interactive. We defined a function 
with a single underscore as its name, and used the decorator syntax to decorate the function 
with interact. We created four slider controls, using the syntax described in the previous 
example. We then pasted the code from Chapter 8 into the function body and made a few 
changes. The linear constraints are represented as a matrix G and a vector h. We changed 
four of the entries in the matrix to be variables rather than hard-coded values. The slider 
controls set the values for these variables. When you move a slider, the constraints change, 
the minimum is recalculated, and the plots are redrawn. Note that this example is a good 
choice for user interaction because the linear program can be solved quickly; if the code  
took minutes or hours to run, there would be no point in making it interactive!

The complete documentation of the interact module can be found at:

http://sagemath.org/doc/reference/sagenb/notebook/interact.html

Many interactive examples, along with source code, can be found at:

http://wiki.sagemath.org/interact

Have a go hero – Taylor series
In Chapter 7, we used an example to demonstrate a Taylor series converges to a function 
in a region as the number of terms in the series increases. Convert this example so that it 
is interactive. Allow the user to change the number of terms in the series, and update the 
graph to show how the series converges to the function.

Summary
This chapter provided you with advanced tools that will help you get the most out of Sage.  
We learned about:

 � Exporting mathematical expressions in PDF files and PNG bitmaps

 � Generating LaTeX mark-up that describes a mathematical expression

 � Incorporating LaTeX mark-up into a text cell in a workbook

 � Processing LaTeX mark-up in a workbook

 � Using NumPy to improve the execution speed of your code
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 � Using Sage from a stand-alone Python script

 � Creating  interactive graphical examples in the notebook interface

I hope you have found Sage to be a useful tool that takes much of the pain out of 
mathematics. This book has only scratched the surface of its capabilities, especially if you are 
interested in advanced mathematics. Refer to the online documentation for Sage and Python 
to learn more. The Sage worksheets published at http://www.sagenb.org/pub/ can also 
be an excellent resource. 
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about  67, 87, 143, 211
multiple values, returning from function  87, 88

Turret class  245, 246
two-dimensional plots  141
TypeError exception  273
type function  58
types

combining, in expressions  62

U
u.cross_product(v) method  118
u.dot_product(v) method  118
u.inner_product(v) method  118
Undo tab  51
unit  284
unit testing

about  284
strategies  288

unit tests
creating, for Tank class  284-287

u.norm(p) method  118
u.pairwise_product(v) method  118
user account

Sage, running from  36

V
ValueError exception  277
var function  60, 65
variables

defining, on ring  61
variables argument  235
variables method  175
var statement  175
vector elements

manipulating  116, 117

vector fields
about  149
plotting  149, 150

vector function  116
vector object

creating  116, 117
vectors

about  113, 114
manipulating  116, 117
methods  117
operators  117
working with  114, 115

vector space
creating  116

VectorSpace class  115
vehicle base class

creating  258-262
vehicle module  261
vehicle.py file  258
version control  243
viewer keyword  167
view function  295, 297
virtual machine

launching  31-33
VMware Player

downloading  30
installing  30
launching  31-33

W
while loop

about  105
for loop, replacing with  107
using  101

who command  45
width argument  163
window functions

about  223
plotting, in NumPy  223, 224

worksheets
commands, for editing  54

Worksheet tab  51
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X
XCode

installing  38
xrange function  94
xrange objects  92
xsrange  94

Y
y_0 argument  230
yerr argument  163
ymax method  145
ymin method  145

Z
ZeroDivisionError exception  274
zeros function  307
zip function  23, 151
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